WO2016078081A1 - 一种多旋翼巡检飞行器及输电线路巡检系统 - Google Patents

一种多旋翼巡检飞行器及输电线路巡检系统 Download PDF

Info

Publication number
WO2016078081A1
WO2016078081A1 PCT/CN2014/091896 CN2014091896W WO2016078081A1 WO 2016078081 A1 WO2016078081 A1 WO 2016078081A1 CN 2014091896 W CN2014091896 W CN 2014091896W WO 2016078081 A1 WO2016078081 A1 WO 2016078081A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
inspection
command
ground
camera
Prior art date
Application number
PCT/CN2014/091896
Other languages
English (en)
French (fr)
Inventor
刘宏达
张建斌
蔡伟
郭志广
何红太
李红云
陈垚
秦源汛
裴冠荣
王成
曹向勇
李红旗
杨义清
Original Assignee
河南送变电工程公司
北京国网富达科技发展有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南送变电工程公司, 北京国网富达科技发展有限责任公司 filed Critical 河南送变电工程公司
Priority to PCT/CN2014/091896 priority Critical patent/WO2016078081A1/zh
Publication of WO2016078081A1 publication Critical patent/WO2016078081A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Definitions

  • the invention relates to the technical field of transmission line inspection, and in particular to a multi-rotor aircraft and a transmission line inspection system.
  • High-voltage and ultra-high-voltage overhead transmission lines are the main means of transmitting electrical energy over long distances.
  • the grounding wire and tower attachments are exposed to the field for a long time, resulting in strand breakage, wear and corrosion due to continuous mechanical tension, electrical flashover, and material aging. If the damage is not repaired and replaced in time, the original small damage and defects may expand, eventually leading to serious accidents, resulting in large-scale power outages and huge economic losses. Therefore, the power company should regularly inspect the line equipment, find and identify the early damages and defects in time, and then arrange the necessary maintenance and repair according to the priority of the defects at a reasonable cost and correct priority to ensure the reliability of the power supply. .
  • Ground visual method The power line in the jurisdiction is observed by the naked eye or telescope. Due to the wide distribution of transmission lines and complex geographical conditions, line workers need to cross the mountains, cross the river, walk or drive inspections. This method is labor intensive, has low work efficiency and detection accuracy, and has poor reliability.
  • Aerial survey method helicopter inspection line.
  • the helicopter flies along the transmission line, and the staff observes and records the abnormal points along the line with the naked eye or on-board camera equipment.
  • this method improves the detection efficiency and accuracy despite the close proximity, the power line passes quickly from the field of view of the observer or the recording device, which increases the technical difficulty and the operation cost is high.
  • Multi-rotor aircraft will play an increasingly important role in the inspection of transmission lines.
  • the unmanned aerial vehicle has the characteristics of wide field of vision, flexible operation, light weight, etc. It can quickly take off and land, and can directly observe the on-line fittings and line corridors. Compared with some helicopters, the cost of inspection is greatly reduced, and the problem of low accuracy and poor reliability of the ground visual method is also solved.
  • multi-rotor aircraft generally have the problem of short battery life and cannot meet the needs of long-distance inspection.
  • the development of mobile robot technology provides a new mobile platform for overhead power line inspections.
  • the patrol robot can work with electricity, crawl along the transmission line at a certain speed, and can overcome the obstacles such as anti-vibration hammer, tension clamp, suspension clamp, pole, etc., and use the portable sensing instrument to closely touch the tower, the wire and the Lightning conductors, insulators, line fittings,
  • the proximity detection of the line channel and the like instead of the worker conducting the inspection of the power line, can further improve the working efficiency and the inspection accuracy of the inspection line.
  • mobile robots have great difficulties in the operation of the upper and lower lines. Most of them need to be manually carried on the upper line or lifted up by the pulley lifting method, which has a large safety hazard.
  • the walking process of the mobile robot on the transmission line also needs to overcome the obstacles of the online fittings (anti-vibration hammer, spacer bar, suspension clamp, etc.), further increasing the design difficulty of the mobile robot and restricting the range of motion of the robot.
  • the patent application with the application No. 201310683217.2 discloses a multi-rotor aircraft for power line inspection and a system based thereon, the multi-rotor aircraft having a mounting pulley, and performing inspection work by mounting on a grounding line
  • the scheme overcomes the problem that the current life of the multi-rotor aircraft cannot meet the long-distance inspection requirements, and improves the long-distance inspection capability of the multi-rotor aircraft.
  • the scheme still faces the following problems: (1)
  • the multi-rotor aircraft generally has multiple The propeller can be mounted due to the need to fly to the vicinity of the grounding line. The propeller in flight can easily touch the grounding line, causing great damage to the aircraft itself and the power grid. (2)
  • the multi-rotor aircraft is mounted to the ground wire.
  • the main purpose of the embodiments of the present invention is to provide a multi-rotor inspection aircraft and a transmission line inspection system, which integrates the UAV technology and the online robot technology into the field of transmission line inspection, and also has an off-ground flight. It has the functions of walking on the ground, patrolling the ground wire, tower, fittings, passages, etc., and solves the problem that the multi-rotor aircraft used for inspection of existing transmission lines cannot accurately mount the ground wire.
  • an embodiment of the present invention provides a multi-rotor inspection aircraft, including: a multi-rotor flight device, an off-line traveling device, a patrol device, a control device, and a flight-side wireless transmission interface;
  • the multi-rotor flight device includes: a nacelle, a plurality of rotors and a landing gear;
  • the plurality of rotors are fixedly connected to the nacelle, and are symmetrically disposed around the nacelle, and generate lift by rotation to drive the cabin to fly;
  • the landing gear is fixedly coupled to a bottom of the nacelle
  • the drop line walking device comprises: a support frame, a guiding camera, and a moving mechanism;
  • the bottom end of the support frame is fixedly connected to the top of the nacelle;
  • the guiding camera is fixedly mounted on the support frame for photographing the grounding wire to be hung to guide the moving mechanism to be mounted on the ground to be hung;
  • the moving mechanism is fixed to a top end of the support frame for mounting to and moving along the ground line to be mounted;
  • the inspection device includes: a inspection camera;
  • the inspection camera is fixedly mounted on the bottom of the nacelle for taking a ground wire to be inspected to check whether the ground wire, the metal fitting, the tower, and the channel to be inspected are defective;
  • the flight end wireless transmission interface is connected to the control device, and wirelessly connects to the ground command device, and transmits interaction data between the control device and the ground command device;
  • the present invention also provides a transmission line inspection system, comprising: a ground command device and a multi-rotor inspection aircraft as described above;
  • the ground command device includes: an action command device, an image analysis device, a display, and a ground end wireless transmission interface;
  • the ground-side wireless transmission interface is respectively connected to the action command device, the image analysis device, the display, and wirelessly connects the flight-side wireless transmission interface of the multi-rotor inspection aircraft, and transmits the multi-rotor inspection aircraft and the action Interaction data between the command device, the image analysis device, and the display;
  • the display displays image information captured by the guiding camera and the inspection camera of the multi-rotor inspection aircraft;
  • the action command device parses the image information captured by the camera, generates a corresponding command, and sends the command to the flight wireless transmission interface through the ground-side wireless transmission interface;
  • the image analyzing device analyzes the image information captured by the inspection camera, and determines that there is a defect in the ground wire, the tower, the fitting, the channel, and the like to be detected.
  • the present invention also provides a transmission line inspection system, comprising: a ground command device and a multi-rotor inspection aircraft as described above;
  • the ground command device includes: a command input device, a display, and a ground end wireless transmission interface;
  • the ground end wireless transmission interface is respectively connected to the command input device and the display, and transmits interaction data between the multi-rotor inspection aircraft and the command input device and the display;
  • the display displays image information captured by the guiding camera and the inspection camera of the multi-rotor inspection aircraft;
  • the command input device receives the command and sends the command to the flight side wireless transmission interface through the ground terminal wireless transmission interface.
  • the invention combines the drone technology and the online robot technology into the field of transmission line inspection, which not only exerts the advantages of the flexibility, stability and easy operation of the drone technology, but also plays an online role.
  • the advantages of precision, intelligence and energy saving of the robot technology avoid the problem of the endurance time period and the aerial image image jitter when the UAV is used for inspection alone, and also avoid the obstacles on the upper and lower lines and the line when using the online robot for inspection.
  • Difficult problems have overcome the limitations of the two technologies, making full use of the superiority of these two technologies in the maintenance of transmission lines, providing convenience for the inspection of transmission lines, broadening the inspection vision and improving inspections.
  • the invention provides a guiding camera in the multi-rotor inspection aircraft, and the ground command device can quickly and accurately command the multi-rotor inspection aircraft to be smooth and accurate according to the image of the guiding camera.
  • the ground wire is mounted, and the invention has a more accurate ground wire mounting function than the prior art. Further enhance the efficiency of power transmission line inspection.
  • FIG. 1 is a schematic structural view of a multi-rotor inspection aircraft according to the present invention.
  • FIGS. 2(a) to 2(d) are schematic views showing the structure of a detachably assembled rotor according to Embodiment 1 of the present invention
  • 3(a) to 3(d) are schematic structural views of a detachable assembled drop line device according to a second embodiment of the present invention.
  • FIGS. 4(a) to 4(d) are schematic structural views of a two-hole connector provided in Embodiment 2 of the present invention.
  • 5(a) to 5(d) are schematic structural views of a detachable assembled inspection device according to a third embodiment of the present invention.
  • 6(a) to 6(d) are schematic structural views of a two-hole connector according to a third embodiment of the present invention.
  • FIG. 7(a)-7(d) are schematic structural views of a detachably assembled multi-rotor inspection aircraft according to Embodiment 4 of the present invention.
  • FIG. 8 is a structural block diagram of a transmission line inspection system according to the present invention.
  • FIG. 9 is a schematic diagram of mounting positioning provided by the present invention.
  • FIG. 10 is a schematic diagram of mounting positioning in the case of a guide fence provided by the present invention.
  • FIG. 11 is a structural block diagram of a transmission line inspection system supporting a manual input command provided by the present invention.
  • the present invention relates to two types of transmission line objects, namely, "to-be-guided ground wire” and “subject to be inspected”; wherein “the ground wire to be hung” is the multi-rotor inspection aircraft of the present invention.
  • the mounted object, the multi-rotor inspection aircraft is mounted on and moved along the "to-be-guided ground wire”;
  • the "subject to be inspected” is the inspection object of the multi-rotor inspection aircraft of the present invention, including but not limited to It is a grounding wire, a pole, a fitting, a channel, etc., and the multi-rotor inspection aircraft inspects the "subject to be inspected”.
  • the grounding line and the "to-be-guided grounding line" belonging to the "object to be inspected” are two independent transmission lines.
  • the present invention provides a multi-rotor inspection aircraft, as shown in FIG. 1, comprising: a multi-rotor flight device, an off-line traveling device, a patrol device, a control device 4, and a flight-side wireless transmission interface 5.
  • the multi-rotor flight device includes: a nacelle 11, a plurality of rotors 12 and a landing gear 13;
  • the drop line device comprises: a support frame 21, a guiding camera 22, a moving mechanism 23;
  • the inspection device comprises: a inspection camera 31;
  • a wireless transmission interface 5 is connected to the control device 4, and wirelessly connects the ground command device, and transmits interaction data between the control device 4 and the ground command device;
  • the control device 4 receives the navigation camera 22 and the inspection
  • the image information captured by the camera 31 is sent to the ground command device; the command sent by the ground command device is received, the rotor is controlled to fly, and the moving mechanism 23 is controlled to move along the ground line to be hung.
  • the multi-rotor flight device is responsible for the flight of the entire multi-rotor inspection aircraft, including: the engine room, multiple rotors and landing gear.
  • the plurality of rotors are fixedly connected to the nacelle, and are symmetrically disposed around the nacelle, and generate lift by rotation to drive the nacelle to fly.
  • the specific structure of the rotor in the present invention may be, but is not limited to, a rotor structure adopted by the existing multi-rotor UAV.
  • the number of the rotors may be, but not limited to, four, six, and eight.
  • the invention adopts a rotor structure with a collision preventing cover, that is, an anti-touch cover is arranged on the outside of the propeller to isolate the opening.
  • the propeller and the outside world prevent the propeller from colliding or rubbing against the line during flight, ensuring the flight safety of the multi-rotor inspection aircraft.
  • the landing gear is fixedly coupled to the bottom of the nacelle to cushion and protect the nacelle when the multi-rotor aircraft takes off and land.
  • the specific structure of the landing gear in the present invention includes, but is not limited to, the landing gear structure adopted by the existing multi-rotor UAV, and details are not described herein again.
  • the drop line walking device is responsible for loading the entire multi-rotor inspection aircraft to the ground line to be hung and moving on the ground line to be hung, including: support frame, guiding camera and moving mechanism.
  • the bottom end of the support frame is fixedly coupled to the top of the nacelle.
  • the guiding camera is fixedly mounted on the support frame for photographing the grounding wire to be hung to guide the moving mechanism to be mounted on the ground wire to be hung.
  • the moving mechanism is fixed to a top end of the support frame for mounting to and moving along the ground to be mounted.
  • the ground command equipment can know the relative position of the moving mechanism and the ground wire to be hung by the image information photographed by the camera, and then direct the flight of the multi-rotor flight device. Until the mobile mechanism is mounted to the ground line to be hung. It should be noted that, in order to make the ground command device accurately understand the relative position of the moving mechanism and the ground wire to be hung, and achieve the above guiding effect, the shooting range of the guiding camera should cover at least the moving mechanism.
  • the guiding camera can be, but is not limited to, a CCD (Charge-coupled Device), which has a large angle of view of the lens, generally up to 170 degrees, and can satisfy the shooting movement mechanism. need.
  • the camera can also be equipped with an infrared camera with infrared function to meet the mounting requirements in low light conditions.
  • the moving mechanism of the present invention may employ a structure composed of a moving wheel (e.g., a pulley) and a driving motor, wherein the driving motor drives the moving wheel to move along the ground to be hung, but the moving mechanism in the present invention is not limited to the above configuration.
  • a moving wheel e.g., a pulley
  • driving motor drives the moving wheel to move along the ground to be hung
  • the present invention can also add a support wheel in the moving mechanism, and the support wheel and the wheel groove of the moving wheel are collinear (to be grounded)
  • the support wheel and the moving wheel are all mounted to the ground wire to be hung, and the moving wheel moves along the to-be-guided ground wire under the action of the driving motor, and simultaneously drives the supporting wheel to move along the to-be-guided ground wire to support
  • the wheel plays a role in assisting movement and support.
  • the number of the moving wheels and the supporting wheels may be, but not limited to, 2 to 4.
  • the moving wheel and the supporting wheel are both It needs to be made of insulating and non-slip material.
  • the present invention It is also possible to add a guide fence to the drop travel device, the guide fence being disposed on a side of the moving wheel (and/or the support wheel) facing away from the support frame and abutting the side wall of the moving wheel (and/or the support wheel)
  • the guide fence is disposed in an outer form and forms a containment space with the moving wheel (and/or the support wheel) to guide the to-be-guided ground wire to the moving wheel (and/or the support wheel) ) in the wheel slot.
  • the invention may also be on the side of the moving wheel (and/or the supporting wheel) facing the support frame.
  • Adding an auxiliary guiding fence which also abuts the side wall of the moving wheel (and/or the supporting wheel), and forms a confining space with the moving wheel (and/or the supporting wheel); especially when the falling line running device
  • the surrounding space formed by the auxiliary guiding fence and the guiding fence can ensure that the grounding wire to be hung enters the wheel groove of the moving wheel and the supporting wheel, and avoids the ground wire to be hung on the moving wheel. Interlaced with the support wheel.
  • the inspection device is responsible for the inspection of the object to be inspected (such as the ground wire, tower, fitting, channel environment), including: inspection camera.
  • the inspection camera is fixedly mounted on the bottom of the nacelle for photographing an object to be inspected to check whether the object to be inspected is damaged.
  • the inspection camera can be, but is not limited to, an HD camera.
  • an HD camera with infrared function can also be selected to meet the patrol under the condition of insufficient light. Check the need.
  • the invention can also add a cloud platform to the inspection device, and fix the cloud platform in the cabin.
  • the inspection camera is mounted on the gimbal, and the shooting direction of the inspection camera is changed by the rotation of the gimbal to ensure that the shooting range of the inspection camera can cover the object to be inspected and meet the needs of the targeted shooting of the inspection camera. .
  • the inspection camera has a certain weight, and the rotation of the gimbal will change the center of gravity of the inspection camera, in order to prevent the multi-rotor inspection aircraft from being unable to maintain balance, the inspection work is hindered, and the present invention can also be used in the inspection device as needed.
  • a counterweight is added to fix the counterweight to the bottom of the nacelle to maintain the balance of the multi-rotor inspection aircraft.
  • the wireless transmission interface on the flight side is responsible for data interaction between the multi-rotor inspection aircraft and the ground command equipment.
  • the flight side wireless transmission interface may be a wireless transceiver antenna disposed on the cabin.
  • the wireless communication interface between the flight terminal and the ground command device of the present invention may be, but not limited to, transmitting data by using wireless communication technologies such as 2.4G, 5.8G, and 433M.
  • the control device is responsible for the flight and movement of the multi-rotor inspection aircraft.
  • control device may be disposed in a cabin of the nacelle, such as, but not limited to, a microcontroller, a single chip microcomputer, or the like.
  • the invention combines the drone technology and the online robot technology into the field of transmission line inspection, which not only exerts the advantages of the flexibility, stability and easy operation of the drone technology, but also exerts the precision and intelligence of the online robot technology.
  • the advantages of energy saving and the like avoid the problem of the endurance time period and the aerial image image jitter when the UAV is used for inspection alone, and also avoid the problem of difficulty in accessing the upper and lower lines and the line when using the online robot for inspection.
  • the limitations of the two technologies make full use of the superiority of these two technologies in the maintenance of transmission lines, which provides convenience for the inspection of transmission lines, improves the efficiency of inspection of transmission lines, and reduces the inspection of transmission lines.
  • the present invention provides a guiding camera in the multi-rotor inspection aircraft, and the ground command device can quickly and accurately command the multi-rotor inspection aircraft to smoothly and accurately complete the power line mounting according to the captured image of the guiding camera.
  • the invention has a more precise power line mounting function, and further improves the transmission line. Efficiency seized.
  • the transmission line inspection site is generally located in the remote suburbs
  • the overall multi-rotor inspection aircraft is inconvenient in transportation and maintenance, and the replacement of the faulty components is also cumbersome.
  • the present invention can design various devices and components in the multi-rotor inspection aircraft. It is designed to be assembled by smaller sub-components. In this way, when transporting the multi-rotor inspection aircraft, the whole multi-rotor inspection aircraft can be divided into sub-components for storage, which has the effect of saving space and facilitating transportation. After arriving at the inspection site, these sub-components are assembled into an integrated multi-rotor inspection aircraft. When a fault occurs, it is only necessary to repair or replace the sub-components involved in the fault, which has the effect of quick repair and improved inspection efficiency.
  • This embodiment is directed to the splitting and assembly design of a multi-rotor flying device.
  • the nacelle is a flat circular cabin structure, and a plurality of openings are uniformly disposed along the circumference thereof, and the plurality of openings are in one-to-one correspondence with the plurality of rotors;
  • the landing gear can be, but is not limited to, fixed by a bolt structure. The bottom of the cabin.
  • the rotor of this embodiment specifically includes: a rotor bracket, a brushless motor, a propeller, and a collision prevention cover. Wherein one end of the rotor bracket is inserted and fixed in a corresponding opening; the brushless motor, the propeller and the anti-collision cover Provided on the rotor support; the propeller rotates under the driving of the brushless motor and generates lift; the anti-impact cover is disposed outside the propeller.
  • each rotor and the nacelle are assembled and disassembled by a plug connection between the rotor bracket and the corresponding opening.
  • connection relationship between the anti-collision cover and the rotor support can also be designed in a form that can be assembled and disassembled.
  • a rotor structure as shown in FIGS. 2(a) to (d) can be used, as shown in FIG.
  • the rotor includes: a rotor bracket K_1, a brushless motor K_2, a propeller K_3, and a collision preventing cover K_4.
  • the top cover K_41 and the bottom cover K_42 are both circular mesh structures; the top cover K_41 is respectively provided with an upper end engaging member K_411 at both ends of the diameter thereof. And an upper shaft engaging member K_412; the bottom cover K_42 is provided with a lower end engaging member K_421 and a lower shaft engaging member K_422 at both ends of the diameter; the upper end engaging member K_411 and the upper shaft engaging member
  • the K_412, the lower end engaging member K_421, and the lower shaft engaging member K_422 each have a groove and a screw hole.
  • the upper end engaging member K_411 is corresponding to the position of the lower end engaging member K_421, and the grooves of the two are respectively engaged with the upper portion and the lower portion of the spiral bracket, and the screw holes of the two are matched with each other, and the bolt P1 penetrating the screw hole realizes the upper end portion.
  • the engaging member K_411 is detachably fixedly coupled to the lower end engaging member K_421, and the distance between the groove of the upper end engaging member K_411 and the groove of the lower end engaging member K_421 can be changed by rotating the screw P1, thereby adjusting The degree of fastening between the groove of the upper end engaging member K_411, the groove of the lower end engaging member K_421 and the rotor bracket.
  • the upper shaft engaging member K_412 corresponds to the position of the lower shaft engaging member K_422, and the grooves of the two shafts are respectively engaged with the upper portion and the lower portion of the spiral bracket, and the screw holes of the two are matched with each other, and the bolt P2 penetrating through the screw hole is realized.
  • the upper shaft engaging member K_412 is detachably fixedly coupled to the lower shaft engaging member K_422, and the groove of the upper shaft engaging member K_412 and the recess of the lower shaft engaging member K_422 can be changed by rotating the screw P2.
  • the upper end engaging member K_411 and the lower end engaging member K_421 are connected by screw holes and bolts P1 as shown in FIG. 2, and may be connected by other bolts, for example, at the upper end.
  • the two sides of the lower engaging portion K_411 and the lower end engaging member K_421 are respectively provided with correspondingly corresponding and mutually matching lugs, which are connected by bolts penetrating through the lugs; similarly, the upper shaft engaging member K_412 and the lower shaft portion
  • the engaging members K_422 can also be disposed at the two sides of the upper shaft portion engaging member K_412 and the lower shaft portion engaging member K_422.
  • Matching lugs are connected by bolts that extend through the lugs.
  • This embodiment is directed to the splitting and assembly design of the drop line device.
  • the drop line walking device of the present embodiment adopts the structure shown in FIGS. 3( a ) to ( d ), and includes: a fixed bracket L_1 , a movable bracket L_2 , a moving wheel L_3 , a driving motor L_4 , a wheel bracket L_5 , a support wheel L_6 , Guide fence L_7, auxiliary guide fence L_8 and guide camera L_9.
  • the bottom end of the fixing bracket L_1 is fixed to the top of the nacelle (not shown in FIGS. 3(a) to (d)), and the top end of the fixing bracket L_1 is fixedly coupled to the bottom end of the movable bracket L_2.
  • the moving wheel L_3, the driving motor L_4, the wheel bracket L_5, the support wheel L_6, the guide fence L_7, and the auxiliary guide fence L_8 are mounted on the top end of the movable bracket L_2.
  • the driving motor L_4 is connected to the axle of the moving wheel L_3;
  • the wheel bracket L_5 is vertically fixed to the top end of the movable bracket L_2,
  • the supporting wheel L_6 is mounted on the wheel bracket L_5;
  • the guiding fence L_7 is disposed on the moving wheel L_3 and the supporting wheel
  • the side of the L_6 facing away from the support frame is in the form of an outer sheet with respect to the side walls of the moving wheel L_3 and the support wheel L_6;
  • the auxiliary guiding fence L_8 is disposed on the moving wheel L_3 and the support wheel L_6 facing the support frame a guiding fence L_7 and an auxiliary guiding fence L_8 abut against the side walls of the moving wheel L_3 and the supporting wheel
  • the driving motor L_4 drives the moving wheel L_3 to move along the ground line to be hung, and drives the supporting wheel L_6 to also move along the ground line to be hung.
  • the guiding camera L_9 is fixedly mounted on the movable bracket L_2.
  • the top end of the fixing bracket and the bottom end of the movable bracket are fixedly connected by at least one double-hole connecting member S1, as shown in Figures 4(a) to (d), the two-hole connecting member S1 has two a through hole and a knob arranged in parallel; the two through holes are communicated by a slit hole, the knob vertically passes through two side walls of the slit hole; a top end of the fixing bracket and the movable bracket The bottom end of the slit passes through the two through holes respectively; the rotation of the knob changes the spacing between the two side walls of the slit hole to adjust the two through holes and the fastening with the fixed bracket and the movable bracket degree.
  • the invention can utilize the double-hole connecting member S1 to adjust the length of the overlapping portion of the fixed bracket on the movable bracket to adjust the position of the center of gravity of the drop walking device relative to the entire multi-rotor inspection aircraft, which is beneficial to maintaining the balance and stability of the multi-rotor inspection aircraft. It is convenient for the multi-rotor inspection aircraft to be safely mounted to the ground wire to be hung.
  • the embodiment can also provide an opening at the top of the nacelle; the fixed connection of the fixed bracket to the nacelle can be achieved by inserting the bottom end of the fixing bracket into the opening of the top of the nacelle.
  • connection between the support frame and the nacelle is through the plug connection between the fixed bracket and the opening of the top of the nacelle, and the fastening connection between the double-hole connector S1 and the fixed bracket and the movable bracket is assembled and disassembled. Minute.
  • This embodiment is directed to the splitting and assembly design of the inspection device.
  • the patrol device of this embodiment includes: a base, a pan/tilt head, and a patrol camera.
  • the base is fixedly connected to the bottom of the nacelle; the gimbal is fixed on a side of the base facing away from the nacelle, the inspection camera is mounted on the gimbal; and the gimbal is rotated to change The shooting direction of the inspection camera.
  • the fixed connection between the base and the bottom of the nacelle can be achieved by bolts.
  • the bottom of the nacelle is provided with at least one downward lug, and at least one upward lug is disposed on a side of the base facing the nacelle;
  • the lugs match the upward lugs and are bolted together. That is, the base and the nacelle are split and assembled by bolting between the downward lugs and the upward lugs.
  • the lugs on the base and the bottom of the nacelle should be arranged as evenly as possible to ensure the balance stability of the entire multi-rotor inspection aircraft.
  • the base and the bottom of the nacelle may be connected by other means.
  • the patrol device of this embodiment may also adopt the structure shown in FIG. 5( a ) to (d), and specifically includes: patrol camera X_1, pan/tilt X_2, base X_3, base mounting rod X_4, counterweight.
  • the base X_3 is provided with at least one lug on one side of the nacelle; the base mounting rod X_4 passes through the lugs and is vertically disposed on the two inspection device mounting rods.
  • the structure includes a knob and two through holes T3 and T4 disposed vertically; the through hole T3 is connected to a slot, and the knob passes through the two side walls of the slot; the inspection device mounting rod X_6 passes through the through hole T3; the rotation of the knob changes the spacing between the two side walls of the slot to adjust the fastening degree of the through hole T3 and the mounting rod X_6 of the inspection device; the two ends of the base mounting rod X_4 are engaged with the through hole T4. That is, the base X_3 and the nacelle are separated and assembled by the fixed connection between the base mounting rod X_4 and the inspection device mounting rod X_6 through the double-hole connector S2.
  • the weight X_5 includes a tray and a weight body X_51.
  • the tray is a slot type structure, and the weight body X_51 is installed in the tray;
  • the tray specifically includes: a tray bottom X_52, a tray side wall X_53, a front card member X_54, and a rear card member X_55;
  • the card member X_54 and the rear card member X_55 are respectively fixed at opposite ends of the tray bottom X_52, and the weight body X_51 is engaged in the middle;
  • the tray side wall X_53 is fixed to the other ends of the tray bottom X_52 Providing at least two protrusions on the side wall X_53 of the tray;
  • the two-hole connector S3 is fixedly connected to the inspection device mounting rod X_6; wherein the two-hole connector S3 has a structure as shown in FIGS.
  • the through holes T3 and T4 including a knob and two vertically disposed
  • the through holes T3 communicate with a slit hole, the knob passes through the two side walls of the slit hole;
  • the inspection device mounting rod X_6 passes through the through hole T3;
  • the rotation of the knob makes the slit hole
  • the distance between the two side walls is to adjust the fastening degree of the through hole T3 and the inspection device mounting rod X_6; the protrusion is engaged in the through hole T4. That is, the counterweight X_5 and the nacelle are split and assembled by the fixed connection between the projections and the inspection device mounting rod X_6 through the two-hole connector.
  • the weight X_5 has the function of keeping the entire multi-rotor inspection aircraft in balance and stability. Since different types of inspection cameras X_1 may have different weights, in order to maintain multi-rotor inspection The balance of the aircraft is stable, and the weight body X_51 can increase or decrease the weight according to actual needs to meet the actual needs.
  • FIGs 7(a)-(d) show the assembled structure of the multi-rotor inspection aircraft, including: multi-rotor flight device Z_1, falling a line running device Z_2, a patrol device Z_3, a control device (installed in the nacelle, not shown in Figs. 7(a) to (d)), and a flight side wireless transmission interface Z_4; wherein the multi-rotor flying device Z_1 has In the rotor structure shown in Fig. 2, the landing gear Z_2 has a mechanism as shown in Figs. 3(a) to 3(d), and the inspection device Z_3 has a structure as shown in Figs. 5(a) to (d).
  • each device constituting the multi-rotor inspection aircraft can be disassembled and assembled, the whole multi-rotor inspection aircraft can be split into individual sub-components and connectors separately during transportation to save space and convenience. For the purpose of transportation, after reaching the inspection site, these sub-elements can be quickly assembled into an integrated multi-rotor inspection aircraft by means of connectors. In the event of a fault, only the sub-components involved in the fault are repaired or replaced. Quickly repair and improve the efficiency of inspection.
  • splitting and assembling design provided by the present invention. It should be noted that, in implementing the present invention, other types of splitting and assembling designs may be designed according to actual conditions.
  • the above design form is only a specific embodiment of the present invention for the purpose of facilitating transportation and rapid repair of the faulty component, and is not intended to limit the scope of the present invention.
  • the invention also provides a transmission line inspection system, as shown in FIG. 8, comprising: a multi-rotor inspection aircraft Z, and a ground command device H.
  • the ground command device H specifically includes: an action command device H_1, an image analysis device H_2, a display H_3, and a ground-end wireless transmission interface H_4. The following describes each of the above devices separately:
  • the ground-side wireless transmission interface is respectively connected to the action command device, the image analysis device, the display, and wirelessly connects the flight-side wireless transmission interface of the multi-rotor inspection aircraft, and transmits the multi-rotor inspection aircraft and Interaction data between the motion command device, the image analysis device, and the display.
  • the ground-side wireless transmission interface and the flight-side wireless transmission interface of the present invention may be, but are not limited to, transmitting data by using wireless communication technologies such as 2.4G, 5.8G, and 433M.
  • the display displays image information captured by the guidance camera and the inspection camera of the multi-rotor inspection aircraft.
  • the image information captured by the camera and the patrol camera may be displayed in different windows by using the same display, or may be separately displayed by using different displays, which is not specifically limited in the present invention.
  • the motion command device parses the image information captured by the camera, generates a corresponding command, and sends the command to the flight wireless transmission interface through the ground-side wireless transmission interface.
  • the action command device is responsible for directing the action of the multi-rotor inspection aircraft (flying or moving along the ground line to be hung). Specifically, the action command device generates a corresponding command and sends it to the flight terminal wireless transmission interface through the ground-side wireless transmission interface. Finally, the control device of the multi-rotor inspection aircraft is controlled, and the control device controls the rotor flight or controls the movement mechanism to move along the to-be-guided ground line according to the received command.
  • the action of the multi-rotor inspection aircraft needs to be adjusted in real time according to the relative position between the moving mechanism and the ground wire to be hung. For example, when the multi-rotor inspection aircraft is on the ground, it needs to fly to the vicinity of the ground wire to be hung, and then It needs to be gradually approached until it is mounted on the ground wire to be hung, and then moved along the guide wire to be hung. When encountering obstacles during the movement (such as anti-vibration hammer, spacer bar, suspension clamp, etc.) At the same time, vertical takeoff and landing is required to move over the obstacle and then continue.
  • obstacles during the movement such as anti-vibration hammer, spacer bar, suspension clamp, etc.
  • the motion command device In order to meet the needs of real-time adjustment of the action of the multi-rotor inspection aircraft, the motion command device must always know the relative position of the mobile mechanism and the ground wire to be hung by the image information captured by the camera to generate a corresponding command and send it to the multi-rotor inspection aircraft. So that it adjusts the action in time.
  • the present invention can divide the image of the image taken by the guiding camera, and determine that the ground wire to be hung appears in the image frame. The area to determine the relative position of the mobile mechanism to the ground lead to be hung.
  • the present invention can divide the image of the image taken by the camera according to the following rules: the horizontal plane of the center point of the image frame is used as an interface; the area above the interface is the An upper area; the area below the interface is the lower area; the projection area of the moving mechanism in the interface
  • the field (the area in which the moving mechanism is vertically projected into the interface) is the drop line area; the area outside the drop line area in the interface is the close area.
  • the rule generation command is generated according to the following command:
  • control device of the multi-rotor inspection aircraft executes the rule execution command according to the following command:
  • B is the center point of the camera lens, and is also the center point of the image picture taken by the camera.
  • the viewing angle of the guiding camera is ⁇ ABC;
  • the BD plane is the horizontal plane where the center point B of the image frame is located, that is, the interface; the area covered by the ⁇ ABD is located above the BD plane, that is, the upper part; the area covered by the ⁇ CBD is located in the BD.
  • the area N is the projection area of the moving mechanism in the BD plane, that is, the drop line area; the area outside the area N in the BD plane is the close area.
  • the action command device When the grounding line to be hung is located in the area covered by the ⁇ ABD (upper side area), it indicates that the grounding line to be hung is located above the multi-rotor inspection aircraft, and the action command device generates a rising command to command the multi-rotor inspection aircraft to fly upward;
  • the action command device When the ground wire to be hung to be hung is located in the area covered by the ⁇ CBD (lower area), it indicates that the ground wire to be hung is located below the multi-rotor inspection aircraft, and the action command device generates a descending command to command the multi-rotor patrol. Check the aircraft to fly downwards;
  • the action command device When the ground wire to be hung is located in the BD plane and is located outside the projection area N of the moving mechanism (close to the area), it indicates that the ground wire to be hung is substantially at the same level as the moving mechanism, but is not in the moving mechanism.
  • the action command device generates a proximity command, directs the multi-rotor inspection aircraft to fly horizontally and approaches the to-be-guided ground line;
  • the action command device When the ground wire to be hung is located in the BD plane and is located in the projection area N (drop line area) of the moving mechanism, it indicates that the ground wire to be hung is just below the moving mechanism, and the action command device generates a drop command.
  • the multi-rotor inspection aircraft is commanded to stop flying and land until the mobile mechanism is mounted to the ground to be hung.
  • the action command device determines that the moving mechanism has been mounted on the ground to be hung by analyzing the image picture, it indicates that the mounting has been successfully performed, and at this time, a movement command is generated, and the moving mechanism of the multi-rotor inspection aircraft is to be hung.
  • the ground wire moves.
  • the action command device determines through the analysis screen that the moving mechanism moves to an obstacle (such as an anti-vibration hammer, a spacer bar, a suspension clamp, etc.) on the ground line to be hung, a cross command is generated to command the multi-rotor inspection aircraft to take off and After the obstacle is reached, it is landed again until the moving mechanism is mounted again to the to-be-guided ground.
  • an obstacle such as an anti-vibration hammer, a spacer bar, a suspension clamp, etc.
  • the multi-rotor inspection aircraft of the present invention is equipped with a guiding fence, since a surrounding space is formed between the guiding fence and the moving wheel, the multi-rotor inspection aircraft is provided as long as the guiding ground wire enters the area covered by the surrounding space.
  • the flight can be stopped and the automatic landing is carried out, and the guide wire to be hung is guided by the guiding fence to the wheel groove of the moving wheel. Therefore, the action command device needs to know the relative position of the guiding fence and the grounding wire to be hung by the image information photographed by the guiding camera at all times.
  • Position to control the multi-rotor inspection aircraft to adjust the action in time In this case, the near area and the drop area in the above area division rule need to be adjusted accordingly.
  • the present invention determines a projection area of the guiding space formed by the guiding fence and the moving wheel in the interface (a region in which the blocking space is vertically projected into the interface) is determined as a drop line area; an area outside the drop line area in the above interface is the close area.
  • a projection area of the guiding space formed by the guiding fence and the moving wheel in the interface is determined as a drop line area; an area outside the drop line area in the above interface is the close area.
  • B is the center point of the camera lens, and is also the center point of the image taken by the camera.
  • the viewing angle of the guiding camera is ⁇ ABC;
  • the BD plane is the horizontal plane where the center point B of the image frame is located, that is, the interface; the area covered by the ⁇ ABD is located above the BD plane, that is, the upper part; the area covered by the ⁇ CBD is located in the BD.
  • the area M is a projection area of the enclosure space formed by the guide fence and the moving wheel in the BD plane, that is, the drop area; and the area outside the area M in the BD plane is the close area.
  • the action command device When the ground wire to be hung is located in the area covered by the ⁇ ABD (upper side area), it indicates that the ground wire to be hung is located above the moving wheel of the multi-rotor inspection aircraft, and the action command device generates a rising command to command the multi-rotor inspection aircraft to go up. flight;
  • the action command device When the ground wire to be hung is located in the area covered by the ⁇ CBD (lower area), it indicates that the ground wire to be hung is located below the moving wheel of the multi-rotor inspection aircraft, and the action command device generates a descending command to command the multi-rotor inspection aircraft to Fly down;
  • the action command device When the ground wire to be hung is located in the BD plane and is located outside the projection area M of the containment space (close to the area), it indicates that the ground wire to be hung is substantially at the same level as the moving wheel of the multi-rotor inspection aircraft. However, they are far apart and have not entered the area covered by the containment space.
  • the action command device generates a close command, directs the multi-rotor inspection aircraft to fly horizontally and approaches the lead-to-hide line to be hung;
  • the action command device When the ground wire to be hung is located in the BD plane and is located in the projection area M of the containment space (falling area), it indicates that the ground wire to be hung is substantially at the same level as the moving wheel of the multi-rotor inspection aircraft, and In the area covered by the containment space, the action command device generates a drop command, directs the multi-rotor inspection aircraft to stop flying and land, and then under the guidance of the guide fence, the guide wire to be hung will enter the wheel groove of the moving wheel. In the middle, the moving wheel is mounted on the ground wire to be hung.
  • the action command device When the multi-rotor inspection aircraft of the present invention is installed with a pan/tilt head, the action command device generates the above-mentioned various related commands according to the image image captured by the guidance camera, and also needs to analyze the image image captured by the inspection camera to generate The pan-tilt rotation command controls the pan/tilt rotation of the multi-rotor inspection aircraft to change the shooting direction of the inspection camera to meet the needs of targeted shooting.
  • the ground command equipment can only direct the multi-rotor inspection aircraft to adjust the motion through the image on the ground. Therefore, the motion command device generates and transmits the appropriate image according to the image.
  • the command to control the multi-rotor inspection aircraft to adjust the action in time is the key to realize the mounting, the obstacle, and the inspection.
  • the present invention can accurately determine the moving mechanism by providing the above area division rules, command generation rules and command execution rules. The relative position of the wheel and the ground wire to be hung, so that the multi-rotor inspection aircraft can be accurately controlled in the air to ensure the smooth completion of the inspection process.
  • the image analysis device analyzes the image information captured by the inspection camera and determines that there is a failure in the object to be inspected.
  • the faults of the object to be inspected include, but are not limited to, damage, deformation, stolen, damage and contamination of the insulator, looseness of the clamp, loosening of the pin, suspension of the foreign object, strand breakage, poor joint contact, and local Hot spots, trees are too high, etc.
  • the image analysis device can be connected to an alarm device (such as an audible and visual alarm, a buzzer, etc.), and when the image analysis device passes the image image taken by the inspection camera, it is judged that the ground wire is broken, worn, and corroded. When the damage is caused, the alarm is triggered to make an alarm, and the relevant staff is notified in time.
  • an alarm device such as an audible and visual alarm, a buzzer, etc.
  • the present invention also provides a transmission line inspection system, as shown in FIG. 11, comprising: a multi-rotor inspection aircraft Z, and a ground command device Y; wherein the ground command device Y specifically includes: a command input device Y_1, Display Y_2 and terrestrial wireless transmission interface Y_3.
  • the transmission line inspection system supports manual input commands to control the multi-rotor inspection aircraft adjustment action. The following describes the command input device, display, and terrestrial wireless transmission interface:
  • the ground-side wireless transmission interface is connected to the command input device and the display, respectively, and transmits interaction data between the multi-rotor inspection aircraft and the command input device and the display.
  • the ground-side wireless transmission interface and the flight-side wireless transmission interface may be, but are not limited to, transmitting data by using wireless communication technologies such as 2.4G, 5.8G, and 433M.
  • the display displays image information captured by the guidance camera and the inspection camera of the multi-rotor inspection aircraft.
  • the image information captured by the camera and the patrol camera may be displayed in different windows by using the same display, or may be separately displayed by using different displays, which is not specifically limited in the present invention.
  • the command input device receives the command and transmits the command to the flight terminal wireless transmission interface through the ground terminal wireless transmission interface.
  • the command input device has the function of providing manual input or selecting various related commands, including but not limited to the ascending command as described above (for commanding the multi-rotor inspection aircraft to fly upward) and the descending command (for commanding multiple The rotor inspection aircraft flies downwards, close to the command (used to command the multi-rotor inspection aircraft to fly horizontally and approach the to-be-guided ground line), and the landing command (used to command the multi-rotor inspection aircraft to stop flying and land), a move command (used to command the multi-rotor inspection aircraft to move along the to-be-guided ground line), a cross command (for commanding the multi-rotor inspection aircraft to take off and cross the obstacle and then land again until the moving wheel is re-mounted To the to-be-guided ground line).
  • various related commands including but not limited to the ascending command as described above (for commanding the multi-rotor inspection aircraft to fly upward) and the descending command (for commanding multiple The rotor inspection aircraft flies downwards, close to the command (used to command
  • the command input device can be, but is not limited to, a human-machine interaction device including a keyboard, a button, a touch screen, and the like.
  • the relevant staff can view the image of the image taken by the guidance camera through the display to determine the relative position of the moving mechanism and the ground wire to be hung, and pass the command input device. Input or select the corresponding command to control the multi-rotor inspection aircraft to adjust the action in time, and the relevant staff can view the image taken by the inspection camera through the display to determine whether the object to be inspected is damaged and determine the maintenance strategy.
  • the multi-rotor inspection aircraft and the transmission line inspection system provided by the embodiments of the present invention have the following beneficial effects:
  • the grounding line to be hoisted by a special guiding camera is convenient for the ground command equipment to understand the relative position of the multi-rotor inspection aircraft and the ground wire to be hung, and to control the multi-rotor inspection aircraft to adjust the movement quickly and accurately.
  • the mounting is carried out, and the inspection efficiency is improved; the object to be inspected is photographed by a special inspection camera, and the blind area coverage of the manual inspection above the line and the comprehensive inspection of the line corridor are realized, and the damage, deformation and theft of the tower can be easily found.
  • Insulator damage and contamination, loose wire clamps, pin detachment, foreign object suspension, wire breakage, poor joint contact, local hot spots, excessive trees, etc. provide relevant personnel with relevant data on accident hazards, and thus ensure the operation of transmission lines Safety;
  • the anti-collision cover is arranged on the outside of the propeller to achieve the purpose of isolating the propeller and the outside world, preventing the propeller from colliding or rubbing with the power line during flight, and ensuring the flight of the multi-rotor inspection aircraft.
  • the various devices and components in the multi-rotor inspection aircraft are designed to be assembled by smaller sub-components.
  • the whole multi-rotor inspection aircraft can be split into sub-components. Separate storage, with the effect of space saving and convenient transportation.
  • these sub-components are assembled into an integrated multi-rotor inspection aircraft.
  • a fault occurs, only the sub-components involved in the fault are repaired or replaced. It has the effect of quick repair and improved inspection efficiency;

Abstract

一种多旋翼巡检飞行器及输电线路巡检系统,该多旋翼巡检飞行器包括:多旋翼飞行装置、落线行走装置、巡检装置、控制装置(4)和飞行端无线传输接口(5);多旋翼飞行装置包括:机舱(11)、多个旋翼(12)和起落架(13);落线行走装置包括:支撑架(21)、导向摄像机(22)、移动机构(23);巡检装置包括:巡检摄像机(31);飞行端无线传输接口(5)无线连接地面指挥设备;控制装置(4)接收地面指挥设备发送的命令,控制旋翼飞行及控制移动机构(23)沿待挂导地线移动。该输电线路巡检系统包括:多旋翼巡检飞行器(Z)和地面指挥设备(H);地面指挥设备(H)具体包括:动作指挥装置(H_1)、影像分析装置(H_2)、显示器(H_3)和地面端无线传输接口(H_4)。该多旋翼巡检飞行器及输电线路巡检系统具有精准的电力线挂载功能,拓宽了巡检视野,提升了巡检效率,降低了巡检的人力成本。

Description

一种多旋翼巡检飞行器及输电线路巡检系统 技术领域
本发明涉及输电线路巡检技术领域,具体地,涉及一种多旋翼飞行器及输电线路巡检系统。
背景技术
高压和超高压架空输电线路是长距离输送电能的主要方式,导地线及杆塔附件长期暴露在野外,因受到持续的机械张力、电气闪络、材料老化的影响而产生断股、磨损、腐蚀等损伤,如不及时修复更换,原本微小的破损和缺陷就可能扩大,最终导致严重事故,造成大面积的停电和巨大的经济损失。因此,电力公司要定期对线路设备巡检,及时发现早期损伤和缺陷并加以评估,然后根据缺陷的轻重缓急,以合理的费用和正确的优先顺序,安排必要的维护和修复,从而确保供电可靠性。
目前,对输电导线进行巡检的方法主要有两种:
(1)地面目测法:采用肉眼或望远镜对辖区内的电力线进行观测。由于输电线路分布点多面广、地理条件复杂,巡线工人需要翻山越岭、涉水过河、徒步或驱车巡检。这种方法劳动强度大,工作效率和探测精度低,可靠性差。
(2)航测法:直升飞机巡线。直升飞机沿输电线路飞行,工作人员用肉眼或机载摄像设备观测和记录沿线异常点的情况。这种方法尽管距离接近,提高了探测效率和精度,但电力线从观察者或摄录设备的视野中快速通过,增加了技术难度,运行费用较高。
多旋翼飞行器在输电线路巡检中将扮演越来越重要的角色。无人飞行器具有视野开阔,操作灵活,重量轻等特点,能够快速起降,针对性得对线上金具、线路走廊进行近距离观测。较于有人直升机,大大降低了巡检所需费用,也解决了地面目测法探测精度低,可靠性差的问题。然而,目前多旋翼飞行器普遍存在续航时间短的问题,并不能满足较长距离巡检需要。
移动机器人技术的发展,为架空电力线路巡检提供了新的移动平台。巡线机器人能够带电工作,以一定的速度沿输电线爬行,并能跨越防振锤、耐张线夹、悬垂线夹、杆塔等障碍,利用携带的传感仪器近距离地对杆塔、导线及避雷线、绝缘子、线路金具、 线路通道等实施接近检测,代替工人进行电力线路的巡检工作,可以进一步提高巡线的工作效率和巡检精度。但是,移动机器人在上下线操作上存在较大困难,大多需要以人工方式背负上线,或以滑轮吊装方式上线,存在较大的安全隐患。移动机器人在输电线路上行走过程还需要克服线上金具(防振锤、间隔棒、悬垂线夹等)的障碍,进一步加大了移动机器人的设计难度,制约了机器人的活动范围。
中国申请号为201310683217.2的专利方案公开了一种电力线巡检用的多旋翼飞行器以及基于它的系统,该多旋翼飞行器具有挂载滑轮,通过挂载在导地线上移动完成巡检工作,该方案克服了目前多旋翼飞行器续航时间短不能满足长距离巡检需要的问题,提高了多旋翼飞行器的长距离巡检能力,但该方案仍面临如下问题:(1)多旋翼飞行器一般具有多个螺旋桨,由于需要飞行至导地线附近才能实现挂载,飞行中的螺旋桨非常容易触碰到导地线,对飞行器本身、电网造成巨大损害;(2)多旋翼飞行器挂载至导地线的过程没有精准的控制,地面工作站要想手动控制挂载滑轮挂载到导地线上并不容易;(3)导地线巡检现场一般位于远郊区,整体多旋翼飞行器的运输、维修均不方便,故障部件的更换也很麻烦。可见,目前利用多旋翼飞行器进行输电线路巡检的技术还存在诸多问题。
发明内容
本发明实施例的主要目的在于提供一种多旋翼巡检飞行器及输电线路巡检系统,将无人机技术、线上机器人技术融合并应用于输电线路巡检领域,兼具导地线外飞行、导地线上行走、巡检导地线、杆塔、金具、通道等是否存在缺陷等功能,并解决了现有输电线路巡检用的多旋翼飞行器不能够精准挂载导地线的问题。
为了实现上述目的,本发明实施例提供一种多旋翼巡检飞行器,包括:多旋翼飞行装置、落线行走装置、巡检装置、控制装置和飞行端无线传输接口;其中,
所述多旋翼飞行装置包括:机舱、多个旋翼和起落架;
所述多个旋翼固定连接所述机舱,并以所述机舱为中心对称设置,通过旋转产生升力带动所述机舱飞行;
所述起落架固定连接所述机舱的底部;
所述落线行走装置包括:支撑架、导向摄像机、移动机构;
所述支撑架的底端固定连接所述机舱的顶部;
所述导向摄像机固定装设于所述支撑架上,用于拍摄待挂导地线,以引导所述移动机构挂载至所述待挂导地线上;
所述移动机构固定于所述支撑架的顶端,用于挂载至所述待挂导地线上并沿其移动;
所述巡检装置包括:巡检摄像机;
所述巡检摄像机固定装设于所述机舱的底部,用于拍摄待检导地线,以检查所述待检导地线、金具、杆塔、通道是否存在缺陷;
所述飞行端无线传输接口连接所述控制装置,并无线连接地面指挥设备,传输所述控制装置和所述地面指挥设备之间的交互数据;
所述控制装置接收所述导向摄像机和所述巡检摄像机拍摄的影像信息,并发送给所述地面指挥设备;接收所述地面指挥设备发送的命令,控制所述旋翼飞行及控制所述移动机构沿待挂导地线移动。
相应的,本发明还提供一种输电线路巡检系统,包括:地面指挥设备和如上所述的多旋翼巡检飞行器;
所述地面指挥设备包括:动作指挥装置、影像分析装置、显示器和地面端无线传输接口;
所述地面端无线传输接口分别连接所述动作指挥装置、影像分析装置、显示器,并无线连接所述多旋翼巡检飞行器的飞行端无线传输接口,传输所述多旋翼巡检飞行器与所述动作指挥装置、影像分析装置、显示器之间的交互数据;
所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
所述动作指挥装置对所述导向摄像机拍摄的影像信息进行解析,生成相应的命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口;
所述影像分析装置对所述巡检摄像机拍摄的影像信息进行解析,判断待检导地线、杆塔、金具、通道等存在缺陷时进行报警。
相应的,本发明还提供一种输电线路巡检系统,包括:地面指挥设备和如上所述的多旋翼巡检飞行器;
所述地面指挥设备包括:命令输入装置、显示器和地面端无线传输接口;
所述地面端无线传输接口分别连接所述命令输入装置和所述显示器,传输所述多旋翼巡检飞行器与所述命令输入装置、所述显示器之间的交互数据;
所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
所述命令输入装置接收命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口。
借助于上述技术方案,本发明将无人机技术、线上机器人技术融合并应用于输电线路巡检领域,既发挥了无人机技术的灵活、稳定和易操控等优势,也发挥了线上机器人技术的精准、智能、节能等优势,避免了单纯利用无人机进行巡检时续航时间段、航拍图像抖动的问题,也避免了单纯利用线上机器人进行巡检时上下线及线上越障困难的问题,克服了两种技术各自的局限性,充分利用了这两种技术在输电线路维护中的优越性,为输电线路巡检工作提供了方便,拓宽了巡检视野,提升了巡检效率,降低了巡检的人力成本;此外,本发明在多旋翼巡检飞行器中设置了导向摄像机,地面指挥设备根据导向摄像机的拍摄影像,能够快速、准确地指挥多旋翼巡检飞行器顺利、精准完成导地线挂载,相比于现有技术,本发明具有更加精准的导地线挂载功能,进一步提升了输电线路巡检的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供一种多旋翼巡检飞行器的结构示意图;
图2(a)~2(d)是本发明实施例一提供的可拆分组装的旋翼结构示意图;
图3(a)~3(d)是本发明实施例二提供的可拆分组装的落线行走装置结构示意图;
图4(a)~4(d)是本发明实施例二提供的双孔连接件结构示意图;
图5(a)~5(d)是本发明实施例三提供的可拆分组装的巡检装置结构示意图;
图6(a)~6(d)是本发明实施例三提供的双孔连接件结构示意图;
图7(a)~7(d)是本发明实施例四提供的可拆分组装的多旋翼巡检飞行器结构示意图;
图8是本发明提供一种输电线路巡检系统的结构框图;
图9是本发明提供的挂载定位示意图;
图10是本发明提供的有导向围栏情况下的挂载定位示意图;
图11是本发明提供的一种支持人工输入命令的输电线路巡检系统结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明内容涉及到两种输电线路对象,分别是“待挂导地线”和“待检对象”;其中,“待挂导地线”是本发明中多旋翼巡检飞行器的挂载对象,多旋翼巡检飞行器挂载到该“待挂导地线”上并沿其移动;“待检对象”是本发明中多旋翼巡检飞行器的巡检对象,包括但不限于是导地线、杆塔、金具、通道等,多旋翼巡检飞行器对该“待检对象”进行巡视检查。对于同一多旋翼巡检飞行器,属于“待检对象”的导地线与“待挂导地线”是两条独立的输电线路。
本发明提供一种多旋翼巡检飞行器,如图1所示,包括:多旋翼飞行装置、落线行走装置、巡检装置、控制装置4和飞行端无线传输接口5。其中,多旋翼飞行装置包括:机舱11、多个旋翼12和起落架13;落线行走装置包括:支撑架21、导向摄像机22、移动机构23;巡检装置包括:巡检摄像机31;飞行端无线传输接口5连接所述控制装置4,并无线连接地面指挥设备,传输所述控制装置4和所述地面指挥设备之间的交互数据;控制装置4接收所述导向摄像机22和所述巡检摄像机31拍摄的影像信息,并发送给所述地面指挥设备;接收所述地面指挥设备发送的命令,控制所述旋翼飞行及控制所述移动机构23沿待挂导地线移动。
下面对上述各个装置分别进行说明:
(1)多旋翼飞行装置负责整个多旋翼巡检飞行器的飞行工作,包括:机舱、多个旋翼和起落架。
所述多个旋翼固定连接所述机舱,并以所述机舱为中心对称设置,通过旋转产生升力带动所述机舱飞行。本发明中旋翼的具体结构可以但不限于是现有多旋翼无人机采用的旋翼结构,旋翼的数量可以但不限于是四个、六个、八个。
由于多旋翼巡检飞行器需要飞行至待挂导地线附近才能实现挂载,飞行中的螺旋桨非常容易触碰到导地线,对飞行器本身、电网造成巨大损害,为了避免这种损害,较佳的,本发明采用具有防碰罩的旋翼结构,即在螺旋桨的外部罩设一个防碰罩,以隔离开 螺旋桨和外界,防止飞行过程中螺旋桨与线路发生碰撞或摩擦,保证多旋翼巡检飞行器的飞行安全。
所述起落架固定连接所述机舱的底部,当多旋翼飞行器起降时起到缓冲和保护机舱的作用。本发明中起落架的具体结构包括但不限于是现有多旋翼无人机采用的起落架结构,此处不再赘述。
(2)落线行走装置负责整个多旋翼巡检飞行器挂载到待挂导地线上及在待挂导地线上移动工作,包括:支撑架、导向摄像机、移动机构。
所述支撑架的底端固定连接所述机舱的顶部。
所述导向摄像机固定装设于所述支撑架上,用于拍摄待挂导地线,以引导所述移动机构挂载至所述待挂导地线上。
所述移动机构固定于所述支撑架的顶端,用于挂载至所述待挂导地线上并沿其移动。
当多旋翼巡检飞行器飞行至待挂导地线附近时,地面指挥设备便能通过导向摄像机拍摄的影像信息了解移动机构与待挂导地线的相对位置,进而指挥多旋翼飞行装置的飞行,直到移动机构挂载至待挂导地线上。需要说明的是,为使地面指挥设备准确了解移动机构与待挂导地线的相对位置,达到上述引导的作用,导向摄像机的拍摄范围应至少覆盖移动机构。具体实施本发明时,导向摄像机可以但不限于选用点阵CCD(Charge-coupled Device,电荷耦合元件),这种摄像机的镜头视场角较大,一般可达到170度,能够满足拍摄移动机构的需要。此外,导向摄像机还可选用具有红外功能的高清摄像机,以满足光线不足情况下的挂载需要。
本发明的移动机构可采用由移动轮(如滑轮)及驱动电机组成的结构,其中,驱动电机驱动移动轮沿待挂导地线移动,但本发明中移动机构不限于采用上述结构。例如,为了维持多旋翼巡检飞行器在待挂导地线上移动的稳定性,本发明还可以在移动机构中增设支撑轮,支撑轮与移动轮的轮槽共线(待挂导地线)设置,工作时,支撑轮与移动轮均挂载至待挂导地线上,移动轮在驱动电机的作用下沿待挂导地线移动,同时带动支撑轮沿待挂导地线移动,支撑轮起到辅助移动及支撑的作用。具体实施时,移动轮、支撑轮的数量可以但不限于是2~4个。需要说明的是,为了避免待挂导地线上的电流影响多旋翼巡检飞行器的正常工作,以及防止当驱动电机不提供驱动力时沿待挂导地线逆向移动,移动轮、支撑轮均需采用绝缘、防滑的材料制作。
考虑到多旋翼巡检飞行器的工作范围是距离地面一定高度的导地线附近,且导地线相对较细,其移动机构并不容易挂载到待挂导地线上,为此,本发明还可以在落线行走装置中增设导向围栏,该导向围栏设置于移动轮(和/或支撑轮)背向支撑架的一侧且抵接所述移动轮(和/或支撑轮)的侧壁,所述导向围栏呈外张式设置且与所述移动轮(和/或支撑轮)构成一围堵空间,以便将所述待挂导地线引导至所述移动轮(和/或支撑轮)的轮槽中。
为使将所述待挂导地线引导至所述移动轮(和/或支撑轮)的轮槽中更容易,本发明还可以在移动轮(和/或支撑轮)面向支撑架的一侧增设辅助导向围栏,该辅助导向围栏同样抵接移动轮(和/或支撑轮)的侧壁,且与所述移动轮(和/或支撑轮)构成一围堵空间;尤其是当落线行走装置中同时设有移动轮和支撑轮时,辅助导向围栏与导向围栏共同构成的围堵空间能够确保待挂导地线进入移动轮和支撑轮的轮槽中,避免待挂导地线在移动轮和支撑轮间交错的情况发生。
(3)巡检装置负责多旋翼巡检飞行器巡视检查待检对象(如导地线、杆塔、金具、通道环境)的工作,包括:巡检摄像机。
所述巡检摄像机固定装设于所述机舱的底部,用于拍摄待检对象,以检查所述待检对象是否损坏。
为了清楚拍摄待检对象,达到巡视检查的目的,具体实施本发明时,巡检摄像机可以但不限于选用高清摄像机,例如,还可选用具有红外功能的高清摄像机,以满足光线不足情况下的巡检需要。
为了保证各种情况下巡检摄像机都能够拍摄到待检对象,以及能有针对性对待检对象进行拍摄,本发明还可在巡检装置中增设云台,将云台固定装设于机舱的底部,巡检摄像机装设于云台上,通过云台的旋转来改变巡检摄像机的拍摄方向,以保证巡检摄像机的拍摄范围能够覆盖待检对象,以及满足巡检摄像机针对性拍摄的需要。
考虑到巡检摄像机具有一定的重量,而且云台的旋转会改变巡检摄像机的重心,为避免多旋翼巡检飞行器因不能保持平衡造成巡检工作受阻,本发明还可根据需要在巡检装置中增设配重,将配重固定装设于机舱的底部,以维持多旋翼巡检飞行器的平衡稳定。
(4)飞行端无线传输接口负责多旋翼巡检飞行器与地面指挥设备的数据交互工作。
具体实施时,飞行端无线传输接口可以是设置于机舱上的无线收发天线。
本发明的飞行端无线传输接口与地面指挥设备之间可以但不限于采用2.4G、5.8G、433M等无线通信技术传输数据。
(5)控制装置负责多旋翼巡检飞行器的飞行、移动等动作。
具体实施时,控制装置可以设置于机舱的舱体内,例如但不限于是微控器、单片机等。
本发明将无人机技术、线上机器人技术融合并应用于输电线路巡检领域,既发挥了无人机技术的灵活、稳定和易操控等优势,也发挥了线上机器人技术的精准、智能、节能等优势,避免了单纯利用无人机进行巡检时续航时间段、航拍图像抖动的问题,也避免了单纯利用线上机器人进行巡检时上下线及线上越障困难的问题,克服了两种技术各自的局限性,充分利用了这两种技术在输电线路维护中的优越性,为输电线路巡检工作提供了方便,提升了输电线路巡检的效率,降低了输电线路巡检的人力成本;此外,本发明在多旋翼巡检飞行器中设置了导向摄像机,地面指挥设备根据导向摄像机的拍摄影像,能够快速、准确地指挥多旋翼巡检飞行器顺利、精准完成电力线挂载,相比于现有技术,本发明具有更加精准的电力线挂载功能,进一步提升了输电线路巡检的效率。
考虑到输电线路巡检现场一般位于远郊区,整体多旋翼巡检飞行器在运输、维修方面不方便,故障部件更换也比较麻烦的情况,本发明可以将多旋翼巡检飞行器中的各个装置、元件设计成由更小的子元件组装形成的形式,这样,在运输多旋翼巡检飞行器时,就可以将整体的多旋翼巡检飞行器拆分成子元件分别存储,具有节省空间、方便运输的效果,到达巡检现场后,再将这些子元件组装成整体的多旋翼巡检飞行器,出现故障时,也只需对故障涉及的子元件进行维修或更换,具有快速修复、提高巡检效率的效果。
以下是本发明提供的几种针对多旋翼飞行装置、落线行走装置、巡检装置的拆分及组装设计实施例:
实施例一
本实施例是针对多旋翼飞行装置的拆分及组装设计。
本实施例中,机舱为扁圆形舱体结构,沿其圆周均匀设置多个开孔,这多个开孔与这多个旋翼一一对应;起落架可以但不限于是通过螺栓结构固定于机舱的底部。
本实施例的旋翼具体包括:旋翼支架、无刷电机、螺旋桨和防碰罩。其中,所述旋翼支架的一端插接固定于相对应的开孔中;所述无刷电机、所述螺旋桨和所述防碰罩装 设于所述旋翼支架上;所述螺旋桨在所述无刷电机的驱动下旋转并产生升力;所述防碰罩罩设于所述螺旋桨外部。
本实施例中,每一旋翼与机舱之间是通过旋翼支架与相应开孔之间的插拔连接实现组装和拆分。
防碰罩与旋翼支架之间的连接关系也可设计成能够组装和拆分的形式,例如,本实施例可以采用如图2(a)~(d)所示的旋翼结构,如图2所示,该旋翼包括:旋翼支架K_1、无刷电机K_2、螺旋桨K_3和防碰罩K_4。
其中,防碰罩K_4包括顶罩K_41和底罩K_42,该顶罩K_41和底罩K_42均为圆形的网状结构;顶罩K_41在其直径的两端分别设有一上端部卡合件K_411和一上轴部卡合件K_412;底罩K_42在其直径的两端分别设有一下端部卡合件K_421和一下轴部卡合件K_422;上端部卡合件K_411、上轴部卡合件K_412、下端部卡合件K_421和下轴部卡合件K_422均具有凹槽和螺孔。
上端部卡合件K_411与下端部卡合件K_421位置对应,二者的凹槽分别卡合于螺旋支架的上部和下部,二者的螺孔相互匹配,贯穿螺孔的螺栓P1实现了上端部卡合件K_411与下端部卡合件K_421可拆卸地固定连接,并且通过旋转螺旋P1可改变上端部卡合件K_411的凹槽与下端部卡合件K_421的凹槽之间的距离,从而调节上端部卡合件K_411的凹槽、下端部卡合件K_421的凹槽与旋翼支架之间的紧固程度。
上轴部卡合件K_412与下轴部卡合件K_422位置对应,二者的凹槽分别卡合于螺旋支架的上部和下部,二者的螺孔相互匹配,贯穿螺孔的螺栓P2是实现了上轴部卡合件K_412与下轴部卡合件K_422可拆卸地固定连接,并且通过旋转螺旋P2可改变上轴部卡合件K_412的凹槽与下轴部卡合件K_422的凹槽之间的距离,从而调节上轴部卡合件K_412的凹槽、下轴部卡合件K_422的凹槽与旋翼支架之间的紧固程度。
本实施例中,上端部卡合件K_411与下端部卡合件K_421之间除了通过如图2所示的螺孔、螺栓P1连接之外,还可以通过其他的螺栓方式连接,例如,在上端部卡合件K_411、下端部卡合件K_421的两侧分别设置位置对应、相互匹配的凸耳,由贯穿凸耳的螺栓连接二者;类似的,上轴部卡合件K_412与下轴部卡合件K_422之间除了通过如图2所示的螺孔、螺栓P2连接之外,还可以在上轴部卡合件K_412、下轴部卡合件K_422的两侧分别设置位置对应、相互匹配的凸耳,由贯穿凸耳的螺栓连接二者。
实施例二
本实施例是针对落线行走装置的拆分及组装设计。
本实施例的落线行走装置采用如图3(a)~(d)所示的结构,包括:固定支架L_1、活动支架L_2、移动轮L_3、驱动电机L_4、轮支架L_5、支撑轮L_6、导向围栏L_7、辅助导向围栏L_8和导向摄像机L_9。
固定支架L_1的底端固定于机舱的顶部(图3(a)~(d)中未示出),所述固定支架L_1的顶端与所述活动支架L_2的底端固定连接。
移动轮L_3、驱动电机L_4、轮支架L_5、支撑轮L_6、导向围栏L_7和辅助导向围栏L_8装设于活动支架L_2的顶端。驱动电机L_4连接移动轮L_3的轮轴;轮支架L_5垂直固定于所述活动支架L_2的顶端,支撑轮L_6装设于所述轮支架L_5上;导向围栏L_7设置于所述移动轮L_3和支撑轮L_6背向所述支撑架的一侧,相对于移动轮L_3和支撑轮L_6的侧壁呈外张形式;辅助导向围栏L_8设置于所述移动轮L_3和支撑轮L_6面向所述支撑架的一侧;导向围栏L_7和辅助导向围栏L_8均抵接所述移动轮L_3和支撑轮L_6的侧壁,并与所述移动轮L_3和支撑轮L_6构成一围堵空间,以将所述待挂导地线引导至所述移动轮L_3和支撑轮L_6的轮槽中。当移动轮L_3和支撑轮L_6挂载至所述待挂导地线上之后,驱动电机L_4驱动移动轮L_3沿待挂导地线移动,并带动支撑轮L_6也沿待挂导地线移动。
导向摄像机L_9固定装设于所述活动支架L_2上。
本实施例中,固定支架的顶端与所述活动支架的底端通过至少一个双孔连接件S1固定连接,如图4(a)~(d)所示,该双孔连接件S1具有两个并列设置的通孔和以及一旋钮;所述两通孔和之间由一缝孔连通,所述旋钮垂直穿过所述缝孔的两侧壁;所述固定支架的顶端和所述活动支架的底端分别穿过所述两通孔;所述旋钮的旋转使所述缝孔两侧壁的间距改变,以调节所述两通孔和与所述固定支架、所述活动支架的紧固程度。
本发明可以利用双孔连接件S1调整固定支架于活动支架相互重叠部分的长度,以调整落线行走装置相对整个多旋翼巡检飞行器的重心位置,有利于多旋翼巡检飞行器维持平衡稳定,也为多旋翼巡检飞行器安全挂载至待挂导地线上提供方便。
本实施例还可在机舱的顶部设置开孔;通过将固定支架的底端插接固定于所述机舱顶部的开孔中,实现固定支架于机舱的固定连接。
本实施例中,支撑架与机舱之间是通过固定支架与机舱顶部的开孔之间的插拔连接,以及双孔连接件S1与固定支架和活动支架之间的紧固连接实现组装和拆分。
实施例三
本实施例是针对巡检装置的拆分及组装设计。
本实施例的巡检装置包括:底座、云台和巡检摄像机。底座固定连接于所述机舱的底部;所述云台固定于所述底座背向所述机舱的一面,所述巡检摄像机装设于所述云台上;所述云台通过旋转来改变所述巡检摄像机的拍摄方向。
本实施例中,底座与机舱底部的固定连接可以通过螺栓实现,例如,机舱的底部设有至少一个向下的凸耳,底座面向所述机舱的一面设置至少一个向上的凸耳;这些向下的凸耳与向上的凸耳相匹配,并通过螺栓固定连接。即,底座与机舱是通过这些向下的凸耳与向上的凸耳之间的螺栓连接实现拆分与组装。需要说明的是,底座与机舱底部的凸耳应尽量均匀设置,以保证整个多旋翼巡检飞行器的平衡稳定性。
除了通过上述螺栓连接方式以外,本实施例中,底座与机舱底部还可以通过其他方式相连接。
例如,本实施例的巡检装置还可采用如图5(a)~(d)所示的结构,具体包括:巡检摄像机X_1、云台X_2、底座X_3、底座挂装杆X_4、配重X_5、双孔连接件S2、双孔连接件S3;同时,为配合图5(a)~(d)所示的巡检装置,机舱的底部固定有两个平行设置的巡检装置挂装杆X_6,其中,巡检装置挂装杆X_6包括但不限于是以焊接方式固定于机舱的底部。
如图5(a)~(d)所示,底座X_3面向机舱的一面设有至少一个凸耳;底座挂装杆X_4穿过这些凸耳,垂直设于所述两个巡检装置挂装杆X_6之间,并且其两端分别通过双孔连接件S2固定连接所述两个巡检装置挂装杆X_6;其中,该双孔连接件S2具有如图6(a)~(d)所示的结构,包括一旋钮以及垂直设置的两个通孔T3与T4;通孔T3连通一缝孔,旋钮穿过缝孔的两侧壁;所述巡检装置挂装杆X_6穿过该通孔T3;旋钮的旋转使所述缝孔的两侧壁的间距改变以调节所述通孔T3与巡检装置挂装杆X_6的紧固程度;底座挂装杆X_4的两端卡接于通孔T4中。即,底座X_3与机舱是由底座挂装杆X_4和巡检装置挂装杆X_6通过双孔连接件S2之间的固定连接实现拆分与组装。
如图5(a)~(d)所示,所述配重X_5包括:托盘和配重本体X_51。所述托盘为槽型结构,所述配重本体X_51装设于所述托盘内;所述托盘具体包括:托盘底X_52、托盘侧壁X_53、前卡件X_54和后卡件X_55;所述前卡件X_54、后卡件X_55分别固定于所述托盘底X_52正对的两端,并将配重本体X_51卡合于中间;所述托盘侧壁X_53固定于所述托盘底X_52的另两端;所述托盘侧壁X_53上设有至少两个凸起;所述凸起通过 双孔连接件S3固定连接所述巡检装置挂装杆X_6;其中,该双孔连接件S3具有如图6(a)~(d)所示的结构,包括一旋钮以及垂直设置的两个通孔T3与T4;通孔T3连通一缝孔,旋钮穿过缝孔的两侧壁;巡检装置挂装杆X_6穿过所述通孔T3;所述旋钮的旋转使所述缝孔的两侧壁间距以调节所述通孔T3与所述巡检装置挂装杆X_6的紧固程度;所述凸起卡接于所述通孔T4中。即,配重X_5与机舱是由这些凸起和巡检装置挂装杆X_6通过双孔连接件之间的固定连接实现拆分与组装。
图5(a)~(d)所示结构中,配重X_5具有使整个多旋翼巡检飞行器保持平衡稳定的作用,由于不同型号的巡检摄像机X_1可能具有不同的重量,为了保持多旋翼巡检飞行器的平衡稳定,配重本体X_51可根据实际需要增减重量,以满足实际需要。
实施例四
本实施例提供一可拆分及组装的多旋翼巡检飞行器,图7(a)~(d)所示为该多旋翼巡检飞行器组装后的整体结构,包括:多旋翼飞行装置Z_1、落线行走装置Z_2、巡检装置Z_3、控制装置(装设于机舱中,图7(a)~(d)中未示出)和飞行端无线传输接口Z_4;其中,多旋翼飞行装置Z_1具有如图2所示的旋翼结构,落线行走装置Z_2具有如图3(a)~(d)所示的机构,巡检装置Z_3具有如图5(a)~(d)所示的结构。
由于组成该多旋翼巡检飞行器的各个装置均能够拆分及组装,因此在运输途中就可以将整体的多旋翼巡检飞行器拆分成单个的子元件和连接件分别存储,达到节省空间、方便运输的目的,到达巡检现场后,利用连接件即可快速地将这些子元件组装成整体的多旋翼巡检飞行器,出现故障时,也只需对故障涉及的子元件进行维修或更换,达到快速修复、提高巡检效率的目的。
以上实施例一、二、三、四是本发明提供的几种拆分及组装设计实例,需要说明的是,在实施本发明时,还可以根据实际情况设计其他类型的拆分及组装设计,以达到方便运输、快速修复故障元件的目的,即以上设计形式仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。
本发明还提供一种输电线路巡检系统,如图8所示,包括:多旋翼巡检飞行器Z,和,地面指挥设备H。地面指挥设备H具体包括:动作指挥装置H_1、影像分析装置H_2、显示器H_3和地面端无线传输接口H_4。下面对上述各个装置分别进行说明:
(1)所述地面端无线传输接口分别连接所述动作指挥装置、影像分析装置、显示器,并无线连接所述多旋翼巡检飞行器的飞行端无线传输接口,传输所述多旋翼巡检飞行器与所述动作指挥装置、影像分析装置、显示器之间的交互数据。
本发明的地面端无线传输接口与飞行端无线传输接口之间可以但不限于采用2.4G、5.8G、433M等无线通信技术传输数据。
(2)所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息。
具体实施本发明时,对于导向摄像机和巡检摄像机拍摄的影像信息,可以采用同一显示器以不同的视窗进行显示,也可以采用不同的显示器分别进行显示,本发明对此不作具体限定。
(3)所述动作指挥装置对所述导向摄像机拍摄的影像信息进行解析,生成相应的命令,并通过所述地面端无线传输接口发送给所述飞行端无线传输接口。
动作指挥装置负责指挥多旋翼巡检飞行器的动作(飞行或沿待挂导地线移动),具体来说,动作指挥装置生成相应的命令,通过地面端无线传输接口发送给飞行端无线传输接口,最终到达多旋翼巡检飞行器的控制装置,控制装置根据接收到的命令控制旋翼飞行或控制移动机构沿待挂导地线移动。
多旋翼巡检飞行器的动作需要根据其移动机构与待挂导地线之间的相对位置进行实时调整,例如,当多旋翼巡检飞行器处于地面时,需要飞行至待挂导地线附近,随后,又需要逐渐靠近直至挂载至待挂导地线上,之后,再沿待挂导地线移动,在移动过程中当遇到障碍物(如防振锤、间隔棒、悬垂线夹等)时,还需要垂直起降以越过障碍物再继续移动。为了满足实时调整多旋翼巡检飞行器动作的需要,动作指挥装置必须时刻通过导向摄像机拍摄的影像信息了解移动机构与待挂导地线的相对位置,以生成相应的命令发送给多旋翼巡检飞行器,使其及时调整动作。
为了快速准确地确定多旋翼巡检飞行器的移动机构与待挂导地线的相对位置关系,本发明可对导向摄像机拍摄的影像画面进行区域划分,通过判断待挂导地线出现在影像画面中的区域来确定移动机构与待挂导地线的相对位置。
在一种较佳的实施例中,本发明可按照如下规则对导向摄像机拍摄的影像画面进行区域划分:以所述影像画面的中心点所在水平面为分界面;该分界面上方的区域为所述偏上区域;该分界面下方的区域为所述偏下区域;所述移动机构在该分界面内的投影区 域(移动机构垂直投影到分界面内的区域)为所述落线区域;该分界面内所述落线区域之外的区域为所述靠近区域。
基于上述区域划分规则,动作指挥装置对导向摄像机拍摄的影像画面进行解析之后,按照如下的命令生成规则生成命令:
判断所述待挂导地线处于所述偏上区域时,生成上升命令;
判断所述待挂导地线处于所述影像画面的偏下区域时,生成下降命令;
判断所述待挂导地线处于所述影像画面的靠近区域时,生成靠近命令;
判断所述待挂导地线处于所述影像画面的落线区域时,生成落线命令;
判断所述多旋翼巡检飞行器的移动机构挂载至所述待挂导地线上时,生成移动命令;
判断所述移动机构在移动过程中遇到障碍物时,生成跨越命令;
相应的,多旋翼巡检飞行器的控制装置按照如下的命令执行规则执行命令:
接收所述上升命令时,控制所述多旋翼巡检飞行器的旋翼向上飞行;
接收所述下降命令时,控制所述旋翼向下飞行;
接收所述靠近命令时,控制所述旋翼水平飞行并向所述待挂导地线靠近;
接收所述落线命令时,控制所述旋翼停止飞行并降落;
接收所述移动命令时,控制所述移动机构沿所述待挂导地线移动;
接收所述跨越命令时,控制所述旋翼起飞并跨越所述障碍物之后再降落,直到所述移动机构再次挂载至所述待挂导地线上;
下面以图9为例,对上述的区域划分规则、命令生成规则和命令执行规则进行说明:
如图9所示,B为导向摄像机镜头的中心点,也是导向摄像机所拍摄的影像画面的中心点。
导向摄像机的视场角为∠ABC;BD平面为影像画面的中心点B所在的水平面,即分界面;∠ABD覆盖的区域位于BD平面之上,即偏上区域;∠CBD覆盖的区域位于BD平面之下,即偏下区域;区域N为移动机构在BD平面内的投影区域,即落线区域;BD平面内区域N之外的区域为靠近区域。
当待挂导地线位于∠ABD覆盖的区域(偏上区域)时,说明待挂导地线位于多旋翼巡检飞行器的上方,动作指挥装置生成上升命令,指挥多旋翼巡检飞行器向上飞行;
当待挂导地线待挂导地线位于∠CBD覆盖的区域(偏下区域)时,说明待挂导地线位于多旋翼巡检飞行器的下方,动作指挥装置生成下降命令,指挥多旋翼巡检飞行器向下飞行;
当待挂导地线位于BD平面内,且位于移动机构的投影区域N之外的区域(靠近区域)时,说明待挂导地线与移动机构基本处于同一水平面,但还未处于移动机构的正下方,动作指挥装置生成靠近命令,指挥多旋翼巡检飞行器水平飞行并向待挂导地线靠近;
当待挂导地线位于BD平面内,且位于所述移动机构的投影区域N(落线区域)时,说明待挂导地线恰好位于移动机构的正下方,动作指挥装置生成落线命令,指挥多旋翼巡检飞行器停止飞行并降落直到移动机构挂载到待挂导地线上。
此外,当动作指挥装置通过解析影像画面判断移动机构已挂载到待挂导地线上时,说明已成功实现挂载,此时生成移动命令,指挥多旋翼巡检飞行器的移动机构沿待挂导地线移动。
当动作指挥装置通过解析画面判断移动机构移动至待挂导地线上的障碍物(如防振锤、间隔棒、悬垂线夹等)附近时,生成跨越命令,指挥多旋翼巡检飞行器起飞并跨越所述障碍物之后再降落,直到所述移动机构再次挂载至所述待挂导地线上。
当本发明的多旋翼巡检飞行器安装有导向围栏时,由于导向围栏与移动轮之间形成一围堵空间,只要待挂导地线进入该围堵空间覆盖的区域,多旋翼巡检飞行器即可停止飞行,自动降落,由导向围栏将待挂导地线引导至移动轮的轮槽中,因此,动作指挥装置需要时刻通过导向摄像机拍摄的影像信息了解导向围栏与待挂导地线的相对位置,以控制多旋翼巡检飞行器及时调整动作。这种情况下,上述区域划分规则中的靠近区域和落线区域需要进行相应调整。
在一种较佳的实施例中,本发明将导向围栏与所述移动轮构成的围堵空间在上述分界面内的投影区域(围堵空间垂直投影到分界面内的区域)确定为所述落线区域;上述分界面内所述落线区域之外的区域为所述靠近区域。下面以图10为例进行说明:
如图10所示,B为导向摄像机镜头的中心点,也是导向摄像机所拍摄的影像画面的中心点。导向摄像机的视场角为∠ABC;BD平面为影像画面的中心点B所在的水平面,即分界面;∠ABD覆盖的区域位于BD平面之上,即偏上区域;∠CBD覆盖的区域位于BD平面之下,即偏下区域;区域M为导向围栏与移动轮构成的围堵空间在BD平面内的投影区域,即落线区域;BD平面内区域M之外的区域为靠近区域。
当待挂导地线位于∠ABD覆盖的区域(偏上区域)时,说明待挂导地线位于多旋翼巡检飞行器的移动轮上方,动作指挥装置生成上升命令,指挥多旋翼巡检飞行器向上飞行;
当待挂导地线位于∠CBD覆盖的区域(偏下区域)时,说明待挂导地线位于多旋翼巡检飞行器的移动轮下方,动作指挥装置生成下降命令,指挥多旋翼巡检飞行器向下飞行;
当待挂导地线位于BD平面内,且位于围堵空间的投影区域M之外的区域(靠近区域)时,说明待挂导地线与多旋翼巡检飞行器的移动轮基本处于同一水平面,但相距较远,还未进入围堵空间覆盖的区域中,动作指挥装置生成靠近命令,指挥多旋翼巡检飞行器水平飞行并向待挂导地线靠近;
当待挂导地线位于BD平面内,且位于围堵空间的投影区域M内(落线区域)时,说明待挂导地线与多旋翼巡检飞行器的移动轮基本处于同一水平面,且已进入围堵空间覆盖的区域中,动作指挥装置生成落线命令,指挥多旋翼巡检飞行器停止飞行并降落,随后在导向围栏的引导作用下,待挂导地线即会进入移动轮的轮槽中,使移动轮挂载到待挂导地线上。
当本发明的多旋翼巡检飞行器安装有云台时,动作指挥装置除了根据导向摄像机拍摄的影像画面生成上述各种相关命令之外,还需对巡检摄像机拍摄的影像画面进行解析,以生成云台旋转命令,控制多旋翼巡检飞行器的云台旋转,以改变巡检摄像机的拍摄方向,满足有针对性的拍摄需要。
由于多旋翼巡检飞行器是在远离地面的高空完成挂载和巡检任务,地面指挥设备只能在地面通过影像画面指挥多旋翼巡检飞行器调整动作,因此动作指挥装置根据影像画面生成并发送合适的命令以控制多旋翼巡检飞行器及时调整动作是实现挂载、越障、巡检的关键,本发明通过提供以上区域划分规则、命令生成规则和命令执行规则,能够准确地判断移动机构(移动轮)与待挂导地线的相对位置,从而实现在地面即可精准地控制空中的多旋翼巡检飞行器调整动作,为顺利完成巡检过程提供了安全保障。
(4)所述影像分析装置对所述巡检摄像机拍摄的影像信息进行解析,判断待检对象存在故障时进行报警。
具体的,待检对象存在的故障包括但不限于是:杆塔的损坏、变形、被盗、绝缘子的破损和污秽、线夹松脱、销钉脱落、异物悬挂、导线断股、接头接触不良、局部热点、树木过高等。
具体实施本发明时,影像分析装置可连接一报警器(如声光报警器、蜂鸣器等),当影像分析装置通过巡检摄像机拍摄的影像画面判断导地线出现断股、磨损、腐蚀等损坏时,触发报警器进行报警,以及时通知相关工作人员。
本发明还提供一种输电线路巡检系统,如图11所示,包括:多旋翼巡检飞行器Z,和,地面指挥设备Y;其中,所述地面指挥设备Y具体包括:命令输入装置Y_1、显示器Y_2和地面端无线传输接口Y_3。该输电线路巡检系统支持人工输入命令以控制多旋翼巡检飞行器调整动作。下面对命令输入装置、显示器和地面端无线传输接口分别进行说明:
(1)所述地面端无线传输接口分别连接所述命令输入装置和所述显示器,传输所述多旋翼巡检飞行器与所述命令输入装置、所述显示器之间的交互数据。
具体实施本发明时,地面端无线传输接口与飞行端无线传输接口之间可以但不限于采用2.4G、5.8G、433M等无线通信技术传输数据。
(2)所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息。
具体实施本发明时,对于导向摄像机和巡检摄像机拍摄的影像信息,可以采用同一显示器以不同的视窗进行显示,也可以采用不同的显示器分别进行显示,本发明对此不作具体限定。
(3)所述命令输入装置接收命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口。
命令输入装置具有提供人工输入或选择各种相关命令的功能,这些命令包括但不限于是如前述所说的上升命令(用于指挥多旋翼巡检飞行器向上飞行)、下降命令(用于指挥多旋翼巡检飞行器向下飞行)、靠近命令(用于指挥多旋翼巡检飞行器水平飞行并向待挂导地线靠近)、落线命令(用于指挥多旋翼巡检飞行器停止飞行并降落)、移动命令(用于指挥多旋翼巡检飞行器沿待挂导地线移动)、跨越命令(用于指挥多旋翼巡检飞行器起飞并跨越所述障碍物之后再降落,直到所述移动轮再次挂载至所述待挂导地线上)。
具体实施本发明时,命令输入装置可以但不限于采用包括键盘、按钮、触摸屏等的人机交互设备。
利用该支持人工控制多旋翼巡检飞行器调整动作的输电线路巡检系统,相关工作人员通过显示器观看导向摄像机拍摄的影像画面即可判断移动机构与待挂导地线的相对位置,通过命令输入装置输入或选择相应的命令,从而控制多旋翼巡检飞行器及时调整动作,并且,相关工作人员通过显示器观看巡检摄像机拍摄的影像画面即可判断待检对象是否受损,确定维修策略。
综上所述,本发明实施例提供的多旋翼巡检飞行器及输电线路巡检系统具有以下有益效果:
(1)将无人机技术、线上机器人技术融合并应用于输电线路巡检领域,既发挥了无人机技术的灵活、稳定和易操控等优势,也发挥了线上机器人技术的精准、智能、节能等优势,避免了单纯利用无人机进行巡检时续航时间段、航拍图像抖动的问题,也避免了单纯利用线上机器人进行巡检时上下线及线上越障困难的问题,克服了两种技术各自的局限性,充分利用了这两种技术在输电线路维护中的优越性,为输电线路巡检工作提供了方便,拓宽了巡检视野,提升了巡检效率,降低了巡检的人力成本;
(2)由专门的导向摄像机拍摄待挂导地线,便于地面指挥设备了解多旋翼巡检飞行器与待挂导地线的相对位置,以及时控制多旋翼巡检飞行器调整动作,快速、准确地实现挂载,提升了巡检效率;由专门的巡检摄像机拍摄待检对象,实现线路上方人工巡检的盲区覆盖和线路走廊的全面巡检,可方便发现杆塔的损坏、变形、被盗、绝缘子的破损和污秽、线夹松脱、销钉脱落、异物悬挂、导线断股、接头接触不良、局部热点、树木过高等故障,为相关工作人员提供事故隐患的相关数据,进而保障输电线路的运行安全;
(3)采用具有防碰罩的旋翼结构,在螺旋桨的外部罩设防碰罩,达到隔离开螺旋桨和外界的目的,防止飞行过程中螺旋桨与电力线发生碰撞或摩擦,保证多旋翼巡检飞行器的飞行安全;
(4)将多旋翼巡检飞行器中的各个装置、元件设计成由更小的子元件组装形成的形式,在运输多旋翼巡检飞行器时,可以将整体的多旋翼巡检飞行器拆分成子元件分别存储,具有节省空间、方便运输的效果,到达巡检现场后,将这些子元件组装成整体的多旋翼巡检飞行器,出现故障时,也只需对故障涉及的子元件进行维修或更换,具有快速修复、提高巡检效率的效果;
(5)提供精确的区域划分规则、命令生成规则和命令执行规则,使动作指挥装置能够准确地判断移动机构(移动轮)与待挂导地线的相对位置,生成并发送合适的命令以 控制多旋翼巡检飞行器及时调整动作,从而实现在地面即可精准地控制空中的多旋翼巡检飞行器调整动作,为顺利完成巡检过程提供了安全保障。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种多旋翼巡检飞行器,其特征在于,包括:多旋翼飞行装置、落线行走装置、巡检装置、控制装置和飞行端无线传输接口;其中,
    所述多旋翼飞行装置包括:机舱、多个旋翼和起落架;
    所述多个旋翼固定连接所述机舱,并以所述机舱为中心对称设置,通过旋转产生升力带动所述机舱飞行;
    所述起落架固定连接所述机舱的底部;
    所述落线行走装置包括:支撑架、导向摄像机、移动机构;
    所述支撑架的底端固定连接所述机舱的顶部;
    所述导向摄像机固定装设于所述支撑架上,用于拍摄待挂导地线,以引导所述移动机构挂载至所述待挂导地线上;
    所述移动机构固定于所述支撑架的顶端,用于挂载至所述待挂导地线上并沿其移动;
    所述巡检装置包括:巡检摄像机;
    所述巡检摄像机固定装设于所述机舱的底部,用于拍摄待检对象,以检查所述待检对象是否损坏;
    所述飞行端无线传输接口连接所述控制装置,并无线连接地面指挥设备,传输所述控制装置和所述地面指挥设备之间的交互数据;
    所述控制装置接收所述导向摄像机和所述巡检摄像机拍摄的影像信息,并发送给所述地面指挥设备;接收所述地面指挥设备发送的命令,控制所述旋翼飞行及控制所述移动机构沿待挂导地线移动。
  2. 根据权利要求1所述的多旋翼巡检飞行器,其特征在于,
    所述旋翼包括:旋翼支架、无刷电机、螺旋桨和防碰罩;
    所述旋翼支架的一端固定连接所述机舱;
    所述无刷电机、所述螺旋桨和所述防碰罩装设于所述旋翼支架上;
    所述螺旋桨能够在所述无刷电机的驱动下旋转并产生升力;
    所述防碰罩罩设于所述螺旋桨外部。
  3. 根据权利要求2所述的多旋翼巡检飞行器,其特征在于,
    所述机舱为扁圆形舱体结构,沿其圆周均匀设置多个开孔,所述多个开孔与所述多个旋翼一一对应;
    所述旋翼支架的一端插接固定于所述机舱相对应的开孔中。
  4. 根据权利要求2所述的多旋翼巡检飞行器,其特征在于,
    所述防碰罩包括:均为圆形的顶罩和底罩;
    所述顶罩罩设于所述螺旋桨的上方,所述底罩罩设于所述螺旋桨的下方;
    所述顶罩在其直径的两端分别设有一上端部卡合件和一上轴部卡合件;
    所述底罩在其直径的两端分别设有一下端部卡合件和一下轴部卡合件;
    所述上端部卡合件、所述上轴部卡合件、所述下端部卡合件和所述下轴部卡合件面向所述旋翼支架的一面均具有凹槽;
    所述上端部卡合件的凹槽与所述上轴部卡合件的凹槽均卡合于所述旋翼支架的上部;
    所述下端部卡合件的凹槽与所述下轴部卡合件的凹槽均卡合于所述旋翼支架的下部;
    所述上端部卡合件与所述下端部卡合件位置对应且通过第一螺栓可拆卸地连接,所述第一螺栓的旋转使所述上端部卡合件的凹槽与所述下端部卡合件的凹槽的间距改变,以调节所述上端部卡合件的凹槽、下端部卡合件的凹槽与所述旋翼支架间的紧固程度;
    所述上轴部卡合件与所述下轴部卡合件位置对应且通过第二螺栓可拆卸地连接,所述第二螺栓的旋转使所述上轴部卡合件的凹槽与所述下轴部卡合件的凹槽的间距改变,以调节所述上轴部卡合件的凹槽、下轴部卡合件的凹槽与所述旋翼支架间的紧固程度。
  5. 根据权利要求1所述的多旋翼巡检飞行器,其特征在于,
    所述移动机构包括:移动轮和驱动电机;
    所述移动轮和所述驱动电机固定于所述支撑架的顶端;
    所述移动轮具有轮槽;
    所述落线行走装置还包括:导向围栏;
    所述导向围栏设置于所述移动轮背向所述支撑架的一侧且抵接所述移动轮的侧壁,所述导向围栏呈外张形式且与所述移动轮构成一围堵空间,以将所述待挂导地线引导至所述移动轮的轮槽中;
    所述移动轮挂载至所述待挂导地线上之后,在所述驱动电机的驱动下沿所述待挂导地线移动。
  6. 根据权利要求5所述的多旋翼巡检飞行器,其特征在于,
    所述移动机构还包括:轮支架和至少一个支撑轮;
    所述轮支架垂直固定于所述支撑架的顶端;
    所述支撑轮装设于所述轮支架上,且具有轮槽;
    所述导向围栏抵接所述支撑轮背向所述支撑架的侧壁,与所述支撑轮构成所述围堵空间,以将所述待挂导地线引导至所述支撑轮的轮槽中;
    所述支撑轮挂载至所述待挂导地线上之后,在所述移动轮的带动下沿所述待挂导地线移动。
  7. 根据权利要求6所述的多旋翼巡检飞行器,其特征在于,
    所述落线行走装置还包括:辅助导向围栏;
    所述辅助导向围栏设置于所述移动轮和所述支撑轮面向所述支撑架的一侧且抵接所述移动轮和所述支撑轮的侧壁,所述辅助导向围栏与所述移动轮和所述支撑轮构成所述围堵空间,以将所述待挂导地线引导至所述移动轮的轮槽中。
  8. 根据权利要求1所述的多旋翼巡检飞行器,其特征在于,
    所述支撑架包括:固定支架和活动支架;
    所述固定支架的底端固定于所述机舱的顶部;
    所述活动支架的顶端固定装设所述移动机构;
    所述导向摄像机固定装设于所述活动支架上;
    所述固定支架的顶端与所述活动支架的底端固定连接。
  9. 根据权利要求8所述的多旋翼巡检飞行器,其特征在于,
    所述固定支架的顶端与所述活动支架的底端通过至少一个第一双孔连接件可拆卸地连接;
    所述第一双孔连接件具有两个并列设置的通孔和一旋钮;
    所述两通孔之间由一缝孔连通,所述旋钮垂直穿过所述缝孔的两侧壁;
    所述固定支架的顶端和所述活动支架的底端分别穿过所述两通孔;
    所述旋钮的旋转使所述缝孔两侧壁的间距改变,以调节所述两通孔与所述固定支架、所述活动支架的紧固程度。
  10. 根据权利要求8所述的多旋翼巡检飞行器,其特征在于,
    所述机舱的顶部设有开孔;
    所述固定支架的底端插接固定于所述机舱顶部的开孔中。
  11. 根据权利要求1所述的多旋翼巡检飞行器,其特征在于,
    所述巡检装置还包括:底座和云台;
    所述底座固定连接所述机舱的底部;
    所述云台固定于所述底座背向所述机舱的一面,所述巡检摄像机装设于所述云台上;
    所述云台通过旋转来改变所述巡检摄像机的拍摄方向;
    所述控制装置还控制所述云台的旋转方向。
  12. 根据权利要求11所述的多旋翼巡检飞行器,其特征在于,
    所述机舱的底部固定设置两个平行的巡检装置挂装杆;
    所述巡检装置还包括:底座挂装杆;
    所述底座面向机舱的一面设有凸耳;
    所述底座挂装杆穿过所述凸耳,垂直设于所述两个巡检装置挂装杆之间,并且其两端分别通过第二双孔连接件可拆卸地连接所述两个巡检装置挂装杆;
    所述第二双孔连接件具有一第一旋钮以及垂直设置的第一通孔和第二通孔;
    所述第一通孔连通一第一缝孔,所述第一旋钮穿过所述第一缝孔的两侧壁;
    所述巡检装置挂装杆穿过所述第一通孔;
    所述第一旋钮的旋转使所述第一缝孔的两侧壁的间距改变以调节所述第一通孔与所述巡检装置挂装杆的紧固程度;
    所述底座挂装杆的两端卡接于所述第二通孔中。
  13. 根据权利要求12所述的多旋翼巡检飞行器,其特征在于,
    所述巡检装置还包括:配重;
    所述配重固定连接于所述两个巡检装置挂装杆之间,以维持所述多旋翼巡检飞行器的平衡。
  14. 根据权利要求13所述的多旋翼巡检飞行器,其特征在于,
    所述配重包括:托盘和配重本体;
    所述托盘为槽型结构,所述配重本体装设于所述托盘内;
    所述托盘包括:托盘底、托盘侧壁、前卡件和后卡件;
    所述前卡件、后卡件分别固定于所述托盘底正对的两端;
    所述托盘侧壁固定于所述托盘底的另两端;
    所述托盘侧壁上设有至少两个凸起;
    所述凸起通过第三双孔连接件可拆卸地连接所述巡检装置挂装杆;
    所述第三双孔连接件具有一第二旋钮以及垂直设置的第三通孔和第四通孔;
    所述第三通孔连通一第二缝孔,所述第二旋钮穿过所述第二缝孔的两侧壁;
    所述巡检装置挂装杆穿过所述第三通孔;所述第二旋钮的旋转使所述第二缝孔的两侧壁间距以调节所述第三通孔与所述巡检装置挂装杆的紧固程度;
    所述凸起卡接于所述第四通孔中。
  15. 一种输电线路巡检系统,其特征在于,包括:地面指挥设备和如权利要求1~4,8~14任一所述的多旋翼巡检飞行器;
    所述地面指挥设备包括:动作指挥装置、影像分析装置、显示器和地面端无线传输接口;
    所述地面端无线传输接口分别连接所述动作指挥装置、影像分析装置、显示器,并无线连接所述多旋翼巡检飞行器的飞行端无线传输接口,传输所述多旋翼巡检飞行器与所述动作指挥装置、影像分析装置、显示器之间的交互数据;
    所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
    所述动作指挥装置对所述导向摄像机拍摄的影像信息进行解析,生成相应的命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口;
    所述影像分析装置对所述巡检摄像机拍摄的影像信息进行解析,判断待检对象存在故障时进行报警。
  16. 根据权利要求15所述的输电线路巡检系统,其特征在于,
    所述动作指挥装置用于:
    判断所述待挂导地线处于所述导向摄像机拍摄的影像画面的偏上区域时,生成上升命令;
    判断所述待挂导地线处于所述影像画面的偏下区域时,生成下降命令;
    判断所述待挂导地线处于所述影像画面的靠近区域时,生成靠近命令;
    判断所述待挂导地线处于所述影像画面的落线区域时,生成落线命令;
    判断所述多旋翼巡检飞行器的移动机构挂载至所述待挂导地线上时,生成移动命令;
    判断所述移动机构在移动过程中遇到障碍物时,生成跨越命令;
    所述多旋翼巡检飞行器的控制装置用于:
    接收所述上升命令时,控制所述多旋翼巡检飞行器的旋翼向上飞行;
    接收所述下降命令时,控制所述旋翼向下飞行;
    接收所述靠近命令时,控制所述旋翼水平飞行并向所述待挂导地线靠近;
    接收所述落线命令时,控制所述旋翼停止飞行并降落;
    接收所述移动命令时,控制所述移动机构沿所述待挂导地线移动;
    接收所述跨越命令时,控制所述旋翼起飞并跨越所述障碍物之后再降落,直到所述移动机构再次挂载至所述待挂导地线上;
    其中,所述影像画面的偏上区域、偏下区域、靠近区域、落线区域是按照如下方式预先设定:
    以所述影像画面的中心点所在水平面为分界面;
    该分界面上方的区域为所述偏上区域;
    该分界面下方的区域为所述偏下区域;
    所述移动机构在该分界面内的投影区域为所述落线区域;
    该分界面内所述落线区域之外的区域为所述靠近区域。
  17. 一种输电线路巡检系统,其特征在于,包括:地面指挥设备和如权利要求5~7任一所述的多旋翼巡检飞行器;
    所述地面指挥设备包括:动作指挥装置、影像分析装置、显示器和地面端无线传输接口;
    所述地面端无线传输接口分别连接所述动作指挥装置、影像分析装置、显示器,并无线连接所述多旋翼巡检飞行器的飞行端无线传输接口,传输所述多旋翼巡检飞行器与所述动作指挥装置、影像分析装置、显示器之间的交互数据;
    所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
    所述动作指挥装置对所述导向摄像机拍摄的影像信息进行解析,生成相应的命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口;
    所述影像分析装置对所述巡检摄像机拍摄的影像信息进行解析,判断待检对象存在故障时进行报警。
  18. 根据权利要求17所述的输电线路巡检系统,其特征在于,
    所述动作指挥装置用于:
    判断所述待挂导地线处于所述导向摄像机拍摄的影像画面的偏上区域时,生成上升命令;
    判断所述待挂导地线处于所述影像画面的偏下区域时,生成下降命令;
    判断所述待挂导地线处于所述影像画面的靠近区域时,生成靠近命令;
    判断所述待挂导地线处于所述影像画面的落线区域时,生成落线命令;
    判断所述多旋翼巡检飞行器的移动轮挂载至所述待挂导地线上时,生成移动命令;
    判断所述移动轮在移动过程中遇到障碍物时,生成跨越命令;
    所述多旋翼巡检飞行器的控制装置用于:
    接收所述上升命令时,控制所述多旋翼巡检飞行器的旋翼向上飞行;
    接收所述下降命令时,控制所述旋翼向下飞行;
    接收所述靠近命令时,控制所述旋翼水平飞行并向所述待挂导地线靠近;
    接收所述落线命令时,控制所述旋翼停止飞行并降落;
    接收所述移动命令时,控制所述移动轮沿所述待挂导地线移动;
    接收所述跨越命令时,控制所述旋翼起飞并跨越所述障碍物之后再降落,直到所述移动轮再次挂载至所述待挂导地线上;
    其中,所述影像画面的偏上区域、偏下区域、靠近区域、落线区域是按照如下方式预先设定:
    以所述影像画面的中心点所在水平面为分界面;
    该分界面上方的区域为所述偏上区域;
    该分界面下方的区域为所述偏下区域;
    所述导向围栏与所述移动轮构成的围堵空间在该分界面内的投影区域为所述落线区域;
    该分界面内所述落线区域之外的区域为所述靠近区域。
  19. 一种输电线路巡检系统,其特征在于,包括:地面指挥设备和如权利要求11~14任一所述的多旋翼巡检飞行器;
    所述地面指挥设备包括:动作指挥装置、影像分析装置、显示器和地面端无线传输接口;
    所述地面端无线传输接口分别连接所述动作指挥装置、影像分析装置、显示器,并无线连接所述多旋翼巡检飞行器的飞行端无线传输接口,传输所述多旋翼巡检飞行器与所述动作指挥装置、影像分析装置、显示器之间的交互数据;
    所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
    所述动作指挥装置对所述导向摄像机拍摄的影像信息进行解析,生成相应的命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口;
    所述影像分析装置对所述巡检摄像机拍摄的影像信息进行解析,判断待检对象存在故障时进行报警。
  20. 根据权利要求19所述的输电线路巡检系统,其特征在于,
    所述动作指挥装置还用于:
    对所述巡检摄像机拍摄的影像信息进行解析,生成云台旋转命令,并通过所述地面端无线传输接口发送给所述飞行端无线传输接口;
    所述控制装置还用于:
    接收所述云台旋转命令时,控制所述多旋翼巡检飞行器的云台旋转,以改变所述巡检摄像机的拍摄方向。
  21. 一种输电线路巡检系统,其特征在于,包括:地面指挥设备和如权利要求1~14任一所述的多旋翼巡检飞行器;
    所述地面指挥设备包括:命令输入装置、显示器和地面端无线传输接口;
    所述地面端无线传输接口分别连接所述命令输入装置和所述显示器,传输所述多旋翼巡检飞行器与所述命令输入装置、所述显示器之间的交互数据;
    所述显示器显示所述多旋翼巡检飞行器的导向摄像机和巡检摄像机拍摄的影像信息;
    所述命令输入装置接收命令并通过所述地面端无线传输接口发送给所述飞行端无线传输接口。
PCT/CN2014/091896 2014-11-21 2014-11-21 一种多旋翼巡检飞行器及输电线路巡检系统 WO2016078081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091896 WO2016078081A1 (zh) 2014-11-21 2014-11-21 一种多旋翼巡检飞行器及输电线路巡检系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091896 WO2016078081A1 (zh) 2014-11-21 2014-11-21 一种多旋翼巡检飞行器及输电线路巡检系统

Publications (1)

Publication Number Publication Date
WO2016078081A1 true WO2016078081A1 (zh) 2016-05-26

Family

ID=56013097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091896 WO2016078081A1 (zh) 2014-11-21 2014-11-21 一种多旋翼巡检飞行器及输电线路巡检系统

Country Status (1)

Country Link
WO (1) WO2016078081A1 (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428594A (zh) * 2016-10-19 2017-02-22 广东容祺智能科技有限公司 一种无人机电力巡线多方位航拍系统及其使用方法
CN106786163A (zh) * 2017-01-17 2017-05-31 广州供电局有限公司 两栖作业机器人
CN106840107A (zh) * 2016-12-31 2017-06-13 郑州双杰科技股份有限公司 无人机群智能调度监测系统
CN107380415A (zh) * 2017-06-21 2017-11-24 浙江大学宁波理工学院 一种电力线巡检用的飞行器
CN107765695A (zh) * 2017-11-21 2018-03-06 北京百度网讯科技有限公司 巡检机器人和巡检系统
RU2650847C1 (ru) * 2017-02-21 2018-04-17 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN110395386A (zh) * 2019-09-06 2019-11-01 山东蜂巢航空科技有限公司 油电混合六旋翼无人机
RU2714514C1 (ru) * 2019-08-27 2020-02-18 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN111650204A (zh) * 2020-05-11 2020-09-11 安徽继远软件有限公司 基于级联目标检测的输电线路金具缺陷检测方法及系统
CN112000100A (zh) * 2020-08-26 2020-11-27 德鲁动力科技(海南)有限公司 机器人的充电系统及方法
CN112476461A (zh) * 2020-11-26 2021-03-12 云南电网有限责任公司昆明供电局 一种搭载无人机的变电站巡检机器人及巡检方法
CN112993854A (zh) * 2021-03-16 2021-06-18 杭州惠嘉信息科技有限公司 一种高稳定性的输电线路抓拍监测装置
CN113010834A (zh) * 2021-03-26 2021-06-22 上海科建工程管理股份有限公司 基于gis的地面巡检机器人巡检覆盖校验方法及装置
CN113110601A (zh) * 2021-04-01 2021-07-13 国网江西省电力有限公司电力科学研究院 一种无人机电力线路巡检路径优化方法及装置
CN113241669A (zh) * 2021-05-28 2021-08-10 广东电网有限责任公司 一种基于机器人的输电线路巡检方法、装置、设备及介质
CN113237887A (zh) * 2021-04-29 2021-08-10 北京送变电有限公司 导线验收用辅助装置
CN113487827A (zh) * 2021-07-12 2021-10-08 吴桐雨 一种准确性高的环境智能报警系统
CN113937519A (zh) * 2021-11-01 2022-01-14 国网山西省电力公司输电检修分公司 一种基于无人机的高空拆挂接地线的方法
CN114006445A (zh) * 2021-12-07 2022-02-01 北京国网富达科技发展有限责任公司 一种大跨越架空线路巡检机器人用充电站
CN114148535A (zh) * 2021-11-25 2022-03-08 国网山东省电力公司泰安供电公司 一种具有稳定超宽带结构的室内巡检无人机
CN114188884A (zh) * 2021-12-14 2022-03-15 福州大学 可空中对接和分离的高压电线巡检和维护装置
CN114261511A (zh) * 2021-12-24 2022-04-01 杭州申昊科技股份有限公司 一种输电线巡检机器人
CN114420365A (zh) * 2022-03-01 2022-04-29 天长市富达电子科技股份有限公司 一种带有巡线捋线结构的信号线保护管套
CN114530792A (zh) * 2022-03-04 2022-05-24 国网浙江省电力有限公司绍兴供电公司 一种沿地线巡检机器人出入平台轨道及方法
CN114627388A (zh) * 2022-03-23 2022-06-14 南方电网数字电网研究院有限公司 输电线路异物检测设备及其异物检测方法
CN114744545A (zh) * 2022-04-14 2022-07-12 国网浙江省电力有限公司宁波供电公司 一种用于高压输电线路故障诊断的大跨度机器人
CN114842570A (zh) * 2022-06-01 2022-08-02 国网安徽省电力有限公司铜陵供电公司 一种架空光缆智能巡检系统
CN115196031A (zh) * 2022-09-15 2022-10-18 国网电力空间技术有限公司 一种直升机用电网设备拍摄装置
CN116014890A (zh) * 2022-12-16 2023-04-25 南方电网智慧用能能源(广东)有限公司 一种基于激光雷达技术的架空线路导线电气安全距离警报装置
CN116597327A (zh) * 2023-05-15 2023-08-15 岳阳市水利水电规划勘测设计院有限公司 基于无人机的水利设施隐患排查系统
CN117274225A (zh) * 2023-10-19 2023-12-22 广东力生电器有限公司 一种配电柜的智能控制系统及方法
CN117831147A (zh) * 2024-03-04 2024-04-05 陕西泰沃云科技有限公司 一种机器人与摄像头联合巡检方法及系统
CN114006445B (zh) * 2021-12-07 2024-04-30 北京国网富达科技发展有限责任公司 一种大跨越架空线路巡检机器人用充电站

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183955A (zh) * 2011-03-09 2011-09-14 南京航空航天大学 基于多旋翼无人飞行器的输电线路巡检系统
CN102340113A (zh) * 2011-07-29 2012-02-01 中国科学院长春光学精密机械与物理研究所 适用于输电线路巡检的多旋翼自动定位检测器
EP2495166A1 (en) * 2011-03-03 2012-09-05 Asociacion de la Industria Navarra (AIN) Aerial robotic system for the inspection of overhead power lines
JP2013062946A (ja) * 2011-09-13 2013-04-04 Chugoku Electric Power Co Inc:The 送電線撮影装置
CN103612756A (zh) * 2013-12-12 2014-03-05 中国科学院自动化研究所 电力线巡检用的多旋翼飞行器以及基于它的系统
CN103855644A (zh) * 2014-03-14 2014-06-11 刘凯 多旋翼式智能架空线路巡检机器人
CN104386250A (zh) * 2014-11-20 2015-03-04 河南送变电工程公司 一种多旋翼巡检飞行器及输电线路巡检系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495166A1 (en) * 2011-03-03 2012-09-05 Asociacion de la Industria Navarra (AIN) Aerial robotic system for the inspection of overhead power lines
CN102183955A (zh) * 2011-03-09 2011-09-14 南京航空航天大学 基于多旋翼无人飞行器的输电线路巡检系统
CN102340113A (zh) * 2011-07-29 2012-02-01 中国科学院长春光学精密机械与物理研究所 适用于输电线路巡检的多旋翼自动定位检测器
JP2013062946A (ja) * 2011-09-13 2013-04-04 Chugoku Electric Power Co Inc:The 送電線撮影装置
CN103612756A (zh) * 2013-12-12 2014-03-05 中国科学院自动化研究所 电力线巡检用的多旋翼飞行器以及基于它的系统
CN103855644A (zh) * 2014-03-14 2014-06-11 刘凯 多旋翼式智能架空线路巡检机器人
CN104386250A (zh) * 2014-11-20 2015-03-04 河南送变电工程公司 一种多旋翼巡检飞行器及输电线路巡检系统

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428594A (zh) * 2016-10-19 2017-02-22 广东容祺智能科技有限公司 一种无人机电力巡线多方位航拍系统及其使用方法
CN106840107A (zh) * 2016-12-31 2017-06-13 郑州双杰科技股份有限公司 无人机群智能调度监测系统
CN106786163A (zh) * 2017-01-17 2017-05-31 广州供电局有限公司 两栖作业机器人
RU2650847C1 (ru) * 2017-02-21 2018-04-17 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN107380415A (zh) * 2017-06-21 2017-11-24 浙江大学宁波理工学院 一种电力线巡检用的飞行器
CN107765695A (zh) * 2017-11-21 2018-03-06 北京百度网讯科技有限公司 巡检机器人和巡检系统
CN107765695B (zh) * 2017-11-21 2024-03-22 北京百度网讯科技有限公司 巡检机器人和巡检系统
RU2714514C1 (ru) * 2019-08-27 2020-02-18 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN110395386A (zh) * 2019-09-06 2019-11-01 山东蜂巢航空科技有限公司 油电混合六旋翼无人机
CN111650204A (zh) * 2020-05-11 2020-09-11 安徽继远软件有限公司 基于级联目标检测的输电线路金具缺陷检测方法及系统
CN111650204B (zh) * 2020-05-11 2023-05-12 安徽继远软件有限公司 基于级联目标检测的输电线路金具缺陷检测方法及系统
CN112000100A (zh) * 2020-08-26 2020-11-27 德鲁动力科技(海南)有限公司 机器人的充电系统及方法
CN112476461A (zh) * 2020-11-26 2021-03-12 云南电网有限责任公司昆明供电局 一种搭载无人机的变电站巡检机器人及巡检方法
CN112993854A (zh) * 2021-03-16 2021-06-18 杭州惠嘉信息科技有限公司 一种高稳定性的输电线路抓拍监测装置
CN112993854B (zh) * 2021-03-16 2022-05-31 杭州惠嘉信息科技有限公司 一种高稳定性的输电线路抓拍监测装置
CN113010834A (zh) * 2021-03-26 2021-06-22 上海科建工程管理股份有限公司 基于gis的地面巡检机器人巡检覆盖校验方法及装置
CN113110601A (zh) * 2021-04-01 2021-07-13 国网江西省电力有限公司电力科学研究院 一种无人机电力线路巡检路径优化方法及装置
CN113110601B (zh) * 2021-04-01 2023-06-16 国网江西省电力有限公司电力科学研究院 一种无人机电力线路巡检路径优化方法及装置
CN113237887A (zh) * 2021-04-29 2021-08-10 北京送变电有限公司 导线验收用辅助装置
CN113237887B (zh) * 2021-04-29 2023-03-31 北京送变电有限公司 导线验收用辅助装置
CN113241669A (zh) * 2021-05-28 2021-08-10 广东电网有限责任公司 一种基于机器人的输电线路巡检方法、装置、设备及介质
CN113487827A (zh) * 2021-07-12 2021-10-08 吴桐雨 一种准确性高的环境智能报警系统
CN113937519B (zh) * 2021-11-01 2023-04-28 国网山西省电力公司输电检修分公司 一种基于无人机的高空拆挂接地线的方法
CN113937519A (zh) * 2021-11-01 2022-01-14 国网山西省电力公司输电检修分公司 一种基于无人机的高空拆挂接地线的方法
CN114148535A (zh) * 2021-11-25 2022-03-08 国网山东省电力公司泰安供电公司 一种具有稳定超宽带结构的室内巡检无人机
CN114006445B (zh) * 2021-12-07 2024-04-30 北京国网富达科技发展有限责任公司 一种大跨越架空线路巡检机器人用充电站
CN114006445A (zh) * 2021-12-07 2022-02-01 北京国网富达科技发展有限责任公司 一种大跨越架空线路巡检机器人用充电站
CN114188884A (zh) * 2021-12-14 2022-03-15 福州大学 可空中对接和分离的高压电线巡检和维护装置
CN114188884B (zh) * 2021-12-14 2023-08-25 福州大学 可空中对接和分离的高压电线巡检和维护装置
CN114261511A (zh) * 2021-12-24 2022-04-01 杭州申昊科技股份有限公司 一种输电线巡检机器人
CN114420365A (zh) * 2022-03-01 2022-04-29 天长市富达电子科技股份有限公司 一种带有巡线捋线结构的信号线保护管套
CN114420365B (zh) * 2022-03-01 2024-03-01 天长市富达电子科技股份有限公司 一种带有巡线捋线结构的信号线保护管套
CN114530792B (zh) * 2022-03-04 2023-10-20 国网浙江省电力有限公司绍兴供电公司 一种沿地线巡检机器人出入平台轨道及方法
CN114530792A (zh) * 2022-03-04 2022-05-24 国网浙江省电力有限公司绍兴供电公司 一种沿地线巡检机器人出入平台轨道及方法
CN114627388B (zh) * 2022-03-23 2024-03-29 南方电网数字电网研究院有限公司 输电线路异物检测设备及其异物检测方法
CN114627388A (zh) * 2022-03-23 2022-06-14 南方电网数字电网研究院有限公司 输电线路异物检测设备及其异物检测方法
CN114744545B (zh) * 2022-04-14 2023-07-04 国网浙江省电力有限公司宁波供电公司 一种用于高压输电线路故障诊断的大跨度机器人
CN114744545A (zh) * 2022-04-14 2022-07-12 国网浙江省电力有限公司宁波供电公司 一种用于高压输电线路故障诊断的大跨度机器人
CN114842570A (zh) * 2022-06-01 2022-08-02 国网安徽省电力有限公司铜陵供电公司 一种架空光缆智能巡检系统
CN115196031B (zh) * 2022-09-15 2022-12-20 国网电力空间技术有限公司 一种直升机用电网设备拍摄装置
CN115196031A (zh) * 2022-09-15 2022-10-18 国网电力空间技术有限公司 一种直升机用电网设备拍摄装置
CN116014890B (zh) * 2022-12-16 2024-03-05 广东南海电力设计院工程有限公司 一种基于激光雷达技术的架空线路导线电气安全距离警报装置
CN116014890A (zh) * 2022-12-16 2023-04-25 南方电网智慧用能能源(广东)有限公司 一种基于激光雷达技术的架空线路导线电气安全距离警报装置
CN116597327A (zh) * 2023-05-15 2023-08-15 岳阳市水利水电规划勘测设计院有限公司 基于无人机的水利设施隐患排查系统
CN116597327B (zh) * 2023-05-15 2024-04-12 岳阳市水利水电规划勘测设计院有限公司 基于无人机的水利设施隐患排查系统
CN117274225A (zh) * 2023-10-19 2023-12-22 广东力生电器有限公司 一种配电柜的智能控制系统及方法
CN117274225B (zh) * 2023-10-19 2024-04-16 广东力生电器有限公司 一种配电柜的智能控制系统及方法
CN117831147A (zh) * 2024-03-04 2024-04-05 陕西泰沃云科技有限公司 一种机器人与摄像头联合巡检方法及系统
CN117831147B (zh) * 2024-03-04 2024-05-03 陕西泰沃云科技有限公司 一种机器人与摄像头联合巡检方法及系统

Similar Documents

Publication Publication Date Title
WO2016078081A1 (zh) 一种多旋翼巡检飞行器及输电线路巡检系统
CN104386250B (zh) 一种多旋翼巡检飞行器及输电线路巡检系统
CN204355272U (zh) 一种多旋翼巡检飞行器及输电线路巡检系统
CN104362545B (zh) 一种多旋翼巡检飞行器及其挂载输电线路的方法
CN204355271U (zh) 一种具有防碰罩的多旋翼巡检飞行器
KR101815091B1 (ko) 고압선 점검용 무인비행체 및 그 제어방법
EP3104184B1 (en) Method and apparatus for locating faults in overhead power transmission lines
CN110466760B (zh) 一种电力巡检无人机用辅助机械臂及其控制系统
WO2020156590A9 (zh) 输电线路智能巡检系统
US20170032686A1 (en) Drone pad station and managing set of such a drone pad station
CN205574268U (zh) 一种用于高压输电线路巡检的多机协同四旋翼飞行器系统
CN110888453A (zh) 一种基于LiDAR数据构建三维实景的无人机自主飞行方法
EP3858730B1 (en) Power line inspection vehicle
CN102160005A (zh) 由远程无人交通工具的集群检查结构和物体的系统和方法
CN109398702A (zh) 一种基于无人机防跌落的落线装置及其落线方法
CN211253060U (zh) 一种电力巡检无人机验电、零值检测与异物清除装置
CN107985576A (zh) 一种用于桥梁裂缝检测的飞爬机器人
KR102178393B1 (ko) 무인 항공기를 이용한 송전선로 감시 장치
JP2016135046A (ja) 検査装置及び検査方法
CN213499234U (zh) 一种轮式智能巡检机器人
JP2020138639A (ja) 無人飛行体を用いた構造物検査装置
CN111942615A (zh) 基于机器视觉的室外环境下飞机外表面雷击状况检查车
CN113844557A (zh) 一种无人机停机巢及无人机电力运维系统
JP2019169065A (ja) 点検システム
CN217515268U (zh) 一种用于桥梁底部裂缝检测的作业机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906523

Country of ref document: EP

Kind code of ref document: A1