WO2016075933A1 - 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体 - Google Patents

避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
WO2016075933A1
WO2016075933A1 PCT/JP2015/005614 JP2015005614W WO2016075933A1 WO 2016075933 A1 WO2016075933 A1 WO 2016075933A1 JP 2015005614 W JP2015005614 W JP 2015005614W WO 2016075933 A1 WO2016075933 A1 WO 2016075933A1
Authority
WO
WIPO (PCT)
Prior art keywords
evacuation
model
information
recovery
time required
Prior art date
Application number
PCT/JP2015/005614
Other languages
English (en)
French (fr)
Inventor
紅美子 但野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016558892A priority Critical patent/JP6683129B2/ja
Priority to US15/523,789 priority patent/US20170316538A1/en
Priority to EP15858746.9A priority patent/EP3220345A4/en
Publication of WO2016075933A1 publication Critical patent/WO2016075933A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q90/00Systems or methods specially adapted for administrative, commercial, financial, managerial or supervisory purposes, not involving significant data processing
    • G06Q90/20Destination assistance within a business structure or complex
    • G06Q90/205Building evacuation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B27/00Alarm systems in which the alarm condition is signalled from a central station to a plurality of substations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to an evacuation prediction system, a model generation device, a prediction device, an evacuation prediction method, and a computer-readable recording medium.
  • Patent Document 1 describes an evacuation plan evaluation system and the like.
  • the number of persons requiring assistance calculates the number of persons requiring assistance during evacuation based on the attribute information of the user of the mobile device.
  • the number-of-evacuation destination calculation unit calculates the number of evacuees who evacuate to their homes and evacuation centers.
  • the simulation unit performs a simulation when an evacuee evacuates from each polygon area to the home and evacuation site.
  • a score calculation part calculates the score for an evacuation plan based on the number of persons requiring assistance, the number of evacuees, and a simulation result.
  • Patent Document 2 describes a data processing apparatus that can predict a destination even when there is a lack in data on the current location acquired in real time.
  • Patent Document 3 describes an evacuation time predicting device that predicts an evacuation time from a multi-level building having stairs.
  • the present invention has been made to solve the above problems, and provides an evacuation prediction system and the like that can estimate the time required for evacuation of a disaster victim according to the situation of a road network or the like serving as an evacuation route
  • the main purpose is to do.
  • the evacuation prediction system is based on evacuation information about an evacuee's evacuation route and time required for the evacuee to evacuate based on the restoration information about the restoration timing of the failure location that is the location where the failure occurred on the evacuation route. Predicting means for predicting
  • the evacuation prediction method is based on evacuation information on an evacuee's evacuation route and evacuation of the evacuee based on the restoration information on the restoration timing of the failure location that is the location where the failure occurred on the evacuation route. Estimate how long it will take.
  • the computer-readable recording medium is based on the evacuation information on the evacuation route of the refugee and the restoration information on the restoration timing of the failure occurrence location which is the location where the failure occurred in the evacuation route.
  • a program for executing a process for predicting the time required for evacuation of the evacuees is stored temporarily.
  • an evacuation prediction system or the like that can estimate the time required for evacuation of a victim according to the restoration status of a road network or the like serving as an evacuation route.
  • each component of each device represents a functional unit block.
  • Each component of each device can be realized by any combination of an information processing device 500 and software as shown in FIG. 9, for example.
  • the information processing apparatus 500 includes the following configuration as an example.
  • each device can be realized as a dedicated device.
  • Each device can be realized by a combination of a plurality of devices.
  • the direction of the arrow in a drawing shows an example and does not limit the direction of the signal between components.
  • FIG. 1 is a diagram showing an evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an evacuation route and the like targeted by the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating examples of evacuation information and recovery information received by the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the evacuation prediction system in the first embodiment of the present invention.
  • the evacuation prediction system 100 is based on evacuation information on an evacuee's evacuation route and restoration information on the restoration time of a location where a failure has occurred on the evacuation route.
  • the prediction unit 110 predicts the time required for evacuation.
  • the prediction unit 110 included in the evacuation prediction system 100 can predict the time required for the evacuee to evacuate according to the recovery status of the failure by using the recovery information as well as the evacuation information. .
  • the evacuation prediction system 100 can predict the time required for evacuation in units of individuals who need evacuation.
  • the evacuation prediction system 100 in the present embodiment can predict the time required for evacuation by using a different evacuee as a unit.
  • a group of persons who need evacuation in a certain area may be a unit for predicting the time required for evacuation in the evacuation prediction system 100 in the present embodiment.
  • the evacuation prediction system 100 according to the present embodiment can predict the time required for evacuation for each group of evacuees having arbitrary attributes such as injured persons, sick persons, persons engaged in specific occupations, and the like.
  • the evacuation route is, for example, a route from the evacuation source to the evacuation destination.
  • the evacuation source and the evacuation destination are appropriately determined according to the actual evacuation situation. Further, this evacuation route may change depending on the occurrence of a failure and the situation of its recovery.
  • FIG. 2 shows an example of evacuation routes according to the evacuation routes and disaster recovery status.
  • numbers 1 to 6 surrounded by circles as nodes represent geographical positions where evacuees may stay.
  • the two areas are connected by a link indicated by an arrow in the figure.
  • the evacuee stays in the area corresponding to the node assigned number 1 and goes to the area corresponding to the node assigned number 6. Evacuation is assumed. It is assumed that there is a failure f1 between the area corresponding to the node assigned number 3 and the area corresponding to the node assigned number 5 and cannot pass. Further, it is assumed that there is a failure f2 between the area corresponding to the node assigned number 4 and the area corresponding to the node assigned number 6 and cannot pass.
  • the evacuation route of the evacuees changes, for example, as follows according to the recovery status of the failure, as indicated by thick lines in (i) to (iv) of FIG.
  • the initial evacuation route is 1 ⁇ 2 ⁇ 4 ⁇ 5 ⁇ 7 ⁇ 6 as shown in (i).
  • the evacuation route becomes 1 ⁇ 3 ⁇ 5 ⁇ 7 ⁇ 6 as shown in (ii).
  • the evacuation route becomes 1 ⁇ 2 ⁇ 4 ⁇ 6 as shown in (iii).
  • the evacuation route becomes 1 ⁇ 2 ⁇ 4 ⁇ 6 as shown in (iv).
  • the evacuation prediction system 100 predicts the time required for the evacuee to evacuate based on such a change in the evacuation route.
  • the recovery information is, for example, when there is a location where a failure has occurred that makes it impossible for the evacuees to pass through the evacuation route (hereinafter referred to as “failure location”). It is information about the time when the occurrence point is restored. For example, if there are a plurality of failure locations on the evacuation route, the recovery information includes the recovery time at each failure location and the order of recovery of each failure location. Further, the recovery information may include the initial position of the resource to be recovered.
  • the time required for evacuation which is a prediction target
  • the time required for all refugees to complete evacuation is, for example, the time required for all refugees to complete evacuation.
  • Completion of evacuation means, for example, that an evacuee reaches an evacuation destination.
  • the time required for evacuation which is a prediction target, is not limited to the time described above.
  • the time required for a predetermined evacuee to complete evacuation or a predetermined time in which the evacuee is in the route to the evacuation destination It may be the time to reach the area.
  • failure recovery time and the evacuee travel time included in the recovery information are expressed in an arbitrary form. As an example, these times may be represented in any distribution. In addition, these times are expressed according to a specific time, such as how many hours later, what time of day, and so on. Further, the time required for the evacuation of the evacuees is represented by, for example, a cumulative distribution function.
  • the evacuation prediction system 100 receives the information shown in FIG. 3 as an example, and predicts the time required for the evacuee to evacuate.
  • evacuation information is shown in FIG. 3 (A)
  • restoration information is shown in FIG. 3 (B).
  • the evacuee passes according to the evacuee to be predicted for the time required for evacuation, information on the evacuation source and destination of the evacuee, and the recovery status of the evacuation route.
  • Evacuation routes (relay routes) to be included.
  • the evacuation information also relates to the time required for evacuation (not shown) such as the transit time when passing through the evacuation route, the number of people accommodated in each region, the capacity of the evacuation route (for example, the number of people who can pass per unit time), etc. Contains information.
  • the recovery information shown in FIG. 3B includes the initial position of the recovery resource, the location where the failure has occurred and the inability to pass, and the recovery order of the failure.
  • the recovery information includes information related to a change in time required for evacuation (not shown) such as a change in time required for passing through the evacuation route and a change in capacity of the evacuation route in accordance with the failure information.
  • the prediction unit 110 first receives evacuation information and recovery information (step S101).
  • the prediction unit 110 receives the evacuation information and the recovery information, for example, in the format shown in FIG. Further, the prediction unit 110 can receive such information via any input means or the like.
  • the prediction unit 110 may use information stored in advance in an arbitrary storage unit such as a memory or a disk.
  • the prediction unit 110 may accept these pieces of information via a communication network.
  • the prediction unit 110 predicts the time required for evacuation (step S102).
  • the prediction unit 110 can generate an analysis model based on the information acquired in step S101 and can predict the analysis model by analyzing the analysis model.
  • the result predicted by the prediction unit 110 is output from any output means including a display device and a communication network, for example.
  • the result predicted by the prediction unit 110 may be stored in an arbitrary storage unit so as to be referred to when necessary.
  • the evacuation prediction system 100 predicts the time required for an evacuee to evacuate based on the evacuation information related to the evacuation route of the evacuee and the restoration information related to the restoration timing of the location where the failure occurred in the evacuation route. To do.
  • the time required for evacuees to evacuate may vary depending on the status of the evacuation route.
  • the evacuation prediction system 100 in the present embodiment can predict the time required for the evacuee to evacuate according to the recovery status of the evacuation route by using the recovery information. Therefore, the evacuation prediction system 100 according to the present embodiment can estimate the time required for the evacuation of the disaster victim in accordance with the situation of the road network or the like serving as an evacuation route.
  • the evacuation prediction system 100 can predict the time required for evacuation of evacuees in each case for each of different recovery plans. Therefore, the evacuation prediction system 100 according to the present embodiment obtains a recovery plan that satisfies the predetermined time by evacuating the refugee by predicting the evacuation time of the refugee in each case of different restoration plans. be able to.
  • the predetermined conditions in this case include, for example, finishing evacuation within a predetermined time, or minimizing the time required for evacuation in an executable recovery plan. That is, the evacuation prediction system 100 in this embodiment is also used as a system for determining a recovery plan.
  • FIG. 5 is a diagram illustrating a configuration of an evacuation prediction system according to the second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of a generation rule used when generating a model in the evacuation prediction system according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a model generated by the evacuation prediction system according to the second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of a cumulative distribution function representing the time required for evacuation of an evacuee predicted by the evacuation prediction system according to the second embodiment of the present invention.
  • the prediction unit 210 of the evacuation prediction system 200 includes a model generation unit 211 and an analysis unit 212.
  • the model generation unit 211 generates a model including the relationship between the evacuation route and the recovery time based on the evacuation information and the recovery information.
  • the analysis unit 212 uses the model generated by the model generation unit 211 to predict the time required for the evacuee to evacuate.
  • the evacuation prediction system 200 in the present embodiment is different from the evacuation prediction system 100 in the first embodiment of the present invention in the above points. Other than this, the evacuation prediction system 200 in the present embodiment can have the same configuration as the evacuation prediction system 100 in the first embodiment of the present invention.
  • the model generation unit 211 generates a model including the relationship between the evacuation route and the recovery time based on the evacuation information and the recovery information.
  • the model generated by the model generation unit 211 includes, for example, the position of the refugee, the evacuation route and its capacity, the time required for passing through each evacuation route, the time required for the evacuee to move, Indicates the recovery status, time required for failure recovery, etc.
  • the model generated by the model generation unit 211 may appropriately include other information depending on the evacuees, the state of the obstacle, and the like.
  • a stochastic time petri net (hereinafter referred to as “sTPN”) is used as an example of a model generated by the model generation unit 211.
  • STPN is represented as a set of ⁇ P, T, A-, A +, A ⁇ , m0, EFT, LFT, F, C, E, L> as an example. Each of these elements is represented by a predetermined figure (not shown).
  • P is a set of places.
  • the place is represented by a white circle.
  • T is a set of transitions.
  • transitions are represented by white squares or bars.
  • A- is an input arc that connects a place and a transition in the direction from the place to the transition.
  • a + is an output arc that connects the place and the transition in the direction from the transition to the place.
  • the input arc and the output arc may be simply referred to as an arc.
  • the arc In the diagram representing sTPN, the arc is represented by an arrow.
  • A. is an inhibitor arc that connects places and transitions in the direction from place to transition.
  • the inhibitor arc In the diagram representing sTPN, the inhibitor arc is represented by an arrow with a round tip.
  • M0 is an initial marking that represents the number of non-negative tokens in each place.
  • the token is represented by a black circle arranged inside the place.
  • EFT and LFT are the minimum and maximum firing times for each transition included in T.
  • EFT is a non-negative real number including zero.
  • LFT is a non-negative real number including zero and infinity. Further, the value of LFT is equal to or greater than the value of EFT.
  • F is a cumulative distribution function relating to the firing time between EFT and LFT for each transition included in T.
  • C is a weight representing the ease of firing for each of a plurality of transitions that can be fired when a plurality of transitions can fire simultaneously.
  • C is assigned for transitions that can be fired simultaneously.
  • E is an enabling function associated with the marking for each transition included in T.
  • L (flushed function) is assigned to the transition. When the transition to which L is assigned is ignited, the token on the place associated with L is erased regardless of the connection relationship by arc with the transition.
  • a transition can be ignited in the following cases.
  • the transition fires, one token is reduced from the places connected via the input arc, and one token is added to the place connected via the output arc.
  • the time is larger than the EFT value and smaller than the LFT value. • The enabling function is true.
  • sTPN The details of sTPN are, for example, “Vicario, E., Sassoli, L., and Carnevali, L. (2009) 'Using stativate esthenate sensible efficiencies. 35, No. 5, pp. 703-719.
  • the model generation unit 211 uses sTPN to represent the evacuation information, the recovery information, the relationship between the evacuation information and the recovery information, etc. as a model based on the example of the generation rule shown in FIG.
  • the model generation unit 211 generates a model so as to represent a geographical position where an evacuee may stay, a state of a road to be restored, a recovery progress state, and the like.
  • the model generation unit 211 represents these as places, as shown in FIG.
  • model generation unit 211 is connected to the above-described relationship between roads and the like between geographical locations, whether there is a situation that the state of the road to be restored is given to traffic, and the relationship of the progress of restoration with respect to a plurality of failure locations.
  • a model is generated so as to represent etc.
  • the model generation unit 211 represents these as arcs that are appropriately connected to the above-described places.
  • the model generation unit 211 generates a model so as to represent the movement time of the evacuees, the time for recovering the failure location, the movement time of the recovery resource for recovering the failure location, and the like.
  • the model generation unit 211 can generate a model so as to represent the probability distribution regarding each time described above.
  • the model generation unit 211 represents these as transitions as illustrated in FIG. Each time described above is represented by a minimum firing time, a maximum firing time, a cumulative distribution function, and the like related to the transition.
  • the model generation unit 211 generates a model so as to indicate the position of the refugee at a desired time point, the progress stage of the restoration, whether or not a road serving as an evacuation route can pass, and the like.
  • the model generation unit 211 represents these by adding a token to a place corresponding to each position and situation.
  • the model generation unit 211 generates a model so as to represent the traffic possibility of the road serving as an evacuation route according to the progress stage of the recovery relating to the failure location and the change in its capacity.
  • the model generation unit 211 represents these by adding an inhibitor arc to the transition indicating the progress of recovery.
  • the model generation unit 211 allows the other evacuees to evacuate when an evacuee is passing the evacuation route. Generate a model indicating that the route cannot be passed.
  • the model generation unit 211 adds such an inhibitor arc as appropriate to the place corresponding to the entrance of the evacuation route, and creates a transition indicating the movement of another refugee. It can be expressed by making it impossible to ignite. Further, when sTPN is used, the model generation unit 211 can represent such information by an enabling function.
  • the model generation unit 211 can store the above-described generation rules in a storage unit (not shown) in advance and generate a model by referring to the generation rules when generating the model. Further, when generating the model, the model generation unit 211 may generate the model by acquiring the generation rule from the outside as necessary.
  • the model generation unit 211 can generate a model including the evacuation information, the recovery information, and the relationship between the evacuation route and the recovery time.
  • FIG. 7 is an example of a model generated by the model generation unit 211.
  • the model shown in FIG. 7 represents the evacuation route and the like shown in FIG. 2 by sTPN. Further, in the example shown in FIG. 7, it is assumed that f1 is restored as the failure occurrence location.
  • areas where evacuees including stricken areas and evacuation destinations may stay are represented by places from p1 to p7.
  • the progress stage of restoration and the road condition are represented by places from p8 to p19.
  • connection relationship with the roads connecting the areas such as the stricken area and the evacuation destination is the arc connecting the transitions from t0 to t8 and these transitions and the places from p1 to p7. It is represented by That is, the evacuation route shown in FIG. 2 is shown by the place from p1 to p7, the transition from t0 to t8, and the arc connecting them.
  • each transition from t0 to t8 can be ignited when the road corresponding to the transition is accessible, and cannot be ignited when the road cannot be used or used as an evacuation route. Is configured.
  • the time required for the movement of the evacuees and the probability distribution thereof are appropriately represented by the minimum ignition time, the maximum ignition time, the cumulative distribution function, etc. in the transition from t0 to t8.
  • the time required for recovery work, the time required to move resources for recovery, and the probability distribution thereof are appropriately represented by the minimum ignition time, maximum ignition time, cumulative distribution function, etc. in the transition from t9 to t12. Yes.
  • t10 is associated with f1, which is the location of the failure.
  • the location of the evacuees and the recovery status are indicated by tokens.
  • the initial state initial marking
  • a token is placed in the place p1 corresponding to the disaster area.
  • a token is placed in the place p8 on the assumption that the failure location has not been recovered.
  • a token is placed in a place corresponding to the above-described state.
  • STPN shown in FIG. 7 represents an initial state.
  • the arc includes an inhibitor arc.
  • the model shown in FIG. 7 is generated so as to evacuate according to the evacuation route shown in FIG. 2 in accordance with the recovery status of the location where the failure occurred. Specifically, before f1 is restored (before transition t10 is ignited), transition t0 can be ignited so that the route 1 ⁇ 2 ⁇ 4 ⁇ 5 in FIG. 2 is selected. A model has been generated. Also, after f1 is restored (after transition t10 is ignited), a model is generated so that transition t1 can be ignited so that the route 1 ⁇ 3 ⁇ 5 in FIG. 2 is selected. ing. Further, the model is generated so that the transition t4 can be ignited so that the route 2 ⁇ 3 in FIG. 2 is not selected.
  • the model generation unit 211 generates a model so that one evacuation route is selected according to the recovery status of the location where the failure has occurred. In this way, by generating a model in which an evacuation route is selected according to the recovery status of the disaster occurrence location, the analysis unit 212 described later predicts the time required for the evacuee to evacuate according to the recovery status of the evacuation route. It becomes possible to do.
  • the model generation unit 211 can generate a model different from the above-described model regarding the evacuation route. That is, the model generation unit 211 can generate a model that allows each route to pass when there are a plurality of routes that can pass. The model generation unit 211 can appropriately generate a model so that an evacuation route that can be passed is selected according to the evacuation situation.
  • the analysis unit 212 predicts the time required for the evacuee to evacuate using the model.
  • the analysis unit 212 predicts the time required for evacuation of the evacuees by searching for the model generated by the model generation unit 211 from the initial state until the evacuees reach the evacuation destination.
  • the analysis unit 212 evacuates the time from when the token reaches the place representing the evacuation destination from the initial state (the token is located at the place representing the evacuation source). Time required for evacuation. In obtaining this time, the analysis unit 212 can use any state search algorithm of sTPN including a known method.
  • the time required for evacuation of evacuees is expressed in any of various formats.
  • the time required for the evacuation of the evacuees is represented by, for example, a cumulative distribution function as a probability distribution of the evacuation completion time.
  • FIG. 8 shows an example of a cumulative distribution function representing the time required for an evacuee to evacuate.
  • the horizontal axis represents the time from the start of evacuation
  • the vertical axis represents the value of the cumulative distribution function.
  • the model generation unit 211 generates a model including the relationship between the evacuation route and the recovery time. Then, the analysis unit 212 predicts the time required for the evacuees to evacuate using the model.
  • the model including the relationship between the evacuation route and the restoration time can represent, for example, a situation where the evacuation route changes according to the restoration situation of the location where the failure occurred. By analyzing such a model, the time required for evacuation of the evacuees can be predicted according to the recovery status of the evacuation route. Therefore, the evacuation prediction system 200 according to the present embodiment, like the evacuation prediction system 100 according to the first embodiment of the present invention, requires time for evacuation of a victim in accordance with the situation of a road network or the like serving as an evacuation route. Can be estimated.
  • the prediction unit 210 uses sTPN as a model.
  • the model used in the prediction unit 210 is not limited to sTPN. If it is possible to generate a model based on the generation rules described above, the model generation unit 211 can generate a model in a format other than sTPN. In addition, the model generation unit 211 can appropriately generate a model of the evacuation information and the recovery information including the capacity of the evacuation route, for example, by a method different from the above-described method according to the model used. And the analysis part 212 can estimate the time which an evacuee needs to evacuate by analyzing the model produced
  • the model generation unit 211 can generate a model according to a rule different from the above generation rule.
  • the model generation unit 211 uses a different rule from the above generation rule, such as not using an inhibitor arc when expressing the possibility of road traffic according to the recovery progress stage related to the failure location. It may be generated.
  • the model generation unit 211 and the analysis unit 212 included in the prediction unit 210 may each be a single device.
  • the model generation unit 211 and the analysis unit 212 are connected via, for example, a wired or wireless communication network. Further, data representing a model may be exchanged between the model generation unit 211 and the analysis unit 212 via a file.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Educational Administration (AREA)
  • Emergency Management (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Alarm Systems (AREA)
  • Navigation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

 避難経路となる道路網等の状況等に応じて被災者の避難に要する時間を推定することができる避難予測システム等を提供することを主たる目的とする。 本発明の一態様における避難予測システムは、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する予測手段を備える。

Description

避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体
 本発明は、避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体に関する。
 災害が発生した場合には、災害が発生した地域から当該災害により被災した被災者が避難する必要が生じる可能性がある。この場合において、避難を必要とする被災者(以下「避難者」とする)が避難を完了するまでに要する時間は、できるだけ短いことが望まれる。
 一方、災害が生じた場合には、避難経路となる道路網等が被災して障害が発生することがある。この場合には、当該避難通路が通行できない可能性がある。したがって、避難者に対する避難計画が立案される際には、避難経路に関する被災状況や復旧計画が考慮される必要が生じる場合がある。また、避難経路となる道路網等が被災した場合、当該道路網等に発生した障害の復旧計画は、被災者の避難に要する時間が短くなるように立案される必要が生じる場合がある。
 特許文献1には、避難計画評価システム等が記載されている。特許文献1に記載の避難計画評価システムにおいては、要援護者人数算出部が、移動機のユーザの属性情報に基づいて避難時における要援護者の人数を算出する。また、避難先別人数算出部が、帰宅先及び避難所へ避難する避難者の人数を算出する。更に、シミュレーション部が、各ポリゴン領域から、帰宅先及び避難所へ避難者が避難する場合のシミュレーションを行う。そして、点数算出部が、要援護者数、避難者の人数、及びシミュレーション結果に基づいて避難計画のための点数を算出する。
 また、特許文献2には、リアルタイムに取得される現在地のデータに欠落があった場合でも、目的地の予測ができるデータ処理装置が記載されている。
 また、特許文献3には、階段を有する複数階層の建物からの避難時間を予測する避難時間予測装置が記載されている。
特開2012-83908号公報 特開2012-108748号公報 特開2012-27560号公報
 特許文献1に記載の避難計画評価システム等では、避難経路となる道路網等が被災した場合における復旧計画が必ずしも考慮されていない。すなわち、特許文献1に記載の避難計画評価システムでは、避難経路となる道路網等の状況に即して被災者の避難に要する時間を推定することが困難な場合がある。
 本発明は、上記課題を解決するためになされたものであって、避難経路となる道路網等の状況等に応じて被災者の避難に要する時間を推定することができる避難予測システム等を提供することを主たる目的とする。
 本発明の一態様における避難予測システムは、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する予測手段を備える。
 また、本発明の一態様における避難予測方法は、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する。
 また、本発明の一態様におけるコンピュータ読み取り可能記録媒体は、コンピュータに、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する処理を実行させるプログラムを非一時的に格納する。
 本発明によると、避難経路となる道路網等の復旧状況等に応じて被災者の避難に要する時間を推定することができる避難予測システム等を提供することができる。
本発明の第1の実施形態における避難予測システムの構成を示す図である。 本発明の第1の実施形態における避難予測システムが対象とする避難経路等の例を示す図である。 本発明の第1の実施形態における避難予測システムが受付ける避難情報及び復旧情報の例を示す図である。 本発明の第1の実施形態における避難予測システムの動作を表すフローチャートである。 本発明の第2の実施形態における避難予測システムの構成を示す図である。 本発明の第2の実施形態における避難予測システムにてモデルを生成する場合に用いられる生成規則の例を示す図である。 本発明の第2の実施形態における避難予測システムにて生成されるモデルの例を示す図である。 本発明の第2の実施形態における避難予測システムにて予測された避難者の避難に要する時間を表す累積分布関数の一例を示す図である。 本発明の各実施形態における避難予測システム等を実現する情報処理装置の一例を示す図である。
 本発明の各実施形態について、添付の図面を参照して説明する。なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図9に示すような情報処理装置500とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置500は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)501
  ・ROM(Read Only Memory)502
  ・RAM(Random Access Memory)503
  ・RAM503にロードされるプログラム504
  ・プログラム504を格納する記憶装置505
  ・記憶媒体506の読み書きを行うドライブ装置507
  ・通信ネットワーク509と接続する通信インターフェース508
  ・データの入出力を行う入出力インターフェース510
  ・各構成要素を接続するバス511
各装置の実現方法には様々な変形例がある。例えば、各装置は、専用の装置として実現することができる。各装置は、複数の装置の組み合わせにより実現することができる。
 また、各装置や各システム等の構成を示す図において、図面中の矢印の方向は一例を示すものであり、構成要素間の信号の向きを限定するものではない。
 (第1の実施形態)
 まず、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態における避難予測システムを示す図である。図2は、本発明の第1の実施形態における避難予測システムが対象とする避難経路等の例を示す図である。図3は、本発明の第1の実施形態における避難予測システムが受付ける避難情報及び復旧情報の例を示す図である。図4は、本発明の第1の実施形態における避難予測システムの動作を表すフローチャートである。
 図1に示すとおり、本発明の第1の実施形態における避難予測システム100は、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する予測部110を備える。
 災害が発生した際には、避難者は、状況に応じて被災地から避難する。避難の際に、避難経路に障害が生じていると、その障害に応じて避難に要する時間が変わる場合がある。本実施形態において、避難予測システム100に含まれる予測部110は、避難情報だけではなく、復旧情報を用いることで、障害の復旧状況に応じて避難者が避難に要する時間を予測することができる。
 本実施形態における避難予測システム100は、一例として、避難を必要とする個人を単位として、避難に要する時間を予測することができる。ただし、本実施形態における避難予測システム100は、これとは異なる避難者を単位として避難に要する時間を予測することができる。例えば、ある地域において避難を必要とする者のグループが、本実施形態における避難予測システム100にて避難に要する時間を予測する際の単位となる場合がある。また、本実施形態における避難予測システム100は、負傷者、病人、特定の職業に従事する者など任意の属性を有する避難者のグループ毎に、避難に要する時間を予測することができる。
 本実施形態において、避難経路は、例えば、避難元から避難先までの経路である。避難元及び避難先は、実際の避難の状況などに応じて適宜定められる。また、この避難経路は、障害の発生やその復旧の状況に応じて変わる場合がある。
 図2は、避難経路と災害の復旧状況に応じた避難経路の例を示す。図2において、ノードとなる丸で囲まれた1から6の数字は、避難者が滞留する可能性がある地理的位置を表す。丸で囲まれた数字の間で道路網等がある場合には、図中において両地域間が矢印であるリンクによって接続される。
 図2に示す例において、まず枠で囲っている凡例を参照すると、避難者が番号1が付されたノードに対応する地域に滞在していて、番号6が付されたノードに対応する地域へ避難する場合が想定されている。番号3が付されたノードに対応する地域と、番号5が付されたノードに対応する地域との間には障害f1が存在し、通行ができないと想定する。また、番号4が付されたノードに対応する地域と、番号6が付されたノードに対応する地域との間には障害f2が存在し、通行ができないと想定する。
 この場合において、避難者の避難経路は、図2の(i)から(iv)までのそれぞれに太線で示されるように、障害の復旧状況に応じて、例えば次のように変化する。当初の避難経路は、(i)に示されるように、1→2→4→5→7→6となる。f1の復旧が完了すると、避難経路は、(ii)に示されるように、1→3→5→7→6となる。f2の復旧が完了すると、避難経路は、(iii)に示されるように、1→2→4→6となる。f1及びf2の復旧が完了すると、避難経路は、(iv)に示されるように、1→2→4→6となる。本実施形態における避難予測システム100は、このような避難経路の変化に基づいて、避難者の避難に要する時間を予測する。
 また、本実施形態において、復旧情報は、例えば、避難者の避難経路に通行が不可能となるような障害が発生した個所(以下「障害発生個所」とする)が存在する場合に、当該障害発生個所が復旧する時期に関する情報である。復旧情報には、例えば、避難経路において複数の障害発生個所が存在する場合には、当該障害発生個所の各々における復旧時期や、各々の障害発生個所の復旧の順番が含まれる。また、復旧情報には、復旧を行うリソースの初期位置等が含まれていてもよい。
 また、本実施形態において、予測対象である避難に要する時間は、一例として、すべての避難者が避難を完了するまでに要する時間である。避難が完了するとは、例えば、避難者が避難先へ到達することである。ただし、予測対象である避難に要する時間は、上述のような時間に限られず、例えば、所定の避難者が避難を完了するまでに要する時間や、避難者が避難先までの経路中にある所定の地域に達するまでの時間であってもよい。
 なお、復旧情報に含まれる障害の復旧時期、避難者の移動時間は、任意の形にて表される。一例として、これらの時間は、任意の分布の形で表されてもよい。また、これらの時間は、何時間後、何日の何時、等のように、特定の時期に即して表される。また、避難者の避難に要する時間等は、例えば、累積分布関数にて表される。
 本実施形態において、避難予測システム100は、一例として、図3に示される情報を受付けて、避難者の避難に要する時間を予測する。図3は、図3(A)に避難情報が、図3(B)に復旧情報が示されている。
 図3(A)に示される避難情報には、避難に要する時間の予測対象となる避難者や、当該避難者の避難元や避難先に関する情報、避難経路の復旧状況に応じて避難者が通過する避難ルート(中継ルート)が含まれる。また、避難情報には、避難経路を通過する際の通過時間や、各々の地域における収容人数、避難経路の容量(例えば、単位時間あたりに通行可能な人数)等、図示しない避難に要する時間に関する情報が含まれる。また、図3(B)に示される復旧情報には、復旧リソースの初期位置、障害が発生していて通行できない箇所、当該障害の復旧順序が含まれる。また、復旧情報には、障害の情報に応じて、避難経路を通過する際に要する時間の変化や、避難経路の容量の変化等、図示しない避難に要する時間の変化に関する情報が含まれる。
 続いて、図4を用いて、本実施形態における避難予測システム100の動作の一例を説明する。予測部110は、まず、避難情報及び復旧情報を受付ける(ステップS101)。予測部110は、避難情報及び復旧情報を、例えば上述した図3のような形式にて受付ける。また、予測部110は、任意の入力手段等を介してこれらの情報を受付けることができる。また、予測部110は、予めメモリやディスク等の任意の記憶手段に記憶された情報を用いてもよい。予測部110は、通信ネットワークを介してこれらの情報を受付けてもよい。
 続いて、予測部110は、避難に要する時間を予測する(ステップS102)。予測部110は、例えば、ステップS101にて取得した情報に基づいて解析モデルを生成し、その解析モデルを解析することで予測することができる。予測部110にて予測された結果は、例えば、表示装置等や通信ネットワークを含む任意の出力手段から出力される。また、予測部110にて予測された結果は、必要とされる時点で参照されるように、任意の記憶手段に保存されてもよい。
 以上のとおり、本実施形態における避難予測システム100は、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所の復旧時期に関する復旧情報に基づいて、避難者の避難に要する時間を予測する。避難者の避難に要する時間は、避難経路の状況に応じて変化する場合がある。本実施形態においては本実施形態における避難予測システム100は、復旧情報を用いることで、避難経路の復旧状況に応じて避難者の避難に要する時間を予測することができる。したがって、本実施形態における避難予測システム100は、避難経路となる道路網等の状況等に即して被災者の避難に要する時間を推定することができる。
 なお、災害が発生した際には、障害発生個所に対する復旧の順番や、同時に複数の障害発生個所の復旧作業を行う等、様々な復旧計画が想定される。本実施形態における避難予測システム100は、異なる復旧計画の各々に対して、それぞれの場合における避難者の避難に要する時間を予測することができる。そのため、本実施形態における避難予測システム100は、異なる復旧計画の各々の場合における避難者の避難に要する時間を予測することで、避難者の避難に要する時間が所定の条件を満たす復旧計画を求めることができる。この場合における所定の条件は例えば、所定の時間内に避難を終える、実行可能な復旧計画の中で避難に要する時間が最短となる、等がある。すなわち、本実施形態における避難予測システム100は、復旧計画を決定するシステムとしても用いられる。
 (第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。図5は、本発明の第2の実施形態における避難予測システムの構成を示す図である。図6は、本発明の第2の実施形態における避難予測システムにてモデルを生成する場合に用いられる生成規則の例を示す図である。図7は、本発明の第2の実施形態における避難予測システムにて生成されるモデルの例を示す図である。図8は、本発明の第2の実施形態における避難予測システムにて予測された避難者の避難に要する時間を表す累積分布関数の一例を示す図である。
 図5に示す通り、本発明の第2の実施形態における避難予測システム200の予測部210は、モデル生成部211と、解析部212とを備える。モデル生成部211は、避難情報及び復旧情報に基づいて、避難経路と復旧時期との関係を含むモデルを生成する。解析部212は、モデル生成部211にて生成されたモデルを用いて、避難者の避難に要する時間を予測する。本実施形態における避難予測システム200は、上述の点が、本発明の第1の実施形態における避難予測システム100と異なる。これ以外については、本実施形態における避難予測システム200は、本発明の第1の実施形態における避難予測システム100と同様の構成とすることができる。
 モデル生成部211は、上述のように、避難情報及び復旧情報に基づいて、避難経路と復旧時期との関係を含むモデルを生成する。モデル生成部211にて生成されるモデルは、例えば、避難者の位置、避難経路やその容量、避難経路毎の通過に要する時間、避難者の移動に要する時間、避難経路に発生した障害やその復旧状況、障害の復旧に要する時間等を表す。モデル生成部211にて生成されるモデルは、避難者や障害の状況などに応じて、適宜これ以外の情報を含んでもよい。
 本実施形態の避難予測システム200では、モデル生成部211において生成されるモデルの一例として、確率時間ペトリネット(stochastic time Petri net、以下「sTPN」とする)が用いられる。
 sTPNは、一例として、<P,T,A-,A+,A・,m0,EFT,LFT,F,C,E,L>という組として表される。これらの各要素は、所定の図(不図示)によって表される。Pはプレースの集合である。sTPNを表す図においては、プレースは白い丸にて表される。Tはトランジションの集合である。sTPNを表す図においては、トランジションは白い四角または棒にて表される。A-は、プレースとトランジションとを、プレースからトランジションへの方向に向かって接続する入力アークである。A+は、プレースとトランジションとを、トランジションからプレースへの方向に向かって接続する出力アークである。以下の説明においては、入力アーク及び出力アークを併せて単にアークと呼ぶ場合がある。sTPNを表す図においては、アークは矢印にて表される。A・は、プレースとトランジションとを、プレースからトランジションへの方向に向かって接続するインヒビター・アークである。sTPNを表す図においては、インヒビター・アークは、先端が丸印である矢印にて表される。
 m0は各々のプレースにおける非負のトークンの数を表す初期マーキングである。sTPNを表す図においては、トークンは、プレースの内部に配置される黒丸にて表される。EFT及びLFTは、Tに含まれる各々のトランジションにおける最小及び最大発火時間である。EFTは、零を含む非負の実数である。また、LFTは、零及び無限大を含む非負の実数である。また、LFTの値はEFTの値と等しいか、又はEFTより大きい。Fは、Tに含まれる各々のトランジションに対するEFTからLFTの間における発火時刻に関する累積分布関数である。
 Cは、複数のトランジションが同時発火可能となった場合に、当該発火可能となった複数のトランジションの各々に関する発火のしやすさを表す重みである。Cは、同時に発火可能になる可能性があるトランジションに対して割り当てられる。Eは、Tに含まれる各々のトランジションに対するマーキングと関連付けられたエネーブリングファンクションである。L(flushing function)は、トランジションに割り当てられる。Lが割り当てられたトランジションが発火した場合に、Lにて関係付けられたプレース上のトークンを、当該トランジションとのアークによる接続関係に関わらず消去する。
 また、トランジションは、以下の場合に発火可能であるとされる。トランジションが発火すると、入力アークを介して接続されたプレースからトークンが1つ減り、出力アークを介して接続されたプレースにトークンが一つ増える。
・入力アークを介して接続されるプレースの全てに1つ以上のトークンが存在する。
・インヒビタ―・アークを介して接続されるプレースの全てにトークンが存在しない。
・時刻がEFTの値より大きく、LFTの値より小さい。
・エネーブリングファンクションが真となる。
 なお、sTPNの詳細は、例えば「Vicario, E., Sassoli, L., and Carnevali, L. (2009) ‘Using stochastic state classes in quantitative evaluation of dense-time reactive systems’, IEEE Transactions on Software Engineering, Vol. 35, No. 5, pp. 703-719.」等に記載されている。
 モデル生成部211は、一例として、sTPNを用いて、図6に示す生成規則の例に基づいて、避難情報、復旧情報、避難情報と復旧情報との関係等をモデルとして表す。モデル生成部211は、避難者が滞留する可能性がある地理的位置や、復旧対象の道路の状態、復旧の進捗状態等を表すようにモデルを生成する。sTPNを用いる場合、モデル生成部211は、図6(A)に示されるように、これらをプレースとして表す。
 また、モデル生成部211は、上述した地理的位置間にある道路等の接続関係や、復旧対象の道路等の状態が通行に与える状況の有無、複数の障害発生個所に関する復旧の進捗状態の関係等を表すようにモデルを生成する。sTPNを用いる場合、モデル生成部211は、図6(B)に示されるように、これらを上述したプレースに適宜接続されるアークとして表す。
 また、モデル生成部211は、避難者の移動時間や、障害発生個所を復旧させる時間、障害発生個所を復旧させる復旧リソースの移動時間等を表すようにモデルを生成する。モデル生成部211は、上述した各々の時間に関する確率分布を表すようにモデルを生成することができる。sTPNを用いる場合、モデル生成部211は、図6(C)に示されるように、これらをトランジションとして表す。また、上述した各々の時間は、トランジションに関係付けられる最小発火時間、最大発火時間、累積分布関数等にて表される。
 また、モデル生成部211は、所望の時点での避難者の位置、復旧の進捗段階、避難経路となる道路等の通行可否等を表すようにモデルを生成する。sTPNを用いる場合、モデル生成部211は、図6(D)に示されるように、これらを各々の位置や状況に応じたプレースにトークンを追加することで表す。
 また、モデル生成部211は、障害発生個所に関する復旧の進捗段階に応じた避難経路となる道路の通行可能性やその容量の変化を表すようにモデルを生成する。sTPNを用いる場合、モデル生成部211は、図6(E)に示されるように、これらを復旧の進捗状況を表すトランジションへのインヒビター・アークを追加することで表す。また、別の例として、複数の避難者が同時に通行できない避難経路が存在する場合、モデル生成部211は、ある避難者が当該避難経路を通行している場合に、他の避難者が当該避難経路を通行できないことを表すモデルを生成する。sTPNを用いる場合、モデル生成部211は、一例として、このような情報を、避難経路の入口に対応するプレースに対して適宜インヒビタ―・アークを追加し、他の避難者の移動を表すトランジションを発火不可能にすることで表すことができる。また、sTPNを用いる場合、モデル生成部211は、このような情報をエネーブリングファンクションにて表すことができる。
 なお、モデル生成部211は、上述した生成規則を、図示しない記憶部に予め格納しておき、モデルの生成時に当該生成規則を参照してモデルを生成することができる。また、モデル生成部211は、モデルを生成する際に、必要に応じて外部から当該生成規則を取得してモデルを生成してもよい。
 上述のような生成規則を用いることで、モデル生成部211は、避難情報や復旧情報、避難経路と復旧時期との関係を含むモデルを生成することができる。
 図7は、モデル生成部211にて生成されるモデルの例である。図7にて示すモデルは、図2で示した避難経路等をsTPNにて表している。また、図7に示す例では、障害発生個所は、f1が復旧されるとする。図7に示すモデルでは、被災地や避難先を含む避難者が滞留する可能性のある地域等が、p1からp7までのプレースにて表されている。また、復旧の進捗段階及び道路状態が、p8からp19までのプレースにて表される。
 また、図7に示すモデルでは、被災地や避難先等の地域を接続する道路との接続関係が、t0からt8までのトランジションと、これらのトランジションとp1からp7までのプレースとを接続するアークによって表されている。すなわち、p1からp7までのプレースと、t0からt8までのトランジションと、これらを接続するアークによって、図2に示す避難経路が示されている。また、t0からt8のトランジションの各々は、当該トランジションに対応する道路が通行可能である場合に発火可能となり、通行できないか、又は避難経路として用いられない場合には発火不可能となるようにsTPNが構成されている。そして、避難者の移動に要する時間やその確率分布が、t0からt8までのトランジションにおける最小発火時間、最大発火時間、累積分布関数等にて適宜表されている。
 また、復旧作業に要する時間や、復旧のためのリソースの移動に要する時間やその確率分布等が、t9からt12のトランジションにおける最小発火時間、最大発火時間、累積分布関数等にて適宜表されている。図7に示すモデルでは、t10が障害発生個所であるf1に関連付けられている。
 また、避難者の位置や復旧の状態がトークンにて表される。初期状態(初期マーキング)においては、避難者は被災地に留まっているとして、被災地に対応するプレースp1にトークンが置かれる。また、障害発生個所の復旧が着手されていないとして、プレースp8にトークンが置かれる。その他、上述の状態に対応するプレースにトークンが置かれる。図7に示すsTPNは、初期状態を表している。
 また、p13からp19までのプレースと、t0からt8までのトランジションとを接続するアークによって、復旧の進捗段階に復旧対象の道路等の状態が通行に与える状況や復旧の進捗段階に応じた道路の通行可能性が表されている。この場合において、アークはインヒビタ―・アークを含む。
 図7に示すモデルは、障害発生個所の復旧状況に応じて、図2に示す避難経路に応じて避難するように生成されている。具体的には、f1が復旧する前(トランジションt10が発火する前)の時点においては、図2の1→2→4→5との経路が選択されるよう、トランジションt0が発火可能となるようにモデルが生成されている。また、f1が復旧した後(トランジションt10が発火した後)の時点においては、図2の1→3→5との経路が選択されるよう、トランジションt1が発火可能となるようにモデルが生成されている。また、図2の2→3との経路が選択されないよう、トランジションt4が発火可能となるようにモデルが生成されている。すなわち、モデル生成部211は、障害発生個所の復旧状況に応じて一つの避難経路が選択されるようにモデルを生成する。このように、災害発生個所の復旧状況に応じて避難経路が選択されるモデルを生成することで、後述する解析部212において、避難経路の復旧状況に応じて避難者の避難に要する時間を予測することが可能となる。
 なお、モデル生成部211は、避難経路に関して、上述のモデルと異なるモデルを生成することができる。すなわち、モデル生成部211は、通行可能な複数の経路が存在する場合に、各々の経路が通行可能となるようなモデルを生成することができる。モデル生成部211は、避難の状況に応じて通行可能な避難経路が選択されるように適宜モデルを生成することができる。
 解析部212は、モデルを用いて避難者の避難に要する時間を予測する。解析部212は、モデル生成部211にて生成されたモデルについて、初期状態から避難者が避難先に到達するまでを状態探索すること等によって、避難者の避難に要する時間を予測する。モデルとしてsTPNを用いたモデルが生成された場合には、解析部212は、例えば、トークンが初期状態(避難元を表すプレースにトークンがある)から避難先を表すプレースへ達するまでの時間を避難者の避難に要する時間とする。この時間を求める際に、解析部212は、公知の手法を含むsTPNの任意の状態探索アルゴリズムを用いることができる。
 また、避難者の避難に要する時間は、任意の様々な形式によって表される。モデルとしてsTPNを用いた場合には、避難者の避難に要する時間は、例えば、避難が完了する時間の確率分布として累積分布関数にて表される。図8は、避難者の避難に要する時間を表す累積分布関数の一例を示す。図8に示す例では、横軸は避難開始からの時間、縦軸は累積分布関数の値を表す。この例では、避難開始から24時間後に概ね7割を超える避難者の避難が完了し、避難開始から48時間後以降に避難がほぼ完了することが分かる。
 以上のとおり、本実施形態における避難予測システム200は、モデル生成部211が、避難経路と復旧時期との関係を含むモデルを生成する。そして、解析部212が、当該モデルを用いて、避難者の避難に要する時間を予測する。災害が発生した場合には、避難に要する時間は、避難経路に応じて変わる場合がある。避難経路と復旧時期との関係を含むモデルは、例えば、障害発生個所の復旧状況に応じて避難経路が変化する状況を表すことができる。そして、そのようなモデルを解析することによって、避難経路の復旧状況に応じて避難者の避難に要する時間を予測することができる。したがって、本実施形態における避難予測システム200は、本発明の第1の実施形態における避難予測システム100と同様に、避難経路となる道路網等の状況等に即して被災者の避難に要する時間を推定することができる。
 なお、本実施形態において、予測部210は、モデルとしてsTPNを用いた。しかしながら、予測部210にて用いられるモデルは、sTPNに限られない。上述した生成規則に基づいてモデルを生成することが可能であれば、モデル生成部211は、sTPN以外の形式にてモデルを生成することができる。また、モデル生成部211は、例えば避難経路の容量等を含む避難情報や復旧情報を、用いられるモデルに応じて、上述した方法と異なる方法にて適宜モデルを生成することができる。そして、解析部212は、sTPN以外の形式にて生成されたモデルをそれぞれのモデルに適した手法にて解析することで、避難者の避難に要する時間を予測することができる。
 また、本実施形態において、モデルとしてsTPNが用いられる場合であっても、モデル生成部211は、上記の生成規則と異なる規則にてモデルを生成することができる。一例として、モデル生成部211は、障害発生個所に関する復旧の進捗段階に応じた道路の通行可能性を表す場合に、インヒビタ―・アークを用いないなど、上記の生成規則と異なる規則にてモデルを生成してもよい。
 また、本実施形態において、予測部210に含まれるモデル生成部211及び解析部212は、それぞれ単体の装置としてもいい。この場合には、モデル生成部211と解析部212との間は、例えば有線や無線の通信ネットワークを介して接続される。また、モデル生成部211と解析部212との間は、ファイルを介してモデルを表すデータがやり取りされてもよい。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態における構成は、本発明のスコープを逸脱しない限りにおいて、互いに組み合わせることが可能である。
 この出願は、2014年11月14日に出願された日本出願特願2014-231389を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200  避難予測システム
 110、210  予測部
 211  モデル生成部
 212  解析部
 500  情報処理装置
 501  CPU
 502  ROM
 503  RAM
 504  プログラム
 505  記憶装置
 506  記憶媒体
 507  ドライブ装置
 508  通信インターフェース
 509  通信ネットワーク
 510  入出力インターフェース
 511  バス

Claims (12)

  1.  避難者の避難経路に関する避難情報及び前記避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、前記避難者の避難に要する時間を予測する予測手段を備える、避難予測システム。
  2.  前記予測手段は、
     前記避難情報及び前記復旧情報に基づいて、前記避難経路と前記復旧時期との関係を含むモデルを生成するモデル生成手段と、
     前記モデルを用いて前記避難者の避難に要する時間を予測する解析手段とを備える、請求項1に記載の避難予測システム。
  3.  前記モデル生成手段は、前記障害が発生した個所の復旧状況に応じて、前記避難者の避難経路が選択されるように前記モデルを生成する、請求項2に記載の避難予測システム。
  4.  前記モデル生成手段は、前記避難者の移動に要する時間又は前記障害発生個所の復旧に関連する時間の少なくとも一方を確率分布にて表す前記モデルを生成する、
    請求項2又は3に記載の避難予測システム。
  5.  前記予測手段は、前記避難者の避難に要する時間の分布を予測する、請求項2から4のいずれか一項に記載の避難予測システム。
  6.  前記モデルは確率時間ペトリネットにて表される、請求項1から5のいずれか一項に記載の避難予測システム。
  7.   前記避難情報及び前記復旧情報に基づいて、前記避難経路と前記復旧時期との関係を含むモデルを生成するモデル生成手段を備える、モデル生成装置。
  8.  避難経路と復旧時期との関係を含むモデルを用いて避難者の避難に要する時間を予測する解析手段を備える、予測装置。
  9.  避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、前記避難者の避難に要する時間を予測する、避難予測方法。
  10.  前記避難者の避難に要する時間の予測に際し、
     前記避難情報及び前記復旧情報に基づいて、前記避難経路と前記復旧時期との関係を含むモデルを生成し、
    前記モデルを用いて前記避難者の避難に要する時間を予測する、請求項9に記載の避難予測方法。
  11.  コンピュータに、
     避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、前記避難者の避難に要する時間を予測する処理を実行させるプログラムを格納したコンピュータ読み取り可能記録媒体。
  12.  前記避難者の避難に要する時間を予測する処理において、
     前記避難情報及び前記復旧情報に基づいて、前記避難経路と前記復旧時期との関係を含むモデルを生成する処理と、
    前記モデルを用いて前記避難者の避難に要する時間を予測する処理とを実行させる、請求項11に記載のプログラムを格納したコンピュータ読み取り可能記録媒体。
PCT/JP2015/005614 2014-11-14 2015-11-10 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体 WO2016075933A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016558892A JP6683129B2 (ja) 2014-11-14 2015-11-10 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体
US15/523,789 US20170316538A1 (en) 2014-11-14 2015-11-10 Evacuation prediction system, model generating device, prediction device, evacuation prediction method, and computer-readable recording medium
EP15858746.9A EP3220345A4 (en) 2014-11-14 2015-11-10 Evacuation prediction system, model generating device, prediction device, evacuation prediction method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014231389 2014-11-14
JP2014-231389 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016075933A1 true WO2016075933A1 (ja) 2016-05-19

Family

ID=55954036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005614 WO2016075933A1 (ja) 2014-11-14 2015-11-10 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US20170316538A1 (ja)
EP (1) EP3220345A4 (ja)
JP (1) JP6683129B2 (ja)
WO (1) WO2016075933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555961A (zh) * 2019-10-15 2019-12-10 西安科技大学 一种基于lora的商业综合体智能疏散方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020025171A2 (pt) * 2018-07-16 2021-04-27 Aleksandar Sterpin me´todo e sistema de gestão de emergência
US11557013B2 (en) * 2019-05-15 2023-01-17 International Business Machines Corporation Personalized venue evacuation plan
CN111291923B (zh) * 2020-01-16 2022-12-02 清华大学 室外应急导向时间预测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349768B2 (en) * 2005-04-25 2008-03-25 The Boeing Company Evacuation route planning tool
US8788247B2 (en) * 2008-08-20 2014-07-22 International Business Machines Corporation System and method for analyzing effectiveness of distributing emergency supplies in the event of disasters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKASHI MINAMOTO ET AL.: "DEVELOPMENT OF TSUNAMI EVACUATION SIMULATION SYSTEM AND ITS APPLICATION TO ASSESSMENT OF AREA REFUGE SAFETY", PROCEEDINGS OF THE JAPAN SOCIETY OF CIVIL ENGINEERS A1 (STRUCTURAL ENGINEERING & EARTHQUAKE ENGINEERING, vol. 65, no. 1, 2009, pages 757 - 767, XP003034338, ISSN: 2185-4653, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jscejseee/65/1/65_1_757/_pdf> [retrieved on 20160204] *
TORU FUTAGAMI ET AL.: "Application Study of Petri Net Simulator for Human Evacuation Behavior Simulation", PROCEEDINGS OF INFRASTRUCTURE PLANNING, vol. 26, November 2002 (2002-11-01), XP003034339, ISSN: 0913-4026, Retrieved from the Internet <URL:https://www.jsce.or.jp/library/open/proc/maglist2/00039/200211_no26/pdf/330.pdf> [retrieved on 20160204] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555961A (zh) * 2019-10-15 2019-12-10 西安科技大学 一种基于lora的商业综合体智能疏散方法
CN110555961B (zh) * 2019-10-15 2021-03-26 西安科技大学 一种基于lora的商业综合体智能疏散方法

Also Published As

Publication number Publication date
EP3220345A1 (en) 2017-09-20
US20170316538A1 (en) 2017-11-02
EP3220345A4 (en) 2018-04-25
JPWO2016075933A1 (ja) 2017-08-24
JP6683129B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
Dulebenets et al. Exact and heuristic solution algorithms for efficient emergency evacuation in areas with vulnerable populations
WO2016075933A1 (ja) 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体
EP3133550A1 (en) Methods and systems for planning evacuation paths
US20100100510A1 (en) Dynamic discrete decision simulation system
US10687170B2 (en) Guidance assistance apparatus, guidance assistance method, and storage medium for storing program
JP2017191482A (ja) 災害発生時の危険度評価装置及び災害発生時の危険度評価プログラム
WO2022064657A1 (ja) 復旧支援装置、復旧支援方法およびプログラム
JP6665785B2 (ja) 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体
Bae et al. Simulation-based analyses of an evacuation from a metropolis during a bombardment
Gehlot et al. A-RESCUE 2.0: A high-fidelity, parallel, agent-based evacuation simulator
Hu et al. Prioritizing disaster mapping tasks for online volunteers based on information value theory
Toma-Danila A GIS framework for evaluating the implications of urban road network failure due to earthquakes: Bucharest (Romania) case study
Teo et al. Agent-based evacuation model considering field effects and government advice
Chen et al. Betweenness Centrality-Based seismic risk management for bridge transportation networks
Qazi et al. Short-notice bus-based evacuation under dynamic demand conditions
Kepaptsoglou et al. Planning postdisaster operations in a highway network: Network design model with interdependencies
JP4565490B2 (ja) 救急業務シミュレーションシステム及び方法
JP6665786B2 (ja) モデル集約装置、避難予測システム、集約モデル生成装置、集約方法及びコンピュータ読み取り可能記録媒体
JP2009031461A (ja) 災害時避難状況予測装置および災害時避難状況予測方法
CN114997537A (zh) 一种应急调度方法、装置、设备及介质
Chang et al. A simulation evacuation framework for effective disaster preparedness strategies and response decision making
Wang et al. Integrating sensing and routing for indoor evacuation
Zuccaro et al. Seismic impact scenarios in the volcanic areas in Campania
Rambha et al. Transportation network issues in evacuations
JP2019145029A (ja) ノード装置、情報処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558892

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15523789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858746

Country of ref document: EP