WO2016072809A1 - Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same - Google Patents

Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same Download PDF

Info

Publication number
WO2016072809A1
WO2016072809A1 PCT/KR2015/011963 KR2015011963W WO2016072809A1 WO 2016072809 A1 WO2016072809 A1 WO 2016072809A1 KR 2015011963 W KR2015011963 W KR 2015011963W WO 2016072809 A1 WO2016072809 A1 WO 2016072809A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
emitting layer
nanoparticle
perovskite
Prior art date
Application number
PCT/KR2015/011963
Other languages
French (fr)
Korean (ko)
Inventor
이태우
임상혁
조힘찬
김영훈
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to JP2017524027A priority Critical patent/JP6829682B2/en
Priority to US15/524,489 priority patent/US10276807B2/en
Priority claimed from KR1020150156173A external-priority patent/KR101724210B1/en
Publication of WO2016072809A1 publication Critical patent/WO2016072809A1/en
Priority to US16/398,230 priority patent/US10964896B2/en
Priority to US17/213,211 priority patent/US11730051B2/en
Priority to US18/223,431 priority patent/US20230363248A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a light emitting device, and more particularly, to a light emitting layer for an organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device, a method of manufacturing the same, and a light emitting device using the same and a method of manufacturing the same.
  • organic light emitters have the advantage of high efficiency, but the color spectrum is poor due to the broad spectrum.
  • Inorganic quantum dot light emitters have been known to have good color purity, but since the light emission is due to the quantum size effect, it is difficult to control the quantum dot size uniformly toward the blue side, and thus there is a problem that the color purity falls.
  • the two light emitters are expensive. Therefore, there is a need for a new type of organic / inorganic hybrid light emitting body that complements and maintains the disadvantages of organic and inorganic light emitting bodies.
  • Organic-inorganic hybrid materials have the advantages of organic materials, which are low in manufacturing cost, simple in manufacturing and device manufacturing process, easy to control optical and electrical properties, and inorganic materials having high charge mobility and mechanical and thermal stability. I can have it and am attracting attention academically and industrially.
  • the organic-inorganic hybrid perovskite material has high color purity, simple color control, and low synthesis cost, so there is great potential for development as a light-emitting body.
  • High color purity has a layered structure in which the 2D plane of the inorganic material is sandwiched between the 2D plane of the organic material, and the dielectric constant difference between the inorganic and organic material is large ( ⁇ organic ⁇ 2.4, ⁇ inorganic ⁇ 6.1)
  • the excitons are bound to the inorganic layer and are therefore formed because they have a high color purity (FWHMM ⁇ 20 nm).
  • the material having a conventional perovskite structure is an inorganic metal oxide.
  • Such inorganic metal oxides are generally oxides, such as Ti, Sr, Ca, Cs, Ba, Y, Gd, La, Fe, and Mn (alkali metals, alkalis) having different sizes at A and B sites.
  • Earth cations, transition metals and lanthanides) cations are located and oxygen anions are located at X site, and metal cations at B site are combined with oxygen anions at X site as corner-sharing octahedrons of 6-fold coordination.
  • Examples thereof include SrFeO 3 , LaMnO 3 , CaFeO 3, and the like.
  • the organic-inorganic hybrid perovskite has an organic ammonium (RNH 3 ) cation at the A site and an halides (Cl, Br, I) at the X site in the ABX 3 structure.
  • RNH 3 organic ammonium
  • Cl, Br, I halides
  • Inorganic metal oxide perovskite typically exhibits superconductivity, ferroelectricity, and colossal magnetoresistance, and thus, research has been conducted in general for sensors, fuel cells, and memory devices.
  • yttrium barium copper oxide has superconducting or insulating properties depending on oxygen contents.
  • organic-inorganic hybrid perovskite (or organometallic halide perovskite) has an organic plane (or an alkali metal plane) and an inorganic plane alternately stacked, similar to the lamellar structure, so that the exciton bonds in the inorganic plane. Because of this, it is essentially an ideal emitter that emits very high color purity light by the crystal structure itself rather than the size of the material.
  • the organic-inorganic hybrid perovskite even if the organic ammonium contains a chromophore (mainly containing conjugated structure) having a bandgap smaller than the central metal and halogen crystal structure (BX3), the emission from organic ammonium Because of this, the half color width of the emission spectrum becomes wider than 100 nm because it does not emit light of high color purity, making it unsuitable as a light emitting layer. Therefore, such a case is not very suitable for the high color purity illuminant emphasized in this patent.
  • a chromophore mainly containing conjugated structure having a bandgap smaller than the central metal and halogen crystal structure (BX3)
  • Korean Patent Laid-Open Publication No. 10-2001-0015084 discloses an electroluminescent device using a dye-containing organic-inorganic hybrid material as a light emitting layer by forming a thin film instead of particles. Luminescence does not come from the lobe-sky lattice structure.
  • organic / inorganic hybrid perovskite has a small exciton binding energy, it is possible to emit light at low temperatures, but at room temperature, the fundamental problem that excitons do not go into luminescence but is separated into free charges and disappears due to thermal ionization and delocalization of charge carriers. There is.
  • the free charge recombines again to form excitons, there is a problem that the excitons are dissipated by the surrounding layer having high conductivity, so that light emission does not occur. Therefore, in order to increase luminous efficiency and luminance of organic / inorganic hybrid perovskite-based LEDs, it is necessary to prevent quenching of exciton.
  • the problem to be solved by the present invention is to synthesize an organic-inorganic hybrid perovskite or inorganic metal halide perovskite into nanocrystals instead of forming a thin film directly to prevent thermal ionization, delocalization of charge carriers and quenching of excitons
  • the present invention provides a light emitting layer for an organic-inorganic hybrid EL device, a method of manufacturing the same, and a light emitting device using the same, and a method of manufacturing the same, which is formed by a thin film to improve luminous efficiency and durability.
  • One aspect of the present invention provides a method of manufacturing a light emitting layer.
  • the method of manufacturing the light emitting layer may include forming a nanoparticle first thin film by coating a solution including an organic / inorganic perovskite nanoparticle including an organic / inorganic perovskite nanocrystal structure on the light emitting layer coating member. Include.
  • the forming of the nanoparticle first thin film may use a solution process, and the solution process may include spin-coating, bar coating, slot-die coating, and gravure printing. Gravure-printing, nozzle printing, ink-jet printing, screen printing, electrohydrodynamic jet printing, and electrospray It may include at least one process.
  • the nanoparticle first thin film may have a thickness of 1 nm to 1 ⁇ m, and an average roughness of 0.1 nm to 50 nm.
  • the forming of the nanoparticle first thin film may include preparing an organic / inorganic perovskite nanoparticle solution including an anchoring solution and the organic / inorganic perovskite nanocrystal structure, and forming the nanoparticle on the light emitting layer coating member.
  • the method may further include forming a crosslinking agent layer on the anchoring light emitting layer, coating the organic-inorganic perovskite nanoparticle solution and the organic-inorganic layer
  • the thickness of the light emitting layer may be adjusted by alternately repeating forming the crosslinking agent layer on the layer coated with the robesky nanoparticle solution.
  • the forming of the first nanoparticle thin film may include preparing an organic-inorganic perovskite-organic semiconductor solution by mixing an organic semiconductor to a solution containing the organic-inorganic perovskite nanoparticles, and the organic-inorganic Coating the perovskite-organic semiconductor solution to form a light emitting layer.
  • the step of forming the light emitting layer by coating the organic-inorganic perovskite-organic semiconductor solution, the light emitting layer, the organic semiconductor layer and the organic-inorganic perovskite nanoparticles sequentially on the light emitting layer coating member It can be self-organized in a stacked form.
  • the forming of the nanoparticle first thin film may include forming a self-assembled monomolecular film on the light-emitting layer coating member, and coating the solution containing the organic-inorganic perovskite nanoparticles on the self-assembled monomolecular film. Forming the perovskite nanoparticle layer, and contacting the organic-inorganic perovskite nanoparticle layer using a stamp to remove the organic perovskite nanoparticle layer by a desired pattern, and then forming the second organic-inorganic perovskite nanoparticle layer. It may include the step of forming on the light emitting layer coating member.
  • the stamp is polyurethane (Polyurethane), PDMS (Polydimethylsiloxane) PEO (Polyethylene oxide), PS (Polystyrene), PCL (Polycaprolactone), PAN (Polyacrylonitrile), PMMA (Poly (methyl methacrylate)), Polyimide (Polyimide) ), At least one organic polymer selected from the group consisting of polyvinyllidene fluoride (PVDF), poly (n-vinylcarbazole) (PVK), and polyvinylchloride (PVC).
  • PVDF polyvinyllidene fluoride
  • PVK poly (n-vinylcarbazole)
  • PVC polyvinylchloride
  • the step of forming a nanoparticle first thin film by coating a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member a plurality of times
  • the thickness of the light emitting layer can be adjusted, and before or after the step of forming the nanoparticle first thin film, comprising an organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member or the nanoparticle first thin film
  • Organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin films can be formed.
  • the light emitting layer includes a light emitting layer coating member, and a nanoparticle first thin film disposed on the light emitting layer coating member and including the organic / inorganic perovskite nanocrystal structure manufactured by the above-described manufacturing method.
  • the nanoparticle first thin film may have a multi-layered structure, and may include an organic-inorganic perovskite nanocrystal structure between the light emitting layer coating member and the nanoparticle first thin film or on the nanoparticle first thin film.
  • the organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin film may be further disposed.
  • the light emitting device includes a first electrode disposed on a substrate, a nanoparticle first thin film disposed on the first electrode, and including an organic-inorganic perovskite nanocrystal structure, which is prepared by the above-described manufacturing method.
  • an exciton buffer layer may be further disposed between the first electrode and the light emitting layer and may include a conductive material and a fluorine-based material having a lower surface energy than the conductive material.
  • the nanoparticle first thin film may have a multi-layer structure, and may include an organic-inorganic perovskite nanocrystal structure between the light emitting layer coating member and the nanoparticle first thin film or on the nanoparticle first thin film.
  • Organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin films may be further disposed.
  • the method of manufacturing the light emitting layer may include preparing a light emitting layer coating member; And coating a solution including an inorganic metal halide perovskite nanoparticle including an inorganic metal halide perovskite nanocrystal structure on the light emitting layer coating member to form a nanoparticle first thin film.
  • the step of forming the nanoparticle first thin film is characterized in that using a solution process.
  • the solution process is spin-coating, bar coating, slot-die coating, gravure printing, nozzle printing, inkjet printing (ink) at least one process selected from the group consisting of -jet printing, screen printing, electrohydrodynamic jet printing, and electrospray.
  • the light emitting layer is a light emitting layer coating member; And a nanoparticle first thin film disposed on the light emitting layer coating member and including the inorganic metal halide perovskite nanocrystal structure described above.
  • Such a solar cell may be positioned between a first electrode, a second electrode, and the first electrode and the second electrode, and may include a photoactive layer including the above-described perovskite nanocrystalline particles.
  • Organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device according to the present invention and a method for manufacturing the same, and organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device using the same
  • An organic-inorganic hybrid perovskite or inorganic metal halide perovskite having a crystal structure combining FCC and BCC is formed in the light emitting body, and a lamellar structure in which an organic plane (or an alkali metal plane) and an inorganic plane are alternately stacked. And exciton is confined to the inorganic plane to produce high color purity.
  • the perovskite is made of nanoparticles and then introduced into the light emitting layer, light emission efficiency and luminance of the device may be improved.
  • FIG. 1 is a flow chart illustrating a method for preparing a solution including organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a light emitting layer according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a light emitting layer according to another embodiment of the present invention.
  • 4A to 4D are cross-sectional views of a light emitting layer according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a method of preparing the organic-inorganic hybrid perovskite nanoparticles according to an embodiment of the present invention through an inverse nano-emulsion method.
  • FIG. 6 is a schematic view showing an organic-inorganic hybrid perovskite nanocrystalline particle emitter and an inorganic metal halide perovskite nanocrystalline particle emitter according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a perovskite nanocrystal structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a light emitting layer forming process through a spin-assembly process according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a light emitting layer forming process through a floating process according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a light emitting layer forming process through a dry contact printing process according to an embodiment of the present invention.
  • FIG. 11 is a schematic view showing a light emitting layer forming method through an organic-inorganic perovskite-organic host composite forming process according to an embodiment of the present invention.
  • 12A to 12D are cross-sectional views of light emitting devices illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the effect of the exciton buffer layer 30 according to an embodiment of the present invention.
  • organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure of Preparation Example 1 and ultraviolet in the organic-inorganic hybrid perovskite (OIP film) according to Comparative Examples 1 and 2 It is a fluorescent image taken by emitting light.
  • FIG. 15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1.
  • FIG. 15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1.
  • FIG. 17 is a graph showing photoluminescence of nanoparticles according to Preparation Example 1 and Comparative Example 1.
  • a layer is referred to herein as "on" another layer or substrate, it may be formed directly on the other layer or substrate, but a third layer may be interposed therebetween.
  • the directional expression of the upper part, the upper part, and the upper part may be understood as meanings of the lower part, the lower part, the lower part, and the like according to the criteria. That is, the expression of the spatial direction should be understood as a relative direction and should not be construed as limiting the absolute direction.
  • the method of forming the light emitting layer from the inorganic metal halide perovskite nanoparticles instead of the organic / inorganic hybrid perovskite nanoparticles is also the same. Therefore, the manufacturing method of the light emitting layer for organic-inorganic hybrid perovskite light emitting elements is demonstrated to an example.
  • the method for manufacturing the light emitting layer for the organic-inorganic hybrid perovskite light emitting device preparing a light emitting layer coating member and the organic-permeable perovskite nanocrystal structure on the light emitting layer coating member described above And coating a solution containing the organic-inorganic perovskite nanoparticles including the nanoparticles to form the first thin film.
  • the light emitting layer coating member is prepared.
  • the above-described light emitting layer coating member may be a substrate, an electrode, or a semiconductor layer.
  • a substrate, an electrode, or a semiconductor layer that can be used for the light emitting device can be used.
  • the light emitting layer coating member may have a form in which substrates / electrodes are sequentially stacked or a form in which substrates / electrodes / semiconductor layers are sequentially stacked.
  • the description of the above-described substrate, electrode, or semiconductor layer will refer to the contents of the 'organic-inorganic hybrid perovskite light emitting device' described later.
  • FIG. 1 is a flow chart illustrating a solution preparation method including organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention.
  • a method of preparing a solution including organic-inorganic perovskite nanoparticles including an organic / inorganic perovskite nanocrystal structure includes a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent. And preparing a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent (S100) and mixing the first solution with the second solution to form nanoparticles (S200).
  • the organic-inorganic hybrid perovskite nanoparticles according to the present invention can be prepared through an inverse nano-emulsion method.
  • a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent and a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent are prepared (S100).
  • the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
  • the organic-inorganic hybrid perovskite at this time may be a material having a two-dimensional crystal structure.
  • such organic-inorganic hybrid perovskite may be a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n + 1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1).
  • B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof.
  • the rare earth metal may be a divalent rare earth metal.
  • the alkaline earth metal may be, for example, Ca or Sr.
  • X may be Cl, Br, I or a combination thereof.
  • such perovskite can be prepared by combining AX and BX 2 in a certain ratio. That is, the first solution may be formed by dissolving AX and BX 2 in a proportion in a protic solvent.
  • a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
  • the aprotic solvent at this time is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene or isopropyl alcohol May be included but is not limited to this.
  • the alkyl halide surfactant may be of the structure of alkyl-X.
  • the halogen element corresponding to X may include Cl, Br, or I.
  • the alkyl structure includes primary alcohols and secondary alcohols having a structure such as acyclic alkyl having a structure of C n H 2n +1 , C n H 2n + 1 OH, and the like.
  • Tertiary alcohol, alkylamine having alkyl-N structure (ex.
  • carboxylic acid (COOH) surfactants may be used instead of alkyl halide surfactants.
  • the surfactant may be 4,4'-Azobis (4-cyanovaleric acid) (4,4'-Azobis (4-cyanovaleric acid)), acetic acid, 5-minano 5-Aminosalicylic acid, Acrylic acid, L-Aspentic acid, 6-Brohexahexanoic acid, Promoacetic acid ), Dichloro acetic acid, ethylenediaminetetraacetic acid, isobutyric acid, itaconic acid, maleic acid, r R-Maleimidobutyric acid, L-Malic acid, 4-nitrobenzoic acid, or 1-pyrenecarboxylic acid ), Such as oleic acid, but may contain carboxylic acid (COOH). It is not.
  • the first solution is mixed with the second solution to form nanoparticles (S200).
  • nanoparticles In the forming of the nanoparticles by mixing the first solution with the second solution, it is preferable to drop the first solution drop by drop into the second solution.
  • the second solution at this time may be stirred.
  • nanoparticles may be synthesized by slowly dropping a second solution in which an organic-inorganic perovskite (OIP) is dissolved into a second solution in which a strongly stirring alkyl halide surfactant is dissolved.
  • OIP organic-inorganic perovskite
  • the organic-inorganic perovskite (OIP) when the first solution is dropped into the second solution and mixed, the organic-inorganic perovskite (OIP) is precipitated in the second solution due to the difference in solubility.
  • the organic-inorganic perovskite (OIP) precipitated in the second solution generates an organic-inorganic perovskite nanocrystal (OIP-NC) that is well dispersed while the alkyl halide surfactant stabilizes the surface. Accordingly, a solution including organic-inorganic perovskite nanoparticles including organic-inorganic perovskite nanocrystals and a plurality of alkyl halide organic ligands surrounding the organic-inorganic perovskite nanocrystals can be prepared.
  • the solution containing the organic-inorganic perovskite nanoparticles is coated on the light emitting layer coating member to form a nanoparticle first thin film that is a light emitting layer.
  • FIG. 2 is a cross-sectional view of a light emitting layer according to an embodiment of the present invention.
  • the light emitting layer in the form of the nanoparticle first thin film 200a is formed on the light emitting layer coating member 100.
  • the forming of the nanoparticle first thin film may use a solution process.
  • a solution process a light emitting layer can be formed uniformly on the light emitting layer coating member.
  • the above-described solution process includes spin-coating, bar coating, slot-die coating, gravure printing, nozzle printing, inkjet printing and ink-jet printing. at least one process selected from the group consisting of jet printing, screen printing, electrohydrodynamic jet printing, and electrospray.
  • FIG 3 is a cross-sectional view of a light emitting layer according to another embodiment of the present invention.
  • the nanoparticle first thin film may be formed in a multilayer (N layer) structure.
  • 4A to 4D are cross-sectional views of a light emitting layer according to another embodiment of the present invention.
  • the organic-inorganic perovskite microparticles comprising an organic-inorganic perovskite nanocrystalline structure on the light emitting layer coating member or the nanoparticle first thin film or
  • the method may further include forming the organic / inorganic perovskite second thin film.
  • the aforementioned organic-inorganic perovskite microparticles or the organic-inorganic perovskite second thin film include the organic-inorganic perovskite nanoparticles that mix the first solution and the second solution. Unlike solution preparation, it can be formed by coating using only the first solution.
  • the organic-inorganic perovskite microparticles having a micro range or Sunano to water An organic-inorganic perovskite second thin film containing an organic-inorganic perovskite crystal structure having a micro range can be formed.
  • the organic-inorganic perovskite microparticles 200b described above are disposed on the nanoparticle first thin film 200a as described above with reference to FIG. 4A on the light emitting layer coating member 100.
  • 4 is a form in which the aforementioned nanoparticle first thin film 200a is formed on the organic-inorganic perovskite microparticle 200b described above with reference to FIG. 4B, and the nanoparticle first described above with reference to FIG. 4C.
  • the organic-inorganic perovskite second thin film 200c described above is disposed on the thin film 200a, or the organic-inorganic perovskite second thin film 200c described above as illustrated in FIG. 4 (d).
  • the nanoparticle first thin film 200a may be formed.
  • organic-inorganic perovskite microparticles described above may be formed in various shapes such as spherical and polygonal.
  • the thickness of the above-described nanoparticle first thin film may be 1 nm to 1 ⁇ m, and the average roughness may be 0.1 nm to 50 nm.
  • the band gap energy of the above-mentioned organic-inorganic hybrid perovskite nanocrystalline particles may be 1 eV to 5 eV.
  • the emission wavelength of the organic-inorganic hybrid perovskite nanoparticles described above may be 200nm to 1300nm.
  • the size of the organic-inorganic perovskite nanocrystals can be controlled by adjusting the length or shape factor of the alkyl halide surfactant.
  • shape factor adjustment can control the size through a linear, tapered or inverted triangular surfactant.
  • the size of the organic-inorganic perovskite nanocrystals thus produced may be 1 to 900nm. If the size of the organic-inorganic perovskite nanocrystals exceeds 900 nm, the fundamental problem is that excitons do not go into luminescence due to thermal ionization and delocalization of charge carriers in large nanocrystals. There may be.
  • FIG. 5 is a schematic diagram illustrating a method of preparing the organic-inorganic hybrid perovskite nanoparticles according to an embodiment of the present invention through an inverse nano-emulsion method.
  • a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent is added dropwise to a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent.
  • the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
  • the inorganic hybrid perovskite is ABX 3 , A 2 BX 4 , ABX 4 Or A n- 1 B n X 3n +1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1).
  • B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof.
  • the rare earth metal 2 at this time may be a rare earth metal, for example Ge, Sn, Pb, Eu or Yb.
  • the alkaline earth metal may be, for example, Ca or Sr.
  • X may be Cl, Br, I or a combination thereof.
  • the structure of the perovskite at this time may be formed by a ratio-specific combination of AX and BX 2 .
  • a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
  • organic-inorganic hybrid perovskite when the first solution is added to the second solution, organic-inorganic hybrid perovskite is precipitated in the second solution due to the difference in solubility, and the precipitated organic-inorganic hybrid perovskite is deposited. While the alkyl halide surfactants surround and stabilize the surface, the organic-inorganic hybrid perovskite nanoparticles 100 including the organic-inorganic hybrid perovskite nanocrystal structure are well dispersed. At this time, the surface of the organic-inorganic hybrid perovskite nanocrystals are surrounded by organic ligands, which are alkyl halides.
  • the protic solvent including the organic-inorganic hybrid perovskite nanoparticles 100 dispersed in the aprotic solvent in which the alkyl halide surfactant is dissolved is selectively evaporated by heating, or the aprotic solvent and aprotic solvent
  • the organic-inorganic hybrid perovskite nanoparticles can be obtained by selectively extracting a protic solvent including nanoparticles from the aprotic solvent by adding a magnetic solvent and co-solvent that can be dissolved in both.
  • Figure 6 is a schematic diagram showing a perovskite nanoparticles according to an embodiment of the present invention.
  • FIG. 6 shows the organic-inorganic hybrid perovskite nanocrystalline particles.
  • the light emitter is an organic-inorganic hybrid perovskite (or inorganic metal halide perovskite) nanoparticle, in which an organic plane (or an alkali metal plane) and an inorganic plane are alternated. And a two-dimensional organic-inorganic hybrid perovskite nanocrystal 110 having a lamellar structure stacked with a.
  • These two-dimensional organic-inorganic hybrid perovskite is ABX 3 , A 2 BX 4 , ABX 4 Or A n- 1 B n X 3n +1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1).
  • B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof.
  • the rare earth metal at this time may be a divalent rare earth metal, for example Ge, Sn, Pb, Eu or Yb.
  • the alkaline earth metal may be, for example, Ca or Sr.
  • X may be Cl, Br, I or a combination thereof.
  • the organic-inorganic hybrid perovskite nanoparticle 100 may further include a plurality of organic ligands 120 surrounding the organic-inorganic hybrid perovskite nanocrystal 110 described above.
  • the organic ligands 120 may include an alkyl halide as a material used as a surfactant. Therefore, the alkyl halide used as a surfactant to stabilize the surface of the organic-inorganic hybrid perovskite precipitated as described above becomes an organic ligand surrounding the surface of the organic-inorganic hybrid perovskite nanocrystals.
  • the size of the nanocrystals to be formed may be larger than 900 nm can be formed, in this case for thermal ionization and delocalization of the charge carriers in the large nanocrystals There may be a fundamental problem that the excitons do not go to the light emission but are separated by the free charge and disappear.
  • the size of the organic-inorganic hybrid perovskite nanocrystals formed is inversely proportional to the length of the alkyl halide surfactant used to form these nanocrystals.
  • the size of the organic-inorganic hybrid perovskite nanocrystals formed by using an alkyl halide of a predetermined length or more as a surfactant can be controlled to a predetermined size or less.
  • octadecyl-ammonium bromide may be used as an alkyl halide surfactant to form organic-inorganic hybrid perovskite nanocrystals having a size of 900 nm or less.
  • the inorganic metal halide perovskite having a two-dimensional crystal structure may be a structure of A 2 BX 4 , ABX 4 or A n-1 Pb n I 3n + 1 (n is an integer between 2 and 6).
  • A is an alkali metal
  • B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof
  • X is Cl , Br, I or a combination thereof.
  • the rare earth metal may be Ge, Sn, Pb, Eu or Yb.
  • the alkaline earth metal may be, for example, Ca or Sr.
  • the inorganic metal halide perovskite nanocrystalline particles having the two-dimensional structure according to the present invention may further include a plurality of organic ligands surrounding the inorganic metal halide perovskite nanocrystal structure described above.
  • organic ligands may include alkyl halides.
  • FIG. 7 is a schematic diagram of a perovskite nanocrystal structure according to an embodiment of the present invention.
  • FIG. 7 shows the structures of the organic-inorganic hybrid perovskite nanocrystals and the inorganic metal halide perovskite nanocrystals together.
  • the organic-inorganic hybrid perovskite (or inorganic metal halide perovskite) nanocrystal structure includes organic ammonium (or alkali metal) and halides. have.
  • FIG. 8 is a schematic view showing a light emitting layer forming process through a spin-assembly process according to an embodiment of the present invention.
  • an organic-inorganic perovskite nanoparticle solution including the anchoring solution and the organic perovskite nanocrystal structure is prepared.
  • the above-mentioned anchoring solution is a solution containing a resin imparting tack that exhibits an anchoring effect.
  • a resin imparting tack that exhibits an anchoring effect.
  • 3-mercaptopropionic acid ethanilic solution may be used.
  • the anchoring solution described above is preferably in a concentration of 7wt% to 12wt%.
  • the anchoring solution is coated on the light emitting layer coating member to form an anchoring agent layer.
  • the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the coating speed is lowered below 1000 rpm, or the coating time is shortened to less than 15 seconds, the thin film may become uneven or the solvent may not evaporate.
  • the organic-inorganic perovskite nanoparticle solution is coated on the aforementioned anchoring agent layer to form an anchoring light emitting layer.
  • a denser nanocrystal layer may be formed.
  • a crosslinking agent layer may be formed on the anchoring light emitting layer.
  • a denser perovskite nanocrystal layer can be formed, and the ligand length is shortened, so that charge injection into the nanocrystal is more smooth, thereby increasing the luminous efficiency and luminance of the light emitting device. It works.
  • the crosslinking agent is preferably a crosslinking agent having an X-R-X structure.
  • 1,2-ethanedithiol may be used.
  • the crosslinking agent is mixed with a soluble solvent to prepare a solution, followed by spin coating.
  • the step of coating the organic-inorganic perovskite nanoparticle solution and the step of forming a cross-linking agent layer on the layer coated with the organic-inorganic perovskite nanoparticle solution are alternately repeated to reduce the thickness of the light emitting layer I can regulate it.
  • the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the coating speed is lowered below 1000 rpm, or the coating time is shortened to less than 15 seconds, the thin film may become uneven or the solvent may not evaporate.
  • FIG. 9 is a schematic diagram showing a light emitting layer forming process through a floating process according to an embodiment of the present invention.
  • a solution containing trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO) is added to a solution containing the organic-inorganic perovskite nanoparticles described above.
  • TOP trioctyl phosphine
  • TOPO trioctyl phosphine oxide
  • the ligand comprises a triphenyl diamine (TPD) compound in a solution containing organic-inorganic perovskite nanoparticles substituted with trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO).
  • TPD triphenyl diamine
  • TOP trioctyl phosphine
  • TOPO trioctyl phosphine oxide
  • the aforementioned triphenyldiamine compound may be N, N'-diphenyl-N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4, 4'diamine.
  • TPD triphenyl diamine
  • the above-described TPD-inorganic hybrid perovskite nanoparticle solution is coated on the light-emitting layer coating member to form a light-emitting layer for an organic-inorganic hybrid perovskite light emitting device.
  • the light emitting layer described above may simplify the process as the organic semiconductor layer and the organic-inorganic perovskite nanoparticles are sequentially stacked on the light emitting layer coating member and self-organized. .
  • the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the spin coating speed is lowered below 1000 rpm, or the coating time is shortened to within 15 seconds, the thin film may become uneven or the solvent may not evaporate.
  • FIG. 10 is a schematic view showing a light emitting layer forming process through a dry contact printing process according to an embodiment of the present invention.
  • a self-assembled monolayer may be formed on the light emitting layer coating member.
  • a member made of silicon may be used as the light emitting layer coating member. More specifically, an ODTS-treated wafer may be used in which a silicon native wafer is dipped in an octadecyltrichlorosilane (ODTS) solution.
  • ODTS octadecyltrichlorosilane
  • organic-inorganic perovskite nanoparticles coated on the aforementioned self-assembled monolayer to form an organic-inorganic perovskite nanoparticle layer.
  • organic-inorganic perovskite nanoparticle layer is contacted with the organic-inorganic perovskite nanoparticle layer using a stamp, and then separated by a desired pattern to form the organic-inorganic perovskite nanoparticle layer on the second light emitting layer coating member.
  • the stamps described above include polyurethane, Polydimethylsiloxane (PDMS) Polyethylene oxide (PEO), Polystyrene (PS), Polycaprolactone (PCL), Polyacrylonitrile (PAN), Poly (methyl methacrylate) (PMMA), Polyimide, It may include at least one organic polymer selected from the group consisting of polyvinyllidene fluoride (PVDF), poly (n-vinylcarbazole) (PVK), and polyvinylchloride (PVC).
  • PDMS Polydimethylsiloxane
  • PEO Polyethylene oxide
  • PS Polystyrene
  • PCL Polycaprolactone
  • PAN Polyacrylonitrile
  • PMMA Poly (methyl methacrylate)
  • Polyimide It may include at least one organic polymer selected from the group consisting of polyvinyllidene fluoride (PVDF), poly (n-vinylcarbazole) (PVK), and polyvinylchlor
  • the substrate sensitivity and the large-area assembly which are problematic in the conventional wet process, are formed by forming the organic-inorganic perovskite nanoparticle layer through a stamping process.
  • the difficulty of large-area assembly and layer-by-layer deposition processes can be solved.
  • FIG. 11 is a schematic view showing a light emitting layer forming method through an organic-inorganic perovskite-organic host composite forming process according to an embodiment of the present invention.
  • the organic-inorganic perovskite-organic semiconductor solution may be mixed by first mixing an organic semiconductor with the above-described solution containing organic / inorganic perovskite nanoparticles. To prepare.
  • the aforementioned organic semiconductors include tris (8-quinolinorate) aluminum (Alq3), TAZ, TPQ1, TPQ2, Bphen (4,7-diphenyl-1,10-phenanthroline (4,7-diphenyl-1,10 -phenanthroline)), BCP, BeBq2, BAlq, CBP (4,4'-N, N'-dicarbazole-biphenyl), 9,10-di (naphthalen-2-yl) anthracene (ADN), TCTA (4 , 4 ', 4 "-tris (N-carbazolyl) triphenylamine), TPBI (1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene (1,3,5-tris ( N-phenylbenzimidazole-2-yl) benzene)), TBADN (3-tert-butyl-9,10-di (naphth-2-yl) anthracene)
  • the organic-inorganic perovskite-organic semiconductor solution described above is coated to form a light emitting layer.
  • the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the spin coating speed is lowered below 1000 rpm, or the coating time is shortened to within 15 seconds, the thin film may become uneven or the solvent may not evaporate.
  • the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure are formed on the light-emitting layer coating member.
  • an organic-inorganic hybrid perovskite having a crystal structure of FCC and BCC combined is formed in the nanoparticle light emitter, and a lamellar structure in which an organic plane and an inorganic plane are alternately stacked is formed, and excitons are formed on the inorganic plane. It can be constrained to produce high color purity.
  • the perovskite is made of nanoparticles and then introduced into the light emitting layer, light emission efficiency and luminance of the device may be improved.
  • 12A to 12D are cross-sectional views of light emitting devices illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • first a first electrode 20 is formed on a substrate 10.
  • the substrate 10 described above serves as a support of the organic light emitting device, and is made of a transparent material.
  • the above-described substrate 10 may be used both a flexible material and a hard material, it is more preferably configured of a flexible material.
  • the material of the substrate 10 described above having transparent and flexible properties may be PET, PS, PI, PVC, PVP or PE.
  • the first electrode 20 described above is an electrode into which holes are injected, and is made of a conductive material.
  • the material constituting the above-described first electrode 20 may be a metal oxide, and in particular, it is preferable that the material is a transparent conductive metal oxide.
  • the above-described transparent conductive metal oxide may include ITO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), IGZO (In, Ga-dpoed ZnO), MZO (Mg-doped ZnO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO 2 , Nb-dpoed TiO 2 or CuAlO 2 and the like.
  • Deposition processes for forming the above-described first electrode 20 include physical vapor deposition (PVD), chemical vapor deposition (CVD), sputtering, pulsed laser deposition. PLD), thermal evaporation, electron beam evaporation, atomic layer deposition (ALD), molecular beam epitaxy (MBE), and the like.
  • an exciton buffer layer 30 including a conductive material and a fluorine-based material having a lower surface energy than the aforementioned conductive material is formed on the first electrode 20 described above.
  • the above-described exciton buffer layer 30 may have a form in which a conductive layer 31 including a conductive material and a surface buffer layer 32 including a fluorine-based material having a lower surface energy than the conductive material are sequentially stacked.
  • the conductive layer 31 described above comprises a conductive material.
  • the aforementioned conductive material may include at least one selected from the group consisting of a conductive polymer, metallic carbon nanotubes, graphene, reduced graphene oxide, metal nanowires, semiconductor nanowires, metal grids, metal nanodots, and conductive oxides. Can be.
  • the conductive polymers described above may include polythiophene, polyaniline, polypyrrole, polystyrene, sulfonated polystyrene, poly (3,4-ethylenedioxythiophene), self-doped conductive polymers, derivatives thereof, or combinations thereof. have.
  • the above-mentioned derivative may mean that it may further include various sulfonic acids and the like.
  • the above-mentioned conductive polymer may include Pani: DBSA (Polyaniline / Dodecylbenzenesulfonic acid: polyaniline / dodecylbenzenesulfonic acid, see the following formula), PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate): Poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate), see formula below), Pani: CSA (Polyaniline / Camphor sulfonicacid: polyaniline / camphorsulfonic acid) and PANI: PSS (Polyaniline) / Poly ( 4-styrenesulfonate): polyaniline) / poly (4-styrenesulfonate)) may include at least one selected from the group consisting of, but is not limited thereto.
  • DBSA Polyaniline / Dodecylbenzen
  • the conductive polymer may be Pani: DBSA (Polyaniline / Dodecylbenzenesulfonic acid, see Chemical Formula), PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate)), See Formula: Polyaniline / Camphor sulfonicacid (CSA) or PANI: PSS (Polyaniline) / Poly (4-styrenesulfonate) and the like, but are not limited thereto.
  • DBSA Polyaniline / Dodecylbenzenesulfonic acid, see Chemical Formula
  • PEDOT PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate))
  • CSA Camphor sulfonicacid
  • PANI PSS (Polyaniline) / Poly (4-styrenesulfonate) and the like, but are not limited thereto.
  • R may be H or a C1-C10 alkyl group.
  • the self-doped conductive polymer may have a polymerization degree of 13 to 10,000,000, and may have a repeating unit represented by Formula 21 below:
  • At least one of R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 contains an ionic group, and A, B, A ', and B' are each independently C , Si, Ge, Sn, or Pb;
  • R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 are each independently hydrogen, halogen, nitro group, substituted or unsubstituted amino group, cyano group, substituted or unsubstituted Substituted C 1 -C 30 alkyl group, substituted or unsubstituted C 1 -C 30 alkoxy group, substituted or unsubstituted C 6 -C 30 aryl group, substituted or unsubstituted C 6 -C 30 arylalkyl group, substituted or Unsubstituted C 6 -C 30 aryloxy group, substituted or unsubstituted C 2 -C 30 heteroaryl group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl group, substituted or unsubstituted C 2 -C 30 heteroaryloxy group, substituted or unsubstituted C 5 -C 30 cycloalky
  • R 4 consists of a conjugated conductive polymer chain
  • X and X ' are each independently a simple bond, O, S, a substituted or unsubstituted C 1 -C 30 alkylene group, a substituted or unsubstituted C 1 -C 30 heteroalkylene group, a substituted or unsubstituted C 6 -C 30 arylene group, substituted or unsubstituted C 6 -C 30 arylalkylene group, substituted or unsubstituted C 2 -C 30 heteroarylene group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl
  • a ylene group, a substituted or unsubstituted C 5 -C 20 cycloalkylene group, and a substituted or unsubstituted C 5 -C 30 heterocycloalkylene group arylester group, optionally selected from carbon in the formula Hydrogen or halogen elements may be bonded.
  • the ionic group is PO 3 2-, SO 3 -, COO -, I -, CH 3 COO - anion group selected from the group consisting of and Na +, K +, Li + , Mg + 2, Zn + 2 And metal ions selected from Al + 3 , H + , NH 4 + , CH 3 (-CH 2- ) n O + (n is a natural number of 1 to 50) and selected from the group consisting of It may comprise a cationic group forming.
  • R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 may be fluorine or substituted with fluorine. It may be, but is not limited to.
  • examples of the conductive polymer include, but are not limited to:
  • unsubstituted alkyl group herein include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like as the linear or branched alkyl group, and the aforementioned alkyl group
  • Heteroalkyl group herein means that at least one of the carbon atoms in the main chain of the alkyl group described above, preferably 1 to 5 carbon atoms is substituted with a hetero atom such as an oxygen atom, a sulfur atom, a nitrogen atom, a person atom and the like.
  • aryl group herein refers to a carbocycle aromatic system comprising one or more aromatic rings, wherein the rings described above may be attached or fused together in a pendant manner.
  • Specific examples of the aryl group may include aromatic groups such as phenyl, naphthyl, tetrahydronaphthyl, and the like, and one or more hydrogen atoms in the aforementioned aryl groups may be substituted with the same substituents as in the alkyl group described above.
  • Heteroaryl group herein refers to a ring aromatic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms are C, and the aforementioned rings It can be attached or fused together in a pendant manner. At least one hydrogen atom of the heteroaryl group described above may be substituted with the same substituent as in the alkyl group described above.
  • Alkoxy groups herein refer to radicals —O-alkyl, wherein alkyl is as defined above. Specific examples include methoxy, ethoxy, propoxy, isobutyloxy, sec-butyloxy, pentyloxy, iso-amyloxy, hexyloxy, and the like.
  • One or more hydrogen atoms of the alkoxy group described above may be Substituents similar to those of the alkyl group can be substituted.
  • Heteroalkoxy groups which are substituents used in the present invention, have essentially the meaning of alkoxy described above except that one or more heteroatoms, for example oxygen, sulfur or nitrogen, may be present in the alkyl chain, for example CH 3 CH 2 OCH 2 CH 2 O-, C 4 H 9 OCH 2 CH 2 OCH 2 CH 2 O-, and CH 3 O (CH 2 CH 2 O) n H and the like.
  • An arylalkyl group herein means that some of the hydrogen atoms in the aryl group as defined above are substituted with radicals such as lower alkyl, for example methyl, ethyl, propyl and the like. For example benzyl, phenylethyl and the like. At least one hydrogen atom of the aforementioned arylalkyl group may be substituted with the same substituent as in the case of the aforementioned alkyl group.
  • heteroarylalkyl group used herein means that a part of the hydrogen atoms of the heteroaryl group is substituted with a lower alkyl group, and the definition of heteroaryl in the heteroarylalkyl group is as described above. At least one hydrogen atom of the aforementioned heteroarylalkyl group may be substituted with the same substituent as in the case of the aforementioned alkyl group.
  • aryloxy group herein refers to the radical -O-aryl, where aryl is as defined above. Specific examples include phenoxy, naphthoxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy, indenyloxy, and the like, and at least one hydrogen atom of the aryloxy group is substituted with the same substituent as in the case of the alkyl group described above. It is possible.
  • Heteroaryloxy group as used herein refers to the radical —O-heteroaryl, wherein heteroaryl is as defined above.
  • heteroaryloxy group of the present specification examples include a benzyloxy, a phenylethyloxy group, and the like, and at least one hydrogen atom in the heteroaryloxy group may be substituted with the same substituent as in the alkyl group described above.
  • cycloalkyl group herein is meant a monovalent monocyclic system having 5 to 30 carbon atoms. At least one hydrogen atom of the cycloalkyl group described above may be substituted with the same substituent as in the alkyl group described above.
  • Heterocycloalkyl group herein refers to a monovalent monocyclic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms being C. At least one hydrogen atom of the cycloalkyl group described above may be substituted with the same substituent as in the alkyl group described above.
  • the alkyl ester group of the present specification means a functional group to which an alkyl group and an ester group are bonded, wherein the alkyl group is as defined above.
  • heteroalkyl ester group herein refers to a functional group having a heteroalkyl group and an ester group bonded thereto, and the aforementioned heteroalkyl group is as defined above.
  • the aryl ester group of the present specification means a functional group having an aryl group and an ester group bonded thereto, wherein the aryl group is as defined above.
  • the heteroaryl ester group of the present specification means a functional group having a heteroaryl group and an ester group bonded thereto, wherein the heteroaryl group is as defined above.
  • the amino group used in the present invention means -NH 2 , -NH (R) or -N (R ') (R “), R' and R" are independently an alkyl group having 1 to 10 carbon atoms.
  • Halogen herein is fluorine, chlorine, bromine, iodine or asstatin, among which fluorine is particularly preferred.
  • the metallic carbon nanotubes described above are carbon nanotubes that are purified metallic carbon nanotubes or carbon nanotubes having metal particles (eg, Ag, Au, Cu, Pt particles, etc.) attached to the inner and / or outer walls of the carbon nanotubes. It may be a tube.
  • the above-mentioned graphene is a graphene monolayer having a thickness of about 0.34 nm, a few layer graphene having a structure in which 2 to 10 graphene monolayers are stacked, or a larger number of graphenes than the above-described water layer graphene.
  • the pen monolayer may have a graphene multilayer structure having a stacked structure.
  • the metal nanowires and semiconductor nanowires described above are, for example, Ag, Au, Cu, Pt NiSi x (Nickel Silicide) nanowires and composites of two or more thereof, such as alloys or core-shells. shell) structure, etc.) may be selected from nanowires, but is not limited thereto.
  • the semiconductor nanowires described above may be Si nanowires doped with Si, Ge, B or N, Ge nanowires doped with B or N and composites of two or more of them (eg, alloys or core-shell structures, etc.). It may be selected from, but is not limited thereto.
  • the diameters of the metal nanowires and the semiconductor nanowires described above may be 5 nm to 100 nm or less, and the length may be 500 nm to 100 ⁇ m, which may vary depending on the manufacturing method of the metal nanowires and the semiconductor nanowires described above. Can be selected.
  • the above-described metal grid is formed of intersecting reticulated metal lines using Ag, Au, Cu, Al, Pt, and their alloys, and can have a line width of 100 nm to 100 ⁇ m, with a length limited. Do not receive.
  • the above-described metal grid may be formed to protrude above the first electrode or may be inserted into the first electrode to be recessed.
  • the aforementioned metal nanopoints may be selected from Ag, Au, Cu, Pt, and two or more of these composites (eg, alloys or core-shell structures, etc.) nanopoints, but are not limited thereto.
  • Z 100 , Z 101 , Z 102 , and Z 103 may each independently be bonded to hydrogen, a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, or a substituted or unsubstituted C 1 -C 20 alkoxy group).
  • At least one moiety represented by -S (Z 100 ) and -Si (Z 101 ) (Z 102 ) (Z 103 ) described above is a self-assembled moiety,
  • the bonding between the metal nanowires, the semiconductor nanowires, and the metal nanopoints or the metal nanowires, the semiconductor nanowires and the metal nanopoints, and the first electrode 210 may be strengthened. There is an effect that the mechanical strength is further improved.
  • the conductive oxide described above may be one of ITO (indium tin oxide), IZO (indium zinc oxide), SnO 2 and InO 2 .
  • Forming the above-described conductive layer 31 on the first electrode 20 described above may be carried out by coating, casting, Liangmuir-Blodgett (LB), ink-jet printing (ink-jet printing). ), Nozzle printing, slot-die coating, doctor blade coating, screen printing, dip coating, gravure printing Method of gravity printing, reverse-offset printing, physical transfer method, spray coating, chemical vapor deposition, or thermal evaporation method ) Process can be used.
  • LB Liangmuir-Blodgett
  • ink-jet printing ink-jet printing
  • Nozzle printing slot-die coating
  • doctor blade coating screen printing
  • dip coating gravure printing Method of gravity printing
  • reverse-offset printing physical transfer method
  • spray coating chemical vapor deposition
  • thermal evaporation method thermal evaporation method
  • the above-described conductive material may be mixed with a solvent to prepare a mixed solution, and then coated on the first electrode 10 and then heat treated to remove the aforementioned solvent.
  • the solvent described above may be a polar solvent, for example, water, alcohol (methanol, ethanol, n-propanol, 2-propanol, n-butanol, etc.), formic acid, nitromethane , Acetic acid, ethylene glycol, glycerol, normal methyl pyrrolidone (NMP, n-Methyl-2-Pyrrolidone), N-dimethyl acetamide, dimethyl With formamide (DMF, dimethylformamide), dimethyl sulfoxide (DMSO, dimethyl sulfoxide), tetrahydrofuran (THF, tetrahydrofuran), ethyl acetate (EtOAc, ethyl acetate), acetone, and acetonitrile (M
  • the metallic carbon nanotubes are grown on the aforementioned first electrode 20 or a solution-based printing method of carbon nanotubes dispersed in a solvent (eg, Spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method).
  • a solvent eg, Spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method.
  • a metal film is formed by vacuum depositing a metal on the above-described first electrode 20, and then patterned into various mesh shapes by photolithography, or a metal precursor or Metal particles may be dispersed in a solvent and formed by a printing method (eg, spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method).
  • a printing method eg, spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method.
  • the above-mentioned conductive layer 31 mainly serves to improve conductivity in the above-mentioned exciton buffer layer 30, and additionally controls scattering, reflection, and absorption to improve optical extraction, or gives flexibility to provide mechanical strength. Can play a role in improving
  • the surface buffer layer 32 described above includes a fluorine-based material.
  • the above-described fluorine-based material is preferably a fluorine-based material having a lower surface energy than the above-described conductive material, it may have a surface energy of 30mN / m or less.
  • the aforementioned fluorine-based material may have a hydrophobicity greater than that of the conductive polymer described above.
  • the concentration of fluorine-based material described above is lower.
  • the work function of the second surface 32b of the surface buffer layer 32 may be 5.0 eV or more.
  • the work function measured on the second surface 32b of the surface buffer layer 32 described above may be 5.0 eV to 6.5 eV, but is not limited thereto.
  • the aforementioned fluorine-based material may be a perfluorinated ionomer or a fluorinated ionomer comprising at least one F.
  • the thickness of the buffer layer can be formed thick, and the phase separation of the conductive layer 31 and the surface buffer layer 32 can be prevented, thereby making it possible to form a more uniform exciton buffer layer 30. .
  • the aforementioned fluorine-based material may include at least one ionomer selected from the group consisting of ionomers having the structures of Formulas 1 to 12.
  • m is a number from 1 to 10,000,000
  • x and y are each independently a number from 0 to 10
  • M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50)
  • m is a number from 1 to 10,000,000
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, x and y are each independently a number from 0 to 20,
  • M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50),
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, x and y are each independently a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, z is a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, x and y are each independently a number from 0 to 20, Y is -COO - M + , -SO 3 - NHSO 2 CF 3 + , -PO 3 2- (M + ) 2 , M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50 ), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is 0 To an integer of 50 to)), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
  • n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000;
  • m and n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, x is a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
  • n are 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000, x and y are each independently a number from 0 to 20, M + Silver Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n -; n represents an integer of 0 to 50;
  • M + is Na +, K +, Li + , H +, CH 3 (CH 2)
  • n NH 3 + is an integer from 0 to 50
  • NH 4 + is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50).
  • the aforementioned fluorine-based material may include at least one ionomer or fluorinated low molecule selected from the group consisting of ionomers or fluorinated low molecules having the structures of Formulas 13 to 19.
  • R 11 to R 14 , R 21 to R 28 , R 31 to R 38 , R 41 to R 48 , R 51 to R 58 and R 61 to R 68 are each independently of the other hydrogen, -F, C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, at least one of -F substituted with a C 1 -C 20 alkyl group, at least one of -F substituted with C 1 -C 20 alkoxy group, Q 1, -O- (CF 2 CF (CF 3 ) -O) n- (CF 2 ) m -Q 2 , where n and m are, independently of each other, an integer from 0 to 20, where n + m is 1 or more; and-(OCF 2 CF 2 ) x -Q 3 , where x is an integer from 1 to 20,
  • the ionic group is an anionic group described above, and the cation, and the above-described anionic group PO 3 2-, SO 3 -, COO -, I -, CH 3 COO - and BO 2
  • the aforementioned cationic group comprises at least one of metal ions and organic ions, and the aforementioned metal ions are selected from Na + , K + , Li + , Mg +2 , Zn +2 and Al + 3
  • the aforementioned organic ions are H + , CH 3 (CH 2 ) n 1 NH 3 + , where n 1 is an integer from 0 to 50, NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + and RCHO + , wherein R is CH 3 (CH 2 ) n 2 — and n 2 is an integer from 0 to 50;
  • At least one of R 11 to R 14 , at least one of R 21 to R 28 , at least one of R 31 to R 38 , at least one of R 41 to R 48 , at least one of R 51 to R 58 and R 61 to R 68 At least one of -F, a C 1 -C 20 alkyl group substituted with at least one -F, a C 1 -C 20 alkoxy group substituted with at least one -F, -O- (CF 2 CF (CF 3 ) -O) n- (CF 2 ) m -Q 2 and-(OCF 2 CF 2 ) x -Q 3 is selected.)
  • X is a terminal group
  • M f represents a unit derived from a fluorinated monomer obtained from the condensation reaction of a perfluoropolyether alcohol, a polyisocyanate and an isocyanate reactive-non-fluorinated monomer;
  • M h represents a unit derived from a non-fluorinated monomer
  • M a represents a unit having a silyl group represented by -Si (Y 4 ) (Y 5 ) (Y 6 );
  • Y 4 , Y 5 and Y 6 described above independently of each other represent a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a hydrolyzable substituent, and the aforementioned Y 4 At least one of Y 5 and Y 6 is the hydrolyzable substituent described above;
  • G is a monovalent organic group comprising residues of a chain transfer agent
  • n is a number from 1 to 100;
  • n is a number from 0 to 100;
  • r is a number from 0 to 100;
  • n + m + r is at least 5.
  • the thickness of the surface buffer layer 32 described above may be 20 nm to 500 nm, for example, 50 nm to 200 nm. When the thickness of the surface buffer layer 32 described above satisfies the above-described range, it is possible to provide excellent work function characteristics, transmittance and flexible characteristics.
  • the surface buffer layer 32 described above may be formed by preparing a mixed solution including the aforementioned fluorine-based material and a solvent on the conductive layer 31 and then heat-treating it.
  • the exciton buffer layer 30 thus formed may have a thickness of 50 nm to 1000 nm.
  • the above-described conductive layer 31 is formed, conductivity may be improved, and at the same time, the above-described surface buffer layer 32 may be formed to lower surface energy. Accordingly, the light emission characteristics can be maximized.
  • the surface buffer layer 32 described above is selected from the group consisting of carbon nanotubes, graphene, reduced graphene oxide, metal nanowires, metal carbon nanodots, semiconductor quantum dots, semiconductor nanowires, and metal nanodots. At least one additive may be further included. When further comprising the above-described additives, it is possible to maximize the conductivity improvement of the above-mentioned exciton buffer layer 30.
  • the surface buffer layer 32 described above may further include a crosslinking agent including a bisphenyl azide (Bis) material.
  • a crosslinking agent including a bisphenyl azide (Bis) material.
  • the bisphenyl azide (Bis) material described above may be a bisphenyl azide (Bis) material of Formula 20 below.
  • Forming the above-mentioned surface buffer layer 32 on the conductive layer 31 described above may be performed by spin coating, casting, Liangmuir-Blodgett (LB), ink-jet printing (ink-jet printing). ), Nozzle printing, slot-die coating, doctor blade coating, screen printing, dip coating, gravure printing Method of gravity printing, reverse-offset printing, physical transfer method, spray coating, chemical vapor deposition, or thermal evaporation method ) Process can be used.
  • LB Liangmuir-Blodgett
  • ink-jet printing ink-jet printing
  • Nozzle printing slot-die coating
  • doctor blade coating screen printing
  • dip coating gravure printing Method of gravity printing
  • reverse-offset printing physical transfer method
  • spray coating chemical vapor deposition
  • thermal evaporation method thermal evaporation method
  • the forming of the above-described exciton buffer layer 30 may sequentially deposit the above-described conductive layer 31 and the surface buffer layer 32 as described above, but may use the above-described conductive material and the above-described fluorine-based material as solvents. After mixing to prepare a mixed solution, it can be formed through the process of applying the above-described mixed solution on the above-described first electrode and heat treatment.
  • the conductive layer 31 and the surface buffer layer 32 are sequentially self-assembled on the first electrode 20 described above. Accordingly, there is an advantage that can simplify the process.
  • the aforementioned fluorine-based material may be a material having a solubility of at least 90%, for example at least 95%, with respect to the polar solvent.
  • the aforementioned polar solvents include water, alcohols (methanol, ethanol, n-propanol, 2-propanol, n-butanol, and the like), ethylene glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone And the like, but is not limited thereto.
  • FIG. 13 is a schematic diagram showing the effect of the exciton buffer layer 30 according to an embodiment of the present invention.
  • the exciton buffer layer 30 improves the hole injection efficiency, plays an electron blocking role, and suppresses quenching of the exciton.
  • the exciton buffer layer 30 described above may further include a crosslinking agent.
  • the above-mentioned crosslinking agent may include at least one functional group selected from the group consisting of an amine group (-NH 2 ), a thiol group (-SH), and a carboxyl group (-COO-).
  • the aforementioned crosslinking agent may be a bisphenyl azide (Bis) material, a diaminoalkane material, a dithiol material, a dicarboxylate, an ethylene glycol dimethacrylate (ethylene glycol di (meth) acrylate) derivatives, methylenebisacrylamide derivatives, and at least one selected from the group consisting of DVB.
  • a hole transport layer (not shown) may be formed on the exciton buffer layer 30 described above.
  • the hole transport layer described above may be formed according to a method arbitrarily selected from various known methods such as vacuum deposition, spin coating, casting, LB, and the like.
  • the deposition conditions is the desired compound, varies depending on the structure and thermal properties of the layer of interest, e.g., to the deposition temperature of 100 °C 500 °C, 10 -10 to 10 - 3 torr It can be selected within the vacuum degree range of, deposition rate range of 0.01 Pa / sec to 100 Pa / sec.
  • the coating conditions vary depending on the target compound, the structure and the thermal properties of the desired layer, but the coating speed range of 2000 rpm to 5000 rpm, heat treatment temperature of 80 °C to 200 °C (removing solvent after coating Heat treatment temperature).
  • the hole transport layer material may be selected from materials that can transport holes better than hole injection.
  • the hole transport layer described above may be formed using a known hole transport material, for example, may be an amine-based material having an aromatic condensed ring and may be a triphenyl amine-based material.
  • the above-described hole transporting material is 1,3-bis (carbazol-9-yl) benzene (1,3-bis (carbazol-9-yl) benzene: MCP), 1,3,5- Tris (carbazol-9-yl) benzene (1,3,5-tris (carbazol-9-yl) benzene: TCP), 4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (TCTA), 4,4'-bis (carbazol-9-yl) biphenyl (4,4'-bis (carbazol-9- yl) biphenyl: CBP), N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) benzidine (N, N'-bis (naphthalen-1-yl) -N, N ' -bis (phenyl) benzidine
  • Di- [4,-(N, N-ditolyl-amino) -phenyl] cyclohexane Di- [4,-(N, N-ditolyl-amino) -phenyl] cyclohexane (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexane (TAPC), N, N, N ' , N'-tetra-naphthalen-2-yl-benzidine (N, N, N ', N'-tetra-naphthalen-2-yl-benzidine: ⁇ -TNB) and N4, N4, N4', N4'-tetra (biphenyl-4-yl) biphenyl-4,4'-diamine (TPD15), poly (9,9-dioctylfluorene-co-bis-N, N '-(4-butylphenyl) -bis-N, N
  • the hole transport layer may have a thickness of about 5 nm to about 100 nm, for example, about 10 nm to about 60 nm.
  • excellent hole transporting properties can be obtained without increasing the driving voltage.
  • the above-described hole transport layer may be omitted.
  • the light emitting device including the exciton buffer layer 30 described above may have excellent efficiency, brightness, and lifespan characteristics without forming a hole injection layer. Therefore, there is an effect that can reduce the cost when manufacturing the above-described light emitting device.
  • the work function of the above-described hole transporting layer may be Z eV, but the aforementioned Z may be a real number of 5.2 to 5.6, but is not limited thereto.
  • the work function value Y 1 of the first surface 32a of the surface buffer layer 32 of the exciton buffer layer 30 described above may be in the range of 4.6 to 5.2, for example, 4.7 to 4.9.
  • Y 2 which is a work function value of the second surface 32b of the surface buffer layer 32 of the exciton buffer layer 30, may be the same as or smaller than the work function of the fluorine-based material included in the surface buffer layer 32.
  • Y 2 described above may range from 5.0 to 6.5, for example, 5.3 to 6.2, but is not limited thereto.
  • a light emitting layer including a first thin film of nanoparticles by coating a solution including organic / inorganic perovskite nanoparticles including an organic / inorganic perovskite nanocrystal structure on the aforementioned exciton buffer layer 30. 40 is formed.
  • the light emitting layer has the same structure and the same function as the above-mentioned ⁇ light emitting layer for organic-inorganic hybrid perovskite light emitting device>, the above description will be made.
  • the second electrode 50 is formed on the light emitting layer 40 described above.
  • the second electrode 50 described above is an electrode into which electrons are injected and is made of a conductive material.
  • the above-described second electrode 50 is preferably metal, and in particular, may be Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd or Pd.
  • Deposition processes for forming the above-described second electrode 50 include physical vapor deposition (PVD), chemical vapor deposition (CVD), sputtering, pulsed laser deposition. PLD), thermal evaporation, electron beam evaporation, atomic layer deposition (ALD), molecular beam epitaxy (MBE), and the like.
  • the light emitting device thus formed is disposed on the first electrode 20, the first electrode 20 described above, and the conductive layer 31 including the conductive material and the surface buffer layer 32 including the fluorine-based material are sequentially stacked. Disposed on the exciton buffer layer 30, the above-described exciton buffer layer 30, and disposed on the light emitting layer 40 including the organic-inorganic hybrid perovskite nanoparticle light-emitting body substituted with the organic ligand, and the above-described light emitting layer 40. And a second electrode 50.
  • the exciton buffer layer 30 described above it is possible to manufacture a light emitting device having a low work function and high conductivity, and including nanoparticles including an organic-inorganic hybrid perovskite nanocrystal structure.
  • an organic-inorganic hybrid perovskite having a crystal structure combining FCC and BCC is formed in the nanoparticle, and a lamellar structure in which an organic plane and an inorganic plane are alternately stacked.
  • the exciton is constrained to the inorganic plane and can give high color purity.
  • the light emitting device may be a laser diode or an LED.
  • the present invention may be applied to a solar cell using a photoactive layer including the organic-inorganic perovskite nanocrystalline particles or inorganic metal halide perovskite nanocrystalline particles.
  • a solar cell may be positioned between a first electrode, a second electrode, and the first electrode and the second electrode, and may include a photoactive layer including the above-described perovskite nanocrystalline particles.
  • a solution containing organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention was formed. It was formed through the inverse nano-emulsion method.
  • a first solution was prepared by dissolving an organic-inorganic hybrid perovskite in a protic solvent.
  • Dimethylformamide was used as the protic solvent, and organic-inorganic hybrid perovskite (CH 3 NH 3 ) 2 PbBr 4 was used.
  • the (CH 3 NH 3 ) 2 PbBr 4 used was a mixture of CH 3 NH 3 Br and PbBr 2 in a 2: 1 ratio.
  • the first solution was slowly added dropwise to the second solution under vigorous stirring to form a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure.
  • Chloroform spin coating (2500 rpm 20 s) removed perovskite nanocrystals that were not anchored.
  • 250 ⁇ L of 1 wt% 1,2-ethanedithiol (EDT) / ethanol solution was spin coated (2500 rpm 20s), followed by spin coating the perovskite nanocrystal solution. (2500 rpm 20s) was repeated to form a light emitting layer.
  • trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP) solutions were added to the perovskite nanocrystal solution prepared in Example 1 to replace ligands of perovskite nanocrystals with TOPO and TOP.
  • N, N'-diphenyl, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD) was added to the perovskite nanocrystal solution 100: TPD-perovskite nanocrystal solution was prepared by mixing at a ratio of 5 (w / w).
  • the TPD-perovskite nanocrystal solution was spin-coated (500 rpm 7s, 3000 rpm 90s) to form TPD and perovskite nanocrystal layers.
  • the TPD and the perovskite nanocrystals are phase-separated during the spin coating process, such that a nano thin film including the organic-inorganic hybrid perovskite nanoparticles including the perovskite nanocrystal structure is formed on the TPD layer. .
  • ODTS-treated wafers were fabricated by dipping Si native wafers in octadecyltrichlorosilane (ODTS) solution.
  • the perovskite nanocrystals were spin-coated (1500 rpm 60 s) on the ODTS-treated wafer to form a perovskite nanocrystal layer.
  • polydimethylsiloxane (PDMS) was poured on a flat silicon wafer and cured at 75 °C for 2 hours to prepare a PDMS stamp.
  • the PDMS stamp was tightly adhered to the perovskite nanocrystal layer, under sufficient pressure, and then quickly detached to separate the perovskite nanocrystals from the ODTS-treated wafer.
  • the separated perovskite nanocrystals were separated from PDMS by contact with a prepared indium tin oxide (ITO) / PEDOT: PSS substrate.
  • Tris (4-carbazoyl-9-ylphenyl) amine (TCTA), 1,3,5-tris (N-phenylbenzimidazole-2-yl) benzene (TPBi) was added to the perovskite nanocrystal solution 10: 10: 1 TCTA-TPBi-Perovskite nanocrystal solution was prepared by mixing at a (w / w) ratio.
  • the TCTA-TPBi-perovskite nanocrystal solution was spin coated (500 rpm 7s, 3000 rpm 90s) to form a TCTA-TPBi-perovskite nanocrystal layer.
  • a light emitting device according to an embodiment of the present invention was manufactured.
  • an ITO substrate (glass substrate coated with an ITO anode) is prepared, and then spin-coated a solution in which a conductive material, PEDOT: PSS (CLEVIOS PH from Heraeus) and a fluorine-based polymer 26, is mixed. After the heat treatment for 30 minutes at 150 °C to form an exciton buffer layer of 40nm thickness.
  • a conductive material PEDOT: PSS (CLEVIOS PH from Heraeus) and a fluorine-based polymer 26 is mixed.
  • a multilayer exciton buffer layer in which a conductive layer containing 50% or more of a conductive polymer and a surface buffer layer containing 50% or more of the aforementioned polymer 1 material are sequentially stacked on the aforementioned ITO anode is formed.
  • self-assembly forms a conductive layer and a surface buffer layer.
  • the weight ratio of the above-described conductive layer and the exciton buffer layer including the surface buffer layer is 1: 6: 25.4 for PEDOT: PSS: Polymer 1 and the work function is 5.95eV.
  • the CH 3 NH 3 PbBr 3 perovskite light emitting layer was formed on the exciton buffer layer described above using the light emitting layer manufacturing method described in Example 2.
  • TPBI 1,3,5-Tris (1-phenyl-1H-benzimidazol-2-yl) benzene
  • An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Example 3.
  • the luminance of the fabricated light emitting device was 40 cd / m 2 , and the current efficiency was 0.015 cd / A.
  • An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Preparation Example 4.
  • the luminance of the fabricated light emitting device was 45 cd / m 2 , and the current efficiency was 0.018 cd / A.
  • An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Preparation Example 5.
  • the luminance of the fabricated light emitting device was 60 cd / m 2 , and the current efficiency was 0.03 cd / A.
  • An inorganic metal halide perovskite nanocrystalline particle was formed according to one embodiment of the present invention. It was formed through the inverse nano-emulsion method.
  • Cs2CO3 cesium carbonate
  • ODE Octadecene
  • PbBr2 oleic acid and oleylamine were added to an aprotic solvent, and a fourth solution was reacted at high temperature (120 ° C.) for one hour.
  • the third solution was slowly added dropwise to the strongly stirring fourth solution to form an inorganic metal halide perovskite (CsPbBr 3 ) nanocrystalline particle emitter having a three-dimensional structure.
  • a light emitting layer was prepared in the same manner as in Preparation Example 2, except that a solution containing the inorganic metal halide perovskite nanoparticles of Preparation Example 10 was used instead of the solution of Preparation Example 1.
  • a solar cell according to an embodiment of the present invention was prepared.
  • the organic-inorganic hybrid perovskite nanocrystalline particles according to Preparation Example 1 were mixed with Phenyl-C61-butyric acid methyl ester (PCBM) and coated on the hole extracting layer to form a photoactive layer, and immediately 100 nm thick on the photoactive layer. was deposited to prepare a perovskite nanocrystalline solar cell.
  • PCBM Phenyl-C61-butyric acid methyl ester
  • OIP film Organic-inorganic hybrid perovskite (OIP film) in the form of a thin film was prepared.
  • (CH 3 NH 3 ) 2 PbBr 4 is dissolved in dimethylformamide, a protic solvent, to prepare a first solution, followed by spin coating the first solution on a glass substrate (CH 3 NH 3 ) 2 PbBr 4 thin film was prepared.
  • OIP film Organic-inorganic hybrid perovskite (OIP film) in the form of a thin film was prepared.
  • a first solution is prepared by dissolving (CH 3 NH 3 ) 2 PbCl 4 in dimethylformamide, a protic solvent, and spin coating the first solution on a glass substrate (CH 3 NH 3 ) 2 PbCl 4 thin film was prepared.
  • organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure of Preparation Example 1 and ultraviolet in the organic-inorganic hybrid perovskite (OIP film) according to Comparative Examples 1 and 2 It is a fluorescent image taken by emitting light.
  • FIG. 15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1.
  • FIG. 15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1.
  • Figure 15 (a) is a schematic diagram of the light emitting material according to Comparative Example 1
  • Figure 15 (b) is a schematic diagram of the organic-inorganic perovskite nanoparticles containing the organic-inorganic perovskite nanocrystal structure according to Preparation Example 1. to be.
  • the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure according to Comparative Example 1 is in the form of a thin film
  • Figure 15 (b) Preparation Example
  • the wavelength conversion particle according to 1 is in the form of a nanoparticle (110).
  • FIG. 16 (a) is an image taken at a low temperature (70 K) of the light emitting matrix of the organic-inorganic hybrid perovskite (OIP film) in the form of a thin film according to Comparative Example 1
  • Figure 16 (b) is shown in Comparative Example 1
  • the light-emitting matrix of the organic-inorganic hybrid perovskite (OIP film) in the form of a thin film is an image taken at room temperature.
  • FIG. 16 (c) is an image taken at a low temperature (70 K) of the photoluminescent matrix of the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1
  • FIG. 15 ( d) is an image taken at room temperature of the photoluminescent matrix of the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1.
  • the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1 in the thin film form according to Comparative Example 1 It shows photoluminescence at the same position as the organic-inorganic hybrid perovskite (OIP film), and it can be seen that the color purity is higher.
  • OIP-NC film according to the preparation example it shows a high color purity light emission at the same position as the low temperature at room temperature, it can be seen that the emission intensity does not decrease.
  • the organic-inorganic hybrid perovskite in the form of a thin film according to Comparative Example 1 differs in color purity and emission position at room temperature and low temperature, and excitons do not go into luminescence due to thermal ionization and delocalization of charge carriers at room temperature. It is separated and extinguished, showing low luminescence intensity.
  • FIG. 17 is a graph showing photoluminescence of nanoparticles according to Preparation Example 1 and Comparative Example 1.
  • Inorganic-inorganic hybrid perovskite nanocrystals having a crystal structure combining FCC and BCC are formed in the first nanoparticle-containing nanoparticles containing organic-inorganic perovskite nanoparticles, and the organic and inorganic planes alternate. It forms a lamellar structure that is laminated with a furnace, and excitons are constrained on the inorganic plane to produce high color purity.
  • the exciton diffusion length is reduced in the nanocrystals within the size of 10 nm to 300 nm or less, and the exciton binding energy is increased to excite the exciton due to thermal ionization and delocalization of the charge carriers. It can prevent the luminous efficiency at high room temperature.
  • Organic-inorganic perovskite nanoparticles comprising a scaled organic-inorganic hybrid perovskite nanocrystal structure of organic-inorganic hybrid perovskite nanocrystals can be synthesized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are: a light-emitting layer for a perovskite light-emitting device; a method for manufacturing the same; and a perovskite light-emitting device using the same. The method of the present invention for manufacturing a light-emitting layer for an organic and inorganic hybrid perovskite light-emitting device comprises a step of forming a first nanoparticle thin film by coating, on a member for coating a light-emitting layer, a solution comprising organic and inorganic perovskite nanoparticles including an organic and inorganic perovskite nanocrystalline structure. Thereby, a nanoparticle light-emitting body has therein an organic and inorganic hybrid perovskite having a crystalline structure in which FCC and BCC are combined; forms a lamella structure in which an organic plane and an inorganic plane are alternatively stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, it is possible to improve the light-emitting efficiency and brightness of a device by making perovskite as nanoparticles and then introducing the same into a light-emitting layer.

Description

페로브스카이트 발광소자용 발광층 및 이의 제조방법과 이를 이용한 페로브스카이트 발광소자Light emitting layer for perovskite light emitting device, manufacturing method thereof and perovskite light emitting device using same
본 발명은 발광소자에 관한 것으로 더욱 상세하게는 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트 발광소자용 발광층 및 이의 제조방법과 이를 이용한 발광소자 및 이의 제조방법에 관한 것이다.The present invention relates to a light emitting device, and more particularly, to a light emitting layer for an organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device, a method of manufacturing the same, and a light emitting device using the same and a method of manufacturing the same.
현재 디스플레이 시장의 메가 트렌드는 기존의 고효율 고해상도 지향의 디스플레이에 더 나아가서 고색순도 천연색 구현을 지향하는 감성화질 디스플레이로 이동하고 있다. 이러한 관점에서 현재 유기 발광체 기반 유기 발광 다이오드 (OLED) 소자가 비약적인 발전을 이루었고 색순도가 향상된 무기 양자점 LED가 다른 대안으로 활발히 연구 개발되고 있다. 그러나, 유기 발광체와 무기 양자점 발광체 모두 재료적인 측면에서 본질적인 한계를 가지고 있다.The current mega trend of the display market is moving to the high-resolution high-resolution display and to the high-definition color display to achieve high color purity natural color. In light of this, organic light-emitting-based organic light emitting diode (OLED) devices have made great progress, and inorganic quantum dot LEDs with improved color purity have been actively researched and developed as other alternatives. However, both organic and inorganic quantum dot emitters have inherent limitations in terms of materials.
기존의 유기 발광체는 효율이 높다는 장점은 있지만, 스펙트럼이 넓어서 색순도가 좋지 않다. 무기 양자점 발광체는 색순도가 좋다고 알려져 왔지만, 양자 사이즈 효과에 의한 발광이기 때문에 Blue 쪽으로 갈수록 양자점 크기가 균일하도록 제어하기가 어려워서 색순도가 떨어지는 문제점이 존재한다. 또한 두 가지 발광체는 고가라는 단점이 있다. 따라서 이러한 유기와 무기 발광체의 단점을 보완하고 장점을 유지하는 새로운 방식의 유/무기 하이브리드 발광체가 필요하다.Conventional organic light emitters have the advantage of high efficiency, but the color spectrum is poor due to the broad spectrum. Inorganic quantum dot light emitters have been known to have good color purity, but since the light emission is due to the quantum size effect, it is difficult to control the quantum dot size uniformly toward the blue side, and thus there is a problem that the color purity falls. In addition, the two light emitters are expensive. Therefore, there is a need for a new type of organic / inorganic hybrid light emitting body that complements and maintains the disadvantages of organic and inorganic light emitting bodies.
유무기 하이브리드 소재는 제조비용이 저렴하고, 제조 및 소자 제작 공정이 간단하며, 광학적, 전기적 성질을 조절하기 쉬운 유기 소재의 장점과 높은 전하 이동도 및 기계적, 열적 안정성을 가지는 무기 소재의 장점을 모두 가질 수 있어 학문적, 산업적으로 각광받고 있다.Organic-inorganic hybrid materials have the advantages of organic materials, which are low in manufacturing cost, simple in manufacturing and device manufacturing process, easy to control optical and electrical properties, and inorganic materials having high charge mobility and mechanical and thermal stability. I can have it and am attracting attention academically and industrially.
그 중, 유무기 하이브리드 페로브스카이트 소재는 높은 색순도를 가지고, 색 조절이 간단하며 합성 비용이 저렴하기 때문에 발광체로서의 발전 가능성이 매우 크다. 높은 색순도는 무기물의 2차원 평면(2D plane)이 유기물의 2차원 평면(2D plane) 사이에 끼어 있는 층상 구조를 가지고 있고, 무기물(inorganic)과 유기물(organic)의 유전율 차이가 크기 때문에 (εorganic ≒ 2.4, εinorganic ≒ 6.1) 엑시톤이 무기층에 속박되고, 따라서 높은 색순도 (Full width at half maximum (FWHM) ≒ 20 nm)를 가지기 때문에 형성된다.Among them, the organic-inorganic hybrid perovskite material has high color purity, simple color control, and low synthesis cost, so there is great potential for development as a light-emitting body. High color purity has a layered structure in which the 2D plane of the inorganic material is sandwiched between the 2D plane of the organic material, and the dielectric constant difference between the inorganic and organic material is large (ε organic ≒ 2.4, ε inorganic ≒ 6.1) The excitons are bound to the inorganic layer and are therefore formed because they have a high color purity (FWHMM ≒ 20 nm).
종래 페로브스카이트 구조(ABX3)를 가지는 물질은 무기금속산화물이다.The material having a conventional perovskite structure (ABX 3 ) is an inorganic metal oxide.
이러한 무기금속산화물은 일반적으로 산화물(oxide)로서, A, B site에 서로 다른 크기를 가지는 Ti, Sr, Ca, Cs, Ba, Y, Gd, La, Fe, Mn 등의 금속(알칼리 금속, 알칼리 토금속, 전이 금속 및 란타넘 족 등) 양이온들이 위치하고 X site에는 산소(oxygen) 음이온이 위치하고, B site의 금속 양이온들이 X site의 oxygen 음이온들과 6-fold coordination의 corner-sharing octahedron 형태로서 결합되어 있는 물질이다. 그 예로서, SrFeO3, LaMnO3, CaFeO3 등이 있다.Such inorganic metal oxides are generally oxides, such as Ti, Sr, Ca, Cs, Ba, Y, Gd, La, Fe, and Mn (alkali metals, alkalis) having different sizes at A and B sites. Earth cations, transition metals and lanthanides) cations are located and oxygen anions are located at X site, and metal cations at B site are combined with oxygen anions at X site as corner-sharing octahedrons of 6-fold coordination. Substance. Examples thereof include SrFeO 3 , LaMnO 3 , CaFeO 3, and the like.
이에 반해, 유무기 하이브리드 페로브스카이트는 ABX3 구조에서 A site에 유기 암모늄(RNH3) 양이온이 위치하게 되고, X site에는 halides(Cl, Br, I)가 위치하게 되어 유기 금속 할라이드 페로브스카이트 재료를 형성하게 되므로 그 조성이 무기금속산화물 페로브스카이트 재료와는 완전히 다르다.In contrast, the organic-inorganic hybrid perovskite has an organic ammonium (RNH 3 ) cation at the A site and an halides (Cl, Br, I) at the X site in the ABX 3 structure. As a result, the composition is completely different from that of the inorganic metal oxide perovskite material.
또한, 이러한 구성 물질의 차이에 따라 물질의 특성도 달라지게 된다. 무기금속산화물 페로브스카이트는 대표적으로 초전도성(superconductivity), 강유전성(ferroelectricity), 거대한 자기저항(colossal magnetoresistance) 등의 특성을 보이며, 따라서 일반적으로 센서 및 연료 전지, 메모리 소자 등에 응용되어 연구가 진행되어 왔다. 그 예로, yttrium barium copper oxide는 oxygen contents에 따라 초전도성(superconducting) 또는 절연(insulating) 특성을 지니게 된다.In addition, the properties of the material will also vary according to the difference between these materials. Inorganic metal oxide perovskite typically exhibits superconductivity, ferroelectricity, and colossal magnetoresistance, and thus, research has been conducted in general for sensors, fuel cells, and memory devices. . For example, yttrium barium copper oxide has superconducting or insulating properties depending on oxygen contents.
반면, 유무기 하이브리드 페로브스카이트 (혹은 유기금속 할라이드 페로브스카이트)는 유기평면 (혹은 알칼리금속평면)과 무기평면이 교대로 적층이 되어 있어 라멜라 구조와 유사하여 무기평면 내에 엑시톤의 속박이 가능하기 때문에, 본질적으로 물질의 사이즈보다는 결정구조 자체에 의해서 매우 높은 색순도의 빛을 발광하는 이상적인 발광체가 될 수 있다.On the other hand, organic-inorganic hybrid perovskite (or organometallic halide perovskite) has an organic plane (or an alkali metal plane) and an inorganic plane alternately stacked, similar to the lamellar structure, so that the exciton bonds in the inorganic plane. Because of this, it is essentially an ideal emitter that emits very high color purity light by the crystal structure itself rather than the size of the material.
만약, 유무기 하이브리드 페로브스카이트라도, 유기 암모늄이 중심금속과 할로겐 결정구조(BX3)보다 밴드갭이 작은 발색단(chromophore)(주로 공액구조를 포함함)을 포함하는 경우에는 발광이 유기 암모늄에서 발생하기 때문에 높은 색순도의 빛을 내지 못하여 발광 스펙트럼의 반치폭이 100 nm보다 넓어져서 발광층으로서 적합하지 않게 된다. 그러므로 이런 경우 본 특허에서 강조하는 고색순도 발광체에는 매우 적합하지 않다. 그러므로, 고색순도 발광체를 만들기 위해서는 유기 암모늄이 발색단을 포함하지 않고 발광이 중심금속-할로겐 원소로 구성되어 있는 무기물 격자에서 일어나게 하는 것이 중요하다. 즉, 본 특허는 무기물 격자에서 발광이 일어나는 고색순도 고효율의 발광체 개발에 초점을 맞추고 있다. 예를 들어, 대한민국 공개특허 제10-2001-0015084호(2001.02.26.)에서는 염료-함유 유기-무기 혼성 물질을 입자가 아닌 박막형태로 형성하여 발광층으로 이용하는 전자발광소자에 대하여 개시되어 있지만 페로브스카이트 격자구조에서 발광이 나오는 것이 아니다.If the organic-inorganic hybrid perovskite, even if the organic ammonium contains a chromophore (mainly containing conjugated structure) having a bandgap smaller than the central metal and halogen crystal structure (BX3), the emission from organic ammonium Because of this, the half color width of the emission spectrum becomes wider than 100 nm because it does not emit light of high color purity, making it unsuitable as a light emitting layer. Therefore, such a case is not very suitable for the high color purity illuminant emphasized in this patent. Therefore, it is important to make the organic ammonium contain no chromophore and to emit light in an inorganic lattice composed of a central metal-halogen element in order to make a high color purity emitter. That is, the present patent focuses on the development of a high color purity high efficiency light emitting device in which light emission occurs in the inorganic lattice. For example, Korean Patent Laid-Open Publication No. 10-2001-0015084 (February 26, 2001) discloses an electroluminescent device using a dye-containing organic-inorganic hybrid material as a light emitting layer by forming a thin film instead of particles. Luminescence does not come from the lobe-sky lattice structure.
그러나 유/무기 하이브리드 페로브스카이트는 작은 엑시톤 결합 에너지를 가지기 때문에, 저온에서는 발광이 가능하나 상온에서는 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있다. 또한, 자유 전하가 다시 재결합하여 엑시톤을 형성할 때 엑시톤이 주변의 높은 전도성을 가지는 층에 의해 소멸되어 발광이 일어나지 못하는 문제가 있다. 그러므로 유/무기 하이브리드 페로브스카이트 기반 LED의 발광 효율 및 휘도를 높이기 위해서는 엑시톤의 퀜칭(quenching)을 막는 것이 필요하다.However, since organic / inorganic hybrid perovskite has a small exciton binding energy, it is possible to emit light at low temperatures, but at room temperature, the fundamental problem that excitons do not go into luminescence but is separated into free charges and disappears due to thermal ionization and delocalization of charge carriers. There is. In addition, when the free charge recombines again to form excitons, there is a problem that the excitons are dissipated by the surrounding layer having high conductivity, so that light emission does not occur. Therefore, in order to increase luminous efficiency and luminance of organic / inorganic hybrid perovskite-based LEDs, it is necessary to prevent quenching of exciton.
본 발명이 해결하고자 하는 과제는 열적 이온화, 전하 운반체의 비편재화 및 엑시톤의 퀜칭을 방지하도록 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트를 박막으로 바로 형성하는 대신 나노결정으로 합성한 뒤 박막으로 형성하여 발광 효율 및 내구성-안정성이 향상된 유무기 하이브리드 전계 발광소자용 발광층 및 이의 제조방법과 이를 이용한 발광소자 및 이의 제조방법을 제공함에 있다.The problem to be solved by the present invention is to synthesize an organic-inorganic hybrid perovskite or inorganic metal halide perovskite into nanocrystals instead of forming a thin film directly to prevent thermal ionization, delocalization of charge carriers and quenching of excitons The present invention provides a light emitting layer for an organic-inorganic hybrid EL device, a method of manufacturing the same, and a light emitting device using the same, and a method of manufacturing the same, which is formed by a thin film to improve luminous efficiency and durability.
본 발명의 일 측면은 발광층의 제조방법을 제공한다. 상기 발광층의 제조방법은, 발광층 도포용 부재 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 포함한다.One aspect of the present invention provides a method of manufacturing a light emitting layer. The method of manufacturing the light emitting layer may include forming a nanoparticle first thin film by coating a solution including an organic / inorganic perovskite nanoparticle including an organic / inorganic perovskite nanocrystal structure on the light emitting layer coating member. Include.
상기 나노입자 제1 박막을 형성하는 단계는 용액 공정을 사용할 수 있고, 상기 용액 공정은, 스핀코팅(spin-coating), 바코팅(bar coating), 슬롯 다이(slot-die coating), 그라비아 프린팅(Gravure-printing), 노즐 프린팅 (nozzle printing), 잉크젯 프린팅(ink-jet printing), 스크린 프린팅(screen printing), 전기수력학적 젯 프린팅 (electrohydrodynamic jet printing), 및 전기분무(electrospray)로 이루어진 군으로부터 선택되는 적어도 하나의 공정을 포함할 수 있다.The forming of the nanoparticle first thin film may use a solution process, and the solution process may include spin-coating, bar coating, slot-die coating, and gravure printing. Gravure-printing, nozzle printing, ink-jet printing, screen printing, electrohydrodynamic jet printing, and electrospray It may include at least one process.
상기 나노입자 제1 박막의 두께는 1 nm 내지 1 μm일 수 있고, 평균 거칠기 (roughness)는 0.1 nm 내지 50 nm일 수 있다.The nanoparticle first thin film may have a thickness of 1 nm to 1 μm, and an average roughness of 0.1 nm to 50 nm.
상기 나노입자 제1 박막을 형성하는 단계는, 앵커링 용액 및 상기 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자 용액을 준비하는 단계, 상기 발광층 도포용 부재 상에 상기 앵커링 용액을 스핀코팅하여 앵커링 에이전트층을 형성하는 단계, 및 상기 앵커링 에이전트 층에 상기 유무기 페로브스카이트 나노입자 용액을 용액 공정을 통해 코팅하여 앵커링 발광층을 형성하는 단계를 포함할 수 있다. 이 때, 상기 앵커링 발광층을 형성하는 단계 이 후에, 상기 앵커링 발광층 상에 가교제층을 형성하는 단계를 더 포함할 수 있고, 상기 유무기 페로브스카이트 나노입자 용액을 코팅하는 단계 및 상기 유무기 페로브스카이트 나노입자 용액이 코팅된 층 상에 가교제층을 형성하는 단계를 교대로 반복하여 상기 발광층의 두께를 조절할 수 있다.The forming of the nanoparticle first thin film may include preparing an organic / inorganic perovskite nanoparticle solution including an anchoring solution and the organic / inorganic perovskite nanocrystal structure, and forming the nanoparticle on the light emitting layer coating member. Spin coating an anchoring solution to form an anchoring agent layer, and coating the organic-inorganic perovskite nanoparticle solution on the anchoring agent layer through a solution process to form an anchoring emission layer. At this time, after forming the anchoring light emitting layer, the method may further include forming a crosslinking agent layer on the anchoring light emitting layer, coating the organic-inorganic perovskite nanoparticle solution and the organic-inorganic layer The thickness of the light emitting layer may be adjusted by alternately repeating forming the crosslinking agent layer on the layer coated with the robesky nanoparticle solution.
상기 나노입자 제1 박막을 형성하는 단계는, 상기 유무기 페로브스카이트 나노입자를 포함하는 용액에 유기 반도체를 혼합하여 유무기 페로브스카이트-유기 반도체 용액을 제조하는 단계, 및 상기 유무기 페로브스카이트-유기 반도체 용액을 코팅하여 발광층을 형성하는 단계를 포함할 수 있다. 이 때, 상기 유무기 페로브스카이트-유기 반도체 용액을 코팅하여 발광층을 형성하는 단계에서, 상기 발광층은, 상기 발광층 도포용 부재 상에 유기 반도체층 및 유무기 페로브스카이트 나노입자가 순차적으로 적층된 형태로 자가 형성(self-organization)될 수 있다.The forming of the first nanoparticle thin film may include preparing an organic-inorganic perovskite-organic semiconductor solution by mixing an organic semiconductor to a solution containing the organic-inorganic perovskite nanoparticles, and the organic-inorganic Coating the perovskite-organic semiconductor solution to form a light emitting layer. At this time, in the step of forming the light emitting layer by coating the organic-inorganic perovskite-organic semiconductor solution, the light emitting layer, the organic semiconductor layer and the organic-inorganic perovskite nanoparticles sequentially on the light emitting layer coating member It can be self-organized in a stacked form.
상기 나노입자 제1 박막을 형성하는 단계는, 상기 발광층 도포용 부재 상에 자기조립 단분자막을 형성하는 단계, 상기 자기조립 단분자막 상에 상기 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 유무기 페로브스카이트 나노입자층을 형성하는 단계, 및 스탬프를 이용하여 상기 유무기 페로브스카이트 나노입자층과 접촉(contact)하여 원하는 패턴만큼 떼어낸 후 상기 유무기 페로브스카이트 나노입자층을 제2 발광층 도포용 부재 상에 형성하는 단계를 포함할 수 있다. 이 때, 상기 스탬프는 폴리우레탄(Polyurethane), PDMS(Polydimethylsiloxane) PEO(Polyethylene oxide), PS(Polystyrene), PCL(Polycaprolactone), PAN(Polyacrylonitrile), PMMA(Poly(methyl methacrylate)), 폴리이미드(Polyimide), PVDF(Poly(vinylidene fluoride)), PVK(Poly(n-vinylcarbazole)) 및 PVC(Polyvinylchloride)로 이루어진 군으로부터 선택되는 적어도 하나의 유기 고분자를 포함할 수 있다.The forming of the nanoparticle first thin film may include forming a self-assembled monomolecular film on the light-emitting layer coating member, and coating the solution containing the organic-inorganic perovskite nanoparticles on the self-assembled monomolecular film. Forming the perovskite nanoparticle layer, and contacting the organic-inorganic perovskite nanoparticle layer using a stamp to remove the organic perovskite nanoparticle layer by a desired pattern, and then forming the second organic-inorganic perovskite nanoparticle layer. It may include the step of forming on the light emitting layer coating member. At this time, the stamp is polyurethane (Polyurethane), PDMS (Polydimethylsiloxane) PEO (Polyethylene oxide), PS (Polystyrene), PCL (Polycaprolactone), PAN (Polyacrylonitrile), PMMA (Poly (methyl methacrylate)), Polyimide (Polyimide) ), At least one organic polymer selected from the group consisting of polyvinyllidene fluoride (PVDF), poly (n-vinylcarbazole) (PVK), and polyvinylchloride (PVC).
상기 발광층 도포용 부재 상에 상기 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 복수번 반복하여 상기 발광층의 두께를 조절할 수 있고, 상기 나노입자 제1 박막을 형성하는 단계의 이전 또는 이 후에, 상기 발광층 도포용 부재 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막을 형성할 수 있다.Repeating the step of forming a nanoparticle first thin film by coating a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member a plurality of times The thickness of the light emitting layer can be adjusted, and before or after the step of forming the nanoparticle first thin film, comprising an organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member or the nanoparticle first thin film Organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin films can be formed.
본 발명의 다른 측면은 발광층을 제공한다. 상기 발광층은, 발광층 도포용 부재, 및 상기 발광층 도포용 부재 상에 배치되고, 전술된 제조방법을 통해 제조된, 유무기 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함한다.Another aspect of the invention provides a light emitting layer. The light emitting layer includes a light emitting layer coating member, and a nanoparticle first thin film disposed on the light emitting layer coating member and including the organic / inorganic perovskite nanocrystal structure manufactured by the above-described manufacturing method.
이 때, 상기 나노입자 제1 박막은 다층구조일 수 있고, 상기 발광층 도포용 부재 및 상기 나노입자 제1 박막 사이, 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막이 더 배치될 수 있다.In this case, the nanoparticle first thin film may have a multi-layered structure, and may include an organic-inorganic perovskite nanocrystal structure between the light emitting layer coating member and the nanoparticle first thin film or on the nanoparticle first thin film. The organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin film may be further disposed.
본 발명의 또 다른 측면은 발광소자를 제공한다. 상기 발광소자는 기판 상에 배치된 제1 전극, 상기 제1 전극 상에 배치되고, 전술된 제조방법을 통해 제조된, 유무기 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함하는 발광층, 및 상기 발광층 상에 배치된 제2 전극을 포함한다. 이 때, 상기 제1 전극 및 상기 발광층 사이에 배치되고, 전도성 물질 및 상기 전도성 물질보다 낮은 표면 에너지를 갖는 불소계 물질을 포함 엑시톤 버퍼층을 더 포함할 수 있다.Another aspect of the present invention provides a light emitting device. The light emitting device includes a first electrode disposed on a substrate, a nanoparticle first thin film disposed on the first electrode, and including an organic-inorganic perovskite nanocrystal structure, which is prepared by the above-described manufacturing method. A light emitting layer, and a second electrode disposed on the light emitting layer. In this case, an exciton buffer layer may be further disposed between the first electrode and the light emitting layer and may include a conductive material and a fluorine-based material having a lower surface energy than the conductive material.
또한, 상기 나노입자 제1 박막은 다층구조일 수 있고, 상기 발광층 도포용 부재 및 상기 나노입자 제1 박막 사이, 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막이 더 배치될 수 있다.In addition, the nanoparticle first thin film may have a multi-layer structure, and may include an organic-inorganic perovskite nanocrystal structure between the light emitting layer coating member and the nanoparticle first thin film or on the nanoparticle first thin film. Organic-inorganic perovskite microparticles or organic-inorganic perovskite second thin films may be further disposed.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 발광층의 제조방법을 제공한다. 상기 발광층의 제조방법은 발광층 도포용 부재를 준비하는 단계; 및 상기 발광층 도포용 부재 상에 무기금속할라이드 페로브스카이트 나노결정구조를 포함하는 무기금속할라이드 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 포함할 수 있다.Another aspect of the present invention to achieve the above object provides a method of manufacturing a light emitting layer. The method of manufacturing the light emitting layer may include preparing a light emitting layer coating member; And coating a solution including an inorganic metal halide perovskite nanoparticle including an inorganic metal halide perovskite nanocrystal structure on the light emitting layer coating member to form a nanoparticle first thin film. have.
또한, 상기 나노입자 제1 박막을 형성하는 단계는 용액 공정을 사용하는 것을 특징으로 한다.In addition, the step of forming the nanoparticle first thin film is characterized in that using a solution process.
또한, 상기 용액 공정은, 스핀코팅(spin-coating), 바코팅(bar coating), 슬롯 다이(slot-die coating), 그라비아 프린팅(Gravure-printing), 노즐 프린팅 (nozzle printing), 잉크젯 프린팅(ink-jet printing), 스크린 프린팅(screen printing), 전기수력학적 젯 프린팅 (electrohydrodynamic jet printing), 및 전기분무(electrospray)로 이루어진 군으로부터 선택되는 적어도 하나의 공정을 포함할 수 있다.In addition, the solution process is spin-coating, bar coating, slot-die coating, gravure printing, nozzle printing, inkjet printing (ink) at least one process selected from the group consisting of -jet printing, screen printing, electrohydrodynamic jet printing, and electrospray.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 발광층을 제공한다. 발광층은 발광층 도포용 부재; 및 상기 발광층 도포용 부재 상에 배치되고, 상술한 무기금속할라이드 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함할 수 있다.Another aspect of the present invention to achieve the above object provides a light emitting layer. The light emitting layer is a light emitting layer coating member; And a nanoparticle first thin film disposed on the light emitting layer coating member and including the inorganic metal halide perovskite nanocrystal structure described above.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 태양전지를 제공한다. 이러한 태양전지는 제1 전극, 제2 전극 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 페로브스카이트 나노결정입자를 포함하는 광활성층을 포함할 수 있다.Another aspect of the present invention to achieve the above object provides a solar cell. Such a solar cell may be positioned between a first electrode, a second electrode, and the first electrode and the second electrode, and may include a photoactive layer including the above-described perovskite nanocrystalline particles.
본 발명에 따른 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트 발광소자용 발광층 및 이의 제조방법과 이를 이용한 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트 발광소자는 나노입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트가 형성되며, 유기평면 (또는 알칼리금속평면)과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다. 또한, 페로브스카이트를 나노입자로 제조한 뒤, 발광층에 도입함에 따라 소자의 발광 효율 및 휘도를 향상시킬 수 있다.Light emitting layer for organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device according to the present invention and a method for manufacturing the same, and organic-inorganic hybrid perovskite or inorganic metal halide perovskite light emitting device using the same An organic-inorganic hybrid perovskite or inorganic metal halide perovskite having a crystal structure combining FCC and BCC is formed in the light emitting body, and a lamellar structure in which an organic plane (or an alkali metal plane) and an inorganic plane are alternately stacked. And exciton is confined to the inorganic plane to produce high color purity. In addition, since the perovskite is made of nanoparticles and then introduced into the light emitting layer, light emission efficiency and luminance of the device may be improved.
도 1은 본 발명의 일 실시예에 따른 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액 제조방법을 나타낸 순서도이다.1 is a flow chart illustrating a method for preparing a solution including organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 발광층의 단면도이다.2 is a cross-sectional view of a light emitting layer according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 발광층의 단면도이다.3 is a cross-sectional view of a light emitting layer according to another embodiment of the present invention.
도 4a 내지 4d는 본 발명의 또 다른 실시예에 따른 발광층의 단면도들이다.4A to 4D are cross-sectional views of a light emitting layer according to another embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노입자를 역 나노-에멀젼 (Inverse nano-emulsion) 법을 통하여 제조하는 방법을 나타낸 모식도이다.FIG. 5 is a schematic diagram illustrating a method of preparing the organic-inorganic hybrid perovskite nanoparticles according to an embodiment of the present invention through an inverse nano-emulsion method.
도 6은 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 및 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 나타낸 모식도이다.FIG. 6 is a schematic view showing an organic-inorganic hybrid perovskite nanocrystalline particle emitter and an inorganic metal halide perovskite nanocrystalline particle emitter according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 페로브스카이트 나노결정구조의 모식도이다.7 is a schematic diagram of a perovskite nanocrystal structure according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 스핀-어셈블리 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.8 is a schematic view showing a light emitting layer forming process through a spin-assembly process according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 플로팅 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.9 is a schematic diagram showing a light emitting layer forming process through a floating process according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 드라이 컨택 프린팅 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.10 is a schematic view showing a light emitting layer forming process through a dry contact printing process according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 유무기 페로브스카이트-유기 호스트 복합체 형성 공정을 통한 발광층 형성방법을 나타낸 모식도이다.11 is a schematic view showing a light emitting layer forming method through an organic-inorganic perovskite-organic host composite forming process according to an embodiment of the present invention.
도 12a 내지 도 12d는 본 발명의 일 실시예에 따른 발광 소자의 제조방법을 나타낸 발광소자의 단면도들이다.12A to 12D are cross-sectional views of light emitting devices illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 엑시톤 버퍼층(30)의 효과를 나타낸 모식도이다.13 is a schematic diagram showing the effect of the exciton buffer layer 30 according to an embodiment of the present invention.
도 14는 제조예 1의 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자와 비교예 1 및 비교예 2에 따른 유무기 하이브리드 페로브스카이트(OIP film)에 자외선을 조사하여 발광 빛을 찍은 형광 이미지이다.14 is an organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure of Preparation Example 1 and ultraviolet in the organic-inorganic hybrid perovskite (OIP film) according to Comparative Examples 1 and 2 It is a fluorescent image taken by emitting light.
도 15는 제조예 및 비교예 1에 따른 나노입자의 모식도이다.15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1. FIG.
도 16은 제조예 1 및 비교예 1에 따른 나노입자의 광발광 (photoluminescence) 매트릭스(matrix)를 각각 상온과 저온에서 찍은 이미지이다.16 is an image taken at room temperature and low temperature of the photoluminescence matrix of the nanoparticles according to Preparation Example 1 and Comparative Example 1, respectively.
도 17은 제조예 1 및 비교예 1에 따른 나노입자의 광발광(photoluminescence)를 찍은 결과 그래프이다.FIG. 17 is a graph showing photoluminescence of nanoparticles according to Preparation Example 1 and Comparative Example 1. FIG.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to describe the present invention in more detail. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like numbers refer to like elements throughout.
본 명세서에서 층이 다른 층 또는 기판 "상"에 있다고 언급되는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있으나, 그들 사이에 제3의 층이 개재될 수도 있다. 또한, 본 명세서에서 위쪽, 상(부), 상면 등의 방향적인 표현은 그 기준에 따라 아래쪽, 하(부), 하면 등의 의미로 이해될 수 있다. 즉, 공간적인 방향의 표현은 상대적인 방향으로 이해되어야 하며 절대적인 방향을 의미하는 것으로 한정 해석되어서는 안된다.Where a layer is referred to herein as "on" another layer or substrate, it may be formed directly on the other layer or substrate, but a third layer may be interposed therebetween. In addition, in the present specification, the directional expression of the upper part, the upper part, and the upper part may be understood as meanings of the lower part, the lower part, the lower part, and the like according to the criteria. That is, the expression of the spatial direction should be understood as a relative direction and should not be construed as limiting the absolute direction.
<유무기 하이브리드 페로브스카이트 발광소자용 발광층><Light emitting layer for organic-inorganic hybrid perovskite light emitting device>
본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 발광소자용 발광층의 제조방법에 대해 설명한다.A method of manufacturing the light emitting layer for an organic-inorganic hybrid perovskite light emitting device according to an embodiment of the present invention will be described.
한편, 유무기 하이브리드 페로브스카이트 나노입자 대신 무기금속할라이드 페로브스카이트 나노입자로 발광층을 형성하는 방법도 동일하다. 따라서, 유무기 하이브리드 페로브스카이트 발광소자용 발광층의 제조방법을 예로 설명한다.Meanwhile, the method of forming the light emitting layer from the inorganic metal halide perovskite nanoparticles instead of the organic / inorganic hybrid perovskite nanoparticles is also the same. Therefore, the manufacturing method of the light emitting layer for organic-inorganic hybrid perovskite light emitting elements is demonstrated to an example.
본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 발광소자용 발광층의 제조방법은, 발광층 도포용 부재를 준비하는 단계 및 전술된 발광층 도포용 부재 상에 유뮤기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 포함한다.In the method for manufacturing the light emitting layer for the organic-inorganic hybrid perovskite light emitting device according to an embodiment of the present invention, preparing a light emitting layer coating member and the organic-permeable perovskite nanocrystal structure on the light emitting layer coating member described above And coating a solution containing the organic-inorganic perovskite nanoparticles including the nanoparticles to form the first thin film.
먼저, 발광층 도포용 부재를 준비한다. 전술된 발광층 도포용 부재는 기판, 전극, 또는 반도체층일 수 있다. 전술된 기판, 전극, 또는 반도체층은 발광 소자에 사용될 수 있는 기판, 전극, 또는 반도체층을 사용할 수 있다. 또한, 상기 발광층 도포용 부재는 기판/전극이 순서대로 적층된 형태 또는 기판/전극/반도체층이 순서대로 적층된 형태일 수 있다. 또한, 전술된 기판, 전극, 또는 반도체층에 대한 설명은 후술되는 '유무기 하이브리드 페로브스카이트 발광소자'의 내용을 참고하기로 한다.First, the light emitting layer coating member is prepared. The above-described light emitting layer coating member may be a substrate, an electrode, or a semiconductor layer. As the substrate, the electrode, or the semiconductor layer described above, a substrate, an electrode, or a semiconductor layer that can be used for the light emitting device can be used. In addition, the light emitting layer coating member may have a form in which substrates / electrodes are sequentially stacked or a form in which substrates / electrodes / semiconductor layers are sequentially stacked. In addition, the description of the above-described substrate, electrode, or semiconductor layer will refer to the contents of the 'organic-inorganic hybrid perovskite light emitting device' described later.
도 1은 본 발명의 일 실시예에 따른 유뮤기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액 제조방법을 나타낸 순서도이다.1 is a flow chart illustrating a solution preparation method including organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention.
도 1를 참조하면, 유뮤기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액 제조방법은 양성자성 용매에 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계(S100) 및 상기 제1 용액을 상기 제2 용액에 섞어 나노입자를 형성하는 단계(S200)를 포함할 수 있다.Referring to FIG. 1, a method of preparing a solution including organic-inorganic perovskite nanoparticles including an organic / inorganic perovskite nanocrystal structure includes a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent. And preparing a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent (S100) and mixing the first solution with the second solution to form nanoparticles (S200).
즉, 역 나노-에멀젼(Inverse nano-emulsion) 법을 통하여 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노입자를 제조할 수 있다.That is, the organic-inorganic hybrid perovskite nanoparticles according to the present invention can be prepared through an inverse nano-emulsion method.
이하, 보다 구체적으로 설명하면,In more detail below,
먼저, 양성자성(protic) 용매에 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성(aprotic) 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비한다(S100).First, a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent and a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent are prepared (S100).
이때의 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone) 또는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide)를 포함할 수 있으나, 이에 제한되는 것은 아니다.At this time, the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
또한, 이때의 유무기 하이브리드 페로브스카이트는 이차원적인 결정구조를 갖는 물질일 수 있다. 예를 들어, 이러한 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An-1BnX3n+1의 구조(n은 2 내지 6사이의 정수)일 수 있다. In addition, the organic-inorganic hybrid perovskite at this time may be a material having a two-dimensional crystal structure. For example, such organic-inorganic hybrid perovskite may be a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n X 3n + 1 (n is an integer between 2 and 6).
이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다.In this case, A is an organoammonium material, B is a metal material, and X is a halogen element.
예를 들어, 상기 A는 (CH3NH3)n,((CxH2x+1)nNH3)2(CH3NH3)n,(RNH3)2,(CnH2n+1NH3)2,(CF3NH3),(CF3NH3)n,((CxF2x+1)nNH3)2(CF3NH3)n,((CxF2x+1)nNH3)2또는 (CnF2n + 1NH3)2(n은 1이상인 정수, x는 1이상인 정수)일 수 있다. 또한, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 2가의 희토류 금속일 수 있다. 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다. 또한, 상기 X는 Cl, Br,I 또는 이들의 조합일 수 있다.For example, A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1). In addition, B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof. At this time, the rare earth metal may be a divalent rare earth metal. For example, Ge, Sn, Pb, Eu or Yb. In addition, the alkaline earth metal may be, for example, Ca or Sr. In addition, X may be Cl, Br, I or a combination thereof.
한편, 이러한 페로브스카이트는 AX 및 BX2를 일정 비율로 조합하여 준비할 수 있다. 즉, 제1 용액은 양성자성 용매에 AX 및 BX2를 일정 비율로 녹여서 형성될 수 있다. 예를 들어, 양성자성 용매에 AX 및 BX2를 2:1 비율로 녹여서 A2BX3유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 준비할 수 있다.On the other hand, such perovskite can be prepared by combining AX and BX 2 in a certain ratio. That is, the first solution may be formed by dissolving AX and BX 2 in a proportion in a protic solvent. For example, a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
또한, 이때의 비양성자성 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센 또는 이소프로필알콜를 포함 할 수 있지만 이것으로 제한되는 것은 아니다.In addition, the aprotic solvent at this time is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene or isopropyl alcohol May be included but is not limited to this.
또한, 알킬 할라이드 계면활성제는 alkyl-X의 구조일 수 있다. 이때의 X에 해당하는 할로겐 원소는 Cl, Br 또는 I 등을 포함할 수 있다. 또한, 이때의 alkyl 구조에는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), CnH2n + 1OH등의 구조를 가지는 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), alkyl-N의 구조를 가지는 알킬아민(alkylamine) (ex. Hexadecyl amine, 9-Octadecenylamine 1-Amino-9-octadecene (C19H37N)),p-치환된 아닐린(p-substituted aniline) 및 페닐 암모늄(phenyl ammonium) 및 플루오린 암모늄(fluorine ammonium)을 포함할 수 있지만 이것으로 제한되는 것은 아니다.In addition, the alkyl halide surfactant may be of the structure of alkyl-X. In this case, the halogen element corresponding to X may include Cl, Br, or I. In this case, the alkyl structure includes primary alcohols and secondary alcohols having a structure such as acyclic alkyl having a structure of C n H 2n +1 , C n H 2n + 1 OH, and the like. Tertiary alcohol, alkylamine having alkyl-N structure (ex. Hexadecyl amine, 9-Octadecenylamine 1-Amino-9-octadecene (C 19 H 37 N)), p-substituted aniline (p-substituted aniline) and phenyl ammonium and fluorine ammonium, but are not limited thereto.
한편, 알킬 할라이드 계면활성제 대신에 카르복실산 (COOH) 계면활성제를 사용할 수 있다.On the other hand, carboxylic acid (COOH) surfactants may be used instead of alkyl halide surfactants.
예를 들어, 계면활성제는 4,4'-아조비스(4-시아노팔레릭 에시드) (4,4'-Azobis(4-cyanovaleric acid)), 아세틱 에시드(Acetic acid), 5-마이노살리클릭 에시드 (5-Aminosalicylic acid), 아크리릭 에시드 (Acrylic acid), L-아스펜틱 에시드 (L-Aspentic acid), 6-브로헥사노익 에시드 (6-Bromohexanoic acid), 프로모아세틱 에시드 (Bromoacetic acid), 다이클로로 아세틱 에시드 (Dichloro acetic acid), 에틸렌디아민테트라아세틱 에시드 (Ethylenediaminetetraacetic acid), 이소부티릭 에시드 (Isobutyric acid), 이타코닉 에시드 (Itaconic acid), 말레익 에시드 (Maleic acid), r-말레이미도부틸릭 에시드 (r-Maleimidobutyric acid), L-말릭 에시드 (L-Malic acid), 4-나이트로벤조익 에시드 (4-Nitrobenzoic acid) 또는 1-파이렌카르복실릭 에시드 (1-Pyrenecarboxylic acid), 올레익 에시드 (oleic acid) 와 같이 카르복실산 (COOH)를 포함할 수 있지만 이것으로 제한되는 것은 아니다.For example, the surfactant may be 4,4'-Azobis (4-cyanovaleric acid) (4,4'-Azobis (4-cyanovaleric acid)), acetic acid, 5-minano 5-Aminosalicylic acid, Acrylic acid, L-Aspentic acid, 6-Brohexahexanoic acid, Promoacetic acid ), Dichloro acetic acid, ethylenediaminetetraacetic acid, isobutyric acid, itaconic acid, maleic acid, r R-Maleimidobutyric acid, L-Malic acid, 4-nitrobenzoic acid, or 1-pyrenecarboxylic acid ), Such as oleic acid, but may contain carboxylic acid (COOH). It is not.
그 다음에, 상기 제1 용액을 상기 제2 용액에 섞어 나노입자를 형성한다(S200).Next, the first solution is mixed with the second solution to form nanoparticles (S200).
상기 제1 용액을 상기 제2 용액에 섞어 나노입자를 형성하는 단계는, 상기 제2 용액에 상기 제1 용액을 한방울씩 떨어뜨려 섞는 것이 바람직하다. 또한, 이때의 제2 용액은 교반을 수행할 수 있다. 예를 들어, 강하게 교반중인 알킬 할라이드 계면활성제가 녹아 있는 제2 용액에 유무기 페로브스카이트(OIP)가 녹아 있는 제2 용액을 천천히 한방울씩 첨가하여 나노입자를 합성할 수 있다.In the forming of the nanoparticles by mixing the first solution with the second solution, it is preferable to drop the first solution drop by drop into the second solution. In addition, the second solution at this time may be stirred. For example, nanoparticles may be synthesized by slowly dropping a second solution in which an organic-inorganic perovskite (OIP) is dissolved into a second solution in which a strongly stirring alkyl halide surfactant is dissolved.
이 경우, 제1 용액을 제2 용액에 떨어뜨려 섞게 되면 용해도 차이로 인해 제2 용액에서 유무기 페로브스카이트(OIP)가 석출(precipitation)된다. 그리고 제2 용액에서 석출된 유무기 페로브스카이트(OIP)를 알킬 할라이드 계면활성제가 표면을 안정화하면서 잘 분산된 유무기 페로브스카이트 나노결정(OIP-NC)을 생성하게 된다. 따라서, 유무기 페로브스카이트 나노결정 및 이를 둘러싸는 복수개의 알킬할라이드 유기리간드들을 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 제조할 수 있다.In this case, when the first solution is dropped into the second solution and mixed, the organic-inorganic perovskite (OIP) is precipitated in the second solution due to the difference in solubility. In addition, the organic-inorganic perovskite (OIP) precipitated in the second solution generates an organic-inorganic perovskite nanocrystal (OIP-NC) that is well dispersed while the alkyl halide surfactant stabilizes the surface. Accordingly, a solution including organic-inorganic perovskite nanoparticles including organic-inorganic perovskite nanocrystals and a plurality of alkyl halide organic ligands surrounding the organic-inorganic perovskite nanocrystals can be prepared.
상기 유무기 페로브스카이트 나노입자를 포함하는 용액을 상기 발광층 도포용 부재 상에 코팅하여 발광층인 나노입자 제1 박막을 형성한다.The solution containing the organic-inorganic perovskite nanoparticles is coated on the light emitting layer coating member to form a nanoparticle first thin film that is a light emitting layer.
도 2는 본 발명의 일 실시예에 따른 발광층의 단면도이다.2 is a cross-sectional view of a light emitting layer according to an embodiment of the present invention.
도 2를 참조하면, 발광층 도포용 부재(100) 상에 나노입자 제1 박막(200a) 형태의 발광층이 형성되었음을 알 수 있다.Referring to FIG. 2, it can be seen that the light emitting layer in the form of the nanoparticle first thin film 200a is formed on the light emitting layer coating member 100.
상기 나노입자 제1 박막을 형성하는 단계는 용액 공정을 사용할 수 있다. 용액 공정을 사용할 경우, 발광층 도포용 부재 상에 균일하게 발광층을 형성할 수 있다.The forming of the nanoparticle first thin film may use a solution process. When using a solution process, a light emitting layer can be formed uniformly on the light emitting layer coating member.
전술된 용액 공정은, 스핀코팅(spin-coating), 바코팅(bar coating), 슬롯 다이(slot-die coating), 그라비아 프린팅(Gravure-printing), 노즐 프린팅 (nozzle printing), 잉크젯 프린팅(ink-jet printing), 스크린 프린팅(screen printing), 전기수력학적 젯 프린팅 (electrohydrodynamic jet printing), 및 전기분무(electrospray)로 이루어진 군으로부터 선택되는 적어도 하나의 공정을 포함할 수 있다.The above-described solution process includes spin-coating, bar coating, slot-die coating, gravure printing, nozzle printing, inkjet printing and ink-jet printing. at least one process selected from the group consisting of jet printing, screen printing, electrohydrodynamic jet printing, and electrospray.
도 3은 본 발명의 다른 실시예에 따른 발광층의 단면도이다.3 is a cross-sectional view of a light emitting layer according to another embodiment of the present invention.
상기 발광층 도포용 부재 상에 상기 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 복수번 반복하여 상기 발광층의 두께를 조절할 수 있다.Repeating the step of forming a nanoparticle first thin film by coating a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member a plurality of times The thickness of the light emitting layer can be adjusted.
도 3을 참조하면, 상기 나노입자 제1 박막이 다층(N층)구조로 형성될 수 있다.Referring to FIG. 3, the nanoparticle first thin film may be formed in a multilayer (N layer) structure.
도 4a 내지 4d는 본 발명의 또 다른 실시예에 따른 발광층의 단면도들이다.4A to 4D are cross-sectional views of a light emitting layer according to another embodiment of the present invention.
상기 나노입자 제1 박막을 형성하는 단계 이전 또는 이 후에, 상기 발광층 도포용 부재 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 상기 유무기 페로브스카이트 제2 박막을 형성하는 단계를 더 포함할 수 있다.Before or after the step of forming the nanoparticle first thin film, the organic-inorganic perovskite microparticles comprising an organic-inorganic perovskite nanocrystalline structure on the light emitting layer coating member or the nanoparticle first thin film or The method may further include forming the organic / inorganic perovskite second thin film.
이 때, 전술된 유무기 페로브스카이트 마이크로입자 또는 상기 유무기 페로브스카이트 제2 박막은, 상기 제1 용액과 상기 제2 용액을 혼합하는 상기 유무기 페로브스카이트 나노입자를 포함하는 용액 제조과 달리, 상기 제1 용액만을 사용하여 코팅함에 따라 형성될 수 있다. 이 경우, 전술된 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액과는 달리, 마이크로 범위를 갖는 유무기 페로브스카이트 마이크로입자 또는 수나노 내지 수마이크로 범위를 갖는 유무기 페로브스카이트 결정구조를 포함하는 유무기 페로브스카이트 제2 박막을 형성할 수 있다.In this case, the aforementioned organic-inorganic perovskite microparticles or the organic-inorganic perovskite second thin film include the organic-inorganic perovskite nanoparticles that mix the first solution and the second solution. Unlike solution preparation, it can be formed by coating using only the first solution. In this case, unlike the solution containing the organic-inorganic perovskite nanoparticles comprising the organic-inorganic perovskite nanocrystal structure described above, the organic-inorganic perovskite microparticles having a micro range or Sunano to water An organic-inorganic perovskite second thin film containing an organic-inorganic perovskite crystal structure having a micro range can be formed.
이 경우, 전술된 발광층 도포용 부재(100) 상에 도 4(a)와 같이 전술된 나노입자 제1 박막(200a) 상에 전술된 유무기 페로브스카이트 마이크로입자(200b)가 배치된 형태, 도 4(b)와 같이 전술된 유무기 페로브스카이트 마이크로입자(200b) 상에 전술된 나노입자 제1 박막(200a)이 형성된 형태, 도 4(c)와 같이 전술된 나노입자 제1 박막(200a) 상에 전술된 유무기 페로브스카이트 제2 박막(200c)가 배치된 형태 또는, 도 4(d)와 같이 전술된 유무기 페로브스카이트 제2 박막(200c) 상에 전술된 나노입자 제1 박막(200a)이 형성된 형태일 수 있다.In this case, the organic-inorganic perovskite microparticles 200b described above are disposed on the nanoparticle first thin film 200a as described above with reference to FIG. 4A on the light emitting layer coating member 100. 4 is a form in which the aforementioned nanoparticle first thin film 200a is formed on the organic-inorganic perovskite microparticle 200b described above with reference to FIG. 4B, and the nanoparticle first described above with reference to FIG. 4C. The organic-inorganic perovskite second thin film 200c described above is disposed on the thin film 200a, or the organic-inorganic perovskite second thin film 200c described above as illustrated in FIG. 4 (d). The nanoparticle first thin film 200a may be formed.
한편, 전술된 유무기 페로브스카이트 마이크로 입자는 구형, 다각형과 같은 다양한 형태로 형성될 수 있다.On the other hand, the organic-inorganic perovskite microparticles described above may be formed in various shapes such as spherical and polygonal.
또한, 전술된 나노입자 제1 박막의 두께는 1 nm 내지 1 μm일 수 있고, 평균 거칠기 (roughness)는 0.1 nm 내지 50 nm일 수 있다.In addition, the thickness of the above-described nanoparticle first thin film may be 1 nm to 1 μm, and the average roughness may be 0.1 nm to 50 nm.
이 때, 전술된 유무기 하이브리드 페로브스카이트 나노결정 입자의 밴드갭 에너지는 1 eV 내지 5 eV일 수 있다.At this time, the band gap energy of the above-mentioned organic-inorganic hybrid perovskite nanocrystalline particles may be 1 eV to 5 eV.
또한, 전술된 유무기 하이브리드 페로브스카이트 나노입자의 발광 파장은 200nm 내지 1300nm일 수 있다.In addition, the emission wavelength of the organic-inorganic hybrid perovskite nanoparticles described above may be 200nm to 1300nm.
한편, 이러한 유무기 페로브스카이트 나노결정의 크기는 알킬 할라이드 계면활성제의 길이 또는 모양 요소(shape factor) 조절을 통해 제어할 수 있다. 예컨대, shape factor 조절은 선형, tapered 또는 역삼각 모양의 surfactant를 통해 크기를 제어할 수 있다.On the other hand, the size of the organic-inorganic perovskite nanocrystals can be controlled by adjusting the length or shape factor of the alkyl halide surfactant. For example, shape factor adjustment can control the size through a linear, tapered or inverted triangular surfactant.
한편, 이와 같이 생성되는 유무기 페로브스카이트 나노결정의 크기는 1 내지 900nm일 수 있다. 만일 유무기 페로브스카이트 나노결정의 크기를 900 nm를 초과하여 형성할 경우 큰 나노결정 안에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있을 수 있다.On the other hand, the size of the organic-inorganic perovskite nanocrystals thus produced may be 1 to 900nm. If the size of the organic-inorganic perovskite nanocrystals exceeds 900 nm, the fundamental problem is that excitons do not go into luminescence due to thermal ionization and delocalization of charge carriers in large nanocrystals. There may be.
도 5는 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노입자를 역 나노-에멀젼 (Inverse nano-emulsion) 법을 통하여 제조하는 방법을 나타낸 모식도이다.FIG. 5 is a schematic diagram illustrating a method of preparing the organic-inorganic hybrid perovskite nanoparticles according to an embodiment of the present invention through an inverse nano-emulsion method.
도 5(a)를 참조하면, 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액에 양성자성 용매에 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 한방울씩 첨가한다.Referring to FIG. 5 (a), a first solution in which an organic-inorganic hybrid perovskite is dissolved in a protic solvent is added dropwise to a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent.
이때의 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone) 또는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide)를 포함할 수 있으나, 이에 제한되는 것은 아니다.At this time, the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
이때의 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1BnX3n +1의 구조(n은 2 내지 6사이의 정수)일 수 있다. 이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다. 예를 들어, 상기 A는 (CH3NH3)n,((CxH2x+1)nNH3)2(CH3NH3)n,(RNH3)2,(CnH2n+1NH3)2,(CF3NH3),(CF3NH3)n,((CxF2x+1)nNH3)2(CF3NH3)n,((CxF2x+1)nNH3)2또는 (CnF2n + 1NH3)2(n은 1이상인 정수, x는 1이상인 정수)일 수 있다. 또한, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합일 수 있다. 이때의 희토류 금속 2가 희토류 금속일 수 있고, 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다. 또한, 상기 X는 Cl, Br,I 또는 이들의 조합일 수 있다.At this time, the inorganic hybrid perovskite is ABX 3 , A 2 BX 4 , ABX 4 Or A n- 1 B n X 3n +1 (n is an integer between 2 and 6). In this case, A is an organoammonium material, B is a metal material, and X is a halogen element. For example, A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1). In addition, B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof. The rare earth metal 2 at this time may be a rare earth metal, for example Ge, Sn, Pb, Eu or Yb. In addition, the alkaline earth metal may be, for example, Ca or Sr. In addition, X may be Cl, Br, I or a combination thereof.
한편, 이때의 페로브스카이트의 구조는 AX와 BX2의 비율별 조합으로 형성될 수 있다. 예를 들어, 양성자성 용매에 AX 및 BX2를 2:1 비율로 녹여서 A2BX3유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 준비할 수 있다.On the other hand, the structure of the perovskite at this time may be formed by a ratio-specific combination of AX and BX 2 . For example, a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
한편, 이때의 AX의 합성예로서, A가 CH3NH3,X가 Br일 경우, CH3NH2(methylamine)과 HBr(hydroiodic acid)을 질소분위기에서 녹여 용매 증발을 통해 CH3NH3Br을 얻을 수 있다.On the other hand, as an example of synthesis of AX at this time, when A is CH 3 NH 3 , X is Br, CH 3 NH 2 (methylamine) and HBr (hydroiodic acid) is dissolved in a nitrogen atmosphere CH 3 NH 3 Br Can be obtained.
도 5(b)를 참조하면, 제2 용액에 제1 용액을 첨가하면, 용해도 차이로 인해 제2 용액에서 유무기 하이브리드 페로브스카이트가 석출되고, 이러한 석출된 유무기 하이브리드 페로브스카이트를 알킬 할라이드 계면활성제가 둘러싸면서 표면을 안정화하면서 잘 분산된 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 하이브리드 페로브스카이트 나노입자(100)를 생성하게 된다. 이때 유무기 하이브리드 페로브스카이트 나노결정의 표면은 알킬 할라이드인 유기 리간드들이 둘러싸이게 된다.Referring to FIG. 5B, when the first solution is added to the second solution, organic-inorganic hybrid perovskite is precipitated in the second solution due to the difference in solubility, and the precipitated organic-inorganic hybrid perovskite is deposited. While the alkyl halide surfactants surround and stabilize the surface, the organic-inorganic hybrid perovskite nanoparticles 100 including the organic-inorganic hybrid perovskite nanocrystal structure are well dispersed. At this time, the surface of the organic-inorganic hybrid perovskite nanocrystals are surrounded by organic ligands, which are alkyl halides.
이후, 알킬 할라이드 계면활성제가 녹아있는 비양성자성 용매에 분산되어있는 유무기 하이브리드 페로브스카이트 나노입자(100)를 포함한 양성자성 용매를 열을 가해 선택적으로 증발 시키거나, 양성자성 용매와 비양성자성 용매와 모두 녹을 수 있는 코솔벤트(co-solvent)를 첨가하여 나노입자를 포함한 양성자성 용매를 선택적으로 비양성자성 용매로부터 추출하여 유무기 하이브리드 페로브스카이트 나노입자를 얻을 수 있다.Thereafter, the protic solvent including the organic-inorganic hybrid perovskite nanoparticles 100 dispersed in the aprotic solvent in which the alkyl halide surfactant is dissolved is selectively evaporated by heating, or the aprotic solvent and aprotic solvent The organic-inorganic hybrid perovskite nanoparticles can be obtained by selectively extracting a protic solvent including nanoparticles from the aprotic solvent by adding a magnetic solvent and co-solvent that can be dissolved in both.
본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노입자를 설명한다.It describes the organic-inorganic hybrid perovskite nanoparticles according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 페로브스카이트 나노입자를 나타낸 모식도이다.Figure 6 is a schematic diagram showing a perovskite nanoparticles according to an embodiment of the present invention.
이때 도 6은 유무기 하이브리드 페로브스카이트 나노결정입자로 도시하였는데, 도 6의 유무기 하이브리드를 페로브스카이트를 무기금속할라이드 페로브스카이트로 변경하면 무기금속할라이드 나노결정입자이므로 설명은 동일하다.6 shows the organic-inorganic hybrid perovskite nanocrystalline particles. When the organic-inorganic hybrid of FIG. 6 is changed to the inorganic metal halide perovskite, the description is the same. .
도 6을 참조하면, 본 발명의 일 실시예에 따른 발광체는 유무기 하이브리드 페로브스카이트 (또는 무기금속할라이드 페로브스카이트) 나노입자로서, 유기물 평면 (또는 알칼리금속평면)과 무기물 평면이 교대로 적층된 라멜라 구조를 갖는 이차원적인 유무기 하이브리드 페로브스카이트 나노결정(110)을 포함한다.Referring to FIG. 6, the light emitter according to the exemplary embodiment of the present invention is an organic-inorganic hybrid perovskite (or inorganic metal halide perovskite) nanoparticle, in which an organic plane (or an alkali metal plane) and an inorganic plane are alternated. And a two-dimensional organic-inorganic hybrid perovskite nanocrystal 110 having a lamellar structure stacked with a.
이러한 이차원적인 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1BnX3n +1의 구조(n은 2 내지 6사이의 정수)를 포함할 수 있다. 이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다. 예를 들어, 상기 A는 (CH3NH3)n,((CxH2x+1)nNH3)2(CH3NH3)n,(RNH3)2,(CnH2n+1NH3)2,(CF3NH3),(CF3NH3)n,((CxF2x+1)nNH3)2(CF3NH3)n,((CxF2x+1)nNH3)2또는 (CnF2n + 1NH3)2(n은 1이상인 정수, x는 1이상인 정수)일 수 있다. 또한, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 2가 희토류 금속일 수 있고, 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다. 또한, 상기 X는 Cl, Br,I 또는 이들의 조합일 수 있다.These two-dimensional organic-inorganic hybrid perovskite is ABX 3 , A 2 BX 4 , ABX 4 Or A n- 1 B n X 3n +1 (n is an integer between 2 and 6). In this case, A is an organoammonium material, B is a metal material, and X is a halogen element. For example, A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n, (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1). In addition, B may be a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof. The rare earth metal at this time may be a divalent rare earth metal, for example Ge, Sn, Pb, Eu or Yb. In addition, the alkaline earth metal may be, for example, Ca or Sr. In addition, X may be Cl, Br, I or a combination thereof.
한편, 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노입자(100)는 상술한 유무기 하이브리드 페로브스카이트 나노결정(110)을 둘러싸는 복수개의 유기리간드들(120)을 더 포함할 수 있다. 이때의 유기리간드들(120)은 계면활성제로 사용된 물질로서, 알킬할라이드를 포함할 수 있다. 따라서, 상술한 바와 같이 석출되는 유무기 하이브리드 페로브스카이트의 표면을 안정화하기 위하여 계면활성제로 사용된 알킬할라이드가 유무기 하이브리드 페로브스카이트 나노결정의 표면을 둘러싸는 유기리간드가 된다.Meanwhile, the organic-inorganic hybrid perovskite nanoparticle 100 according to the present invention may further include a plurality of organic ligands 120 surrounding the organic-inorganic hybrid perovskite nanocrystal 110 described above. . In this case, the organic ligands 120 may include an alkyl halide as a material used as a surfactant. Therefore, the alkyl halide used as a surfactant to stabilize the surface of the organic-inorganic hybrid perovskite precipitated as described above becomes an organic ligand surrounding the surface of the organic-inorganic hybrid perovskite nanocrystals.
한편, 만일, 이러한 알킬할라이드 계면활성제의 길이가 짧을 경우, 형성되는 나노결정의 크기가 커지게 되므로 900 nm를 초과하여 형성될 수 있고, 이 경우 큰 나노결정 안에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있을 수 있다. On the other hand, if the length of the alkyl halide surfactant is short, since the size of the nanocrystals to be formed may be larger than 900 nm can be formed, in this case for thermal ionization and delocalization of the charge carriers in the large nanocrystals There may be a fundamental problem that the excitons do not go to the light emission but are separated by the free charge and disappear.
즉, 형성되는 유무기 하이브리드 페로브스카이트 나노결정의 크기와 이러한 나노 결정을 형성하기 위해 사용되는 알킬 할라이드 계면활성제의 길이는 반비례한다.That is, the size of the organic-inorganic hybrid perovskite nanocrystals formed is inversely proportional to the length of the alkyl halide surfactant used to form these nanocrystals.
따라서, 일정 길이 이상의 알킬할라이드를 계면활성제로 사용함으로써 형성되는 유무기 하이브리드 페로브스카이트 나노결정의 크기를 일정 크기 이하로 제어할 수 있다. 예를 들어, 알킬할라이드 계면활성제로 옥타데실암모늄 브로마이드(octadecyl-ammonium bromide)를 사용하여 900 nm 이하의 크기를 가진 유무기 하이브리드 페로브스카이트 나노결정을 형성할 수 있다.Therefore, the size of the organic-inorganic hybrid perovskite nanocrystals formed by using an alkyl halide of a predetermined length or more as a surfactant can be controlled to a predetermined size or less. For example, octadecyl-ammonium bromide may be used as an alkyl halide surfactant to form organic-inorganic hybrid perovskite nanocrystals having a size of 900 nm or less.
또한, 이차원적인 결정구조를 갖는 무기금속할라이드 페로브스카이트는 A2BX4, ABX4 또는 An-1PbnI3n+1(n은 2 내지 6사이의 정수)의 구조일 수 있다.In addition, the inorganic metal halide perovskite having a two-dimensional crystal structure may be a structure of A 2 BX 4 , ABX 4 or A n-1 Pb n I 3n + 1 (n is an integer between 2 and 6).
이때, 상기 A는 알칼리 금속, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다.Wherein A is an alkali metal, B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, and X is Cl , Br, I or a combination thereof. At this time, the rare earth metal may be Ge, Sn, Pb, Eu or Yb. In addition, the alkaline earth metal may be, for example, Ca or Sr.
또한, 본 발명에 따른 이차원적 구조를 갖는 무기금속할라이드 페로브스카이트 나노결정입자는 상술한 무기금속할라이드 페로브스카이트 나노결정구조를 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다. 이러한 유기리간드는 알킬할라이드를 포함할 수 있다.In addition, the inorganic metal halide perovskite nanocrystalline particles having the two-dimensional structure according to the present invention may further include a plurality of organic ligands surrounding the inorganic metal halide perovskite nanocrystal structure described above. Such organic ligands may include alkyl halides.
도 7은 본 발명의 일 실시예에 따른 페로브스카이트 나노결정 구조의 모식도이다.7 is a schematic diagram of a perovskite nanocrystal structure according to an embodiment of the present invention.
도 7에는 유무기 하이브리드 페로브스카이트 나노결정 및 무기금속할라이드 페로브스카이트 나노결정의 구조를 함께 도시하였다.7 shows the structures of the organic-inorganic hybrid perovskite nanocrystals and the inorganic metal halide perovskite nanocrystals together.
도 7을 참조하면, 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 (또는 무기금속할라이드 페로브스카이트) 나노 결정 구조는 유기 암모늄 (또는 알칼리금속) 및 할라이드들을 포함함을 알 수 있다.Referring to FIG. 7, it can be seen that the organic-inorganic hybrid perovskite (or inorganic metal halide perovskite) nanocrystal structure according to an embodiment of the present invention includes organic ammonium (or alkali metal) and halides. have.
스핀-어셈블리 공정을 통한 발광층 형성Formation of light emitting layer through spin-assembly process
도 8은 본 발명의 일 실시예에 따른 스핀-어셈블리 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.8 is a schematic view showing a light emitting layer forming process through a spin-assembly process according to an embodiment of the present invention.
도 8을 참조하면, 먼저 앵커링 용액 및 상기 유뮤기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자 용액을 준비한다.Referring to FIG. 8, first, an organic-inorganic perovskite nanoparticle solution including the anchoring solution and the organic perovskite nanocrystal structure is prepared.
전술된 앵커링 용액은 앵커링(anchoring) 효과를 나타내는 점착성을 부여하는 수지를 포함하는 용액이다. 일 예로, 3-머캅토프로피오닉산 에타노릭 용액(3-mercaptopropionic acid ethanilic solution)이 사용될 수 있다. 전술된 앵커링 용액은 7wt% 내지 12wt%의 농도인 것이 바람직하다.The above-mentioned anchoring solution is a solution containing a resin imparting tack that exhibits an anchoring effect. For example, 3-mercaptopropionic acid ethanilic solution may be used. The anchoring solution described above is preferably in a concentration of 7wt% to 12wt%.
이 후, 전술된 발광층 도포용 부재 상에 상기 앵커링 용액을 코팅하여 앵커링 에이전트층을 형성한다. Thereafter, the anchoring solution is coated on the light emitting layer coating member to form an anchoring agent layer.
이 때, 코팅 속도는 1000 rpm 내지 5000 rpm인 것이 바람직하며, 코팅 시간은 15초 내지 150초인 것이 바람직하다. 코팅 속도가 1000rpm 이하로 내려가거나, 코팅 시간이 15초 이내로 짧아지면 박막이 불균일해지거나, 용매가 다 증발하지 않을 수 있다.At this time, the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the coating speed is lowered below 1000 rpm, or the coating time is shortened to less than 15 seconds, the thin film may become uneven or the solvent may not evaporate.
이 후, 전술된 앵커링 에이전트 층 상에 유무기 페로브스카이트 나노입자 용액을 코팅하여 앵커링 발광층을 형성한다. 이와 같이 앵커링 용액을 이용하여 앵커링 발광층을 형성할 경우 더 조밀(dense)한 나노결정층을 형성할 수 있다.Thereafter, the organic-inorganic perovskite nanoparticle solution is coated on the aforementioned anchoring agent layer to form an anchoring light emitting layer. As such, when the anchoring light emitting layer is formed using the anchoring solution, a denser nanocrystal layer may be formed.
이 후, 상기 앵커링 발광층 상에 가교제층을 형성할 수 있다. 가교제층을 형성할 경우, 더 조밀한 페로브스카이트 나노결정층을 형성할 수 있고, 리간드(ligand) 길이가 짧아져 나노결정으로의 전하 주입이 더 원활해져 발광 소자의 발광 효율 및 휘도가 증가하는 효과가 있다.Thereafter, a crosslinking agent layer may be formed on the anchoring light emitting layer. When the crosslinking agent layer is formed, a denser perovskite nanocrystal layer can be formed, and the ligand length is shortened, so that charge injection into the nanocrystal is more smooth, thereby increasing the luminous efficiency and luminance of the light emitting device. It works.
상기 가교제는 X-R-X 구조를 갖는 가교제가 바람직하며 일 예로, 1,2-에타네디티올(ethanedithiol)을 사용할 수 있다. 상기 가교제를 용해가 가능한 용매에 혼합하여 용액을 제조한 뒤, 스핀 코팅한다. The crosslinking agent is preferably a crosslinking agent having an X-R-X structure. For example, 1,2-ethanedithiol may be used. The crosslinking agent is mixed with a soluble solvent to prepare a solution, followed by spin coating.
이 때, 상기 유무기 페로브스카이트 나노입자 용액을 코팅하는 단계 및 상기 유무기 페로브스카이트 나노입자 용액이 코팅된 층 상에 가교제층을 형성하는 단계를 교대로 반복하여 상기 발광층의 두께를 조절할 수 있다.At this time, the step of coating the organic-inorganic perovskite nanoparticle solution and the step of forming a cross-linking agent layer on the layer coated with the organic-inorganic perovskite nanoparticle solution are alternately repeated to reduce the thickness of the light emitting layer I can regulate it.
이 때, 코팅 속도는 1000 rpm 내지 5000 rpm인 것이 바람직하며, 코팅 시간은 15초 내지 150초인 것이 바람직하다. 코팅 속도가 1000rpm 이하로 내려가거나, 코팅 시간이 15초 이내로 짧아지면 박막이 불균일해지거나, 용매가 다 증발하지 않을 수 있다.At this time, the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the coating speed is lowered below 1000 rpm, or the coating time is shortened to less than 15 seconds, the thin film may become uneven or the solvent may not evaporate.
플로팅 공정을 통한 발광층 형성Formation of light emitting layer through floating process
도 9는 본 발명의 일 실시예에 따른 플로팅 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.9 is a schematic diagram showing a light emitting layer forming process through a floating process according to an embodiment of the present invention.
도 9를 참조하면, 전술된 유무기 페로브스카이트 나노입자를 포함하는 용액에 트리옥틸 포스핀(TOP) 및 트리옥틸 포스핀 옥사이드(TOPO)을 포함하는 용액 첨가한다. 트리옥틸 포스핀(TOP) 및 트리옥틸 포스핀 옥사이드(TOPO)을 포함하는 용액을 첨가함에 따라, 전술된 유무기 페로브스카이트 나노입자의 리간드는 트리옥틸 포스핀(TOP) 및 트리옥틸 포스핀 옥사이드(TOPO)로 치환될 수 있다.Referring to FIG. 9, a solution containing trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO) is added to a solution containing the organic-inorganic perovskite nanoparticles described above. By adding a solution comprising trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO), the ligands of the organic-inorganic perovskite nanoparticles described above are trioctyl phosphine (TOP) and trioctyl phosphine It may be substituted with oxide (TOPO).
이 후, 리간드가 트리옥틸 포스핀(TOP) 및 트리옥틸 포스핀 옥사이드(TOPO)로로 치환된 유무기 페로브스카이트 나노입자를 포함하는 용액에 트리페닐디아민(triphenyl diamine: TPD) 화합물을 포함하는 용액을 첨가한다. 일 예로, 전술된 트리페닐디아민 화합물은 N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4, 4'diamine일 수 있다.Thereafter, the ligand comprises a triphenyl diamine (TPD) compound in a solution containing organic-inorganic perovskite nanoparticles substituted with trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO). Add solution. For example, the aforementioned triphenyldiamine compound may be N, N'-diphenyl-N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4, 4'diamine.
리간드가 트리옥틸 포스핀(TOP) 및 트리옥틸 포스핀 옥사이드(TOPO)로로 치환된 유무기 페로브스카이트 나노입자를 포함하는 용액 : 트리페닐디아민(triphenyl diamine: TPD) 화합물을 포함하는 용액을 100 : 3 내지 100: 7의 중량비로 혼합하여 TPD-유무기 하이브리드 페로브스카이트 나노입자 용액을 제조한다.Solution containing organic-inorganic perovskite nanoparticles whose ligands are substituted with trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO): solution containing triphenyl diamine (TPD) compound 100 A TPD-inorganic hybrid perovskite nanoparticle solution was prepared by mixing at a weight ratio of 3 to 100: 7.
이 후, 전술된 TPD-유무기 하이브리드 페로브스카이트 나노입자 용액을 전술된 발광층 도포용 부재 상에 코팅하여 유무기 하이브리드 페로브스카이트 발광소자용 발광층을 형성한다. 이 때, 전술된 발광층은, 전술된 발광층 도포용 부재 상에 유기 반도체층 및 유무기 페로브스카이트 나노입자가 순차적으로 적층된 형태로 자가 형성(self-organization)됨에 따라 공정을 간소화할 수 있다.Thereafter, the above-described TPD-inorganic hybrid perovskite nanoparticle solution is coated on the light-emitting layer coating member to form a light-emitting layer for an organic-inorganic hybrid perovskite light emitting device. In this case, the light emitting layer described above may simplify the process as the organic semiconductor layer and the organic-inorganic perovskite nanoparticles are sequentially stacked on the light emitting layer coating member and self-organized. .
이 때, 코팅 속도는 1000 rpm 내지 5000 rpm인 것이 바람직하며, 코팅 시간은 15초 내지 150초인 것이 바람직하다. 스핀 코팅 속도가 1000rpm 이하로 내려가거나, 코팅 시간이 15초 이내로 짧아지면 박막이 불균일해지거나, 용매가 다 증발하지 않을 수 있다.At this time, the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the spin coating speed is lowered below 1000 rpm, or the coating time is shortened to within 15 seconds, the thin film may become uneven or the solvent may not evaporate.
플로팅 공정을 통해 발광층을 형성함으로써 기존 핀홀 결합(pinhole defects)을 없앰으로써 나노결정으로의 전하주입을 더 원활하게 한다. 이에, 발광 소자의발광 효율 및 휘도가 향상된다. 또한, 유기 반도체/페로브스카이트 나노결정 혼합 용액 내의 페로브스카이트 나노결정의 농도를 조절함으로써 여러 번의 스핀 코팅 과정 없이도 나노입자 제1 박막의 두께를 조절할 수 있다.By forming a light emitting layer through a floating process, it eliminates existing pinhole defects, thereby making charge injection into nanocrystals more smooth. As a result, light emission efficiency and luminance of the light emitting device are improved. In addition, by controlling the concentration of the perovskite nanocrystals in the organic semiconductor / perovskite nanocrystals mixed solution it is possible to control the thickness of the first nanoparticle thin film without a number of spin coating process.
드라이 컨택 프린팅 공정을 통한 발광층 형성Formation of light emitting layer through dry contact printing process
도 10은 본 발명의 일 실시예에 따른 드라이 컨택 프린팅 공정을 통한 발광층 형성 공정을 나타낸 모식도이다.10 is a schematic view showing a light emitting layer forming process through a dry contact printing process according to an embodiment of the present invention.
도 10을 참조하면, 먼저 전술된 발광층 도포용 부재 상에 자기조립 단분자막을 형성할 수 있다. 이 때, 발광층 도포용 부재로는 실리콘 재질의 부재를 사용할 수 있다. 더 상세하게는 옥타데사일트리클로실란(octadecyltrichlorosilane, ODTS) 용액에 실리콘 네이티브 웨이퍼(Si native wafer)를 디핑(dipping)한 ODTS-treated 웨이퍼를 사용할 수 있다.Referring to FIG. 10, first, a self-assembled monolayer may be formed on the light emitting layer coating member. At this time, a member made of silicon may be used as the light emitting layer coating member. More specifically, an ODTS-treated wafer may be used in which a silicon native wafer is dipped in an octadecyltrichlorosilane (ODTS) solution.
이 후, 전술된 자기조립 단분자막 상에 상기 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 유무기 페로브스카이트 나노입자층을 형성한다. 그리고 마지막으로, 스탬프를 이용하여 상기 유무기 페로브스카이트 나노입자층과 접촉(contact)하여 원하는 패턴만큼 떼어낸 후 상기 유무기 페로브스카이트 나노입자층을 제2 발광층 도포용 부재 상에 형성한다.Thereafter, a solution containing the organic-inorganic perovskite nanoparticles is coated on the aforementioned self-assembled monolayer to form an organic-inorganic perovskite nanoparticle layer. Finally, the organic-inorganic perovskite nanoparticle layer is contacted with the organic-inorganic perovskite nanoparticle layer using a stamp, and then separated by a desired pattern to form the organic-inorganic perovskite nanoparticle layer on the second light emitting layer coating member.
전술된 스탬프는 폴리우레탄(Polyurethane), PDMS(Polydimethylsiloxane) PEO(Polyethylene oxide), PS(Polystyrene), PCL(Polycaprolactone), PAN(Polyacrylonitrile), PMMA(Poly(methyl methacrylate)), 폴리이미드(Polyimide), PVDF(Poly(vinylidene fluoride)), PVK(Poly(n-vinylcarbazole)) 및 PVC(Polyvinylchloride)로 이루어진 군으로부터 선택되는 적어도 하나의 유기 고분자를 포함할 수 있다. 전술된 스탬프는, 실리콘 웨이퍼 위에, 전술된 재료를 포함하는 스탬프를 큐링하여 제조할 수 있다.The stamps described above include polyurethane, Polydimethylsiloxane (PDMS) Polyethylene oxide (PEO), Polystyrene (PS), Polycaprolactone (PCL), Polyacrylonitrile (PAN), Poly (methyl methacrylate) (PMMA), Polyimide, It may include at least one organic polymer selected from the group consisting of polyvinyllidene fluoride (PVDF), poly (n-vinylcarbazole) (PVK), and polyvinylchloride (PVC). The stamp described above can be produced by curing a stamp comprising the aforementioned material on a silicon wafer.
이와 같이, 드라이 컨택 프린팅 공정을 사용할 경우, 스탬핑 과정을 통해 상기 유무기 페로브스카이트 나노입자층을 형성함에 따라 기존 습식 공정(wet process)에서 문제가 됐던 기판 민감성(substrate sensitivity), 대면적 어셈블리(large-area assembly) 및 레이어-바이-레이어(layer-by-layer) 적층 공정의 어려움을 해결할 수 있다.As such, in the case of using the dry contact printing process, the substrate sensitivity and the large-area assembly, which are problematic in the conventional wet process, are formed by forming the organic-inorganic perovskite nanoparticle layer through a stamping process. The difficulty of large-area assembly and layer-by-layer deposition processes can be solved.
유무기 페로브스카이트-유기 호스트 복합체 형성 공정을 통한 발광층 형성Formation of emission layer through organic / inorganic perovskite-organic host complex formation process
도 11은 본 발명의 일 실시예에 따른 유무기 페로브스카이트-유기 호스트 복합체 형성 공정을 통한 발광층 형성방법을 나타낸 모식도이다.11 is a schematic view showing a light emitting layer forming method through an organic-inorganic perovskite-organic host composite forming process according to an embodiment of the present invention.
도 11을 참조하면, 전술된 나노입자 제1 박막을 형성하는 단계는, 먼저 전술된 유무기 페로브스카이트 나노입자를 포함하는 용액에 유기 반도체를 혼합하여 유무기 페로브스카이트-유기 반도체 용액을 제조한다.Referring to FIG. 11, in the forming of the first nanoparticle-based thin film, the organic-inorganic perovskite-organic semiconductor solution may be mixed by first mixing an organic semiconductor with the above-described solution containing organic / inorganic perovskite nanoparticles. To prepare.
전술된 유기 반도체는 트리스(8-퀴놀리노레이트)알루미늄(Alq3), TAZ, TPQ1, TPQ2, Bphen(4,7-디페닐-1,10-페난트롤린(4,7-diphenyl-1,10-phenanthroline)), BCP, BeBq2, BAlq, CBP(4,4'-N,N'-디카바졸-비페닐), 9,10-디(나프탈렌-2-일)안트라센(ADN), TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민), TPBI(1,3,5-트리스(N-페닐벤즈이미다졸-2-일)벤젠(1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene)), TBADN(3-tert-부틸-9,10-디(나프트-2-일) 안트라센) 및 E3으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 한정되지 않는다.The aforementioned organic semiconductors include tris (8-quinolinorate) aluminum (Alq3), TAZ, TPQ1, TPQ2, Bphen (4,7-diphenyl-1,10-phenanthroline (4,7-diphenyl-1,10 -phenanthroline)), BCP, BeBq2, BAlq, CBP (4,4'-N, N'-dicarbazole-biphenyl), 9,10-di (naphthalen-2-yl) anthracene (ADN), TCTA (4 , 4 ', 4 "-tris (N-carbazolyl) triphenylamine), TPBI (1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene (1,3,5-tris ( N-phenylbenzimidazole-2-yl) benzene)), TBADN (3-tert-butyl-9,10-di (naphth-2-yl) anthracene) and E3, but may be one or more selected from the group consisting of, but not limited to Do not.
이 후, 전술된 유무기 페로브스카이트-유기 반도체 용액을 코팅하여 발광층을 형성한다. 이 때, 코팅 속도는 1000 rpm 내지 5000 rpm인 것이 바람직하며, 코팅 시간은 15초 내지 150초인 것이 바람직하다. 스핀 코팅 속도가 1000rpm 이하로 내려가거나, 코팅 시간이 15초 이내로 짧아지면 박막이 불균일해지거나, 용매가 다 증발하지 않을 수 있다.Thereafter, the organic-inorganic perovskite-organic semiconductor solution described above is coated to form a light emitting layer. At this time, the coating speed is preferably 1000 rpm to 5000 rpm, the coating time is preferably 15 seconds to 150 seconds. If the spin coating speed is lowered below 1000 rpm, or the coating time is shortened to within 15 seconds, the thin film may become uneven or the solvent may not evaporate.
이에, 본 발명의 발광층은 발광층 도포용 부재 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 나노입자 제1 박막이 형성된다. 이에, 나노입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트가 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다. 또한, 페로브스카이트를 나노입자로 제조한 뒤, 발광층에 도입함에 따라 소자의 발광 효율 및 휘도를 향상시킬 수 있다.Thus, in the light emitting layer of the present invention, the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure are formed on the light-emitting layer coating member. Thus, an organic-inorganic hybrid perovskite having a crystal structure of FCC and BCC combined is formed in the nanoparticle light emitter, and a lamellar structure in which an organic plane and an inorganic plane are alternately stacked is formed, and excitons are formed on the inorganic plane. It can be constrained to produce high color purity. In addition, since the perovskite is made of nanoparticles and then introduced into the light emitting layer, light emission efficiency and luminance of the device may be improved.
이와 같이, 유무기 페로브스카이트-유기 호스트 복합체 형성 공정을 통해 발광층 형성할 경우 기존 페로브스카이트 나노결정층에서 나노결정이 밀접하게 위치하였기 때문에 발생할 수 있는 엑시톤-엑시톤 소멸(exciton-exciton annihilation)을 방지할 수 있다. 또, 바이폴러(bipoalr) 특성을 가지는 유기 호스트나 코-호스트(co-host)를 사용함으로써 전자-정공 재결합 영역 (recombination zone)을 넓혀 엑시톤-엑시톤 소멸(exciton-exciton annihilation)을 방지할 수 있다. 이에 따라 페로브스카이트 나노결정 발광 소자가 높은 휘도에서 구동할 때 발생하는 롤오프(roll-off)를 줄일 수 있다. As such, when the emission layer is formed through the organic-inorganic perovskite-organic host complex formation process, exciton-exciton annihilation may occur because the nanocrystals are closely located in the conventional perovskite nanocrystal layer. ) Can be prevented. In addition, by using an organic host or co-host having a bipoalr property, the electron-hole recombination zone can be widened to prevent exciton-exciton annihilation. . Accordingly, the roll-off generated when the perovskite nanocrystal light emitting device is driven at high luminance can be reduced.
<유무기 하이브리드 페로브스카이트 발광소자>Organic-inorganic hybrid perovskite light emitting device
도 12a 내지 도 12d는 본 발명의 일 실시예에 따른 발광 소자의 제조방법을 나타낸 발광소자의 단면도들이다.12A to 12D are cross-sectional views of light emitting devices illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
도 12a를 참조하면 먼저 기판(10) 상에 제1 전극(20)을 형성한다.Referring to FIG. 12A, first a first electrode 20 is formed on a substrate 10.
전술된 기판(10)은 유기발광소자의 지지체가 되는 것으로, 투명한 성질의 소재로 구성된다. 또한, 전술된 기판(10)은 유연한 성질의 소재와 경질의 소재가 모두 이용될 수 있으나, 유연한 성질의 소재로 구성되는 것이 더욱 바람직하다. 특히, 투명하고 유연한 성질을 가진 전술된 기판(10)의 소재는 PET, PS, PI, PVC, PVP 또는 PE 등일 수 있다.The substrate 10 described above serves as a support of the organic light emitting device, and is made of a transparent material. In addition, the above-described substrate 10 may be used both a flexible material and a hard material, it is more preferably configured of a flexible material. In particular, the material of the substrate 10 described above having transparent and flexible properties may be PET, PS, PI, PVC, PVP or PE.
전술된 제1 전극(20)은 정공이 주입되는 전극으로서, 전도성 있는 성질의 소재로 구성된다. 전술된 제1 전극(20)을 구성하는 소재는 금속 산화물일 수 있고, 특히 투명전도성 금속산화물인 것이 바람직하다. 예컨대, 전술된 투명전도성 금속산화물은 ITO, AZO(Al-doped ZnO), GZO(Ga-doped ZnO), IGZO(In,Ga-dpoed ZnO), MZO(Mg-doped ZnO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-dpoed TiO2 또는 CuAlO2 등일 수 있다.The first electrode 20 described above is an electrode into which holes are injected, and is made of a conductive material. The material constituting the above-described first electrode 20 may be a metal oxide, and in particular, it is preferable that the material is a transparent conductive metal oxide. For example, the above-described transparent conductive metal oxide may include ITO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), IGZO (In, Ga-dpoed ZnO), MZO (Mg-doped ZnO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO 2 , Nb-dpoed TiO 2 or CuAlO 2 and the like.
전술된 제1 전극(20)을 형성하기 위한 증착 공정으로는 물리적 기상 증착(physical vapor deposition; PVD), 화학적 기상 증착(chemical vapor deposition; CVD), 스퍼터링(sputtering), 펄스 레이저 증착(pulsed laser deposition; PLD), 증발법(thermal evaporation), 전자빔 증발법(electron beam evaporation), 원자층 증착(atomic layer deposition; ALD) 및 분자선 에피택시 증착(molecular beam epitaxy; MBE) 등을 이용할 수 있다.Deposition processes for forming the above-described first electrode 20 include physical vapor deposition (PVD), chemical vapor deposition (CVD), sputtering, pulsed laser deposition. PLD), thermal evaporation, electron beam evaporation, atomic layer deposition (ALD), molecular beam epitaxy (MBE), and the like.
도 12b를 참조하면, 전술된 제1 전극(20) 상에 전도성 물질 및 전술된 전도성 물질보다 낮은 표면 에너지를 갖는 불소계물질을 포함하는 엑시톤 버퍼층(30)을 형성한다.Referring to FIG. 12B, an exciton buffer layer 30 including a conductive material and a fluorine-based material having a lower surface energy than the aforementioned conductive material is formed on the first electrode 20 described above.
이 때, 전술된 엑시톤 버퍼층(30)은 전도성 물질을 포함하는 도전층(31) 및 상기 전도성 물질보다 낮은 표면 에너지를 갖는 불소계 물질을 포함하는 표면 버퍼층(32)이 순차적으로 적층된 형태일 수 있다. 전술된 도전층(31)은 전도성 물질을 포함한다. 또한, 전술된 도전층(31)은 전술된 불소계 물질을 포함하지 않는 것이 바람직하다.In this case, the above-described exciton buffer layer 30 may have a form in which a conductive layer 31 including a conductive material and a surface buffer layer 32 including a fluorine-based material having a lower surface energy than the conductive material are sequentially stacked. . The conductive layer 31 described above comprises a conductive material. In addition, it is preferable that the above-mentioned conductive layer 31 does not contain the above-mentioned fluorine-based material.
전술된 전도성 물질은 전도성 고분자, 금속성 탄소나노튜브, 그라펜, 환원된 산화그라펜, 금속 나노와이어, 반도체 나노와이어, 금속 그리드, 금속 나노점 및 전도성 산화물로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.The aforementioned conductive material may include at least one selected from the group consisting of a conductive polymer, metallic carbon nanotubes, graphene, reduced graphene oxide, metal nanowires, semiconductor nanowires, metal grids, metal nanodots, and conductive oxides. Can be.
전술된 전도성 고분자는, 폴리티오펜, 폴리아닐린, 폴리피롤, 폴리스티렌, 술폰화된 폴리스티렌, 폴리(3,4-에틸렌디옥시티오펜), 셀프-도핑 전도성 고분자, 이들의 유도체 또는 이들의 조합을 포함할 수 있다. 전술된 유도체는 각종 술폰산 등을 더 포함할 수 있음을 의미할 수 있다.The conductive polymers described above may include polythiophene, polyaniline, polypyrrole, polystyrene, sulfonated polystyrene, poly (3,4-ethylenedioxythiophene), self-doped conductive polymers, derivatives thereof, or combinations thereof. have. The above-mentioned derivative may mean that it may further include various sulfonic acids and the like.
예를 들어, 전술된 전도성 고분자는 Pani:DBSA (Polyaniline/Dodecylbenzenesulfonic acid: 폴리아닐린/도데실벤젠술폰산, 하기 화학식 참조), PEDOT:PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate):폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트), 하기 화학식 참조), Pani:CSA (Polyaniline/Camphor sulfonicacid:폴리아닐린/캠퍼술폰산) 및 PANI:PSS (Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트))으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니다. For example, the above-mentioned conductive polymer may include Pani: DBSA (Polyaniline / Dodecylbenzenesulfonic acid: polyaniline / dodecylbenzenesulfonic acid, see the following formula), PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate): Poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate), see formula below), Pani: CSA (Polyaniline / Camphor sulfonicacid: polyaniline / camphorsulfonic acid) and PANI: PSS (Polyaniline) / Poly ( 4-styrenesulfonate): polyaniline) / poly (4-styrenesulfonate)) may include at least one selected from the group consisting of, but is not limited thereto.
예를 들어, 상기 전도성 고분자는 Pani:DBSA (Polyaniline/Dodecylbenzenesulfonic acid, 하기 화학식 참조), PEDOT:PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 하기 화학식 참조), Pani:CSA(Polyaniline/Camphor sulfonicacid) 또는 PANI:PSS (Polyaniline)/Poly(4-styrenesulfonate)) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.For example, the conductive polymer may be Pani: DBSA (Polyaniline / Dodecylbenzenesulfonic acid, see Chemical Formula), PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate)), See Formula: Polyaniline / Camphor sulfonicacid (CSA) or PANI: PSS (Polyaniline) / Poly (4-styrenesulfonate) and the like, but are not limited thereto.
Figure PCTKR2015011963-appb-I000001
Figure PCTKR2015011963-appb-I000001
상기 R은 H 또는 C1-C10알킬기일 수 있다.R may be H or a C1-C10 alkyl group.
상기 셀프-도핑 전도성 고분자는 중합도 13 내지 10,000,000을 가질 수 있고, 하기 화학식 21로 표시되는 반복단위를 가질 수 있다:The self-doped conductive polymer may have a polymerization degree of 13 to 10,000,000, and may have a repeating unit represented by Formula 21 below:
<화학식 21><Formula 21>
Figure PCTKR2015011963-appb-I000002
Figure PCTKR2015011963-appb-I000002
상기 화학식 21에서, 0<m<10,000,000, 0<n<10,000,000, 0≤a≤20, 0≤b≤20이고;In Formula 21, 0 <m <10,000,000, 0 <n <10,000,000, 0 ≦ a ≦ 20, 0 ≦ b ≦ 20;
R1,R2,R3,R'1,R'2,R'3및 R'4 중 적어도 하나는 이온기를 포함하고 있으며, A, B, A', B'는, 각각 독립적으로, C, Si, Ge, Sn, 또는 Pb에서 선택되고;At least one of R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 contains an ionic group, and A, B, A ', and B' are each independently C , Si, Ge, Sn, or Pb;
R1,R2,R3,R'1,R'2,R'3및 R'4는, 각각 독립적으로 수소, 할로겐, 니트로기, 치환 또는 비치환된 아미노기, 시아노기, 치환 또는 비치환된 C1-C30알킬기, 치환 또는 비치환된 C1-C30알콕시기, 치환 또는 비치환된 C6-C30아릴기, 치환 또는 비치환된 C6-C30의 아릴알킬기, 치환 또는 비치환된 C6-C30의 아릴옥시기, 치환 또는 비치환된 C2-C30의 헤테로아릴기, 치환 또는 비치환된 C2-C30의 헤테로아릴알킬기, 치환 또는 비치환된 C2-C30의 헤테로아릴옥시기, 치환 또는 비치환된 C5-C30의 사이클로알킬기, 치환 또는 비치환된 C5-C30의 헤테로사이클로알킬기, 치환 또는 비치환된 C1-C30알킬에스테르기, 및 치환 또는 C6-C30의 비치환된 아릴에스테르기로 이루어진 군으로부터 선택되며, 상기 화학식 중의 탄소에, 선택적으로 수소 또는 할로겐 원소가 결합하고;R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 are each independently hydrogen, halogen, nitro group, substituted or unsubstituted amino group, cyano group, substituted or unsubstituted Substituted C 1 -C 30 alkyl group, substituted or unsubstituted C 1 -C 30 alkoxy group, substituted or unsubstituted C 6 -C 30 aryl group, substituted or unsubstituted C 6 -C 30 arylalkyl group, substituted or Unsubstituted C 6 -C 30 aryloxy group, substituted or unsubstituted C 2 -C 30 heteroaryl group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl group, substituted or unsubstituted C 2 -C 30 heteroaryloxy group, substituted or unsubstituted C 5 -C 30 cycloalkyl group, substituted or unsubstituted C 5 -C 30 heterocycloalkyl group, substituted or unsubstituted C 1 -C 30 alkylester Group, and a substituted or unsubstituted arylester group of C 6 -C 30 , and to the carbon in the formula, optionally hydrogen or halogen The elements combine;
R4는 공액계 전도성 고분자 사슬로 이루어지고;R 4 consists of a conjugated conductive polymer chain;
X 및 X'는, 각각 독립적으로 단순 결합, O, S, 치환 또는 비치환된 C1-C30알킬렌기, 치환 또는 비치환된 C1-C30헤테로알킬렌기, 치환 또는 비치환된 C6-C30아릴렌기, 치환 또는 비치환된 C6-C30의 아릴알킬렌기, 치환 또는 비치환된 C2-C30의 헤테로아릴렌기, 치환 또는 비치환된 C2-C30의 헤테로아릴알킬렌기, 치환 또는 비치환된 C5-C20의 사이클로알킬렌기, 및 치환 또는 비치환된 C5-C30의 헤테로사이클로알킬렌기 아릴에스테르기로 이루어진 군으로부터 선택되며, 상기 화학식 중의 탄소에, 선택적으로 수소 또는 할로겐 원소가 결합할 수 있다.X and X 'are each independently a simple bond, O, S, a substituted or unsubstituted C 1 -C 30 alkylene group, a substituted or unsubstituted C 1 -C 30 heteroalkylene group, a substituted or unsubstituted C 6 -C 30 arylene group, substituted or unsubstituted C 6 -C 30 arylalkylene group, substituted or unsubstituted C 2 -C 30 heteroarylene group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl A ylene group, a substituted or unsubstituted C 5 -C 20 cycloalkylene group, and a substituted or unsubstituted C 5 -C 30 heterocycloalkylene group arylester group, optionally selected from carbon in the formula Hydrogen or halogen elements may be bonded.
예를 들어, 상기 이온기가 PO3 2-,SO3 -,COO-,I-,CH3COO-으로 이루어진 군에서 선택된 음이온기 및 Na+,K+,Li+,Mg+ 2,Zn+ 2,Al+ 3중에서 선택된 금속 이온, H+,NH4 +,CH3(-CH2-)nO+(n은 1 내지 50 의 자연수) 중에서 선택된 유기 이온으로 이루어진 군에서 선택되고 상기 음이온기와 짝을 이루는 양이온기를 포함할 수 있다.For example, the ionic group is PO 3 2-, SO 3 -, COO -, I -, CH 3 COO - anion group selected from the group consisting of and Na +, K +, Li + , Mg + 2, Zn + 2 And metal ions selected from Al + 3 , H + , NH 4 + , CH 3 (-CH 2- ) n O + (n is a natural number of 1 to 50) and selected from the group consisting of It may comprise a cationic group forming.
예를 들어, 상기 화학식 100의 셀프-도핑 전도성 고분자에서 R1,R2,R3,R'1,R'2,R'3및 R'4중에서 각각 적어도 하나 이상은 불소이거나 불소로 치환된 기일 수 있으나, 이에 한정되는 것은 아니다.For example, in the self-doped conductive polymer of Chemical Formula 100, at least one of R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 may be fluorine or substituted with fluorine. It may be, but is not limited to.
상기 전도성 고분자의 예를 들어, 상기 전도성 고분자의 구체예는 하기와 같으나, 이에 한정되는 것은 아니다:For example, examples of the conductive polymer include, but are not limited to:
Figure PCTKR2015011963-appb-I000003
Figure PCTKR2015011963-appb-I000003
Figure PCTKR2015011963-appb-I000004
Figure PCTKR2015011963-appb-I000004
Figure PCTKR2015011963-appb-I000005
Figure PCTKR2015011963-appb-I000005
Figure PCTKR2015011963-appb-I000006
Figure PCTKR2015011963-appb-I000006
Figure PCTKR2015011963-appb-I000007
Figure PCTKR2015011963-appb-I000007
Figure PCTKR2015011963-appb-I000008
Figure PCTKR2015011963-appb-I000008
Figure PCTKR2015011963-appb-I000009
Figure PCTKR2015011963-appb-I000009
Figure PCTKR2015011963-appb-I000010
Figure PCTKR2015011963-appb-I000010
본 명세서의 비치환된 알킬기의 구체적인 예로는 직쇄형 또는 분지형으로서 메틸, 에틸, 프로필, 이소부틸, sec-부틸, tert-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있고, 전술된 알킬기에 포함되어 있는 하나 이상의 수소 원자는 할로겐 원자, 히드록시기, 니트로기, 시아노기, 치환 또는 비치환된 아미노기 (-NH2, -NH(R), -N(R')(R"), R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기임), 아미디노기, 히드라진, 또는 히드라존기, 카르복실기, 술폰산기, 인산기, C1-C20의 알킬기, C1-C20의 할로겐화된 알킬기, C1-C20의 알케닐기, C1-C20의 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, 또는 C6-C20의 헤테로아릴알킬기로 치환될 수 있다.Specific examples of the unsubstituted alkyl group herein include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like as the linear or branched alkyl group, and the aforementioned alkyl group One or more hydrogen atoms included in a halogen atom, a hydroxyl group, a nitro group, a cyano group, a substituted or unsubstituted amino group (-NH 2 , -NH (R), -N (R ') (R "), R' And R "are independently of each other an alkyl group having 1 to 10 carbon atoms, amidino group, hydrazine, or hydrazone group, carboxyl group, sulfonic acid group, phosphoric acid group, C 1 -C 20 alkyl group, C 1 -C 20 halogenated alkyl group , C 1 -C 20 alkenyl group, C 1 -C 20 alkynyl group, C 1 -C 20 heteroalkyl group, C 6 -C 20 aryl group, C 6 -C 20 arylalkyl group, C 6 -C It may be substituted with a heteroaryl group, a heteroarylalkyl group or a C 6 -C 20 20.
본 명세서의 헤테로알킬기는, 전술된 알킬기의 주쇄 중의 탄소원자 중 하나 이상, 바람직하게는 1 내지 5개의 탄소원자가 산소원자, 황원자, 질소원자, 인원자 등과 같은 헤테로 원자로 치환된 것을 의미한다.Heteroalkyl group herein means that at least one of the carbon atoms in the main chain of the alkyl group described above, preferably 1 to 5 carbon atoms is substituted with a hetero atom such as an oxygen atom, a sulfur atom, a nitrogen atom, a person atom and the like.
본 명세서의 아릴기는 하나 이상의 방향족 고리를 포함하는 카보사이클 방향족 시스템을 의미하며, 전술된 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합(fused)될 수 있다. 아릴기의 구체적인 예로는 페닐, 나프틸, 테트라히드로나프틸 등과 같은 방향족 그룹을 들 수 있고, 전술된 아릴기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.An aryl group herein refers to a carbocycle aromatic system comprising one or more aromatic rings, wherein the rings described above may be attached or fused together in a pendant manner. Specific examples of the aryl group may include aromatic groups such as phenyl, naphthyl, tetrahydronaphthyl, and the like, and one or more hydrogen atoms in the aforementioned aryl groups may be substituted with the same substituents as in the alkyl group described above.
본 명세서의 헤테로아릴기는 N, O, P 또는 S 중에서 선택된 1, 2 또는 3개의 헤테로 원자를 포함하고, 나머지 고리 원자가 C인 고리원자수 5 내지 30의 고리 방향족 시스템을 의미하며, 전술된 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합 (fused)될 수 있다. 그리고 전술된 헤테로아릴기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.Heteroaryl group herein refers to a ring aromatic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms are C, and the aforementioned rings It can be attached or fused together in a pendant manner. At least one hydrogen atom of the heteroaryl group described above may be substituted with the same substituent as in the alkyl group described above.
본 명세서의 알콕시기는 라디칼 -O-알킬을 말하고, 이때 알킬은 위에서 정의된 바와 같다. 구체적인 예로는 메톡시, 에톡시, 프로폭시, 이소부틸옥시, sec-부틸옥시, 펜틸옥시, iso-아밀옥시, 헥실옥시 등을 들 수 있고, 전술된 알콕시기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.Alkoxy groups herein refer to radicals —O-alkyl, wherein alkyl is as defined above. Specific examples include methoxy, ethoxy, propoxy, isobutyloxy, sec-butyloxy, pentyloxy, iso-amyloxy, hexyloxy, and the like. One or more hydrogen atoms of the alkoxy group described above may be Substituents similar to those of the alkyl group can be substituted.
본 발명에서 사용되는 치환기인 헤테로알콕시기는 1개 이상의 헤테로 원자 예를 들어 산소, 황 또는 질소가 알킬 사슬 내에 존재할 수 있다는 것을 제외하면 본질적으로 전술된 알콕시의 의미를 가지며, 예를 들면 CH3CH2OCH2CH2O-, C4H9OCH2CH2OCH2CH2O- 및 CH3O(CH2CH2O)nH 등이다.Heteroalkoxy groups, which are substituents used in the present invention, have essentially the meaning of alkoxy described above except that one or more heteroatoms, for example oxygen, sulfur or nitrogen, may be present in the alkyl chain, for example CH 3 CH 2 OCH 2 CH 2 O-, C 4 H 9 OCH 2 CH 2 OCH 2 CH 2 O-, and CH 3 O (CH 2 CH 2 O) n H and the like.
본 명세서의 아릴알킬기는 전술된 정의된 바와 같은 아릴기에서 수소원자중 일부가 저급알킬, 예를 들어 메틸, 에틸, 프로필 등과 같은 라디칼로 치환된 것을 의미한다. 예를 들어 벤질, 페닐에틸 등이 있다. 전술된 아릴알킬기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.An arylalkyl group herein means that some of the hydrogen atoms in the aryl group as defined above are substituted with radicals such as lower alkyl, for example methyl, ethyl, propyl and the like. For example benzyl, phenylethyl and the like. At least one hydrogen atom of the aforementioned arylalkyl group may be substituted with the same substituent as in the case of the aforementioned alkyl group.
본 명세서의 헤테로아릴알킬기는 헤테로아릴기의 수소 원자 일부가 저급 알킬기로 치환된 것을 의미하며, 헤테로아릴알킬기중 헤테로아릴에 대한 정의는 상술한 바와 같다. 전술된 헤테로아릴알킬기중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.The heteroarylalkyl group used herein means that a part of the hydrogen atoms of the heteroaryl group is substituted with a lower alkyl group, and the definition of heteroaryl in the heteroarylalkyl group is as described above. At least one hydrogen atom of the aforementioned heteroarylalkyl group may be substituted with the same substituent as in the case of the aforementioned alkyl group.
본 명세서의 아릴옥시기는 라디칼 -O-아릴을 말하고, 이때 아릴은 위에서 정의된 바와 같다. 구체적인 예로서 페녹시, 나프톡시, 안트라세닐옥시, 페난트레닐옥시, 플루오레닐옥시, 인데닐옥시 등이 있고, 아릴옥시기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.The aryloxy group herein refers to the radical -O-aryl, where aryl is as defined above. Specific examples include phenoxy, naphthoxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy, indenyloxy, and the like, and at least one hydrogen atom of the aryloxy group is substituted with the same substituent as in the case of the alkyl group described above. It is possible.
본 명세서의 헤테로아릴옥시기는 라디칼 -O-헤테로아릴을 말하며, 이때 헤테로아릴은 위에서 정의된 바와 같다.Heteroaryloxy group as used herein refers to the radical —O-heteroaryl, wherein heteroaryl is as defined above.
본 명세서의 헤테로아릴옥시기의 구체적인 예로서, 벤질옥시, 페닐에틸옥시기 등이 있고, 헤테로아릴옥시기중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.Specific examples of the heteroaryloxy group of the present specification include a benzyloxy, a phenylethyloxy group, and the like, and at least one hydrogen atom in the heteroaryloxy group may be substituted with the same substituent as in the alkyl group described above.
본 명세서의 사이클로알킬기는 탄소원자수 5 내지 30의 1가 모노사이클릭 시스템을 의미한다. 전술된 사이클로알킬기 중 적어도 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.By cycloalkyl group herein is meant a monovalent monocyclic system having 5 to 30 carbon atoms. At least one hydrogen atom of the cycloalkyl group described above may be substituted with the same substituent as in the alkyl group described above.
본 명세서의 헤테로사이클로알킬기는 N, O, P 또는 S 중에서 선택된 1, 2 또는 3개의 헤테로원자를 포함하고, 나머지 고리원자가 C인 고리원자수 5 내지 30의 1가 모노사이클릭 시스템을 의미한다. 전술된 사이클로알킬기 중 하나 이상의 수소 원자는 전술된 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.Heterocycloalkyl group herein refers to a monovalent monocyclic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms being C. At least one hydrogen atom of the cycloalkyl group described above may be substituted with the same substituent as in the alkyl group described above.
본 명세서의 알킬에스테르기는 알킬기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 알킬기는 전술된 정의한 바와 같다.The alkyl ester group of the present specification means a functional group to which an alkyl group and an ester group are bonded, wherein the alkyl group is as defined above.
본 명세서의 헤테로알킬에스테르기는 헤테로알킬기와 에스테르기가 결합되어 있는 작용기를 의미하며, 전술된 헤테로알킬기는 전술된 정의한 바와 같다.The heteroalkyl ester group herein refers to a functional group having a heteroalkyl group and an ester group bonded thereto, and the aforementioned heteroalkyl group is as defined above.
본 명세서의 아릴에스테르기는 아릴기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 아릴기는 전술된 정의한 바와 같다.The aryl ester group of the present specification means a functional group having an aryl group and an ester group bonded thereto, wherein the aryl group is as defined above.
본 명세서의 헤테로아릴에스테르기는 헤테로아릴기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 헤테로아릴기는 전술된에서 정의한 바와 같다.The heteroaryl ester group of the present specification means a functional group having a heteroaryl group and an ester group bonded thereto, wherein the heteroaryl group is as defined above.
본 발명에서 사용되는 아미노기는 -NH2, -NH(R) 또는 -N(R')(R")을 의미하며, R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기이다.The amino group used in the present invention means -NH 2 , -NH (R) or -N (R ') (R "), R' and R" are independently an alkyl group having 1 to 10 carbon atoms.
본 명세서의 할로겐은 불소, 염소, 브롬, 요오드, 또는 아스타틴이며, 이들 중에서 불소가 특히 바람직하다.Halogen herein is fluorine, chlorine, bromine, iodine or asstatin, among which fluorine is particularly preferred.
전술된 금속성 탄소나노튜브는 정제된 금속성 탄소 나노 튜브 그 자체 물질이거나 탄소나노튜브의 내벽 및/또는 외벽에 금속 입자(예를 들면, Ag, Au, Cu, Pt 입자 등)이 부착되어 있는 탄소나노튜브일 수 있다.The metallic carbon nanotubes described above are carbon nanotubes that are purified metallic carbon nanotubes or carbon nanotubes having metal particles (eg, Ag, Au, Cu, Pt particles, etc.) attached to the inner and / or outer walls of the carbon nanotubes. It may be a tube.
전술된 그라펜은 약 0.34 nm 두께를 갖는 그라펜 단일층, 2 내지 10개의 그라펜 단일층이 적층된 구조를 갖는 수층 그라펜(a few layer graphene) 또는 전술된 수층 그라펜보다는 많은 수의 그라펜 단일층이 적층된 구조를 갖는 그라펜 다중층 구조를 가질 수 있다. The above-mentioned graphene is a graphene monolayer having a thickness of about 0.34 nm, a few layer graphene having a structure in which 2 to 10 graphene monolayers are stacked, or a larger number of graphenes than the above-described water layer graphene. The pen monolayer may have a graphene multilayer structure having a stacked structure.
전술된 금속 나노와이어 및 반도체 나노와이어는 예를 들면, Ag, Au, Cu, Pt NiSix (Nickel Silicide) 나노와이어 및 이들 중 2 이상의 복합체(composite, 예를 들면, 합금 또는 코어-쉘(core-shell) 구조체 등) 나노와이어 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The metal nanowires and semiconductor nanowires described above are, for example, Ag, Au, Cu, Pt NiSi x (Nickel Silicide) nanowires and composites of two or more thereof, such as alloys or core-shells. shell) structure, etc.) may be selected from nanowires, but is not limited thereto.
또는, 전술된 반도체 나노와이어는 Si, Ge, B 또는 N으로 도핑된 Si 나노와이어, B 또는 N으로 도핑된 Ge 나노와이어 및 이들 중 2 이상의 복합체(예를 들면, 합금 또는 코어-쉘 구조체 등) 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.Alternatively, the semiconductor nanowires described above may be Si nanowires doped with Si, Ge, B or N, Ge nanowires doped with B or N and composites of two or more of them (eg, alloys or core-shell structures, etc.). It may be selected from, but is not limited thereto.
전술된 금속 나노와이어 및 반도체 나노와이어의 직경은 5 nm 내지 100 nm 이하일 수 있으며, 길이는 500 nm 내지 100 ㎛ 일 수 있는데, 이는 전술된 금속 나노와이어 및 반도체 나노와이어의 제조 방법에 따라, 다양하게 선택될 수 있다.The diameters of the metal nanowires and the semiconductor nanowires described above may be 5 nm to 100 nm or less, and the length may be 500 nm to 100 μm, which may vary depending on the manufacturing method of the metal nanowires and the semiconductor nanowires described above. Can be selected.
전술된 금속 그리드는 Ag, Au, Cu, Al, Pt 및 이들의 합금을 이용해 서로 교차하는 그물 모양의 금속 선을 형성한 것이며 선폭 100 nm 내지 100 ㎛의 선폭을 가지도록 할 수 있으며 길이는 제한을 받지 않는다. 전술된 금속 그리드는 제1 전극위에 돌출되도록 형성할 수 있거나 제1 전극안에 삽입하여 함몰형으로 형성할 수 있다.The above-described metal grid is formed of intersecting reticulated metal lines using Ag, Au, Cu, Al, Pt, and their alloys, and can have a line width of 100 nm to 100 μm, with a length limited. Do not receive. The above-described metal grid may be formed to protrude above the first electrode or may be inserted into the first electrode to be recessed.
전술된 금속 나노점은 Ag, Au, Cu, Pt 및 이들 중 2 이상의 복합체(예를 들면, 합금 또는 코어-쉘 구조체 등) 나노점 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The aforementioned metal nanopoints may be selected from Ag, Au, Cu, Pt, and two or more of these composites (eg, alloys or core-shell structures, etc.) nanopoints, but are not limited thereto.
전술된 금속 나노와이어, 반도체 나노와이어 및 금속 나노점 표면에는 -S(Z100) 및 -Si(Z101)(Z102)(Z103)으로 표시되는 적어도 하나의 모이어티(여기서, 전술된 Z100, Z101, Z102, 및 Z103는 서로 독립적으로, 수소, 할로겐 원자, 치환 또는 비치환된 C1-C20알킬기 또는 치환 또는 비치환된 C1-C20알콕시기임)가 결합되어 있을 수 있다. 전술된 -S(Z100) 및 -Si(Z101)(Z102)(Z103)으로 표시되는 적어도 하나의 모이어티는 자기-조립(self-assembled) 모이어티로서, 전술된 모이어티를 통하여 금속 나노와이어, 반도체 나노와이어 및 금속 나노점들끼리의 결합 또는 금속 나노와이어, 반도체 나노와이어 및 금속 나노점과 제1 전극(210)과의 결합력 등이 강화될 수 있는 바, 이로써, 전기적 특성 및 기계적 강도가 보다 향상되는 효과가 있다.At least one moiety represented by -S (Z 100 ) and -Si (Z 101 ) (Z 102 ) (Z 103 ) on the surface of the metal nanowires, semiconductor nanowires and metal nanopoints described above, wherein Z 100 , Z 101 , Z 102 , and Z 103 may each independently be bonded to hydrogen, a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, or a substituted or unsubstituted C 1 -C 20 alkoxy group). Can be. At least one moiety represented by -S (Z 100 ) and -Si (Z 101 ) (Z 102 ) (Z 103 ) described above is a self-assembled moiety, The bonding between the metal nanowires, the semiconductor nanowires, and the metal nanopoints or the metal nanowires, the semiconductor nanowires and the metal nanopoints, and the first electrode 210 may be strengthened. There is an effect that the mechanical strength is further improved.
전술된 전도성 산화물은 ITO(인듐 주석 산화물), IZO(인듐 아연 산화물), SnO2 및 InO2 중 하나일 수 있다.The conductive oxide described above may be one of ITO (indium tin oxide), IZO (indium zinc oxide), SnO 2 and InO 2 .
전술된 제1 전극(20) 상에 전술된 도전층(31)을 형성하는 단계는 코팅법, 캐스트법, 량뮤어-블로젯 (LB, Langmuir-Blodgett 법), 잉크젯 프린팅법 (ink-jet printing), 노즐 프린팅법(nozzle printing), 슬롯 다이 코팅법 (slot-die coating), 닥터 블레이드 코팅법(doctor blade coating), 스크린 프린팅법(screen printing), 딥 코팅법 (dip coating), 그래비어 프린팅법(gravure printing), 리버스 오프셋 프린팅법(reverse-offset printing), 물리적 전사법 (physical transfer method), 스프레이 코팅법 (spray coating), 화학기상증착법 (chemical vapor deposition), 또는 열증착(thermal evaporation method) 공정을 사용할 수 있다.Forming the above-described conductive layer 31 on the first electrode 20 described above may be carried out by coating, casting, Liangmuir-Blodgett (LB), ink-jet printing (ink-jet printing). ), Nozzle printing, slot-die coating, doctor blade coating, screen printing, dip coating, gravure printing Method of gravity printing, reverse-offset printing, physical transfer method, spray coating, chemical vapor deposition, or thermal evaporation method ) Process can be used.
또한, 전술된 전도성 물질을 용매에 혼합하여 혼합 용액을 제조한 뒤 전술된 제1 전극(10) 상에 도포한 뒤 열처리하여 전술된 용매를 제거함으로써 형성할 수 있다. 이 때, 전술된 용매는 극성 용매일 수 있는데, 예를 들면, 물, 알코올(메탄올, 에탄올, n-프로판올, 2-프로판올, n-부탄올 등), 포름산(formic acid), 니트로메탄(nitromethane), 아세트산(acetaic acid), 에틸렌 클리콜 (ethylene glycol), 글리세롤(glycerol), 노말 메틸 피로리돈 (NMP, n-Methyl-2-Pyrrolidone), N-디메틸 아세트아미드(N. N-dimethylacetamide), 디메틸포름아마이드(DMF, dimethylformamide), 디메틸설폭시드(DMSO, dimethyl sulfoxide), 테트라히드로퓨란(THF, tetrahydrofuran), 에틸아세테이트(EtOAc, ethyl acetate), 아세톤(acetone), 및 아세토니트릴(MeCN, acetonitrile)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.In addition, the above-described conductive material may be mixed with a solvent to prepare a mixed solution, and then coated on the first electrode 10 and then heat treated to remove the aforementioned solvent. In this case, the solvent described above may be a polar solvent, for example, water, alcohol (methanol, ethanol, n-propanol, 2-propanol, n-butanol, etc.), formic acid, nitromethane , Acetic acid, ethylene glycol, glycerol, normal methyl pyrrolidone (NMP, n-Methyl-2-Pyrrolidone), N-dimethyl acetamide, dimethyl With formamide (DMF, dimethylformamide), dimethyl sulfoxide (DMSO, dimethyl sulfoxide), tetrahydrofuran (THF, tetrahydrofuran), ethyl acetate (EtOAc, ethyl acetate), acetone, and acetonitrile (MeCN, acetonitrile) It may include at least one selected from the group consisting of.
전술된 도전층(31)이 금속성 탄소나노튜브를 포함할 경우, 전술된 제1 전극(20) 상에 금속성 탄소나노튜브를 성장시키거나 용매에 분산된 탄소 나노튜브를 용액기반한 프린팅법 (예: 스프레이 코팅법, 스핀코팅법, 딥코팅법, 그래비어 코팅법, 리버스 오프셋 코팅법, 스크린 프린팅법, 슬롯-다이 코팅법)에 의해서 형성할 수 있다.When the above-described conductive layer 31 includes metallic carbon nanotubes, the metallic carbon nanotubes are grown on the aforementioned first electrode 20 or a solution-based printing method of carbon nanotubes dispersed in a solvent (eg, Spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method).
전술된 도전층(31)이 금속성 그리드를 포함할 경우, 전술된 제1 전극(20) 상에 금속을 진공 증착하여 금속막을 형성한 후 포토리쏘그라피로 여러가지 그물망 모양으로 패턴닝을 하거나 금속 전구체 혹은 금속입자를 용매에 분산시켜 프린팅법 (예: 스프레이 코팅법, 스핀코팅법, 딥코팅법, 그래비어 코팅법, 리버스 오프셋 코팅법, 스크린 프린팅법, 슬롯-다이 코팅법)에 의해서 형성할 수 있다.When the above-described conductive layer 31 includes a metallic grid, a metal film is formed by vacuum depositing a metal on the above-described first electrode 20, and then patterned into various mesh shapes by photolithography, or a metal precursor or Metal particles may be dispersed in a solvent and formed by a printing method (eg, spray coating method, spin coating method, dip coating method, gravure coating method, reverse offset coating method, screen printing method, slot-die coating method). .
전술된 도전층(31)은 전술된 전술된 엑시톤 버퍼층(30)에서 전도도를 향상시키는 역할을 주로 하며 부가적으로 산란, 반사, 흡수를 조절해서 광학적 추출을 향상시키거나, 유연성을 부여해서 기계적 강도를 향상시키는 역할을 할 수 있다.The above-mentioned conductive layer 31 mainly serves to improve conductivity in the above-mentioned exciton buffer layer 30, and additionally controls scattering, reflection, and absorption to improve optical extraction, or gives flexibility to provide mechanical strength. Can play a role in improving
전술된 표면 버퍼층(32)은 불소계물질을 포함한다. 이 때, 전술된 불소계 물질은 전술된 전도성 물질보다 낮은 표면 에너지를 갖는 불소계 물질인 것이 바람직직하며, 30mN/m 이하의 표면 에너지를 가질 수 있다.The surface buffer layer 32 described above includes a fluorine-based material. At this time, the above-described fluorine-based material is preferably a fluorine-based material having a lower surface energy than the above-described conductive material, it may have a surface energy of 30mN / m or less.
또한, 전술된 불소계 물질은 전술된 전도성 고분자의 소수성보다 큰 소수성을 가질 수 있다.In addition, the aforementioned fluorine-based material may have a hydrophobicity greater than that of the conductive polymer described above.
이 때, 전술된 표면 버퍼층(32)에서 전술된 도전층(31)과 가까운 제1면(32a)의 전술된 불소계 물질의 농도보다 전술된 제1면(32a)과 반대되는 제2면(32b)의 전술된 불소계 물질의 농도가 더 낮다.At this time, in the surface buffer layer 32 described above, the second surface 32b opposite to the aforementioned first surface 32a than the concentration of the aforementioned fluorine-based material on the first surface 32a close to the conductive layer 31 described above. The concentration of fluorine-based material described above is lower.
이에, 전술된 표면 버퍼층(32) 제2면(32b)의 일함수는 5.0eV 이상일 수 있다. 일 예로, 전술된 표면 버퍼층(32) 중 제2면(32b)에서 측정된 일함수는 5.0eV 내지 6.5eV일 수 있으나, 이에 한정되는 것은 아니다.Thus, the work function of the second surface 32b of the surface buffer layer 32 may be 5.0 eV or more. For example, the work function measured on the second surface 32b of the surface buffer layer 32 described above may be 5.0 eV to 6.5 eV, but is not limited thereto.
전술된 불소계 물질은 적어도 하나의 F를 포함하는 과불화 이오노머 또는 불화 이오노머일 수 있다. 특히, 전술된 불소계 물질이 불화 이오노머인 경우, 버퍼층의 두께를 두껍게 형성할 수 있고, 도전층(31) 및 표면 버퍼층(32)의 상분리를 막아 보다 균일한 엑시톤 버퍼층(30)형성을 가능하게 한다. The aforementioned fluorine-based material may be a perfluorinated ionomer or a fluorinated ionomer comprising at least one F. In particular, when the above-described fluorine-based material is a fluorinated ionomer, the thickness of the buffer layer can be formed thick, and the phase separation of the conductive layer 31 and the surface buffer layer 32 can be prevented, thereby making it possible to form a more uniform exciton buffer layer 30. .
전술된 불소계 물질은 하기 화학식 1 내지 12의 구조를 갖는 이오노머로 이루어진 군으로부터 선택되는 적어도 하나의 이오노머를 포함할 수 있다.The aforementioned fluorine-based material may include at least one ionomer selected from the group consisting of ionomers having the structures of Formulas 1 to 12.
<화학식 1><Formula 1>
Figure PCTKR2015011963-appb-I000011
Figure PCTKR2015011963-appb-I000011
전술된 식 중, m은 1 내지 10,000,000의 수이고, x 및 y는 각각 독립적으로 0 내지 10의 수이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m is a number from 1 to 10,000,000, x and y are each independently a number from 0 to 10, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 2><Formula 2>
Figure PCTKR2015011963-appb-I000012
Figure PCTKR2015011963-appb-I000012
전술된 식중, m은 1 내지 10,000,000의 수이다;Wherein m is a number from 1 to 10,000,000;
<화학식 3><Formula 3>
Figure PCTKR2015011963-appb-I000013
Figure PCTKR2015011963-appb-I000013
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000 이며, x 및 y는 각각 독립적으로 0 내지 20의 수이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;In the above formula, m and n are 0 <m ≤ 10,000,000, 0 ≤ n <10,000,000, x and y are each independently a number from 0 to 20, M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 4><Formula 4>
Figure PCTKR2015011963-appb-I000014
Figure PCTKR2015011963-appb-I000014
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, x 및 y는 각각 독립적으로 0 내지 20의 수이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≦ 10,000,000, 0 ≦ n <10,000,000, x and y are each independently a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 5><Formula 5>
Figure PCTKR2015011963-appb-I000015
Figure PCTKR2015011963-appb-I000015
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, z는 0 내지 20의 수이고, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≤ 10,000,000, 0 ≤ n <10,000,000, z is a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 6><Formula 6>
Figure PCTKR2015011963-appb-I000016
Figure PCTKR2015011963-appb-I000016
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, x 및 y는 각각 독립적으로 0 내지 20의 수이고, Y는 -COO-M+, -SO3 -NHSO2CF3+, -PO3 2-(M+)2 중에서 선택된 하나이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≤ 10,000,000, 0 ≤ n <10,000,000, x and y are each independently a number from 0 to 20, Y is -COO - M + , -SO 3 - NHSO 2 CF 3 + , -PO 3 2- (M + ) 2 , M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50 ), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 7><Formula 7>
Figure PCTKR2015011963-appb-I000017
Figure PCTKR2015011963-appb-I000017
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≤ 10,000,000, 0 ≤ n <10,000,000, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is 0 To an integer of 50 to)), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 8><Formula 8>
Figure PCTKR2015011963-appb-I000018
Figure PCTKR2015011963-appb-I000018
전술된 식 중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이다;Wherein m and n are 0 <m ≦ 10,000,000, 0 ≦ n <10,000,000;
<화학식 9><Formula 9>
Figure PCTKR2015011963-appb-I000019
Figure PCTKR2015011963-appb-I000019
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, x는 0 내지 20의 수이고, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≦ 10,000,000, 0 ≦ n <10,000,000, x is a number from 0 to 20, and M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 10><Formula 10>
Figure PCTKR2015011963-appb-I000020
Figure PCTKR2015011963-appb-I000020
전술된 식중, m 및 n은 0 < m ≤ 10,000,000, 0 ≤ n < 10,000,000이며, x 및 y는 각각 독립적으로 0 내지 20의 수이고, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 <m ≦ 10,000,000, 0 ≦ n <10,000,000, x and y are each independently a number from 0 to 20, M+Silver Na+, K+, Li+, H+, CH3(CH2)nNH3 +(n is an integer from 0 to 50), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R is CH3(CH2)n-; n represents an integer of 0 to 50;
<화학식 11><Formula 11>
Figure PCTKR2015011963-appb-I000021
Figure PCTKR2015011963-appb-I000021
전술된 식중, m 및 n은 0 ≤ m < 10,000,000, 0 < n ≤ 10,000,000이고, Rf = -(CF2)z- (z는 1 내지 50의 정수, 단 2는 제외), -(CF2CF2O)zCF2CF2-(z는 1 내지 50의 정수), -(CF2CF2CF2O)zCF2CF2- (z는 1 내지 50의 정수)이며, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다;Wherein m and n are 0 ≦ m <10,000,000, 0 <n ≦ 10,000,000 and R f =-(CF 2 ) z- (z is an integer from 1 to 50, except 2),-(CF 2 CF 2 O) z CF 2 CF 2- (z is an integer from 1 to 50),-(CF 2 CF 2 CF 2 O) z CF 2 CF 2- (z is an integer from 1 to 50), M + is Na + , K + , Li + , H + , CH 3 (CH 2 ) n NH 3 + ( n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50);
<화학식 12><Formula 12>
Figure PCTKR2015011963-appb-I000022
Figure PCTKR2015011963-appb-I000022
전술된 식중, m 및 n은 0 ≤ m < 10,000,000, 0 < n ≤ 10,000,000이고, x 및 y는 각각 독립적으로 0 내지 20의 수이며, Y는 각각 독립적으로, -SO3 -M+, -COO-M+, -SO3 -NHSO2CF3+, -PO3 2-(M+)2 중에서 선택된 하나이고, M+은 Na+, K+, Li+, H+, CH3(CH2)nNH3 + (n은 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, RCHO+(R은 CH3(CH2)n-; n은 0 내지 50의 정수)을 나타낸다.Wherein m and n are 0 ≦ m <10,000,000, 0 <n ≦ 10,000,000, x and y are each independently a number from 0 to 20, Y is each independently, —SO 3 - M + , -COO - M +, -SO 3 - and NHSO 2 CF3 +, -PO 3 2- (M +) one selected from the group consisting of 2, M + is Na +, K +, Li + , H +, CH 3 (CH 2) n NH 3 + (n is an integer from 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , RCHO + (R is CH 3 (CH 2 ) n- ; n is an integer from 0 to 50).
또한, 전술된 불소계 물질은 하기 화학식 13 내지 19의 구조를 갖는 이오노머 또는 불화 저분자로 이루어진 군으로부터 선택되는 적어도 하나의 이오노머 또는 불화 저분자를 포함할 수 있다.In addition, the aforementioned fluorine-based material may include at least one ionomer or fluorinated low molecule selected from the group consisting of ionomers or fluorinated low molecules having the structures of Formulas 13 to 19.
<화학식 13><Formula 13>
Figure PCTKR2015011963-appb-I000023
Figure PCTKR2015011963-appb-I000023
<화학식 14><Formula 14>
Figure PCTKR2015011963-appb-I000024
Figure PCTKR2015011963-appb-I000024
<화학식 15><Formula 15>
Figure PCTKR2015011963-appb-I000025
Figure PCTKR2015011963-appb-I000025
<화학식 16><Formula 16>
Figure PCTKR2015011963-appb-I000026
Figure PCTKR2015011963-appb-I000026
<화학식 17><Formula 17>
Figure PCTKR2015011963-appb-I000027
Figure PCTKR2015011963-appb-I000027
<화학식 18><Formula 18>
Figure PCTKR2015011963-appb-I000028
Figure PCTKR2015011963-appb-I000028
(전술된 화학식 13 내지 18 중,(In Formulas 13 to 18 described above,
R11 내지 R14, R21 내지 R28, R31 내지 R38, R41 내지 R48, R51 내지 R58 및 R61 내지 R68은 서로 독립적으로, 수소, -F, C1-C20알킬기, C1-C20알콕시기, 적어도 하나의 -F로 치환된 C1-C20알킬기, 적어도 하나의 -F로 치환된 C1-C20알콕시기, Q1, -O-(CF2CF(CF3)-O)n-(CF2)m-Q2 (여기서, n 및 m은 서로 독립적으로, 0 내지 20의 정수이되, n+m은 1 이상임) 및 -(OCF2CF2)x-Q3 (여기서, x는 1 내지 20의 정수임) 중에서 선택되고, R 11 to R 14 , R 21 to R 28 , R 31 to R 38 , R 41 to R 48 , R 51 to R 58 and R 61 to R 68 are each independently of the other hydrogen, -F, C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, at least one of -F substituted with a C 1 -C 20 alkyl group, at least one of -F substituted with C 1 -C 20 alkoxy group, Q 1, -O- (CF 2 CF (CF 3 ) -O) n- (CF 2 ) m -Q 2 , where n and m are, independently of each other, an integer from 0 to 20, where n + m is 1 or more; and-(OCF 2 CF 2 ) x -Q 3 , where x is an integer from 1 to 20,
전술된 Q1 내지 Q3는 이온기이고, 전술된 이온기는 음이온기 및 양이온기를 포함하고, 전술된 음이온기는 PO3 2-, SO3 -, COO-, I-, CH3COO- 및 BO2 2- 중에서 선택되고, 전술된 양이온기는 금속 이온 및 유기 이온 중 1종 이상을 포함하고, 전술된 금속 이온은 Na+, K+, Li+, Mg+2, Zn+2 및 Al+ 3 중에서 선택되고, 전술된 유기 이온은 H+, CH3(CH2)n1NH3 + (여기서, n1은 0 내지 50의 정수임), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+ 및 RCHO+(여기서, R은 CH3(CH2)n2-이고, n2는 0 내지 50의 정수임) 중에서 선택되되;Of the Q 1 to Q 3 above comprises ionic groups, and the ionic group is an anionic group described above, and the cation, and the above-described anionic group PO 3 2-, SO 3 -, COO -, I -, CH 3 COO - and BO 2 Wherein the aforementioned cationic group comprises at least one of metal ions and organic ions, and the aforementioned metal ions are selected from Na + , K + , Li + , Mg +2 , Zn +2 and Al + 3 Wherein the aforementioned organic ions are H + , CH 3 (CH 2 ) n 1 NH 3 + , where n 1 is an integer from 0 to 50, NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + and RCHO + , wherein R is CH 3 (CH 2 ) n 2 — and n 2 is an integer from 0 to 50;
R11 내지 R14 중 적어도 하나, R21 내지 R28 중 적어도 하나, R31 내지 R38 중 적어도 하나, R41 내지 R48 중 적어도 하나, R51 내지 R58 중 적어도 하나 및 R61 내지 R68 중 적어도 하나는, -F, 적어도 하나의 -F로 치환된 C1-C20알킬기, 적어도 하나의 -F로 치환된 C1-C20알콕시기, -O-(CF2CF(CF3)-O)n-(CF2)m-Q2 및 -(OCF2CF2)x-Q3 중에서 선택된다.)At least one of R 11 to R 14 , at least one of R 21 to R 28 , at least one of R 31 to R 38 , at least one of R 41 to R 48 , at least one of R 51 to R 58 and R 61 to R 68 At least one of -F, a C 1 -C 20 alkyl group substituted with at least one -F, a C 1 -C 20 alkoxy group substituted with at least one -F, -O- (CF 2 CF (CF 3 ) -O) n- (CF 2 ) m -Q 2 and-(OCF 2 CF 2 ) x -Q 3 is selected.)
<화학식 19><Formula 19>
X-Mf n-Mh m-Ma r-GXM f n -M h m -M a r -G
전술된 화학식 19 중,In the above formula (19),
X는 말단기이고;X is a terminal group;
Mf는 퍼플루오로폴리에테르 알코올, 폴리이소시아네이트 및 이소시아네이트 반응성-비불소화 모노머의 축합 반응으로부터 수득한 불화 모노머로부터 유래된 단위를 나타내고;M f represents a unit derived from a fluorinated monomer obtained from the condensation reaction of a perfluoropolyether alcohol, a polyisocyanate and an isocyanate reactive-non-fluorinated monomer;
Mh는 비불소화 모노머로부터 유래된 단위를 나타내고;M h represents a unit derived from a non-fluorinated monomer;
Ma는 -Si(Y4)(Y5)(Y6)으로 표시되는 실릴기를 갖는 단위를 나타내고;M a represents a unit having a silyl group represented by -Si (Y 4 ) (Y 5 ) (Y 6 );
전술된 Y4, Y5 및 Y6는 서로 독립적으로, 치환 또는 비치환된 C1-C20알킬기, 치환 또는 비치환된 C6-C30아릴기 또는 가수분해성 치환기를 나타내고, 전술된 Y4, Y5 및 Y6 중 적어도 하나는 전술된 가수분해성 치환기이고; Y 4 , Y 5 and Y 6 described above independently of each other represent a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a hydrolyzable substituent, and the aforementioned Y 4 At least one of Y 5 and Y 6 is the hydrolyzable substituent described above;
G는 사슬전달제(chain transfer agent)의 잔기를 포함한 1가 유기 그룹이고;G is a monovalent organic group comprising residues of a chain transfer agent;
n은 1 내지 100의 수이고;n is a number from 1 to 100;
m은 0 내지 100의 수이고;m is a number from 0 to 100;
r은 0 내지 100의 수이고;r is a number from 0 to 100;
n+m+r은 적어도 5이다.n + m + r is at least 5.
전술된 표면 버퍼층(32)의 두께는 20nm 내지 500nm, 예를 들면, 50nm 내지 200nm일 수 있다. 전술된 표면 버퍼층(32)의 두께가 상술한 바와 같은 범위를 만족할 경우, 우수한 일함수 특성, 투과도 및 플렉서블 특성을 제공할 수 있다.The thickness of the surface buffer layer 32 described above may be 20 nm to 500 nm, for example, 50 nm to 200 nm. When the thickness of the surface buffer layer 32 described above satisfies the above-described range, it is possible to provide excellent work function characteristics, transmittance and flexible characteristics.
전술된 표면 버퍼층(32)은 전술된 도전층(31) 상에 전술된 불소계 물질 및 용매를 포함하는 혼합용액을 제조한 후, 이를 열처리 하여 형성할 수 있다.The surface buffer layer 32 described above may be formed by preparing a mixed solution including the aforementioned fluorine-based material and a solvent on the conductive layer 31 and then heat-treating it.
이렇게 형성된 엑시톤 버퍼층(30)은 50nm 내지 1000nm의 두께를 가질 수 있다. 전술된 도전층(31)이 형성됨에 따라 전도도를 향상시키고, 동시에 전술된 표면 버퍼층(32)이 형성됨에 따라 표면 에너지를 낮출 수 있다. 이에 따라 발광 특성을 극대화 할 수 있다.The exciton buffer layer 30 thus formed may have a thickness of 50 nm to 1000 nm. As the above-described conductive layer 31 is formed, conductivity may be improved, and at the same time, the above-described surface buffer layer 32 may be formed to lower surface energy. Accordingly, the light emission characteristics can be maximized.
전술된 표면 버퍼층(32)은 탄소나노튜브, 그라펜, 환원된 산화그라펜, 금속 나노와이어, 금속 카본 나노점, 반도체 양자점(semiconductor quantum dot), 반도체 나노와이어 및 금속 나노점으루 이루어진 군으로부터 선택되는 적어도 하나의 첨가제를 더 포함할 수 있다. 전술된 첨가제를 더 포함할 시, 전술된 엑시톤 버퍼층(30)의 전도성 향상을 극대화할 수 있다.The surface buffer layer 32 described above is selected from the group consisting of carbon nanotubes, graphene, reduced graphene oxide, metal nanowires, metal carbon nanodots, semiconductor quantum dots, semiconductor nanowires, and metal nanodots. At least one additive may be further included. When further comprising the above-described additives, it is possible to maximize the conductivity improvement of the above-mentioned exciton buffer layer 30.
또한, 전술된 표면 버퍼층(32)은 비스페닐아지드계(Bis(phenyl azide)) 물질을 포함하는 가교제를 더 포함할 수 있다. 전술된 표면 버퍼층(32)전술된 가교제가 더 포함할 경우, 시간 및 소자 구동에 따른 조성 분리를 방지할 수 있다. 이에, 전술된 엑시톤 버퍼층(30)의 저항 및 일함수를 낮춰 발광 소자의 안정성 및 재현성을 향상시킬 수 있다.In addition, the surface buffer layer 32 described above may further include a crosslinking agent including a bisphenyl azide (Bis) material. When the above-described surface buffer layer 32 further includes the crosslinking agent described above, it is possible to prevent composition separation due to time and device driving. Accordingly, the resistance and work function of the exciton buffer layer 30 described above may be lowered to improve stability and reproducibility of the light emitting device.
전술된 비스페닐아지드계(Bis(phenyl azide)) 물질은 하기 화학식 20의 비스페닐아지드계(Bis(phenyl azide)) 물질일 수 있다.The bisphenyl azide (Bis) material described above may be a bisphenyl azide (Bis) material of Formula 20 below.
<화학식 20><Formula 20>
Figure PCTKR2015011963-appb-I000029
Figure PCTKR2015011963-appb-I000029
전술된 도전층(31) 상에 전술된 표면 버퍼층(32)을 형성하는 단계는 스핀코팅법, 캐스트법, 량뮤어-블로젯 (LB, Langmuir-Blodgett 법), 잉크젯 프린팅법 (ink-jet printing), 노즐 프린팅법(nozzle printing), 슬롯 다이 코팅법 (slot-die coating), 닥터 블레이드 코팅법(doctor blade coating), 스크린 프린팅법(screen printing), 딥 코팅법 (dip coating), 그래비어 프린팅법(gravure printing), 리버스 오프셋 프린팅법(reverse-offset printing), 물리적 전사법 (physical transfer method), 스프레이 코팅법 (spray coating), 화학기상증착법 (chemical vapor deposition), 또는 열증착(thermal evaporation method) 공정을 사용할 수 있다.Forming the above-mentioned surface buffer layer 32 on the conductive layer 31 described above may be performed by spin coating, casting, Liangmuir-Blodgett (LB), ink-jet printing (ink-jet printing). ), Nozzle printing, slot-die coating, doctor blade coating, screen printing, dip coating, gravure printing Method of gravity printing, reverse-offset printing, physical transfer method, spray coating, chemical vapor deposition, or thermal evaporation method ) Process can be used.
다만, 전술된 엑시톤 버퍼층(30)을 형성하는 단계는 전술된 바와 같이 전술된 도전층(31) 및 표면 버퍼층(32)을 순차적으로 증착할 수도 있지만, 전술된 전도성 물질 및 전술된 불소계 물질을 용매에 혼합하여 혼합용액을 제조한 후, 전술된 혼합 용액을 전술된 제1 전극 상에 도포하여 열처리하는 공정을 통해 형성할 수 있다.However, the forming of the above-described exciton buffer layer 30 may sequentially deposit the above-described conductive layer 31 and the surface buffer layer 32 as described above, but may use the above-described conductive material and the above-described fluorine-based material as solvents. After mixing to prepare a mixed solution, it can be formed through the process of applying the above-described mixed solution on the above-described first electrode and heat treatment.
이 경우, 전술된 혼합용액을 열처리 함에 따라 전술된 제1 전극(20) 상에 도전층(31) 및 표면 버퍼층(32)이 순차적으로 자가조립되어 형성된다. 이에 따라 공정을 간소화할 수 있는 장점이 있다.In this case, as the above-described mixed solution is heat treated, the conductive layer 31 and the surface buffer layer 32 are sequentially self-assembled on the first electrode 20 described above. Accordingly, there is an advantage that can simplify the process.
전술된 불소계 물질은 극성 용매에 대하여, 90% 이상의 용해도, 예를 들면, 95% 이상의 용해도를 갖는 물질일 수 있다. 전술된 극성 용매의 예로는, 물, 알코올(메탄올, 에탄올, n-프로판올, 2-프로판올, n-부탄올 등), 에틸렌 글리콜, 글리세롤, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO), 아세톤 등을 들 수 있으나, 이에 한정되는 것은 아니다.The aforementioned fluorine-based material may be a material having a solubility of at least 90%, for example at least 95%, with respect to the polar solvent. Examples of the aforementioned polar solvents include water, alcohols (methanol, ethanol, n-propanol, 2-propanol, n-butanol, and the like), ethylene glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone And the like, but is not limited thereto.
도 13은 본 발명의 일 실시예에 따른 엑시톤 버퍼층(30)의 효과를 나타낸 모식도이다.13 is a schematic diagram showing the effect of the exciton buffer layer 30 according to an embodiment of the present invention.
도 13을 참조하면, 본 발명의 일 실시예에 따른 엑시톤 버퍼층(30)은 정공주입 효율을 향상시키고, 전자 블로킹(electron blocking) 역할을 수행하며, 엑시톤의 퀜칭을 억제함을 알 수 있다.Referring to FIG. 13, it can be seen that the exciton buffer layer 30 according to an embodiment of the present invention improves the hole injection efficiency, plays an electron blocking role, and suppresses quenching of the exciton.
전술된 엑시톤 버퍼층(30)은 가교제를 더 포함할 수 있다.The exciton buffer layer 30 described above may further include a crosslinking agent.
전술된 엑시톤 버퍼층(30)에 가교제를 첨가함으로써 시간 및 소자 구동에 따라 구성 물질의 상분리가 일어나는 것을 방지할 수 있다. 또한, 전술된 표면 버퍼층(32) 형성시 용매 사용 등으로 인해 엑시톤 버퍼층(30)의 효율이 저하되는 것을 막을 수 있다. 이에, 소자 안정성 및 재현성을 향상시킬 수 있다.By adding a crosslinking agent to the exciton buffer layer 30 described above, it is possible to prevent phase separation of the constituent materials over time and device driving. In addition, it is possible to prevent the efficiency of the exciton buffer layer 30 from being lowered due to the use of a solvent in forming the surface buffer layer 32 described above. Thus, device stability and reproducibility can be improved.
전술된 가교제는 아민기(-NH2), 티올기(-SH), 및 카복실기(-COO-)로 이루어진 군으로부터 선택되는 적어도 하나의 작용기를 포함할 수 있다.The above-mentioned crosslinking agent may include at least one functional group selected from the group consisting of an amine group (-NH 2 ), a thiol group (-SH), and a carboxyl group (-COO-).
또한, 전술된 가교제는 비스페닐아지드계(Bis(phenyl azide)) 물질, 디아미노알칸(diaminoalkane)계 물질, 디티올(dithiol)계 물질, 디카볼실레이트(dicarboxylate), 에틸렌 글리콜 디메타크릴레이드(ethylene glycol di(meth)acrylate) 유도체, 메틸렌비즈아미드(methylenebisacrylamide) 유도체, 및 DVB로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.In addition, the aforementioned crosslinking agent may be a bisphenyl azide (Bis) material, a diaminoalkane material, a dithiol material, a dicarboxylate, an ethylene glycol dimethacrylate (ethylene glycol di (meth) acrylate) derivatives, methylenebisacrylamide derivatives, and at least one selected from the group consisting of DVB.
전술된 엑시톤 버퍼층(30) 상에 정공 수송층(미도시)을 형성할 수 있다. 전술된 정공 수송층은, 진공증착법, 스핀코팅법, 캐스트법, LB법 등과 같은 공지된 다양한 방법 중에서 임의로 선택된 방법에 따라 형성될 수 있다. 이 때, 진공 증착법을 선택할 경우, 증착 조건은 목적 화합물, 목적으로 하는 층의 구조 및 열적 특성 등에 따라 다르지만, 예를 들면, 100 ℃ 내지 500 ℃의 증착 온도 범위, 10-10 내지 10- 3torr의 진공도 범위, 0.01Å/sec 내지 100Å/sec의 증착 속도 범위 내에서 선택될 수 있다. 한편, 스핀코팅법을 선택할 경우, 코팅 조건은 목적 화합물, 목적하는 하는 층의 구조 및 열적 특성에 따라 상이하지만, 2000rpm 내지 5000rpm의 코팅 속도 범위, 80 ℃ 내지 200 ℃의 열처리 온도(코팅 후 용매 제거를 위한 열처리 온도) 범위 내에서 선택될 수 있다.A hole transport layer (not shown) may be formed on the exciton buffer layer 30 described above. The hole transport layer described above may be formed according to a method arbitrarily selected from various known methods such as vacuum deposition, spin coating, casting, LB, and the like. At this time, when selecting the vacuum deposition, the deposition conditions is the desired compound, varies depending on the structure and thermal properties of the layer of interest, e.g., to the deposition temperature of 100 500 ℃, 10 -10 to 10 - 3 torr It can be selected within the vacuum degree range of, deposition rate range of 0.01 Pa / sec to 100 Pa / sec. On the other hand, when the spin coating method is selected, the coating conditions vary depending on the target compound, the structure and the thermal properties of the desired layer, but the coating speed range of 2000 rpm to 5000 rpm, heat treatment temperature of 80 ℃ to 200 ℃ (removing solvent after coating Heat treatment temperature).
정공 수송층 재료는 정공 주입보다는 정공을 보다 잘 수송할 수 있는 재료들 중에서 선택될 수 있다. 전술된 정공 수송층은 공지된 정공 수송 재료를 이용하여 형성할 수 있는데, 예를 들어, 방향족 축합환을 갖는 아민계 물질일 수 있고 트리페닐 아민계 물질일 수 있다.The hole transport layer material may be selected from materials that can transport holes better than hole injection. The hole transport layer described above may be formed using a known hole transport material, for example, may be an amine-based material having an aromatic condensed ring and may be a triphenyl amine-based material.
보다 구체적으로는, 전술된 정공 수송성 물질은 , 1,3-비스(카바졸-9-일)벤젠 (1,3-bis(carbazol-9-yl)benzene: MCP), 1,3,5-트리스(카바졸-9-일)벤젠 (1,3,5-tris(carbazol-9-yl)benzene : TCP), 4,4',4"-트리스(카바졸-9-일)트리페닐아민 (4,4',4"-tris(carbazol-9-yl)triphenylamine : TCTA), 4,4'-비스(카바졸-9-일)비페닐 (4,4'-bis(carbazol-9-yl)biphenyl: CBP), N,N'-비스(나프탈렌-1-일)-N,N'-비스(페닐)벤지딘 (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine : NPB), N,N'-비스(나프탈렌-2-일)-N,N'-비스(페닐)-벤지딘 (N,N'-bis(naphthalen-2-yl)-N,N'-bis(phenyl)-benzidine : β-NPB), N,N'-비스(나프탈렌-1-일)-N,N'-비스(페닐)-2,2'-디메틸벤지딘 (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine : α-NPD), More specifically, the above-described hole transporting material is 1,3-bis (carbazol-9-yl) benzene (1,3-bis (carbazol-9-yl) benzene: MCP), 1,3,5- Tris (carbazol-9-yl) benzene (1,3,5-tris (carbazol-9-yl) benzene: TCP), 4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (TCTA), 4,4'-bis (carbazol-9-yl) biphenyl (4,4'-bis (carbazol-9- yl) biphenyl: CBP), N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) benzidine (N, N'-bis (naphthalen-1-yl) -N, N ' -bis (phenyl) -benzidine (NPB), N, N'-bis (naphthalen-2-yl) -N, N'-bis (phenyl) -benzidine (N, N'-bis (naphthalen-2-yl) -N, N'-bis (phenyl) -benzidine: β-NPB), N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) -2,2'-dimethylbenzidine ( N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) -2,2'-dimethylbenzidine: α-NPD),
디-[4,-(N,N-디톨일-아미노)-페닐]시클로헥산 (Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane : TAPC), N,N,N',N'-테트라-나프탈렌-2-일-벤지딘 (N,N,N',N'-tetra-naphthalen-2-yl-benzidine : β-TNB) 및 N4,N4,N4',N4'-tetra(biphenyl-4-yl)biphenyl-4,4'-diamine(TPD15), poly(9,9-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB), poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)(TFB), poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenylbenzidine)(BFB), poly(9,9-dioctylfluorene-co-bis-N,N'-(4-methoxyphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)(PFMO) 등을 예로 들 수 있으며 이에 한정되는 것은 아니다.Di- [4,-(N, N-ditolyl-amino) -phenyl] cyclohexane (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexane (TAPC), N, N, N ' , N'-tetra-naphthalen-2-yl-benzidine (N, N, N ', N'-tetra-naphthalen-2-yl-benzidine: β-TNB) and N4, N4, N4', N4'-tetra (biphenyl-4-yl) biphenyl-4,4'-diamine (TPD15), poly (9,9-dioctylfluorene-co-bis-N, N '-(4-butylphenyl) -bis-N, N'-phenyl -1,4-phenylenediamine) (PFB), poly (9,9'-dioctylfluorene-co-N- (4-butylphenyl) diphenylamine) (TFB), poly (9,9'-dioctylfluorene-co-bis-N, N '-(4-butylphenyl) -bis-N, N'-phenylbenzidine) (BFB), poly (9,9-dioctylfluorene-co-bis-N, N'-(4-methoxyphenyl) -bis-N, N '-phenyl-1,4-phenylenediamine) (PFMO) and the like, but are not limited thereto.
전술된 정공 수송층의 두께는 5nm 내지 100nm, 예를 들면, 10nm 내지 60nm일 수 있다. 전술된 정공 수송층의 두께가 상술한 바와 같은 범위를 만족할 경우, 구동 전압의 상승없이 우수한 정공 수송 특성을 얻을 수 있다. 다만, 전술된 정공 수송층의 경우 생략이 가능하다.The hole transport layer may have a thickness of about 5 nm to about 100 nm, for example, about 10 nm to about 60 nm. When the thickness of the above-described hole transporting layer satisfies the above-described range, excellent hole transporting properties can be obtained without increasing the driving voltage. However, the above-described hole transport layer may be omitted.
따라서, 전술된 엑시톤 버퍼층(30)을 포함하는 발광 소자는 정공 주입층을 형성하지 않아도, 우수한 효율, 휘도, 수명 특성을 가질 수 있다. 이에, 전술된 발광 소자 제조시 비용을 절감할 수 있는 효과가 있다. Therefore, the light emitting device including the exciton buffer layer 30 described above may have excellent efficiency, brightness, and lifespan characteristics without forming a hole injection layer. Therefore, there is an effect that can reduce the cost when manufacturing the above-described light emitting device.
또한, 전술된 정공 수송층이 형성된다고 가정할 때, 전술된 정공 수송층의 일함수는 Z eV일 수 있는데, 전술된 Z는 5.2 내지 5.6의 실수일 수 있으나, 이에 한정되는 것은 아니다.In addition, assuming that the above-described hole transporting layer is formed, the work function of the above-described hole transporting layer may be Z eV, but the aforementioned Z may be a real number of 5.2 to 5.6, but is not limited thereto.
전술된 엑시톤 버퍼층(30)의 표면 버퍼층(32)의 제1면(32a)의 일함수값인 Y1은 4.6 내지 5.2, 예를 들면, 4.7 내지 4.9의 범위일 수 있다. 그리고, 전술된 엑시톤 버퍼층(30)의 표면 버퍼층(32)의 제2면(32b)의 일함수값인 Y2는 전술된 표면 버퍼층(32)에 포함된 불소계 물질의 일함수와 동일하거나 작을 수 있다. 예를 들면, 전술된 Y2는 5.0 내지 6.5, 예를 들면, 5.3 내지 6.2의 범위일 수 있으나, 이에 한정되는 것은 아니다.The work function value Y 1 of the first surface 32a of the surface buffer layer 32 of the exciton buffer layer 30 described above may be in the range of 4.6 to 5.2, for example, 4.7 to 4.9. In addition, Y 2, which is a work function value of the second surface 32b of the surface buffer layer 32 of the exciton buffer layer 30, may be the same as or smaller than the work function of the fluorine-based material included in the surface buffer layer 32. have. For example, Y 2 described above may range from 5.0 to 6.5, for example, 5.3 to 6.2, but is not limited thereto.
도 12c를 참조하면, 전술된 엑시톤 버퍼층(30) 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막를 포함하는 발광층(40)을 형성한다.Referring to FIG. 12C, a light emitting layer including a first thin film of nanoparticles by coating a solution including organic / inorganic perovskite nanoparticles including an organic / inorganic perovskite nanocrystal structure on the aforementioned exciton buffer layer 30. 40 is formed.
발광층 형성에 관한 내용은 전술된 '<유무기 하이브리드 페로브스카이트 발광소자용 발광층>'과 동일 구성 및 동일 기능을 가지므로, 전술된 내용을 참조하기로 한다.Since the light emitting layer has the same structure and the same function as the above-mentioned <light emitting layer for organic-inorganic hybrid perovskite light emitting device>, the above description will be made.
이 후, 도 12d를 참조하면, 전술된 발광층(40) 상에 제2 전극(50)을 형성한다.Thereafter, referring to FIG. 12D, the second electrode 50 is formed on the light emitting layer 40 described above.
전술된 제2 전극(50)은 전자가 주입되는 전극으로서, 전도성 있는 성질의 소재로 구성된다. 전술된 제2 전극(50)은 금속인 것이 바람직하고, 특히, Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd 또는 Pd 등일 수 있다.The second electrode 50 described above is an electrode into which electrons are injected and is made of a conductive material. The above-described second electrode 50 is preferably metal, and in particular, may be Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd or Pd.
전술된 제2 전극(50)을 형성하기 위한 증착 공정으로는 물리적 기상 증착(physical vapor deposition; PVD), 화학적 기상 증착(chemical vapor deposition; CVD), 스퍼터링(sputtering), 펄스 레이저 증착(pulsed laser deposition; PLD), 증발법(thermal evaporation), 전자빔 증발법(electron beam evaporation), 원자층 증착(atomic layer deposition; ALD) 및 분자선 에피택시 증착(molecular beam epitaxy; MBE) 등을 이용할 수 있다.Deposition processes for forming the above-described second electrode 50 include physical vapor deposition (PVD), chemical vapor deposition (CVD), sputtering, pulsed laser deposition. PLD), thermal evaporation, electron beam evaporation, atomic layer deposition (ALD), molecular beam epitaxy (MBE), and the like.
이렇게 형성된 발광 소자는 제1 전극(20), 전술된 제1 전극(20) 상에 배치되고, 전도성 물질을 포함하는 도전층(31) 및 불소계 물질을 포함하는 표면 버퍼층(32)이 순차적으로 적층된 엑시톤 버퍼층(30), 전술된 엑시톤 버퍼층(30) 상에 배치되며 유기 리간드가 치환된 유무기 하이브리드 페로브스카이트 나노입자 발광체를 포함하는 발광층(40) 및 전술된 발광층(40) 상에 배치된 제2 전극(50)을 포함한다.The light emitting device thus formed is disposed on the first electrode 20, the first electrode 20 described above, and the conductive layer 31 including the conductive material and the surface buffer layer 32 including the fluorine-based material are sequentially stacked. Disposed on the exciton buffer layer 30, the above-described exciton buffer layer 30, and disposed on the light emitting layer 40 including the organic-inorganic hybrid perovskite nanoparticle light-emitting body substituted with the organic ligand, and the above-described light emitting layer 40. And a second electrode 50.
이 때, 전술된 엑시톤 버퍼층(30)이 형성됨에 따라 낮은 일함수를 가짐과 동시에 높은 전도도를 갖는 발광 소자를 제조할 수 있고, 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 나노입자를 포함하는 나노입자 제1 박막을 포함하는 발광층은 나노입자 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트가 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.In this case, as the exciton buffer layer 30 described above is formed, it is possible to manufacture a light emitting device having a low work function and high conductivity, and including nanoparticles including an organic-inorganic hybrid perovskite nanocrystal structure. In the light emitting layer including the first nanoparticle thin film, an organic-inorganic hybrid perovskite having a crystal structure combining FCC and BCC is formed in the nanoparticle, and a lamellar structure in which an organic plane and an inorganic plane are alternately stacked. The exciton is constrained to the inorganic plane and can give high color purity.
상기 발광소자는 레이저 다이오드 또는 LED일 수 있다.The light emitting device may be a laser diode or an LED.
또 다른 예로 상술한 유무기 페로브스카이트 나노결정입자 또는 무기금속 할라이드 페로브스카이트 나노결정입자를 포함하는 광활성층을 이용하여 태양전지에 적용할 수도 있다. 이러한 태양전지는 제1 전극, 제2 전극 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 페로브스카이트 나노결정입자를 포함하는 광활성층을 포함할 수 있다.As another example, the present invention may be applied to a solar cell using a photoactive layer including the organic-inorganic perovskite nanocrystalline particles or inorganic metal halide perovskite nanocrystalline particles. Such a solar cell may be positioned between a first electrode, a second electrode, and the first electrode and the second electrode, and may include a photoactive layer including the above-described perovskite nanocrystalline particles.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
<제조예 1 -유무기 페로브스카이트 나노입자를 포함하는 용액 제조>Preparation Example 1 Preparation of Solution Containing Organic-Inorganic Perovskite Nanoparticles
본 발명의 일 실시예에 따른 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 형성하였다. Inverse nano-emulsion 법을 통하여 형성하였다.A solution containing organic-inorganic perovskite nanoparticles including an organic-inorganic perovskite nanocrystal structure according to an embodiment of the present invention was formed. It was formed through the inverse nano-emulsion method.
구체적으로, 양성자성 용매에 유무기 하이브리드 페로브스카이트를 녹여 제1 용액을 준비하였다. 이때의 양성자성 용매로 다이메틸폼아마이드(dimethylformamide)를 사용하고, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbBr4를 사용하였다. 이때 사용한 (CH3NH3)2PbBr4은 CH3NH3Br과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.Specifically, a first solution was prepared by dissolving an organic-inorganic hybrid perovskite in a protic solvent. Dimethylformamide was used as the protic solvent, and organic-inorganic hybrid perovskite (CH 3 NH 3 ) 2 PbBr 4 was used. The (CH 3 NH 3 ) 2 PbBr 4 used was a mixture of CH 3 NH 3 Br and PbBr 2 in a 2: 1 ratio.
그리고 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하였다. 이때의 비양성자성 용매는 톨루엔(Toluene)을 사용하였고, 알킬 할라이드 계면활성제는 옥타데실암모늄 브로마이드(octadecylammonium bromide, CH3(CH2)17NH3Br)를 사용하였다.And a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent was prepared. Toluene was used as the aprotic solvent and octadecyllammonium bromide (CH 3 (CH 2 ) 17 NH 3 Br) was used as the alkyl halide surfactant.
그 다음에, 강하게 교반중인 제2 용액에 제1 용액을 천천히 한방울씩 떨어뜨려 첨가하여 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 형성하였다.Next, the first solution was slowly added dropwise to the second solution under vigorous stirring to form a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure.
<제조예 2 - 발광층 제조>Preparation Example 2 Preparation of Light Emitting Layer
먼저 10wt% 3-mercaptopropionic acid (MPA, Aldrich) ethanolic solution을 유리 기판 상에 스핀 코팅하여 앵커링 에이전트층을 형성하였다. Ethanol 및 chloroform으로 washing하여 excess MPA를 제거한 후, 제조예 1에 의해 제조된 페로브스카이트 나노결정을 상기 앵커링 에이전트층 상에 스핀코팅하여 페로브스카이트 나노결정층을 형성하였다(2500rpm 20s).First, 10 wt% 3-mercaptopropionic acid (MPA, Aldrich) ethanolic solution was spin coated on a glass substrate to form an anchoring agent layer. After removing excess MPA by washing with ethanol and chloroform, the perovskite nanocrystals prepared in Preparation Example 1 were spin-coated on the anchoring agent layer to form perovskite nanocrystal layers (2500 rpm 20s).
Chloroform 스핀코팅 (2500rpm 20s) 을 통해 앵커링되지 못한 페로브스카이트 나노결정을 제거하였다. 페로브스카이트 나노결정층의 두께를 조절하기 위해서, 250μL의 1wt% 1,2-ethanedithiol (EDT)/ethanol 용액을 스핀코팅 (2500rpm 20s)하고, 이어서 상기 페로브스카이트 나노결정 용액을 스핀코팅 (2500rpm 20s)하는 과정을 반복하여 발광층을 형성했다.Chloroform spin coating (2500 rpm 20 s) removed perovskite nanocrystals that were not anchored. In order to control the thickness of the perovskite nanocrystal layer, 250 μL of 1 wt% 1,2-ethanedithiol (EDT) / ethanol solution was spin coated (2500 rpm 20s), followed by spin coating the perovskite nanocrystal solution. (2500 rpm 20s) was repeated to form a light emitting layer.
<제조예 3 - 발광층 제조>Preparation Example 3 Preparation of Light Emitting Layer
먼저 trioctylphosphine oxide (TOPO)와 trioctylphosphine (TOP) 용액을 실시예 1에 의해 제조된 페로브스카이트 나노결정 용액에 첨가하여 페로브스카이트 나노결정의 리간드를 TOPO 및 TOP로 치환하였다. 그런 다음, N,N'-diphenyl,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine(TPD)를 상기 페로브스카이트 나노결정 용액과 100:5 (w/w) 비율로 mixing하여 TPD-페로브스카이트 나노결정 용액을 제조하였다. 상기 TPD-페로브스카이트 나노결정 용액을 스핀코팅(500rpm 7s, 3000rpm 90s)하여 TPD 및 페로브스카이트 나노결정층을 형성하였다. 이 때, TPD와 페로브스카이트 나노결정은 스핀코팅 과정에서 상분리되어, 페로브스카이트 나노결정구조를 포함하는 유무기 하이브리드 페로브스카이트 나노입자를 포함하는 나노박막이 TPD층 위에 형성되게 된다.First, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP) solutions were added to the perovskite nanocrystal solution prepared in Example 1 to replace ligands of perovskite nanocrystals with TOPO and TOP. Then, N, N'-diphenyl, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD) was added to the perovskite nanocrystal solution 100: TPD-perovskite nanocrystal solution was prepared by mixing at a ratio of 5 (w / w). The TPD-perovskite nanocrystal solution was spin-coated (500 rpm 7s, 3000 rpm 90s) to form TPD and perovskite nanocrystal layers. At this time, the TPD and the perovskite nanocrystals are phase-separated during the spin coating process, such that a nano thin film including the organic-inorganic hybrid perovskite nanoparticles including the perovskite nanocrystal structure is formed on the TPD layer. .
<제조예 4 - 발광층 제조> Preparation Example 4 Preparation of Light-Emitting Layer
먼저 octadecyltrichlorosilane (ODTS) 용액에 Si native wafer를 dipping하여 ODTS-treated wafer를 제작하였다. 그리고 페로브스카이트 나노결정을 상기 ODTS-treated wafer 위에 스핀코팅 (1500rpm 60s)하여 페로브스카이트 나노결정층을 형성하였다. 한 편, polydimethylsiloxane (PDMS) 를 평평한 실리콘 웨어퍼 위에 붓고 75℃에서 2시간 동안 curing하여 PDMS 스탬프를 제조하였다. 상기 PDMS 스탬프를 상기 페로브스카이트 나노결정층 위에 완전히 밀착시키고 충분한 압력을 준 뒤 빠르게 떼어내어 페로브스카이트 나노결정을 ODTS-treated wafer에서 분리시켰다. 분리시킨 페로브스카이트 나노결정은 미리 준비된 Indium tin oxide (ITO)/PEDOT:PSS 기판과 contact을 통해 PDMS에서 분리되었다.First, ODTS-treated wafers were fabricated by dipping Si native wafers in octadecyltrichlorosilane (ODTS) solution. The perovskite nanocrystals were spin-coated (1500 rpm 60 s) on the ODTS-treated wafer to form a perovskite nanocrystal layer. On the other hand, polydimethylsiloxane (PDMS) was poured on a flat silicon wafer and cured at 75 ℃ for 2 hours to prepare a PDMS stamp. The PDMS stamp was tightly adhered to the perovskite nanocrystal layer, under sufficient pressure, and then quickly detached to separate the perovskite nanocrystals from the ODTS-treated wafer. The separated perovskite nanocrystals were separated from PDMS by contact with a prepared indium tin oxide (ITO) / PEDOT: PSS substrate.
<제조예 5 - 발광층 제조>Preparation Example 5 Preparation of Light Emitting Layer
Tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) 를 상기 페로브스카이트 나노결정 용액과 10:10:1 (w/w) 비율로 mixing하여 TCTA-TPBi-페로브스카이트 나노결정 용액을 제조하였다. 상기 TCTA-TPBi-페로브스카이트 나노결정 용액을 스핀코팅(500rpm 7s, 3000rpm 90s)하여 TCTA-TPBi-페로브스카이트 나노결정층을 형성하였다. Tris (4-carbazoyl-9-ylphenyl) amine (TCTA), 1,3,5-tris (N-phenylbenzimidazole-2-yl) benzene (TPBi) was added to the perovskite nanocrystal solution 10: 10: 1 TCTA-TPBi-Perovskite nanocrystal solution was prepared by mixing at a (w / w) ratio. The TCTA-TPBi-perovskite nanocrystal solution was spin coated (500 rpm 7s, 3000 rpm 90s) to form a TCTA-TPBi-perovskite nanocrystal layer.
<제조예 6 - 발광소자 제조>Preparation Example 6 Manufacture of Light-Emitting Element
본 발명의 일 실시예에 따른 발광 소자를 제조하였다.A light emitting device according to an embodiment of the present invention was manufactured.
먼저 ITO 기판(ITO 양극이 코팅된 유리 기판)을 준비한 후, ITO 양극 상에 전도성 물질인 PEDOT:PSS(Heraeus 社의 CLEVIOS PH)와 불소계 물질인 하기 고분자 26의 물질을 혼합한 용액을 스핀 코팅한 후 150℃에서 30분 동안 열처리하여 40nm 두께의 엑시톤 버퍼층을 형성하였다.First, an ITO substrate (glass substrate coated with an ITO anode) is prepared, and then spin-coated a solution in which a conductive material, PEDOT: PSS (CLEVIOS PH from Heraeus) and a fluorine-based polymer 26, is mixed. After the heat treatment for 30 minutes at 150 ℃ to form an exciton buffer layer of 40nm thickness.
열처리 후 전술된 ITO 양극 상에 전도성 고분자가 50%이상 함유된 도전층 및 전술된 고분자 1 물질이 50% 이상 함유된 표면 버퍼층이 순차적으로 적층된 다층 엑시톤 버퍼층이 형성된다. 즉 자가조립되어 도전층 및 표면 버퍼층이 형성된다.After the heat treatment, a multilayer exciton buffer layer in which a conductive layer containing 50% or more of a conductive polymer and a surface buffer layer containing 50% or more of the aforementioned polymer 1 material are sequentially stacked on the aforementioned ITO anode is formed. In other words, self-assembly forms a conductive layer and a surface buffer layer.
전술된 도전층과 표면 버퍼층을 포함한 엑시톤버퍼층의 중량비는 PEDOT:PSS:고분자 1이 1:6:25.4이고 일함수는 5.95eV이다.The weight ratio of the above-described conductive layer and the exciton buffer layer including the surface buffer layer is 1: 6: 25.4 for PEDOT: PSS: Polymer 1 and the work function is 5.95eV.
전술된 엑시톤 버퍼층 상에 실시예 2에 전술된 발광층 제조 방법을 이용하여 CH3NH3PbBr3 페로브스카이트 발광층을 형성하였다. The CH 3 NH 3 PbBr 3 perovskite light emitting layer was formed on the exciton buffer layer described above using the light emitting layer manufacturing method described in Example 2.
이 후, 발광층 상에 50nm 두께의 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBI)를 1 x 10-7 Torr 이하의 높은 진공에서 증착하여 전자수송층을 형성하고, 그 위에 1nm 두께의 LiF를 증착하여 전자주입층을 형성하고, 그 위에 100nm 두께의 알루미늄을 증착하여 음전극을 형성하여 유/무기 하이브리드 페로브스카이트 발광 소자를 제작하였다. 제작된 발광 소자의 휘도(lumianance)는 50 cd/m2 이었고, 전류 효율 (current efficiency)는 0.02 cd/A 이었다.Thereafter, 50 nm-thick 1,3,5-Tris (1-phenyl-1H-benzimidazol-2-yl) benzene (TPBI) was deposited on the light emitting layer at a high vacuum of 1 x 10 -7 Torr or less to form an electron transport layer. Forming an electron injecting layer by depositing 1 nm thick LiF thereon, and forming a negative electrode by depositing 100 nm thick aluminum thereon to produce an organic / inorganic hybrid perovskite light emitting device. The luminance of the fabricated light emitting device was 50 cd / m 2 , and the current efficiency was 0.02 cd / A.
<고분자 26><Polymer 26>
Figure PCTKR2015011963-appb-I000030
Figure PCTKR2015011963-appb-I000030
(전술된 고분자 1 중, x = 1300, y = 200, z = 1임)(Of polymer 1 described above, x = 1300, y = 200, z = 1)
<제조예 7 - 발광소자 제조>Preparation Example 7 Manufacture of Light-Emitting Element
발광층 제조 방법을 상기 실시예 3의 방법을 사용하였다는 점을 제외하고는, 전술된 제조예 6과 동일한 방법을 이용하여 유/무기 하이브리드 페로브스카이트 발광 소자를 제작하였다. 제작된 발광 소자의 휘도(lumianance)는 40 cd/m2 이었고, 전류 효율 (current efficiency)는 0.015 cd/A 이었다. An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Example 3. The luminance of the fabricated light emitting device was 40 cd / m 2 , and the current efficiency was 0.015 cd / A.
<제조예 8 - 발광소자 제조>Preparation Example 8 Manufacture of Light-Emitting Element
발광층 제조 방법을 상기 제조예 4의 방법을 사용하였다는 점을 제외하고는, 전술된 제조예 6과 동일한 방법을 이용하여 유/무기 하이브리드 페로브스카이트 발광 소자를 제작하였다. 제작된 발광 소자의 휘도(lumianance)는 45 cd/m2 이었고, 전류 효율 (current efficiency)는 0.018 cd/A 이었다. An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Preparation Example 4. The luminance of the fabricated light emitting device was 45 cd / m 2 , and the current efficiency was 0.018 cd / A.
<제조예 9 - 발광소자 제조>Preparation Example 9 Manufacture of Light-Emitting Element
발광층 제조 방법을 상기 제조예 5의 방법을 사용하였다는 점을 제외하고는, 전술된 제조예 6과 동일한 방법을 이용하여 유/무기 하이브리드 페로브스카이트 발광 소자를 제작하였다. 제작된 발광 소자의 휘도(lumianance)는 60 cd/m2 이었고, 전류 효율 (current efficiency)는 0.03 cd/A 이었다.An organic / inorganic hybrid perovskite light emitting device was manufactured in the same manner as in Preparation Example 6, except that the light emitting layer was manufactured in the same manner as in Preparation Example 5. The luminance of the fabricated light emitting device was 60 cd / m 2 , and the current efficiency was 0.03 cd / A.
<제조예 10 - 무기금속할라이드 페로브스카이트 나노입자를 포함하는 용액 제조>Preparation Example 10 Solution Preparation Including Inorganic Metal Halide Perovskite Nanoparticles
본 발명의 일 실시예에 따른 무기금속할라이드 페로브스카이트 나노결정입자를 형성하였다. Inverse nano-emulsion 법을 통하여 형성하였다.An inorganic metal halide perovskite nanocrystalline particle was formed according to one embodiment of the present invention. It was formed through the inverse nano-emulsion method.
구체적으로, 비양자성 용매인 Octadecene (ODE)에 세슘 카보네이트 (Cs2CO3)와 올레익 에시드 (oleic acid)를 넣고 고온에서 반응시켜 제 3 용액을 준비하였다. 비양자성 용매에 PbBr2와 올레익 에시드 (oleic acid) 그리고 올레라민 (oleylamine)을 넣고 고온 (120 ℃)에서 한시간 동안 반응을 한 제 4 용액을 준비한다. Specifically, cesium carbonate (Cs2CO3) and oleic acid were added to Octadecene (ODE), an aprotic solvent, to prepare a third solution by reacting at high temperature. PbBr2, oleic acid and oleylamine were added to an aprotic solvent, and a fourth solution was reacted at high temperature (120 ° C.) for one hour.
그 다음에, 강하게 교반중인 제4 용액에 제3 용액을 천천히 한방울씩 떨어뜨려 첨가하여 삼차원적 구조를 갖는 무기금속할라이드 페로브스카이트(CsPbBr3) 나노결정입자 발광체를 형성하였다.Subsequently, the third solution was slowly added dropwise to the strongly stirring fourth solution to form an inorganic metal halide perovskite (CsPbBr 3 ) nanocrystalline particle emitter having a three-dimensional structure.
따라서, 무기금속할라이드 페로브스카이트 나노입자를 포함하는 용액을 제조하였다.Thus, a solution containing inorganic metal halide perovskite nanoparticles was prepared.
<제조예 11 - 발광층 제조>Preparation Example 11 Preparation of Light-Emitting Layer
제조예 1의 용액 대신 제조예 10의 무기금속할라이드 페로브스카이트 나노입자를 포함하는 용액을 사용한 점을 제외하고 제조예 2와 동일하게 수행하여 발광층을 제조하였다.A light emitting layer was prepared in the same manner as in Preparation Example 2, except that a solution containing the inorganic metal halide perovskite nanoparticles of Preparation Example 10 was used instead of the solution of Preparation Example 1.
<제조예 12 - 태양전지 제조>Production Example 12-Solar Cell Manufacturing
본 발명의 일 실시예에 따른 태양전지를 제조하였다.A solar cell according to an embodiment of the present invention was prepared.
먼저 ITO 기판(ITO 양극이 코팅된 유리 기판)을 준비한 후, ITO 양극 상에 전도성 물질인 PEDOT:PSS(Heraeus 社의 CLEVIOS PH) 을 스핀 코팅한 후 150에서 30분 동안 열처리하여 40nm 두께의 정공 추출층을 형성하였다.First, prepare an ITO substrate (glass substrate coated with an ITO anode), spin-coat a conductive material PEDOT: PSS (CLEVIOS PH from Heeraeus) on the ITO anode, and heat-treat for 150 to 30 minutes to extract 40 nm thick holes. A layer was formed.
상기 정공 추출층 상에 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자를 Phenyl-C61-butyric acid methyl ester (PCBM)과 섞어서 코팅하여 광활성층을 형성하고, 광활성층 위에 바로 100 nm 두께의 Al을 증착하여 페로브스카이트 나노결정입자 태양전지를 제조하였다. The organic-inorganic hybrid perovskite nanocrystalline particles according to Preparation Example 1 were mixed with Phenyl-C61-butyric acid methyl ester (PCBM) and coated on the hole extracting layer to form a photoactive layer, and immediately 100 nm thick on the photoactive layer. Was deposited to prepare a perovskite nanocrystalline solar cell.
<비교예 1>Comparative Example 1
박막 형태의 유무기 하이브리드 페로브스카이트(OIP film)를 제조하였다.Organic-inorganic hybrid perovskite (OIP film) in the form of a thin film was prepared.
구체적으로, 양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 (CH3NH3)2PbBr4를 녹여 제1 용액을 제조한 뒤, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 (CH3NH3)2PbBr4박막을 제조하였다.Specifically, (CH 3 NH 3 ) 2 PbBr 4 is dissolved in dimethylformamide, a protic solvent, to prepare a first solution, followed by spin coating the first solution on a glass substrate (CH 3 NH 3 ) 2 PbBr 4 thin film was prepared.
<비교예 2>Comparative Example 2
박막 형태의 유무기 하이브리드 페로브스카이트(OIP film)를 제조하였다.Organic-inorganic hybrid perovskite (OIP film) in the form of a thin film was prepared.
구체적으로, 양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 (CH3NH3)2PbCl4를 녹여 제1 용액을 제조한 뒤, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 (CH3NH3)2PbCl4박막을 제조하였다.Specifically, a first solution is prepared by dissolving (CH 3 NH 3 ) 2 PbCl 4 in dimethylformamide, a protic solvent, and spin coating the first solution on a glass substrate (CH 3 NH 3 ) 2 PbCl 4 thin film was prepared.
<실험예>Experimental Example
도 14는 제조예 1의 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자와 비교예 1 및 비교예 2에 따른 유무기 하이브리드 페로브스카이트(OIP film)에 자외선을 조사하여 발광 빛을 찍은 형광 이미지이다.14 is an organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure of Preparation Example 1 and ultraviolet in the organic-inorganic hybrid perovskite (OIP film) according to Comparative Examples 1 and 2 It is a fluorescent image taken by emitting light.
도 14를 참조하면, 비교예 1 및 비교예 2에 따른 나노입자 형태가 아닌 박막 형태의 유무기 하이브리드 페로브스카이트는 어두운 빛을 발광하는 반면 제조예에 따른 나노입자 형태의 파장변환입자는 매우 밝은 초록색 빛을 내는 것을 확인 할 수 있다.Referring to FIG. 14, the organic-inorganic hybrid perovskite in the form of a thin film which is not in the form of nanoparticles according to Comparative Examples 1 and 2 emits dark light, whereas the wavelength-converting particles in the form of nanoparticles according to Preparation Example are very bright. You can see the green light.
또한, 절대발광효율(photoluminescence quantum yield, PLQY)을 측정한 결과 제조예에 따른 유무기 하이브리드 페로브스카이트 나노입자는 매우 높은 수치를 보이는 것을 확인 할 수 있었다.In addition, as a result of measuring the absolute light emission efficiency (photoluminescence quantum yield, PLQY) it was confirmed that the organic-inorganic hybrid perovskite nanoparticles according to the preparation example shows a very high value.
이에 반하여, 비교예 1 및 비교예 2에 따른 박막형태의 유무기 하이브리드 페로브스카이트는 1% 내외의 낮은 PLQY 수치를 보였다.In contrast, the organic-inorganic hybrid perovskite in the form of a thin film according to Comparative Example 1 and Comparative Example 2 showed a low PLQY value of about 1%.
도 15는 제조예 및 비교예 1에 따른 나노입자의 모식도이다.15 is a schematic view of nanoparticles according to Preparation Example and Comparative Example 1. FIG.
도 15(a)는 비교예 1에 따른 발광물질의 모식도이고, 도 15(b)는 제조예 1에 따른 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자의 모식도이다. 도 15(a)를 참조하면, 비교예 1에 따른 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자는 박막 형태이고, 도 15(b)를 참조하면, 제조예 1에 따른 파장변환입자는 나노입자(110) 형태이다.Figure 15 (a) is a schematic diagram of the light emitting material according to Comparative Example 1, Figure 15 (b) is a schematic diagram of the organic-inorganic perovskite nanoparticles containing the organic-inorganic perovskite nanocrystal structure according to Preparation Example 1. to be. Referring to Figure 15 (a), the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure according to Comparative Example 1 is in the form of a thin film, referring to Figure 15 (b), Preparation Example The wavelength conversion particle according to 1 is in the form of a nanoparticle (110).
도 16은 제조예 1 및 비교예 1에 따른 나노입자의 광발광 (photoluminescence) 매트릭스(matrix)를 각각 상온과 저온에서 찍은 이미지이다.16 is an image taken at room temperature and low temperature of the photoluminescence matrix of the nanoparticles according to Preparation Example 1 and Comparative Example 1, respectively.
도 16(a)는 비교예 1에 따른 박막형태의 유무기 하이브리드 페로브스카이트(OIP film)의 광발광 매트릭스를 저온(70 K)에서 찍은 이미지이고, 도 16(b)는 비교예 1에 따른 박막형태의 유무기 하이브리드 페로브스카이트(OIP film)의 광발광 매트릭스를 상온(room temperature)에서 찍은 이미지이다.FIG. 16 (a) is an image taken at a low temperature (70 K) of the light emitting matrix of the organic-inorganic hybrid perovskite (OIP film) in the form of a thin film according to Comparative Example 1, Figure 16 (b) is shown in Comparative Example 1 The light-emitting matrix of the organic-inorganic hybrid perovskite (OIP film) in the form of a thin film is an image taken at room temperature.
도 16(c)는 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자의 광발광 매트릭스를 저온(70 K)에서 찍은 이미지이고, 도 15(d)는 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자의 광발광 매트릭스를 상온(room temperature)에서 찍은 이미지이다.FIG. 16 (c) is an image taken at a low temperature (70 K) of the photoluminescent matrix of the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1, and FIG. 15 ( d) is an image taken at room temperature of the photoluminescent matrix of the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1.
도 16(a) 내지 도 16(d)를 참조하면, 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자의 경우 비교예 1에 따른 박막 형태의 유무기 하이브리드 페로브스카이트(OIP film)과 같은 위치의 광발광을 보여주며, 좀더 높은 색순도를 보이는 것을 알 수 있다. 또한 제조예에 따른 OIP-NC film의 경우 상온에서 저온과 동일한 위치의 높은 색순도의 광발광을 보여주며, 발광 세기 또한 감소하지 않는 것을 알 수 있다. 반면에 비교예 1에 따른 박막 형태의 유무기 하이브리드 페로브스카이트는 상온과 저온에서 색순도 및 발광 위치가 다를 뿐만 아니라, 상온에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되어 낮은 발광 세기를 보인다.16 (a) to 16 (d), the organic-inorganic perovskite nanoparticles including the organic-inorganic hybrid perovskite nanocrystal structure according to Preparation Example 1 in the thin film form according to Comparative Example 1 It shows photoluminescence at the same position as the organic-inorganic hybrid perovskite (OIP film), and it can be seen that the color purity is higher. In addition, in the case of the OIP-NC film according to the preparation example, it shows a high color purity light emission at the same position as the low temperature at room temperature, it can be seen that the emission intensity does not decrease. On the other hand, the organic-inorganic hybrid perovskite in the form of a thin film according to Comparative Example 1 differs in color purity and emission position at room temperature and low temperature, and excitons do not go into luminescence due to thermal ionization and delocalization of charge carriers at room temperature. It is separated and extinguished, showing low luminescence intensity.
도 17은 제조예 1 및 비교예 1에 따른 나노입자의 광발광(photoluminescence)를 찍은 결과 그래프이다.FIG. 17 is a graph showing photoluminescence of nanoparticles according to Preparation Example 1 and Comparative Example 1. FIG.
도 17을 참조하면, 제조예 1에 따른 유무기 페로브스카이트 나노입자가 용액 내에 위치하는 용액상태일 때, 비교예 1에 따른 기존의 유무기 하이브리드 페로브스카이트와 같은 위치의 광발광을 보여주며, 좀더 높은 색순도를 보이는 것을 알 수 있다.Referring to FIG. 17, when the organic-inorganic perovskite nanoparticles according to Preparation Example 1 are in a solution state located in a solution, photoluminescence at the same position as the existing organic-inorganic hybrid perovskite according to Comparative Example 1 is obtained. Shows, showing a higher color purity.
본 발명에 따른 유무기 페로브스카이트 나노입자를 포함하는 나노입자 제1 박막 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정이 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.Inorganic-inorganic hybrid perovskite nanocrystals having a crystal structure combining FCC and BCC are formed in the first nanoparticle-containing nanoparticles containing organic-inorganic perovskite nanoparticles, and the organic and inorganic planes alternate. It forms a lamellar structure that is laminated with a furnace, and excitons are constrained on the inorganic plane to produce high color purity.
또한, 10 nm 내지 300nm 이하 크기 이내의 나노결정 안에서 엑시톤 확산거리 (exciton diffusion length)가 감소할 뿐만 아니라 엑시톤 바인딩 에너지 (exciton binding energy) 가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.In addition, the exciton diffusion length is reduced in the nanocrystals within the size of 10 nm to 300 nm or less, and the exciton binding energy is increased to excite the exciton due to thermal ionization and delocalization of the charge carriers. It can prevent the luminous efficiency at high room temperature.
나아가, 3차원 유무기 하이브리드 페로브스카이트에 비하여 나노결정을 구조로 합성함으로써, 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 보다 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있다.Furthermore, by synthesizing the nanocrystals into the structure compared to the three-dimensional organic-inorganic hybrid perovskite, it is possible not only to improve the luminous efficiency by increasing the exciton binding energy but also to increase the durability-stability.
또한, 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는유무기 페로브스카이트 나노입자를 포함하는 나노입자 제1 박막 제조방법에 의하면, 알킬 할라이드 계면활성제의 길이 및 크기에 따라 유무기 하이브리드 페로브스카이트 나노결정의 크기 조절된 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 합성할 수 있다.In addition, according to the first method for producing nanoparticles comprising organic-inorganic perovskite nanoparticles comprising an organic-inorganic hybrid perovskite nanocrystal structure according to the present invention, according to the length and size of the alkyl halide surfactant Organic-inorganic perovskite nanoparticles comprising a scaled organic-inorganic hybrid perovskite nanocrystal structure of organic-inorganic hybrid perovskite nanocrystals can be synthesized.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 전술된 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art within the spirit and scope of the present invention. And changes are possible.
[부호의 설명][Description of the code]
10 : 기판 20 : 제1 전극10 substrate 20 first electrode
30 : 엑시톤 버퍼층 31 : 도전층30: exciton buffer layer 31: conductive layer
32 : 표면 버퍼층 40 : 발광층32: surface buffer layer 40: light emitting layer
50 : 제2 전극50: second electrode

Claims (26)

  1. 발광층 도포용 부재를 준비하는 단계; 및Preparing a light emitting layer coating member; And
    상기 발광층 도포용 부재 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 포함하는 발광층의 제조방법.Method of manufacturing a light emitting layer comprising the step of coating a solution containing an organic-inorganic perovskite nanoparticles containing an organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member to form a nanoparticle first thin film .
  2. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막을 형성하는 단계는 용액 공정을 사용하는 것을 특징으로 하는 발광층의 제조방법.Forming the first nanoparticle thin film is a method of manufacturing a light emitting layer, characterized in that using a solution process.
  3. 제2항에 있어서,The method of claim 2,
    상기 용액 공정은,The solution process,
    스핀코팅(spin-coating), 바코팅(bar coating), 슬롯 다이(slot-die coating), 그라비아 프린팅(Gravure-printing), 노즐 프린팅 (nozzle printing), 잉크젯 프린팅(ink-jet printing), 스크린 프린팅(screen printing), 전기수력학적 젯 프린팅 (electrohydrodynamic jet printing), 및 전기분무(electrospray)로 이루어진 군으로부터 선택되는 적어도 하나의 공정을 포함하는 발광층의 제조방법.Spin-coating, bar coating, slot-die coating, gravure-printing, nozzle printing, ink-jet printing, screen printing (screen printing), electrohydrodynamic jet printing (electrohydrodynamic jet printing), and a method for producing a light emitting layer comprising at least one process selected from the group consisting of electrospray (electrospray).
  4. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막의 두께는 1 nm 내지 1 μm인 것을 특징으로 하는 발광층의 제조방법.The nanoparticle first thin film has a thickness of 1 nm to 1 μm manufacturing method of the light emitting layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막의 평균 거칠기 (roughness)는 0.1 nm 내지 50 nm인 것을 특징으로 하는 발광층의 제조방법.The average roughness (roughness) of the first nanoparticle thin film is a method of manufacturing a light emitting layer, characterized in that 0.1 nm to 50 nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막을 형성하는 단계는,Forming the nanoparticle first thin film,
    앵커링 용액 및 상기 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자 용액을 준비하는 단계;Preparing an organic-inorganic perovskite nanoparticle solution comprising an anchoring solution and the organic-inorganic perovskite nanocrystal structure;
    상기 발광층 도포용 부재 상에 상기 앵커링 용액을 코팅하여 앵커링 에이전트층을 형성하는 단계; 및Forming an anchoring agent layer by coating the anchoring solution on the light emitting layer coating member; And
    상기 앵커링 에이전트 층에 상기 유무기 페로브스카이트 나노입자 용액을 용액 공정을 통해 코팅하여 앵커링 발광층을 형성하는 단계를 포함하는 발광층의 제조방법.Coating the organic-inorganic perovskite nanoparticle solution on the anchoring agent layer through a solution process to form an anchoring light emitting layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 앵커링 발광층을 형성하는 단계 이 후에,After forming the anchoring light emitting layer,
    상기 앵커링 발광층 상에 가교제층을 형성하는 단계를 더 포함하는 발광층의 제조방법.The method of manufacturing a light emitting layer further comprising the step of forming a cross-linking agent layer on the anchoring light emitting layer.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 유무기 페로브스카이트 나노입자 용액을 코팅하는 단계 및 상기 유무기 페로브스카이트 나노입자 용액이 코팅된 층 상에 가교제층을 형성하는 단계를 교대로 반복하여 상기 발광층의 두께를 조절하는 발광층의 제조방법.Light-emitting layer for controlling the thickness of the light emitting layer by alternately repeating the step of coating the organic-inorganic perovskite nanoparticle solution and forming a cross-linking agent layer on the layer coated with the organic-inorganic perovskite nanoparticle solution Manufacturing method.
  9. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막을 형성하는 단계는,Forming the nanoparticle first thin film,
    상기 유무기 페로브스카이트 나노입자를 포함하는 용액에 유기 반도체를 혼합하여 유무기 페로브스카이트-유기 반도체 용액을 제조하는 단계; 및Preparing an organic-inorganic perovskite-organic semiconductor solution by mixing an organic semiconductor to a solution containing the organic-inorganic perovskite nanoparticles; And
    상기 유무기 페로브스카이트-유기 반도체 용액을 코팅하여 발광층을 형성하는 단계를 포함하는 발광층의 제조방법.Coating the organic-inorganic perovskite-organic semiconductor solution to form a light emitting layer.
  10. 제9항에 있어서,The method of claim 9,
    상기 유무기 페로브스카이트-유기 반도체 용액을 코팅하여 발광층을 형성하는 단계에서,In the step of coating the organic-inorganic perovskite-organic semiconductor solution to form a light emitting layer,
    상기 발광층은, 상기 발광층 도포용 부재 상에 유기 반도체층 및 유무기 페로브스카이트 나노입자가 순차적으로 적층된 형태로 자가 형성(self-organization)되는 것을 특징으로 하는 발광층의 제조방법.The light emitting layer is a method of manufacturing a light emitting layer, characterized in that the self-organization of the organic semiconductor layer and the organic-inorganic perovskite nanoparticles are sequentially stacked on the light emitting layer coating member.
  11. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막을 형성하는 단계는,Forming the nanoparticle first thin film,
    상기 발광층 도포용 부재 상에 자기조립 단분자막을 형성하는 단계;Forming a self-assembled monolayer on the light emitting layer coating member;
    상기 자기조립 단분자막 상에 상기 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 유무기 페로브스카이트 나노입자층을 형성하는 단계; 및Coating a solution containing the organic-inorganic perovskite nanoparticles on the self-assembled monolayer to form an organic-inorganic perovskite nanoparticle layer; And
    스탬프를 이용하여 상기 유무기 페로브스카이트 나노입자층과 접촉(contact)하여 원하는 패턴만큼 떼어낸 후 상기 유무기 페로브스카이트 나노입자층을 제2 발광층 도포용 부재 상에 형성하는 단계를 포함하는 것을 특징으로 하는 발광층의 제조방법. And contacting the organic-inorganic perovskite nanoparticle layer with a stamp to remove the organic-inorganic perovskite nanoparticle layer on a member for applying a second light emitting layer after peeling off a desired pattern. Method for producing a light emitting layer characterized in that.
  12. 제11항에 있어서,The method of claim 11,
    상기 스탬프는 폴리우레탄(Polyurethane), PDMS(Polydimethylsiloxane) PEO(Polyethylene oxide), PS(Polystyrene), PCL(Polycaprolactone), PAN(Polyacrylonitrile), PMMA(Poly(methyl methacrylate)), 폴리이미드(Polyimide), PVDF(Poly(vinylidene fluoride)), PVK(Poly(n-vinylcarbazole)) 및 PVC(Polyvinylchloride)로 이루어진 군으로부터 선택되는 적어도 하나의 유기 고분자를 포함하는 발광층의 제조방법. The stamp is a polyurethane (Polyurethane), PDMS (Polydimethylsiloxane) PEO (Polyethylene oxide), PS (Polystyrene), PCL (Polycaprolactone), PAN (Polyacrylonitrile), PMMA (Poly (methyl methacrylate)), Polyimide, PVDF (Poly (vinylidene fluoride)), PVK (Poly (n-vinylcarbazole)) and PVC (Polyvinylchloride) A method for producing a light emitting layer comprising at least one organic polymer selected from the group consisting of.
  13. 제1항에 있어서,The method of claim 1,
    상기 발광층 도포용 부재 상에 상기 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 복수번 반복하여 상기 발광층의 두께를 조절하는 것을 특징으로 하는 발광층의 제조방법.Repeating the step of forming a nanoparticle first thin film by coating a solution containing the organic-inorganic perovskite nanoparticles including the organic-inorganic perovskite nanocrystal structure on the light emitting layer coating member a plurality of times A method of manufacturing a light emitting layer, characterized in that for controlling the thickness of the light emitting layer.
  14. 제1항에 있어서,The method of claim 1,
    상기 나노입자 제1 박막을 형성하는 단계의 이전 또는 이 후에,Before or after the step of forming the nanoparticle first thin film,
    상기 발광층 도포용 부재 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막을 형성하는 단계를 더 포함하는 발광층의 제조방법.Forming an organic-inorganic perovskite microparticle or organic-inorganic perovskite second thin film including an organic-inorganic perovskite crystal structure on the light-emitting layer coating member or the nanoparticle first thin film. Method for producing a light emitting layer.
  15. 발광층 도포용 부재; 및Light emitting layer coating member; And
    상기 발광층 도포용 부재 상에 배치되고, 제1항 내지 제14항 중 어느 한 항의 제조방법을 통해 제조된, 유무기 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함하는 발광층.15. A light emitting layer comprising a first thin film of nanoparticles comprising an organic-inorganic perovskite nanocrystalline structure, which is disposed on the light emitting layer applying member and manufactured by the manufacturing method of any one of claims 1 to 14.
  16. 제15항에 있어서,The method of claim 15,
    상기 나노입자 제1 박막은 다층구조인 것을 특징으로 하는 발광층.The nanoparticle first thin film is a light emitting layer, characterized in that the multi-layer structure.
  17. 제15항에 있어서,The method of claim 15,
    상기 발광층 도포용 부재 및 상기 나노입자 제1 박막 사이, 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막이 더 배치되는 것을 특징으로 하는 발광층.Organic-inorganic perovskite microparticles or organic-inorganic perovskite comprising an organic-inorganic perovskite nanocrystalline structure between the light emitting layer coating member and the nanoparticle first thin film or on the nanoparticle first thin film The light emitting layer, characterized in that the second thin film is further disposed.
  18. 기판 상에 배치된 제1 전극;A first electrode disposed on the substrate;
    상기 제1 전극 상에 배치되고, 제1항 내지 제14항 중 어느 한 항의 제조방법을 통해 제조된, 유무기 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함하는 발광층; 및A light emitting layer disposed on the first electrode, the light emitting layer including a first nanoparticle-containing thin film including an organic-inorganic perovskite nanocrystalline structure, which is manufactured by the method of any one of claims 1 to 14; And
    상기 발광층 상에 배치된 제2 전극을 포함하는 발광소자.A light emitting device comprising a second electrode disposed on the light emitting layer.
  19. 제18항에 있어서,The method of claim 18,
    상기 제1 전극 및 상기 발광층 사이에 배치되고, 전도성 물질 및 상기 전도성 물질보다 낮은 표면 에너지를 갖는 불소계 물질을 포함 엑시톤 버퍼층을 더 포함하는 발광 소자.And an exciton buffer layer disposed between the first electrode and the light emitting layer and including a conductive material and a fluorine-based material having a lower surface energy than the conductive material.
  20. 제18항에 있어서,The method of claim 18,
    상기 나노입자 제1 박막은 다층구조인 것을 특징으로 하는 발광 소자.The nanoparticle first thin film is a light emitting device, characterized in that the multi-layer structure.
  21. 제18항에 있어서,The method of claim 18,
    상기 제1 전극 및 상기 나노입자 제1 박막 사이, 또는 상기 나노입자 제1 박막 상에 유무기 페로브스카이트 나노결정구조를 포함하는 유무기 페로브스카이트 마이크로입자 또는 유무기 페로브스카이트 제2 박막이 더 배치되는 것을 특징으로 하는 발광 소자.Organic-inorganic perovskite microparticles or organic-inorganic perovskite agent comprising an organic-inorganic perovskite nanocrystal structure between the first electrode and the nanoparticle first thin film or on the nanoparticle first thin film Light emitting element, characterized in that further two thin films are arranged.
  22. 발광층 도포용 부재를 준비하는 단계; 및Preparing a light emitting layer coating member; And
    상기 발광층 도포용 부재 상에 무기금속할라이드 페로브스카이트 나노결정구조를 포함하는 무기금속할라이드 페로브스카이트 나노입자를 포함하는 용액을 코팅하여 나노입자 제1 박막을 형성하는 단계를 포함하는 발광층의 제조방법.Coating the solution containing the inorganic metal halide perovskite nanoparticles including the inorganic metal halide perovskite nanocrystal structure on the light emitting layer coating member of the light emitting layer comprising the step of forming a first nanoparticle thin film Manufacturing method.
  23. 제22항에 있어서,The method of claim 22,
    상기 나노입자 제1 박막을 형성하는 단계는 용액 공정을 사용하는 것을 특징으로 하는 발광층의 제조방법.Forming the first nanoparticle thin film is a method of manufacturing a light emitting layer, characterized in that using a solution process.
  24. 제23항에 있어서,The method of claim 23,
    상기 용액 공정은,The solution process,
    스핀코팅(spin-coating), 바코팅(bar coating), 슬롯 다이(slot-die coating), 그라비아 프린팅(Gravure-printing), 노즐 프린팅 (nozzle printing), 잉크젯 프린팅(ink-jet printing), 스크린 프린팅(screen printing), 전기수력학적 젯 프린팅 (electrohydrodynamic jet printing), 및 전기분무(electrospray)로 이루어진 군으로부터 선택되는 적어도 하나의 공정을 포함하는 발광층의 제조방법.Spin-coating, bar coating, slot-die coating, gravure-printing, nozzle printing, ink-jet printing, screen printing (screen printing), electrohydrodynamic jet printing (electrohydrodynamic jet printing), and a method for producing a light emitting layer comprising at least one process selected from the group consisting of electrospray (electrospray).
  25. 발광층 도포용 부재; 및Light emitting layer coating member; And
    상기 발광층 도포용 부재 상에 배치되고, 제22항 내지 제24항 중 어느 한 항의 제조방법을 통해 제조된, 무기금속할라이드 페로브스카이트 나노결정구조를 포함하는 나노입자 제1 박막을 포함하는 발광층.A light emitting layer comprising a first thin film of nanoparticles comprising an inorganic metal halide perovskite nanocrystal structure, which is disposed on the light emitting layer coating member and manufactured by the manufacturing method of any one of claims 22 to 24. .
  26. 도포용 부재; 및An application member; And
    상기 도포용 부재 상에 배치되고, 제1항 내지 제14항 중 어느 한 항의 제조방법을 통해 제조된, 유무기 페로브스카이트 나노결정구조를 포함하는 나노입자 박막을 포함하는 광활성층.A photoactive layer comprising a nanoparticle thin film comprising an organic-inorganic perovskite nanocrystal structure, which is disposed on the coating member and manufactured by the manufacturing method of any one of claims 1 to 14.
PCT/KR2015/011963 2014-11-06 2015-11-06 Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same WO2016072809A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017524027A JP6829682B2 (en) 2014-11-06 2015-11-06 A light emitting layer for a perovskite light emitting element, a method for manufacturing the same, and a perovskite light emitting device using the same.
US15/524,489 US10276807B2 (en) 2014-11-06 2015-11-06 Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
US16/398,230 US10964896B2 (en) 2014-11-06 2019-04-29 Perovskite light-emitting device
US17/213,211 US11730051B2 (en) 2014-11-06 2021-03-25 Perovskite light-emitting device
US18/223,431 US20230363248A1 (en) 2014-11-06 2023-07-18 Perovskite light-emitting layer and device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140153965 2014-11-06
KR10-2014-0153965 2014-11-06
KR10-2015-0156173 2015-11-06
KR1020150156173A KR101724210B1 (en) 2014-11-06 2015-11-06 Perovskite light emitting element for the light emitting layer and a method of manufacturing and using the same Perovskite light emitting element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/524,489 A-371-Of-International US10276807B2 (en) 2014-11-06 2015-11-06 Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
US16/398,230 Continuation US10964896B2 (en) 2014-11-06 2019-04-29 Perovskite light-emitting device

Publications (1)

Publication Number Publication Date
WO2016072809A1 true WO2016072809A1 (en) 2016-05-12

Family

ID=55909444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011963 WO2016072809A1 (en) 2014-11-06 2015-11-06 Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2016072809A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016772A (en) * 2017-03-23 2019-01-31 国立大学法人電気通信大学 Quantum dot, optical device using the same, and method of producing quantum dot
CN109830605A (en) * 2019-01-31 2019-05-31 河北科技大学 A kind of double photoelectric converting function solar batteries
CN109994655A (en) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 Composite quantum dot, quantum dot solid film and its application
JP2020502769A (en) * 2016-12-22 2020-01-23 トヨタ・モーター・ヨーロッパToyota Motor Europe Optoelectronic device having 2D-perovskite active layer
KR102243623B1 (en) 2020-03-11 2021-04-23 중앙대학교 산학협력단 Preparation method for perovskite nanoparticles and optoelectronic device comprising the perovskite nanoparticles manufactured thereby
US11239429B1 (en) * 2015-06-08 2022-02-01 The Florida State University Research Foundation, Inc. Superluminescent halide perovskite light-emitting diodes with a sub-bandgap turn-on voltage
KR20220137445A (en) 2021-04-02 2022-10-12 중앙대학교 산학협력단 Organic light-emitting transistor with perovskite quantum dots
US11730047B1 (en) 2016-05-27 2023-08-15 The Florida State University Research Foundation, Inc. Perovskite based charge transport layers for thin film optoelectronic devices and methods of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015084A (en) * 1999-07-08 2001-02-26 포만 제프리 엘 Electroluminescent device with dye-containing organic-inorganic hybrid materials as an emitting layer
JP2009006548A (en) * 2007-06-27 2009-01-15 Saga Univ Organic/inorganic layer-shaped perovskite compound thin film, and method for producing the same
KR20100034003A (en) * 2007-06-11 2010-03-31 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 Preparation of perovskite nanocrystals via reverse micelles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015084A (en) * 1999-07-08 2001-02-26 포만 제프리 엘 Electroluminescent device with dye-containing organic-inorganic hybrid materials as an emitting layer
KR20100034003A (en) * 2007-06-11 2010-03-31 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 Preparation of perovskite nanocrystals via reverse micelles
JP2009006548A (en) * 2007-06-27 2009-01-15 Saga Univ Organic/inorganic layer-shaped perovskite compound thin film, and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHMIDT, L. C. ET AL.: "Nontemplate Synthesis of CH 3NH3PbBr3 Perovskite Nanoparticles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 3, 2014, pages 850 - 853, XP055277743 *
STOUMPOS, C. C. ET AL.: "Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection", CRYSTAL GROWTH & DESIGN, vol. 13, no. 7, 2013, pages 2722 - 2727, XP055149023 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239429B1 (en) * 2015-06-08 2022-02-01 The Florida State University Research Foundation, Inc. Superluminescent halide perovskite light-emitting diodes with a sub-bandgap turn-on voltage
US11730047B1 (en) 2016-05-27 2023-08-15 The Florida State University Research Foundation, Inc. Perovskite based charge transport layers for thin film optoelectronic devices and methods of making
JP2020502769A (en) * 2016-12-22 2020-01-23 トヨタ・モーター・ヨーロッパToyota Motor Europe Optoelectronic device having 2D-perovskite active layer
JP2019016772A (en) * 2017-03-23 2019-01-31 国立大学法人電気通信大学 Quantum dot, optical device using the same, and method of producing quantum dot
CN109994655A (en) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 Composite quantum dot, quantum dot solid film and its application
CN109830605A (en) * 2019-01-31 2019-05-31 河北科技大学 A kind of double photoelectric converting function solar batteries
KR102243623B1 (en) 2020-03-11 2021-04-23 중앙대학교 산학협력단 Preparation method for perovskite nanoparticles and optoelectronic device comprising the perovskite nanoparticles manufactured thereby
KR20220137445A (en) 2021-04-02 2022-10-12 중앙대학교 산학협력단 Organic light-emitting transistor with perovskite quantum dots
KR20240015132A (en) 2021-04-02 2024-02-02 중앙대학교 산학협력단 Organic light-emitting transistor with perovskite quantum dots

Similar Documents

Publication Publication Date Title
WO2016072809A1 (en) Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
WO2016072810A1 (en) Perovskite light emitting device containing exciton buffer layer and method for manufacturing same
WO2020130592A1 (en) Metal halide perovskite light emitting device and method for manufacturing same
WO2016072806A2 (en) Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
WO2016072805A1 (en) Perovskite nanocrystalline particles and optoelectronic device using same
US11730051B2 (en) Perovskite light-emitting device
WO2021125412A1 (en) Defect-suppressed metal halide perovskite luminescent material, and light-emitting diode comprising same
WO2020213814A1 (en) Perovskite light-emitting device comprising passivation layer and manufacturing method therefor
WO2014109604A1 (en) Inorganic-organic hybrid solar cell having durability and high performance
WO2013055138A2 (en) Simplified organic light emitting device and manufacturing method thereof
WO2014133373A1 (en) Electronic element employing hybrid electrode having high work function and conductivity
WO2016072807A1 (en) Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
WO2016099218A2 (en) Polymer and organic solar cell comprising same
WO2016072804A1 (en) Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
WO2011028033A2 (en) Phosphor, preparation method of phosphor, and white light emitting device
WO2018097654A2 (en) Fluorene derivative, organic light emitting device using same, and manufacturing method therefor
WO2018236100A1 (en) Organic solar cell
WO2020060271A1 (en) Compound, composition comprising same, and organic light emitting diode comprising same
WO2018230848A1 (en) Compound, coating composition comprising same, organic light-emitting device using same and method for preparing same
WO2017052308A2 (en) Organic compound to be used in organic device, and method for manufacturing organic device by using same
WO2019168365A1 (en) Polymer, coating composition comprising same, and organic light emitting element using same
WO2014133285A1 (en) Conductive thin film, method for producing same, and electronic element comprising same
WO2020036459A1 (en) Polymer, coating composition comprising same, and organic light emitting device using same
WO2022255606A1 (en) Compound for quantum dot light emitting element, quantum dot light emitting element using same, and electronic device thereof
WO2014181986A1 (en) Organic electronic element comprising fullerene derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15524489

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15856787

Country of ref document: EP

Kind code of ref document: A1