WO2016078295A1 - 一种散热装置 - Google Patents

一种散热装置 Download PDF

Info

Publication number
WO2016078295A1
WO2016078295A1 PCT/CN2015/076148 CN2015076148W WO2016078295A1 WO 2016078295 A1 WO2016078295 A1 WO 2016078295A1 CN 2015076148 W CN2015076148 W CN 2015076148W WO 2016078295 A1 WO2016078295 A1 WO 2016078295A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
heat sink
liquid
collector
heat
Prior art date
Application number
PCT/CN2015/076148
Other languages
English (en)
French (fr)
Inventor
周建明
程兵旺
吴炜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016078295A1 publication Critical patent/WO2016078295A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of communication device technologies, and in particular, to a heat dissipation device.
  • the communication equipment belongs to a relatively concentrated electronic device, a large amount of heat is generated during the working process. If the heat is not dissipated in time, the semiconductor device may be overheated. According to the existing heat dissipation method, most of the wind energy is cooled. Although the high-speed airflow can cool down, it also brings problems such as power consumption, dust accumulation and excessive noise, especially high-power electronic components or high-power equipment. In the case, the heat is too concentrated, relying solely on wind energy to cool down, and can not meet the heat demand. In addition, the accumulation of dust caused by the cooling of the wind energy will cause the heat dissipation efficiency to be lowered, and various particles in the dust are also likely to cause damage to the circuit.
  • the main technical problem to be solved by the present invention is to provide a heat dissipating device, which can solve the problems of power consumption, dust accumulation and excessive noise caused by the use of existing wind energy heat dissipation.
  • the present invention provides a heat dissipating device, comprising: a coolant collector and a heat sink disposed on a board of the communication device;
  • An outlet of the coolant collector is connected to an inlet of the heat sink through a first pipe, and an outlet of the heat sink is connected to an inlet of the coolant collector through a second pipe;
  • the coolant in the coolant collector flows into the heat sink through the first pipe; the coolant in the heat sink exchanges heat with the single plate and vaporizes, and the coolant in the heat sink is vaporized
  • the coolant collector is introduced into the coolant collector through the second pipe while expanding, and the coolant in the second pipe exchanges heat with the outside air.
  • the heat sink further includes a gas flow generator
  • At least one section of the second duct is located in the airflow generator, and the airflow generator forms a gas flow under the thermal force of the coolant in the section of the duct, and the coolant in the section of the duct exchanges heat with the airflow.
  • the airflow generator is a vortex generator; the vortex generator forms a vortex under the thermal force of the coolant in the section of the pipeline.
  • the bottom of the vortex generator is provided with an air inlet, the air intake direction of the air inlet is tangent to the bottom side; under the thermal force of the coolant, the vortex generator is from the bottom
  • the air inlet draws in air, and the gas rises annularly along the inner wall of the vortex generator to form a vortex.
  • any cross section of the vortex generator is elliptical, and the air outlet of the vortex generator is an inscription.
  • At least one section of the second duct is an annular duct.
  • annular duct is disposed on an inner wall of the vortex generator.
  • annular duct is embedded on the inner wall of the vortex generator.
  • the second duct is connected in sequence: a liquid discharge duct of the vortex generator, at least one section of the annular duct located in the vortex generator, a liquid inlet duct of the vortex generator, and the heat sink Composition of a liquid discharge pipe;
  • the inner diameter of the liquid discharge conduit of the fin is greater than the inner diameter of the liquid inlet conduit of the five-fold vortex generator.
  • a first one-way valve is disposed at an inlet of the coolant collector; the first one-way valve is automatically opened under the action of a liquid in the second pipe, and the liquid in the second pipe After flowing into the coolant collector, the coolant in the coolant collector reaches a predetermined height, and is automatically closed under the action of the liquid pressure in the coolant collector.
  • a second one-way valve is disposed at an outlet of the coolant collector; the second one-way valve is automatically opened after the coolant rises to a predetermined height in the coolant collector, the coolant The coolant in the collector flows into the fin through the second duct, and the coolant is automatically closed after the coolant drops to a predetermined height in the coolant collector.
  • the second check valve includes: a buoy, a support rod, a connecting rod and a sealing body for sealing the outlet of the coolant collector;
  • the connecting rod is connected to the buoy at one end, the other end and the support One end of the rod is movably connected, and the other end of the support rod is fixed on the coolant collector, and the buoy floats in the coolant collector, and is connected to the sealing body through a line segment;
  • the liquid in the second pipe flows into the coolant collector, the liquid height in the coolant collector increases continuously, and the buoy moves upwards as the liquid height increases; when the liquid rises to a certain height, the liquid buoyancy The buoy pulls the sealing body through the line segment under action; after the liquid drops to a predetermined height, the sealing body seals the coolant collector outlet under the action of liquid pressure.
  • a third one-way valve is disposed in the first pipe or at an inlet of the heat sink;
  • the coolant in the coolant collector flows into the first pipe, it is automatically opened under the action of the thrust of the coolant, and the coolant flows into the heat sink; the coolant in the heat sink is performed on the veneer The heat is exchanged and vaporized, and then automatically shuts off under the action of liquid vaporization expansion in the heat sink.
  • the invention provides a heat dissipating device, which can dissipate heat from a communication device, and does not cause power consumption, dust accumulation and excessive noise during heat dissipation;
  • the heat dissipating device of the present invention comprises: a coolant collector and a heat sink disposed on the communication device board; the outlet of the coolant collector is connected to the inlet of the heat sink through a first pipe, and the outlet of the heat sink passes through the second pipe and the coolant collector An inlet connection; a coolant in the coolant collector flows into the heat sink through the first pipe; a coolant in the heat sink exchanges heat with the single plate and vaporizes, and cooling in the heat sink The liquid enters the coolant collector through the second pipe under vaporization expansion, and the coolant in the second pipe exchanges heat with the outside air; the heat sink of the present invention uses the heat sink to collect the communication equipment list The heat of the plate, heat exchange of the veneer, and then use the kinetic energy generated by the vaporization of the liquid to push the
  • the heat dissipating device of the present invention naturally cools the communication device, and does not need
  • the use of a fan for heat dissipation saves power and generates no noise; at the same time, the heat sink of the present invention is a closed device that prevents external dust from entering the heat sink and accumulating.
  • FIG. 1 is a schematic structural diagram of a heat dissipation device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of another heat dissipation device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a heat dissipation device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a coolant collector according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a heat sink according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a thermal vortex generating exchanger according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of an air inlet of a vortex generator according to Embodiment 3 of the present invention.
  • the core idea of the invention is: according to the principle of energy conversion, converting the thermal energy generated by the communication device into kinetic energy, thereby forming a liquid circulation, and cooling the liquid during the liquid circulation, and finally achieving the purpose of circulating heat exchange.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a heat dissipating device, including a coolant collector 101 and a heat sink disposed on a board of the communication device, in consideration of the problem of power consumption, dust accumulation, and excessive noise caused by the existing heat dissipation of the wind energy. 102;
  • An outlet of the coolant collector 101 is connected to an inlet of the heat sink 102 through a first pipe 103, and an outlet of the heat sink 102 is connected to an inlet of the coolant collector 101 through a second pipe 104;
  • the coolant in the coolant collector 101 flows into the heat sink through the first pipe 103; the coolant in the heat sink 102 exchanges heat with the single plate and vaporizes, and the heat sink 102
  • the coolant enters the coolant collector 101 through the second conduit 104 under vaporization expansion, while the coolant in the second conduit 104 exchanges heat with the outside air.
  • the heat dissipating device of the embodiment uses the heat sink to collect the heat of the single board of the communication device, performs heat exchange on the single board, and then uses the kinetic energy generated by the vaporization of the liquid to push the liquid to the original position (ie, the coolant collector), which is pushed.
  • the heat dissipation device of the embodiment naturally cools the communication device. There is no need to use a fan to dissipate heat, which saves power and generates no noise.
  • the heat dissipating device of the embodiment is a closed device, which can prevent external dust from entering the heat dissipating device and accumulating.
  • the heat dissipation device of the embodiment may further include: a flow generator 105;
  • At least one section of the second duct 104 is located in the airflow generator 105, and the airflow generator 105 forms an airflow under the thermal force of the coolant in the section of the pipeline, and the coolant in the section of the pipeline is connected to the airflow Heat exchange.
  • At least one section of the second conduit 104 located within the flow generator 105 means that a length of conduit or a plurality of sections of conduits in the second conduit are located within the flow generator 105.
  • the airflow generator will drive the external cavity to flow at a high speed, which increases the speed at which the liquid temperature is lowered, that is, the liquid heat exchange speed is accelerated.
  • the airflow generator 105 in this embodiment may be a vortex generator; the vortex generator is under the thermal force of the coolant in the section of the pipeline. Forming eddy currents.
  • the vortex generator generates eddy currents in various ways.
  • the preferential manner is that the bottom of the vortex generator is provided with an air inlet, and the air intake direction of the air inlet is tangent to the bottom side. Under the thermal force of the coolant, the vortex generator draws in air from the inlet of the bottom, and the gas rises annularly along the inner wall of the vortex generator to form a vortex.
  • the inner wall of the vortex generator is designed to be elliptical
  • the outlet is designed to be in the shape of an inscription
  • the airflow is tangentially cut into the inner wall along the air inlet, and spirally rises along the inner wall under the action of heat
  • the plurality of inlets are identical.
  • the direction rotates to form a strong eddy current that rises at a rapid rate.
  • the elliptical inner wall causes the inlet airflow to form a vortex at a very high speed under the shape of the shape.
  • the airflow is formed to form a dense vortex, and the airflow is subjected to an extremely rapid pulling action.
  • At least one section of the second pipe 104 is an annular pipe, that is, one or more sections of the pipe located in the vortex generator are annular pipes.
  • the annular duct in the present embodiment is disposed on the inner wall of the vortex generator.
  • the inner diameter of the liquid discharge pipe of the heat sink is more than 5 times larger than the inner diameter of the vortex generator liquid inlet pipe by the principle of vaporization gas expansion, which can prevent The airflow mixed into the liquid is ineffectively discharged, and the liquid can be effectively discharged under the gas pressure.
  • the second duct is connected in sequence: a liquid discharge duct of the vortex generator, at least one section of the annular duct located in the vortex generator, and a liquid of the vortex generator
  • the liquid discharge conduit entering the conduit and the fin is constructed; the inner diameter of the liquid discharge conduit of the fin is greater than the inner diameter of the liquid inlet conduit of the five-fold vortex generator.
  • the inner diameter of the pipe in the vortex generator (for example, the above-mentioned annular pipe) is designed as small as possible, and the length of the pipe is as long as possible, and the volume of the vortex generator is formed as large as possible, so that the vortex flow is increased. Large contact surfaces allow the liquid to cool as quickly as possible.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a heat dissipating device, wherein a first one-way valve is disposed at an inlet of the coolant collector; the first one-way valve is in the The liquid in the second pipe is automatically opened under the action of the thrust of the liquid in the second pipe. The liquid in the second pipe flows into the coolant collector. After the coolant in the coolant collector reaches a predetermined height, the liquid pressure acts in the coolant collector. Automatically shut down.
  • the first check valve is opened under the action of liquid thrust so that the liquid automatically flows into the liquid collector. Once the liquid collection is completed, the check valve seals the inlet due to the pressure of the liquid, thereby preventing the liquid from flowing backward.
  • the heat sink of the embodiment has a second check valve at the outlet of the coolant collector; the second check valve is in the coolant
  • the coolant in the collector is automatically opened after rising to a predetermined height, and the coolant in the coolant collector flows into the heat sink through the second pipe, and the coolant is automatically lowered to a predetermined height in the coolant collector shut down.
  • the first check valve is opened under the action of the thrust generated by the vaporization expansion in the heat sink, and the liquid in the second pipe passes through the temperature drop to enter the coolant collector, and the first in the coolant collector
  • the two check valves are closed, and the liquid in the coolant collector is continuously increased in height.
  • the second check valve is automatically opened, and the liquid in the collector flows into the heat sink through the second pipe.
  • the second check valve automatically closes and continues to store the liquid.
  • the second check valve comprises: a buoy, a support rod, a connecting rod and a sealing body for sealing the outlet of the coolant collector;
  • the connecting rod is connected to the buoy at one end, the other end and the support One end of the rod is movably connected, and the other end of the support rod is fixed on the coolant collector, and the buoy floats in the coolant collector, and is connected to the sealing body through a line segment;
  • the liquid in the second pipe flows into the coolant collector, the liquid height in the coolant collector increases continuously, and the buoy moves upwards as the liquid height increases; when the liquid rises to a certain height, the liquid buoyancy The buoy pulls the sealing body through the line segment under action; after the liquid drops to a predetermined height, the sealing body seals the coolant collector outlet under the action of liquid pressure.
  • the heat dissipating device of the embodiment may further be provided with a third one-way valve in the first pipe or at the inlet of the heat sink;
  • the coolant in the coolant collector flows into the first pipe, it is automatically opened under the action of the thrust of the coolant, and the coolant flows into the heat sink; the coolant in the heat sink and the single The plates are heat exchanged and vaporized, and then automatically closed under the action of liquid vaporization expansion in the fins.
  • a one-way valve is disposed in the pipe connected to the outlet of the heat sink and the liquid collector, and the one-way valve is first opened under the action of liquid thrust (for example, gravity), and the liquid slowly flows into the heat sink. After the fin liquid reaches a certain height, the one-way valve is closed under the action of the liquid pressure and the vaporized inflation gas, and the liquid stops flowing.
  • liquid thrust for example, gravity
  • the heat sink of this embodiment may be provided with at least one of the first check valve, the second check valve, and the third check valve.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a heat dissipating device, as shown in FIG. 3, which is composed of a coolant collector 1, a heat sink 2, and a thermal vortex generating exchanger 3, and the heat sink 2 Installed on the board of the communication device, the heat sink 2 is provided with an inlet 21 and an outlet 22 respectively.
  • the inlet 21 is connected to the outlet 11 of the coolant collector 1 through the pipe 4 and the pipe 5, and the outlet 22 is also passed through the pipes 6, 7.
  • a check valve 13 is installed, and the check valve 13 is opened by the liquid thrust in the vortex generator tube 34 and the pipe 9, In order for the liquid to flow into the liquid collector 1, once the liquid collection is completed, the check valve 13 seals the inlet 12 due to the pressure of the liquid, thereby preventing the liquid from flowing backward.
  • a check valve 14 is provided at the outlet 11 of the liquid collector 1, and the check valve 14 includes a buoy 141, a support rod 142, a connecting rod 143, and the like.
  • the one-way valve 14 is opened under the buoyancy of the buoy 12, and the specific buoy 141 liquid buoyancy acts to pull down the sealing body 144, and the liquid passes through the pipeline. 4 and 5 flow into the fin 2; when the liquid in the liquid collector 1 is lowered to a certain height, the check valve is closed under the action of the liquid pressure, specifically, the sealing body 144 seals the coolant collector outlet under the action of the liquid pressure 11.
  • a one-way valve is disposed in the pipe 4 or the pipe 5, or a one-way valve 23 may be disposed at the outlet 21 of the fin 2, as shown in FIG. 5; 23 firstly opened under the action of liquid gravity, the liquid slowly flows into the fin 2, and after the fin liquid reaches a certain height, the check valve 23 is closed under the action of the liquid pressure and the vaporized inflation gas, and the liquid stops flowing.
  • the liquid of the fin 2 is discharged into the vortex generator inlet 31 through the pipes 6, 7, 8 under the action of liquid vaporization expansion in the fin; as shown in Figs. 6 and 7, the vortex generator 3 is Thermal action, inhaled by inlet 35 at the bottom of vortex generator 3
  • the five inlets 35 are tangent to the circular configuration at the bottom of the vortex generator, so that the gas rises rapidly along the inner wall 33 of the vortex generator to form a vortex, and the vortex completes the heat during the rapid contact with the annular pipe embedded on the inner wall.
  • the exchange process achieves the purpose of heat dissipation.
  • the inner wall of the vortex generator 3 is designed to be elliptical
  • the outlet 32 is designed to be in the shape of an inscription
  • the airflow is tangentially cut into the inner wall along the air inlet 35, and spirally rises along the inner wall under the action of heat, five air intakes.
  • the track rotates in the same direction, forming a strong vortex that rises at a rapid rate.
  • the elliptical inner wall causes the inlet airflow to form a vortex at a very high speed under the shape of the shape.
  • the airflow is formed to form a dense vortex, and the airflow is subjected to an extremely rapid pulling action.
  • the vortex generator In order to exert the function of vortex heat exchange, the vortex generator is inlaid or formed by a dense annular pipe, and the airflow is in high-speed contact with the annular pipe embedded on the inner wall during the ascending spiral speed to achieve the purpose of extremely rapid cooling.
  • the inner diameter of the pipes 6, 7 and 8 is greater than 5 times the inner diameter of the vortex generator inlet 31 by the principle of vaporization gas expansion, thereby preventing The airflow mixed into the liquid is ineffectively discharged, and the liquid can be effectively discharged under the gas pressure.
  • the inner diameter of the pipe inside the vortex generator 3 is designed as small as possible, and the length of the pipe is as long as possible, and the volume of the vortex generator is formed as large as possible, so that the contact surface with the vortex flow can be increased, so that the liquid can be cooled as soon as possible. .

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热装置,所述散热装置包括:冷却液收集器(101)和设置在通讯设备单板上的散热片(102);所述冷却液收集器(101)的出口通过第一管道(103)与所述散热片(102)的进口连接,所述散热片(102)的出口通过第二管道(104)与所述冷却液收集器(101)的进口连接;冷却液收集器(101)中的冷却液通过所述第一管道(103)流入所述散热片(102);所述散热片(102)中的冷却液与所述单板进行热交换且发生汽化,所述散热片(102)内的冷却液在汽化膨胀作用下通过所述第二管道(104)进入所述冷却液收集器(101),同时所述第二管道(104)内的冷却液与外界空气进行热交换;解决采用现有风能散热会带来的耗电、灰尘累积、噪音过大的问题。

Description

一种散热装置
技术领域
本发明涉及通讯设备技术领域,尤其涉及一种散热装置。
背景技术
由于通讯设备属于电子器件相对集中的设备,工作过程中会产生大量热量,如果不能及时散热,就会导致各种半导体器件发生过热异常。依照现有的散热方法,多为风能降温,高速气流虽然能够降温,但也会带来诸如耗电,灰尘积累以及噪声过大等问题,尤其是大功率的电子元器件,或者大功率设备的情况,热能过于集中,单纯依靠风能降温,不能满足散热需求。另外风能散热造成的灰尘积累,会造成散热效率降低,灰尘中的各种粒子,也很容易造成电路损坏。
发明内容
本发明要解决的主要技术问题是,提供一种散热装置,能够解决采用现有风能散热会带来的耗电、灰尘累积、噪音过大的问题。
为解决上述技术问题,本发明提供一种散热装置, 包括:冷却液收集器和设置在通讯设备单板上的散热片;
所述冷却液收集器的出口通过第一管道与所述散热片的进口连接,所述散热片的出口通过第二管道与所述冷却液收集器的进口连接;
冷却液收集器中的冷却液通过所述第一管道流入所述散热片;所述散热片中的冷却液与所述单板进行热交换且发生汽化,所述散热片内的冷却液在汽化膨胀作用下通过所述第二管道进入所述冷却液收集器,同时所述第二管道内的冷却液与外界空气进行热交换。
进一步地,所述散热装置还包括气流发生器;
所述第二管道的至少一段位于所述气流发生器内,在该段管道中冷却液的热力作用下所述气流发生器形成气流,该段管道中冷却液与所述所气流进行热交换。
进一步地,所述气流发生器为涡流发生器;所述涡流发生器在该段管道中冷却液的热力作用下形成涡流。
进一步地,所述涡流发生器的底部设有进气口,所述进气口的进气方向与所述底部侧边相切;在冷却液的热力作用下,所述涡流发生器从底部的进气口吸入空气,气体沿所述涡流发生器内壁环形上升形成涡流。
进一步地,所述涡流发生器的任一横截面为椭圆形,且所述涡流发生器的出气口为翁形。
进一步地,所述第二管道的至少一段为环形管道。
进一步地,所述环形管道设置在所述涡流发生器的内壁上。
进一步地,所述环形管道镶嵌在所述涡流发生器的内壁上。
进一步地,所述第二管道由依次连接的:所述涡流发生器的液体排出管道、位于所述涡流发生器内的至少一段环形管道、所述涡流发生器的液体进入管道和所述散热片的液体排出管道构成;
所述散热片的液体排出管道的内径大于五倍涡流发生器的液体进入管道的内径。
进一步地,在所述冷却液收集器的进口处设有第一单向阀;所述第一单向阀在所述第二管道内液体的推力作用下自动开启,所述第二管道内液体流入所述冷却液收集器,所述冷却液收集器中冷却液达到预定高度后,在冷却液收集器中液体压力作用下自动关闭。
进一步地,在所述冷却液收集器的出口处设有第二单向阀;所述第二单向阀在所述冷却液收集器中冷却液上升到预定高度后自动开启,所述冷却液收集器中冷却液通过所述第二管道流入所述散热片,在所述冷却液收集器中冷却液下降到预定高度后自动关闭。
进一步地,所述第二单向阀包括:浮标、支撑杆、连接杆和用于密封所述冷却液收集器出口的密封体;所述连接杆一端连接所述浮标、另一端与所述支撑杆一端活动连接,所述支撑杆的另一端固定在所述冷却液收集器上,所述浮标漂浮在所述冷却液收集器中,与所述密封体通过线段连接;
所述第二管道内液体流入所述冷却液收集器内,冷却液收集器内液体高度不断增涨,浮标也随着液体高度的增涨向上运动;当液体上升到一定高度之后,在液体浮力作用下所述浮标通过所述线段拉开所述密封体;液体下降到预定高度之后,在液体压作用下所述密封体密封所述冷却液收集器出口。
进一步地,在所述第一管道中或者所述散热片的进口处设有第三单向阀;
所述冷却液收集器中的冷却液流入所述第一管道后,在冷却液的推力作用下自动开启,冷却液流入所述散热片;在所述散热片内冷却液与所述单板进行热交换且汽化,之后在所述散热片内液体汽化膨胀作用下自动关闭。
本发明的有益效果是:
本发明提供了一种散热装置,可以对通讯设备进行散热,并且在散热的过程中不会产生耗电、灰尘累积和噪音过大的问题;本发明的散热装置,包括:冷却液收集器和设置在通讯设备单板上的散热片;所述冷却液收集器的出口通过第一管道与所述散热片的进口连接,所述散热片的出口通过第二管道与所述冷却液收集器的进口连接;冷却液收集器中的冷却液通过所述第一管道流入所述散热片;所述散热片中的冷却液与所述单板进行热交换且发生汽化,所述散热片内的冷却液在汽化膨胀作用下通过所述第二管道进入所述冷却液收集器,同时所述第二管道内的冷却液与外界空气进行热交换;本发明的散热装置利用散热片来收集通讯设备单板的热量,对单板进行热交换,再利用液体汽化产生的动能,将液体推送到原始位置(即冷却液收集器),在推送的过程中,与外界空气进行热交换,降低液体温度,使得液体在回归液体收集箱之前达到冷却,从而达到循环热交换的目的;由此可以见,本发明散热装置对通讯设备进行自然降温,不需要利用风扇来散热,节省了电能且不会产生噪声;同时,本发明散热装置是一个封闭的装置,可以防止外界灰尘进入散热装置并累积。
附图说明
图1为本发明实施例一提供的一种散热装置的结构示意图;
图2为本发明实施例一提供的另一种散热装置的结构示意图;
图3为本发明实施例三提供的一种散热装置的结构示意图;
图4为本发明实施例三提供的一种冷却液收集器的结构示意图;
图5为本发明实施例三提供的一种散热片的结构示意图;
图6为本发明实施例三提供的一种热涡流发生交换器的结构示意图;
图7为本发明实施例三提供的一种涡流发生器进风示意图。
具体实施方式
本发明的核心思想是:根据能量转换原理,将通讯设备产生的热能转换为动能,从而形成液体循环,且在液体循环的过程中对液体进行降温,最终达到循环热交换的目的。
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到现有风能散热会带来的耗电、灰尘累积、噪音过大的问题,本实施例提供了一种散热装置,包括:冷却液收集器101和设置在通讯设备单板上的散热片102;
所述冷却液收集器101的出口通过第一管道103与所述散热片102的进口连接,所述散热片102的出口通过第二管道104与所述冷却液收集器101的进口连接;
冷却液收集器101中的冷却液通过所述第一管道103流入所述散热片;所述散热片102中的冷却液与所述单板进行热交换且发生汽化,所述散热片102内的冷却液在汽化膨胀作用下通过所述第二管道104进入所述冷却液收集器101,同时所述第二管道104内的冷却液与外界空气进行热交换。
本实施例的散热装置利用散热片来收集通讯设备单板的热量,对单板进行热交换,再利用液体汽化产生的动能,将液体推送到原始位置(即冷却液收集器),在推送的过程中,与外界空气进行热交换,降低液体温度,使得液体在回归液体收集箱之前达到冷却,从而达到循环热交换的目的;由此可以见,本实施例散热装置对通讯设备进行自然降温,不需要利用风扇来散热,节省了电能且不会产生噪声;同时,本实施例散热装置是一个封闭的装置,可以防止外界灰尘进入散热装置并累积。
如图2所示,为了加快推送液体至冷却液收集器过程中液体与外界空气的热交换,本实施例的散热装置,还可以包括:气流发生器105;
所述第二管道104的至少一段位于所述气流发生器105内,在该段管道中冷却液的热力作用下所述气流发生器105形成气流,该段管道中冷却液与所述所气流进行热交换。第二管道104的至少一段位于气流发生器105内指的是:第二管道中一段管道或者多个段管道位于气流发生器105内。
在液体推送过程中,气流发生器会带动外界空腔高速流动,提高了液体温度降低的速度,即加快了液体热交换速度。
为了进一步加快推送液体至冷却液收集器过程中液体与外界空气的热交换,本实施例中气流发生器105可以为涡流发生器;所述涡流发生器在该段管道中冷却液的热力作用下形成涡流。
本实施例中涡流发生器产生涡流的方式有多种,优先地方式为:所述涡流发生器的底部设有进气口,所述进气口的进气方向与所述底部侧边相切;在冷却液的热力作用下,所述涡流发生器从底部的进气口吸入空气,气体沿所述涡流发生器内壁环形上升形成涡流。
为了更好地促使涡流快速形成,涡流发生器的内壁设计成椭圆形,出口设计成翁形,气流沿进气口相切进入内壁,沿内壁在热力作用下螺旋上升,多条进气道同一方向旋转,形成强力涡流极速上升。椭圆形的内壁,促使进口气流在外形作用下极速形成涡流,在出口收窄的情况下,有助于气流形成密集涡流,对气流起到极速拉升作用。
为了能够进一步加快第二管道内液体散热,需要增大管道与涡流的接触面积,因此,上述第二管道104的至少一段为环形管道,即位于涡流发生器内的一段或多段管道为环形管道。优先地,本实施例中环形管道设置在所述涡流发生器的内壁上。
为了有效让散热片内已经过热的液体排出,且冷液体循环进入,利用汽化气体膨胀的原理,设计散热片的液体排出管道的内径大于涡流发生器液体进入管道的内径5倍以上,这样可以防止气流混入液体无效排出,可以在气体压力下,有效排出液体。具体地,在本实施例中,当所述第二管道由依次连接的:所述涡流发生器的液体排出管道、位于所述涡流发生器内的至少一段环形管道、所述涡流发生器的液体进入管道和所述散热片的液体排出管道构成时;所述散热片的液体排出管道的内径大于五倍涡流发生器的液体进入管道的内径。
为了使得第二管道104中热液体尽速降温,将涡流发生器内的管道(例如上述环形管道)内径尽量设计小,而管道长度尽量长,形成涡流发生器体积尽量大,这样与涡流气流增大接触面,可以使液体在尽快冷却。
实施例二:
为防止液体进入冷却液收集器后发生倒流,例如当第二管道位于冷却液收集器下方,即第二管道内的液体从冷却液收集器下方进入时,液体由于重力作用会发生倒流;针对此情况,在上述实施例一的基础上,本实施例提供了一种散热装置,其在所述冷却液收集器的进口处设有第一单向阀;所述第一单向阀在所述第二管道内液体的推力作用下自动开启,所述第二管道内液体流入所述冷却液收集器,所述冷却液收集器中冷却液达到预定高度后,在冷却液收集器中液体压力作用下自动关闭。
本实施例第一单向阀在液体推力作用下打开,以便液体自动流入液体收集器,一旦液体收集完成,单向阀由于液体的压力作用将进口密封,从而达到阻止液体倒流。
为了使的收集器中的液体能够顺利流入散热片,本实施例散热装置,在所述冷却液收集器的出口处设有第二单向阀;所述第二单向阀在所述冷却液收集器中冷却液上升到预定高度后自动开启,所述冷却液收集器中冷却液通过所述第二管道流入所述散热片,在所述冷却液收集器中冷却液下降到预定高度后自动关闭。
设置了第二单向阀之后,第一单向阀在散热片内汽化膨胀产生的推力作用下打开,第二管道内的液体经过降温之后进入冷却液收集器,在冷却液收集器内的第二单向阀处于关闭状态,冷却液收集器内的液体不断增多高度不断增加,在液体高度达到预定值时,第二单向阀自动打开,收集器中的液体通过第二管道流入散热片,当收集器内液体下降到预定高度后第二单向阀自动关闭,继续存储液体。
优先地,所述第二单向阀包括:浮标、支撑杆、连接杆和用于密封所述冷却液收集器出口的密封体;所述连接杆一端连接所述浮标、另一端与所述支撑杆一端活动连接,所述支撑杆的另一端固定在所述冷却液收集器上,所述浮标漂浮在所述冷却液收集器中,与所述密封体通过线段连接;
所述第二管道内液体流入所述冷却液收集器内,冷却液收集器内液体高度不断增涨,浮标也随着液体高度的增涨向上运动;当液体上升到一定高度之后,在液体浮力作用下所述浮标通过所述线段拉开所述密封体;液体下降到预定高度之后,在液体压作用下所述密封体密封所述冷却液收集器出口。
进一步为能够使得液体能够顺利流入散热片,本实施例散热装置,还可以在所述第一管道中或者所述散热片的进口处设有第三单向阀;
所述冷却液收集器中的冷却液流入所述所述第一管道后,在冷却液的推力作用下自动开启,冷却液流入所述散热片;在所述散热片内冷却液与所述单板进行热交换且汽化,之后在所述散热片内液体汽化膨胀作用下自动关闭。
具体地,为了液体能够顺利流入散热片,在散热片和液体收集器出口相连的管道内,设置一个单向阀,单向阀首先在液体推力作用(例如重力)下打开,液体缓缓流入散热片,散热片液体达到一定高度后,单向阀在液体压力和汽化膨胀气体作用下关闭,液体停止流入。
本实施例散热装置可以设置第一单向阀、第二单向阀和第三单向阀中的至少一个。
实施例三:
根据上述实施例一和二介绍的方案,本实施例提供了一种散热装置,如图3所示,由冷却液收集器1,散热片2,以及热涡流发生交换器3组成,散热片2安装在通讯设备的单板上、散热片2上下各设有一个进口21和出口22,进口21通过管道4和管道5与冷却液收集器1的出口11相连,出口22也通过管道6、7、8与涡流发生器的进水管道31相连,涡流发生器的出水管道34通过管道9和液体收集器进口12相连,达到一个闭环的循环系统,在流发生交换器3内壁上设有环形管道,进水管道31、环形管道两和出水管道34相邻依次相连。
如图4所示,在液体收集器的进口12,为了防止液体由于重力作用倒流,安装一个单向阀13,单向阀13在涡流发生器管道34和管道9内的液体推力作用下打开,以便液体流入液体收集器1,一旦液体收集完成,单向阀13由于液体的压力作用将进口12密封,从而达到阻止液体倒流。
如图4所示,为了液体能够顺利流入散热片2,在液体收集器1的出口11处设置一个单向阀14,该单向阀14包括:浮标141、支撑杆142、连接杆143和用于密封所述冷却液收集器出口11的密封体144;液体收集完成之后,单向阀14在浮标12浮力作用下打开,具体浮标141液体浮力作用下拉开所述密封体144,液体经过管道4和5流入散热片2;在液收集器1内的液体下降低到一定高度时,单向阀在液体压力作用下关闭,具体地,在液体压力作用下密封体144密封冷却液收集器出口11。
进一步为了液体能够顺利流入散热片2,在管道4或管道5中设置一个单向阀,或者也可以在散热片2的出口21处设置一个单向阀23,如图5所示;单向阀23首先在液体重力作用下打开,液体缓缓流入散热片2,散热片液体达到一定高度后,单向阀23在液体压力和汽化膨胀气体作用下关闭,液体停止流入。
散热片2的液体在进行热交换以后,在散热片内液体汽化膨胀作用下,经过管道6、7、8被排入涡流发生器入口31;如图6和7所示,涡流发生器3由于热力作用,由涡流发生器3底部的入口35吸入 冷气,五个入口35与涡流发生器底部的圆形构造相切,使气体沿涡流发生器内壁33极速环形上升,形成涡流,涡流在与镶嵌在内壁上的环形管道极速接触过程中,完成热交换过程,达到散热目的。
为了更好地促使涡流快速形成,涡流发生器3的内壁设计成椭圆形,出口32设计成翁形,气流沿进气口35相切进入内壁,沿内壁在热力作用下螺旋上升,五条进气道同一方向旋转,形成强力涡流极速上升。椭圆形的内壁,促使进口气流在外形作用下极速形成涡流,在出口收窄的情况下,有助于气流形成密集涡流,对气流起到极速拉升作用。
为了发挥涡流热交换的作用,涡流发生器由密集的环形管道镶嵌或相围成形,气流在极速螺线上升过程中与镶嵌在内壁上的环形管道高速接触,达到极速降温的目的。
为了有效让散热片2内已经过热的液体排出,且冷液体循环进入,利用汽化气体膨胀的原理,将管道6、7和8的内径大于涡流发生器进口31的内径5倍以上,这样可以防止气流混入液体无效排出,可以在气体压力下,有效排出液体。
为了是热液体尽速降温,将涡流发生器3内部的管道内径尽量设计小,而管道长度尽量长,形成涡流发生器体积尽量大,这样与涡流气流增大接触面,可以使液体在尽快冷却。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (20)

  1. 一种散热装置,其特征在于,包括:冷却液收集器和设置在通讯设备单板上的散热片;
    所述冷却液收集器的出口通过第一管道与所述散热片的进口连接,所述散热片的出口通过第二管道与所述冷却液收集器的进口连接;
    冷却液收集器中的冷却液通过所述第一管道流入所述散热片;所述散热片中的冷却液与所述单板进行热交换且发生汽化,所述散热片内的冷却液在汽化膨胀作用下通过所述第二管道进入所述冷却液收集器,同时所述第二管道内的冷却液与外界空气进行热交换。
  2. 如权利要求1所述的散热装置,其特征在于,还包括气流发生器;
    所述第二管道的至少一段位于所述气流发生器内,在该段管道中冷却液的热力作用下所述气流发生器形成气流,该段管道中冷却液与所述所气流进行热交换。
  3. 如权利要求2所述的散热装置,其特征在于,所述气流发生器为涡流发生器;所述涡流发生器在该段管道中冷却液的热力作用下形成涡流。
  4. 如权利要求3所述的散热装置,其特征在于,所述涡流发生器的底部设有进气口,所述进气口的进气方向与所述底部侧边相切;在冷却液的热力作用下,所述涡流发生器从底部的进气口吸入空气,气体沿所述涡流发生器内壁环形上升形成涡流。
  5. 如权利要求4所述的散热装置,其特征在于,所述涡流发生器的任一横截面为椭圆形,且所述涡流发生器的出气口为翁形。
  6. 如权利要求4所述的散热装置,其特征在于,所述第二管道的至少一段为环形管道。
  7. 如权利要求6所述的散热装置,其特征在于, 所述环形管道设置在所述涡流发生器的内壁上。
  8. 如权利要求6所述的散热装置,其特征在于,所述环形管道镶嵌在所述涡流发生器的内壁上。
  9. 如权利要求6所述的散热装置,其特征在于,所述第二管道由依次连接的:所述涡流发生器的液体排出管道、位于所述涡流发生器内的至少一段环形管道、所述涡流发生器的液体进入管道和所述散热片的液体排出管道构成;
    所述散热片的液体排出管道的内径大于五倍涡流发生器的液体进入管道的内径。
  10. 一种散热装置,其特征在于,包括:冷却液收集器和设置在通讯设备单板上的散热片;
    所述冷却液收集器的出口通过第一管道与所述散热片的进口连接,所述散热片的出口通过第二管道与所述冷却液收集器的进口连接;
    冷却液收集器中的冷却液通过所述第一管道流入所述散热片;所述散热片中的冷却液与所述单板进行热交换且发生汽化,所述散热片内的冷却液在汽化膨胀作用下通过所述第二管道进入所述冷却液收集器,同时所述第二管道内的冷却液与外界空气进行热交换;
    在所述冷却液收集器的进口处设有第一单向阀;所述第一单向阀在所述第二管道内液体的推力作用下自动开启,所述第二管道内液体流入所述冷却液收集器,所述冷却液收集器中冷却液达到预定高度后,在冷却液收集器中液体压力作用下自动关闭。
  11. 如权利要求10所述的散热装置,其特征在于,在所述冷却液收集器的出口处设有第二单向阀;所述第二单向阀在所述冷却液收集器中冷却液上升到预定高度后自动开启,所述冷却液收集器中冷却液通过所述第二管道流入所述散热片,在所述冷却液收集器中冷却液下降到预定高度后自动关闭。
  12. 如权利要求11所述的散热装置,其特征在于,所述第二单向阀包括:浮标、支撑杆、连接杆和用于密封所述冷却液收集器出口的密封体;所述连接杆一端连接所述浮标、另一端与所述支撑杆一端活动连接,所述支撑杆的另一端固定在所述冷却液收集器上,所述浮标漂浮在所述冷却液收集器中,与所述密封体通过线段连接;
    所述第二管道内液体流入所述冷却液收集器内,冷却液收集器内液体高度不断增涨,浮标也随着液体高度的增涨向上运动;当液体上升到一定高度之后,在液体浮力作用下所述浮标通过所述线段拉开所述密封体;液体下降到预定高度之后,在液体压作用下所述密封体密封所述冷却液收集器出口。
  13. 如权利要求11所述的散热装置,其特征在于,在所述第一管道中或者所述散热片的进口处设有第三单向阀;
    所述冷却液收集器中的冷却液流入所述第一管道后,在冷却液的推力作用下自动开启,冷却液流入所述散热片;在所述散热片内冷却液与所述单板进行热交换且汽化,之后在所述散热片内液体汽化膨胀作用下自动关闭。
  14. 如权利要求10所述的散热装置,其特征在于,还包括气流发生器;
    所述第二管道的至少一段位于所述气流发生器内,在该段管道中冷却液的热力作用下所述气流发生器形成气流,该段管道中冷却液与所述所气流进行热交换。
  15. 如权利要求14所述的散热装置,其特征在于,所述气流发生器为涡流发生器;所述涡流发生器在该段管道中冷却液的热力作用下形成涡流。
  16. 如权利要求15所述的散热装置,其特征在于,所述涡流发生器的底部设有进气口,所述进气口的进气方向与所述底部侧边相切;在冷却液的热力作用下,所述涡流发生器从底部的进气口吸入空气,气体沿所述涡流发生器内壁环形上升形成涡流。
  17. 如权利要求16所述的散热装置,其特征在于,所述涡流发生器的任一横截面为椭圆形,且所述涡流发生器的出气口为翁形。
  18. 如权利要求17所述的散热装置,其特征在于,所述第二管道的至少一段为环形管道。
  19. 如权利要求18所述的散热装置,其特征在于, 所述环形管道设置在所述涡流发生器的内壁上。
  20. 如权利要求18所述的散热装置,其特征在于,所述第二管道由依次连接的:所述涡流发生器的液体排出管道、位于所述涡流发生器内的至少一段环形管道、所述涡流发生器的液体进入管道和所述散热片的液体排出管道构成;
    所述散热片的液体排出管道的内径大于五倍涡流发生器的液体进入管道的内径。
PCT/CN2015/076148 2014-11-20 2015-04-09 一种散热装置 WO2016078295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420702211.5 2014-11-20
CN201420702211.5U CN204377302U (zh) 2014-11-20 2014-11-20 一种散热装置

Publications (1)

Publication Number Publication Date
WO2016078295A1 true WO2016078295A1 (zh) 2016-05-26

Family

ID=53333472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076148 WO2016078295A1 (zh) 2014-11-20 2015-04-09 一种散热装置

Country Status (2)

Country Link
CN (1) CN204377302U (zh)
WO (1) WO2016078295A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601422A (zh) * 2020-12-10 2021-04-02 苏州浪潮智能科技有限公司 一种服务器散热装置及服务器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109168306A (zh) * 2018-10-26 2019-01-08 英业达科技有限公司 冷却装置
CN116419533A (zh) * 2021-12-31 2023-07-11 华为技术有限公司 一种散热模组、计算设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040184237A1 (en) * 2003-03-05 2004-09-23 Shyy-Woei Chang Heat dissipation device with liquid coolant
CN2681218Y (zh) * 2004-02-13 2005-02-23 鸿富锦精密工业(深圳)有限公司 液冷式散热装置
EP2099069A2 (en) * 2008-03-04 2009-09-09 Pada Engineering - S.r.l. Heat dissipator, in particular for electronic components
CN202262208U (zh) * 2011-09-30 2012-05-30 保锐科技股份有限公司 液冷式热交换改良模块
CN202310444U (zh) * 2011-11-10 2012-07-04 保锐科技股份有限公司 液冷式热交换改良模块
CN202918636U (zh) * 2012-11-06 2013-05-01 保锐科技股份有限公司 具有涡流产生单元的液冷式热交换模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040184237A1 (en) * 2003-03-05 2004-09-23 Shyy-Woei Chang Heat dissipation device with liquid coolant
CN2681218Y (zh) * 2004-02-13 2005-02-23 鸿富锦精密工业(深圳)有限公司 液冷式散热装置
EP2099069A2 (en) * 2008-03-04 2009-09-09 Pada Engineering - S.r.l. Heat dissipator, in particular for electronic components
CN202262208U (zh) * 2011-09-30 2012-05-30 保锐科技股份有限公司 液冷式热交换改良模块
CN202310444U (zh) * 2011-11-10 2012-07-04 保锐科技股份有限公司 液冷式热交换改良模块
CN202918636U (zh) * 2012-11-06 2013-05-01 保锐科技股份有限公司 具有涡流产生单元的液冷式热交换模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601422A (zh) * 2020-12-10 2021-04-02 苏州浪潮智能科技有限公司 一种服务器散热装置及服务器
CN112601422B (zh) * 2020-12-10 2022-06-17 苏州浪潮智能科技有限公司 一种服务器散热装置及服务器

Also Published As

Publication number Publication date
CN204377302U (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016078295A1 (zh) 一种散热装置
BRPI0708935A2 (pt) sistema de gerenciamento tÉrmico para turbina eàlica
JP6552754B2 (ja) 風力タービンおよび風力タービン用冷却装置
CN103187893A (zh) 光伏逆变装置的冷却结构以及冷却方式
CN207339274U (zh) 静止无功发生器
WO2024007642A1 (zh) 一种电动机用散热防护装置
CN109757087A (zh) 耗热型散热装置
CN206071903U (zh) 隔离转子磁悬浮电机的转子无风扇回流风冷结构
JP5611084B2 (ja) 空気調和装置の室外機及びその空気調和装置の室外機を用いた空気調和装置
US20150077933A1 (en) Electric machine with closed circuit air cooling
CN216719675U (zh) 一种高效散热型变压铁芯
CN206077916U (zh) 一种集中式逆变器的冷却装置
TWI613540B (zh) 散熱模組
CN105588085A (zh) 一种闭式风冷循环系统
CN108204270A (zh) 一种汽车发动机散热装置
WO2014193000A1 (ko) 압력차를 이용한 자연유도방식의 열교환방법 및 이를 이용한 가스압축기와 히트펌프
TW201715151A (zh) 風力機散熱器結構
US1502065A (en) Turbogenerator
Zhu et al. Selection of Radiators in Power Electronics and Analysis of Heat Dissipation
CN215860454U (zh) 一种便于散热的柴油发动机
TWM593111U (zh) 馬達之散熱裝置
CN213694670U (zh) 一种新型光伏控制器的散热结构
CN214901847U (zh) 一种风电机组散热装置
TWI720719B (zh) 馬達之散熱裝置
TWI498515B (zh) 壓差式冷卻塔裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861494

Country of ref document: EP

Kind code of ref document: A1