WO2016075903A1 - 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体 - Google Patents

粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体 Download PDF

Info

Publication number
WO2016075903A1
WO2016075903A1 PCT/JP2015/005533 JP2015005533W WO2016075903A1 WO 2016075903 A1 WO2016075903 A1 WO 2016075903A1 JP 2015005533 W JP2015005533 W JP 2015005533W WO 2016075903 A1 WO2016075903 A1 WO 2016075903A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
resin composition
powder molding
mass
Prior art date
Application number
PCT/JP2015/005533
Other languages
English (en)
French (fr)
Inventor
智 岩渕
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2016558872A priority Critical patent/JP6589881B2/ja
Publication of WO2016075903A1 publication Critical patent/WO2016075903A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K37/00Dashboards
    • B60K37/20Dashboard panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention provides a vinyl chloride resin composition for powder molding having high adhesion after sintering to a foamed polyurethane molded article and excellent meltability during sintering, and the vinyl chloride resin composition for powder molding described above.
  • Vinyl chloride resin molded body formed by powder molding, laminate having the vinyl chloride resin molded body and foamed polyurethane molded body, method for producing vinyl chloride resin composition for powder molding, and vinyl chloride resin molded body It relates to the manufacturing method.
  • An automobile instrument panel has a structure in which a foamed polyurethane layer is provided between a skin made of resin and a base material.
  • a skin made of a resin is required to have a property that a surface state does not change due to heat aging when it is molded by a powder molding method. Further, the resin composition used in the powder molding method needs to maintain powder fluidity regardless of the number of moldings. Then, the thermoplastic elastomer composition containing hydrogenated styrene butadiene rubber, polypropylene resin, an internal mold release agent, and polyethylene wax was examined (for example, refer patent document 1).
  • the problem to be solved by the present invention is to provide a vinyl chloride resin composition for powder molding having high adhesion after sintering to a foamed polyurethane molded article and excellent meltability during sintering. .
  • a vinyl chloride resin molded body obtained by powder molding the above-mentioned vinyl chloride resin composition for powder molding, and the above vinyl chloride resin molded body and foamed polyurethane molded body. It is providing the laminated body which has these. Furthermore, another problem to be solved by the present invention is to provide a method for producing the vinyl chloride resin composition for powder molding and a method for producing the vinyl chloride resin molded body.
  • the inventors of the present invention have made extensive studies in order to solve the above problems, and as a result, (a) vinyl chloride resin particles, (b) plasticizer, (c) a specific amount of polyolefin wax modified with polar groups, and ( d) It has been found that a vinyl chloride resin composition for powder molding containing vinyl chloride resin fine particles has high adhesiveness after sintering to a foamed polyurethane molded body and excellent meltability during sintering. It came to complete.
  • the present invention includes (a) vinyl chloride resin particles, (b) a plasticizer, (c) a polyolefin wax modified with polar groups, and (d) vinyl chloride resin fine particles, and is modified with the above (c) polar groups.
  • the polyolefin wax content is 0.1 parts by mass or more and 6.5 parts by mass or less with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles.
  • a vinyl chloride resin composition for powder molding a vinyl chloride resin composition for powder molding.
  • “resin particles” refers to particles having a particle size of 30 ⁇ m or more, and “resin particles” refers to particles having a particle size of less than 30 ⁇ m.
  • the preferred average particle diameter of the polyolefin wax modified with the polar group (c) is 20 ⁇ m or less.
  • the preferred average particle diameter of the (a) vinyl chloride resin particles is 50 ⁇ m or more and 500 ⁇ m or less.
  • a preferable average particle size of the (d) vinyl chloride resin fine particles is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the preferred use of the vinyl chloride resin composition for powder molding of the present invention is powder slush molding.
  • the present invention is a vinyl chloride resin molded body obtained by powder slush molding any one of the above-mentioned vinyl chloride resin compositions for powder molding.
  • the vinyl chloride resin molded product of the present invention is preferably for an automotive instrument panel skin.
  • the present invention is a laminate having a foamed polyurethane molded product and any one of the vinyl chloride resin molded products.
  • the laminate of the present invention is preferably used for an automobile instrument panel.
  • the present invention includes any one of the above, comprising mixing (a) vinyl chloride resin particles, (b) a plasticizer, (c) a polyolefin wax modified with a polar group, and (d) vinyl chloride resin fine particles.
  • This is a method for producing a vinyl chloride resin composition for powder molding.
  • the present invention is a vinyl chloride characterized by powder slush molding any one of the above-mentioned vinyl chloride resin compositions for powder molding or a vinyl chloride resin composition for powder molding produced according to the above production method It is a manufacturing method of a resin molding.
  • the vinyl chloride resin composition for powder molding of the present invention has high adhesion after sintering to a foamed polyurethane molded body and excellent meltability during sintering.
  • the vinyl chloride resin composition for powder molding of the present invention comprises (a) vinyl chloride resin particles, (b) a plasticizer, (c) a polyolefin wax modified with a polar group, and (d) vinyl chloride resin fine particles. And optionally further containing additives.
  • vinyl chloride resin that can constitute (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles, in addition to a vinyl chloride homopolymer
  • vinyl chloride units are preferably 50% by mass or more, more preferably Is a copolymer containing 70% by mass or more.
  • Specific examples of comonomers of the vinyl chloride copolymer include olefins such as ethylene and propylene; halogenated olefins such as allyl chloride, vinylidene chloride, vinyl fluoride, and ethylene trifluoride; vinyl acetate and propionic acid.
  • Carboxylic acid vinyl esters such as vinyl; vinyl ethers such as isobutyl vinyl ether and cetyl vinyl ether; allyl ethers such as allyl-3-chloro-2-oxypropyl ether and allyl glycidyl ether; acrylic acid, maleic acid, itaconic acid, acrylic 2-hydroxyethyl acid, methyl methacrylate, monomethyl maleate, diethyl maleate, maleic anhydride and other unsaturated carboxylic acids, their esters or acid anhydrides; acrylonitrile, methacrylonitrile and other unsaturated nitriles; Acrylamide, N- methylol acrylamide, acrylamido-2-methylpropanesulfonic acid, (meth) acrylamides such as acrylamide propyl trimethyl ammonium chloride; allyl amine benzoates, allylamine and its derivatives such as diallyl dimethyl ammonium chloride; and the like.
  • the monomer exemplified above is only a part of the monomer (comonomer) copolymerizable with vinyl chloride.
  • “polyvinyl chloride” edited by Kinki Chemical Association Vinyl Division
  • the various monomers exemplified in Nikkan Kogyo Shimbun (1988), pages 75-104 may be used.
  • One or more of these monomers can be used.
  • the vinyl chloride resin constituting the above (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles include ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and ethylene-ethyl acrylate copolymer.
  • resins obtained by graft polymerization of (1) vinyl chloride or (2) vinyl chloride and the above-mentioned comonomer to a resin such as chlorinated polyethylene are also included.
  • (meth) acryl means acryl and / or methacryl.
  • the vinyl chloride resin can be produced by any conventionally known production method such as suspension polymerization method, emulsion polymerization method, solution polymerization method or bulk polymerization method.
  • vinyl chloride resin particles function as a matrix resin.
  • vinyl chloride resin fine particles function as a dusting agent (powder fluidity improver) described later.
  • the average particle diameter of the (a) vinyl chloride resin particles is preferably 50 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 250 ⁇ m or less, and further preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • the “average particle diameter” refers to a volume average particle diameter measured by, for example, a laser diffraction method in accordance with JIS Z8825.
  • the average degree of polymerization of the vinyl chloride resin constituting the (a) vinyl chloride resin particles is preferably 800 or more and 5000 or less, and more preferably 800 or more and 3000 or less.
  • the “average polymerization degree” is measured in accordance with JIS K6720-2.
  • the vinyl chloride resin composition for powder molding of the present invention contains (d) vinyl chloride resin fine particles together with the above (a) vinyl chloride resin particles.
  • the (d) vinyl chloride resin fine particles function as a dusting agent that improves the powder fluidity of the vinyl chloride resin composition for powder molding.
  • fine-particles is 0.1 micrometer or more and 10 micrometers or less.
  • the “average particle diameter” refers to a volume average particle diameter measured by, for example, a laser diffraction method in accordance with JIS Z8825.
  • the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin fine particles is preferably 500 or more and 5000 or less, more preferably 600 or more and 3000 or less, and further preferably 700 or more and 2500 or less.
  • the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin fine particles is within the above range, the powder flowability of the vinyl chloride resin composition for powder molding is good, and the above powder molding The adhesiveness after sintering of the vinyl chloride resin composition for use to the foamed polyurethane molded article and the meltability during sintering are improved.
  • the preferable content of the (d) vinyl chloride resin fine particles is 5% by mass or more and 35% by mass with respect to the total content (100% by mass) of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles. % Or less, more preferably 5% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 25% by mass or less.
  • the content of the (d) vinyl chloride resin fine particles is within the above range, the powder flowability of the vinyl chloride resin composition for powder molding is good, and the vinyl chloride resin composition for powder molding is Adhesiveness after sintering to the foamed polyurethane molded body and meltability during sintering are improved.
  • the plasticizer (b) contained in the vinyl chloride resin composition for powder molding of the present invention is preferably a trimellitic acid ester plasticizer.
  • the trimellitic acid ester plasticizer is an ester compound of trimellitic acid and a monohydric alcohol.
  • monohydric alcohol examples include, but are not limited to, 1-hexanol, 1-heptanol, 1-octanol, 2-ethylhexanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, etc. Is mentioned.
  • the preferable trimellitic acid ester plasticizer as the plasticizer (b) is a triesterized product obtained by esterifying substantially all the carboxy groups of trimellitic acid with the above-described monohydric alcohol.
  • the alcohol residue part in the triesterized product may be derived from the same alcohol or may be derived from different alcohols.
  • the trimellitic acid ester plasticizer may be composed of a single compound or a mixture of different compounds.
  • trimellitic acid ester plasticizers are trimellitic acid tri-n-hexyl, trimellitic acid tri-n-heptyl, trimellitic acid tri-n-octyl, trimellitic acid tri- (2-ethylhexyl) , Trimellitic acid tri-n-nonyl, trimellitic acid tri-n-decyl, trimellitic acid triisodecyl, trimellitic acid tri-n-undecyl, trimellitic acid tri-n-dodecyl, trimellitic acid tri-n-alkyl Esters (esters having two or more kinds of alkyl groups having different carbon numbers [however, having 6 to 12 carbon atoms] in the molecule), trimellitic acid trialkyl esters (alkyl groups having different carbon numbers [however, Is an ester having 2 or more types in the molecule), and mixtures thereof.
  • trimellitic acid ester plasticizers include tri-n-octyl trimellitic acid, tri- (2-ethylhexyl) trimellitic acid, tri-n-nonyl trimellitic acid, and tri-n-decyl trimellitic acid.
  • Trimellitic acid tri-n-alkyl esters esters having two or more kinds of alkyl groups having different carbon numbers (wherein the carbon number is 8 to 10) in the molecule), and mixtures thereof.
  • plasticizer other than the trimellitic acid ester plasticizer that can be used as the plasticizer (b) contained in the vinyl chloride resin composition for powder molding of the present invention include the following primary plasticizer and secondary plasticizer. Can be mentioned.
  • primary plasticizers Pyromellitic acid tetra-n-hexyl, pyromellitic acid tetra-n-heptyl, pyromellitic acid tetra-n-octyl, pyromellitic acid tetra- (2-ethylhexyl), pyromellitic acid tetra-n-nonyl, pyromellitic acid Tetra-n-decyl, pyromellitic acid tetraisodecyl, pyromellitic acid tetra-n-undecyl, pyromellitic acid tetra-n-dodecyl, pyromellitic acid tetra-n-alkyl ester (an alkyl group having a different carbon number [however, Pyromellitic acid ester plasticizer, such as ester having 2 or more carbon atoms in the molecule].
  • Glycerol derivatives such as glycerol monoacetate, glycerol triacetate, glycerol tributyrate; Epoxy derivatives such as epoxy hexahydrophthalate diisodecyl, epoxy triglyceride, epoxidized octyl oleate, epoxidized decyl oleate; Polyester plasticizers such as adipic acid polyester, sebacic acid polyester, phthalic acid polyester; Etc.
  • secondary plasticizers include epoxidized vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; fatty acid esters of glycols such as chlorinated paraffin and triethylene glycol dicaprylate, butyl epoxy stearate, phenyl oleate And methyl dihydroabietate.
  • plasticizers other than the trimellitic acid ester plasticizer pyromellitic acid ester plasticizer is preferable, and pyromellitic acid tetra- (2-ethylhexyl) is more preferable.
  • pyromellitic acid ester plasticizer is preferable, and pyromellitic acid tetra- (2-ethylhexyl) is more preferable.
  • 1 type (s) or 2 or more types of other plasticizers can be used.
  • the total content of the (b) plasticizer is preferably 5 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles. It is not more than part by mass, more preferably not less than 30 parts by mass and not more than 180 parts by mass, and still more preferably not less than 50 parts by mass and not more than 150 parts by mass.
  • the content of the plasticizer (b) is in the above range, good flexibility at low temperatures can be imparted to a vinyl chloride resin molded article obtained by powder molding a vinyl chloride resin composition.
  • the vinyl chloride resin composition for powder molding according to the present invention comprises (c) a polyolefin wax modified with a polar group, and a total content of (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles. It is necessary to contain 0.1 part by mass or more and 6.5 parts by mass or less with respect to part by mass.
  • the content of the polyolefin wax modified with the polar group (c) is 0.15 with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles. It is preferably at least part by mass, more preferably at least 0.5 part by mass, and preferably at most 6.0 part by mass. When the content is within the above range, the adhesiveness after sintering of the vinyl chloride resin composition for powder molding to the foamed polyurethane molded article and the meltability during sintering are improved.
  • the average particle diameter of the polyolefin wax modified with a polar group is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average particle size is in the above range, the adhesiveness after sintering of the vinyl chloride resin composition for powder molding to the foamed polyurethane molded product and the meltability during sintering are improved.
  • the average particle size of the polyolefin wax modified with (c) polar group is preferably 0.1 ⁇ m or more.
  • the melting point of the polyolefin wax modified with (c) polar group is preferably 100 ° C. or higher, preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 105 ° C. or higher and 180 ° C. or lower, and more preferably 110 ° C. or higher and 160 ° C. or lower. preferable.
  • the melting point is within the above range, the adhesiveness after sintering the foamed polyurethane molded article of the vinyl chloride resin composition for powder molding and the meltability during sintering are improved.
  • the molecular weight of the polyolefin wax modified with a polar group is preferably 1000 or more and 10,000 or less (number average molecular weight).
  • the said molecular weight can be calculated
  • the polyolefin wax modified with a polar group is, for example, a polyolefin wax such as polyethylene wax, polypropylene wax, polybutylene wax, and the like such as carboxy group, sulfonic acid group, phosphoric acid group, and silicate group.
  • a polyolefin wax such as polyethylene wax, polypropylene wax, polybutylene wax, and the like such as carboxy group, sulfonic acid group, phosphoric acid group, and silicate group.
  • what is modified with an acid group may be referred to as “acid modification”.
  • polyolefin wax modified with a polar group is acid-modified polyethylene wax.
  • the vinyl chloride resin composition for powder molding of the present invention may contain perchloric acid-treated hydrotalcite.
  • Perchloric acid-treated hydrotalcite for example, by adding hydrotalcite to a dilute aqueous solution of perchloric acid, stirring, and then filtering, dehydrating or drying as necessary, thereby allowing carbonate anions in hydrotalcite It can be easily produced by substituting at least a part of (CO 3 2 ⁇ ) with a perchlorate anion (ClO 4 ⁇ ) (2 mol of perchlorate anion is substituted for 1 mol of carbonate anion).
  • the molar ratio of the hydrotalcite to the perchloric acid can be arbitrarily set, but is generally 0.1 to 2 moles of perchloric acid per mole of hydrotalcite.
  • the substitution rate of the carbonate anion to the perchlorate anion in the untreated (unsubstituted) hydrotalcite is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 85 mol% or more. Further, the substitution rate of the carbonate anion to the perchlorate anion in the untreated (unsubstituted) hydrotalcite is preferably 95 mol% or less. Chloride formed by powder molding a vinyl chloride resin composition for powder molding because the substitution rate of carbonate anions in untreated (unsubstituted) hydrotalcite to perchlorate anions is within the above range. Good flexibility at low temperature can be imparted to the vinyl resin molded article.
  • Hydrotalcite is a non - stoichiometric compound represented by the general formula: [Mg 1-x Al x (OH) 2 ] x + [(CO 3 ) x / 2 ⁇ mH 2 O] x- It is an inorganic substance having a layered crystal structure consisting of a layer [Mg 1-x Al x (OH) 2 ] x + and a negatively charged intermediate layer [(CO 3 ) x / 2 ⁇ mH 2 O] x- .
  • x is a number in the range of greater than 0 and less than or equal to 0.33.
  • Natural hydrotalcite is Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
  • Mg 4.5 Al 2 (OH) 13 CO 3 .3.5H 2 O is commercially available as the synthesized hydrotalcite.
  • a method for synthesizing synthetic hydrotalcite is described in, for example, Japanese Patent Publication No. 61-174270.
  • the preferable content of perchloric acid-treated hydrotalcite with respect to 100 parts by mass of the total content of the above (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles is 0.5 parts by mass or more and 7 parts by mass or less. Yes, more preferable content is 1 part by mass or more and 6 parts by mass or less, and further preferable content is 1.5 part by mass or more and 5.5 parts by mass or less.
  • the content of the perchloric acid-treated hydrotalcite is within the above range, good flexibility at low temperature can be imparted to the vinyl chloride resin composition for powder molding.
  • the vinyl chloride resin composition for powder molding of the present invention can contain zeolite as a stabilizer.
  • Zeolite has the general formula: M x / n ⁇ [(AlO 2 ) x ⁇ (SiO 2 ) y ] ⁇ zH 2 O (wherein M is a metal ion of valence n and x + y is a tetrahedron per unit cell) Number, z is the number of moles of water).
  • M in the general formula include monovalent or divalent metals such as Na, Li, Ca, Mg, Zn, and mixed types thereof.
  • the preferable content of the zeolite with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles is 0.1 parts by mass or more and 5 parts by mass or less.
  • the vinyl chloride resin composition for powder molding of the present invention may contain a fatty acid metal salt.
  • a preferred fatty acid metal salt is a monovalent fatty acid metal salt
  • a more preferred fatty acid metal salt is a monovalent fatty acid metal salt having 12 to 24 carbon atoms
  • a more preferred fatty acid metal salt is a monovalent fatty acid metal salt having 15 to 21 carbon atoms. It is a fatty acid metal salt.
  • the fatty acid metal salt include lithium stearate, magnesium stearate, aluminum stearate, calcium stearate, strontium stearate, barium stearate, zinc stearate, calcium laurate, barium laurate, zinc laurate, 2-ethylhexane. Barium acid, zinc 2-ethylhexanoate, barium ricinoleate, zinc ricinoleate and the like.
  • the metal constituting the fatty acid metal salt is preferably a metal capable of generating a polyvalent cation, more preferably a metal capable of generating a divalent cation, and a divalent cation of the third to sixth periods of the periodic table. Is more preferable, and a metal capable of generating a divalent cation in the fourth period of the periodic table is particularly preferable.
  • the most preferred fatty acid metal salt is zinc stearate.
  • the preferred content of the fatty acid metal salt with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles is 0.05 parts by mass or more and 5 parts by mass or less.
  • a preferable content is 0.1 part by mass or more and 1 part by mass or less, and a more preferable content is 0.1 part by mass or more and 0.5 part by mass or less.
  • the vinyl chloride resin composition for powder molding of the present invention may contain a dusting agent (hereinafter, also referred to as “other dusting agent”) other than the above (d) vinyl chloride resin fine particles.
  • Other dusting agents include inorganic fine particles such as calcium carbonate, talc, and aluminum oxide; polyacrylonitrile resin fine particles, poly (meth) acrylate resin fine particles, polystyrene resin fine particles, polyethylene resin fine particles, polypropylene resin fine particles, polyester resin fine particles, polyamide Organic fine particles such as resin fine particles.
  • inorganic fine particles having an average particle size of 10 nm to 100 nm are preferable.
  • the content of other dusting agents is not limited to a specific range.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of the total content of the (a) vinyl chloride resin particles and the (d) vinyl chloride resin fine particles. It is.
  • the vinyl chloride resin composition for powder molding of the present invention comprises a colorant, an impact modifier, a perchloric acid compound other than perchloric acid-treated hydrotalcite (sodium perchlorate, potassium perchlorate, etc.), oxidation
  • a perchloric acid compound other than perchloric acid-treated hydrotalcite sodium perchlorate, potassium perchlorate, etc.
  • Other additives such as an inhibitor, an antifungal agent, a flame retardant, an antistatic agent, a filler, a light stabilizer, a foaming agent, ⁇ -diketones, and a lubricant may be contained.
  • the colorant are quinacridone pigments, perylene pigments, polyazo condensation pigments, isoindolinone pigments, copper phthalocyanine pigments, titanium white, and carbon black.
  • the quinacridone pigment is obtained by treating p-phenylene dianthranilic acid with concentrated sulfuric acid and exhibits a yellowish red to reddish purple hue.
  • Specific examples of the quinacridone pigment are quinacridone red, quinacridone magenta, and quinacridone violet.
  • the perylene pigment is obtained by a condensation reaction of perylene-3,4,9,10-tetracarboxylic anhydride and an aromatic primary amine, and exhibits a hue from red to magenta and brown.
  • the perylene pigment are perylene red, perylene orange, perylene maroon, perylene vermilion, and perylene bordeaux.
  • the polyazo condensation pigment is obtained by condensing an azo dye in a solvent to obtain a high molecular weight, and exhibits a hue of a yellow or red pigment.
  • Specific examples of the polyazo condensation pigment are polyazo red, polyazo yellow, chromophthal orange, chromophthal red, and chromophthal scarlet.
  • the isoindolinone pigment is obtained by a condensation reaction of 4,5,6,7-tetrachloroisoindolinone and an aromatic primary diamine, and exhibits a hue of greenish yellow to red and brown.
  • the isoindolinone pigment is isoindolinone yellow.
  • the copper phthalocyanine pigment is a pigment in which copper is coordinated to phthalocyanines, and exhibits a hue of yellowish green to vivid blue.
  • Specific examples of the copper phthalocyanine pigment are phthalocyanine green and phthalocyanine blue.
  • Titanium white is a white pigment made of titanium dioxide and has a large hiding power, and there are anatase type and rutile type.
  • Carbon black is a black pigment containing carbon as a main component and containing oxygen, hydrogen, and nitrogen. Specific examples of carbon black are thermal black, acetylene black, channel black, furnace black, lamp black, and bone black.
  • the impact resistance improver examples include acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, ethylene-vinyl acetate copolymer, and the like.
  • the vinyl chloride resin composition for powder molding of the present invention one or more impact resistance improvers can be used.
  • the impact resistance improver is dispersed as a heterogeneous phase of fine elastic particles in the vinyl chloride resin composition for powder molding.
  • the chain and the polar group graft-polymerized to the elastic particles are compatible with the vinyl chloride resin particles (a), and the impact resistance of the vinyl chloride resin composition for powder molding is Improves.
  • antioxidants include phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants.
  • fungicide examples include aliphatic ester fungicides, hydrocarbon fungicides, organic nitrogen fungicides, organic nitrogen sulfur fungicides and the like.
  • flame retardants are halogen flame retardants such as chlorinated paraffin; phosphorus flame retardants such as phosphate esters; inorganic hydroxides such as magnesium hydroxide and aluminum hydroxide;
  • antistatic agent examples include anionic antistatic agents such as fatty acid salts, higher alcohol sulfates and sulfonates; cationic antistatic agents such as aliphatic amine salts and quaternary ammonium salts; polyoxyethylene alkyl Nonionic antistatic agents such as ethers and polyoxyethylene alkylphenol ethers;
  • filler examples include silica, talc, mica, calcium carbonate, clay and the like.
  • light stabilizers include benzotriazole-based, benzophenone-based, nickel chelate-based ultraviolet absorbers, hindered amine-based light stabilizers, and the like.
  • blowing agent examples include azo compounds such as azodicarbonamide and azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl hydrazide, p, p-oxybis (benzene)
  • Organic foaming agents such as sulfonyl hydrazide compounds such as sulfonyl hydrazide); volatile hydrocarbon compounds such as chlorofluorocarbon gas, carbon dioxide gas, water and pentane; gas-based foaming agents such as microcapsules enclosing these;
  • ⁇ -diketones are used to more effectively suppress fluctuations in the initial color tone of a vinyl chloride resin molded product obtained by powder molding the vinyl chloride resin composition for powder molding of the present invention.
  • Specific examples of ⁇ -diketones are dibenzoylmethane, stearoylbenzoylmethane, palmitoylbenzoylmethane, and the like.
  • One of these ⁇ -diketones may be used alone, or two or more thereof may be used in combination.
  • the content of ⁇ -diketones is not limited to a specific range.
  • the preferred content of ⁇ -diketones is 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total content of the above (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles. is there.
  • a specific example of the lubricant is 12-hydroxystearic acid oligomer.
  • the vinyl chloride resin composition for powder molding of the present invention can be produced by mixing the components described above. That is, the method for producing a vinyl chloride resin composition for powder molding of the present invention comprises at least (a) vinyl chloride resin particles, (b) a plasticizer, (c) a polyolefin wax modified with a polar group, and ( d) The content of the polyolefin wax modified with (c) the polar group in the vinyl chloride resin fine particles is 100 parts by mass with respect to the total content of (a) the vinyl chloride resin particles and (d) the vinyl chloride resin fine particles. It includes mixing so that it may become 0.1 to 6.5 mass parts.
  • an additive may be mixed arbitrarily.
  • the mixing method of the agent is not limited.
  • a preferred mixing method is to dry dry blend the components except for the plasticizer and the dusting agent (including the above (d) vinyl chloride resin fine particles and other dusting agent added if necessary), and then In this method, a plasticizer and a dusting agent are sequentially mixed.
  • the Henschel mixer is preferably used for dry blending.
  • the vinyl chloride resin molded article of the present invention is obtained by powder molding, preferably powder slush molding, of the above-described vinyl chloride resin composition for powder molding of the present invention.
  • the vinyl chloride resin molded article of the present invention is suitably used as an automobile interior material, for example, as a skin for instrument panels, door trims, and the like.
  • the vinyl chloride resin molded article of the present invention can be produced using the above-described vinyl chloride resin composition for powder molding. That is, at least one of the above-described vinyl chloride resin compositions for powder molding or a vinyl chloride resin composition for powder molding manufactured according to the above-described manufacturing method is used as the method of manufacturing the vinyl chloride resin molded body of the present invention. Is characterized by powder slush molding.
  • the mold temperature at the time of powder slush molding is preferably 200 ° C. or higher and 300 ° C. or lower, more preferably 220 ° C. or higher and 280 ° C. or lower.
  • the vinyl chloride resin molded article of the present invention for example, after the vinyl chloride resin composition for powder molding of the present invention is sprinkled on a mold in the above temperature range and left for 5 to 30 seconds. The excess vinyl chloride resin composition is shaken off and left for 30 seconds to 3 minutes. Thereafter, the mold is cooled to 10 ° C. or more and 60 ° C. or less, and the obtained vinyl chloride resin molded article of the present invention is removed from the mold.
  • the laminate of the present invention can be obtained by laminating the vinyl chloride resin molded product of the present invention and the foamed polyurethane molded product.
  • the lamination method is a method in which a vinyl chloride resin molded body and a foamed polyurethane molded body are separately manufactured, and then bonded together by using heat fusion, thermal bonding, or a known adhesive; on the vinyl chloride resin molded body, Polymerization by reacting isocyanates, which are raw materials for foamed polyurethane moldings, polyols, etc., and foaming polyurethane by a known method to directly form a foamed polyurethane molding on a vinyl chloride resin molding And so on.
  • the latter is more preferable because the process is simple and the vinyl chloride resin molded body and the polyurethane foam molded body can be securely bonded even when obtaining laminates of various shapes. .
  • the laminated body of this invention is used suitably as a vehicle interior material, for example, an instrument panel, a door trim, etc.
  • the average particle size (volume average particle size) of (a) vinyl chloride resin particles and (d) vinyl chloride resin fine particles used in the vinyl chloride resin composition for powder molding is vinyl chloride resin. Disperse the particles and vinyl chloride resin fine particles in the water tank, measure and analyze the light diffraction / scattering intensity distribution using the following equipment, and measure the particle size and volume-based particle size distribution. Based on the above calculation.
  • ⁇ Apparatus Laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model number “SALD-2300”) ⁇ Measuring method: Laser diffraction and scattering ⁇ Measuring range: 0.017 ⁇ m to 2500 ⁇ m
  • Light source Semiconductor laser (wavelength 680 nm, output 3 mW)
  • ⁇ Melting temperature of vinyl chloride resin composition for powder molding The melting temperature of the vinyl chloride resin composition for powder molding obtained in Examples and Comparative Examples was measured using a heated mold. Specifically, the mold was placed on a hot plate heated stepwise at equal intervals in a range from 170 ° C. to 270 ° C. to obtain a mold heated stepwise. Then, the vinyl chloride resin composition for powder molding was melted by sprinkling on the mold heated stepwise and leaving it for a predetermined time. Next, the excess vinyl chloride resin composition for powder molding is shaken off, and the mold is cooled with water, whereby the vinyl chloride resin molding sheet in which the vinyl chloride resin for powder molding is formed into a belt shape is molded. Demolded from.
  • the surface of the demolded vinyl chloride resin molded sheet was visually observed, and the temperature of the melted portion was taken as the melting temperature.
  • the said melted location was judged as a location which has a smooth surface, without leaving particle shape in the shape
  • a lower melting temperature indicates that the vinyl chloride resin composition for powder molding has better meltability during sintering. The results are shown in Tables 1 and 2.
  • Examples 1 to 5 and Comparative Examples 1 to 5 Among the ingredients shown in Tables 1 and 2, the components except the plasticizer (trimellitic acid ester plasticizer and epoxidized soybean oil) and the dusting agent vinyl chloride resin fine particles are mixed in a Henschel mixer. did. Then, when the temperature of the mixture rose to 80 ° C., a plasticizer was added and dried up (referred to as a state in which the plasticizer was absorbed into the vinyl chloride resin particles and the mixture was further improved). Thereafter, when the dried-up mixture was cooled to 70 ° C. or less, vinyl chloride resin fine particles as a dusting agent were added to produce a vinyl chloride resin composition for powder molding.
  • plasticizer trimellitic acid ester plasticizer and epoxidized soybean oil
  • vinyl chloride resin fine particles as a dusting agent were added to produce a vinyl chloride resin composition for powder molding.
  • the melting temperature of the obtained vinyl chloride resin composition for powder molding was measured by the said method.
  • the obtained vinyl chloride resin composition for powder molding is sprinkled on a metal mold with a texture heated to 250 ° C., and is allowed to stand for a period of time adjusted so that the thickness of the vinyl chloride resin molded sheet is 1 mm.
  • the excess vinyl chloride resin composition for powder molding was shaken off. Then, it is left still in an oven set at 200 ° C., and when 60 seconds have passed after standing, the mold is cooled with cooling water, and when the mold temperature is cooled to 40 ° C., 145 mm ⁇ 175 mm ⁇ 1 mm
  • the vinyl resin molded sheet was removed from the mold.
  • a polyol mixture consisting of parts and polymethylene polyphenylene polyisocyanate (polymeric MDI) are mixed at a ratio of an index of 98 and mixed. Liquid was prepared.
  • the prepared liquid mixture was each poured on 2 sheets of vinyl chloride resin molding sheets spread
  • CERAFLOUR 925 (acid-modified polyethylene wax, melting point 115 ° C., average particle size 6 ⁇ m) 10) HW NL500 manufactured by Mitsui Chemicals, Inc. (polyethylene wax, melting point 103 ° C., average particle diameter 250 ⁇ m) 11) CERAFLOUR 991 (polyethylene wax, melting point 115 ° C., average particle size 5 ⁇ m) manufactured by Big Chemie Japan Co., Ltd.
  • ZEST PQLTX (d) vinyl chloride resin fine particles, average degree of polymerization 800, average particle size 2 ⁇ m), manufactured by Shin Daiichi Vinyl Co., Ltd. 13) DAPX-1720 Black (A), manufactured by Dainichi Seika Kogyo Co., Ltd.
  • the vinyl chloride resin compositions for powder molding of Examples 1 to 5 had high adhesion after sintering to a foamed polyurethane molded body and excellent meltability during sintering.
  • the vinyl chloride resin composition for powder molding of Comparative Example 1 that did not have a polyolefin wax modified with a polar group had low meltability during sintering.
  • the polyurethane adhesiveness after the heat test of the vinyl chloride resin composition for powder molding of Comparative Example 2 in which the content of the polyolefin wax modified with a polar group is too large was low.
  • the vinyl chloride resin composition for powder molding of Comparative Example 3 containing an unmodified polyolefin wax instead of the polyolefin wax modified with a polar group has extremely low meltability during sintering, and a vinyl chloride resin molded sheet Since it was not possible to form a laminate having a heat resistance test, polyurethane adhesion was not measured.
  • the melting temperature of the vinyl chloride resin composition for powder molding of Comparative Example 4 containing a large amount of unmodified polyolefin wax instead of polyolefin wax modified with polar groups is higher than 270 ° C. Adhesion was not measured.
  • the vinyl chloride resin composition for powder molding of the present invention is suitably used as a molding material for the skin of automobile interior materials such as instrument panels and door trims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Instrument Panels (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、発泡ポリウレタン成形体への焼結後の高い接着性と焼結時の優れた溶融性とを有する粉体成形用塩化ビニル樹脂組成物を提供する。本発明の粉体成形用塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を含み、(c)極性基で変性されたポリオレフィンワックスの含有量が、(a)塩化ビニル樹脂粒子と(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して0.1質量部以上6.5質量部以下である。

Description

粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
 本発明は、発泡ポリウレタン成形体への焼結後の高い接着性と焼結時の優れた溶融性とを有する粉体成形用塩化ビニル樹脂組成物、上記粉体成形用塩化ビニル樹脂組成物を粉体成形してなる塩化ビニル樹脂成形体、上記塩化ビニル樹脂成形体と発泡ポリウレタン成形体とを有する積層体、上記粉体成形用塩化ビニル樹脂組成物の製造方法、及び上記塩化ビニル樹脂成形体の製造方法に関する。
 自動車インスツルメントパネルは、発泡ポリウレタン層が、樹脂からなる表皮と基材との間に設けられた構造を有している。樹脂からなる表皮は、粉体成形法により成形されるところ、熱老化による表面状態の変化が生じない性質を有している必要がある。また、上記粉体成形法に使用される樹脂組成物は、成形回数にかかわらず、粉体流動性を維持している必要がある。そこで、水素添加スチレンブタジエンゴム、ポリプロピレン樹脂、内部離型剤及びポリエチレンワックスを含む熱可塑性エラストマー組成物が検討された(例えば、特許文献1参照)。
 ところで、木質感に富み、建材及び家具材に適する成形品を得るため、塩化ビニル系樹脂、可塑剤、及びポリエチレンワックスを含む塩化ビニル系樹脂組成物が検討された(例えば、特許文献2参照)。
特開2000-109609号公報 特開平11-92608号公報
 近年、発泡ポリウレタン成形体への焼結後の高い接着性と、焼結時の優れた溶融性とを有する粉体成形用塩化ビニル樹脂組成物が要求されていた。しかし、そのような粉体成形用塩化ビニル樹脂組成物は得られていなかった。
 そこで、本発明が解決しようとする課題は、発泡ポリウレタン成形体への焼結後の高い接着性と優れた焼結時の溶融性とを有する粉体成形用塩化ビニル樹脂組成物の提供である。また、本発明が解決しようとする別の課題は、上記粉体成形用塩化ビニル樹脂組成物を粉体成形してなる塩化ビニル樹脂成形体、及び、上記塩化ビニル樹脂成形体と発泡ポリウレタン成形体とを有する積層体の提供である。更に、本発明が解決しようとする別の課題は、上記粉体成形用塩化ビニル樹脂組成物の製造方法、及び、上記塩化ビニル樹脂成形体の製造方法の提供である。
 本発明の発明者は、上記課題を解決するために鋭意検討した結果、(a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックスを特定量、及び(d)塩化ビニル樹脂微粒子を含む粉体成形用塩化ビニル樹脂組成物が、発泡ポリウレタン成形体への焼結後の接着性が高く、且つ焼結時の溶融性が優れることを見出し、本発明を完成させるに至った。
 本発明は、(a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を含み、上記(c)極性基で変性されたポリオレフィンワックスの含有量が、前記(a)塩化ビニル樹脂粒子と前記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して0.1質量部以上6.5質量部以下である、粉体成形用塩化ビニル樹脂組成物である。
 なお、本発明において、「樹脂粒子」とは、粒子径が30μm以上の粒子を指し、「樹脂微粒子」とは、粒子径が30μm未満の粒子を指す。
 本発明の粉体成形用塩化ビニル樹脂組成物において、前記(c)極性基で変性されたポリオレフィンワックスの好ましい平均粒子径は20μm以下である。
 本発明の粉体成形用塩化ビニル樹脂組成物において、前記(a)塩化ビニル樹脂粒子の好ましい平均粒子径は50μm以上500μm以下である。
 本発明の粉体成形用塩化ビニル樹脂組成物において、前記(d)塩化ビニル樹脂微粒子の好ましい平均粒子径は0.1μm以上10μm以下である。
 そして、本発明の粉体成形用塩化ビニル樹脂組成物の好ましい用途はパウダースラッシュ成形である。
 また、本発明は、前記いずれかの粉体成形用塩化ビニル樹脂組成物をパウダースラッシュ成形してなる塩化ビニル樹脂成形体である。
 そして、本発明の塩化ビニル樹脂成形体は、好ましくは自動車インスツルメントパネル表皮用である。
 また、本発明は、発泡ポリウレタン成形体と、前記いずれかの塩化ビニル樹脂成形体とを有する積層体である。
 そして、本発明の積層体は、好ましくは自動車インスツルメントパネル用である。
 更に、本発明は、(a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を混合することを含む、上記いずれかの粉体成形用塩化ビニル樹脂組成物の製造方法である。
 また、本発明は、上記いずれかの粉体成形用塩化ビニル樹脂組成物、または、上記製造方法に従って製造した粉体成形用塩化ビニル樹脂組成物をパウダースラッシュ成形することを特徴とする、塩化ビニル樹脂成形体の製造方法である。
 本発明の粉体成形用塩化ビニル樹脂組成物は、発泡ポリウレタン成形体への焼結後の高い接着性と、焼結時の優れた溶融性とを有する。
(粉体成形用塩化ビニル樹脂組成物)
 本発明の粉体成形用塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂粒子と、(b)可塑剤と、(c)極性基で変性されたポリオレフィンワックスと、(d)塩化ビニル樹脂微粒子とを含み、任意に添加剤を更に含有する。
<塩化ビニル樹脂>
 ここで、(a)塩化ビニル樹脂粒子および(d)塩化ビニル樹脂微粒子を構成し得る塩化ビニル樹脂としては、塩化ビニルの単独重合体の他、塩化ビニル単位を好ましくは50質量%以上、より好ましくは70質量%以上含有する共重合体が挙げられる。塩化ビニル共重合体の共単量体の具体例は、エチレン、プロピレンなどのオレフィン類;塩化アリル、塩化ビニリデン、フッ化ビニル、三フッ化塩化エチレンなどのハロゲン化オレフィン類;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル類;イソブチルビニルエーテル、セチルビニルエーテルなどのビニルエーテル類;アリル-3-クロロ-2-オキシプロピルエーテル、アリルグリシジルエーテルなどのアリルエーテル類;アクリル酸、マレイン酸、イタコン酸、アクリル酸-2-ヒドロキシエチル、メタクリル酸メチル、マレイン酸モノメチル、マレイン酸ジエチル、無水マレイン酸などの不飽和カルボン酸、そのエステルまたはその酸無水物類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライドなどのアクリルアミド類;アリルアミン安息香酸塩、ジアリルジメチルアンモニウムクロライドなどのアリルアミンおよびその誘導体類;などである。以上に例示される単量体は、塩化ビニルと共重合可能な単量体(共単量体)の一部に過ぎず、共単量体としては、近畿化学協会ビニル部会編「ポリ塩化ビニル」日刊工業新聞社(1988年)第75~104頁に例示されている各種単量体が使用され得る。これらの単量体の1種又は2種以上が使用され得る。上記(a)塩化ビニル樹脂粒子および(d)塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂には、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、塩素化ポリエチレンなどの樹脂に、(1)塩化ビニルまたは(2)塩化ビニルと前記共単量体とがグラフト重合された樹脂も含まれる。
 ここで、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味する。
 上記塩化ビニル樹脂は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法など、従来から知られているいずれの製造法によっても製造され得る。
 なお、粉体成形用塩化ビニル樹脂組成物において、(a)塩化ビニル樹脂粒子は、マトリックス樹脂として機能する。また、(d)塩化ビニル樹脂微粒子は、後述するダスティング剤(粉体流動性改良剤)として機能する。
<(a)塩化ビニル樹脂粒子>
 ここで、(a)塩化ビニル樹脂粒子の平均粒子径は、好ましくは50μm以上500μm以下、より好ましくは50μm以上250μm以下、更に好ましくは100μm以上200μm以下である。(a)塩化ビニル樹脂粒子の平均粒子径が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の粉体流動性が良好であり、かつ、上記粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。
 なお、「平均粒子径」は、JIS Z8825に準拠し、例えば、レーザー回折法により測定される体積平均粒径を指す。
 上記(a)塩化ビニル樹脂粒子を構成する塩化ビニル樹脂の平均重合度は、好ましくは800以上5000以下であり、より好ましくは800以上3000以下である。上記(a)塩化ビニル樹脂粒子を構成する塩化ビニル樹脂の平均重合度が上記範囲であると、塩化ビニル樹脂組成物を粉体成形してなる塩化ビニル樹脂成形体に、良好な耐熱老化性を付与することができる。
 なお、「平均重合度」は、JIS K6720-2に準拠して測定される。
<(d)塩化ビニル樹脂微粒子>
 本発明の粉体成形用塩化ビニル樹脂組成物は、上記(a)塩化ビニル樹脂粒子と共に、(d)塩化ビニル樹脂微粒子を含有する。上記(d)塩化ビニル樹脂微粒子は、粉体成形用塩化ビニル樹脂組成物の粉体流動性を向上させるダスティング剤として機能する。
 また、上記(d)塩化ビニル樹脂微粒子の好ましい平均粒子径は0.1μm以上10μm以下である。(d)塩化ビニル樹脂微粒子の平均粒径が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の粉体流動性が向上するからである。
 なお、「平均粒子径」は、JIS Z8825に準拠し、例えば、レーザー回折法により測定される体積平均粒径を指す。
 上記(d)塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂の平均重合度は、好ましくは500以上5000以下であり、より好ましくは600以上3000以下であり、更に好ましくは700以上2500以下である。上記(d)塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂の平均重合度が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の粉体流動性が良好であり、かつ、上記粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。
 上記(d)塩化ビニル樹脂微粒子の好ましい含有量は、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量(100質量%)に対して5質量%以上35質量%以下であり、より好ましくは5質量%以上30質量%以下であり、更に好ましくは5質量%以上25質量%以下である。上記(d)塩化ビニル樹脂微粒子の含有量が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の粉体流動性が良好であり、かつ、上記粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。
<可塑剤>
 本発明の粉体成形用塩化ビニル樹脂組成物が含有する(b)可塑剤は、好ましくはトリメリット酸エステル可塑剤である。トリメリット酸エステル可塑剤は、トリメリット酸と一価アルコールとのエステル化合物である。
 上記一価アルコールの具体例としては、特に限定されることなく、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2-エチルヘキサノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール等が挙げられる。
 中でも、(b)可塑剤としての好ましいトリメリット酸エステル可塑剤は、上述した一価アルコールによりトリメリット酸のカルボキシ基を実質的に全てエステル化したトリエステル化物である。トリエステル化物におけるアルコール残基部分は、同一のアルコール由来であってもよく、それぞれ異なるアルコール由来のものであってもよい。
 上記トリメリット酸エステル可塑剤は、単一の化合物からなるものであってもよいし、異なる化合物の混合物であってもよい。
 好適なトリメリット酸エステル可塑剤の具体例は、トリメリット酸トリ-n-ヘキシル、トリメリット酸トリ-n-ヘプチル、トリメリット酸トリ-n-オクチル、トリメリット酸トリ-(2-エチルヘキシル)、トリメリット酸トリ-n-ノニル、トリメリット酸トリ-n-デシル、トリメリット酸トリイソデシル、トリメリット酸トリ-n-ウンデシル、トリメリット酸トリ-n-ドデシル、トリメリット酸トリ-n-アルキルエステル(炭素数が異なるアルキル基〔但し、炭素数は6~12である。〕を分子内に2種以上有するエステル)、トリメリット酸トリアルキルエステル(炭素数が異なるアルキル基〔但し、炭素数は8~10である。〕を分子内に2種以上有するエステル)、及びこれらの混合物等である。
 より好ましいトリメリット酸エステル可塑剤の具体例は、トリメリット酸トリ-n-オクチル、トリメリット酸トリ-(2-エチルヘキシル)、トリメリット酸トリ-n-ノニル、トリメリット酸トリ-n-デシル、トリメリット酸トリ-n-アルキルエステル(炭素数が異なるアルキル基〔但し、炭素数は8~10である。〕を分子内に2種以上有するエステル)、及びこれらの混合物等である。
 本発明の粉体成形用塩化ビニル樹脂組成物が含有する(b)可塑剤として用い得るトリメリット酸エステル可塑剤以外の可塑剤としては、例えば、以下の一次可塑剤及び二次可塑剤などが挙げられる。
 いわゆる一次可塑剤としては、
 ピロメリット酸テトラ-n-ヘキシル、ピロメリット酸テトラ-n-ヘプチル、ピロメリット酸テトラ-n-オクチル、ピロメリット酸テトラ-(2-エチルヘキシル)、ピロメリット酸テトラ-n-ノニル、ピロメリット酸テトラ-n-デシル、ピロメリット酸テトライソデシル、ピロメリット酸テトラ-n-ウンデシル、ピロメリット酸テトラ-n-ドデシル、ピロメリット酸テトラ-n-アルキルエステル(炭素数が異なるアルキル基〔但し、炭素数は6~12である。〕を分子内に2種以上有するエステル)等の、ピロメリット酸エステル可塑剤;
 ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジ-n-オクチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジフェニルフタレート、ジイソデシルフタレート、ジトリデシルフタレート、ジウンデシルフタレート、ジベンジルフタレート、ブチルベンジルフタレート、ジノニルフタレート、ジシクロヘキシルフタレートなどのフタル酸誘導体;
 ジメチルイソフタレート、ジ-(2-エチルヘキシル)イソフタレート、ジイソオクチルイソフタレートなどのイソフタル酸誘導体;
 ジ-(2-エチルヘキシル)テトラヒドロフタレート、ジ-n-オクチルテトラヒドロフタレート、ジイソデシルテトラヒドロフタレートなどのテトラヒドロフタル酸誘導体;
 ジ-n-ブチルアジペート、ジ(2-エチルヘキシル)アジペート、ジイソデシルアジペート、ジイソノニルアジペートなどのアジピン酸誘導体;
 ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジ-n-ヘキシルアゼレートなどのアゼライン酸誘導体;
 ジ-n-ブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソデシルセバケート、ジ-(2-ブチルオクチル)セバケートなどのセバシン酸誘導体;
 ジ-n-ブチルマレエート、ジメチルマレエート、ジエチルマレエート、ジ-(2-エチルヘキシル)マレエートなどのマレイン酸誘導体;
 ジ-n-ブチルフマレート、ジ-(2-エチルヘキシル)フマレートなどのフマル酸誘導体;
 トリエチルシトレート、トリ-n-ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ-(2-エチルヘキシル)シトレートなどのクエン酸誘導体;
 モノメチルイタコネート、モノブチルイタコネート、ジメチルイタコネート、ジエチルイタコネート、ジブチルイタコネート、ジ-(2-エチルヘキシル)イタコネートなどのイタコン酸誘導体;
 ブチルオレエート、グリセリルモノオレエート、ジエチレングリコールモノオレエートなどのオレイン酸誘導体;
 メチルアセチルリシノレート、ブチルアセチルリシノレート、グリセリルモノリシノレート、ジエチレングリコールモノリシノレートなどのリシノール酸誘導体;
 n-ブチルステアレート、ジエチレングリコールジステアレートなどのステアリン酸誘導体;
 ジエチレングリコールモノラウレート、ジエチレングリコールジペラルゴネート、ペンタエリスリトール脂肪酸エステルなどのその他の脂肪酸誘導体;
 トリエチルホスフェート、トリブチルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(クロロエチル)ホスフェートなどのリン酸誘導体;
 ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、トリエチレングリコールジ-(2-エチルブチレート)、トリエチレングリコールジ-(2-エチルヘキソエート)、ジブチルメチレンビスチオグリコレートなどのグリコール誘導体;
 グリセロールモノアセテート、グリセロールトリアセテート、グリセロールトリブチレートなどのグリセリン誘導体;
 エポキシヘキサヒドロフタル酸ジイソデシル、エポキシトリグリセライド、エポキシ化オレイン酸オクチル、エポキシ化オレイン酸デシルなどのエポキシ誘導体;
 アジピン酸系ポリエステル、セバシン酸系ポリエステル、フタル酸系ポリエステルなどのポリエステル系可塑剤;
などが挙げられる。
 また、いわゆる二次可塑剤としては、エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;塩素化パラフィン、トリエチレングリコールジカプリレートなどのグリコールの脂肪酸エステル、ブチルエポキシステアレート、フェニルオレエート、ジヒドロアビエチン酸メチルなどが挙げられる。
 そして、上記トリメリット酸エステル可塑剤以外の可塑剤の中でも、ピロメリット酸エステル可塑剤が好ましく、ピロメリット酸テトラ-(2-エチルヘキシル)がより好ましい。
 なお、本発明の粉体成形用塩化ビニル樹脂組成物では、1種又は2種以上の、その他の可塑剤を使用しうる。また、二次可塑剤を用いる場合、当該二次可塑剤と等質量以上の一次可塑剤を併用することが好ましい。
 そして、上記(b)可塑剤の合計含有量は、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して、好ましくは5質量部以上200質量部以下であり、より好ましくは30質量部以上180質量部以下であり、更に好ましくは50質量部以上150質量部以下である。上記(b)可塑剤の含有量が上記範囲であると、塩化ビニル樹脂組成物を粉体成形してなる塩化ビニル樹脂成形体に、良好な低温での柔軟性を付与できる。
<(c)極性基で変性されたポリオレフィンワックス>
 本発明の粉体成形用塩化ビニル樹脂組成物は、(c)極性基で変性されたポリオレフィンワックスを、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して、0.1質量部以上6.5質量部以下含有することが必要である。また、(c)極性基で変性されたポリオレフィンワックスの含有量は、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して、0.15質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、6.0質量部以下であることが好ましい。当該含有量が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。
 ここで、(c)極性基で変性されたポリオレフィンワックスの平均粒子径は、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましい。当該平均粒子径が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。なお、取扱い性の観点から、(c)極性基で変性されたポリオレフィンワックスの平均粒子径は0.1μm以上であることが好ましい。
 また、(c)極性基で変性されたポリオレフィンワックスの融点は、100℃以上が好ましく、100℃以上200℃以下が好ましく、105℃以上180℃以下がより好ましく、110℃以上160℃以下が更に好ましい。当該融点が上記範囲であると、粉体成形用塩化ビニル樹脂組成物の発泡ポリウレタン成形体への焼結後の接着性と、焼結時の溶融性とが向上する。
 更に、(c)極性基で変性されたポリオレフィンワックスの分子量は、1000以上10000以下(数平均分子量)であることが好ましい。当該分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算値として求めることができる。
 ここで、(c)極性基で変性されたポリオレフィンワックスとは、例えば、ポリエチレンワックス、ポリプロピレンワックス、ポリブチレンワックス等のポリオレフィンワックスが、カルボキシ基、スルホン酸基、リン酸基、ケイ酸基などの酸基;水酸基;エポキシ基;アミノ基;アミド基;(メタ)アクリロキシ基;カルボニル基;等の官能基で変性されているものを指す。なお、酸基で変性されているものを、「酸変性」と呼ぶことがある。
 中でも、好ましい(c)極性基で変性されたポリオレフィンワックスは、酸変性ポリエチレンワックスである。
<添加剤>
[過塩素酸処理ハイドロタルサイト]
 本発明の粉体成形用塩化ビニル樹脂組成物は、過塩素酸処理ハイドロタルサイトを含有していてもよい。過塩素酸処理ハイドロタルサイトは、例えば、ハイドロタルサイトを過塩素酸の希薄水溶液中に加えて撹拌し、その後必要に応じて、ろ過、脱水または乾燥することによって、ハイドロタルサイト中の炭酸アニオン(CO3 2-)の少なくとも一部を過塩素酸アニオン(ClO4 -)で置換して(炭酸アニオン1モルにつき過塩素酸アニオン2モルが置換する)、容易に製造することができる。上記ハイドロタルサイトと上記過塩素酸とのモル比は任意に設定できるが、一般には、ハイドロタルサイト1モルに対し、過塩素酸0.1~2モルとする。
 未処理(未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率は、好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは85モル%以上である。また、未処理(未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率は、好ましくは95モル%以下である。未処理(未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率が上記の範囲内にあることにより、粉体成形用塩化ビニル樹脂組成物を粉体成形してなる塩化ビニル樹脂成形体に、良好な低温での柔軟性を付与することができる。
 ハイドロタルサイトは、一般式:[Mg1-xAlx(OH)2]x+[(CO3)x/2・mH2O]x-で表される不定比化合物で、プラスに荷電した基本層[Mg1-xAlx(OH)2]x+と、マイナスに荷電した中間層[(CO3)x/2・mH2O]x-とからなる層状の結晶構造を有する無機物質である。ここで、上記一般式中、xは0より大きく0.33以下の範囲の数である。天然のハイドロタルサイトは、Mg6Al2(OH)16CO3・4H2Oである。合成されたハイドロタルサイトとしては、Mg4.5Al2(OH)13CO3・3.5H2Oが市販されている。合成ハイドロタルサイトの合成方法は、例えば特公昭61-174270号公報に記載されている。
 過塩素酸処理ハイドロタルサイトの、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対する好ましい含有量は0.5質量部以上7質量部以下であり、より好ましい含有量は1質量部以上6質量部以下であり、更に好ましい含有量は1.5質量部以上5.5質量部以下である。過塩素酸処理ハイドロタルサイトの含有量が上記範囲であると、粉体成形用塩化ビニル樹脂組成物に良好な低温での柔軟性を付与できる。
[ゼオライト]
 本発明の粉体成形用塩化ビニル樹脂組成物は、ゼオライトを安定剤として含有し得る。ゼオライトは、一般式:Mx/n・[(AlO2x・(SiO2y]・zH2O(一般式中、Mは原子価nの金属イオン、x+yは単位格子当たりの四面体数、zは水のモル数である)で表される化合物である。当該一般式中のMの種類としては、Na、Li、Ca、Mg、Znなどの一価又は二価の金属及びこれらの混合型が挙げられる。
 上記ゼオライトの、上記(a)塩化ビニル樹脂粒子と、上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対する好ましい含有量は、0.1質量部以上5質量部以下である。
[脂肪酸金属塩]
 本発明の粉体成形用塩化ビニル樹脂組成物は、脂肪酸金属塩を含有していてもよい。好ましい脂肪酸金属塩は、一価脂肪酸金属塩であり、より好ましい脂肪酸金属塩は、炭素数12~24の一価脂肪酸金属塩であり、更に好ましい脂肪酸金属塩は、炭素数15~21の一価脂肪酸金属塩である。脂肪酸金属塩の具体例は、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸ストロンチウム、ステアリン酸バリウム、ステアリン酸亜鉛、ラウリン酸カルシウム、ラウリン酸バリウム、ラウリン酸亜鉛、2-エチルヘキサン酸バリウム、2-エチルヘキサン酸亜鉛、リシノール酸バリウム、リシノール酸亜鉛等である。脂肪酸金属塩を構成する金属としては、多価陽イオンを生成しうる金属が好ましく、2価陽イオンを生成しうる金属がより好ましく、周期表第3周期~第6周期の、2価陽イオンを生成しうる金属が更に好ましく、周期表第4周期の、2価陽イオンを生成しうる金属が特に好ましい。最も好ましい脂肪酸金属塩はステアリン酸亜鉛である。
 上記脂肪酸金属塩の、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対する好ましい含有量は0.05質量部以上5質量部以下であり、より好ましい含有量は0.1質量部以上1質量部以下であり、更に好ましい含有量は0.1質量部以上0.5質量部以下である。脂肪酸金属塩の含有量が上記範囲であると、粉体成形用塩化ビニル樹脂組成物に良好な低温での柔軟性を付与でき、更に耐熱試験後の色差の値を小さくできる。
[その他のダスティング剤]
 本発明の粉体成形用塩化ビニル樹脂組成物は、上記(d)塩化ビニル樹脂微粒子以外のダスティング剤(以下、「その他のダスティング剤」ということがある。)を含有し得る。その他のダスティング剤としては、炭酸カルシウム、タルク、酸化アルミニウムなどの無機微粒子;ポリアクリロニトリル樹脂微粒子、ポリ(メタ)アクリレート樹脂微粒子、ポリスチレン樹脂微粒子、ポリエチレン樹脂微粒子、ポリプロピレン樹脂微粒子、ポリエステル樹脂微粒子、ポリアミド樹脂微粒子などの有機微粒子;が挙げられる。中でも、平均粒径が10nm以上100nm以下の無機微粒子が好ましい。
 その他のダスティング剤の含有量は特定の範囲に限定されない。当該含有量は、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して、好ましくは20質量部以下であり、更に好ましくは10質量部以下である。
[その他の添加剤]
 本発明の粉体成形用塩化ビニル樹脂組成物は、着色剤、耐衝撃性改良剤、過塩素酸処理ハイドロタルサイト以外の過塩素酸化合物(過塩素酸ナトリウム、過塩素酸カリウム等)、酸化防止剤、防カビ剤、難燃剤、帯電防止剤、充填剤、光安定剤、発泡剤、β-ジケトン類、滑剤等の、その他の添加剤を含有し得る。
 着色剤の具体例は、キナクリドン系顔料、ペリレン系顔料、ポリアゾ縮合顔料、イソインドリノン系顔料、銅フタロシアニン系顔料、チタンホワイト、カーボンブラックである。1種又は2種以上の顔料が使用される。キナクリドン系顔料は、p-フェニレンジアントラニル酸類が濃硫酸で処理されて得られ、黄みの赤から赤みの紫の色相を示す。キナクリドン系顔料の具体例は、キナクリドンレッド、キナクリドンマゼンタ、キナクリドンバイオレットである。
 ペリレン系顔料は、ペリレン-3,4,9,10-テトラカルボン酸無水物と芳香族第一級アミンとの縮合反応により得られ、赤から赤紫、茶色の色相を示す。ペリレン系顔料の具体例は、ペリレンレッド、ペリレンオレンジ、ペリレンマルーン、ペリレンバーミリオン、ペリレンボルドーである。
 ポリアゾ縮合顔料は、アゾ色素が溶剤中で縮合されて高分子量化されて得られ、黄、赤系顔料の色相を示す。ポリアゾ縮合顔料の具体例は、ポリアゾレッド、ポリアゾイエロー、クロモフタルオレンジ、クロモフタルレッド、クロモフタルスカーレットである。
 イソインドリノン系顔料は、4,5,6,7-テトラクロロイソインドリノンと芳香族第一級ジアミンとの縮合反応により得られ、緑みの黄色から、赤、褐色の色相を示す。イソインドリノン系顔料の具体例は、イソインドリノンイエローである。
 銅フタロシアニン系顔料は、フタロシアニン類に銅を配位した顔料で、黄みの緑から鮮やかな青の色相を示す。銅フタロシアニン系顔料の具体例は、フタロシアニングリーン、フタロシアニンブルーである。
 チタンホワイトは、二酸化チタンからなる白色顔料で、隠蔽力が大きく、アナタース型とルチル型がある。
 カーボンブラックは、炭素を主成分とし、酸素、水素、窒素を含む黒色顔料である。カーボンブラックの具体例は、サーマルブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、ボーンブラックである。
 耐衝撃性改良剤の具体例は、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体、エチレン-酢酸ビニル共重合体などである。本発明の粉体成形用塩化ビニル樹脂組成物では、1種又は2種以上の耐衝撃性改良剤が使用できる。なお、耐衝撃性改良剤は、粉体成形用塩化ビニル樹脂組成物中で微細な弾性粒子の不均一相となって分散する。本発明の粉体成形用塩化ビニル樹脂組成物では、当該弾性粒子にグラフト重合した鎖及び極性基が(a)塩化ビニル樹脂粒子と相溶し、粉体成形用塩化ビニル樹脂組成物の耐衝撃性が向上する。
 酸化防止剤の具体例は、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などである。
 防カビ剤の具体例は、脂肪族エステル系防カビ剤、炭化水素系防カビ剤、有機窒素系防カビ剤、有機窒素硫黄系防カビ剤などである。
 難燃剤の具体例は、塩素化パラフィン等のハロゲン系難燃剤;リン酸エステル等のリン系難燃剤;水酸化マグネシウム、水酸化アルミニウム等の無機水酸化物;などである。
 帯電防止剤の具体例は、脂肪酸塩類、高級アルコール硫酸エステル類、スルホン酸塩類等のアニオン系帯電防止剤;脂肪族アミン塩類、第四級アンモニウム塩類等のカチオン系帯電防止剤;ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエーテル類等のノニオン系帯電防止剤;などである。
 充填剤の具体例は、シリカ、タルク、マイカ、炭酸カルシウム、クレーなどである。
 光安定剤の具体例は、ベンゾトリアゾール系、ベンゾフェノン系、ニッケルキレート系等の紫外線吸収剤、ヒンダードアミン系光安定剤などである。
 発泡剤の具体例は、アゾジカルボンアミド、アゾビスイソブチロニトリル等のアゾ化合物、N,N′-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、p-トルエンスルホニルヒドラジド、p,p-オキシビス(ベンゼンスルホニルヒドラジド)等のスルホニルヒドラジド化合物などの有機発泡剤;フロンガスや炭酸ガス、水、ペンタン等の揮発性炭化水素化合物、これらを内包したマイクロカプセルなどの、ガス系の発泡剤;などである。
 β-ジケトン類は、本発明の粉体成形用塩化ビニル樹脂組成物を粉体成形して得られる塩化ビニル樹脂成形体の初期色調の変動をより効果的に抑えるために用いられる。β-ジケトン類の具体例は、ジベンゾイルメタン、ステアロイルベンゾイルメタン、パルミトイルベンゾイルメタンなどである。これらのβ-ジケトン類は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 なお、β-ジケトン類の含有量は特定の範囲に限定されない。β-ジケトン類の好ましい含有量は、上記(a)塩化ビニル樹脂粒子と上記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して、0.1質量部以上5質量部以下である。
 滑剤の具体例は、12-ヒドロキシステアリン酸オリゴマーなどである。
(粉体成形用塩化ビニル樹脂組成物の製造方法)
 本発明の粉体成形用塩化ビニル樹脂組成物は、上述した成分を混合して製造することができる。即ち、本発明の粉体成形用塩化ビニル樹脂組成物の製造方法は、少なくとも、上記(a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を、(c)極性基で変性されたポリオレフィンワックスの含有量が、(a)塩化ビニル樹脂粒子と(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して0.1質量部以上6.5質量部以下となるように混合することを含む。そして、本発明の粉体成形用塩化ビニル樹脂組成物の製造方法では、上記成分に加え任意に添加剤が混合されてもよい。
 ここで、上記(a)塩化ビニル樹脂粒子、上記(b)可塑剤、上記(c)極性基で変性されたポリオレフィンワックス、上記(d)塩化ビニル樹脂微粒子、及び必要に応じて添加される添加剤の混合方法は限定されない。好ましい混合方法は、可塑剤及びダスティング剤(上記(d)塩化ビニル樹脂微粒子と、必要に応じて添加されるその他のダスティング剤とを含む)を除く成分をドライブレンドにより混合し、その後、可塑剤、ダスティング剤を順次、混合する方法である。ドライブレンドには、ヘンシェルミキサーの使用が好ましい。
(塩化ビニル樹脂成形体)
 本発明の塩化ビニル樹脂成形体は、上述した本発明の粉体成形用塩化ビニル樹脂組成物を、粉体成形、好ましくはパウダースラッシュ成形して得る。
 そして、本発明の塩化ビニル樹脂成形体は、自動車内装材、例えばインスツルメントパネル、ドアトリム等の表皮として好適に用いられる。
(塩化ビニル樹脂成形体の製造方法)
 本発明の塩化ビニル樹脂成形体は、上述した粉体成形用塩化ビニル樹脂組成物を用いて製造することができる。即ち、本発明の塩化ビニル樹脂成形体の製造方法は、少なくとも、上述したいずれかの粉体成形用塩化ビニル樹脂組成物、または、上述した製造方法に従って製造した粉体成形用塩化ビニル樹脂組成物をパウダースラッシュ成形することを特徴とする。
 ここで、パウダースラッシュ成形時の金型温度は、好ましくは200℃以上300℃以下、より好ましくは220℃以上280℃以下である。
 本発明の塩化ビニル樹脂成形体を製造する際には、例えば、上記温度範囲の金型に本発明の粉体成形用塩化ビニル樹脂組成物を振りかけて5秒以上30秒以下の間放置した後、余剰の塩化ビニル樹脂組成物を振り落とし、さらに30秒以上3分以下の間放置する。その後、金型を10℃以上60℃以下に冷却し、得られた本発明の塩化ビニル樹脂成形体を金型から脱型する。
(積層体)
 本発明の積層体は、本発明の塩化ビニル樹脂成形体と発泡ポリウレタン成形体とを積層して得ることができる。積層方法は、塩化ビニル樹脂成形体と、発泡ポリウレタン成形体とを別途製造した後に、熱融着、熱接着又は公知の接着剤などを用いることにより貼り合わせる方法;塩化ビニル樹脂成形体上で、発泡ポリウレタン成形体の原料となるイソシアネート類とポリオール類などとを反応させて重合を行うと共に、公知の方法によりポリウレタンの発泡を行い、塩化ビニル樹脂成形体上に発泡ポリウレタン成形体を直接形成する方法;などが挙げられる。後者の方が、工程が簡素であり、かつ、種々の形状の積層体を得る場合においても、塩化ビニル樹脂成形体と発泡ポリウレタン成形体との接着を確実に行うことができるのでより好適である。
 そして、本発明の積層体は、自動車内装材、例えばインスツルメントパネル、ドアトリム等として好適に用いられる。
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、各種物性の測定方法は次の通りである。
<(a)塩化ビニル樹脂粒子及び(d)塩化ビニル樹脂微粒子の平均粒子径>
 実施例及び比較例において、粉体成形用塩化ビニル樹脂組成物に用いられる(a)塩化ビニル樹脂粒子、及び(d)塩化ビニル樹脂微粒子の平均粒子径(体積平均粒子径)は、塩化ビニル樹脂粒子、及び塩化ビニル樹脂微粒子を、それぞれ水槽内に分散させ、以下に示す装置を用いて、光の回折・散乱強度分布を測定・解析し、粒子径及び体積基準の粒子径分布を測定することにより、算出した。
 ・装置:レーザー回折式粒度分布測定機(島津製作所製、型番「SALD-2300」)
 ・測定方式:レーザー回折及び散乱
 ・測定範囲:0.017μm~2500μm
 ・光源:半導体レーザー(波長680nm、出力3mW)
<粉体成形用塩化ビニル樹脂組成物の溶融温度>
 実施例及び比較例で得られた粉体成形用塩化ビニル樹脂組成物の溶融温度は、加熱した金型を用いて測定した。具体的には、金型を170℃から270℃までの範囲で等間隔に段階的に加熱した熱盤上に置き、段階的に加熱した金型を得た。そして、粉体成形用塩化ビニル樹脂組成物を、当該段階的に加熱した金型に振りかけ、所定の時間放置することにより溶融させた。次に、余剰の粉体成形用塩化ビニル樹脂組成物を振り落とし、金型を水で冷却することにより、粉体成形用塩化ビニル樹脂がベルト状に成形された塩化ビニル樹脂成形シートを金型から脱型した。脱型した塩化ビニル樹脂成形シート表面を目視で観察し、溶融した箇所の温度を溶融温度とした。なお、当該溶融した箇所は、成形された塩化ビニル樹脂成形シートにおいて、粒子形状を残すことなく平滑な表面を有する箇所として判断した。溶融温度が低いほど、粉体成形用塩化ビニル樹脂組成物が、焼結時の溶融性に優れることを示す。結果を表1及び表2に示す。
<粉体成形用塩化ビニル樹脂組成物の耐熱試験後ポリウレタン接着性>
 積層体としての、発泡ポリウレタン成形体が裏打ちされた塩化ビニル樹脂成形シートをオーブンに入れ、130℃で100時間加熱した後、塩化ビニル樹脂成形シートを発泡ポリウレタン成形体から剥がした。剥がした後の塩化ビニル樹脂成形シートの表面の内、発泡ポリウレタン成形体が裏打ちされた表面を目視で確認し、粉体成形用塩化ビニル樹脂組成物の耐熱試験後ポリウレタン接着性を評価した。目視確認した塩化ビニル樹脂成形シート全面に発泡ポリウレタン成形体の表面部分が残っている場合を「フォーム破壊」とし、塩化ビニル樹脂成形シート全面のいずれかの箇所に発泡ポリウレタン成形体の表面部分が残らない場合を「界面剥離」とし、また、極めて低い溶融性のために塩化ビニル樹脂成形シートが成形されず、耐熱試験後ポリウレタン接着性を測定することができなかった場合を「-」で表した。フォーム破壊が確認されるほど、粉体成形用塩化ビニル樹脂組成物の、発泡ポリウレタン成形体への焼結後の接着性が高いことを示す。結果を表1及び表2に示す。
(実施例1~5及び比較例1~5)
 表1及び表2に示す配合成分のうち、可塑剤(トリメリット酸エステル可塑剤、及びエポキシ化大豆油)と、ダスティング剤である塩化ビニル樹脂微粒子とを除く成分をヘンシェルミキサーに入れて混合した。そして、混合物の温度が80℃に上昇した時点で可塑剤を添加し、ドライアップ(可塑剤が塩化ビニル樹脂粒子に吸収されて、上記混合物がさらさらになった状態をいう。)させた。その後、ドライアップさせた混合物が70℃以下に冷却された時点でダスティング剤である塩化ビニル樹脂微粒子を添加し、粉体成形用塩化ビニル樹脂組成物を製造した。
 そして、得られた粉体成形用塩化ビニル樹脂組成物の溶融温度を上記方法で測定した。
 次に、得られた粉体成形用塩化ビニル樹脂組成物を250℃に加熱したシボ付き金型に振りかけ、塩化ビニル樹脂成形シートの厚みが1mmになるよう調整した時間放置して溶融させた後、余剰の粉体成形用塩化ビニル樹脂組成物を振り落とした。その後、200℃に設定したオーブンに静置し、静置後60秒経過した時点で金型を冷却水により冷却し、金型温度が40℃まで冷却された時点で145mm×175mm×1mmの塩化ビニル樹脂成形シートを金型から脱型した。なお、比較例3,4では、得られた粉体成形用塩化ビニル樹脂組成物の溶融性が低いために塩化ビニル樹脂成形シートを成形することができなかった。
 得られた塩化ビニル樹脂成形シート2枚を、210mm×300mm×10mmの金型中に重ならないように敷き、シボ付き面を下にして置いた。
 別途、プロピレングリコールのプロピレンオキサイド・エチレンオキサイド(PO・EO)ブロック付加物(水酸基価28、末端EO単位の含有量=10%、内部EO単位の含有量4%)50質量部、グリセリンのPO・EOブロック付加物(水酸基価21、末端EO単位の含有量=14%)50質量部、水2.5質量部、トリエチレンジアミンのエチレングリコ-ル溶液(東ソー(株)製、商品名「TEDA-L33」)0.2質量部、トリエタノールアミン1.2質量部、トリエチルアミン0.5質量部、及び整泡剤(信越化学工業(株)製、商品名「F-122」)0.5質量部からなるポリオール混合物と、ポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)とを、インデックスが98になる比率で混合して混合液を調製した。そして、調製した混合液を、上述の通り金型中に敷かれた塩化ビニル樹脂成形シート2枚の上にそれぞれ注いだ。その後、305mm×395mm×20mmのアルミ板で金型に蓋をすることで金型を密閉した。密閉してから5分後、1mm厚の塩化ビニル樹脂成形シートからなる表皮に、9mm厚、密度0.18g/cm3の発泡ポリウレタン成形体が裏打ちされた積層体を金型から取り出し、上記に示す方法で耐熱試験後ポリウレタン接着性を測定した。結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1)新第一塩ビ(株)製、ZEST 2000Z((a)塩化ビニル樹脂粒子、平均重合度2000、平均粒子径130μm)
2)花王(株)製、トリメックスN-08
3)(株)ADEKA製、アデカサイザーO-130S
4)協和化学工業(株)製、アルカマイザー5
5)水澤化学工業(株)製、MIZUKALIZER DS
6)昭和電工(株)製、カレンズ DK-1
7)堺化学工業(株)製、SAKAI SZ2000
8)(株)ADEKA製、アデカスタブ LS-12
9)ビックケミー・ジャパン(株)製、CERAFLOUR 925(酸変性ポリエチレンワックス、融点115℃、平均粒子径6μm)
10)三井化学(株)製、HW NL500(ポリエチレンワックス、融点103℃、平均粒子径250μm)
11)ビックケミー・ジャパン(株)製、CERAFLOUR 991(ポリエチレンワックス、融点115℃、平均粒子径5μm)
12)新第一塩ビ(株)製、ZEST PQLTX((d)塩化ビニル樹脂微粒子、平均重合度800、平均粒子径2μm)
13)大日精化工業(株)製、DA PX-1720ブラック(A)
 実施例1~5の粉体成形用塩化ビニル樹脂組成物は、発泡ポリウレタン成形体への焼結後の高い接着性及び焼結時の優れた溶融性を有していた。極性基で変性されたポリオレフィンワックスを有していない比較例1の粉体成形用塩化ビニル樹脂組成物の焼結時の溶融性は低かった。また、極性基で変性されたポリオレフィンワックスの含有量が多すぎる比較例2の粉体成形用塩化ビニル樹脂組成物の耐熱試験後ポリウレタン接着性は低かった。また、極性基で変性されたポリオレフィンワックスに代えて未変性のポリオレフィンワックスを含有する比較例3の粉体成形用塩化ビニル樹脂組成物の焼結時の溶融性は極めて低く、塩化ビニル樹脂成形シートを有する積層体を成形することができなかったため、耐熱試験後ポリウレタン接着性は測定されなかった。同様に、極性基で変性されたポリオレフィンワックスに代えて未変性のポリオレフィンワックスを多量に含有する比較例4の粉体成形用塩化ビニル樹脂組成物の溶融温度は270℃より高く、耐熱試験後ポリウレタン接着性は測定されなかった。更に、極性基で変性されたポリオレフィンワックスに代えて、比較例3~4とは異なる未変性のポリオレフィンワックスを含有する比較例5の粉体成形用塩化ビニル樹脂組成物の耐熱試験後ポリウレタン接着性は低かった。
 本発明の粉体成形用塩化ビニル樹脂組成物は、例えば、インスツルメントパネル、ドアトリム等の自動車内装材の表皮の成形材料として好適に用いられる。

Claims (11)

  1.  (a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を含み、
     前記(c)極性基で変性されたポリオレフィンワックスの含有量が、前記(a)塩化ビニル樹脂粒子と前記(d)塩化ビニル樹脂微粒子との合計含有量100質量部に対して0.1質量部以上6.5質量部以下である、粉体成形用塩化ビニル樹脂組成物。
  2.  前記(c)極性基で変性されたポリオレフィンワックスの平均粒子径が20μm以下である、請求項1に記載の粉体成形用塩化ビニル樹脂組成物。
  3.  前記(a)塩化ビニル樹脂粒子の平均粒子径が50μm以上500μm以下である、請求項1又は2に記載の粉体成形用塩化ビニル樹脂組成物。
  4.  前記(d)塩化ビニル樹脂微粒子の平均粒子径が0.1μm以上10μm以下である、請求項1~3のいずれか1項に記載の粉体成形用塩化ビニル樹脂組成物。
  5.  パウダースラッシュ成形に用いられる、請求項1~4のいずれか1項に記載の粉体成形用塩化ビニル樹脂組成物。
  6.  請求項1~5のいずれか1項に記載の粉体成形用塩化ビニル樹脂組成物をパウダースラッシュ成形してなる塩化ビニル樹脂成形体。
  7.  自動車インスツルメントパネル表皮用である、請求項6に記載の塩化ビニル樹脂成形体。
  8.  発泡ポリウレタン成形体と、請求項6又は7に記載の塩化ビニル樹脂成形体とを有する、積層体。
  9.  自動車インスツルメントパネル用である、請求項8に記載の積層体。
  10.  (a)塩化ビニル樹脂粒子、(b)可塑剤、(c)極性基で変性されたポリオレフィンワックス、及び(d)塩化ビニル樹脂微粒子を混合することを含む、請求項1~5のいずれか1項に記載の粉体成形用塩化ビニル樹脂組成物の製造方法。
  11.  請求項1~5のいずれか1項に記載の粉体成形用塩化ビニル樹脂組成物、または、請求項10に記載の製造方法に従って製造した粉体成形用塩化ビニル樹脂組成物をパウダースラッシュ成形することを特徴とする、塩化ビニル樹脂成形体の製造方法。
PCT/JP2015/005533 2014-11-11 2015-11-04 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体 WO2016075903A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016558872A JP6589881B2 (ja) 2014-11-11 2015-11-04 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014228593 2014-11-11
JP2014-228593 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016075903A1 true WO2016075903A1 (ja) 2016-05-19

Family

ID=55954007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005533 WO2016075903A1 (ja) 2014-11-11 2015-11-04 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体

Country Status (2)

Country Link
JP (1) JP6589881B2 (ja)
WO (1) WO2016075903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190037941A (ko) * 2017-09-29 2019-04-08 (주)엘지하우시스 분말 슬러쉬 몰딩용 폴리염화비닐 분말

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320451A (ja) * 1992-05-15 1993-12-03 Asahi Denka Kogyo Kk 塩素含有樹脂組成物
JPH08245800A (ja) * 1995-03-09 1996-09-24 Shin Etsu Chem Co Ltd 粉体成形用塩化ビニル系樹脂コンパウンドの製造方法
JPH08291244A (ja) * 1995-02-20 1996-11-05 Zeon Kasei Co Ltd 塩化ビニル系樹脂組成物及びそれを用いた積層体
JPH08302026A (ja) * 1995-05-02 1996-11-19 Shin Etsu Chem Co Ltd 粉体成形用塩化ビニル系樹脂コンパウンドの製造方法
JPH0940830A (ja) * 1995-07-26 1997-02-10 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JPH10158451A (ja) * 1996-12-02 1998-06-16 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JP2008120852A (ja) * 2006-11-08 2008-05-29 Sekisui Chem Co Ltd 成形用塩化ビニル系樹脂組成物
JP2012021122A (ja) * 2010-07-16 2012-02-02 Adeka Corp 塩化ビニル系樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320451A (ja) * 1992-05-15 1993-12-03 Asahi Denka Kogyo Kk 塩素含有樹脂組成物
JPH08291244A (ja) * 1995-02-20 1996-11-05 Zeon Kasei Co Ltd 塩化ビニル系樹脂組成物及びそれを用いた積層体
JPH08245800A (ja) * 1995-03-09 1996-09-24 Shin Etsu Chem Co Ltd 粉体成形用塩化ビニル系樹脂コンパウンドの製造方法
JPH08302026A (ja) * 1995-05-02 1996-11-19 Shin Etsu Chem Co Ltd 粉体成形用塩化ビニル系樹脂コンパウンドの製造方法
JPH0940830A (ja) * 1995-07-26 1997-02-10 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JPH10158451A (ja) * 1996-12-02 1998-06-16 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JP2008120852A (ja) * 2006-11-08 2008-05-29 Sekisui Chem Co Ltd 成形用塩化ビニル系樹脂組成物
JP2012021122A (ja) * 2010-07-16 2012-02-02 Adeka Corp 塩化ビニル系樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190037941A (ko) * 2017-09-29 2019-04-08 (주)엘지하우시스 분말 슬러쉬 몰딩용 폴리염화비닐 분말
KR102226158B1 (ko) * 2017-09-29 2021-03-10 (주)엘지하우시스 분말 슬러쉬 몰딩용 폴리염화비닐 분말

Also Published As

Publication number Publication date
JP6589881B2 (ja) 2019-10-16
JPWO2016075903A1 (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6720875B2 (ja) 塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
JP6614132B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6191619B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP5729552B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6504056B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6724787B2 (ja) 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
WO2017170220A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
WO2016147638A1 (ja) 自動車内装材用積層体
WO2016067564A1 (ja) リアルステッチ表皮用粉体成形性塩化ビニル樹脂組成物及びその製造方法、リアルステッチ表皮用塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
JP2018035304A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、および積層体
JP6468281B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2016147637A1 (ja) 自動車内装材用積層体
WO2019131630A1 (ja) 塩化ビニル樹脂積層シート、塩化ビニル樹脂積層シートの製造方法、及び積層体
WO2016152085A1 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP7326735B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2016139959A1 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6589881B2 (ja) 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
JPWO2017170156A1 (ja) スプレー塗布用ゾル、スプレー塗布層付き塩化ビニル樹脂成形体及びその製造方法、並びに積層体
JP7334740B2 (ja) 塩化ビニル樹脂積層シート、塩化ビニル樹脂積層シートの製造方法、及び積層体
JP6708201B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2020097665A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JPWO2018061859A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP2018048268A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858166

Country of ref document: EP

Kind code of ref document: A1