WO2016074300A1 - 具有皮肤冷却功能的高功率vcsel激光治疗装置及其封装结构 - Google Patents

具有皮肤冷却功能的高功率vcsel激光治疗装置及其封装结构 Download PDF

Info

Publication number
WO2016074300A1
WO2016074300A1 PCT/CN2014/093209 CN2014093209W WO2016074300A1 WO 2016074300 A1 WO2016074300 A1 WO 2016074300A1 CN 2014093209 W CN2014093209 W CN 2014093209W WO 2016074300 A1 WO2016074300 A1 WO 2016074300A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
vcsel
optical
heat sink
high power
Prior art date
Application number
PCT/CN2014/093209
Other languages
English (en)
French (fr)
Inventor
李德龙
李阳
Original Assignee
李德龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410643581.0A external-priority patent/CN104353194B/zh
Priority claimed from CN201420681459.8U external-priority patent/CN204290034U/zh
Priority claimed from CN201410643997.2A external-priority patent/CN104362510A/zh
Priority claimed from CN201420680028.XU external-priority patent/CN204275310U/zh
Application filed by 李德龙 filed Critical 李德龙
Priority to EP14905708.5A priority Critical patent/EP3219360B1/en
Priority to US15/525,594 priority patent/US10568690B2/en
Priority to ES14905708T priority patent/ES2802993T3/es
Priority to PL14905708T priority patent/PL3219360T3/pl
Publication of WO2016074300A1 publication Critical patent/WO2016074300A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N2005/002Cooling systems
    • A61N2005/007Cooling systems for cooling the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details
    • A61N2005/0665Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the invention relates to a high power semiconductor laser treatment device with a skin cooling function using a vertical cavity surface emitting laser as a light source, and relates to a VCSEL array package structure based on an optical potting process used in the high power semiconductor laser treatment device.
  • Laser medical technology field a high power semiconductor laser treatment device with a skin cooling function using a vertical cavity surface emitting laser as a light source, and relates to a VCSEL array package structure based on an optical potting process used in the high power semiconductor laser treatment device.
  • high-power semiconductor lasers have been widely used in areas such as skin surgery and laser cosmetic surgery, such as hair removal, skin rejuvenation, wrinkle, pigment treatment, and physical therapy.
  • laser cosmetic surgery such as hair removal, skin rejuvenation, wrinkle, pigment treatment, and physical therapy.
  • a contact skin cooling device comprising a semiconductor refrigerating sheet and a highly thermally conductive optical window
  • a semiconductor laser structure disclosed in Chinese Patent No. ZL201220625361.1 and ZL201320713701.0.
  • the sapphire contact window is the most widely used.
  • the use of sapphire as a contact window for skin treatment devices dates back to the 1990s, and the detailed structure can be found in U.S. Patent No. 6,273,885 B1.
  • the edge-emitting semiconductor laser array is a stacked structure having an independent and complicated laser heat sink structure and thus cannot be shared with the heat sink of the semiconductor cooling sheet. This makes the skin cooling structure and the laser structure require separate cooling heat sinks and water-passing structures, respectively, and the structure of the treatment device becomes very complicated.
  • the double-side refrigerating medical cosmetic semiconductor laser system disclosed in Chinese Patent No. ZL201220625361.1 includes two water passing blocks, wherein the first water passing block is used for conduction cooling of the contact window, and the second water passing block is used for conducting cooling of the contact window.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • its application has many advantages, such as high reliability, high temperature resistance, uniform optical distribution, high surface reflectivity, small wavelength drift and so on.
  • vertical cavity surface emitting lasers will gradually replace the traditional edge-emitting semiconductor lasers into the main laser treatment equipment in the future.
  • the package structure of the VCSEL array is as shown in FIG. 1.
  • a single VCSEL chip is usually directly soldered to a heat dissipation substrate having a high thermal conductivity, and then the lower surface of the heat dissipation substrate is soldered to the heat sink.
  • the heat dissipating substrate has good thermal conductivity, and the heat of the VCSEL array is dissipated in time by the heat sink to realize the heat dissipation cooling of the VCSEL array.
  • the primary technical problem to be solved by the present invention is to provide a high power VCSEL laser treatment device having a skin cooling function.
  • Another technical problem to be solved by the present invention is to provide a VCSEL array package structure based on an optical potting process used in the above high power VCSEL laser treatment apparatus.
  • Another technical problem to be solved by the present invention is to provide a high power VCSEL laser using the above package structure.
  • a high power VCSEL laser treatment device having a skin cooling function comprising a laser heat sink, a VCSEL array encapsulated on the laser heat sink, disposed in front of a light exit surface of the VCSEL array An optical transmission device, and a highly thermally conductive optical window disposed at a light exit end of the optical transmission device,
  • An integral cooling conductive metal member is disposed outside the laser heat sink, the optical transmission device, and the high thermal conductive optical window, and is disposed between the cooling conductive metal member and the laser heat sink
  • One or more semiconductor refrigerating sheets, the hot end of which is in contact with the laser heat sink, and the cold end of the semiconductor refrigerating sheet is in contact with the cooling conductive metal member.
  • the cooling conductive metal member is wrapped around the high thermal conductive optical window, The optical transmission device and an exterior of the laser heat sink;
  • the high thermal conductive optical window is embedded in an opening of the front end of the cooling conductive metal member; the optical transmission device is disposed in a cavity in front of the cooling conductive metal member; the laser heat sink is disposed in the In the cavity in which the rear portion of the conductive metal member is cooled, one or more of the semiconductor cooling fins are disposed in a gap between the laser heat sink and the cooling conductive metal member.
  • the optical transmission device is disposed in a cavity in front of the cooling conductive metal member through a support, at a contact gap between the optical transmission device and the support member, and the support member and The contact gap of the laser heat sink is sealed and fixed by using a sealant.
  • the optical transmission device is disposed in front of the laser heat sink and the VCSEL array by a fixing member, and may be composed of the optical transmission device, the fixing member, and the laser heat sink.
  • the gap is filled with an optical potting compound.
  • an optical potting compound is potted in a cavity formed by the optical transmission device, the support, and the laser heat sink.
  • an optical potting process based VCSEL array package structure for use in the above embodiments, comprising a VCSEL array and a laser heat sink, wherein the VCSEL array is packaged on a laser heat sink, The surface of the VCSEL array is covered with a layer of optical potting compound and the optical potting compound completely covers the VCSEL array.
  • the present invention also provides a high power VCSEL laser including the above VCSEL array package structure.
  • the high power VCSEL semiconductor laser treatment device adopts a VCSEL chip as a laser light source, has a simple structure of a laser heat sink, and uses a semiconductor refrigeration sheet, a cooling conductive metal member and a high thermal conductive optical window as a skin cooling device, and a semiconductor
  • the hot end of the refrigerating sheet is dissipated by the heat sink of the VCSEL laser, making the semiconductor refrigerating sheet and the heat sink of the VCSEL array common.
  • the high-power VCSEL semiconductor laser treatment device has many advantages such as simple structure, powerful function, easy manufacture, high reliability, strong environmental adaptability, and the like, and has broad application prospects in the field of laser medical treatment, such as skin surgery and laser cosmetic surgery. .
  • the sealant such as silicone rubber
  • the sealant is used for the denseness. Sealed and fixed, it can achieve waterproof, moisture-proof and dust-proof effects.
  • the VCSEL laser is moisture-proof, waterproof, dust-proof, and the refractive index matching of the optical potting window and the optical output window is greatly reduced.
  • the interface incident loss between the VCSEL chip and the optical window further increases the transmittance of the laser.
  • the high thermal conductivity optical potting adhesive has a certain heat conduction and cooling effect on the optical window, and avoids the heating of the optical window under high power conditions.
  • FIG. 1 is a schematic diagram of a package structure of a single VCSEL chip in the prior art
  • FIG. 2 is a schematic structural view of a high power VCSEL laser treatment apparatus having a skin cooling function in a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a VCSEL laser heat sink and an inner wall reflection type optical transmission device in a second embodiment of the present invention
  • FIG. 4 is a schematic structural view of a VCSEL array on a surface of a laser heat sink in a second embodiment of the present invention
  • FIG. 5 is a schematic view showing a package structure of an optical potting VCSEL laser
  • Figure 6 is a schematic illustration of the structure of an optically potted high power VCSEL laser.
  • a vertical cavity surface emitting laser (referred to as a VCSEL laser) is a semiconductor laser in which the light outgoing direction is perpendicular to the epitaxial wafer.
  • High-power VCSEL lasers are two-dimensional arrays of hundreds of VCSEL light-emitting points distributed along the surface of the epitaxial wafer, thus providing high optical output power.
  • the package of the VCSEL laser is completed by soldering the VCSEL chip integrally on a package substrate having a high thermal conductivity, and then soldering the substrate to the heat sink heat sink to complete the heat dissipation cooling of the VCSEL.
  • the package structure of the VCSEL laser makes it possible to share the heat sink of the laser and the heat sink of the semiconductor refrigerating sheet due to the use of a simple heat sink.
  • the structure of the provided high power VCSEL laser treatment apparatus is as shown in FIG. 2, including a laser heat sink 2, a VCSEL array 4 composed of a plurality of VCSEL chips, an optical transmission device 8, and a high The thermally conductive optical window 6, the cooled conductive metal member 1, and the plurality of semiconductor cooling fins 7.
  • the VCSEL array 4 is encapsulated in the laser through the package substrate 3.
  • an optical transmission device 8 is disposed in front of the light-emitting surface of the VCSEL array 4 (ie, on the laser heat sink 2) through the fixing member 9 (when the optical transmission device 8 uses a light guiding cone, the fixing member 9 is a light cone
  • the sleeve is provided with a highly thermally conductive optical window 6 at the light exit end of the optical transmission device 8.
  • An integrated cooling conductive metal member 1 is disposed outside the laser heat sink 2, the optical transmission device 8, and the high thermal conductive optical window 6.
  • the cooling conductive metal member 1 is in direct or indirect contact with the optical transmission device 8 and the high thermal conductive optical window 6 for dissipating heat from the optical transmission device 8 and the high thermal conductive optical window 6; wherein the high thermal conductive optical window 6 can be directly embedded Mounted in the opening of the front end of the cooling conductive metal member 1, the optical transmission device 8 can be disposed in the cavity in front of the cooling conductive metal member 1 through the support member 10, which will be described in detail hereinafter. Further, between the cooling conductive metal member 1 and the laser heat sink 2, one or more semiconductor cooling fins 7 are disposed, and the hot end of the semiconductor refrigerating sheet 7 is in contact with the laser heat sink 2, and the cold end of the semiconductor refrigerating sheet 7 is cooled and conducted. The metal piece 1 is in contact.
  • the skin is cooled by a skin cooling device composed of a highly thermally conductive optical window 6, a cooling conductive metal member 1, and a semiconductor refrigerating sheet 7, wherein the hot end of the semiconductor refrigerating sheet 7 passes through the laser heat Shen 2 performs heat dissipation. That is, in the high power VCSEL laser treatment device, the VCSEL array 4 and the skin cooling device share a heat sink 2 of the laser.
  • the cooling conductive metal member 1 is wrapped around the high thermal conductive optical window 6, the optical transmission device 8, and the laser heat sink 2. external.
  • the high thermal conductive optical window 6 is embedded in the opening of the front end of the cooling conductive metal member 1 to constitute an outlet for laser energy.
  • the optical transmission device 8 is disposed in the cavity in front of the cooling conductive metal member 1 by the support member 10 shown in Fig. 2, and the support member 10 can use the same material as the cooling conductive metal member 1 for the optical transmission device 8 to be
  • the heat generated during the laser conduction is dissipated in time by the support member 10 and the cooling conductive metal member 1.
  • the support member 10 between the optical transmission device 8 and the cooling conductive metal member 1 in Fig. 2 can also be integrally formed with the cooling conductive metal member 1, thereby simplifying the assembly of the entire laser treatment device.
  • the laser heat sink 2 is disposed in a cavity that cools the rear of the conductive metal member 1 (the side away from the skin), and one or more semiconductor cooling fins 7 are disposed in the gap between the laser heat sink 2 and the cooling conductive metal member 1.
  • the hot end of the semiconductor refrigerating sheet 7 is in contact with the laser heat sink 2, the semiconductor The cold end of the cooling fin 7 is in contact with the cooling conductive metal member 1, so that heat transferred from the cooling conductive metal member 1 is transmitted through the laser heat sink 2.
  • the laser heat sink 2 is used for heat dissipation of the VCSEL array 4 and the skin cooling device composed of the high thermal conductive optical window 6, the cooling conductive metal member 1, and the semiconductor refrigerating sheet 7.
  • a microchannel structure 11 is disposed inside the laser heat sink 2, and a water inlet and outlet 12 is disposed at a rear portion of the laser heat sink 2, and the water inlet and outlet 12 communicates with the microchannel structure 11 inside the laser heat sink 2 for providing cooling water for cooling. Thereby increasing the heat exchange efficiency of the laser heat sink 2.
  • the VCSEL array 4 and the skin cooling device common laser heat sink 2 the VCSEL array 4 and the semiconductor refrigerating sheet 7 are both radiated by the laser heat sink 2, thereby ensuring sufficient heat dissipation and
  • the internal structure of the laser treatment device is simplified on the premise of skin cooling.
  • the package surface of the laser heat sink 2 is a flat surface, and a plurality of VCSEL chips are densely arranged on the package surface of the laser heat sink 2 to constitute the VCSEL array 4.
  • An optical transmission device 8 is disposed in front of the light-emitting surface of the VCSEL array 4. Specifically, the optical transmission device 8 is disposed on the laser heat sink 2 through the fixing member 9 (when the light guide cone is used, the fixing member 9 is a light cone sleeve)
  • an optical potting compound (not shown) may be filled in the gap formed by the optical transmission device 8, the fixture 9 and the laser heat sink 2.
  • the optical transmission device 8 uses an inner wall reflective optical transmission device for transmitting and concentrating light emitted from the VCSEL array 4. Since the VCSEL is a circular light source, its divergence angle is small (the full angle of the divergence angle is about 15 to 20 degrees), and the far-field light intensity is approximately flat-topped and the energy is uniform. Therefore, compared with the edge-emitting semiconductor laser, the VCSEL emits The light is more likely to converge and the energy is evenly distributed in the far field.
  • the inner wall reflective optical transmission device can also reflect light reflected from the skin treatment point to
  • the light-emitting surface of the VCSEL array 4 depends on the extremely high reflectivity of the VCSEL chip surface (99.5% or more), and the light-emitting surface of the VCSEL array 4 can efficiently reflect the reflected light reflected by the skin treatment point and the inner wall reflective optical transmission device.
  • the secondary reflection fully improves the utilization rate of the laser and the absorption rate of the skin, and improves the therapeutic effect.
  • a mirror barrel polished by an inner wall or a light guide cone (which may be a parallel light cone or a ladder type light cone or the like) based on total reflection of the inner wall is generally selected as the optical transmission device 8.
  • the mirror tube uses the specular reflection of the inner wall to realize the transmission and convergence of the laser from the light emitting area of the chip to the skin treatment point; the light guiding cone utilizes the total reflection of the inner wall to realize the transmission and convergence of the laser from the light emitting area of the chip to the skin treatment point.
  • an optical antireflection film may be vapor deposited on the light incident surface and the light exit surface of the light guide cone, respectively.
  • the high thermal conductive optical window 6 abuts against the light exit end of the optical transmission device 8.
  • the high thermal conductive optical window 6 can be made of high thermal conductivity and high light transmissive material such as sapphire or optical grade artificial diamond.
  • the light transmittance of the highly thermally conductive optical window 6 is enhanced, and an optical antireflection film can also be deposited on both sides of the high thermal conductive optical window 6.
  • the VCSEL array 4 is packaged using a laser heat sink 2 having a planar package surface, and the laser light is transmitted and concentrated using an inner wall reflective optical transmission device (for example, a light guiding cone), and The skin is cooled by a skin cooling device composed of a highly thermally conductive optical window 6, a cooling conductive metal member 1, and a semiconductor refrigerating sheet 7.
  • a skin cooling device composed of a highly thermally conductive optical window 6, a cooling conductive metal member 1, and a semiconductor refrigerating sheet 7.
  • the VCSEL array 4 and the skin cooling device share a heat sink 2 by a simple structural design, thereby simplifying the internal structure of the high power VCSEL laser treatment apparatus.
  • the overall structural arrangement of the high power VCSEL laser treatment apparatus is the same as that of the first embodiment, only the package surface of the laser heat sink 2, the package structure of the VCSEL array 4, and the light incident of the optical transmission device 8.
  • the package surface of the laser heat sink 2 can be set not only as a plane as shown in FIG. 2 but also as a polygonal package surface as shown in FIG. 3, and when the package surface of the laser heat sink 2 is a polygon as shown in FIG. The concentrating effect of the VCSEL array is better.
  • the cross section of the package surface of the laser heat sink 2 is a circular circumscribed polygon, which is circumscribed to a circular arc surface with a focal length as a center and a focal point.
  • the package surface of the laser heat sink 2 is composed of a plurality of small package planes at an angle to each other, and the package surface is concave, which is similar to a concave curved shape.
  • the cross section of the package surface of the laser heat sink 2 is centered at the convergence point (the focus of the VCSEL array) where the skin treatment point is located,
  • the focal length is a partial circumscribed polygon of a circle of radius R, wherein the central normal of each small package plane converges to the focus.
  • the convergence point may have a certain deviation, as long as the central normal of the small package plane can be concentrated near the focus.
  • the laser heat sink 2 achieves optical convergence of a plurality of VCSEL chips in one direction by concentrating light beams of a plurality of VCSEL chips near a center of a circular arc.
  • all of the VCSEL chips in the VCSEL array 4 are packaged using the laser heat sink 2 described above. As shown in FIG. 4, all VCSEL chips in the VCSEL array 4 are respectively mounted on the respective small package planes of the arc-shaped heat sink 2, and one or more VCSEL chips can be packaged on each small package plane, so that The orthographic projections of all VCSEL chips are all distributed over the outer circumference of a circle having a focal point of focus O, with a focal length as radius R, and the center normals of all VCSEL chips intersect at the center of the circle. Therefore, the beams of all VCSEL illumination units can intersect at the center of the center of each VCSEL chip at the center of the center to achieve power superposition.
  • the cross section of the light incident surface of the optical transmission device 8 may be an arcuate or circular arc circumscribed polygon.
  • the inner wall of the optical transmission device 8 is preferably parallel to the radial direction of a circle centered on the focal point and having a focal length, and the length of the optical transmission device 8 is smaller than the length of the focal length of the VCSEL array 4.
  • the optical transmission device 8 can realize efficient transmission of the laser, and has a certain beam compression effect on the laser to realize the beam convergence function.
  • the center of the light incident surface is the same as the convergence point of the VCSEL array 4, so that the light incident surface is tangent to the light emitting surface of each VCSEL chip in the VCSEL array 4.
  • the center normal of the exit surface of the VCSEL chip is perpendicular to the light incident surface of the optical transmission device 8.
  • the laser light emitted by the VCSEL chip can be directly incident into the optical transmission device 8, and the divergence angle of each VCSEL can be compressed.
  • the light incident surface of the optical transmission device 8 When the cross section of the light incident surface of the optical transmission device 8 is a circumscribed polygon of a circular arc surface, the light incident surface thereof may be composed of a plurality of facets which are at an angle to each other, and the center of the circle is concentric with the center of the laser heat sink 4. Having each facet of the optical transmission device 8 correspond to and parallel with a single small package plane of the laser heat sink 2, such that the central normal of the VCSEL chip packaged on each of the small package planes is perpendicular to its corresponding facet, thereby The laser light emitted by the VCSEL chip can be directly incident into the interior of the optical transmission device 8, and the divergence angle of each VCSEL can be compressed. In addition, the setting of such a circular surface circumscribed polygon is extremely large. The distance between the VCSEL array 4 and the optical transmission device 8 is reduced, reducing laser escaping at the gap.
  • the skin cooling device is improved, but also the internal structure thereof is simplified, and at the same time, the VCSEL array is improved, and the VCSEL is effectively improved. Optical convergence and utilization.
  • the high power VCSEL semiconductor laser treatment device uses a VCSEL chip as a laser light source and has a simple structure of a laser heat sink.
  • the high-power VCSEL semiconductor laser treatment device uses a semiconductor cooling sheet, a cooling conductive metal member and a high thermal conductive optical window as a skin cooling device, and the hot end of the semiconductor refrigerating sheet and the VCSEL array common laser heat sink, thereby achieving skin cooling.
  • the cooling structure and the water-passing structure of the entire device are made extremely simple.
  • the device has the advantages of simple structure, powerful function, easy manufacture, low cost, high reliability, strong environmental adaptability, and the like, and has broad application prospects in the field of laser medical treatment, such as skin surgery and laser cosmetic surgery.
  • the high power VCSEL laser treatment device with skin cooling function provided by the present invention is introduced above.
  • the package structure of the surface of the VCSEL chip involved in the invention is sealed with optical potting glue and its high power in conjunction with FIG. 5 and FIG.
  • the application in the field of semiconductor lasers will be described.
  • the VCSEL laser In the practical application of VCSEL, in order to avoid the surface of the VCSEL chip from being affected by condensation, humidity, dust, etc., the VCSEL laser is generally required to be sealed and output and applied through an optical window. Conventional methods typically use an O-ring or sealant to seal the gap between the optical window, the cladding housing, the VCSEL laser chip, and the laser heat sink, thereby isolating the gaps in front of the VCSEL chip from the outside air. This method of sealing is often very complicated and cumbersome and affects the overall appearance of the structure. Therefore, it is necessary to provide a package structure of a VCSEL array with a simple structure and good isolation effect.
  • the present invention provides a VCSEL array package structure including a VCSEL array 21, a substrate 22, and a laser heat sink 23, which is packaged on the laser heat sink 23 through a substrate 22.
  • the VCSEL chip can be directly soldered to the upper surface of the substrate 22, and then the lower surface of the substrate 22 is soldered to the laser heat sink 23.
  • the substrate 22 has good thermal conductivity, and the heat of the VCSEL array 21 can be conducted out through the substrate 22 and the laser heat sink 23 in time to realize heat dissipation cooling of the VCSEL array 21.
  • the optical potting glue 24 is first introduced, and the airtightness of the VCSEL laser is satisfied by directly covering, potting and curing an optical potting glue 24 on the surface of the VCSEL array 21. Claim.
  • the optical potting compound 24 completely covers the VCSEL array 21 and spreads over the surface of the entire laser heat sink 23, thereby completely immersing the VCSEL laser chip in the sealing gel, achieving good airtightness.
  • the VCSEL array package structure has excellent waterproof, moisture-proof and dust-proof functions, and can be adapted to a harsh working environment, such as a high temperature of 80 degrees Celsius or more, a relative humidity of 100%, and even under water; the package structure It can effectively protect the VCSEL chip to avoid environmental damage and has high reliability.
  • the package structure provided by the embodiments of the present invention is simple in structure, small in size, low in cost, and the optical potting process used is also extremely simple and easy to implement.
  • the optical potting compound 24 can directly cover the VCSEL array 21 to form a smooth outer surface (as shown in FIG. 5); it can also be potted and cured by an external mold to form an optical window having a regular arbitrary geometric shape for
  • the laser beam emitted from the VCSEL chip is optically shaped.
  • the optical potting compound 24 can be cured into a tapered step for use as an optical window; when the optical potting 24 is cured to form an optical window having a regular geometry, the exterior of the VCSEL laser is saved.
  • Optical device that facilitates optical shaping of the VCSEL exit beam.
  • the optical potting compound 24 can also be used in conjunction with the optical window of other VCSEL outputs, that is, the optical encapsulant 24 is used to directly fill the gap between the VCSEL chip and the optical window to seal the VCSEL.
  • the present invention provides an embodiment. Explain this, see below for details.
  • the optical potting glue can be selected according to the specific application needs different soft rubber or hard rubber. Different optical wavelength conversion phosphors can be added to the optical potting compound to achieve optical output of high brightness, different wavelengths and even mixed wavelengths (such as white light), thus enriching the extended application of VCSEL in commercial lighting.
  • the optical potting compound 24 used for potting has high thermal conductivity, high transmittance, high temperature resistance, and can be adapted to the high power optical output power and high temperature operating characteristics of the VCSEL.
  • the heat of the optical potting compound 24 can be conducted and cooled through the VCSEL surface, the substrate 22, and the laser heat sink 23, so that it is not burned and can meet the heat dissipation requirements.
  • FIG. 6 An embodiment of a high power VCSEL laser using the above package structure is described below. Line introduction. This embodiment can be directly applied to the above-described high power VCSEL laser treatment apparatus having a skin cooling function.
  • a VCSEL array 21, a substrate 22, a laser heat sink 23, and a VCSEL array 21 are mounted on the laser heat sink 23 through the substrate 22, and the light is emitted from the VCSEL array 21.
  • An optical window 26 is disposed in front of the face, and the optical window 26 is fixed to the heat sink heat sink 23 through the covering casing 25, thereby forming a gap between the laser heat sink 23, the optical window 26 and the package casing 25, in order to realize the VCSEL.
  • the sealing of the array 21 is filled with an optical potting compound 24 having high thermal conductivity, high transmittance and high temperature resistance, and the VCSEL chip is completely immersed in the sealing gel to achieve good airtightness. It is waterproof, moisture-proof and dust-proof.
  • This optical potting structure achieves direct incident matching of the laser chip to the optical window 26, with no further air intervention.
  • the optical potting compound 24 is made of a material having a refractive index close to that of the optical window 26, the interface incident loss between the VCSEL chip and the optical window 26 can be greatly reduced, and the transmittance of the laser can be further improved.
  • the interface loss of optical emission can be further reduced.
  • the optical window 26 may be a planar light window, an optical lens, or a specific type of optical prism, light cone, etc., to match the optical shaping of the light beam.
  • the optical potting compound 24 is a material having high thermal conductivity, high transmittance and high temperature resistance
  • the optical potting compound is a potting medium, and is also an optical conductive medium and a heat conducting medium;
  • the optical window 26 has a certain heat conduction and cooling effect to avoid the heating of the optical window 26 under high power conditions to adapt to the high power optical output power and high temperature operating characteristics of the VCSEL.
  • a micro cooling channel 27 is provided in the laser heat sink 23 for water cooling.
  • the present invention provides an optical encapsulant for the first time in the packaging of a high power VCSEL while providing a high power VCSEL laser treatment device with skin cooling function, which effectively solves the sealing problem of the VCSEL laser.
  • the use of optical potting to seal the VCSEL array can achieve the moisture, water and dust resistance of the VCSEL laser; thus, the VCSEL laser can adapt to harsh working conditions, such as high temperature above 80 degrees Celsius, relative humidity of 100%, even under water. .
  • This package structure can effectively protect the VCSEL chip, avoid environmental damage, and has high reliability.
  • the semiconductor laser using the above package structure provided by the present invention can realize the laser chip by filling the gap between the VCSEL chip and the optical window by using an optical potting glue
  • the direct incident matching of the optical window eliminates the intervention of air, and at the same time realizes the moisture-proof, waterproof and dust-proof of the VCSEL laser, and the refractive index matching of the optical potting window and the optical output window can greatly reduce the VCSEL chip and the optical window.
  • the incident loss between the interfaces further increases the transmittance of the laser.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开了一种具有皮肤冷却功能的高功率VCSEL(垂直腔面发射激光器)激光治疗装置,包括封装在激光器热沉(2)上的VCSEL阵列(4)、设置在VCSEL阵列(4)出光面前方的光学传输器件(8)、以及贴靠在光学传输器件(8)出光口端的高导热光学窗口片(6),在激光器热沉(2)、光学传输器件(8)和高导热光学窗口片(6)的外侧设置有一体的冷却传导金属件(1),并且,在冷却传导金属件(1)和激光器热沉(2)之间设置有一片或多片半导体制冷片(7),半导体制冷片(7)的热端与激光器热沉(2)接触,半导体制冷片(7)的冷端与冷却传导金属件(1)接触。在上述高功率VCSEL半导体激光治疗装置中,半导体制冷片(7)和VCSEL阵列(4)的热沉公用,简化了其内部结构,因此,该激光治疗装置具有结构简单、功能强大、易于制造、可靠性高等诸多优点,在激光医疗领域具有广阔的应用前景。

Description

具有皮肤冷却功能的高功率VCSEL激光治疗装置及其封装结构 技术领域
本发明涉及一种以垂直腔面发射激光器作为光源的具有皮肤冷却功能的高功率半导体激光治疗装置,同时涉及该高功率半导体激光治疗装置中使用的基于光学灌封工艺的VCSEL阵列封装结构,属于激光医疗技术领域。
背景技术
在过去的二十年间,高功率半导体激光器被广泛地应用于皮肤外科与激光美容外科等领域,比如脱毛、嫩肤、祛皱、色素治疗、物理疗法等。在绝大多数的治疗场合,一方面需要给皮肤注入足够大的激光能量,另一方面还要防止高功率激光对皮肤的灼伤,因而绝大多数激光治疗装置需要配合皮肤冷却装置来使用。
在传统高功率半导体激光器中,使用半导体制冷片和高导热光学窗口片构成的接触式皮肤冷却装置,是一种常用的设计结构。例如中国专利ZL201220625361.1和ZL201320713701.0中公开的半导体激光器结构。其中,在常用的高导热光学窗口片中,尤以蓝宝石接触窗口的应用最为广泛。使用蓝宝石作为皮肤治疗装置的接触窗口,最早的历史可以追溯到上世纪90年代,详细结构可以参见美国专利US6273885B1中的记载。
传统的高功率半导体激光器,使用边发射半导体激光器阵列作为激光光源。边发射半导体激光器阵列是一种叠层式结构,具有独立而复杂的激光器热沉结构,因而不能与半导体制冷片的热沉共用。这样就使得皮肤冷却结构和激光器结构需要分别设计独立的冷却热沉和通水结构,治疗装置的结构因此变得非常复杂。例如中国专利ZL201220625361.1中公开的双侧制冷型医疗美容用半导体激光器系统,包括两个通水块,其中,第一通水块用于对接触窗进行传导冷却,第二通水块用于对半导体激光器阵列进行传导冷却,这种双通水块的结构导致半导体激光器的内部结构复杂、激光治疗头体积较大,在皮肤治疗时常常会影响操作者的视野,增加手术难度。因此,如果可以 设计出体积小巧、操作方便的激光治疗手柄,将会极大地减少激光手术时的操作难度。
近年来,随着垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)的制造技术逐渐成熟,VCSEL逐渐实现了接近于边发射半导体激光器的高功率输出。同时由于其独特的结构,其应用中存在的诸多优点,如高可靠性、耐高温、光学分布均匀、表面高反射率、波长温漂小等等。在激光医疗领域,垂直腔面发射激光器必将逐渐取代传统的边发射半导体激光器成为未来主要的激光治疗设备。
在现有技术中,VCSEL阵列的封装结构如图1所示,通常将单个VCSEL芯片直接焊接于一个具有高导热率的散热衬底上,然后将散热衬底的下表面焊接在热沉上。散热衬底具有良好的导热性,通过热沉将VCSEL阵列的热量及时散发出去,实现VCSEL阵列的散热冷却。
发明内容
本发明所要解决的首要技术问题在于提供一种具有皮肤冷却功能的高功率VCSEL激光治疗装置。
本发明所要解决的另一技术问题在于提供一种上述高功率VCSEL激光治疗装置中使用的基于光学灌封工艺的VCSEL阵列封装结构。
本发明所要解决的又一技术问题在于提供一种使用上述封装结构的高功率VCSEL激光器。
为了实现上述发明目的,本发明采用下述的技术方案:
在本发明的一个方面中,提供一种具有皮肤冷却功能的高功率VCSEL激光治疗装置,包括激光器热沉、封装在所述激光器热沉上的VCSEL阵列、设置在所述VCSEL阵列出光面前方的光学传输器件、以及设置在所述光学传输器件出光口端的高导热光学窗口片,
在所述激光器热沉、所述光学传输器件和所述高导热光学窗口片的外侧设置有一体的冷却传导金属件,并且,在所述冷却传导金属件和所述激光器热沉之间设置有一片或多片半导体制冷片,所述半导体制冷片的热端与所述激光器热沉接触,所述半导体制冷片的冷端与所述冷却传导金属件接触。
其中较优地,所述冷却传导金属件包裹于所述高导热光学窗口片、 所述光学传输器件和所述激光器热沉的外部;
所述高导热光学窗口片嵌装于所述冷却传导金属件前端的开口中;所述光学传输器件设置在所述冷却传导金属件前部的空腔中;所述激光器热沉设置在所述冷却传导金属件后部的空腔中,一片或多片所述半导体制冷片设置在所述激光器热沉和所述冷却传导金属件之间的缝隙中。
其中较优地,所述光学传输器件通过支撑件设置在所述冷却传导金属件前部的空腔中,在所述光学传输器件和所述支撑件的接触缝隙处,以及所述支撑件和所述激光器热沉的接触缝隙处,使用密封胶进行密封固定。
其中较优地,所述光学传输器件通过固定件设置在所述激光器热沉和所述VCSEL阵列的前方,并且,可以在所述光学传输器件、所述固定件以及所述激光器热沉构成的缝隙内填充光学灌封胶。
或者,在所述光学传输器件、所述支撑件和所述激光器热沉组成的空腔中灌封光学灌封胶。
在本发明的另一个方面中,提供了在上述实施例中使用的一种基于光学灌封工艺的VCSEL阵列封装结构,包括VCSEL阵列和激光器热沉,其中VCSEL阵列封装在激光器热沉上,在所述VCSEL阵列的表面覆盖有一层光学灌封胶,并且,所述光学灌封胶完全覆盖所述VCSEL阵列。
同时,本发明还提供了包括上述VCSEL阵列封装结构的高功率VCSEL激光器。
本发明提供的高功率VCSEL半导体激光治疗装置,采用VCSEL芯片作为激光光源,具有结构简单的激光器热沉,通过使用半导体制冷片、冷却传导金属件和高导热光学窗口片作为皮肤冷却器件,且半导体制冷片的热端通过VCSEL激光器热沉进行散热,使得半导体制冷片和VCSEL阵列的热沉公用。这种高功率VCSEL半导体激光治疗装置具有结构简单、功能强大、易于制造、可靠性高、环境适应性强等诸多优点,在激光医疗领域,如皮肤外科、激光美容外科领域等具有广阔的应用前景。同时,在光学传输器件和支撑件的接触缝隙处,以及支撑件和激光器热沉的接触缝隙处,使用密封胶(如硅橡胶)等进行密 封固定,可以达到防水、防潮、防尘的效果。
此外,通过使用光学灌封胶填充VCSEL芯片和光学窗口之间的空隙,实现了VCSEL激光器的防潮、防水、防尘,并通过光学灌封胶与光学输出窗口的折射率匹配,极大地减少了VCSEL芯片和光学窗口之间的界面入射损耗,并进一步提高了激光器的透过率。而且,高导热性的光学灌封胶同时对光学窗口有一定的热传导和冷却作用,避免光学窗口在高功率情况下的发热。
附图说明
图1是现有技术中,单个VCSEL芯片的封装结构示意图;
图2是本发明的第一实施例中,具有皮肤冷却功能的高功率VCSEL激光治疗装置的结构示意图;
图3是本发明的第二实施例中,VCSEL激光器热沉和内壁反射型光学传输器件的结构示意图;
图4是本发明的第二实施例中,在激光器热沉表面封装VCSEL阵列的结构示意图;
图5是光学灌封VCSEL激光器的封装结构示意图;
图6是光学灌封的高功率VCSEL激光器的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容进行详细描述。
垂直腔面发射激光器(简称为VCSEL激光器)是一种出光方向垂直于外延片的半导体激光器。高功率VCSEL激光器是由成百上千个沿着外延片表面分布的VCSEL发光点构成的二维阵列,因而具有很高的光学输出功率。如图1所示,VCSEL激光器的封装是通过将VCSEL芯片整体焊接在一个具有高导热率的封装衬底上,然后将衬底焊接于散热热沉上,完成VCSEL的散热冷却。VCSEL激光器的封装结构,由于使用了结构简单的热沉,使得激光器热沉与半导体制冷片的热沉公用成为可能。
在本发明的第一实施例中,所提供的高功率VCSEL激光治疗装置的结构如图2所示,包括激光器热沉2、由多个VCSEL芯片组成的VCSEL阵列4、光学传输器件8、高导热光学窗口片6、冷却传导金属件1和多片半导体制冷片7。其中,VCSEL阵列4通过封装衬底3封装在激光 器热沉2上,在VCSEL阵列4出光面前方(即在激光器热沉2上)通过固定件9设置有光学传输器件8(当光学传输器件8使用导光锥时,固定件9为光锥套),并在光学传输器件8出光口端设置有高导热光学窗口片6。在激光器热沉2、光学传输器件8和高导热光学窗口片6的外侧设置有一体的冷却传导金属件1。冷却传导金属件1与光学传输器件8和高导热光学窗口片6直接或间接接触,用于对光学传输器件8和高导热光学窗口片6进行散热;其中,高导热光学窗口片6可以直接嵌装在冷却传导金属件1前端的开口中,光学传输器件8可以通过支撑件10设置在冷却传导金属件1前部的空腔中,在下文中将对其具体设置结构进行详细描述。并且,在冷却传导金属件1和激光器热沉2之间设置有一片或多片半导体制冷片7,半导体制冷片7的热端与激光器热沉2接触,半导体制冷片7的冷端与冷却传导金属件1接触。
在该高功率VCSEL激光治疗装置中,通过高导热光学窗口片6、冷却传导金属件1和半导体制冷片7构成的皮肤冷却器件对皮肤进行冷却,其中,半导体制冷片7的热端通过激光器热沉2进行散热。也就是说,在该高功率VCSEL激光治疗装置中,VCSEL阵列4和皮肤冷却器件公用激光器热沉2。
具体来说,在图2所示的第一实施例中,在该高功率VCSEL激光治疗装置内部,冷却传导金属件1包裹于高导热光学窗口片6、光学传输器件8和激光器热沉2的外部。高导热光学窗口片6嵌装于冷却传导金属件1前端的开口中,构成激光能量的出口。光学传输器件8通过图2所示的支撑件10设置在冷却传导金属件1前部的空腔中,支撑件10可以使用与冷却传导金属件1相同的材料,用于将光学传输器件8在激光传导过程中产生的热量通过支撑件10和冷却传导金属件1及时散发出去。当然,图2中位于光学传输器件8和冷却传导金属件1之间的支撑件10也可以与冷却传导金属件1一体成型,从而简化整个激光治疗装置的组装。激光器热沉2设置在冷却传导金属件1后部(远离皮肤的一侧)的空腔中,一片或多片半导体制冷片7设置在激光器热沉2和冷却传导金属件1之间的缝隙中,用于对冷却传导金属件1进行制冷;半导体制冷片7的热端与激光器热沉2接触,半导体 制冷片7的冷端与冷却传导金属件1接触,从而将从冷却传导金属件1传送来的热量通过激光器热沉2传输出去。激光器热沉2同时用于VCSEL阵列4和由高导热光学窗口片6、冷却传导金属件1和半导体制冷片7构成的皮肤冷却器件的散热。
在激光器热沉2内部设置有微通道结构11,在激光器热沉2的后部设置有出入水口12,出入水口12与激光器热沉2内部的微通道结构11相通,用于提供冷却水进行冷却,从而提高激光器热沉2的热交换效率。
由此可见,在该高功率VCSEL激光治疗装置中,VCSEL阵列4和皮肤冷却器件公用激光器热沉2,VCSEL阵列4和半导体制冷片7均通过激光器热沉2进行散热,从而在保证充分散热和皮肤冷却的前提下,简化了激光治疗装置的内部结构。
上面对本发明提供的高功率VCSEL激光治疗装置的皮肤冷却功能的实现结构进行了详细的描述,下面对该高功率VCSEL激光治疗装置中的其他详细结构进行介绍。
在图2所示的第一实施例中,激光器热沉2的封装面是一个平面,多个VCSEL芯片在激光器热沉2的封装面上密集排列构成VCSEL阵列4。在VCSEL阵列4的出光面前方设置有光学传输器件8,具体来说,光学传输器件8通过固定件9(当使用导光锥时,固定件9为光锥套)设置在激光器热沉2和VCSEL阵列4的前方,可以在光学传输器件8、固定件9和激光器热沉2组成的缝隙处填充光学灌封胶(未图示)。此外,为了达到防水、防潮、防尘的效果,也可以在光学传输器件8和支撑件10的接触缝隙处,以及支撑件10和激光器热沉2的接触缝隙处,使用密封胶(如硅橡胶)等进行密封固定。上述光学灌封胶和密封胶的密封方式可以择一使用。
在该实施例中,光学传输器件8使用内壁反射型光学传输器件,用于对VCSEL阵列4发出的光线进行传输和汇聚。由于VCSEL是圆形光源,其发散角较小(发散角全角约为15~20度左右),其远场光强近似平顶分布,能量均匀,因此,与边发射半导体激光器相比,VCSEL发射的光线更容易汇聚,并且在远场能量分布均匀。此外,该内壁反射型光学传输器件,还可以将从皮肤治疗点反射回来的光线反射至 VCSEL阵列4的出光面上,依赖VCSEL芯片表面极高的反射率(99.5%以上),VCSEL阵列4的出光面可以对经过皮肤治疗点和内壁反射型光学传输器件反射回来的反射光线进行高效的二次反射,充分提高了激光的利用率和皮肤的吸收率,提高了治疗效果。
实际使用中,通常选取内壁抛光的反射镜筒或者基于内壁全反射的导光锥(可以为平行光锥或梯台型光锥等)作为光学传输器件8。其中,反射镜筒利用内壁镜面反射方式实现激光从芯片发光区到皮肤治疗点的传输和汇聚;导光锥利用内壁全反射方式实现激光从芯片发光区到皮肤治疗点的传输和汇聚。为了提高导光锥的透光效率,可以在导光锥的入光面和出光面分别蒸镀光学增透膜。
在该实施例中,高导热光学窗口片6贴靠在光学传输器件8的出光口端,高导热光学窗口片6可以选用蓝宝石或光学级人工钻石等高导热性、高透光性材料,为了增强高导热光学窗口片6的透光率,还可以在该高导热光学窗口片6的双面蒸镀光学增透膜。
综上所述,在第一实施例中,使用封装面为平面的激光器热沉2对VCSEL阵列4进行封装,使用内壁反射型光学传输器件(例如导光锥)对激光光线进行传输汇聚,并通过高导热光学窗口片6、冷却传导金属件1和半导体制冷片7构成的皮肤冷却器件对皮肤进行冷却。其中,通过简单的结构设计,使得VCSEL阵列4和皮肤冷却器件公用激光器热沉2,从而简化了高功率VCSEL激光治疗装置的内部结构。
在本发明的第二实施例中,高功率VCSEL激光治疗装置的整体结构设置与第一实施例相同,只有激光器热沉2的封装面、VCSEL阵列4的封装结构以及光学传输器件8的入光面与第一实施例存在区别。激光器热沉2的封装面不仅可以设置成如图2所示的平面,还可以设置成图3所示的多边形封装面,而且,当激光器热沉2的封装面是如图3所示的多边形时,VCSEL阵列的聚光效果更好。
如图3和图4所示,激光器热沉2的封装面的截面是一个圆的部分外切多边形,外切于以皮肤治疗点为圆心,以焦距为半径的圆弧面。激光器热沉2的封装面由多个相互呈一定角度的小封装平面组成,封装面内凹,近似于内凹的弧形。具体来说,激光器热沉2的封装面的截面是以皮肤治疗点所在的汇聚点(VCSEL阵列的焦点)为圆心O、以 焦距为半径R的圆的部分外切多边形,其中,每个小封装平面的中心法线均汇聚于焦点。实际使用中,其汇聚点可以有一定偏差,只要小封装平面的中心法线可以汇聚于焦点附近即可。该激光器热沉2通过将多个VCSEL芯片的光束汇聚到弧面圆心位置附近,实现多个VCSEL芯片在一个方向上的光学汇聚。
在该高功率VCSEL激光治疗装置中,使用上述激光器热沉2对VCSEL阵列4中的所有VCSEL芯片进行封装。如图4所示,分别将VCSEL阵列4中的所有VCSEL芯片安装于弧形热沉2的各个小封装平面上,并且,在每个小封装平面上可以封装一个或多个VCSEL芯片,这样可以使所有VCSEL芯片的正投影全部分布在以焦点为圆心O、以焦距为半径R的圆的外圆周上,并且,所有VCSEL芯片的中心法线在圆心位置相交。所以,所有VCSEL发光单元的光束,可以沿每个VCSEL芯片的中心法线方向在圆心位置相交,实现功率的叠加。
相应地,在该实施例中,光学传输器件8的入光面的截面可以为圆弧状或圆弧面外切多边形。同时,光学传输器件8的内壁以平行于以焦点为圆心、以焦距为半径的圆的半径方向为优,光学传输器件8的长度小于VCSEL阵列4焦距的长度。通过该光学传输器件8可以实现激光的高效传输,并对激光具有一定的光束压缩作用,实现光束汇聚功能。
当光学传输器件8的入光面的截面呈圆弧形时,其入光面的圆心与VCSEL阵列4的汇聚点相同,从而使入光面与VCSEL阵列4中的各个VCSEL芯片的出光面相切,VCSEL芯片出光面的中心法线垂直于光学传输器件8的入光面,VCSEL芯片发射的激光可以直射入光学传输器件8的内部,并且,每个VCSEL的发散角都可以得到压缩。
当光学传输器件8的入光面的截面呈圆弧面外切多边形,其入光面可以由多个互相呈一定角度的小平面组成,并且,其圆心与激光器热沉4的圆心同心。使光学传输器件8的每个小平面与激光器热沉2的单个小封装平面对应且平行,可以使封装于各个小封装平面上的VCSEL芯片的中心法线与其对应的小平面垂直,从而,使得VCSEL芯片发射的激光可以直射入光学传输器件8的内部,并且,每个VCSEL的发散角都可以得到压缩。此外,这种圆弧面外切多边形的设置极大 地减小了VCSEL阵列4与光学传输器件8之间的距离,减少了缝隙处的激光逃逸。
在本发明的第二实施例中,在高功率VCSEL半导体激光治疗装置中,不仅通过对皮肤冷却器件进行改进,简化了其内部结构,同时,通过对VCSEL阵列的封装进行改进,有效提高了VCSEL的光学汇聚和利用率。
综上所述,该高功率VCSEL半导体激光治疗装置,采用VCSEL芯片作为激光光源,具有结构简单的激光器热沉。同时,该高功率VCSEL半导体激光治疗装置使用半导体制冷片、冷却传导金属件和高导热光学窗口片作为皮肤冷却器件,半导体制冷片的热端与VCSEL阵列公用激光器热沉,从而在实现皮肤冷却的同时,使得整个装置的冷却结构和通水结构变得极其简单。这种装置结构简单、功能强大、易于制造、成本低廉、可靠性高、环境适应性强等诸多优点,在激光医疗领域,如皮肤外科、激光美容外科领域等具有广阔的应用前景。
上面对本发明提供的具有皮肤冷却功能的高功率VCSEL激光治疗装置进行了介绍,下面结合图5和图6对本发明中涉及的VCSEL芯片表面使用光学灌封胶进行密封的封装结构及其在高功率半导体激光器领域中的应用进行说明。
在VCSEL的实际应用中,为了避免VCSEL芯片表面受到凝露、湿度、灰尘等影响,一般需要将VCSEL激光器做一定的密封处理,并通过光学窗口进行输出和应用。常规的方法一般使用O型圈或者密封胶,将光学窗口、包覆壳体、VCSEL激光器芯片以及激光器热沉之间的缝隙进行密封,进而将VCSEL芯片前的空隙与外部空气隔离开来。这种密封方法,往往非常复杂繁琐且影响整体的外观结构。为此,需要提供一种结构简单、隔离效果好的VCSEL阵列的封装结构。
如图5所示,本发明提供的VCSEL阵列封装结构,包括VCSEL阵列21、衬底22和激光器热沉23,VCSEL阵列21通过衬底22封装在激光器热沉23上。具体来说,可以将VCSEL芯片直接焊接于衬底22的上表面上,然后将衬底22的下表面焊接在激光器热沉23上。衬底22具有良好的导热性,通过衬底22和激光器热沉23可以将VCSEL阵列21的热量及时传导出去,实现VCSEL阵列21的散热冷却。
在本发明的实施例提供的封装结构中,首次引入了光学灌封胶24,通过在VCSEL阵列21的表面直接覆盖、灌封和固化一层光学灌封胶24,满足VCSEL激光器的气密性要求。光学灌封胶24完全覆盖VCSEL阵列21,并在整个激光器热沉23的表面铺展开来,从而使VCSEL激光器芯片完全浸没在密封胶体之中,实现了良好的气密性。这种VCSEL阵列封装结构具有优异的防水、防潮、防尘功能,可以适应恶劣的工作环境,如高温80摄氏度以上、相对湿度100%的环境,甚至在水下都可以正常工作;这种封装结构能够有效保护VCSEL芯片,避免环境破坏,具有极高的可靠性。本发明的实施例所提供的封装结构的结构简单、体积小巧、成本低廉,并且所使用的光学灌封工艺也极其简单,易于实施。
光学灌封胶24可以直接自然覆盖VCSEL阵列21,形成光滑的外表面(如图5所示);也可以通过外部模具灌封和固化,形成具有规则的任意几何形状的光学窗口,用于对VCSEL芯片出射的激光光束进行光学整形。例如可以将光学灌封胶24固化成锥形的梯台,使其同时作为光学窗口使用;当将光学灌封胶24固化后形成具有规则几何形状的光学窗口使用时,节省了VCSEL激光器的外部光学器件,便于VCSEL出射光束的光学整形。此外,光学灌封胶24还可以配合其他VCSEL输出的光学窗口进行使用,即使用光学灌封胶24直接填充VCSEL芯片和光学窗口之间的空隙,对VCSEL进行密封,本发明提供了一个实施例对此进行说明,详细内容参见下文。
在实际使用中,光学灌封胶可以根据具体的应用需要选用不同的软体胶或硬质胶。光学灌封胶中还可以添加不同的用于波长转换的荧光粉,实现高亮度的、不同波长甚至混合波长(如白光等)的光学输出,从而丰富VCSEL在商业照明领域的扩展应用。
在本发明的实施例中,灌封所用的光学灌封胶24具有高导热性、高透过率、高耐温性,可以适应VCSEL的高功率光学输出功率和高温工作特性。在VCSEL阵列工作的过程中,光学灌封胶24的热量可以通过VCSEL表面、衬底22和激光器热沉23进行传导冷却,因而不至于烧毁,可以满足散热方面的要求。
下面对使用上述封装结构的高功率VCSEL激光器的一个实施例进 行介绍。该实施例可直接应用于上述具有皮肤冷却功能的高功率VCSEL激光治疗装置中。如图6所示,在该高功率VCSEL激光器中,包括:VCSEL阵列21、衬底22、激光器热沉23,VCSEL阵列21通过衬底22安装在激光器热沉23上,在VCSEL阵列21的出光面前方设置有光学窗口26,光学窗口26通过包覆壳体25固定在散热器热沉23上,从而在激光器热沉23,光学窗口26和包裹壳体25之间形成一个缝隙,为了实现VCSEL阵列21的密封,在该缝隙中填充有具有高导热性、高透过率、高耐温性的光学灌封胶24,VCSEL芯片完全浸没在密封胶体之中,实现了良好的气密性,具有防水、防潮、防尘的功效。
这种光学灌封结构实现了激光芯片到光学窗口26的直接入射匹配,不再有空气的介入。而且,当光学灌封胶24采用折射率与光学窗口26接近的材料时,可以极大地减少VCSEL芯片和光学窗口26之间的界面入射损耗,进一步提高激光器的透过率。通过在光学窗口26的出射面镀有增透膜,可以进一步减少光学出射的界面损耗。实际使用中,光学窗口26可以选用平面光窗、光学透镜、也可以选用特定类型的光学棱镜、光锥等,以配合光束的光学整形。
此外,由于光学灌封胶24是具有高导热性、高透过率和高耐温性的材料,光学灌封胶即是灌封介质,也是光学传导介质和导热介质;光学灌封胶24同时对光学窗口26有一定的热传导和冷却作用,避免光学窗口26在高功率情况下的发热,以适应VCSEL的高功率光学输出功率和高温工作特性。为了改善高功率VCSEL激光器的散热,在激光器热沉23中设置有微冷却通道27,用于通水冷却。
由此可见,本发明在提供具有皮肤冷却功能的高功率VCSEL激光治疗装置的同时,首次在高功率VCSEL的封装中引入了光学灌封胶,有效解决了VCSEL激光器的密封问题。使用光学灌封胶密封VCSEL阵列,可以实现VCSEL激光器的防潮、防水、防尘;从而使VCSEL激光器可以适应恶劣的工作环境,如高温80摄氏度以上、相对湿度100%的环境,甚至在水下工作。这种封装结构能够有效保护VCSEL芯片,避免环境破坏,具有极高的可靠性。
本发明提供的使用上述封装结构的半导体激光器,通过使用光学灌封胶填充VCSEL芯片和光学窗口之间的空隙,可以实现激光芯片到 光学窗口的直接入射匹配,不再有空气的介入,同时实现VCSEL激光器的防潮、防水、防尘,并通过光学灌封胶与光学输出窗口的折射率匹配,可以极大地减少VCSEL芯片和光学窗口之间的界面入射损耗,进一步提高激光器的透过率。
以上对本发明所提供的具有皮肤冷却功能的高功率VCSEL激光治疗装置及其封装结构进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (20)

  1. 一种具有皮肤冷却功能的高功率VCSEL激光治疗装置,其特征在于包括激光器热沉、封装在所述激光器热沉上的VCSEL阵列、设置在所述VCSEL阵列出光面前方的光学传输器件、以及设置在所述光学传输器件出光口端的高导热光学窗口片,
    在所述激光器热沉、所述光学传输器件和所述高导热光学窗口片的外侧设置有一体的冷却传导金属件,并且,在所述冷却传导金属件和所述激光器热沉之间设置有一片或多片半导体制冷片,所述半导体制冷片的热端与所述激光器热沉接触,所述半导体制冷片的冷端与所述冷却传导金属件接触。
  2. 如权利要求1所述的高功率VCSEL激光治疗装置,其特征在于:
    所述冷却传导金属件包裹于所述高导热光学窗口片、所述光学传输器件和所述激光器热沉的外部;
    所述高导热光学窗口片嵌装于所述冷却传导金属件前端的开口中;所述光学传输器件设置在所述冷却传导金属件前部的空腔中;所述激光器热沉设置在所述冷却传导金属件后部的空腔中,一片或多片所述半导体制冷片设置在所述激光器热沉和所述冷却传导金属件之间的缝隙中。
  3. 如权利要求2所述的高功率VCSEL激光治疗装置,其特征在于:
    所述光学传输器件通过支撑件设置在所述冷却传导金属件前部的空腔中,在所述光学传输器件和所述支撑件的接触缝隙处,以及所述支撑件和所述激光器热沉的接触缝隙处,使用密封胶进行密封固定。
  4. 如权利要求1或2所述的高功率VCSEL激光治疗装置,其特征在于:
    所述光学传输器件通过固定件设置在所述激光器热沉和所述VCSEL阵列的前方。
  5. 如权利要求4所述的高功率VCSEL激光治疗装置,其特征在于:
    在所述光学传输器件、所述固定件以及所述激光器热沉构成的缝隙内填充有光学灌封胶。
  6. 如权利要求1或2所述的高功率VCSEL激光治疗装置,其特征 在于:
    所述光学传输器件是内壁抛光的反射镜筒或者基于内壁全反射的导光锥。
  7. 如权利要求1或2所述的高功率VCSEL激光治疗装置,其特征在于:
    所述激光器热沉的封装面的截面是一个圆的部分外切多边形,所述封装面由多个相互呈一定角度的小封装平面组成,所述封装面内凹,并且,每个小封装平面的中心法线在焦点位置处相交;所述VCSEL阵列中的所有VCSEL芯片分别安装于所述热沉的各个小封装平面上,并且,每个所述小封装平面用于封装一个或多个VCSEL芯片。
  8. 如权利要求7所述的高功率VCSEL激光治疗装置,其特征在于:
    所述光学传输器件的入光面的截面为圆弧状或圆弧面外切多边形。
  9. 如权利要求1或2所述的高功率VCSEL激光治疗装置,其特征在于:
    所述高导热光学窗口片是蓝宝石或光学级人工钻石。
  10. 如权利要求1或2所述的高功率VCSEL激光治疗装置,其特征在于:
    所述激光器热沉的内部设计有微通道结构。
  11. 一种基于光学灌封工艺的VCSEL阵列封装结构,包括VCSEL阵列和激光器热沉,VCSEL阵列封装在激光器热沉上,其特征在于:
    在所述VCSEL阵列的表面覆盖有一层光学灌封胶,并且,所述光学灌封胶完全覆盖所述VCSEL阵列。
  12. 如权利要求11所述的VCSEL阵列封装结构,其特征在于:
    所述光学灌封胶使用软体胶或硬质胶。
  13. 如权利要求11所述的VCSEL阵列封装结构,其特征在于:
    所述光学灌封胶中添加有用于波长转换的荧光粉。
  14. 如权利要求11所述的VCSEL阵列封装结构,其特征在于:
    所述光学灌封胶固化形成光学窗口。
  15. 如权利要求14所述的VCSEL阵列封装结构,其特征在于:
    所述光学灌封胶固化形成锥形的梯台。
  16. 如权利要求11所述的VCSEL阵列封装结构,其特征在于:
    所述光学灌封胶填充在所述VCSEL阵列和设置在所述VCSEL阵列前方的光学窗口之间的缝隙中。
  17. 一种高功率VCSEL激光器,其特征在于包括如权利要求11所述的VCSEL阵列封装结构。
  18. 如权利要求17所述的高功率VCSEL激光器,其特征在于:
    在所述VCSEL阵列的出光面前方设置有光学窗口,所述光学窗口通过包覆壳体固定在所述散热器热沉上,并且,在所述激光器热沉、所述包裹壳体和所述光学窗口构成的缝隙内填充有光学灌封胶。
  19. 如权利要求18所述的高功率VCSEL激光器,其特征在于:
    所述光学窗口是平面光窗、光学透镜、光学棱镜或导光锥中的任意一种。
  20. 如权利要求19所述的高功率VCSEL激光器,其特征在于:
    所述光学窗口的出射面镀有增透膜。
PCT/CN2014/093209 2014-11-10 2014-12-07 具有皮肤冷却功能的高功率vcsel激光治疗装置及其封装结构 WO2016074300A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14905708.5A EP3219360B1 (en) 2014-11-10 2014-12-07 High power vcsel laser treatment device with skin cooling function and packaging structure thereof
US15/525,594 US10568690B2 (en) 2014-11-10 2014-12-07 High power VCSEL laser treatment device with skin cooling function and packaging structure thereof
ES14905708T ES2802993T3 (es) 2014-11-10 2014-12-07 Dispositivo de tratamiento con láser VCSEL de alta potencia con función de enfriamiento de la piel y su estructura de empaquetado
PL14905708T PL3219360T3 (pl) 2014-11-10 2014-12-07 Urządzenie do zabiegów z laserem vcsel dużej mocy z funkcją chłodzenia skóry i jego struktura montażowa

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201410643581.0 2014-11-10
CN201420680028.X 2014-11-10
CN201410643581.0A CN104353194B (zh) 2014-11-10 2014-11-10 具有皮肤冷却功能的高功率vcsel激光治疗装置
CN201420681459.8U CN204290034U (zh) 2014-11-10 2014-11-10 基于光学灌封工艺的vcsel阵列封装结构及其高功率vcsel激光器
CN201410643997.2 2014-11-10
CN201410643997.2A CN104362510A (zh) 2014-11-10 2014-11-10 基于光学灌封工艺的vcsel阵列封装结构及其高功率vcsel激光器
CN201420680028.XU CN204275310U (zh) 2014-11-10 2014-11-10 具有皮肤冷却功能的高功率vcsel激光治疗装置
CN201420681459.8 2014-11-10

Publications (1)

Publication Number Publication Date
WO2016074300A1 true WO2016074300A1 (zh) 2016-05-19

Family

ID=55953642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093209 WO2016074300A1 (zh) 2014-11-10 2014-12-07 具有皮肤冷却功能的高功率vcsel激光治疗装置及其封装结构

Country Status (6)

Country Link
US (1) US10568690B2 (zh)
EP (1) EP3219360B1 (zh)
ES (1) ES2802993T3 (zh)
PL (1) PL3219360T3 (zh)
PT (1) PT3219360T (zh)
WO (1) WO2016074300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527260A4 (en) * 2016-10-17 2020-05-13 Focuslight Technologies Inc. SEMICONDUCTOR LASER MODULE AND METHOD FOR APPLICATION IN NON-INVASIVE MEDICAL TREATMENT
CN112946670A (zh) * 2021-04-09 2021-06-11 常州纵慧芯光半导体科技有限公司 一种激光美容系统及设备
CN115831881A (zh) * 2022-11-29 2023-03-21 无锡市博精电子有限公司 一种半导体封装用管座

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200001108A1 (en) * 2017-04-07 2020-01-02 Lumenis Ltd. Variable high speed laser tip adapter
WO2020135497A1 (en) * 2018-12-26 2020-07-02 Xiamen Chaoxuan Photoelectric Technology Co., Ltd. System and device with laser array illumination
CN111803797B (zh) * 2020-06-10 2022-07-08 殷硕仑 一种短波红外集成医疗光源及应用
CN115804641A (zh) * 2021-09-13 2023-03-17 广州星际悦动股份有限公司 美容仪
WO2023035547A1 (zh) * 2021-09-13 2023-03-16 广州星际悦动股份有限公司 美容仪
CN115804640B (zh) * 2021-09-13 2024-04-02 广州星际悦动股份有限公司 美容仪
CN117353138B (zh) * 2023-10-17 2024-06-04 江阴创可激光技术有限公司 一种高功率激光透镜的散热结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538919A (en) * 1993-11-15 1996-07-23 Motorola Method of fabricating a semiconductor device with high heat conductivity
CN2514529Y (zh) * 2001-11-30 2002-10-02 信息产业部电子第十三研究所 带微透镜的半导体激光器阵列
US20060274807A1 (en) * 2005-06-02 2006-12-07 Samsung Electronics Co., Ltd. Surface emitting laser aligned with pump laser on single heat sink
CN201430345Y (zh) * 2009-07-04 2010-03-24 中北大学 垂直腔面发射激光器激光二极管的温度控制装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698866A (en) * 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
US6273885B1 (en) 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
CA2328637A1 (en) * 2000-12-15 2002-06-15 Richard D. Clayton Lateral optical pumping of vertical cavity surface emitting laser
US6891821B2 (en) * 2000-12-20 2005-05-10 Lucent Technologies Inc. Self-aligning backhaul system, method and apparatus
KR100396898B1 (ko) * 2001-09-13 2003-09-02 삼성전자주식회사 이미지센서 출력데이터 처리장치 및 처리방법
US6636540B2 (en) * 2001-10-30 2003-10-21 Agilent Technologies, Inc. Optical turn for monitoring light from a laser
US6648904B2 (en) * 2001-11-29 2003-11-18 Palomar Medical Technologies, Inc. Method and apparatus for controlling the temperature of a surface
JP2003290267A (ja) 2002-04-03 2003-10-14 Hideki Karaushi 顎関節症治療装置
CN2614705Y (zh) 2003-02-14 2004-05-12 中外合资江苏奥雷光电有限公司 激光理疗仪
WO2004075976A2 (en) * 2003-02-25 2004-09-10 Spectragenics, Inc. Method and apparatus for the treatment of benign pigmented lesions
WO2007117580A2 (en) * 2006-04-06 2007-10-18 Palomar Medical Technologies, Inc. Apparatus and method for skin treatment with compression and decompression
US8243766B2 (en) * 2007-09-21 2012-08-14 Michael Huff Means for improved implementation of laser diodes and laser diode arrays
CN201082311Y (zh) 2007-09-25 2008-07-09 桂林康兴医疗器械有限公司 一种面射型激光保健治疗仪
US7906372B2 (en) * 2008-07-09 2011-03-15 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Lens support and wirebond protector
CN101630668B (zh) 2008-07-15 2011-09-28 展晶科技(深圳)有限公司 化合物半导体元件及光电元件的封装结构及其制造方法
CN101667571B (zh) 2008-09-01 2011-10-12 原相科技股份有限公司 感测模块
TWI390751B (zh) 2008-09-05 2013-03-21 Pixart Imaging Inc 具有一體成型光學元件之光學指向裝置與相關電子裝置
CN101728366A (zh) 2008-10-22 2010-06-09 先进开发光电股份有限公司 光电元件封装模块及其制造方法
US7949024B2 (en) * 2009-02-17 2011-05-24 Trilumina Corporation Multibeam arrays of optoelectronic devices for high frequency operation
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US20130223846A1 (en) 2009-02-17 2013-08-29 Trilumina Corporation High speed free-space optical communications
US7965754B1 (en) * 2009-04-21 2011-06-21 The Boeing Company Spherical array laser source
US8204094B2 (en) * 2009-04-21 2012-06-19 Innova, Inc. Scalable, efficient laser systems
TWM384452U (en) * 2010-01-13 2010-07-11 Hsien-Jung Huang Concentric axis adjustable structure for laser module
JP2011258741A (ja) * 2010-06-09 2011-12-22 Fuji Xerox Co Ltd 光伝送装置
US9173708B2 (en) * 2011-03-30 2015-11-03 Tria Beauty, Inc. Dermatological treatment device with one or more laser diode bar
US9128258B2 (en) * 2011-05-10 2015-09-08 Sumitomo Electric Industries, Ltd. Optical assembly and method for producing the same
US20130147050A1 (en) * 2011-12-12 2013-06-13 Advanced Cooling Technologies, Inc. Semiconductor having integrally-formed enhanced thermal management
US8675706B2 (en) * 2011-12-24 2014-03-18 Princeton Optronics Inc. Optical illuminator
US8961578B2 (en) * 2012-03-21 2015-02-24 Tria Beauty, Inc. Dermatological treatment device with one or more vertical cavity surface emitting lasers (VCSEL)
CN202960764U (zh) 2012-11-22 2013-06-05 西安炬光科技有限公司 双侧制冷型医疗美容用半导体激光器系统
US9510907B2 (en) * 2012-11-22 2016-12-06 Focuslight Technologies Inc Bilateral cooling type semiconductor laser system for medical beauty use
CN203555822U (zh) * 2013-11-14 2014-04-23 东方强光(北京)科技有限公司 一种皮肤冷却半导体激光美容装置
CN204275310U (zh) 2014-11-10 2015-04-22 李德龙 具有皮肤冷却功能的高功率vcsel激光治疗装置
CN204290034U (zh) 2014-11-10 2015-04-22 李德龙 基于光学灌封工艺的vcsel阵列封装结构及其高功率vcsel激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538919A (en) * 1993-11-15 1996-07-23 Motorola Method of fabricating a semiconductor device with high heat conductivity
CN2514529Y (zh) * 2001-11-30 2002-10-02 信息产业部电子第十三研究所 带微透镜的半导体激光器阵列
US20060274807A1 (en) * 2005-06-02 2006-12-07 Samsung Electronics Co., Ltd. Surface emitting laser aligned with pump laser on single heat sink
CN201430345Y (zh) * 2009-07-04 2010-03-24 中北大学 垂直腔面发射激光器激光二极管的温度控制装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527260A4 (en) * 2016-10-17 2020-05-13 Focuslight Technologies Inc. SEMICONDUCTOR LASER MODULE AND METHOD FOR APPLICATION IN NON-INVASIVE MEDICAL TREATMENT
CN112946670A (zh) * 2021-04-09 2021-06-11 常州纵慧芯光半导体科技有限公司 一种激光美容系统及设备
CN115831881A (zh) * 2022-11-29 2023-03-21 无锡市博精电子有限公司 一种半导体封装用管座
CN115831881B (zh) * 2022-11-29 2024-04-30 无锡市博精电子有限公司 一种半导体封装用管座

Also Published As

Publication number Publication date
US10568690B2 (en) 2020-02-25
PT3219360T (pt) 2020-07-13
PL3219360T3 (pl) 2020-10-19
US20170340386A1 (en) 2017-11-30
EP3219360A4 (en) 2019-02-06
EP3219360A1 (en) 2017-09-20
ES2802993T3 (es) 2021-01-22
EP3219360B1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2016074300A1 (zh) 具有皮肤冷却功能的高功率vcsel激光治疗装置及其封装结构
US20190353327A1 (en) Light-Emitting Device with Total Internal Reflection (TIR) Extractor
US10088618B2 (en) Light-emitting device with remote scattering element and total internal reflection extractor element
US8890401B2 (en) Solid-state luminescent filament lamps
US8449128B2 (en) System and method for a lens and phosphor layer
KR102114607B1 (ko) 레이저 광원장치
US20170009945A1 (en) Light source device and illumination apparatus
KR20120090975A (ko) 형광체 코팅된 렌즈용 시스템 및 방법
JP2012231183A (ja) 高出力白色発光ダイオードおよびその製造方法
US9033530B2 (en) Phosphor device and lighting apparatus comprising the same
JP2007110142A (ja) 光学集光器及び波長変換素子を有する照明システム
BRPI0714026A2 (pt) acondicionamento de dispositivo de iluminação
CN106796973B (zh) 发光设备
WO2016074299A1 (zh) 基于vcsel的高功率半导体激光器及其光学汇聚方法
CN104353194A (zh) 具有皮肤冷却功能的高功率vcsel激光治疗装置
CN204275310U (zh) 具有皮肤冷却功能的高功率vcsel激光治疗装置
US20140160724A1 (en) Fabrication of Light-Emitting Devices
WO2017043121A1 (ja) 発光装置および照明装置
CN207908739U (zh) 一种高功率光纤耦合器封装结构件
US10928035B2 (en) Phosphor plate and lighting device including the same
EP3044626A1 (en) Light-emitting device with total internal reflection (tir) extractor
JP4957186B2 (ja) 光源装置及び画像表示装置
CN114110524B (zh) 光源装置及车灯
US9964681B2 (en) High-diffusion-coefficient and high-brightness light source generation device
JP2015170839A (ja) 発光装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15525594

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014905708

Country of ref document: EP