WO2016075728A1 - アキシャルギャップ型モータ - Google Patents

アキシャルギャップ型モータ Download PDF

Info

Publication number
WO2016075728A1
WO2016075728A1 PCT/JP2014/079665 JP2014079665W WO2016075728A1 WO 2016075728 A1 WO2016075728 A1 WO 2016075728A1 JP 2014079665 W JP2014079665 W JP 2014079665W WO 2016075728 A1 WO2016075728 A1 WO 2016075728A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
torque
axis
stator
motor
Prior art date
Application number
PCT/JP2014/079665
Other languages
English (en)
French (fr)
Inventor
正木 良三
榎本 裕治
博洋 床井
則久 岩崎
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2014/079665 priority Critical patent/WO2016075728A1/ja
Publication of WO2016075728A1 publication Critical patent/WO2016075728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to an axial gap type motor, and more particularly, to an axial gap type motor composed of one stator and two rotors.
  • Patent Document 1 discloses an axial gap type motor in which one rotor and two stators having the same shape face each other in the rotation axis direction and are driven by using reluctance torque effectively.
  • Patent Document 2 to Patent Document 4 also disclose an axial gap type motor including one rotor and two stators.
  • Patent Document 1 reduces torque ripple and cogging torque by configuring magnetic material pole portions 32 (for example, 32A, 32B, and 32C) having different magnetic characteristics in one rotor, and makes the motor smooth and stable. To rotate.
  • Patent Document 1 also discloses that two sets of axial gap type motors are used to adjust the characteristics of each rotor by changing the rotor shape or changing the phase, thereby reducing the cogging torque.
  • Patent Document 5 discloses a configuration of an axial gap type motor in which two rotors having the same shape are opposed to each other on both surfaces in the axial direction with respect to one stator, and utilizes the torque that combines the rotor's magnet torque and reluctance.
  • the technology to do is disclosed. It has the feature that it can be made smaller and thinner with high output.
  • Patent Document 1 discloses that in a configuration using two motors, torque ripples and cogging torque are reduced by changing the angles of two identically shaped rotors or by using two different rotors. In this configuration, since the total number of stators is four for two motors, the motor shaft length increases accordingly. In addition, since two motors are used, the currents are controlled separately. Therefore, it is not considered to increase the efficiency by reducing the current of one motor.
  • Patent Document 5 has the advantage that the shaft length does not need to be increased because two rotors are used in one motor, but it is assumed that the same two rotors are used for one stator. And does not assume the use of different rotors.
  • the direction in which the magnetic flux of the magnet is generated is called the d-axis, and the direction electrically orthogonal to it is called the q-axis. Since the magnet torque is proportional to the q-axis current that flows in the q-axis direction, only the q-axis current needs to flow.
  • the reluctance torque is generated by flowing current in the direction in which the reluctance is maximized and the direction in which the reluctance is minimized.
  • a region where the magnet exists can be regarded as the same as a gap. Therefore, the reluctance is small in the d-axis direction where the magnet is present, and is often minimized.
  • reluctance is relatively large in the q-axis direction without a magnet and having a magnetic material, and is often maximum.
  • the reluctance torque is generated in proportion to the product of the d-axis current, which is the direction in which the magnetic flux of the magnet is increased or decreased, and the q-axis current orthogonal to the electrical angle. Therefore, in order to utilize the reluctance torque and the magnet torque at the same time, it is necessary to flow a d-axis current that does not affect the magnet torque simultaneously with the q-axis current. In general, when utilizing reluctance torque, it is necessary to flow a d-axis current that is not related to an increase in magnet torque.
  • a stator formed by arranging a core through which a magnetic flux passes and a plurality of stator core members formed of windings wound around the outer periphery of the core in an annular shape around the rotation axis;
  • a first rotor in which magnets having different polarities are alternately arranged on a surface opposed to one end surface in the axial direction of the stator via a gap;
  • the axial gap type motor includes a second rotor having a surface facing the other end surface different from the end surface through a gap, and having a reluctance that varies depending on a rotation angle.
  • a magnet is provided in the first rotor facing both sides of the stator in the rotation axis direction, and the reactance of the second rotor varies depending on the rotation angle.
  • the reluctance torque is increased.
  • FIG. 5 is a schematic diagram showing the configuration of the stator, the first rotor, and the second rotor in the axial direction and the outer peripheral side surface according to the first embodiment, and the relational magnetization state and reluctance state of the stator and the rotor in the axial direction.
  • It is a vector diagram showing the relationship between the magnetic flux generated by two rotors and the back electromotive force when a current is passed in the q-axis direction of the stator. According to the phase relationship between the d-axis and d′-axis of the two rotors shown in FIG.
  • FIG. 7 is a schematic diagram showing the configuration of the axial direction and outer peripheral side surfaces of the stator, the first rotor, and the second rotor according to the second embodiment, and the relational magnetization state and reluctance state of the stator and the rotor in the axial direction.
  • FIG. 7 is a vector diagram showing a relationship between magnetic flux generated by two rotors and counter electromotive force when a current is passed in the q-axis direction of the stator of FIG. 6.
  • FIG. 1 shows a configuration of a motor 1 having an axial gap structure which is a first embodiment to which the present invention is applied.
  • This figure is a schematic diagram in which each part is exploded in the direction of the rotation axis of the motor 1.
  • the motor 1 has a configuration in which the first rotor 3 and the second rotor 4 are disposed so as to face each other on the opposite surfaces in the axial direction with respect to the stator 2, and the shaft 5 passes through each center.
  • the motor 1 shows the structure of 4 poles and 6 slots, the number of poles and the number of slots are not limited to this.
  • a bearing, a housing, and the like that indicate that the shaft 5 is rotatable are omitted.
  • the stator 2 is composed of a plurality of core members 2 a arranged in an annular shape around the shaft 5.
  • Each core member 2a includes a coil (three-phase coil) in which a copper wire or an aluminum wire is wound around an outer periphery of an iron core in which steel plate pieces made of an amorphous metal are laminated in a radial direction while ensuring insulation.
  • Consists of The iron core is not limited to the amount of amorphous metal, and the molding is not limited to the radial lamination of the steel sheet pieces, it may be formed by winding a metal plate in the form of a roll, or molding using metal powder, Various configurations are applicable. Various configurations such as using a resin bobbin or insulating paper between the iron core and the coil can be applied to the insulation.
  • FIG. 2 shows the outer peripheral side surfaces of the stator 2, the first rotor 3, and the second rotor 4, and a corresponding arrow view from the arrow direction of FIG. 1.
  • first rotor 3 of FIG. 2A fan-shaped magnets having different polarities are alternately arranged on the side of the yoke 3 a facing the stator 2.
  • the center direction of the N pole of the magnet is d-axis
  • the intermediate direction between the N pole and S pole is q axis. If the counterclockwise direction is defined as positive rotation, the q axis is a direction advanced by 90 ° as an electrical angle with respect to the d axis.
  • the second rotor 4 in FIG. 2 (c) is made of a magnetic material, and the surface facing the stator 2 is alternately arranged in a fan shape around the axis, and has a shape that is uneven in the axial direction ( Convex part 4a, concave part 4b).
  • the center in the direction of the concave portion 4b where the magnetic body constituting the second rotor 4 is concave is defined as the d ′ axis
  • the center in the direction of the convex portion 4a where the magnetic body is convex is defined as the q ′ axis.
  • the d ′ axis is arranged at an angle of 45 ° clockwise with an electrical angle with respect to the d axis. That is, the d ′ axis has an electrical angle difference of ⁇ 45 ° with respect to the d axis.
  • the configuration in which the rotor 4 is arranged with an angular difference is one of the features of this embodiment.
  • the d′-axis direction of the recess 4b is a gap, and the inductance Ld ′ is small. Since the convex portion 4a has a magnetic body in the q′-axis direction and easily passes a magnetic flux, the inductance Lq ′ becomes a value larger than Ld ′. That is, [Equation 1] holds.
  • the torque ⁇ 1 generated in the first rotor 3 is expressed by the following [Equation 3 ]. Note that the torque generated by the magnetic flux of the magnet is magnet torque.
  • FIG. 3 (c) and 3 (d) are voltage vector diagrams by the first rotor 3 and the second rotor 4, respectively, and FIG. 3 (e) is a voltage vector diagram of the motor 1 obtained by synthesizing them. However, the voltage drop due to the resistance of the coil is omitted.
  • the direction of the d ′ axis is ⁇ 45 with respect to the d axis.
  • the largest torque is generated with the same current.
  • FIG. 4 shows the torque characteristics of the motor 1.
  • the horizontal axis indicates the direction (angle) in which the same current i flows with respect to the d-axis, and the vertical axis indicates the motor torque corresponding thereto.
  • 4A, 4B, 4C, and 4D show the characteristics when the angle of the d ′ axis with respect to the d axis is changed to 0 °, ⁇ 45 °, ⁇ 15 °, and ⁇ 30 °, respectively. Show.
  • the d-axis and the d′-axis coincide with each other, which is a characteristic of a reluctance torque motor that utilizes reluctance torque and magnet torque, and is not so different from normal.
  • This characteristic shows a case where the maximum value of the magnet torque is 1, and the maximum value of the reluctance torque is 0.3.
  • the maximum current angle is not 90 °, but around 120 °. The characteristics are well known in Patent Document 1 and others.
  • FIGS. 4B, 4C, and 4D are characteristic characteristics of the present embodiment, and the d ′ axis is at a different angle with respect to the d axis.
  • the maximum torque value of the motor 1 is 1.3 times the magnet torque.
  • this characteristic has a feature that the maximum torque value can be maximized.
  • the angle of the current i is the minimum value near 220 °, and the torque becomes a torque up to ⁇ 0.7 times the magnet torque.
  • the motor 1 having the rotor arrangement shown in FIG. 2 has a characteristic that can generate a large torque when driven in the forward direction or braked in the reverse direction. Is suitable. In other words, when each of the two rotors has magnets, twice the torque can be generated, but even when half of the magnets are used, the torque can be increased up to 1.3 times. Can be generated. In other words, it can be said that the motor is capable of generating a large torque with a small number of magnets.
  • FIG. 4C by setting the d ′ axis to ⁇ 15 ° with respect to the d axis, it is possible to generate substantially the same motor torque as in the case of only the magnet torque for the reverse rotation drive and It has the feature that the rotational drive torque can be 1.2 times or more of the magnet torque. That is, the torque can be increased during normal rotation driving and acceleration while performing normal operation in normal and reverse rotation. Therefore, a motor having an angle difference between two rotors has an advantage that the applicable application can be widened.
  • FIG. 4D has intermediate characteristics between FIGS. 4B and 4C. That is, the angle difference between the two rotors can be optimized according to the application destination.
  • a motor having different torque characteristics can be realized by one type of motor only by changing the angle difference between the two rotors.
  • the reluctance torque can be increased with a small current.
  • torque can be increased even if the amount of magnet used is reduced.
  • FIG. 5 shows the configuration of the motor 11.
  • the motor 11 is an 8-pole, 9-slot axial gap motor.
  • the main difference from the motor 1 according to the first embodiment is that the number of poles and the number of slots are different, and the magnets 14c and 14d are alternately arranged on the unevenness 14b of the second rotor 14. .
  • the stator 12 has nine stator core members 12a arranged in an annular shape around the shaft 5.
  • magnets 13 a having different magnetic poles are alternately arranged in a ring shape at equal intervals on the side facing the yoke 13 a and the stator 2.
  • the second rotor 14 is made of a magnetic material, and a total of 16 convex portions 14a and concave portions 14b that are uneven in the axial direction are alternately formed.
  • the second rotor 14, the stator 122, and the first rotor 13 are different in reluctance because the rotation angles are in phase, and can generate reluctance torque.
  • magnets 14c having different magnetic poles are alternately arranged in the recesses 14b of the second rotor 14, and the second rotor 14 can generate magnet torque. It is known that the relationship between the stator 12 and the rotor 14 has the same characteristics as those of a normal embedded magnet type motor, that is, the characteristics shown in FIG.
  • FIG. 6 shows the outer peripheral side surfaces of the stator 12, the first rotor 13, and the second rotor 14, and a corresponding arrow view from the arrow direction of FIG.
  • the first rotor 13 and the stator 12 in FIGS. 6A and 6B are the same as in the first embodiment, and the center direction of the N pole of the magnet is the d-axis, and the intermediate direction between the N and S poles
  • the q axis is assumed. If the counterclockwise direction is defined as positive rotation, the q axis is a direction advanced by 90 ° as an electrical angle with respect to the d axis.
  • the electrical angle 90 ° in FIG. 6 is a mechanical angle compared to the electrical angle 90 ° in the first embodiment (FIG. 2). It becomes 1/2 of 22.5 °.
  • the center in the direction of the N pole of the magnet 14c installed in the concave portion 14b is defined as the d ′ axis
  • the center of the convex portion 14a is defined as the q ′ axis.
  • the d ′ axis is arranged at an angle rotated clockwise in the range of 10 ° to 45 ° in electrical angle with respect to the d axis.
  • the d ′ axis has an electrical difference of ⁇ 30 ° with respect to the d axis. This angular difference will be described.
  • the magnet 14 c exists in the d′-axis direction of the recess 14 b, but the direction can be regarded as the same as the gap, and the inductance Ld ′ is small. Since the convex portion 14a has a magnetic body in the q′-axis direction and easily passes a magnetic flux, the inductance Lq ′ becomes a value larger than Ld ′. This is the same as the case of the second rotor 4 of the first embodiment described with reference to FIG. 3, and [Equation 1] shown in the first embodiment is established.
  • FIG. 7A and 7B show current vector diagrams of the first rotor 13 and the second rotor 14, respectively. Only the q-axis current flows to the first rotor 3 and the current i flowing through the stator 12 is given by [Equation 4] shown in the first embodiment. Further, with respect to the second rotor 14, the current of the stator 2 is given by the following [Equation 10] in consideration of an angle difference of 30 °.
  • FIGS. 7C and 7D are voltage vector diagrams by the first rotor 13 and the second rotor 14, respectively, and FIG. 7E is a voltage vector diagram of the motor 11 obtained by synthesizing them.
  • the d-axis In order to maximize the torque ⁇ 1 that is the magnet torque generated by the first rotor 13 and maximize the torque ⁇ 2 that is the sum of the reluctance torque generated by the second rotor 14 and the magnet torque, the d-axis On the other hand, by setting the direction of the d ′ axis to ⁇ 30 °, the largest torque can be generated with the same current.
  • FIG. 8 shows torque characteristics as in FIG. 4 of the first embodiment.
  • the horizontal axis indicates the direction (angle) in which the current i of the same magnitude flows with respect to the d axis, and the vertical axis indicates the motor corresponding thereto. Torque is shown.
  • FIGS. 8A, 8B, 8C and 8D show the characteristics when the angle of the d ′ axis with respect to the d axis is changed to 0 °, ⁇ 30 °, ⁇ 10 ° and ⁇ 20 °, respectively. Show.
  • FIG. 8A uses the torque of the first rotor 13 that uses only the magnet torque, the reluctance torque, and the torque of the second rotor 14 that generates the magnet torque, where the d-axis and the d′-axis coincide with each other.
  • This is a characteristic of a reluctance torque motor. This characteristic shows a case where the maximum magnet torque value of the first rotor 13 is 1, the maximum magnet torque value of the second rotor 14 is 0.5, and the maximum value of the reluctance torque is 0.3.
  • the maximum current angle is not 90 °, but near 100 °.
  • the d ′ axis is different from the d axis.
  • the torque of the first rotor 13 and the second rotor 14 has a current angle of 90 °, that is, almost the maximum value in the q-axis direction. 1.69 times the torque.
  • this characteristic has a feature that the maximum torque value can be maximized.
  • the angle of the current i becomes a minimum value near 230 °, and the torque is output up to -1.36 times the torque of the first rotor 13.
  • the rotor arrangement shown in FIG. 8B has a characteristic capable of generating a large torque when driving in the forward rotation or braking in the reverse rotation. Therefore, it is suitable for applications in which rotation in one direction is important.
  • FIG. 8D has an intermediate characteristic between FIGS. 8B and 8C. That is, the angle difference between the two rotors can be optimized according to the application destination.
  • the angle of the d ′ axis with respect to the d axis shows a characteristic from ⁇ 10 ° to ⁇ 30 °.
  • the forward rotation is performed while generating a large torque.
  • a motor having the same physique and generating a larger torque and having different torque characteristics is realized by using only one type of motor by changing the angle difference between the two rotors. be able to. Accordingly, the width of the motor application destination is widened.
  • the present invention can also be applied to an axial gap motor in which one is a rotor that uses reluctance torque and magnet torque and the other is a rotor that uses reluctance torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 1つのステータと2つのロータを有するアキシャルギャップ型モータで、ステータに流す電流を抑制しつつ出力トルクを増加させる。アキシャルギャップモータを、磁束を通すコアと、該コアの外周に巻いた巻線からなる複数のステータコアメンバを、回転軸を中心として環状に配置してなるステータと、前記ステータの軸方向の一方端面とギャップを介して対抗する面に、極性の異なる磁石を交互に配置する第1ロータと、前記端面と異なる他方端面とギャップを介して対向する面を有し、リラクタンスが回転角により異なる第2ロータとから構成する。

Description

アキシャルギャップ型モータ
 本発明は、アキシャルギャップ型モータに係り、特に、1つのステータと2つのロータから構成されるアキシャルギャップ型モータに関する。
 特許文献1は、1つのロータと、同じ形状の2つのステータを回転軸方向で対面させ、リラクタンストルクを有効利用して駆動するアキシャルギャップ型モータを開示する。同様に、特許文献2から特許文献4も、1つのロータと2つのステータから構成されるアキシャルギャップ型モータを開示する。特に、特許文献1は、1つのロータにおいて、磁気特性が異なる磁性材極部32(例えば、32A、32B、32C)を構成することでトルクリップルやコギングトルクを低減し、モータを滑らかに安定して回転させることを開示する。また、特許文献1は、2組のアキシャルギャップ型モータを用いて、夫々のロータの特性をロータ形状の変更や位相の変更により調整し、コギングトルクを低減することも開示する。
 特許文献5は、1つのステータに対し、軸方向の両面に同じ形状の2つのロータを面対向させるアキシャルギャップ型モータの構成を開示し、ロータの磁石トルクと、リラクタンスとを合わせたトルクを活用する技術を開示する。高出力で小型化、薄型化することができる特長を有する。
特開2009-118551号公報 特開2008-199895号公報 特開2009-38897号公報 WO2011/046108号公報 特開2011-130598号公報
 特許文献1は、2つのモータを用いた構成において、2つの同一形状のロータの角度を変えたり、異なる2つのロータを活用したりして、トルクリップルやコギングトルクを低減することを開示するが、この構成は、ステータの数が2つのモータで合計4つになることから、その分、モータの軸長が増加する。また、2つのモータを用いるため、別々に電流を制御することになるので、1つのモータの電流を低減して高効率化を図ることは考慮されていない。
 特許文献5は、1つモータで2つのロータを用いることから軸長を増加させる必要はない利点を有しているが、1つのステータに対しては、同一の2つのロータを用いることを前提としており、異なるロータを用いることを想定していない。
 一般的に、磁石の磁束が発生する方向をd軸、それに電気的に直交する方向をq軸と呼ぶ。磁石トルクは、q軸方向に流すq軸電流に比例するので、q軸電流だけを流せばよい。
 これに対し、リラクタンストルクは、リラクタンスが最大になる方向と最小になる方向に電流を流すことでトルクが発生する。通常、磁束を通す磁路として磁石を考えた場合、磁石が存在する領域は空隙と同じと見なすことができる。従って、磁石があるd軸方向はリラクタンスが小さく、最小となることが多い。これに対し、磁石が無く且つ磁性体を有するq軸方向はリラクタンスが相対的に大きく、最大となることが多い。この場合、リラクタンストルクは、磁石の磁束を増減させる方向であるd軸電流と、それに電気角的に直交するq軸電流との積に比例して発生する。よって、リラクタンストルクと磁石トルクを同時に活用するために、磁石トルクに影響しないd軸電流を、q軸電流と同時に流す必要がある。一般的には、リラクタンストルクを活用する場合には、磁石トルクの増加に関与しないd軸電流を流す必要がある。
 このため、1つのステータを有する1つのモータにおいて、リラクタンストルクを発生するためには、磁石トルクに関与しない電流が必要になるという1つの課題がある。ステータに流す電流を抑制し、高トルクを得るアキシャルギャップ型モータが望まれる。
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を適用する。即ち磁束を通すコアと、該コアの外周に巻いた巻線からなる複数のステータコアメンバを、回転軸を中心として環状に配置してなるステータと、
  前記ステータの軸方向の一方端面とギャップを介して対抗する面に、極性の異なる磁石を交互に配置する第1ロータと、
  前記端面と異なる他方端面とギャップを介して対向する面を有し、リラクタンスが回転角により異なる第2ロータとを備えるアキシャルギャップ型モータである。
 本発明の一側面によれば、ステータの回転軸方向両側と対向する第1ロータに磁石を備え、第2ロータのリアクタンスが回転角により異なるため、アキシャルギャップ型モータのステータに流す電流を抑制しつつリラクタンストルクが増加するという効果を奏する。
  本発明の他の構成、課題及び効果は、以下の記載から明らかになる。
本発明を適用した第1実施形態によるアキシャルギャップ型モータの構成を示す模式図である。 第1実施形態によるステータ、第1ロータ及び第2ロータの軸方向並びに外周側面の構成を示すと共にステータとロータの軸方向の関係着磁状態及びリラクタンスの状態を示す模式図である。 ステータのq軸方向に電流を流したときに、2つのロータにより発生する磁束と逆起電力の関係を示すベクトル図である。 図2に示す2つのロータのd軸、d´軸の位相関係により、ステータに一定の電流を流したとき、電流の流す方向(d軸からの角度)とモータが発生するトルク特性の関係を示す特性図である。 第2実施形態によるアキシャルギャップ型モータの構成を示す模式図である。 第2実施形態によるステータ、第1ロータ及び第2ロータの軸方向並びに外周側面の構成を示すと共にステータとロータの軸方向の関係着磁状態及びリラクタンスの状態を示す模式図である。 図6のステータのq軸方向に電流を流したときに、2つのロータにより発生する磁束と逆起電力の関係を示すベクトル図である。 図6に示す2つのロータのd軸、d‘軸の位相関係により、ステータに一定の電流を流したとき、電流の流す方向(d軸からの角度)とモータが発生するトルク特性の関係を示す特性図である。
 以下、本発明の実施の形態について具体的に説明する。
  〔第1実施形態〕
  図1に、本発明を適用した第1実施形態であるアキシャルギャップ構造のモータ1の構成を示す。本図は、モータ1の回転軸方向に各部を分解した模式図である。
  モータ1は、ステータ2に対して、軸方向の対向する両面に、第1ロータ3と、第2ロータ4とが面対向して配置され、夫々の中央にシャフト5が貫通してなる構成を有する。なお、モータ1は、4極、6スロットの構造を示すが、極数、スロット数はこれに限定するものではない。また、同図において、シャフト5を回転可能に指示する軸受及びハウジング等は省略するものとする。
 ステータ2は、シャフト5を中心として環状に配列された複数のコアメンバ2aからなる。各コアメンバ2aは、非結晶(アモルファス)金属からなる鋼板片を径方向に積層させた鉄心の外周に、銅線やアルミ線を、絶縁性を確保して巻き回したコイル(3相コイル)とから構成される。鉄心は、材量を非結晶金属に限定するものではなく又成形も鋼板片の径方向積層のみならず、ロール状に金属板を巻取った構成でも、金属粉体を用いた成形でもよく、種々の構成が適用可能である。絶縁も、鉄心とコイル間に樹脂性のボビンや絶縁紙を用いる等、種々の構成が適用できる。
 図2に、ステータ2、第1ロータ3及び第2ロータ4の外周側面の様と、それに対応する図1の矢印方向からの矢視図とを夫々示す。
  図2(a)の第1ロータ3は、ヨーク3aのステータ2との対向面側に極性の異なる扇型形状の磁石を交互に配置する。第1ロータ3及びステータ2は、磁石のN極の中心方向をd軸、N極とS極の中間方向をq軸とする。反時計方向を正回転として定義すると、d軸に対してq軸は電気角として90°進んだ方向となる。
 図2(c)の第2ロータ4は、磁性体からなり、ステータ2との対向面が、軸心を中心として、扇形の形状で交互に配置し、軸方向に凹凸となる形状を有する(凸部4a、凹部4b)。ここで、第2ロータ4を構成する磁性体が凹状になった凹部4b方向の中心をd´軸とし、磁性体が凸状になった凸部4a方向の中心をq´軸と定義する。そして、d´軸は、d軸に対して電気角で時計方向に45°回転した角度に配置するようになっている。つまり、d軸に対して、d´軸は電気角で-45°の角度差になっている。ロータ4が、角度差をもって配置される構成が、本実施形態の特徴の一つである。
 以下、d軸とd´軸に角度差があることによって発生するモータトルクが変化する原理を説明する。第2ロータ4において、凹部4bのd´軸方向は空隙であり、インダクタンスLd´が小さい。凸部4aのq´軸方向は磁性体があり、磁束を通しやすいので、インダクタンスLq´がLd´よりも大きい値となる。つまり、〔数1〕が成立する。
Figure JPOXMLDOC01-appb-M000001
 ステータ2の3相のコイルに電流を流し、ステータ2に磁束を発生させた場合を考える。ステータ2に発生した磁束は、磁束を通しやすいq´軸を通すようにロータ4にトルクτ2が発生する。そのときのトルクτ2はd´軸電流をid´、q´軸電流をiq´とすると、下記の〔数2〕で与えられる。
Figure JPOXMLDOC01-appb-M000002
  なお、リラクタンスは、磁束の通しにくさであるので、その違いにより発生する〔数2〕のトルクをリラクタンストルクという。
 第1ロータ3については、磁石のN極の方向をd軸としており、その磁束をΦとし、q軸に流れる電流をiqとすると、第1ロータ3で発生するトルクτ1は、下記〔数3〕となる。なお、この磁石の磁束により発生するトルクは、磁石トルクである。
Figure JPOXMLDOC01-appb-M000003
 このとき、ステータ2のq軸方向に電流iを流すと、図3に示すようなベクトル図となる。図3の(a)、(b)は、夫々第1ロータ3、第2ロータ4の電流ベクトルを示す。ステータ2に流れる電流iは、第1ロータ3に対しては、q軸電流だけが流れることになる。従って、〔数4〕になる。
Figure JPOXMLDOC01-appb-M000004
 また、第2のロータ4に対して、ステータ2の電流は、下記〔数5〕となる。
Figure JPOXMLDOC01-appb-M000005
  ここで、jは、虚数項をd´軸に直交するq´軸を示す。以上を用いて第1ロータ3と、第2ロータ4との夫々のトルクτ1、τ2は、夫々〔数6〕、〔数7〕となる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ステータ2のq軸方向に電流iを流したとき、第1ロータ3については、〔数6〕に示すように、磁束Φに直交する電流を流すことになるので、トルクτ1は他の方向に電流を流すよりも最も大きい値となる。第2ロータ4についても、トルクτ2はid´とiq´の積で決まるので、図3(b)のid´とiq´の面積(ベクトル積)から〔数8〕の場合が最も大きくなる。
Figure JPOXMLDOC01-appb-M000008
 なお、図3(c)、(d)は、夫々第1ロータ3、第2ロータ4による電圧ベクトル図であり、図3(e)は、それらを合成したモータ1の電圧ベクトル図である。ただし、コイルの抵抗による電圧降下は省略する。
 以上のことから、第1ロータ3が発生する磁石トルクτ1が最大且つ第2ロータ4が発生するリラクタンストルクトルクτ2が最大とする為に、d軸に対して、d´軸の方向を-45°とすることにより、同一の電流で最も大きいトルクが発生することになる。
 図4に、モータ1のトルク特性を示す。横軸は、d軸に対して同じ大きさの電流iを流す方向(角度)を示し、縦軸は、それに対するモータトルクを示す。図4(a)、(b)、(c)及び(d)は、それぞれd軸に対するd´軸の角度を0°、-45°、-15°、-30°に変更したときの特性を示す。
 図4(a)では、d軸とd´軸が一致しており、リラクタンストルクと、磁石トルクとを活用するリラクタンストルクモータの特性であり、通常とあまり差は無い。この特性は磁石トルクの最大値を1とし、リラクタンストルクの最大値が0.3の場合を示している。この最大値となる電流の角度は90°でなく、120°付近となる。特性としては特許文献1他でよく知られたものである。
 これに対して、図4(b)、(c)、(d)は、本実施形態の特徴的な特性であり、d軸に対してd´軸を異なる角度にしている。
  図4(b)については、上述したとおり磁石トルクとリラクタンストルクが角度90°、つまりq軸方向で最大値となる為、モータ1のトルク最大値は磁石トルクの1.3倍になる。d軸に対するd´軸の角度を変更したとき、この特性がトルク最大値を最も大きい値にできる特徴がある。なお、このロータ配置の場合、時計方向にトルクを発生すると、電流iの角度が220°付近で最少の値であり、磁石トルクの-0.7倍までのトルクとなる特性である。
 従って、図2に示すロータ配置のモータ1は、正回転で駆動するとき或いは逆回転で制動するときに、大きいトルクを発生できる特性を有しているので、一方方向の回転を重視する用途に適している。また、見方を変えると、2つのロータにそれぞれ磁石を有する場合には、2倍のトルクを発生することができるのに対して、その半分の磁石を用いても、1.3倍までのトルクを発生できる。つまり、少ない磁石でも大きいトルクを出すことが可能なモータであるという特徴を有するといえる。
 図4(c)については、d軸に対してd´軸を-15°とすることにより、逆回転の駆動についても、磁石トルクだけの場合とほぼ同じモータトルクを発生することができ且つ正回転の駆動トルクを磁石トルクの1.2倍以上にできる特徴を有する。つまり、正逆回転で通常の運転をしながら、正回転の駆動時及び加速時にトルクを大きくすることができる。従って、2つのロータの角度差を有するモータは適用できる応用先を広くすることができるという利点がある。
  図4(d)については、図4(b)と(c)の中間の特性を有する。つまり、適用先に応じて、2つのロータの角度差を最適にできる。
 以上のように、第1実施形態のモータ1によれば、2つのロータの角度差を変えるだけで、異なるトルク特性を有するモータを1種類のモータで実現することができる。
  また、小さい電流でリラクタンストルクを増加させることができる。
  更には、磁石の使用量を低減してもトルクを増加させることができる。
 〔第2実施形態〕
  次に、第2実施形態によるモータ11を説明する。
  図5に、モータ11の構成を示す。モータ11は、8極・9スロット構成のアキシャルギャップモータである。第1の実施形態であるモータ1との主な相異は、極数・スロット数が異なる点と、第2ロータ14の凹凸14bに、磁石14c、14dが交互に配置されている点である。
 ステータ12には、シャフト5を中心として、9つのステータコアメンバ12aが環状に配置される。第1ロータ13は、ヨーク13aと、そのステータ2との対向面側に、異なる磁極の磁石13aが交互にリング状に等間隔で配置される。
 第2ロータ14は、第1実施形態と同様に、磁性体からなり、軸方向に凹凸となる凸部14aと、凹部14bとが交互に合計で16個形成される。この構成により、第2ロータ14と、ステータ122及び第1ロータ13とは回転角度が位相することからリラクタンスが相違し、リラクタンストルクを発生することができるようになっている。
 また、第2ロータ14の凹部14bには、磁極の異なる磁石14cが交互に配置され、第2ロータ14でも磁石トルクが発生させられるようになっている。ステータ12とロータ14の関係は、通常の埋め込み磁石型モータの特性、つまり、図4(a)に示したものと同様の特性になることが知られている。
 図6に、ステータ12、第1ロータ13及び第2ロータ14の外周側面の様と、それに対応する図1の矢印方向からの矢視図とを夫々示す。
  図6(a)及び(b)の第1ロータ13及びステータ12の様は、第1実施形態ど同様であり、磁石のN極の中心方向をd軸、N極とS極の中間方向をq軸とする。反時計方向を正回転として定義すると、d軸に対してq軸は電気角として90°進んだ方向となる。なお、第2実施形態では、極数が4極から8極に変わっているため、第1実施形態(図2)の電気角90°と比して、図6の電気角90°は機械角で1/2の22.5°となる。
 図6(c)の第2ロータ14は、凹部14bに設置された磁石14cのN極がある方向の中心をd´軸とし、凸部14aの中心をq´軸と定義する。d軸に対して、d´軸は、電気角で10°から45°の範囲で、時計方向に回転した角度に配置する。また、第2ロータ14は、d軸に対して、d’軸は電気角で-30°の角度差としている。この角度差について説明する。
 第2ロータ14において、凹部14bのd´軸方向には磁石14cが存在するが、その方向は空隙と同様と見なすことができ、インダクタンスLd´は小さい。凸部14aのq´軸方向は磁性体があり、磁束を通しやすいので、インダクタンスLq´がLd´よりも大きい値となる。このことは、図3を用いて説明した第1実施形態の第2ロータ4の場合と同じであり、第1実施形態し示した〔数1〕が成立する。
 ステータ12の3相のコイルに電流を流して、ステータ12に磁束を発生させた場合を考える。ステータ12の電流により発生した磁束は、磁束を通しやすいq´軸を通すように、第2ロータ14にトルクτ2を発生させる。更に、ロータ14は、d´軸方向に磁束Φ´があるので、そのときのトルクτ2は、下記〔数9〕で与えられる。
Figure JPOXMLDOC01-appb-M000009
  つまり、第2ロータ14には、磁石トルクとリラクタンストルクが発生する。第1ロータ13については、q軸に流れる電流をiqとすると、第1ロータ3の場合と同様に発生するトルクτ1は、第1実施形態で示した〔数3〕で表される。
 このとき、ステータ2のq軸方向に電流iを流すと、図7に示すようなベクトルの関係となる。図7(a)、(b)に、夫々第1ロータ13、第2ロータ14の電流ベクトル図を示す。ステータ12に流れる電流iは第1のロータ3に対しては、q軸電流だけが流れ、第1実施形態で示した〔数4〕で与えられる。
  また、第2ロータ14に対して、ステータ2の電流は、角度差30°を考慮して、下記〔数10〕で与えられる。
Figure JPOXMLDOC01-appb-M000010
  これらの式から、第1ロータ13、第2ロータ14のトルクτ1、τ2はそれぞれ、第1実施形態で示した〔数6〕と、下記〔数11〕とになる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ステータ12のq軸方向に電流iを流したとき、第1ロータ13については、第1実施形態(図2)の場合と同様に、トルクτ1は、q軸方向に電流を流すとき最も大きい値となる。第2ロータ14についても、トルクτ2はリラクタンストルクと磁石トルクの和となり、図7(b)のようにq´軸より略30°進んだ方向に電流iを流すと、そのトルクτ2は最大となる。なお、図7(c)、(d)は、夫々第1ロータ13、第2ロータ14による電圧ベクトル図であり、図7(e)は、それらを合成したモータ11の電圧ベクトル図である。
 以上のことから、第1ロータ13が発生する磁石トルクであるトルクτ1が最大で且つ第2ロータ14が発生するリラクタンストルクと磁石トルクの和であるトルクτ2を最大にするためには、d軸に対して、d´軸の方向を-30°とすることで、同一の電流で最も大きいトルクを発生することができる。
 図8は、第1実施形態の図4と同様にトルク特性であり、横軸がd軸に対して同じ大きさの電流iを流す方向(角度)を示し、縦軸が、それに対応するモータトルクを示す。図8(a)、(b)、(c)及び(d)は、夫々d軸に対するd´軸の角度を0°、-30°、-10°、-20°に変更したときの特性を示す。
 図8(a)は、d軸とd´軸が一致しており、磁石トルクだけを用いる第1ロータ13のトルクと、リラクタンストルクと磁石トルクを発生する第2ロータ14のトルクとを活用するリラクタンストルクモータの特性である。この特性は第1ロータ13の磁石トルク最大値を1とし、第2ロータ14の磁石トルク最大値0.5、リラクタンストルクの最大値が0.3の場合を示している。この最大値となる電流の角度は90°でなく、100°付近となる。
 これに対して図8(b)、(c)、(d)では、d軸に対してd´軸を異なる角度としている。図8(b)については、第1ロータ13と第2ロータ14のトルクが電流の角度90°、即ちq軸方向でほぼ最大値となるため、モータ11のトルク最大値は第1ロータ13のトルクに対して1.69倍になる。d軸に対するd´軸の角度を変更したとき、この特性がトルク最大値を最も大きい値にできる特徴がある。なお、このロータ配置の場合、時計方向にトルクを発生すると、電流iの角度が230°付近で最少の値となり、第1ロータ13のトルクに対して-1.36倍までのトルクを出す特性である。第1実施形態の図4(b)の場合と同様に、図8(b)に示したロータ配置は、正回転で駆動するとき或いは逆回転で制動するときに、大きいトルクを発生できる特性を有しているので、一方方向の回転を重視する用途に適している。
 図8(c)については、d軸に対してd´軸を-10°とすることで、逆回転の駆動についても、第1ロータ13のトルクに対して-1.53倍を発生することができ且つ正回転の駆動トルクは1.65倍以上となる特徴を有する。正・逆回転で通常の運転をしながら、正回転の駆動時及び加速時にトルクを大きくすることができる。従って、2つのロータの角度差を有するモータは適用できる応用先を広くすることができる利点がある。
 図8(d)については、図8(b)と(c)の中間の特性を有する。つまり、適用先に応じて、2つのロータの角度差を最適にできる。
 また、本実施形態ではd軸に対してd´軸の角度は‐10°から‐30°までの特性を示したが、-45°まで変更しても、大きいトルクを発生させながら、正回転と逆回転で異なる駆動特性となるトルク特性を得ることが可能である。
 このように第2実施形態によれば、同じ体格で更に大きいトルクを発生しながら、且つ異なるトルク特性を有するモータを、2つのロータの角度差を変えるだけで1種類のモータを用いて実現することができる。よって、モータ適用先の幅が広がることとなる。
 特に、2つのロータの相対的な角度関係を変更するだけで、正回転の駆動力だけを大きくすることができ、同じ大きさ、同じロータを用いても、特性を向上することができる。
  また、小さい電流でリラクタンストルクを増加させることができる。
  更には、磁石の使用量を低減してもトルクを増加させることができる。
 以上のように、本発明の実施形態を説明したが、本発明は、上記種々の例に限定されるものでははく、その趣旨を逸脱しない範囲で、種々の変更や組合せが可能であることは言うまでもない。
 例えば、一方をリラクタンストルクと磁石トルクを用いるロータとし、他方をリラクタンストルクを用いるロータを組合せたアキシャルギャップモータについても、適用可能である。
1・11…アキシャルギャップモータ、2・12…ステータ、2a・12a…スレータコアメンバ、3・13…第1ロータ、3a・13a…ヨーク、3b…磁石(N/S)、4・14…第2ロータ、4a・14a…凸部、4b・14b…凹部、14c…磁石(N/S)、5…シャフト

Claims (5)

  1.  磁束を通すコアと、該コアの外周に巻いた巻線からなる複数のステータコアメンバを、回転軸を中心として環状に配置してなるステータと、
     前記ステータの軸方向の一方端面とギャップを介して対抗する面に、極性の異なる磁石を交互に配置する第1ロータと、
     前記端面と異なる他方端面とギャップを介して対向する面を有し、リラクタンスが回転角により異なる第2ロータとを備えるアキシャルギャップ型モータ。
  2.  請求項1に記載のアキシャルギャップ型モータであって、前記第2ロータの前記他方端面と対向する面が、回転軸を中心として等間隔で、該回転軸方向に凸凹を形成する複数の凸部及び凹部を有するアキシャルギャップ型モータ。
  3.  請求項2に記載のアキシャルギャップ型モータであって、前記複数の凹部に極性の異なる磁石を交互に配置するアキシャルギャップ型モータ。
  4.  請求項1~3の何れか一項に記載のアキシャルギャップ型モータであって、前記第1ロータにおける磁石の磁極中心の角度に対して、前記第2のロータにおけるリラクタンスが最大及び最小となる角度が異なるアキシャルギャップ型モータ。
  5.  請求項4に記載のアキシャルギャップ型モータであって、
     前記リラクタンスが最大及び最少となる角度の差が、15°~45°までであるアキシャルギャップ型モータ。
PCT/JP2014/079665 2014-11-10 2014-11-10 アキシャルギャップ型モータ WO2016075728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079665 WO2016075728A1 (ja) 2014-11-10 2014-11-10 アキシャルギャップ型モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079665 WO2016075728A1 (ja) 2014-11-10 2014-11-10 アキシャルギャップ型モータ

Publications (1)

Publication Number Publication Date
WO2016075728A1 true WO2016075728A1 (ja) 2016-05-19

Family

ID=55953841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079665 WO2016075728A1 (ja) 2014-11-10 2014-11-10 アキシャルギャップ型モータ

Country Status (1)

Country Link
WO (1) WO2016075728A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614587A (zh) * 2016-07-12 2022-06-10 Lg伊诺特有限公司 马达
US20220263393A1 (en) * 2019-11-08 2022-08-18 Denso Corporation Rotating electrical machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151725A (ja) * 2003-11-17 2005-06-09 Equos Research Co Ltd アキシャルギャップ回転電機
JP2010166745A (ja) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd 可変特性回転電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151725A (ja) * 2003-11-17 2005-06-09 Equos Research Co Ltd アキシャルギャップ回転電機
JP2010166745A (ja) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd 可変特性回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614587A (zh) * 2016-07-12 2022-06-10 Lg伊诺特有限公司 马达
US20220263393A1 (en) * 2019-11-08 2022-08-18 Denso Corporation Rotating electrical machine

Similar Documents

Publication Publication Date Title
JP5866074B1 (ja) シンクロナスリラクタンスモータ
US9071118B2 (en) Axial motor
JP6411833B2 (ja) ブラシレスモータ
JP5605388B2 (ja) 同期モータ
US10340780B2 (en) Transverse flux machine
JP5542849B2 (ja) スイッチドリラクタンスモータ
JP2013074743A (ja) 回転電機
JP2009207333A (ja) ランデル型ロータ型モータ
JP2004274963A (ja) 電動パワーステアリング装置用永久磁石型モータ
JPWO2014027631A1 (ja) ブラシレスモータ及びブラシレスモータ用ロータ
US20170366075A1 (en) Synchronous Reluctance Motor
WO2016060232A1 (ja) ダブルステータ型回転機
JP5538984B2 (ja) 永久磁石式電動機
WO2016075728A1 (ja) アキシャルギャップ型モータ
JP5011719B2 (ja) 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
JP2014192951A (ja) 回転電気機械、電動機ユニットおよび発電機ユニット
JP6675139B2 (ja) スイッチトリラクタンスモータ
JP2012019605A (ja) 永久磁石回転電機
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP2010045872A (ja) 永久磁石式回転機
JP2007166798A (ja) 回転電機、圧縮機、送風機、及び空気調和機
JP6638615B2 (ja) 同期回転電機
JP2007288838A (ja) 埋込磁石型電動機
JP2000060039A (ja) 同期機の回転子構造、同期型モータ及び同期型発電機
JP5016838B2 (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP