WO2016078138A1 - 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置 - Google Patents

磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置 Download PDF

Info

Publication number
WO2016078138A1
WO2016078138A1 PCT/CN2014/092874 CN2014092874W WO2016078138A1 WO 2016078138 A1 WO2016078138 A1 WO 2016078138A1 CN 2014092874 W CN2014092874 W CN 2014092874W WO 2016078138 A1 WO2016078138 A1 WO 2016078138A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
workpiece
magnetic powder
transparent material
liquid
Prior art date
Application number
PCT/CN2014/092874
Other languages
English (en)
French (fr)
Inventor
张朝阳
黄磊
姜雨佳
冯钦玉
蔡明霞
佟艳群
刘皋
陆海强
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB1708984.8A priority Critical patent/GB2547862B/en
Publication of WO2016078138A1 publication Critical patent/WO2016078138A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching

Definitions

  • the invention belongs to the field of material micromachining, in particular to a magnetic powder induced laser plasma etching method and device for insulating transparent materials.
  • the laser Because of its high intensity, high brightness, stable wavelength frequency, excellent monochromaticity, good coherence, long coherence length and good directionality, the laser has been widely used in industrial processing.
  • the surface When laser processing is performed, once the laser is incident on the surface of the sample to be processed, the surface absorbs and reflects the laser. This absorption and reflection mainly depend on the optical properties of the surface of the sample.
  • the surface of the sample absorbs the laser energy and raises its surface temperature, which can change the structure and properties of the surface structure of the sample, and even cause irreversible damage. This phenomenon has been widely used in laser processing, such as cutting, quenching, welding, radiation and surface treatment of targets. Under the action of the laser, the surface material rapidly absorbs the laser energy, so that the surface temperature rises to the vaporization temperature, and vaporization occurs.
  • the surface vapor of the sample continues to absorb the laser energy, causing its temperature to rise further, causing the vapor molecules to ionize, thereby forming a plasma.
  • the plasma itself has a strong absorption effect on the incident laser light, which absorbs the subsequent laser energy and expands outward.
  • the high temperature and high pressure plasma will emit light during the expansion process and form a laser plasma shock wave.
  • the plasma will also generate cavitation during the external expansion process. That is to say, when the laser and the liquid interact with each other, optical laser not only generates laser plasma and its expansion shock wave, but also produces a unique physical phenomenon: cavitation.
  • cavitation occurs in a liquid.
  • the phenomenon in which a cavity appears in a liquid due to some disturbance is called a cavity.
  • the spherical cavity is called a vacuole, and the empty bubble generated by the laser breakdown of the liquid is called a laser cavity.
  • Glass is a common insulating transparent material. Due to its high hardness and brittleness, it has always been difficult to achieve micro-scale processing. Glass has high transmittance for visible light and near-infrared. When laser is used to etch glass, for laser with a wavelength of 1064 nm, when the irradiation energy is low, the laser has high transmittance. It is difficult to produce an etching effect on the glass surface through the glass; as the laser energy is gradually increased, a plasma is formed on the surface of the glass, and the plasma absorbs the laser energy to form a plasma shock wave, which acts on the glass surface to realize the glass. Etching. Therefore, under normal conditions, in order to achieve laser etching of glass, it is necessary to use a laser with a higher power. However, high-power lasers have high cost and complicated operation, and high-power lasers generate a large amount of heat when used, which easily causes thermal cracking defects of the glass, which restricts its processing application.
  • the object of the present invention is to overcome the above problems and to provide a magnetic powder-induced laser plasma etching method for insulating transparent materials, which uses magnetic powder as an absorption layer to absorb laser energy, so that energy is mainly concentrated on the solution/material interface. Thereby, the solution is broken into a plasma to form an impact stress and a cavitation stress, which acts on the surface of the insulating transparent material to achieve material removal.
  • a device for magnetically inducing laser plasma etching of an insulating transparent material is also provided.
  • a magnetic powder induced laser plasma etching method for insulating a transparent material comprising the steps of:
  • Insulating transparent material processing workpiece is fixed by a clamp and placed in a working cavity, the working cavity is provided with liquid capable of immersing the workpiece, magnetic powder is suspended in the liquid; and an electromagnetic device fixed by the clamp is arranged under the workpiece;
  • the pulsed laser is focused on the surface of the insulating transparent material, and the magnetic powder adsorbed on the surface of the workpiece absorbs the laser energy as the absorption layer, so that the laser energy is mainly concentrated on the liquid/workpiece interface; the energy at the laser focus exceeds the breakdown threshold of the solution.
  • the surface of the workpiece continuously generates micro-cracks and expands to realize the surface of the workpiece. A slight amount of flaking of the material to achieve removal processing.
  • the liquid contained in the working chamber is a corrosive solution having a corrosive effect on the insulating transparent material.
  • the method further comprises the steps of:
  • the workpiece moves together with the electromagnetic device while maintaining the position of the focused spot of the pulsed laser to achieve two-dimensional or three-dimensional removal processing of the workpiece of the insulating transparent material.
  • the magnetic powder has a particle diameter of less than 1 ⁇ m.
  • the pulsed laser has a wavelength of 1064 nm, a pulse width of 10 nanoseconds, a frequency of 10-100 Hz, an energy of 1 Joule, and a spot mode of the laser is a fundamental mode or a multimode.
  • a device for infiltrating a transparent material by a magnetic powder-induced laser plasma etching comprising a laser output device, a beam transmission system, and a laser etching processing system, wherein the laser output device is a nanosecond pulse laser, and the beam transmission system is located at a laser
  • the laser etching processing system comprises an electromagnetic device, a working cavity, an adjustable regulated power supply electrically connected with the electromagnetic device, and a clamp for holding the workpiece of the insulating transparent material and capable of positioning the workpiece in the working cavity.
  • the electromagnetic device is fixed on the fixture and located below the workpiece, and the working chamber is filled with liquid capable of immersing the workpiece, suspended in the liquid There are magnetic powder.
  • the apparatus for magnetically inducing laser plasma etching of an insulating transparent material further comprises a motion control system comprising a computer, a motion control card, an XYZ three-coordinate numerical control platform sequentially connected, wherein the working cavity is fixed at XYZ three-axis CNC platform.
  • a motion control system comprising a computer, a motion control card, an XYZ three-coordinate numerical control platform sequentially connected, wherein the working cavity is fixed at XYZ three-axis CNC platform.
  • the electromagnetic device is externally provided with a waterproof device.
  • the adjustable regulated power supply has an output voltage of 12 volts to 60 volts.
  • the magnetic powder in the liquid is adsorbed and distributed on the surface of the workpiece due to the action of the electromagnetic device placed under the workpiece of the insulating transparent material, so as to absorb the laser energy, so that the energy is mainly concentrated on the liquid/workpiece interface.
  • Upper thereby penetrating the liquid to generate a plasma, forming impact stress and cavitation stress, acting on the surface of the workpiece to achieve material removal.
  • the high-frequency plasma shock wave generated by the pulsed laser can cause multiple cavitation cavitation effects, forming a continuous pulsating ultrasonic impact cavitation effect, driving the magnetic powder particles to hit the workpiece, and rapidly heating the local area of the laser irradiation on the workpiece.
  • the surface of the workpiece to be processed is attached with a magnetic powder absorbing layer, which can absorb the laser energy, so that the laser energy is mainly concentrated on the liquid/workpiece interface, preventing the laser from processing the surface of the workpiece through the insulating transparent material;
  • the magnetic powder absorbs the laser energy, so that the laser energy is mainly concentrated on the liquid/workpiece interface, thereby penetrating the liquid to generate plasma, forming impact stress and cavitation stress, acting on the surface of the workpiece to realize the material. Remove. Therefore, it reduces the requirement of laser power, and the processing of workpieces for insulating transparent materials can also be realized by using a lower power laser.
  • FIG. 1 is a schematic structural view of an apparatus for magnetically inducing laser plasma etching of an insulating transparent material according to the present invention.
  • FIG. 2 is a schematic illustration of a workpiece machined by the method of the present invention.
  • the magnetic powder-induced laser plasma etching etching transparent material device of the present invention comprises a laser output device, a beam transmission system, and a laser etching processing system.
  • the laser output device is a nanosecond pulse laser.
  • the output pulse laser has a wavelength of 1064 nm, a pulse time of 10 nanoseconds, a frequency of 10-100 Hz, a laser energy of 1 joule, and a laser spot mode to select a base film or a multimode.
  • the beam delivery system is located on the laser beam path and includes an adjustable mirror and an adjustable focus lens. The laser beam emitted by the laser is focused on the glass surface by a beam modulation and transmission system.
  • the laser etching processing system includes an electromagnetic device, a working cavity, an adjustable regulated power source electrically coupled to the electromagnetic device, and a clamp for holding the workpiece of the insulating transparent material and capable of positioning the workpiece in the working cavity.
  • the adjustable regulated power supply has an output voltage of 12 volts to 60 volts.
  • the electromagnetic device is fixed on the fixture and located under the workpiece.
  • the working chamber is provided with a liquid capable of immersing the workpiece, and the magnetic powder is suspended in the liquid, and the particle size of the magnetic powder is less than 1 ⁇ m.
  • the electromagnetic device is externally provided with a waterproof device. When the electromagnetic device is energized, a strong magnetic field is generated, which generates an attractive force to the magnetic powder particles, so that the magnetic powder in the liquid is adsorbed on the surface of the workpiece.
  • the magnetic particle induced laser plasma etching insulating transparent material device of the invention is used for etching an insulating transparent material, and the following steps are included:
  • the workpiece is fixed by a clamp and placed in a working chamber.
  • the working chamber is filled with a liquid capable of immersing the workpiece, and the magnetic powder is suspended in the liquid; and an electromagnetic device fixed by the clamp is disposed under the workpiece.
  • the electromagnetic device is energized, and the magnetic powder suspended in the alkaline solution is adsorbed on the surface of the workpiece by the magnetic field of the electromagnetic device.
  • the pulsed laser passes through the liquid, a small part of the energy is reflected and absorbed by the solution, and most of the laser energy can be irradiated on the magnetic powder on the surface of the glass.
  • the laser beam emitted by the laser output device is focused by the beam transmission system to focus on the surface of the insulating transparent material, and the magnetic powder adsorbed on the surface of the workpiece absorbs the laser energy as an absorption layer, so that the laser energy is mainly concentrated on the liquid/workpiece interface; the energy at the laser focus
  • the breakdown threshold of the solution is exceeded, the liquid is broken down, a high-temperature and high-pressure plasma is generated and expanded outward, and the magnetic powder is punched open to form an impact stress and a cavitation stress directly acting on the surface of the insulating transparent material.
  • the impact cavitation effect is caused to drive the magnetic powder particles to impact the workpiece, and the local area of the laser irradiation on the workpiece is rapidly heated; when the pulsed laser enters the pulse interval, the workpiece is rapidly cooled by the convective heat transfer of the liquid due to the thermal expansion and contraction.
  • the workpiece is concentrated in a small range, so that micro-cracks appear on the surface, and the magnetic powder particles are adsorbed to the surface of the workpiece under the action of the magnetic field; under the repeated impact cavitation effect of the pulsed laser and the thermal interaction of the ultrasonic vibration
  • the surface of the workpiece continuously generates micro-cracks and expands, and the material on the surface of the workpiece is slightly exfoliated, thereby achieving removal processing.
  • the liquid in the working chamber is replaced with a corrosive solution having a corrosive effect on the insulating transparent material, so that the entire workpiece is immersed in the corrosive solution, and the high temperature and high pressure generated by the pulsed laser can soften the workpiece to the irradiated portion. And chemical dissolution corrosion occurs, speeding up the removal of materials.
  • the insulating transparent material to be processed by the invention has the characteristics of hard brittleness, wear resistance, difficulty in processing, etc., such as glass, quartz, polycrystalline diamond, etc., for the glass as a processing workpiece, the corrosive solution can be used at a concentration of 15%. -20% NaOH solution.
  • the magnetic powder-induced laser plasma etching etch transparent material is further provided with a motion control system, and the motion control system includes sequentially connected Computer, motion control card, XYZ three-coordinate numerical control platform, the working cavity is fixed on the XYZ three-coordinate numerical control platform.
  • the computer when etching the insulating transparent material, the computer outputs a command signal to the motion control card, the motion control card controls the XYZ three-coordinate numerical control platform to operate, and the XYZ three-coordinate numerical control platform drives the working cavity to move, so that the workpiece and the electromagnetic device move together, and at the same time
  • the position of the focused spot of the pulsed laser is kept constant, and the two-dimensional or three-dimensional removal processing of the workpiece of the insulating transparent material is realized, and a planar figure or a three-dimensional structure is processed on the surface of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

提供了一种磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置,所述方法是使用磁粉作为吸收层来吸收激光能量,使得能量主要集中辐照在溶液/材料界面上,从而击穿溶液产生等离子体,形成冲击应力和空化应力,作用在绝缘透明材料表面,实现材料去除。降低了对绝缘透明材料加工工件刻蚀加工对激光器功率的要求,提高了加工效率,也避免了高能量激光加工绝缘透明材料加工工件易产生碎裂的缺陷。

Description

磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置 技术领域
本发明属于材料微加工领域,尤其是一种磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置。
背景技术
由于激光具有强度高、亮度大、波长频率稳定,单色性好、相干性好、相干长度长及方向性好等优异性能,使其在工业加工领域中得到了广泛的应用。
进行激光加工时,一旦激光入射到被加工试样表面,其表面会吸收和反射激光,这种吸收和反射主要取决于试样表面的光学性质。试样表面吸收激光能量,使其表面温度上升,从而能够改变试样表面组织的结构和性能,甚至造成不可逆转的破坏作用。这一现象已在激光加工中,如切割、淬火、焊接、辐射以及靶材表面处理等方面,得到广泛的应用。试样在激光作用下,其表面物质迅速吸收激光能量,使得表面温度上升至汽化温度,从而出现汽化。试样表面蒸汽继续吸收激光能量,使其温度进一步升高,导致蒸汽分子电离,从而形成等离子体。等离子体自身对入射激光存在很强的吸收作用,其吸收后续激光能量并对外膨胀,高温高压等离子体在膨胀的过程中会发光并形成激光等离子体冲击波。
另外,在液体环境中,等离子体在对外膨胀过程中还将产生空泡现象。即:激光与液体相互作用发生光学击穿时,不仅产生激光等离子体和其膨胀冲击波,同时还产生特有的物理现象:空化。通常,在液体中,当局部压力低于该温度下的饱和蒸汽压或液体中局部温度高于常压下饱和蒸汽温度都会产生空化现象。液体中因某种扰动而出现空腔的现象称为空穴。球形空穴称之为空泡,由激光击穿液体产生的空泡就叫做激光空泡。
玻璃是一种常见的绝缘透明材料,由于其硬度高、脆性大,对其实现微小尺度的加工一直都具有很大的难度。玻璃对于可见光、近红外波段具有较高的透过率,使用脉冲激光器对玻璃进行刻蚀加工时,对于波长为1064纳米激光,当辐照能量较低时,由于玻璃的高透过率,激光会透过玻璃,很难在玻璃表面产生刻蚀效果;随着激光能量的逐步提高,在玻璃表面有等离子体形成,等离子体吸收激光能量形成等离子体冲击波,作用于玻璃表面,实现对玻璃的刻蚀。因此,在一般条件下,要想实现激光对玻璃的刻蚀加工,需要使用功率较高的激光器。但是高功率激光器成本高,操作复杂,并且高功率激光器使用时会产生大量的热,容易造成玻璃的热裂缺陷,制约了其加工应用。
发明内容
本发明的目的是为克服上述难题,提出了一种磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,使用磁粉作为吸收层来吸收激光能量,使得能量主要集中辐照在溶液/材料界面上,从而击穿溶液产生等离子体,形成冲击应力和空化应力,作用在绝缘透明材料表面,实现材料去除。还提供了一种磁粉诱导式激光等离子刻蚀绝缘透明材料的装置。
磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,包括以下步骤:
(1)绝缘透明材料加工工件由夹具固定并置于工作腔内,所述工作腔内装有能够浸没工件的液体,液体中悬浮有磁粉;工件下方设有由夹具固定的电磁装置;
(2)电磁装置通电,悬浮在碱性溶液中的磁粉在电磁装置的磁场作用下被吸附在工件表面;
(3)脉冲激光聚焦辐照于绝缘透明材料表面,吸附在工件表面的磁粉作为吸收层吸收激光能量,使得激光能量主要集中在液体/工件界面上;激光焦点处的能量超过溶液的击穿阈值时,击穿液体,产生高温高压等离子体并对外膨胀,将磁粉冲开,形成直接作用于绝缘透明材料表面的冲击应力和空化应力,造成冲击空化效果,带动磁粉颗粒撞击工件,并使工件上激光照射的局部区域快速升温;当脉冲激光进入脉冲间歇时,工件在液体的对流传热作用下快速冷却,由于热胀冷缩作用,工件在很小的范围内产生应力集中,由此表面出现微小裂纹,同时磁粉颗粒在磁场作用下又吸附到工件表面;在脉冲激光的反复冲击空化效应作用及超声振动的热力复合作用下,工件表面不断产生微小裂纹、并扩展,实现工件表面材料的微量剥落,从而实现去除加工。
优选地,工作腔内装的液体为对所述绝缘透明材料具有腐蚀作用的腐蚀性溶液。
优选地,所述方法还包括以下步骤:
(5)工件与电磁装置一同移动,同时保持脉冲激光的聚焦光斑位置不变,实现对绝缘透明材料工件的二维或三维去除加工。
优选地,所述磁粉的粒径小于1μm。
优选地,所述脉冲激光的波长为1064纳米、脉冲宽度为10纳秒、频率10-100Hz、能量为1焦耳、激光的光斑模式为基模或多模。
磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,包括激光输出装置、光束传输系统、激光刻蚀加工系统,其特征在于,所述激光输出装置为纳秒脉冲激光器,所述光束传输系统位于激光光路上,所述激光刻蚀加工系统包括电磁装置、工作腔、与电磁装置电联接的可调稳压电源以及用于夹持绝缘透明材料工件、且能够使工件位于工作腔内的夹具,所述电磁装置固定在夹具上、且位于工件的下方,所述工作腔内装有能够浸没工件的液体,液体中悬浮 有磁粉。
优选地,所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置还包括运动控制系统,所述运动控制系统包括依次连接的计算机、运动控制卡、X-Y-Z三坐标数控平台,所述工作腔固定在X-Y-Z三坐标数控平台上。
优选地,所述电磁装置外部设有防水装置。
优选地,所述可调稳压电源输出电压12伏~60伏。
本发明所述的方法:
(1)对于绝缘透明材料,由于在绝缘透明材料工件下方放置的电磁装置作用,液体中的磁粉会吸附分布在工件表面,用于吸收激光能量,使其能量主要集中辐照在液体/工件界面上,从而击穿液体产生等离子体,形成冲击应力和空化应力,作用在工件表面,实现材料去除。
(2)脉冲激光产生的高频等离子体冲击波,可以造成多次的空泡空化效应,形成连续的脉动超声冲击空化效果,带动磁粉颗粒撞击工件,使工件上激光照射的局部区域快速升温。
(3)激光的脉冲能量消失后,由于液体对流又使其快速冷却,硬脆的工件在这种快速升温和冷却作用下,表面出现微小裂纹,超声振动的冲击空化效应就可以使裂纹扩展,实现材料去除。
(4)由于磁粉颗粒微小,等离子体产生后的膨胀扩张会将磁粉冲开,不会影响激光等离子体对玻璃的刻蚀效果;激光能量消失后,在磁场作用下,又吸附到加工表面,吸收下一个脉冲的激光能量。
(5)整个工件浸入腐蚀性溶液中,脉冲激光产生的高温高压可以使工件受辐照处变软,并发生化学溶解腐蚀,加快去除材料。
本发明有益效果是:
(1)被加工工件的表面附着磁粉吸收层,可以吸收激光能量,使得激光能量主要集中辐照在液体/工件界面上,防止了激光透过绝缘透明材料加工工件表面;
(2)磁粉作为吸收层,其吸收激光能量,使得激光能量主要集中辐照在液体/工件界面上,从而击穿液体产生等离子体,形成冲击应力和空化应力,作用在工件表面,实现材料去除。因此其降低了对激光器功率的要求,使用较低功率的激光器,也可以实现对绝缘透明材料加工工件刻蚀加工。
(3)相对于高功率激光器,较低功率激光器具有更高的输出频率,因此使用磁粉作为吸收层也可以实现加工效率的提高,也避免了高能量激光加工绝缘透明材料加工工件易产生碎裂的缺陷。
附图说明
图1为本发明所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置的结构示意图。
图2为本发明所述方法加工的工件的示意图。
图中:
1-聚焦透镜,2-反射镜,3-激光束,4-激光器,5-计算机,6-运动控制卡,7-可调稳压电源,8-工作台,9-X-Y-Z三坐标数控平台,10-工作腔,11-电磁装置,12-夹具,13-绝缘透明的玻璃材料,14-磁粉,15-碱性溶液。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,本发明所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,包括激光输出装置、光束传输系统、激光刻蚀加工系统。所述激光输出装置为纳秒脉冲激光器,输出的脉冲激光的波长为1064纳米,脉冲时间为10纳秒,频率10-100Hz,激光能量为1焦耳,激光的光斑模式选择基膜或多模。所述光束传输系统位于激光光路上,包括可调反光镜和可调聚焦透镜,激光发出的激光束经光束调制及传输系统聚焦于玻璃表面。所述激光刻蚀加工系统包括电磁装置、工作腔、与电磁装置电联接的可调稳压电源以及用于夹持绝缘透明材料工件、且能够使工件位于工作腔内的夹具。所述可调稳压电源输出电压12伏~60伏。所述电磁装置固定在夹具上、且位于工件的下方,所述工作腔内装有能够浸没工件的液体,液体中悬浮有磁粉,磁粉粒径均小于1μm。所述电磁装置外部设有防水装置,电磁装置通电后产生强磁场,对磁粉颗粒产生吸引力,使得液体中的磁粉吸附在工件表面。
本发明所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置用于刻蚀绝缘透明材料的方法,括以下步骤:
(1)绝缘透明材料加工工件由夹具固定并置于工作腔内,所述工作腔内装有能够浸没工件的液体,液体中悬浮有磁粉;工件下方设有由夹具固定的电磁装置。
(2)电磁装置通电,悬浮在碱性溶液中的磁粉在电磁装置的磁场作用下被吸附在工件表面。
(3)当脉冲激光穿过液体时,少部分的能量被溶液反射及吸收以外,大部分激光能量能够辐照在玻璃表面的磁粉上。激光输出装置发出的激光束经光束传输系统聚焦于聚焦于绝缘透明材料表面,吸附在工件表面的磁粉作为吸收层吸收激光能量,使得激光能量主要集中在液体/工件界面上;激光焦点处的能量超过溶液的击穿阈值时,击穿液体,产生高温高压等离子体并对外膨胀,将磁粉冲开,形成直接作用于绝缘透明材料表面的冲击应力和空化应力, 造成冲击空化效果,带动磁粉颗粒撞击工件,并使工件上激光照射的局部区域快速升温;当脉冲激光进入脉冲间歇时,工件在液体的对流传热作用下快速冷却,由于热胀冷缩作用,工件在很小的范围内产生应力集中,由此表面出现微小裂纹,同时磁粉颗粒在磁场作用下又吸附到工件表面;在脉冲激光的反复冲击空化效应作用及超声振动的热力复合作用下,工件表面不断产生微小裂纹、并扩展,实现工件表面材料的微量剥落,从而实现去除加工。
较佳地,将工作腔中的液体更换为对所述绝缘透明材料具有腐蚀作用的腐蚀性溶液,使整个工件浸入腐蚀性溶液中,脉冲激光产生的高温高压可以使工件受辐照处变软,并发生化学溶解腐蚀,加快去除材料。
本发明所要加工的绝缘透明材料,具有硬脆性、耐磨损、难加工等特性,例如玻璃、石英、聚晶金刚石等,对于玻璃作为加工工件时,所述腐蚀性溶液可以采用浓度为15%-20%的NaOH溶液。
进一步地,为了实现对所述加工工件的二维或三维去除加工,所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置中,还设置了运动控制系统,所述运动控制系统包括依次连接的计算机、运动控制卡、X-Y-Z三坐标数控平台,所述工作腔固定在X-Y-Z三坐标数控平台上。相应的在刻蚀绝缘透明材料时,通过计算机输出指令信号给运动控制卡,运动控制卡控制X-Y-Z三坐标数控平台运行,X-Y-Z三坐标数控平台带动工作腔运动,实现工件与电磁装置一同移动,同时保持脉冲激光的聚焦光斑位置不变,实现对绝缘透明材料工件的二维或三维去除加工,在工件表面上加工出平面图形或者三维立体结构。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,包括以下步骤:
    (1)绝缘透明材料加工工件由夹具固定并置于工作腔内,所述工作腔内装有能够浸没工件的液体,液体中悬浮有磁粉;工件下方设有由夹具固定的电磁装置;
    (2)电磁装置通电,悬浮在碱性溶液中的磁粉在电磁装置的磁场作用下被吸附在工件表面;
    (3)脉冲激光聚焦辐照于绝缘透明材料表面,吸附在工件表面的磁粉作为吸收层吸收激光能量,使得激光能量主要集中在液体/工件界面上;激光焦点处的能量超过溶液的击穿阈值时,击穿液体,产生高温高压等离子体并对外膨胀,将磁粉冲开,形成直接作用于绝缘透明材料表面的冲击应力和空化应力,造成冲击空化效果,带动磁粉颗粒撞击工件,并使工件上激光照射的局部区域快速升温;当脉冲激光进入脉冲间歇时,工件在液体的对流传热作用下快速冷却,由于热胀冷缩作用,工件在很小的范围内产生应力集中,由此表面出现微小裂纹,同时磁粉颗粒在磁场作用下又吸附到工件表面;在脉冲激光的反复冲击空化效应作用及超声振动的热力复合作用下,工件表面不断产生微小裂纹、并扩展,实现工件表面材料的微量剥落,从而实现去除加工。
  2. 根据权利要求1所述的磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,工作腔内装的液体为对所述绝缘透明材料具有腐蚀作用的腐蚀性溶液。
  3. 根据权利要求1所述的磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,还包括以下步骤:
    (5)工件与电磁装置一同移动,同时保持脉冲激光的聚焦光斑位置不变,实现对绝缘透明材料工件的二维或三维去除加工。
  4. 根据权利要求1所述的磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,所述磁粉的粒径小于1μm。
  5. 根据权利要求1所述的磁粉诱导式激光等离子刻蚀绝缘透明材料的方法,其特征在于,所述脉冲激光的波长为1064纳米、脉冲宽度为10纳秒、频率10-100Hz、能量为1焦耳、激光的光斑模式为基模或多模。
  6. 磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,包括激光输出装置、光束传输系统、激光刻蚀加工系统,其特征在于,所述激光输出装置为纳秒脉冲激光器,所述光束传输系统位于激光光路上,所述激光刻蚀加工系统包括电磁装置、工作腔、与电磁装置电联接的可调稳压电源以及用于夹持绝缘透明材料工件、且能够使工件位于工作腔内的夹具,所述电磁装置固定在夹具上、且位于工件的下方,所述工作腔内装有能够浸没工件的液体,液体中悬浮有磁粉。
  7. 根据权利要求6所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,其特征在于,还包括运动控制系统,所述运动控制系统包括依次连接的计算机、运动控制卡、X-Y-Z三坐标数控平台,所述工作腔固定在X-Y-Z三坐标数控平台上。
  8. 根据权利要求6所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,其特征在于,所述电磁装置外部设有防水装置。
  9. 根据权利要求6所述磁粉诱导式激光等离子刻蚀绝缘透明材料的装置,其特征在于,所述可调稳压电源输出电压12伏~60伏。
PCT/CN2014/092874 2014-11-19 2014-12-03 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置 WO2016078138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1708984.8A GB2547862B (en) 2014-11-19 2014-12-03 Method and device for etching transparent insulating material with magnetic powder induction laser plasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410663206.2 2014-11-19
CN201410663206.2A CN104475976B (zh) 2014-11-19 2014-11-19 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置

Publications (1)

Publication Number Publication Date
WO2016078138A1 true WO2016078138A1 (zh) 2016-05-26

Family

ID=52750651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092874 WO2016078138A1 (zh) 2014-11-19 2014-12-03 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置

Country Status (3)

Country Link
CN (1) CN104475976B (zh)
GB (1) GB2547862B (zh)
WO (1) WO2016078138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012268A (zh) * 2021-10-13 2022-02-08 浙江师范大学 一种光伏增效微结构紫外激光加工装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942388B (zh) * 2015-06-17 2017-11-17 江苏大学 电化学放电与激光复合加工材料的装置和方法
CN106757285B (zh) * 2016-11-25 2019-03-05 江苏大学 空心激光的光内送粉复合电沉积加工方法及其装置
CN108115296A (zh) * 2016-11-29 2018-06-05 深圳中科光子科技有限公司 一种激光加工装置及方法
CN106424987B (zh) * 2016-12-06 2018-10-09 江苏大学 管电极放电与激光辐照的同轴复合加工方法和装置
CN108169181A (zh) * 2016-12-08 2018-06-15 东莞东阳光科研发有限公司 一种光学生物晶片制备方法
CN106944744B (zh) * 2017-04-26 2019-05-24 广东工业大学 一种基于激光诱导空化的各向异性材料植入方法及装置
US11691216B2 (en) * 2018-06-22 2023-07-04 Avava, Inc. Apparatus for materials processing
CN112658446B (zh) * 2020-12-10 2023-04-07 中国科学院宁波材料技术与工程研究所 一种激光诱导等离子体微细加工装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110885A (ja) * 1985-11-11 1987-05-21 Inoue Japax Res Inc レ−ザ溶接方法
CN101412176A (zh) * 2008-11-20 2009-04-22 江苏大学 一种含微小裂纹的金属结构件激光冲击再制造方法
CN101866996A (zh) * 2010-05-21 2010-10-20 山东大学 基于激光器的led大面积可控表面粗化及刻蚀方法
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置
US20140117978A1 (en) * 2012-10-31 2014-05-01 Robert Bosch Gmbh Encoder element and method for the manufacture thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171150B2 (ja) * 1997-09-29 2001-05-28 日本電気株式会社 配線修正方法および装置
CN2422144Y (zh) * 2000-02-22 2001-03-07 魏荣忠 电磁无尘黑板
JP2008246974A (ja) * 2007-03-30 2008-10-16 Kobe Steel Ltd 電磁波吸収性に優れた積層型樹脂塗装金属板
CN101665859B (zh) * 2009-09-08 2011-10-19 南京工业大学 不锈钢焊接接头激光喷丸处理工艺
CN101701282B (zh) * 2009-10-30 2011-09-14 江苏大学 一种基于激光冲击波技术的复杂表面强化的方法和装置
CN102241201B (zh) * 2011-04-18 2014-12-31 北京工业大学 一种基于透明材料的激光熔化刻蚀打标装置和方法
CN203437818U (zh) * 2013-05-16 2014-02-19 广东工业大学 增强蓝宝石激光背向湿式刻蚀率的加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110885A (ja) * 1985-11-11 1987-05-21 Inoue Japax Res Inc レ−ザ溶接方法
CN101412176A (zh) * 2008-11-20 2009-04-22 江苏大学 一种含微小裂纹的金属结构件激光冲击再制造方法
CN101866996A (zh) * 2010-05-21 2010-10-20 山东大学 基于激光器的led大面积可控表面粗化及刻蚀方法
US20140117978A1 (en) * 2012-10-31 2014-05-01 Robert Bosch Gmbh Encoder element and method for the manufacture thereof
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012268A (zh) * 2021-10-13 2022-02-08 浙江师范大学 一种光伏增效微结构紫外激光加工装置及方法

Also Published As

Publication number Publication date
GB2547862A (en) 2017-08-30
GB2547862B (en) 2021-07-21
CN104475976B (zh) 2016-04-06
GB201708984D0 (en) 2017-07-19
CN104475976A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2016078138A1 (zh) 磁粉诱导式激光等离子刻蚀绝缘透明材料的方法和装置
Xie et al. Laser machining of transparent brittle materials: from machining strategies to applications
TWI587956B (zh) 使用叢發超快雷射脈衝自脆性材料中切割出特定形狀物的方法
Krstulović et al. Underwater-laser drilling of aluminum
JP6470737B2 (ja) レーザー光に対して透明な固体媒体とターゲットとの間に挟まれた流体流路を有してターゲット上でレーザーショックピーニングを実施するためのシステム及び方法
CN102992601B (zh) 一种预应力玻璃激光退应力加工方法
TW201228960A (en) Methods of separating strengthened glass substrates
TW201350246A (zh) 利用雷射光切割加工對象物的方法和裝置
CN109269762B (zh) 利用同轴平行光源观测激光空泡冲击波的实验装置
CN105904105B (zh) 一种改善孔锥度的激光打孔装置及方法
Takata et al. Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening
Wang et al. Comparative assessment of picosecond laser induced plasma micromachining using still and flowing water
CN112658446B (zh) 一种激光诱导等离子体微细加工装置及方法
JPH10305374A (ja) 透明体のレーザ加工方法
Miyamoto et al. Characterization of plasma in microwelding of glass using ultrashort laser pulse at high pulse repetition rates
KR101164418B1 (ko) 펨토초 펄스 레이저의 비선형 초점이동을 통한 절단방법
JP2008248270A (ja) レーザ衝撃硬化処理方法およびレーザ衝撃硬化処理装置
Tang et al. Experimental research on thermal‐dynamic damage effect of K9 optical lens irradiated by femtosecond laser
Chida et al. Decreasing waste of laser cutting by metal fume capturing with water
JP2017171530A (ja) 断面端部不加工鏡面切断法
Das et al. Micromachining of silicon with excimer laser in air and water medium
JP5292049B2 (ja) 脆性材料基板の割断方法
Mao et al. Investigation on Laser Etch-Machining Underwater Based on Thermal-Mechanical Effect
TW201332691A (zh) 變動聚焦之雷射切割方法及裝置
Huang et al. A ripple microstructure formation on a uniform-melted material surface by nanosecond laser pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201708984

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141203

122 Ep: pct application non-entry in european phase

Ref document number: 14906472

Country of ref document: EP

Kind code of ref document: A1