WO2016076530A1 - 모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램 - Google Patents

모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램 Download PDF

Info

Publication number
WO2016076530A1
WO2016076530A1 PCT/KR2015/009984 KR2015009984W WO2016076530A1 WO 2016076530 A1 WO2016076530 A1 WO 2016076530A1 KR 2015009984 W KR2015009984 W KR 2015009984W WO 2016076530 A1 WO2016076530 A1 WO 2016076530A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mobile device
spectacle lens
frequency
distance
Prior art date
Application number
PCT/KR2015/009984
Other languages
English (en)
French (fr)
Inventor
윤철주
Original Assignee
윤철주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤철주 filed Critical 윤철주
Publication of WO2016076530A1 publication Critical patent/WO2016076530A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the present invention relates to a method of measuring the frequency of the spectacle lens using a mobile device, and more particularly, by using the mobile device and the reference figure to compare the image passing through the spectacle lens and the image passing through the spectacle lens. It is about a method of measuring.
  • Optical instruments for measuring the refractive power of the lens are called a lens meter, which includes a manual lens meter for manually measuring the refractive power of the lens and an automatic lens meter for automatically measuring the refractive power of the lens.
  • a lens meter there is a Patent Publication No. 10-2012-0076800 for the method of measuring the lens refractive power using the optical system characteristics.
  • the above-mentioned patent discloses lens refractive power using optical system characteristics in lens measuring optical system, so that the refractive power of the lens can be accurately measured by using optical system characteristics even when a part of the light source is lost when measuring the refractive power of the lens through a lens meter which is a lens refractive power measuring apparatus. It is a measuring method.
  • the automatic or manual lens meter is expensive and has a problem that is difficult for the general public to hold.
  • the conventional lens meter is difficult to use the public because it is difficult to use.
  • a visual observation device is used to adjust the scale displayed by the optical system and read out its characteristics. This manual measurement method is a certain period of time until the operator uses the lens meter skillfully. Education and training are required.
  • the present invention provides a method for measuring the frequency of spectacle lenses using a mobile device, which enables a user to easily measure the frequency of spectacle lenses using a mobile device having a camera owned by the user without directly visiting an ophthalmologist or an optician.
  • a method of measuring a frequency of an eyeglass lens using a mobile device the mobile device acquiring a first image of the reference figure; Arranging the spectacle lens between the mobile device and the reference figure to obtain a second image of the reference figure; Calculating a magnification of the second image with respect to the first image by comparing the sizes of the reference figures in the first image and the second image; Calculating a first frequency of the spectacle lens by applying the calculated magnification and the first predetermined curvature to the lens formula; And determining a second curvature corresponding to a frequency range including the first frequency, and calculating the second frequency by applying the second curvature and the magnification to the lens formula.
  • the method may further include obtaining, by the mobile device, the distance between the vertices, wherein the distance between the vertices is a distance from the camera of the mobile device to the spectacle lens, and the obtaining the distance between the vertices may be performed before the first frequency calculating step.
  • the first frequency calculating step and the second frequency calculating step may be performed by applying the obtained distance between the vertices to the lens formula.
  • the peak-to-peak distance obtaining step may be characterized in that for measuring the distance between the peaks in a non-contact distance measuring method using a sensor included in the mobile device.
  • the step of acquiring the distance between the vertices the mobile device receiving the horizontal or vertical length of the spectacle lens; Receiving, by the mobile device, the specific vertex distance; And displaying a guide line corresponding to the horizontal or vertical length at the vertex distance on the screen.
  • the second image may include a reference body having a reference length disposed at the same distance from the mobile device as the spectacle lens and spaced apart from the spectacle lens. Measuring the length of the reference body appearing on the phase; And calculating the distance between the vertices based on the ratio between the measured length and the reference length.
  • the mobile device receiving the horizontal or vertical measured length of the spectacle lens; Measuring a length of the horizontal or vertical length of the spectacle lens appearing on the second image; And calculating the distance between the vertices by comparing the measured length with the measured length.
  • the reference figure may include at least one or more lines radiated at equal angular intervals from a center, and the magnification calculation step may include comparing the lengths of the lines arranged at the same positions in the first image and the second image. It may be characterized by calculating the length ratio.
  • the step of calculating the magnification may include calculating one or more of the length ratios for one or more respective lines; And calculating the average of the one or more length ratios and applying the same at the magnification.
  • the method may further include transmitting, by the mobile device, the reference figure to an external device having a display through wireless communication before acquiring the first image.
  • the method may further include displaying a guide line on a screen of the mobile device before acquiring the first image, wherein the first image and the second image are formed by enclosing the outline of the guide line and the reference figure. It may be an image captured in the matched state.
  • the mobile device may automatically obtain the first image or the second image.
  • the user can measure the frequency of the spectacle lens without purchasing an expensive lens meter.
  • the user can solve the inconvenience of having to visit the ophthalmologist or the optician directly to measure the frequency of the spectacle lens.
  • the frequency of the spectacle lens can be measured simply by capturing the first image and the second image including the reference figure with the mobile device possessed by the user, so that the user can measure the frequency of the spectacle lens.
  • the user can perform the frequency measurement of the spectacle lens anywhere with only the reference figure to be taken with the mobile device regardless of the location.
  • the user's lens power can be easily measured using a mobile device such as a smartphone, so that the user can order glasses online.
  • a mobile device such as a smartphone
  • the degree of eyeglasses could not be measured, so only the frames of the eyeglasses could be distributed online.
  • adults with a small change in their eyesight can fit the glasses by knowing the frequency of the existing eyeglass lenses without having to measure their eyesight again. You can distribute it.
  • FIG. 1 is a flow chart of a method for measuring the frequency of the spectacle lens using a mobile device according to an embodiment of the present invention.
  • FIG 2 is a layout view in which the mobile device, the spectacle lens, and the reference figure are arranged in order when the frequency of the spectacle lens is measured using the mobile device according to the exemplary embodiment of the present invention.
  • FIG. 3 is a diagram including lines radiating at equal angular intervals from a center, which is one form of a reference figure according to one embodiment of the invention.
  • FIG 4 is an exemplary view of a first image acquired by a camera according to an embodiment of the present invention.
  • FIG. 5 is an exemplary diagram of a second image including a reference body positioned at the same distance as the spectacle lens according to the exemplary embodiment of the present invention.
  • FIG. 6 is an exemplary table of optimal curvatures according to the degree of frequency of the spectacle lens according to the embodiment of the present invention.
  • FIG. 7 is an exemplary table for calculating the frequency of the spectacle lens according to the change in magnification, distance between vertices, or curvature according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for measuring the frequency of the spectacle lens 300 using the mobile device 100 according to an embodiment of the present invention.
  • FIG. 2 illustrates a sequence of the mobile device 100, the spectacle lens 300, and the reference figure 200 when measuring the frequency of the spectacle lens 300 using the mobile device 100 according to an embodiment of the present invention. It is a layout arranged as it is.
  • 3 is a diagram including lines radiating at equal angular intervals from the center, which is one form of the reference figure 200, in accordance with one embodiment of the present invention.
  • 4 is an exemplary view of a first image acquired by a camera according to an embodiment of the present invention.
  • 5 is an exemplary diagram of a second image including a reference body 500 positioned at the same distance as the spectacle lens 300 according to an exemplary embodiment of the present invention.
  • 6 is an exemplary table of optimum curvatures according to the degree of the degree of the spectacle lens 300 according to an embodiment of the present invention.
  • 7 is an exemplary table for calculating the frequency of the spectacle lens 300 according to a change in magnification, distance between vertices 400, or curvature according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for measuring the frequency of the spectacle lens 300 using the mobile device 100 according to an embodiment of the present invention.
  • the first image of the reference figure 200 is photographed using a camera of the mobile device 100.
  • magnification calculation formula of the spectacle lens 300 is as follows.
  • SM is the percentage spectrum magnification
  • Df is the front base curve of the spectacle lens 300 (hereinafter, referred to as curvature)
  • D is the power of the glass lens 300.
  • h is a vertex distance 400 (vertex distance (meter unit))
  • t is the thickness of the spectacle lens 300 (thickness (meter unit))
  • n is the refractive index of the spectacle lens 300 (index of material Corresponds to).
  • the curvature and the frequency value correspond to a diopter.
  • the diopter refers to the refractive power of the lens, and is an inverse of the focal length (in meters).
  • magnification may be referred to as a first image of an image obtained when a lens is not disposed between the first image, and an image obtained when the lens is disposed between the images.
  • image size of a remote object in the corrected eye is referred to as a second image
  • size ratio (magnification) of the second image to the first image is referred to.
  • distance between the vertices 400 refers to the distance between the apex of the spectacle lens 300 and the corneal apex, and when using the camera of the mobile device 100 from the camera to the rear of the spectacle lens 300 You can do it with distance.
  • the magnification calculation formula of the spectacle lens 300 can be summarized with respect to D (frequency) to express the following equation.
  • the independent variables required to calculate the magnification in Equation 2 are the magnification, the refractive index, the thickness, the curvature, and the vertex distance 400. Since the spectacle lens 300 is manufactured according to a standard specification, a variable whose frequency calculation value changes within a tolerance range of the standard specification may be fixed as a constant. For example, assuming that the spectacle lens 300 for which the frequency is to be measured is produced within the tolerance range 0.12 Diopter defined by the ISO8990 standard, the change in the frequency value is within a range smaller than the tolerance frequency 0.12 Diopter.
  • the elements that generate can be fixed as constants. According to this, since the refractive index and the thickness change the frequency within the range 0.12 Diopter, it can be fixed to a constant. Therefore, in order to measure the frequency of the spectacle lens 300 of the user by using the mobile device 100 of the user, the mobile device 100 must measure the magnification, curvature and the distance between the vertices 400 of the spectacle lens 300. do.
  • the first image obtained by photographing the reference figure 200 is obtained by using a camera of the mobile device 100 (S100).
  • the camera refers to a camera provided in the mobile device 100 to acquire an image or an image of the front, and the mobile device 100 includes a smartphone, a smart watch, a glass type wearable device, or a digital camera including a camera. It may correspond to various devices.
  • the reference figure 200 refers to various types of figures used to measure the magnification of the spectacle lens 300.
  • the first image is an image obtained by obtaining the reference figure 200 in a state where the spectacle lens 300 is not disposed therebetween. That is, the camera acquires an image of the front including the reference figure 200 without placing the glasses to measure the frequency between the reference figure 200 and the mobile device 100.
  • the spectacle lens 300 is disposed between the mobile device 100 and the reference figure 200, and the reference figure (viewed through the spectacle lens 300 using the camera) is used.
  • 200 acquires a second image captured by the apparatus 200 (S200).
  • the second image is an image obtained by including the reference figure 200 while the spectacle lens 300 is disposed between the mobile device 100 and the reference figure 200. That is, the camera arranges the glasses to measure the frequency between the reference figure 200 and the mobile device 100 to obtain an image of the front including the reference figure 200.
  • the second image should be acquired at the same distance from the mobile device 100 that obtained the first image to the reference figure 200.
  • the spectacle lens 300 is directly connected.
  • the second image may be acquired by placing the reference figure 200 and the mobile device 100.
  • the distance from the mobile device 100 to the reference figure 200 when the first image and the second image are acquired, the distance that the entire reference figure 200 is included in the camera is appropriate.
  • the position at which the spectacle lens 300 is disposed is appropriately positioned such that all of the reference figure 200 is included in the spectacle lens 300.
  • the magnification of the second image with respect to the first image is calculated by comparing the first image with the second image (S300). That is, the mobile device 100 calculates a magnification by comparing the same portions in the reference figure 200 included in the first image and the second image. Since the magnification is a ratio of the second image to the first image, the magnification may be calculated by dividing the size measured in the second image by the size measured in the first image.
  • the magnification may be calculated as a ratio of the length of the line at the same position included in the first image and the second image. For example, one line length measured by the mobile device 100 in FIG. 4A corresponding to the first image and a line length of the same position measured by the mobile device 100 in FIG. 5 corresponding to the second image. By comparing the above, the magnification can be calculated.
  • an average value is applied to the magnification.
  • the magnification is measured by comparing only a specific line length of the diagram included in the first image and the second image, an error may occur largely due to factors such as the tilt of the mobile device 100. Therefore, a plurality of line length ratios may be averaged to reduce an error that may occur by applying the magnification.
  • the first calculation of the frequency of the spectacle lens 300 is performed (S400).
  • the first calculation is performed to determine the curvature of the spectacle lens 300. Since the curvature cannot be measured directly, as shown in FIG. 6, a method of identifying an optimal curvature applied according to the frequency of the spectacle lens 300 is applied based on a table illustrated in the industry. As shown in FIG. 7, which is an example of the frequency calculation result according to Equation 2, the curvature has less influence on the frequency as compared to the magnification and the distance between the vertices 400, even when a predetermined curvature is applied to the calculation formula. The range in which the frequency is included in the example table of FIG. 6 is not changed.
  • frequency calculation is performed by applying the predetermined curvature and the calculated magnification. For example, by applying the default 4.0 diopters to the predetermined curvature, it is possible to calculate the frequency of the spectacle lens 300 to be approximated by the user.
  • the curvature applied to the range including the first calculated frequency is grasped, and a second calculation on the frequency of the spectacle lens 300 is performed based on the curvature and the magnification (S500).
  • the mobile device 100 determines the optimal curvature by applying the first calculated frequency to the example table shown in FIG.
  • the frequency of the spectacle lens 300 is determined by applying the optimal curvature and the calculated magnification to Equation 2 to perform frequency calculation (secondary calculation).
  • the method may further include obtaining, by the mobile device, the vertex distance 400, wherein the vertex distance 400 may be applied to the first and second calculations.
  • the reference numeral 400 may be a distance from the camera of the mobile device 100 to the spectacle lens 300. Since the distance between the vertices 400 is included in the independent variable of Equation 2, the distance between the vertices 400 is obtained and substituted into Equation 2 during the first and second calculations.
  • a method of measuring the distance between the vertices 400 using the mobile device 100 various methods may be applied.
  • a method using a sensor provided in the mobile device 100 may be applied to the measurement of the distance between the vertices 400.
  • Various non-contact distance measuring methods may be applied according to various sensors included in the mobile device 100. According to the sensor used, it can be classified into infrared method, ultrasonic method, and image processing method.
  • the infrared method may be divided into a reflected light measuring method and a triangular measuring method.
  • the reflected light measuring method is a method of emitting infrared rays using an infrared LED having a wavelength of 900nm or more, and measuring a distance by measuring an amount of infrared rays reflected by an object and returning. Since the amount of reflection is inversely proportional to the square of the distance, if the amount of reflection is large, the distance between the sensor and the object is close. On the contrary, if the amount of reflection is small, the distance is far.
  • the ultrasonic method may measure the distance from the ultrasonic transmitter to the ultrasonic wave reflected by the receiver until the ultrasonic wave is reflected, and then put the 340m per second into the formula to measure the distance between the sensor and the object.
  • the image processing method is a method of measuring a distance in an image through an image coming from a camera. In order to measure the physical distance in the image, it is necessary to understand the intrinsic parameters of the camera, which determine the relationship between the camera lens and the sensor. The process of identifying such parameters is called camera calibration, and can be performed through multiple images or images using three-dimensional or two-dimensional objects.
  • the method using the sensor provided in the mobile device 100 is not limited thereto, and when the mobile device 100 includes the doppler or the distance sensor, the distance between the vertices 400 is measured using the same. Various methods such as the method can be applied.
  • the obtaining of the inter-vehicle distance 400 by the mobile device 100 may include: receiving, by the mobile device 100, the horizontal or vertical length of the spectacle lens 300; Receiving a desired vertex distance 400 value through a user input unit; And displaying a guide line corresponding to the length on the display unit at the vertex distance 400. That is, the actual length of the spectacle lens 300 (or spectacle frame) calculates the length that appears when the image is acquired at the vertex distance 400 desired by the user, and displays the guide interval 400 by displaying the guideline on the display unit. That's how you do it.
  • the mobile device 100 receives the horizontal or vertical length of the spectacle lens 300 (or spectacles).
  • the measured horizontal or vertical length may be input to the mobile device 100 by a user's user input unit manipulation.
  • the user input unit generates input data input by a user for controlling the operation of the mobile device 100.
  • the user input unit may include a keypad, a keyboard, a dome switch, a touch pad (static / capacitance), a jog wheel, a jog switch, a finger mouse, and the like.
  • the touch pad forms a mutual layer structure with the display unit, this may be referred to as a touch screen.
  • the user input unit may further include a voice input module for receiving a voice of the user and a voice recognition module for determining the meaning of the voice of the user, and input the length measured by the user to the mobile device 100 through voice. have.
  • a desired distance between vertices 400 is input through the user input unit.
  • a user inputs the vertex distance 400 to obtain the second image by arranging the spectacle lens 300 through a user input unit.
  • the mobile device 100 calculates a length in which the measured length appears on the image at the input intervertebral distance 400 based on the characteristics (internal parameters) of the camera. Thereafter, the mobile device 100 displays a guideline corresponding to the calculated length on the display unit.
  • the acquiring of the vertex distance 400 by the mobile device 100 may include disposing the second image at the same distance from the camera as the spectacle lens 300 and spaced apart from the spectacle lens 300. Measuring the length of the reference body (500) in the second image to include the reference body (500) of the reference length; And calculating a distance between vertices 400 by comparing the measured length with the reference length.
  • the reference body 500 refers to an object having a predetermined length. For example, in the case of a credit card, since a standard is determined and all the cards correspond to a width of 85mm and a length of 54mm, when the card is selected as the reference body 500, the object may not be measured.
  • the reference body 500 is spaced apart from the camera at the same distance as the spectacle lens 300 so as to be spaced apart from the spectacle lens 300 to obtain the second image, and the reference body in the second image. Measure the length of 500. Thereafter, the mobile device 100 may calculate the distance between the vertices 400 by comparing the measured length with the reference length based on the characteristics (internal parameters) of the camera. In addition, by storing the size of the reference body 500, the various standards are determined in the mobile device 100 (or application), by selecting the reference body 500 desired by the user, by using the reference body 500 The vertex distance 400 may be measured.
  • the obtaining of the inter-vehicle distance 400 by the mobile device 100 may include: receiving, by the mobile device 100, the horizontal or vertical actual length of the spectacle lens 300; Measuring a horizontal or vertical length of the spectacle lens 300 in the second image; And calculating a distance between vertices 400 by comparing the measured length with the measured length.
  • the mobile device 100 receives the horizontal or vertical measurement length of the spectacle lens 300.
  • the mobile device 100 may provide an interface for inputting a length value measured by the user, and input the measured horizontal or vertical length to the mobile device 100 by a user's user input unit manipulation. Thereafter, the mobile device 100 measures the horizontal or vertical length of the spectacle lens 300 in the second image.
  • the mobile device 100 may measure the distance between the vertices 400 by comparing the measured length with the measured length based on the characteristics (internal parameters) of the camera. Through this, the vertex distance 400 may be calculated even if there is no other reference body 500 by only measuring and inputting the horizontal or vertical length of the spectacle lens 300 (or glasses).
  • the mobile device 100 such as a smart phone is also provided with various length measurement applications such as an application that provides an actual scale on the screen to measure the actual length, so that the mobile device 100 without any additional device or object. The length measurement can be performed simply.
  • the mobile device 100 may further include transmitting the reference figure 200 to a device having a display through wireless communication.
  • the reference figure 200 may be displayed on another device having a display to measure the frequency of the spectacle lens 300. That is, when the mobile device 100 and the device having the display are connected to the same wireless communication network, the mobile device 100 is wirelessly connected to the device having the display connected to the same wireless communication network as the mobile device 100.
  • the reference figure 200 transmitted through communication and received on the display of the device may be displayed.
  • a user may connect to a Wi-Fi network using a smartphone, which is the user's mobile device 100, and a device having a display such as a computer or a television in the home may also be connected to the same Wi-Fi network.
  • An application (or software) is executed to measure the frequency of the spectacle lens 300 through the smart phone, and the reference figure 200 transmitted to another device through wireless communication or using the reference figure 200 in the form of printed matter in the application. ) You can choose to use.
  • presenting the devices connected to the same wireless communication network, and receiving the user's device selection can transmit the reference figure 200 to the device. have.
  • the device receiving the reference figure 200 may display the image on a screen.
  • a frequency measuring process of the spectacle lens 300 may be performed by using the displayed reference figure 200 image.
  • the mobile device 100 and the display may include software (application) that can be connected to the same external server. It can be installed in the device and the reference figure can be transmitted via wireless communication. Through this, even if a user does not have a printer or does not have a printed reference figure 200, the spectacle lens 300 can be measured using another device having the display.
  • the method may further include displaying a guideline on a display unit of the mobile device 100 before acquiring the first image.
  • the guideline is a figure similar to the reference figure 200, and serves to allow the reference figure 200 to be positioned at the same position in the image when the first or second image is acquired.
  • the reference figure 200 is a diagram including at least one line radiated at the same angular interval from the center as in FIG. 3, the guideline is from the center at the same angular interval as the diagram. It may be in a form including a radiating line.
  • the first and second images may be captured by the camera in a state where the guideline and the reference figure 200 become lines.
  • the reference figure 200 in the first or second image is disposed at the same position, it is possible to easily identify the lines in the first and second images to calculate the length ratio during the magnification calculation. It works.
  • the camera may automatically acquire the first image or the second image. That is, the mobile device 100 recognizes that the reference figure 200 and the guideline coincide with each other or are in the same line to automatically capture the first or second image.
  • the spectacle lens can be easily solved by solving a problem in which it is difficult to match the guideline with the reference figure 200 due to hand shake.
  • the frequency of 300 can be measured.
  • the spectacle lens frequency measuring method using the mobile device according to the embodiment of the present invention described above may be implemented as a program (or an application) to be executed in combination with a computer which is hardware and stored in a medium.
  • the above-described program includes C, C ++, JAVA, machine language, etc. which can be read by the computer's processor (CPU) through the computer's device interface so that the computer reads the program and executes the methods implemented as the program.
  • Code may be coded in the computer language of. Such code may include functional code associated with a function or the like that defines the necessary functions for executing the methods, and includes control procedures related to execution procedures necessary for the computer's processor to execute the functions according to a predetermined procedure. can do.
  • the code may further include memory reference code for additional information or media required for the computer's processor to execute the functions at which location (address address) of the computer's internal or external memory should be referenced. have.
  • the server 100 may further include a communication related code for how to communicate with the server, what information or media should be transmitted and received during communication.
  • the stored medium is not a medium for storing data for a short time such as a register, a cache, a memory, but semi-permanently, and means a medium that can be read by the device.
  • examples of the storage medium include, but are not limited to, a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the program may be stored in various recording media on various servers 100 to which the computer can access or various recording media on the computer of the user.
  • the media may also be distributed over network coupled computer systems so that the computer readable code is stored in a distributed fashion.
  • the user can measure the frequency of the spectacle lens 300 without purchasing an expensive lens meter.
  • the user can eliminate the inconvenience of having to visit the ophthalmologist or optician directly to measure the frequency of the spectacle lens (300). For example, if you do not remember whether your old glasses are the same as the current eyeglasses, you can use the present invention to measure and compare the old eyeglasses with the current eyeglasses to determine whether they are suitable to wear. have.
  • the frequency of the spectacle lens 300 can be measured simply by capturing the first image and the second image including the reference figure 200 with the mobile device 100 possessed by the user.
  • the frequency of 300 can be measured.
  • the user may perform frequency measurement of the spectacle lens 300 anywhere with only the reference figure 200 to be photographed with the mobile device 100 regardless of the location.
  • the user's lens power can be easily measured using the mobile device 100 such as a smart phone, the user can order glasses online.
  • the degree of eyeglasses could not be measured, so only the frames of the eyeglasses could be distributed online.
  • adults with less change in vision can fit the glasses by knowing the frequency of the existing spectacle lens 300 without having to measure the vision again, the lens by measuring the frequency of the conventional spectacle lens 300 to wear through the present invention Glasses equipped with can be distributed online.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Eyeglasses (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명은 모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램에 관한 것이다. 본 발명의 일실시예에 따른 모바일 디바이스를 이용한 렌즈 도수 측정방법은, 상기 모바일 디바이스의 카메라를 이용하여 상기 기준도형이 촬상된 제1이미지를 획득하는 단계(S100); 상기 안경렌즈를 상기 모바일 디바이스와 상기 기준도형 사이에 배치하고, 상기 카메라를 이용하여 상기 안경렌즈를 통해 보이는 상기 기준도형이 촬상된 제2이미지를 획득하는 단계(S200); 상기 제1이미지와 상기 제2이미지를 비교하여, 상기 제1이미지에 대한 상기 제2이미지의 배율을 산출하는 단계(S300); 상기 산출된 배율 및 미리 정해진 곡률에 기초하여, 상기 안경렌즈의 도수에 대한 1차계산을 수행하는 단계(S400); 및 상기 1차계산 된 도수가 포함된 범위에 적용되는 곡률을 파악하고, 상기 곡률 및 상기 배율에 기초하여 상기 안경렌즈의 도수에 대한 2차계산을 수행하는 단계(S500);를 포함한다. 본 발명에 따르면, 사용자 본인의 렌즈 도수를 스마트폰 등의 모바일 디바이스를 이용하여 간편하게 측정할 수 있으므로, 온라인을 통해 안경주문을 할 수 있다. 기존에는 안경 도수를 측정할 수 없어서 안경테만을 온라인으로 유통할 수 있었다. 그러나 시력의 변화가 적은 성인들은 시력을 다시 측정할 필요 없이 기존 안경렌즈의 도수를 알면 안경을 맞출 수 있으므로, 본 발명을 통해 기존에 착용하는 안경렌즈의 도수를 측정함으로써 렌즈가 구비된 안경을 온라인으로 유통할 수 있다.

Description

모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램
본 발명은 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법에 관한 것으로, 보다 자세하게는 모바일 디바이스와 기준도형을 이용하여 안경렌즈를 통과하지 않은 이미지와 안경렌즈를 통과한 이미지를 비교하여 안경렌즈의 도수를 측정하는 방법에 관한 것이다.
렌즈의 굴절력을 측정하는 광학 기기를 렌즈 미터(Lens Meter)라 하고, 이러한 렌즈 미터로는 수동으로 렌즈의 굴절력을 측정하는 수동식 렌즈 미터와 자동으로 렌즈의 굴절력을 측정하는 자동식 렌즈 미터가 있다. 렌즈 미터와 관련하여, '광학계 특성을 이용한 렌즈 굴절력 측정 방법'에 대한 공개특허 제10-2012-0076800호가 있다. 상기 공개특허는 렌즈 굴절력 측정 장치인 렌즈 미터를 통하여 렌즈의 굴절력 측정 시 광원의 일부가 손실되어도 광학계 특성을 이용하여 렌즈의 굴절력을 정확히 측정할 수 있도록 하는 렌즈 측정 광학계에서의 광학계 특성을 이용한 렌즈 굴절력 측정방법이다. 상기 자동식 또는 수동식 렌즈미터는 가격이 비싸서 일반인들이 보유하기 어려운 문제가 있다.
또한, 종래 렌즈미터는 사용방법이 어려워서 일반인들이 사용하기에 어려움이 있다. 종래 수동식 렌즈 미터의 경우, 시각적 관측 장치를 이용하여 광학계로 측정되어 표시되는 눈금을 조절하며 그 특성을 읽어내는 방법을 취하고 있는데, 이러한 수동식 측정 방법은 측정자가 렌즈 미터를 능숙하게 사용하기까지 일정 기간의 교육 및 훈련이 필요하다.
또한, 대부분의 사람들은 본인이 착용하는 안경의 렌즈도수를 알지 못한다. 따라서 기존에 안경렌즈의 도수를 측정하기 위해서는 이러한 렌즈미터를 구비한 안경점이나 안과에 방문하여야만 하는 불편함이 있었다.
또한, 이러한 안경점 또는 안과에 방문하여야만 도수를 측정할 수 있는 문제점에 의해, 안경의 구입도 안경점에 방문하여서만 가능한 불편함이 있었다. 이에 따라, 안경점이 멀리 떨어져 있는 지역에 사는 사람은 안경렌즈의 도수 측정과 안경의 구입에 어려움을 겪는다.
사용자가 안과나 안경점에 직접 방문하지 않고, 사용자가 보유한 카메라를 구비한 모바일 디바이스를 이용하여 간편하게 안경렌즈의 도수를 측정할 수 있는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법을 제공하고자 한다.
본 발명의 일실시예에 따른 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법은, 상기 모바일 디바이스가 상기 기준도형이 촬상된 제1이미지를 획득하는 단계; 상기 안경렌즈를 상기 모바일 디바이스와 상기 기준도형 사이에 배치하여 상기 기준도형이 촬상된 제2이미지를 획득하는 단계; 상기 제1이미지 및 상기 제2이미지 내 상기 기준도형의 크기를 비교하여, 상기 제1이미지에 대한 상기 제2이미지의 배율을 산출하는 단계; 상기 산출된 배율 및 미리 정해진 제1곡률을 렌즈공식에 적용하여, 상기 안경렌즈의 제1도수를 산출하는 단계; 및 상기 제1도수가 포함된 도수범위에 대응하는 제2곡률을 파악하고, 상기 제2곡률 및 상기 배율을 상기 렌즈공식에 적용하여 제2도수를 산출하는 단계;를 포함하며, 상기 제2이미지는 상기 안경렌즈 내에 배치된 상기 기준도형을 촬상한 이미지이다.
또한, 상기 모바일 디바이스가 정점간거리를 획득하는 단계;를 더 포함하고, 상기 정점간거리는 상기 모바일 디바이스의 카메라로부터 안경렌즈까지의 거리이며, 상기 정점간거리 획득단계는, 상기 제1도수 산출단계 이전에 수행되며, 상기 제1도수 산출단계 및 상기 제2도수 산출단계는, 획득된 상기 정점간거리를 상기 렌즈공식에 적용하는 것을 특징으로 할 수 있다.
또한, 상기 정점간거리 획득단계는, 상기 모바일 디바이스에 포함된 센서를 이용한 비접촉식 거리 측정방식으로 상기 정점간거리를 측정하는 것을 특징으로 할 수 있다.
또한, 상기 정점간거리 획득단계는, 상기 모바일 디바이스가 상기 안경렌즈의 가로 또는 세로 길이를 입력받는 단계; 상기 모바일 디바이스가 특정한 상기 정점간거리을 입력받는 단계; 및 상기 정점간거리에서 상기 가로 또는 세로 길이에 상응하는 가이드라인을 화면 상에 표시하는 단계;를 포함할 수 있다.
또한, 상기 제2이미지는, 상기 모바일 디바이스로부터 상기 안경렌즈와 동일한 거리에 위치하고 상기 안경렌즈와 이격되어 배치된, 기준길이를 갖는 기준체를 포함하고, 상기 정점간거리 획득단계는, 상기 제2이미지 상에 나타나는 상기 기준체의 길이를 측정하는 단계; 및 상기 측정된 길이와 상기 기준길이 간의 비율을 바탕으로 상기 정점간거리를 산출하는 단계;를 포함할 수 있다.
또한, 상기 정점간거리를 획득하는 단계는, 상기 모바일 디바이스가 상기 안경렌즈의 가로 또는 세로 실측길이를 입력받는 단계; 상기 제2이미지 상에 나타나는 상기 안경렌즈의 가로 또는 세로의 길이를 측정하는 단계; 및 상기 측정된 길이와 상기 실측길이를 비교하여 상기 정점간거리를 산출하는 단계;를 포함할 수 있다.
또한, 상기 기준도형은, 중심으로부터 동일한 각도 간격으로 방사되는 적어도 하나 이상의 선을 포함하고, 상기 배율 산출 단계는, 상기 제1이미지 및 상기 제2이미지 내 동일한 위치에 배치된 상기 선의 길이를 비교하여, 길이비율을 계산하는 것을 특징으로 할 수 있다.
또한, 상기 배율 산출 단계는, 하나 이상의 각각의 상기 선에 대한 하나 이상의 상기 길이비율을 산출하는 단계; 및 상기 하나 이상의 길이비율을 평균 계산하여 상기 배율로 적용하는 단계;를 포함할 수 있다.
또한, 상기 제1이미지를 획득하기 전, 상기 모바일 디바이스가 무선통신을 통해 디스플레이를 구비한 외부디바이스로 상기 기준도형을 전송하는 단계;를 더 포함할 수 있다.
또한, 상기 제1이미지를 획득하기 전, 상기 모바일 디바이스의 화면 상에 가이드라인을 표시하는 단계;를 더 포함하고, 상기 제1이미지 및 상기 제2이미지는 상기 가이드라인과 상기 기준도형의 외곽선을 일치시킨 상태에서 촬상된 이미지일 수 있다.
또한, 상기 기준도형의 외곽선과 상기 가이드라인이 일치하는 경우, 상기 모바일 디바이스가 상기 제1이미지 또는 상기 제2이미지를 자동으로 획득하는 것을 특징으로 할 수 있다.
상기와 같은 본 발명에 따르면, 아래와 같은 다양한 효과들을 가진다.
첫째, 본 발명을 통해 값비싼 렌즈미터를 구입하지 않고도 사용자가 안경렌즈의 도수를 측정할 수 있다. 또한, 본 발명을 통해 사용자는 안경렌즈의 도수를 측정하기 위해서 안과나 안경점에 직접 방문해야 하는 불편함을 해소할 수 있다.
둘째, 사용자가 보유한 모바일 디바이스로 기준도형을 포함한 제1이미지 및 제2이미지를 촬상하는 것만으로 안경렌즈의 도수를 측정할 수 있어서, 쉽고 간편하고 사용자가 안경렌즈의 도수를 측정할 수 있다. 또한, 사용자는 장소에 관계없이 모바일 디바이스와 촬상할 기준도형만 가지고 있으면 어디에서나 안경렌즈의 도수 측정을 수행할 수 있다.
셋째, 사용자 본인의 렌즈 도수를 스마트폰 등의 모바일 디바이스를 이용하여 간편하게 측정할 수 있으므로, 온라인을 통해 안경주문을 할 수 있다. 기존에는 안경 도수를 측정할 수 없어서 안경테만을 온라인으로 유통할 수 있었다. 그러나 시력의 변화가 적은 성인들은 시력을 다시 측정할 필요 없이 기존 안경렌즈의 도수를 알면 안경을 맞출 수 있으므로, 본 발명을 통해 기존에 착용하는 안경렌즈의 도수를 측정함으로써 렌즈가 구비된 안경을 온라인으로 유통할 수 있다.
도 1은 본 발명의 일실시예에 따른 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법의 순서도이다.
도 2는 본 발명의 일실시예에 따라 모바일 디바이스를 이용하여 안경렌즈의 도수를 측정할 때, 모바일 디바이스, 안경렌즈 및 기준도형이 순서대로 배치된 배치도이다.
도 3는 본 발명의 일실시예에 따른 기준도형의 일 형태인 중심으로부터 동일한 각도 간격으로 방사되는 선을 포함하는 다이어그램이다.
도 4는 본 발명의 일실시예에 따른 카메라가 획득한 제1이미지의 예시도면이다.
도 5는 본 발명의 일실시예에 따른 안경렌즈와 동일한 거리에 위치한 기준체를 포함하는 제2이미지의 예시도면이다.
도 6는 본 발명의 일실시예에 따른 안경렌즈의 도수에 따른 최적 곡률의 예시표이다.
도 7는 본 발명의 일실시예에 따른 배율, 정점간거리 또는 곡률의 변화에 따라 안경렌즈의 도수를 산출한 예시표이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
도 1은 본 발명의 일실시예에 따른 모바일 디바이스(100)를 이용한 안경렌즈(300)의 도수 측정방법의 순서도이다. 도 2는 본 발명의 일실시예에 따라 모바일 디바이스(100)를 이용하여 안경렌즈(300)의 도수를 측정할 때, 모바일 디바이스(100), 안경렌즈(300) 및 기준도형(200)이 순서대로 배치된 배치도이다. 도 3는 본 발명의 일실시예에 따른 기준도형(200)의 일 형태인 중심으로부터 동일한 각도 간격으로 방사되는 선을 포함하는 다이어그램이다. 도 4는 본 발명의 일실시예에 따른 카메라가 획득한 제1이미지의 예시도면이다. 도 5는 본 발명의 일실시예에 따른 안경렌즈(300)와 동일한 거리에 위치한 기준체(500)를 포함하는 제2이미지의 예시도면이다. 도 6는 본 발명의 일실시예에 따른 안경렌즈(300)의 도수에 따른 최적 곡률의 예시표이다. 도 7은 본 발명의 일실시예에 따른 배율, 정점간거리(400) 또는 곡률의 변화에 따라 안경렌즈(300)의 도수를 산출한 예시표이다.
이하, 도면을 참조하여 본 발명의 실시예들에 따른 모바일 디바이스(100)를 이용한 렌즈 도수 측정방법에 대해 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 모바일 디바이스(100)를 이용한 안경렌즈(300)의 도수 측정방법의 순서도이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 모바일 디바이스(100)를 이용한 렌즈 도수 측정방법은, 상기 모바일 디바이스(100)의 카메라를 이용하여 상기 기준도형(200)이 촬상된 제1이미지를 획득하는 단계(S100); 상기 안경렌즈(300)를 상기 모바일 디바이스(100)와 상기 기준도형(200) 사이에 배치하고, 상기 카메라를 이용하여 상기 안경렌즈(300)를 통해 보이는 상기 기준도형(200)이 촬상된 제2이미지를 획득하는 단계(S200); 상기 제1이미지와 상기 제2이미지를 비교하여, 상기 제1이미지에 대한 상기 제2이미지의 배율을 산출하는 단계(S300); 상기 산출된 배율 및 미리 정해진 곡률에 기초하여, 상기 안경렌즈(300)의 도수에 대한 1차계산을 수행하는 단계(S400); 및 상기 1차계산 된 도수가 포함된 범위에 적용되는 곡률을 파악하고, 상기 곡률 및 상기 배율에 기초하여 상기 안경렌즈(300)의 도수에 대한 2차계산을 수행하는 단계(S500);를 포함한다.
안경렌즈(300)의 도수를 계산하기 위해서는 안경렌즈(300)의 배율계산수식을 이용한다. 안경렌즈(300)의 배율계산수식은 아래와 같다.
Figure PCTKR2015009984-appb-I000001
위 수식에서 SM은 배율(Percentage Spectacle Magnification), Df는 상기 안경렌즈(300)의 전면곡률(Front base curve, 이하 곡률이라고 한다), D는 상기 안경렌즈(300)의 도수(The power of glass lens), h는 정점간거리(400)(vertex distance (미터 단위)), t 는 상기 안경렌즈(300)의 두께 (thickness (미터 단위)), n은 상기 안경렌즈(300)의 굴절률 (index of material)에 해당한다. 상기 곡률 및 상기 도수 값은 디옵터(Diopter)에 해당한다. 상기 디옵터는 렌즈의 굴절력을 나타내는 말로서, 초점 거리(미터 단위)의 역수이다.
또한, 상기 배율은, 렌즈가 사이에 배치되지 않은 상태에서 획득한 이미지(retinal image of a remote object in the uncorrected eye)를 제1이미지라고 하고, 렌즈가 사이에 배치된 상태에서 획득한 이미지(retinal image size of a remote object in the corrected eye)를 제2이미지라고 할 때, 상기 제1이미지에 대한 상기 제2이미지의 크기 비율(배율)을 말한다. 또한, 상기 정점간거리(400)는, 안경렌즈(300)의 후정점에서 각막정점 사이의 거리를 말하며, 모바일 디바이스(100)의 카메라를 이용하는 경우에는 상기 카메라로부터 상기 안경렌즈(300)의 후면까지 거리로 할 수 있다.
사용자의 안경 렌즈 도수를 계산하여야 하므로, 상기 안경렌즈(300)의 배율계산수식을 D(도수)에 대해서 정리하여 아래와 같이 수식을 나타낼 수 있다.
Figure PCTKR2015009984-appb-I000002
상기 수식2에서 배율을 계산하기 위해 필요한 독립변수는 상기 배율, 상기 굴절률, 상기 두께, 상기 곡률 및 상기 정점간거리(400)이다. 상기 안경렌즈(300)는 표준규격에 따라서 제작되므로, 상기 표준규격의 허용도수편차 범위 내에 도수 계산값이 변하는 변수는 상수로 고정시킬 수 있다. 예를 들어, 상기 도수를 측정하고자 하는 안경렌즈(300)가 ISO8990 표준으로 정의한 허용도수편차 0.12 Diopter 범위 내에서 생산되었다고 가정하면, 허용도수편차인 0.12 Diopter 보다 작은 범위 내에서 도수 값의 변화를 발생시키는 요소들은 상수로 고정시킬 수 있다. 이에 따르면, 상기 굴절률 및 상기 두께는 0.12 Diopter 범위 내에서 도수를 변화시키므로, 상수로 고정시킬 수 있다. 따라서 사용자의 모바일 디바이스(100)를 이용하여 사용자의 안경렌즈(300) 도수를 측정하기 위해서는, 상기 모바일 디바이스(100)가 상기 안경렌즈(300)의 배율, 곡률 및 정점간거리(400)를 측정하여야 한다.
먼저, 상기 모바일 디바이스(100)의 카메라를 이용하여 상기 기준도형(200)이 촬상된 제1이미지를 획득한다(S100). 상기 카메라는 상기 모바일 디바이스(100)에 구비되어 전방의 영상 또는 이미지를 획득하는 카메라를 말하고, 상기 모바일 디바이스(100)는 카메라를 구비하는 스마트폰, 스마트워치, 글라스형 웨어러블 디바이스 또는 디지털카메라 등의 다양한 디바이스에 해당될 수 있다. 상기 기준도형(200)은 상기 안경렌즈(300)의 배율 측정을 위해 사용하는 다양한 형태의 도형을 말한다. 상기 제1이미지는 상기 안경렌즈(300)가 사이에 배치되지 않은 상태에서 상기 기준도형(200)을 획득한 이미지이다. 즉, 상기 카메라가 상기 기준도형(200)과 상기 모바일 디바이스(100) 사이에 상기 도수를 측정할 안경을 배치하지 않은 상태에서 상기 기준도형(200)을 포함하는 전방의 이미지를 획득한다.
상기 안경렌즈(300)를, 도 2에서와 같이, 상기 모바일 디바이스(100)와 상기 기준도형(200) 사이에 배치하고, 상기 카메라를 이용하여 상기 안경렌즈(300)를 통해 보이는 상기 기준도형(200)이 촬상된 제2이미지를 획득한다(S200). 상기 제2이미지는, 상기 안경렌즈(300)가 상기 모바일 디바이스(100)와 상기 기준도형(200) 사이에 배치된 상태에서 상기 기준도형(200)을 포함하여 획득한 이미지이다. 즉, 상기 카메라가 상기 기준도형(200)과 상기 모바일 디바이스(100) 사이에 상기 도수를 측정할 안경을 배치하여 기준도형(200)을 포함하는 전방의 이미지를 획득한다. 상기 제2이미지는 상기 제1이미지를 획득한 상기 모바일 디바이스(100)로부터 상기 기준도형(200)까지의 거리와 동일한 거리에서 획득되어야 한다. 상기 제1이미지를 획득할 때와 동일한 위치에서 상기 제2이미지를 획득하는 방법으로, 예를 들어, 상기 모바일 디바이스(100)가 상기 제1이미지를 획득한 후에 바로 이어서 상기 안경렌즈(300)를 상기 기준도형(200)과 상기 모바일 디바이스(100) 사이에 배치하여 제2이미지를 획득할 수 있다. 상기 모바일 디바이스(100)로부터 상기 기준도형(200)까지의 거리는, 상기 제1이미지와 제2이미지를 획득하는 경우에, 상기 기준도형(200) 전체가 카메라 내에 포함되는 거리가 적절하다. 또한, 상기 안경렌즈(300)가 배치되는 위치는, 상기 안경렌즈(300) 내에 상기 기준도형(200)이 모두 포함되도록 하는 위치가 적절하다.
상기 제1이미지와 상기 제2이미지를 비교하여, 상기 제1이미지에 대한 상기 제2이미지의 배율을 산출한다(S300). 즉, 상기 모바일 디바이스(100)가 상기 제1이미지와 제2이미지 내에 포함된 상기 기준도형(200) 내 동일한 부분을 상호 비교하여 배율을 계산한다. 상기 배율은, 상기 제1이미지에 대한 상기 제2이미지의 비율이므로, 상기 제2이미지에서 측정된 크기를 상기 제1이미지에서 측정된 크기로 나누어서 계산할 수 있다.
상기 제1이미지와 상기 제2이미지를 비교하여 상기 배율을 산출하는 방법의 일실시예로, 상기 기준도형(200)이, 도 3에서와 같이, 중심으로부터 동일한 각도 간격으로 방사되는 적어도 하나 이상의 선을 포함하는 다이어그램인 경우, 상기 배율을 상기 제1이미지와 상기 제2이미지에 포함된 동일한 위치의 상기 선 길이의 비율로 계산할 수 있다. 예를 들어, 상기 제1이미지에 해당하는 도4a에서 모바일 디바이스(100)가 측정한 하나의 선길이와 상기 제2이미지에 해당하는 도 5에서 모바일 디바이스(100)가 측정한 동일한 위치의 선길이를 비교하여, 상기 배율을 산출할 수 있다.
또한, 상기 제1이미지와 상기 제2이미지를 비교하여 상기 배율을 산출하는 방법의 일실시예로, 상기 다이어그램 내에 포함된 복수 개의 상기 선 길이의 비율을 평균 계산하여, 평균값을 상기 배율로 적용할 수 있다. 상기 제1이미지 및 상기 제2이미지 내에 포함된 상기 다이어그램의 특정 선 길이만을 비교하여 상기 배율을 측정하면, 상기 모바일 디바이스(100)의 기울어짐 등의 요인에 의해서 오차가 크게 발생할 수 있다. 따라서 복수 개의 선길이 비율을 평균하여 상기 배율로 적용하여 발생할 수 있는 오차를 줄일 수 있다.
상기 산출된 배율 및 미리 정해진 곡률에 기초하여, 상기 안경렌즈(300)의 도수에 대한 1차계산을 수행한다(S400). 상기 1차계산은 상기 안경렌즈(300)의 곡률을 파악하기 위해서 수행된다. 상기 곡률을 직접 측정할 수 없으므로, 도 6에서와 같이, 업계에서 예시한 표를 바탕으로 상기 안경렌즈(300)의 도수에 따라 적용된 최적의 곡률을 파악하는 방법을 적용한다. 상기 수식2에 따른 도수 계산 결과의 예시인 도 7에서와 같이, 상기 배율 및 상기 정점간거리(400)에 비해서 상기 곡률은 상기 도수에 미치는 영향이 적으므로, 소정의 곡률을 계산식에 적용하여도 상기 도 6의 예시표에서 도수가 포함되는 범위는 달라지지 않는다. 이를 이용하기 위해서, 상기 소정의 곡률 및 상기 산출된 배율을 적용하여 도수계산을 수행한다. 예를 들어, 상기 소정의 곡률로 기본값 4.0 디옵터를 적용하여, 대략적인 사용자가 측정하고자 하는 안경렌즈(300)의 도수를 산출할 수 있다.
상기 1차계산 된 도수가 포함된 범위에 적용되는 곡률을 파악하고, 상기 곡률 및 상기 배율에 기초하여 상기 안경렌즈(300)의 도수에 대한 2차계산을 수행한다 (S500). 먼저, 상기 모바일 디바이스(100)는 상기 1차계산 된 도수를 도 6에서 제시된 예시표에 적용하여 최적의 곡률을 파악한다. 그 후, 상기 최적의 곡률과 상기 산출된 배율을 상기 수식2에 적용하여 도수 계산(2차계산)을 수행하여, 상기 안경렌즈(300)의 도수를 파악한다.
또한, 상기 모바일 디바이스(100)가 정점간거리(400)를 획득하는 단계;를 더 포함하고, 상기 1차계산 및 2차계산에 상기 정점간거리(400)를 적용하는 것을 특징으로 하며, 상기 정점간거리(400)는, 상기 모바일 디바이스(100)의 카메라로부터 상기 안경렌즈(300)까지의 거리인 것으로 할 수 있다. 상기 수식2의 독립변수에 정점간거리(400)가 포함되어 있으므로, 정점간거리(400)를 획득하여 상기 1차계산 및 2차계산 시에 상기 수식2에 대입한다.
상기 모바일 디바이스(100)를 이용하여 상기 정점간거리(400)를 측정하는 방식으로는 다양한 방식이 적용될 수 있다. 먼저, 상기 정점간거리(400) 측정으로는 상기 모바일 디바이스(100)에 구비된 센서를 이용하는 방식을 적용할 수 있다. 상기 모바일 디바이스(100)가 구비한 다양한 센서에 따라 다양한 비접촉 거리 측정방법을 적용할 수 있다. 사용하는 센서에 따라서 적외선 방식, 초음파방식, 및 영상처리방식으로 분류할 수 있다.
상기 적외선방식에는 반사광측정방식과 삼각측정방식으로 나눌 수 있다. 상기 반사광측정방식은 900nm이상의 파장을 갖는 적외선 LED를 이용하여 적외선을 방사하고, 물체에 반사되어 되돌아오는 적외선 양을 측정하여 거리를 측정하는 방식이다. 반사량은 거리 제곱에 반비례하므로, 반사량이 많으면 센서와 물체와의 거리는 가까운 것이며, 반대로 반사량이 적으면 거리는 멀리 떨어져 있는 것으로 파악할 수 있다.
상기 초음파방식은 초음파 송신기에서 초음파를 발사한 후, 수신기에 반사된 초음파가 들어올 때까지의 시간을 측정하여 초당 340m 진행하는 공식에 넣어 센서와 물체까지의 거리를 측정할 수 있다. 상기 영상처리방식은 카메라로부터 들어오는 영상을 통해 영상 내에서 거리를 측정하는 방식이다. 영상에서 물리적인 거리를 측정하기 위해서는 카메라의 렌즈와 센서 간의 관계를 파악하는 카메라 내부 파라미터(intrinsic parameters)를 파악해야한다. 이와 같은 파라미터를 파악하는 과정을 카메라 캘리브레이션(camera calibration)이라고 하며, 3차원 또는 2차원의 물체를 이용해서 여러 장의 영상 또는 이미지를 통해서 수행할 수 있다. 다만, 상기 모바일 디바이스(100)에 구비된 센서를 이용하는 방식은 이에 한정되지 아니하고, 상기 모바일 디바이스(100)가 도플러레이터 또는 거리센서를 구비한 경우에 이를 이용하여 상기 정점간거리(400)를 측정하는 방식 등 다양한 방식을 적용할 수 있다.
또한, 상기 모바일 디바이스(100)가 정점간거리(400)를 획득하는 단계는, 상기 모바일 디바이스(100)가 상기 안경렌즈(300)의 가로 또는 세로 길이를 입력받는 단계; 원하는 정점간거리(400) 값을 사용자입력부를 통해 입력받는 단계; 및 상기 정점간거리(400)에서 상기 길이에 상응하는 가이드라인을 상기 디스플레이부상에 표시하는 단계;를 포함할 수 있다. 즉, 상기 안경렌즈(300)(또는 안경테)의 실측길이가 사용자가 원하는 정점간거리(400)에서 이미지 획득 시 나타나는 길이를 산출하고, 상기 디스플레이부에 가이드라인으로 표시하여 상기 정점간거리(400)를 맞추어주는 방식이다.
먼저, 상기 모바일 디바이스(100)가 상기 안경렌즈(300)(또는 안경)의 가로 또는 세로 길이를 입력받는다. 사용자가 측정한 값을 입력할 수 있는 인터페이스를 제공하여 사용자의 사용자입력부 조작으로 상기 측정된 가로 또는 세로 길이를 상기 모바일 디바이스(100)에 입력할 수 있다. 상기 사용자입력부는 사용자가 모바일 디바이스(100)의 동작 제어를 위하여 입력하는 입력 데이터를 발생시킨다. 사용자입력부는 키패드(key pad), 키보드, 돔 스위치(dome switch), 터치 패드(정압/정전), 조그 휠, 조그 스위치, 핑거 마우스 등으로 구성될 수 있다. 특히, 터치 패드가 상기 디스플레이부와 상호 레이어 구조를 이룰 경우, 이를 터치스크린(touch screen)이라 부를 수 있다. 또한, 상기 사용자입력부는 사용자의 음성을 받는 음성입력모듈과 사용자의 음성의 의미를 파악하는 음성인식모듈을 더 포함하여, 사용자가 측정한 상기 길이를 음성을 통해 모바일 디바이스(100)에 입력할 수 있다.
그 후, 원하는 정점간거리(400) 값을 상기 사용자입력부를 통해 입력받는다. 사용자가 상기 안경렌즈(300)를 배치하여 상기 제2이미지를 획득하고자 하는 상기 정점간거리(400)를 사용자입력부를 통해 입력한다.
그 후, 상기 모바일 디바이스(100)는 상기 카메라의 특성(내부 파라미터)을 바탕으로, 상기 입력된 정점간거리(400)에서 상기 실측길이가 이미지 상에 나타나는 길이를 산출한다. 그 후, 상기 모바일 디바이스(100)는 상기 산출된 길이에 상응하는 가이드라인을 상기 디스플레이부상에 표시한다.
또한, 상기 모바일 디바이스(100)가 정점간거리(400)를 획득하는 단계는, 상기 제2이미지가 상기 카메라로부터 상기 안경렌즈(300)와 동일한 거리에 위치하고, 상기 안경렌즈(300)와 이격되어 배치된 기준길이의 기준체(500)를 포함하도록 하여, 상기 제2이미지 내의 상기 기준체(500)의 길이를 측정하는 단계; 및 상기 측정된 길이와 상기 기준길이를 비교하여 정점간거리(400)를 계산하는 단계;를 포함할 수 있다. 상기 기준체(500)는 길이가 일정하게 정해져있는 물체를 말한다. 예를 들어, 신용카드의 경우, 규격이 정해져 있어 모든 카드가 가로 85mm, 세로54mm에 해당하므로, 상기 카드를 기준체(500)로 선택하면 상기 물체의 실측을 하지 않아도 된다.
먼저, 상기 기준체(500)를 상기 카메라로부터 상기 안경렌즈(300)와 동일한 거리에 상기 안경렌즈(300)와 이격되어 배치되도록 하여 상기 제2이미지를 획득하고, 상기 제2이미지 내의 상기 기준체(500)의 길이를 측정한다. 그 후, 상기 모바일 디바이스(100)는 상기 카메라의 특성(내부 파라미터)을 바탕으로, 상기 측정된 길이와 상기 기준길이를 비교하여 정점간거리(400)를 계산할 수 있다. 또한, 다양한 규격이 정해져 있는 기준체(500)의 크기를 상기 모바일 디바이스(100)(또는 어플리케이션)에 저장해두어, 사용자가 원하는 기준체(500) 선택을 통해, 상기 기준체(500)를 이용하여 상기 정점간거리(400)의 측정을 수행할 수 있다.
또한, 상기 모바일 디바이스(100)가 정점간거리(400)를 획득하는 단계는, 상기 모바일 디바이스(100)가 상기 안경렌즈(300)의 가로 또는 세로 실측길이를 입력받는 단계; 상기 제2이미지 내 상기 안경렌즈(300)의 가로 또는 세로 길이를 측정하는 단계; 및 상기 측정된 길이와 상기 실측길이를 비교하여 정점간거리(400)를 계산하는 단계;를 포함할 수 있다. 먼저, 상기 모바일 디바이스(100)가 상기 안경렌즈(300)의 가로 또는 세로 실측길이를 입력받는다. 상기 모바일 디바이스(100)가 사용자가 측정한 길이 값을 입력할 수 있는 인터페이스를 제공하여, 사용자의 사용자입력부 조작으로 상기 측정된 가로 또는 세로 길이를 상기 모바일 디바이스(100)에 입력할 수 있다. 그 후, 상기 모바일 디바이스(100)는 상기 제2이미지 내 상기 안경렌즈(300)의 가로 또는 세로 길이를 측정한다. 그 후, 상기 모바일 디바이스(100)는 상기 카메라의 특성(내부 파라미터)을 바탕으로, 상기 측정된 길이와 상기 실측길이를 비교하여 정점간거리(400)를 측정할 수 있다. 이를 통해, 안경렌즈(300)(또는 안경)의 가로 또는 세로 길이를 측정하여 입력하는 것만으로 다른 기준체(500)가 없더라도 상기 정점간거리(400)를 계산할 수 있다. 최근 스마트폰과 같은 모바일 디바이스(100)에도 실제 길이를 측정할 수 있도록 화면상에 실제 스케일을 제공하는 어플리케이션 등의 다양한 길이측정 어플리케이션이 제공되므로, 다른 부수적인 장치나 물건없이 상기 모바일 디바이스(100)만으로 길이 측정을 수행할 수 있어 간편하다.
또한, 상기 제1이미지를 획득하기 전, 상기 모바일 디바이스(100)가 무선통신을 통해 디스플레이를 구비한 디바이스로 상기 기준도형(200)을 전송하는 단계;를 더 포함할 수 있다. 상기 기준도형(200)을 인쇄물의 형태로 이용하는 대신, 디스플레이를 구비한 다른 디바이스에 표시하여 상기 안경렌즈(300) 도수의 측정을 수행할 수 있다. 즉, 상기 모바일 디바이스(100)와 상기 디스플레이를 구비한 디바이스가 동일한 무선통신망에 연결된 경우, 상기 모바일 디바이스(100)가 상기 모바일 디바이스(100)와 동일한 무선통신망에 연결된 상기 디스플레이를 구비한 디바이스로 무선통신을 통해 전송하고, 상기 디바이스의 디스플레이상에 수신한 상기 기준도형(200)을 표시할 수 있다. 예를 들어, 가정에서 사용자의 상기 모바일 디바이스(100)인 스마트폰을 사용하는 와이파이망에 연결하고, 상기 가정 내의 컴퓨터 또는 텔레비전 등의 디스플레이를 가진 디바이스도 동일한 와이파이 망에 연결한다. 상기 스마트폰을 통해 안경렌즈(300)도수를 측정하기 위해 어플리케이션(또는 소프트웨어)를 실행하고, 상기 어플리케이션에서 인쇄물 형태의 기준도형(200) 이용 또는 무선통신을 통해 다른 디바이스로 전송된 기준도형(200) 이용을 선택할 수 있다. 상기 무선통신을 통해 다른 디바이스로 전송된 기준도형(200) 이용을 선택하는 경우, 동일한 무선통신망에 연결된 디바이스들을 제시하여 주고, 사용자의 디바이스 선택을 받아 상기 디바이스로 상기 기준도형(200)을 전송할 수 있다. 상기 기준도형(200)을 수신한 상기 디바이스는 화면상에 상기 이미지를 표시할 수 있다. 상기 표시된 기준도형(200) 이미지를 이용하여 상기 안경렌즈(300)의 도수 측정 과정을 수행할 수 있다. 또한, 상기 모바일 디바이스(100)와 상기 디스플레이를 구비한 디바이스가 동일한 무선통신망에 연결되지 않은 경우에도, 동일한 외부서버에 연결할 수 있는 소프트웨어(어플리케이션)를 상기 모바일 디바이스(100)와 상기 디스플레이를 구비한 디바이스에 설치하고 상기 기준도형을 무선통신을 통해 전송할 수 있다. 이를 통해, 사용자가 프린터를 보유하지 않거나 인쇄된 기준도형(200)을 가지고 있지 않은 경우에도 상기 디스플레이를 가진 다른 디바이스를 이용하여 안경렌즈(300) 도수 측정을 할 수 있는 효과가 있다.
또한, 상기 제1이미지를 획득하기 전, 상기 모바일 디바이스(100)의 디스플레이부에 가이드라인을 표시하는 단계를 더 포함할 수 있다. 상기 가이드라인은 상기 기준도형(200)과 닮은 도형으로, 상기 제1 또는 제2이미지 획득 시에 이미지 내 동일한 위치에 상기 기준도형(200)이 위치할 수 있도록 하는 역할을 한다. 예를 들어, 상기 기준도형(200)이, 도 3에서와 같이, 중심으로부터 동일한 각도 간격으로 방사되는 적어도 하나 이상의 선을 포함하는 다이어그램인 경우, 상기 가이드라인은 중심으로부터 상기 다이어그램과 동일한 각도 간격으로 방사되는 선을 포함하는 형태가 될 수 있다. 상기 가이드라인을 이용하여, 상기 제1 및 제2이미지는 상기 가이드라인과 상기 기준도형(200)의 선이 되는 상태에서 상기 카메라를 통해 촬상될 수 있다. 이를 통해, 상기 제1 또는 제2이미지 내의 상기 기준도형(200)이 동일한 위치에 배치되므로, 상기 배율 계산 시에 길이 비를 계산하여야 하는 상기 제1 및 제2이미지 내의 선을 용이하게 파악할 수 있는 효과가 있다.
또한, 상기 기준도형(200)의 외곽선과 상기 가이드라인이 일치하는 경우, 상기 카메라가 상기 제1이미지 또는 상기 제2이미지를 자동으로 획득하는 것을 특징으로 할 수 있다. 즉, 상기 모바일 디바이스(100)가 상기 기준도형(200)과 상기 가이드라인이 일치하거나 동일선상에 있음을 인식하여 자동으로 제1 또는 제2이미지의 촬상을 수행할 수 있다. 이를 통해, 사용자가 상기 모바일 디바이스(100)를 들고 제1 또는 제2이미지를 획득하는 경우, 손 흔들림 등으로 상기 가이드라인과 상기 기준도형(200)을 일치시키기 어려운 문제를 해결하여 간편하게 상기 안경렌즈(300)의 도수를 측정할 수 있다.
이상에서 전술한 본 발명의 일 실시예에 따른 모바일 디바이스를 이용한 안경렌즈 도수 측정방법은, 하드웨어인 컴퓨터와 결합되어 실행되기 위해 프로그램(또는 어플리케이션)으로 구현되어 매체에 저장될 수 있다.
상기 전술한 프로그램은, 상기 컴퓨터가 프로그램을 읽어 들여 프로그램으로 구현된 상기 방법들을 실행시키기 위하여, 상기 컴퓨터의 프로세서(CPU)가 상기 컴퓨터의 장치 인터페이스를 통해 읽힐 수 있는 C, C++, JAVA, 기계어 등의 컴퓨터 언어로 코드화된 코드(Code)를 포함할 수 있다. 이러한 코드는 상기 방법들을 실행하는 필요한 기능들을 정의한 함수 등과 관련된 기능적인 코드(Functional Code)를 포함할 수 있고, 상기 기능들을 상기 컴퓨터의 프로세서가 소정의 절차대로 실행시키는데 필요한 실행 절차 관련 제어 코드를 포함할 수 있다. 또한, 이러한 코드는 상기 기능들을 상기 컴퓨터의 프로세서가 실행시키는데 필요한 추가 정보나 미디어가 상기 컴퓨터의 내부 또는 외부 메모리의 어느 위치(주소 번지)에서 참조되어야 하는지에 대한 메모리 참조관련 코드를 더 포함할 수 있다. 또한, 상기 컴퓨터의 프로세서가 상기 기능들을 실행시키기 위하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버(100) 등과 통신이 필요한 경우, 코드는 상기 컴퓨터의 통신 모듈을 이용하여 원격에 있는 어떠한 다른 컴퓨터나 서버(100) 등과 어떻게 통신해야 하는지, 통신 시 어떠한 정보나 미디어를 송수신해야 하는지 등에 대한 통신 관련 코드를 더 포함할 수 있다.
상기 저장되는 매체는, 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상기 저장되는 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있지만, 이에 제한되지 않는다. 즉, 상기 프로그램은 상기 컴퓨터가 접속할 수 있는 다양한 서버(100) 상의 다양한 기록매체 또는 사용자의 상기 컴퓨터상의 다양한 기록매체에 저장될 수 있다. 또한, 상기 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장될 수 있다.
상기와 같은 본 발명에 따르면, 아래와 같은 다양한 효과들을 가진다.
첫째, 본 발명을 통해 값비싼 렌즈미터를 구입하지 않고도 사용자가 안경렌즈(300)의 도수를 측정할 수 있다. 또한, 본 발명을 통해 사용자는 안경렌즈(300)의 도수를 측정하기 위해서 안과나 안경점에 직접 방문해야 하는 불편함을 해소할 수 있다. 예를 들어, 본인이 예전에 착용하던 안경이 현재 안경의 도수와 동일한지 기억이 나지 않는 경우, 본 발명을 이용하여 예전 안경과 현재 안경의 도수를 측정하여 비교해보아 착용하기에 적절한 지 판단해볼 수 있다.
둘째, 사용자가 보유한 모바일 디바이스(100)로 기준도형(200)을 포함한 제1이미지 및 제2이미지를 촬상하는 것만으로 안경렌즈(300)의 도수를 측정할 수 있어서, 쉽고 간편하고 사용자가 안경렌즈(300)의 도수를 측정할 수 있다. 또한, 사용자는 장소에 관계없이 모바일 디바이스(100)와 촬상할 기준도형(200)만 가지고 있으면 어디에서나 안경렌즈(300)의 도수 측정을 수행할 수 있다.
셋째, 사용자 본인의 렌즈 도수를 스마트폰 등의 모바일 디바이스(100)를 이용하여 간편하게 측정할 수 있으므로, 온라인을 통해 안경주문을 할 수 있다. 기존에는 안경 도수를 측정할 수 없어서 안경테만을 온라인으로 유통할 수 있었다. 그러나 시력의 변화가 적은 성인들은 시력을 다시 측정할 필요 없이 기존 안경렌즈(300)의 도수를 알면 안경을 맞출 수 있으므로, 본 발명을 통해 기존에 착용하는 안경렌즈(300)의 도수를 측정함으로써 렌즈가 구비된 안경을 온라인으로 유통할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (11)

  1. 모바일 디바이스와 기준도형을 이용하여 안경렌즈의 도수를 측정하는 방법에 있어서,
    상기 모바일 디바이스가 상기 기준도형이 촬상된 제1이미지를 획득하는 단계;
    상기 안경렌즈를 상기 모바일 디바이스와 상기 기준도형 사이에 배치하여 상기 기준도형이 촬상된 제2이미지를 획득하는 단계;
    상기 제1이미지 및 상기 제2이미지 내 상기 기준도형의 크기를 비교하여, 상기 제1이미지에 대한 상기 제2이미지의 배율을 산출하는 단계;
    상기 산출된 배율 및 미리 정해진 제1곡률을 렌즈공식에 적용하여, 상기 안경렌즈의 제1도수를 산출하는 단계; 및
    상기 제1도수가 포함된 도수범위에 대응하는 제2곡률을 파악하고, 상기 제2곡률 및 상기 배율을 상기 렌즈공식에 적용하여 제2도수를 산출하는 단계;를 포함하며,
    상기 제2이미지는,
    상기 안경렌즈 내에 배치된 상기 기준도형을 촬상한 이미지인, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  2. 제1항에 있어서,
    상기 모바일 디바이스가 정점간거리를 획득하는 단계;를 더 포함하고,
    상기 정점간거리는,
    상기 모바일 디바이스의 카메라로부터 안경렌즈까지의 거리이며,
    상기 정점간거리 획득단계는,
    상기 제1도수 산출단계 이전에 수행되며,
    상기 제1도수 산출단계 및 상기 제2도수 산출단계는,
    획득된 상기 정점간거리를 상기 렌즈공식에 적용하는 것을 특징으로 하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  3. 제2항에 있어서,
    상기 정점간거리 획득단계는,
    상기 모바일 디바이스에 포함된 센서를 이용한 비접촉식 거리 측정방식으로 상기 정점간거리를 측정하는 것을 특징으로 하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  4. 제2항에 있어서,
    상기 정점간거리 획득단계는,
    상기 모바일 디바이스가 상기 안경렌즈의 가로 또는 세로 길이를 입력받는 단계;
    상기 모바일 디바이스가 특정한 상기 정점간거리을 입력받는 단계; 및
    상기 정점간거리에서 상기 가로 또는 세로 길이에 상응하는 가이드라인을 화면 상에 표시하는 단계;를 포함하는 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  5. 제2항에 있어서,
    상기 제2이미지는,
    상기 모바일 디바이스로부터 상기 안경렌즈와 동일한 거리에 위치하고 상기 안경렌즈와 이격되어 배치된, 기준길이를 갖는 기준체를 포함하고,
    상기 정점간거리 획득단계는,
    상기 제2이미지 상에 나타나는 상기 기준체의 길이를 측정하는 단계; 및
    상기 측정된 길이와 상기 기준길이 간의 비율을 바탕으로 상기 정점간거리를 산출하는 단계;를 포함하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  6. 제2항에 있어서,
    상기 정점간거리를 획득하는 단계는,
    상기 모바일 디바이스가 상기 안경렌즈의 가로 또는 세로 실측길이를 입력받는 단계;
    상기 제2이미지 상에 나타나는 상기 안경렌즈의 가로 또는 세로의 길이를 측정하는 단계; 및
    상기 측정된 길이와 상기 실측길이를 비교하여 상기 정점간거리를 산출하는 단계;를 포함하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  7. 제1항에 있어서,
    상기 기준도형은,
    중심으로부터 동일한 각도 간격으로 방사되는 적어도 하나 이상의 선을 포함하고,
    상기 배율 산출 단계는,
    상기 제1이미지 및 상기 제2이미지 내 동일한 위치에 배치된 상기 선의 길이를 비교하여, 길이비율을 계산하는 것을 특징으로 하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  8. 제7항에 있어서,
    상기 배율 산출 단계는,
    하나 이상의 각각의 상기 선에 대한 하나 이상의 상기 길이비율을 산출하는 단계; 및
    상기 하나 이상의 길이비율을 평균 계산하여 상기 배율로 적용하는 단계;를 포함하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  9. 제1항에 있어서,
    상기 제1이미지를 획득하기 전, 상기 모바일 디바이스가 무선통신을 통해 디스플레이를 구비한 외부디바이스로 상기 기준도형을 전송하는 단계;를 더 포함하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  10. 제1항에 있어서,
    상기 제1이미지를 획득하기 전, 상기 모바일 디바이스의 화면 상에 가이드라인을 표시하는 단계;를 더 포함하고,
    상기 제1이미지 및 상기 제2이미지는,
    상기 가이드라인과 상기 기준도형의 외곽선을 일치시킨 상태에서 촬상된 이미지인, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
  11. 제10항에 있어서,
    상기 기준도형의 외곽선과 상기 가이드라인이 일치하는 경우, 상기 모바일 디바이스가 상기 제1이미지 또는 상기 제2이미지를 자동으로 획득하는 것을 특징으로 하는, 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법.
PCT/KR2015/009984 2014-11-13 2015-09-23 모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램 WO2016076530A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140157901A KR101528132B1 (ko) 2014-11-13 2014-11-13 모바일 디바이스를 이용한 안경렌즈의 도수 측정방법
KR10-2014-0157901 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016076530A1 true WO2016076530A1 (ko) 2016-05-19

Family

ID=53503668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009984 WO2016076530A1 (ko) 2014-11-13 2015-09-23 모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램

Country Status (2)

Country Link
KR (1) KR101528132B1 (ko)
WO (1) WO2016076530A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336284A1 (en) * 2016-05-18 2017-11-23 Jand, Inc. Fixtureless lensmeter and methods of operating same
US10413172B2 (en) 2017-12-11 2019-09-17 1-800 Contacts, Inc. Digital visual acuity eye examination for remote physician assessment
US10557773B2 (en) 2016-05-18 2020-02-11 Jand, Inc. Fixtureless lensmeter system
EP3730919A1 (de) * 2019-04-23 2020-10-28 Carl Zeiss Vision International GmbH Verfahren und vorrichtung zum vermessen der lokalen brechkraft oder der brechkraftverteilung eines brillenglases
EP3730918A1 (de) * 2019-04-23 2020-10-28 Carl Zeiss Vision International GmbH Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases
US11488239B2 (en) 2019-08-26 2022-11-01 Warby Parker Inc. Virtual fitting systems and methods for spectacles
US11676347B2 (en) 2020-04-15 2023-06-13 Warby Parker Inc. Virtual try-on systems for spectacles using reference frames

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670494B2 (en) 2015-05-10 2020-06-02 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
IL306113A (en) 2015-05-10 2023-11-01 6 OVER 6 VISION Ltd Device, system and method for determining one or more optical parameters of a lens
KR102260483B1 (ko) 2015-08-25 2021-06-04 한국전자기술연구원 비행 가이드 정보 표시 가능한 스마트 안경
DK3405767T3 (da) * 2016-01-23 2022-09-12 6 OVER 6 VISION Ltd Fremgangsmåde til bestemmelse af en eller flere optiske parametre af en linse
KR20180101885A (ko) 2017-03-06 2018-09-14 김선영 안경 렌즈의 수명 예측 시스템
KR102028107B1 (ko) * 2017-10-24 2019-10-02 (주)에스엠에스 실시간으로 거리값과 렌즈 초점값을 출력할 수 있는 검안용 거리측정 시스템 및 그 시스템을 이용한 검안 거리측정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202222A (ja) * 2000-12-28 2002-07-19 Hoya Corp 眼鏡レンズ測定方法及び装置
JP2003214986A (ja) * 2002-01-21 2003-07-30 Nikon-Essilor Co Ltd 眼鏡レンズの度数の決定方法、眼鏡レンズ及び計算機プログラム
JP3497191B2 (ja) * 1992-12-02 2004-02-16 オリンパス株式会社 カメラ及びカメラの倍率演算方法
JP2010207279A (ja) * 2009-03-06 2010-09-24 Nidek Co Ltd 眼内レンズ度数決定方法及び眼内レンズ度数決定装置
KR20130083117A (ko) * 2012-01-12 2013-07-22 (주)미토스 곡률 형상을 갖는 플라스틱 렌즈의 형상 및 굴절률 측정 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497191B2 (ja) * 1992-12-02 2004-02-16 オリンパス株式会社 カメラ及びカメラの倍率演算方法
JP2002202222A (ja) * 2000-12-28 2002-07-19 Hoya Corp 眼鏡レンズ測定方法及び装置
JP2003214986A (ja) * 2002-01-21 2003-07-30 Nikon-Essilor Co Ltd 眼鏡レンズの度数の決定方法、眼鏡レンズ及び計算機プログラム
JP2010207279A (ja) * 2009-03-06 2010-09-24 Nidek Co Ltd 眼内レンズ度数決定方法及び眼内レンズ度数決定装置
KR20130083117A (ko) * 2012-01-12 2013-07-22 (주)미토스 곡률 형상을 갖는 플라스틱 렌즈의 형상 및 굴절률 측정 방법

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336284A1 (en) * 2016-05-18 2017-11-23 Jand, Inc. Fixtureless lensmeter and methods of operating same
US10036685B2 (en) * 2016-05-18 2018-07-31 Jand, Inc. Fixtureless lensmeter and methods of operating same
US10533925B2 (en) 2016-05-18 2020-01-14 Jand, Inc. Fixtureless lensmeter and methods of operating same
US10557773B2 (en) 2016-05-18 2020-02-11 Jand, Inc. Fixtureless lensmeter system
US11585724B2 (en) 2016-05-18 2023-02-21 Warby Parker Inc. Fixtureless lensmeter system
US11199472B2 (en) 2016-05-18 2021-12-14 Warby Parker Inc. Fixtureless lensmeter system
US10413172B2 (en) 2017-12-11 2019-09-17 1-800 Contacts, Inc. Digital visual acuity eye examination for remote physician assessment
CN113711003A (zh) * 2019-04-23 2021-11-26 卡尔蔡司光学国际有限公司 用于测量眼镜片的局部屈光力和/或屈光力分布的方法和设备
JP2022528575A (ja) * 2019-04-23 2022-06-14 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー 眼鏡レンズの局所屈折度数及び/又は屈折度数分布を測定するための方法及びデバイス
CN113692527A (zh) * 2019-04-23 2021-11-23 卡尔蔡司光学国际有限公司 用于测量眼镜片的局部屈光力和/或屈光力分布的方法和装置
WO2020216799A1 (de) 2019-04-23 2020-10-29 Carl Zeiss Vision International Gmbh Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases
EP3730918A1 (de) * 2019-04-23 2020-10-28 Carl Zeiss Vision International GmbH Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases
EP3982102A1 (de) 2019-04-23 2022-04-13 Carl Zeiss Vision International GmbH Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases
US11313759B2 (en) 2019-04-23 2022-04-26 Carl Zeiss Vision International Gmbh Method and device for measuring the local refractive power and/or the refractive power distribution of a spectacle lens
WO2020216810A1 (de) 2019-04-23 2020-10-29 Carl Zeiss Vision International Gmbh Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases
JP7126031B2 (ja) 2019-04-23 2022-08-25 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー 眼鏡レンズの局所屈折度数及び/又は屈折度数分布を測定するための方法及びデバイス
US11982878B2 (en) 2019-04-23 2024-05-14 Carl Zeiss Vision International Gmbh Method and device for measuring the local refractive power and/or refractive power distribution of a spectacle lens
EP3730919A1 (de) * 2019-04-23 2020-10-28 Carl Zeiss Vision International GmbH Verfahren und vorrichtung zum vermessen der lokalen brechkraft oder der brechkraftverteilung eines brillenglases
CN113711003B (zh) * 2019-04-23 2024-03-08 卡尔蔡司光学国际有限公司 用于测量眼镜片的局部屈光力和/或屈光力分布的方法和设备
US11488239B2 (en) 2019-08-26 2022-11-01 Warby Parker Inc. Virtual fitting systems and methods for spectacles
US11676347B2 (en) 2020-04-15 2023-06-13 Warby Parker Inc. Virtual try-on systems for spectacles using reference frames

Also Published As

Publication number Publication date
KR101528132B1 (ko) 2015-06-12

Similar Documents

Publication Publication Date Title
WO2016076530A1 (ko) 모바일 디바이스를 이용한 안경렌즈의 도수 측정시스템, 방법 및 프로그램
JP6894925B2 (ja) 固定具なしのレンズメータ及びその操作方法
US11126015B2 (en) Method for determining a parameter of an optical equipment
US8690326B2 (en) Method and systems for measuring interpupillary distance
US9291834B2 (en) System for the measurement of the interpupillary distance using a device equipped with a display and a camera
CN107184178A (zh) 一种智能便携式手持视力筛查仪及验光方法
CN107890336B (zh) 基于智能手持设备的屈光度检测系统
US20090051871A1 (en) Custom eyeglass manufacturing method
EP1714184A1 (en) Custom eyeglass manufacturing method
CN107250719B (zh) 眼镜佩戴参数测量系统、测量用程序及其测量方法、以及眼镜镜片的制造方法
WO2015051605A1 (zh) 图像采集定位方法及图像采集定位装置
CN111512217B (zh) 用于确定镜片的光学参数的方法
CN108369448A (zh) 用于确定眼科参数的方法
CN110832387B (zh) 眼镜镜片的设计方法、眼镜镜片订购装置及眼镜镜片订购和订购接受系统
CN113711003B (zh) 用于测量眼镜片的局部屈光力和/或屈光力分布的方法和设备
CN109804301B (zh) 用于确定光学设备的参数的方法
AU2010249222A1 (en) Configuration of lenses
US20240159621A1 (en) Calibration method of a portable electronic device
JP2006105868A (ja) レンズメータ
WO2011074769A2 (ko) 누진다초점렌즈의 안구 회선도 측정기 및 이를 이용한 회선도 측정방법
WO2019221618A1 (en) An electronic device for ordering eyewear and system and method for ordering eyewear comprising such an electronic device
CN107306493A (zh) 用于确定包括至少一个光学镜片的光学器件的参数的方法
WO2016114446A1 (ko) 안경 렌즈 제작을 위해 필요한 파라미터 측정 장치
WO2024091263A1 (en) Fitting of head mounted wearable device from two-dimensional image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859171

Country of ref document: EP

Kind code of ref document: A1