WO2016071288A1 - Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem - Google Patents

Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem Download PDF

Info

Publication number
WO2016071288A1
WO2016071288A1 PCT/EP2015/075476 EP2015075476W WO2016071288A1 WO 2016071288 A1 WO2016071288 A1 WO 2016071288A1 EP 2015075476 W EP2015075476 W EP 2015075476W WO 2016071288 A1 WO2016071288 A1 WO 2016071288A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fluid
delivery system
fluid delivery
electric motor
Prior art date
Application number
PCT/EP2015/075476
Other languages
English (en)
French (fr)
Inventor
Gerald BEHRENDT
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to EP15788054.3A priority Critical patent/EP3215729A1/de
Priority to US15/523,878 priority patent/US20170335788A1/en
Priority to CN201580063629.3A priority patent/CN107002607A/zh
Publication of WO2016071288A1 publication Critical patent/WO2016071288A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements

Definitions

  • Fluid delivery systems are used, for example, as motor fuel delivery systems in motor vehicles and are generally dependent on the pressure in some way.
  • the fuel supply system is a pre-feed system, such as, for example, for supplying a fuel to an injection system, a so-called fuel rail system.
  • pressures in the range of 2 to about 6 bar are common.
  • the pressure in ⁇ ner must not fall below a certain level, otherwise a permanent KraftStoffVersor ⁇ supply can not be guaranteed.
  • the pressure must not exceed a maximum value for safety reasons.
  • Partial pressure sensors are used to protect the fuel supply system.
  • a pressure sensor measures a pressure of a fuel system at a single location.
  • fuels used such as gasoline may require different pressures within a time KraftStoffSys ⁇ tems.
  • the pressure may be due to different Components ⁇ th in the fuel system, such as fuel filters, be there notwithstanding.
  • Pressure and the components and conditions used may be values of the pressure sensor may be inconsistent and are still used for a control. An additional check of the pressure in the fuel delivery system is desirable.
  • the object of the invention is to solve the above described problem by a method for checking a with a pressure korrelie ⁇ leaders parameter in a pressure-dependent fluid delivery system, a control unit or a fluid delivery system.
  • the object is achieved by a method for checking a pressure-correlating parameter in a pressure-dependent fluid delivery system.
  • the fluid delivery system here comprises an electric motor, which is controlled by an engine control unit.
  • the fluid delivery system includes a fluid pump powered by an electric motor.
  • the method here comprises the Schrit ⁇ te:
  • a parameter is a negative pressure threshold to determine whether a vacuum is present ⁇ .
  • the vacuum threshold for example, has a size of 0.5 bar.
  • Other parameters are, for example, a pressure threshold ⁇ , a characteristic value for a dry running of the fluid pump, a limit value above which a fluid pressure in the fluid conveying system becomes unstable, a characteristic pressure value indicating a leak (among other things dependent on a target delivery rate) , or a characteristic pressure value, which indicates so-called "gasing" of the fluid, especially a fuel.
  • the comparing step verifies that the calculated pressure value satisfies predetermined limits. Different values can here be used as a parameter to each ⁇ wells to check a different application that depends on the current pressure in the fluid delivery system.
  • the electric motor may be a current-controlled electric motor.
  • the drive current of the electric Mo- tors may in this case be, for example, a phase current, a foot ⁇ point current or the like.
  • the following step is performed to additionally ⁇ :
  • a resulting ⁇ nis is from the step of comparing characteristic for ⁇ we limbs of the following events:
  • the fluid delivery system is pressure-controlled or speed-guided.
  • the method can be used in a pressure-guided fluid delivery system as well as in a speed-controlled fluid delivery system. While an application in a fluid delivery system that supplies pressure leads to an additional plausibility for the measured pressure values, it is run in a speed-controlled manner
  • Fluid delivery system a calibration valve, which is arranged on an outlet side of the fluid pump and opens in response to a predetermined pressure to provide a pressure-dependent calibration ⁇ function.
  • the step of calculating additionally depends on the calibration function.
  • a pressure depending on the calibration valve can be produced un ⁇ depending on sensors.
  • the object is achieved by a control device for a gasoline fuel delivery system or a diesel fuel delivery system, which is designed to carry out a method according to the first aspect.
  • the object is achieved by a fluid delivery system.
  • the fluid delivery system comprises an electric motor, an engine control unit and a fluid ⁇ pump, wherein the electric motor is adapted to drive the fluid pump.
  • the engine control unit is Lucas- to directed to drive the electric motor based on a flow ⁇ control with a driving current, wherein an over ⁇ monitoring and / or a plausibility check of the Fluid once- system by a method according to the first aspect is performed by ⁇ .
  • a Ka ⁇ libierventil is additionally arranged on an outlet side of the fluid pump and opens in response to a predetermined pressure.
  • FIG. 1 shows a fluid delivery system (schematic illustration), and FIG. 2 shows a flowchart for a method according to an embodiment of the invention.
  • FIG. 1 shows a fluid delivery system 10.
  • the fluid delivery system 10 in the exemplary embodiment is a fuel delivery system for pumping gas from a tank.
  • the fluid delivery system 10 may be laid out ⁇ for pumping diesel.
  • the fuel in this case the gasoline, is supplied by the fluid delivery system 10 to an injection system (so-called fuel rail system).
  • fuel rail system for reasons of clarity, a representation of both the tank, as well as the Einsprit zstrom omitted in Figure 1.
  • the exemplary embodiment is a so-called pre-conveyor system.
  • the fluid delivery system 10 includes an electric motor 11.
  • the electric motor 11 is current controlled in exporting ⁇ approximately example.
  • the electric motor 11 is controlled by an engine control unit 12.
  • the engine control unit consists in the exemplary embodiment of a drive unit and a ner additional arithmetic unit 12a.
  • the arithmetic unit 12a is spatially separated from the Motorêtge ⁇ advises 12 in alternative embodiments and thus outsourced.
  • the electric motor 11 drives a fluid pump 13.
  • the fluid pump 13 is a fuel pump in the embodiment.
  • the electric motor 11 is connected to the fluid pump 13 via a mechanical coupling 17.
  • the fluid pump 13 pumps gasoline via a fluid line 15 from the tank through the fluid delivery system 10 and via a line 16 to the injection system.
  • a calibration valve 14 On a load side of the fluid pump 13, a calibration valve 14 is connected and hydraulically coupled to the fluid pump 13. In this case, the calibration valve 14 is connected via the hydraulic connection 18 to the line 16 and thus to the fluid pump 13.
  • the Ka ⁇ librierventil 14 is adapted, at a predetermined pressure, for example, 8 bar to open.
  • a filter 16 a is installed in line 16. It is a fuel filter. In other embodiments, there may be other filter or fluid influencing compo ⁇ nents. The filter 16a can also be omitted in a further embodiment.
  • FIG. 2 shows a flow chart for a method according to an embodiment of the invention.
  • a value used for performing the process algorithm in the Re ⁇ unit area 12a is stored and is led off from there as software.
  • this is not intended to be limiting of the invention.
  • a rotational speed of the electric motor 11 is determined.
  • the speed is determined here in be ⁇ known manner via a tachometer. Alternatively, it is possible to read out the rotational speed from a control value of the engine control unit 12.
  • a current of the electric motor 11 is determined.
  • the current of the electric motor 11 is determined here by reading the drive current from the engine control unit 12. Alternatively or additionally, it is possible to determine the current by a measurement on a line of the electric motor 11.
  • a pressure value is calculated as a function of the rotational speed of the current of the electric motor 11 and the calibration function.
  • the calibration function provided by the calibration valve 14 represents a relationship between the rotational speed and the current as a function of a pressure value.
  • step 23 is omitted.
  • the calculated pressure value is compared with a parameter.
  • the parameter is the size of a reference pressure ⁇ value and is characteristic of a property of the fluid delivery system 10.
  • a result of the comparison is a pressure difference. For example, a calculation ⁇ neter pressure with a zero pressure value is compared, so that the result of comparing the calculated pressure in itself.
  • pressure values are understood here which form limit values in the fluid delivery system or define characteristic properties.
  • a parameter is a negative pressure threshold to determine whether a vacuum is present ⁇ .
  • the vacuum threshold for example, has a size of 0.5 bar. This is the reference pressure value in the above sense.
  • Further parameters are, for example, an overpressure threshold, a characteristic value for dry running of the fluid pump 13, a limit value beyond which a fluid pressure in the fluid delivery system 10 becomes unstable, a characteristic pressure value which also depending on a target delivery rate) indicates a leak, or a characteristic pressure value, which indicates so-called "gasing".
  • step 24 is for a review.
  • is adjusted if a predetermined value WUR met ⁇ de or whether the value is exceeded.
  • a reference value that makes sense for the fluid delivery system 10 is 3 bar.
  • a pressure in the fluid delivery system 10 of 2.5 bar is determined in step 23.
  • Step 24 compares the determined pressure with the pressure in the fluid delivery system 10.
  • the result of the comparison in this case is 0.5 bar.
  • the comparison is made within the fluid delivery system 10 so that the verification of the comparison takes place in the same manner.
  • the two pressures may be used to control each other.
  • the pressure sensor is thus monitored by comparison with reference values.
  • a step 25 the result is ge ⁇ checked for plausibility. For example, if the pressure sensor indicates 0 bar and the method calculates the pressure at 2.5 bar, an error is apparent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Überprüfung eines mit einem Druck korrelierten Parameters in einem druckabhängigen Fluidfördersystem (10). Das Fluidfördersystem (10) umfasst einen stromgesteuerten elektrisch Motor, der von dem Motorsteuergerät gesteuert wird und eine Fluidpumpe, die von dem elektrischen Motor betrieben wird. Das Verfahren umfasst den Schritt eines Bestimmens einer Drehzahl des elektrischen Motors. Üblich wird in einem weiteren Schritt ein Strom des elektrischen Motors bestimmt. In Abhängigkeit der Drehzahl und des Stroms wird ein Druckwert berechnet. Der berechnete Wert wird mit dem Parameter verglichen. Die Erfindung betrifft des Weiteren ein Steuergerät und ein Fluidfördersystem (10).

Description

Beschreibung
Verfahren zur Überprüfung eines mit einem Druck korrelierenden Parameters in einem druckabhängigen Fluidfördersystem, Steuer- gerät und Fluidfördersystem
Fluidfördersysteme werden beispielsweise als KraftStoffförder- systeme in Kraftfahrzeugen eingesetzt und sind in der Regel in irgendeiner Weise vom Druck abhängig. Beispielsweise handelt es sich beim KraftStofffördersystem um ein Vorfördersystem, wie zum Beispiel zur Bereitstellung eines Kraftstoffs an eine Ein- sprit zanlage, ein sogenanntes Fuel Rail-System. Hierbei sind Drücke im Bereich von 2 bis zirka 6 bar üblich. Der Druck in¬ nerhalb des KraftStoffSystems darf einen gewissen Wert nicht unterschreiten, da ansonsten eine dauerhafte KraftStoffVersor¬ gung nicht gewährleistet werden kann. Andererseits darf der Druck aus Gründen der Sicherheit auch einen maximalen Wert nicht überschreiten. Um das KraftStofffördersystem zu schützen werden teilweise Drucksensoren verwendet. Ein Drucksensor misst einen Druck eines KraftStoffSystems an einer einzelnen Stelle. Verwendete Kraftstoffe, wie beispielsweise Benzin können jedoch zeitlich unterschiedliche Drücke innerhalb eines KraftStoffSys¬ tems bedingen. Weiterhin kann durch unterschiedliche Komponen¬ ten im KraftStoffSystem, wie beispielsweise Kraftstofffilter, der Druck dort abweichend sein. Je nach Ort der Messung des
Drucks und der eingesetzten Komponenten und Bedingungen können Werte des Drucksensors möglicherweise inkonsistent sein und werden trotzdem für eine Regelung verwendet. Eine zusätzliche Überprüfung des Drucks in dem KraftStofffördersystem ist wün- sehenswert.
Aufgabe der Erfindung ist es, oben beschriebenes Problem durch ein Verfahren zur Überprüfung eines mit einem Druck korrelie¬ renden Parameters in einem druckabhängigen Fluidfördersystem, ein Steuergerät oder ein Fluidfördersystem zu lösen. Gemäß einem ersten Aspekt wird die Aufgabe durch ein Verfahren zur Überprüfung eines mit einem Druck korrelierenden Parameters in einem druckabhängigen Fluidfördersystem gelöst. Das Fluid- fördersystem umfasst hierbei einen elektrischen Motor, der von einem Motorsteuergerät gesteuert wird. Des Weiteren umfasst das Fluidfördersystem eine Fluidpumpe, die von einem elektrischen Motor betrieben wird. Das Verfahren umfasst hierbei die Schrit¬ te :
- Bestimmen einer Drehzahl des elektrischen Motors;
- Bestimmen eines Stroms des elektrischen Motors, insbesondere Auslesen eines Ansteuerstroms des Motorsteuergeräts;
- Berechnen eines Druckwerts in Abhängigkeit der Drehzahl und des Stroms des elektrischen Motors;
- Vergleichen des berechneten Druckwerts mit dem Parameter.
Als Parameter werden hier Druckwerte verstanden, die in einem Fluidfördersystem Grenzwerte bilden, oder charakteristische Ei¬ genschaften festlegen. Beispielsweise ist ein Parameter eine Unterdruckschwelle, um zu bestimmen, ob ein Unterdruck vor¬ liegt. Die Unterdruckschwelle hat beispielsweise eine Größe von 0,5 bar. Weitere Parameter sind beispielsweise eine Überdruck¬ schwelle, ein charakteristischer Wert für ein Trockenlaufen der Fluidpumpe, ein Grenzwert, ab dem ein Fluiddruck in dem Fluid- fördersystem instabil wird, ein charakteristischer Druckwert, der (unter anderem auch abhängig von einer Sollfördermenge) ein Leck aufzeigt, oder ein charakteristischer Druckwert, der auf sogenanntes „gasing" des Fluids, speziell eines Kraftstoffs hinweist .
Durch den Schritt des Vergleichens wird verifiziert, dass der berechnete Druckwert vorbestimmten Grenzen genügt. Verschiedene Werte können hierbei als Parameter herangezogen werden, um je¬ weils eine unterschiedliche Anwendung zu überprüfen, die vom aktuellen Druck in dem Fluidfördersystem abhängig ist. Der Schritt des Bestimmens einer Drehzahl des elektrischen Motors kann aus einer Vorgabe der Drehzahl an den elektrischen Motor erfüllt sein. Der elektrische Motor kann ein stromgesteuerter elektrischer Motor sein. Der Ansteuerstrom des elektrischen Mo- tors kann hierbei beispielsweise ein Phasenstrom, ein Fuss¬ punktstrom oder ähnliches sein.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird zu¬ sätzlich der folgende Schritt durchgeführt:
- Überprüfen eines Ergebnisses aus dem Schritt des Vergleichens auf Plausibilität anhand eines vorbestimmten Referenzwerts.
Durch die Überprüfung der Plausibilität in einem Fluidförder- system zu überprüfen wird die Sicherheit des Fluidfördersystems erhöht.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist ein Ergeb¬ nis aus dem Schritt des Vergleichens charakteristisch für we¬ nigstens eines der folgenden Ereignisse:
- Einstellen eines Unterdrucks im Fluidfördersystem;
- Einstellen eines Überdrucks im Fluidfördersystem;
- Destabilisierung eines Fluiddrucks im Fluidfördersystem;
- Trockenlaufen der Fluidpumpe;
- Auftreten von Gasblasen im Fluidfördersystem, insbesondere Gasing;
- Auftreten eines Lecks im Fluidfördersystem .
Die Überprüfung der oben genannten Ereignisse ist aus Gründen der Sicherheit vorteilhaft. Hierbei reicht ein herkömmlicher Drucksensor häufig nicht aus.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Fluid- fördersystem druckgeführt oder drehzahlgeführt. Das Verfahren kann in einem druckgeführten Fluidfördersystem ebenso eingesetzt werden wie in einem drehzahlgeführten Fluid- fördersystem . Während ein Einsatz in einem Fluidfördersystem das druckgeführt ist eine zusätzliche Plausibilität für die ge- messenen Druckwerte liefert, wird in einem drehzahlgeführten
Fördersystem in dem kein Drucksensor notwendig ist, zusätzliche Sicherheit durch das Verfahren gewonnen, da Druckwerte erlangt werden können, die sonst nicht überprüfbar wären. Gemäß einer weiteren vorteilhaften Ausgestaltung umfasst das
Fluidfördersystem ein Kalibrierventil, das an eine Auslassseite der Fluidpumpe angeordnet ist und sich in Abhängigkeit eines vorbestimmten Drucks öffnet, um eine druckabhängige Kalibrier¬ funktion bereitzustellen. Der Schritt des Berechnens hängt hierbei zusätzlich von der Kalibrierfunktion ab.
Über das Kalibrierventil lässt sich eine Druckabhängigkeit un¬ abhängig von Sensoren herstellen. Gemäß einem zweiten Aspekt der Erfindung wird die Aufgabe durch ein Steuergerät für ein Benzinkraftstofffördersystem oder ein DieselkraftStofffördersystem gelöst, das dazu ausgebildet ist, ein Verfahren gemäß dem ersten Aspekt durchzuführen. Gemäß einem dritten Aspekt der Erfindung wird die Aufgabe von einem Fluidfördersystem gelöst. Das Fluidfördersystem umfasst einen elektrischen Motor, ein Motorsteuergerät und eine Fluid¬ pumpe, wobei der elektrische Motor dazu eingerichtet ist, die Fluidpumpe anzutreiben. Das Motorsteuergerät ist dazu einge- richtet, den elektrischen Motor basierend auf einer Durchfluss¬ regelung mit einem Ansteuerstrom anzusteuern, wobei eine Über¬ wachung und/oder eine Plausibilitätsprüfung des Fluidförder- systems mittels eines Verfahrens nach dem ersten Aspekt durch¬ geführt wird. Die Vorteile bezüglich des Steuergeräts gemäß dem zweiten As¬ pekt und bezüglich dem Fluidfördersystem gemäß dem dritten As¬ pekt entsprechen im Wesentlichen den Vorteilen die zu den ent¬ sprechenden Verfahren beschrieben sind.
Gemäß einer vorteilhaften Ausgestaltung ist zusätzlich ein Ka¬ libierventil an einer Auslassseite der Fluidpumpe angeordnet und öffnet sich in Abhängigkeit eines vorbestimmten Drucks. Die Erfindung wird im Folgenden anhand von Figuren und Ausfüh¬ rungsbeispielen näher erläutert. Es zeigen:
Figur 1 ein Fluidfördersystem (schematische Darstellung) , und Figur 2 ein Flussdiagramm für ein Verfahren gemäß einer Aus¬ gestaltung der Erfindung.
Figur 1 zeigt ein Fluidfördersystem 10. Das Fluidfördersystem 10 ist im Ausführungsbeispiel ein KraftStofffördersystem zum Fördern von Benzin aus einem Tank. In einer anderen Ausgestal¬ tung kann das Fluidfördersystem 10 zum Fördern von Diesel aus¬ gelegt sein. Der Kraftstoff, hier das Benzin, wird durch das Fluidfördersystem 10 einer Einsprit zanlage (sogenanntes Fuel Rail-System) zugeführt. Aus Gründen der Übersichtlichkeit wurde in Figur 1 auf eine Darstellung sowohl des Tanks, als auch der Einsprit zanlage verzichtet. Im Ausführungsbeispiel handelt es sich um ein sogenanntes Vorfördersystem . Ebenso kann es sich in anderen Ausgestaltungen um andere Fluidfördersysteme oder Teile eines Fluidfördersystems handeln.
Im Ausführungsbeispiel umfasst das Fluidfördersystem 10 einen elektrischen Motor 11. Der elektrische Motor 11 ist im Ausfüh¬ rungsbeispiel stromgesteuert. Der elektrische Motor 11 wird von einem Motorsteuergerät 12 angesteuert. Das Motorsteuergerät be- steht im Ausführungsbeispiel aus einer Ansteuereinheit und ei- ner zusätzlichen Recheneinheit 12a. Die Recheneinheit 12a ist in alternativen Ausgestaltungen räumlich von dem Motorsteuerge¬ rät 12 getrennt und somit ausgelagert. Der elektrische Motor 11 treibt eine Fluidpumpe 13 an. Die Fluidpumpe 13 ist im Ausfüh- rungsbeispiel eine Kraftstoffpumpe. Der elektrische Motor 11 ist über eine mechanische Kopplung 17 mit der Fluidpumpe 13 verbunden. Die Fluidpumpe 13 pumpt Benzin über eine Fluidlei- tung 15 von dem Tank durch das Fluidfördersystem 10 und über eine Leitung 16 zu der Einsprit zanlage . An einer Auslastseite der Fluidpumpe 13 ist ein Kalibrierventil 14 angeschlossen und mit der Fluidpumpe 13 hydraulisch gekoppelt. Hierbei ist das Kalibrierventil 14 über die hydraulische Verbindung 18 mit die Leitung 16 und somit mit der Fluidpumpe 13 verbunden. Das Ka¬ librierventil 14 ist dazu eingerichtet, bei einem vorbestimmten Druck, beispielsweise 8 bar, zu öffnen. Der elektrische Motor
11 wird von dem Motorsteuergerät 12 so gesteuert, dass die Flu¬ idpumpe 13 mit einer bestimmten Drehzahl des Motors 11 läuft. In einer alternativen Ausgestaltung ist kein Kalibrierventil 14 vorgesehen .
In die Leitung 16 ist ein Filter 16a eingebaut. Es handelt sich hierbei um einen KraftStofffilter . In anderen Ausgestaltungen kann es sich um andere Filter oder fluidbeeinflussende Kompo¬ nenten handeln. Der Filter 16a kann in einer weiteren Ausges- taltung auch entfallen.
An die Leitung 16 ist des Weiteren ein Drucksensor 19 ange¬ schlossen. Im Ausführungsbeispiel misst der Drucksensor 19 ei¬ nen Fluiddruck in der Leitung 16 nach dem Filter 16a. Das Sig- nal des Drucksensors 19 wird in einer Auswertungseinheit 19a ausgewertet. Die Auswertungseinheit 19a stellt dem Motorsteuer¬ gerät 12, im Ausführungsbeispiel der der Recheneinheit 12a des Motorsteuergeräts, ein ausgewertetes Drucksignal zur Plausibi¬ lisierung bereit. Figur 2 zeigt ein Flussdiagramm für ein Verfahren gemäß einer Ausgestaltung der Erfindung. Im Ausführungsbeispiel ist ein zur Ausführung des Verfahrens verwendeter Algorithmus in der Re¬ cheneinheit 12a gespeichert und wird von dort als Software aus- geführt. Dies soll jedoch nicht beschränkend für die Erfindung gelten. So ist es in anderen Ausgestaltungen möglich, dass die Berechnungen im Motorsteuergerät 12 oder in anderen, getrennten Einheiten stattfinden, wie beispielsweise einem Bordcomputer eines Fahrzeugs.
In einem ersten Schritt 21 wird eine Drehzahl des elektrischen Motors 11 bestimmt. Die Drehzahl wird hierbei in an sich be¬ kannter Weise über einen Drehzahlmesser bestimmt. Alternativ ist es möglich, die Drehzahl aus einem Ansteuerwert des Mo- torsteuergeräts 12 auszulesen.
In einem Schritt 22 wird ein Strom des elektrischen Motors 11 bestimmt. Der Strom des elektrischen Motors 11 wird hierbei durch Auslesen des Ansteuerstroms von dem Motorsteuergerät 12 bestimmt. Alternativ oder zusätzlich ist es möglich durch eine Messung an einer Leitung des elektrischen Motors 11 den Strom zu bestimmen.
In Schritt 23 wird ein Druckwert in Abhängigkeit der Drehzahl des Stroms des elektrischen Motors 11 und der Kalibrierfunktion berechnet. Die Kalibrierfunktion, die durch das Kalibrierventil 14 bereitgestellt wird, stellt einen Zusammenhang zwischen der Drehzahl und dem Strom in Abhängigkeit eines Druckwerts dar. Somit kann mit bekannten Pumpenkennlinien, beziehungsweise ei- nem druckabhängigen Pumpenkennlinienfeld ein Druckwert aus der Kalibierfunktion berechnet werden. In einer alternativen Aus¬ gestaltung, in der das Kalibrierventil 14 nicht vorgesehen ist, entfällt Schritt 23. In Schritt 24 wird der berechnete Druckwert mit einem Parameter verglichen. Der Parameter hat die Größe eines Referenzdruck¬ werts und ist charakteristisch für eine Eigenschaft des Fluid- fördersystems 10. Für verschiedene Anwendungen des Verfahrens sind in einer Tabelle oder einem Speicher verschiedene Refe¬ renzdruckwerte hinterlegt, je nachdem mit welchem Parameter der Druckwert verglichen werden soll. Ein Ergebnis des Vergleichs stellt eine Druckdifferenz dar. Beispielsweise wird ein berech¬ neter Druck mit einem Nulldruckwert verglichen, so dass das Er- gebnis des Vergleichs der berechnete Druck an sich ist.
Als Parameter werden hier Druckwerte verstanden, die in dem Fluidfördersystem 10 Grenzwerte bilden, oder charakteristische Eigenschaften festlegen. Beispielsweise ist ein Parameter eine Unterdruckschwelle, um zu bestimmen, ob ein Unterdruck vor¬ liegt. Die Unterdruckschwelle hat beispielsweise eine Größe von 0,5 bar. Dies stellt in obigem Sinne den Referenzdruckwert dar. Weitere Parameter sind beispielsweise eine Überdruckschwelle, ein charakteristischer Wert für ein Trockenlaufen der Fluidpum- pe 13, ein Grenzwert, ab dem ein Fluiddruck in dem Fluidförder- system 10 instabil wird, ein charakteristischer Druckwert, der (unter anderem auch abhängig von einer Sollfördermenge) ein Leck aufzeigt, oder ein charakteristischer Druckwert, der auf sogenanntes „gasing" hinweist.
Das Ergebnis aus dem Schritt 24 dient einer Überprüfung. Hier¬ bei wird abgeglichen, ob ein vorgegebener Wert eingehalten wur¬ de oder ob der Wert überschritten wurde. Beispielsweise ist ein Referenzwert, der für das Fluidfördersystem 10 sinnvoll ist 3 bar. Nun wird ein Druck in dem Fluidfördersystem 10 von 2,5 bar in Schritt 23 bestimmt. Schritt 24 vergleicht den bestimmten Druck mit dem Druck im Fluidfördersystem 10. Das Ergebnis des Vergleichs ist in diesem Fall 0,5 bar. Ebenso ist es natürlich möglich, den Vergleich anhand eines Produkts, eines Quotienten oder eines anderen Berechnungsmoduls durchzuführen, so dass das Ergebnis anders aussehen kann. Der Vergleich wird innerhalb des Fluidfördersystems 10 ausgeführt, so dass die Überprüfung des Vergleichs auf die gleiche Art und Weise stattfindet. Im aufge¬ führten Beispiel ist eine Referenz Null angegeben, so dass er- sichtlich wird, dass der gemessene Druck 0,5 bar vom Solldruck abweicht. Durch die Überprüfung kann festgestellt werden, dass ein Unterdruck vorliegt, jedoch kein Überdruck. Ebenso kann durch die Überprüfung eines Drucksensors verifiziert werden, dass der Druck richtig gemessen wurde. Da noch ein Druck an- liegt kann auch rückgeschlossen werden, dass die Pumpe noch nicht trockengelaufen ist. Werden die Druckwerte über einen längeren Zeitraum betrachtet, so kann auch rückgeschlossen wer¬ den, ob es ein Leck in der Pumpe gibt. Über das Druckverhalten kann zusätzlich festgestellt werden, ob in dem Fluidfördersys- tem 10 „gasing" auftritt.
Umfasst das Fluidfördersystem 10 einen zusätzlichen Drucksensor 19, so können die beiden Druckwerte dazu verwendet werden, sich gegenseitig zu kontrollieren. Der Drucksensor wird somit durch einen Vergleich mit Referenzwerten überwacht.
In einem Schritt 25 wird das Ergebnis auf Plausibilität ge¬ prüft. Zeigt beispielsweise der Drucksensor 0 bar an und das Verfahren berechnet den Druck mit 2,5 bar, so ist ein Fehler offensichtlich.

Claims

Patentansprüche
Verfahren zur Uberprüfung eines mit einem Druck korrelie¬ renden Parameters in einem druckabhängigen Fluidförder- system (10), das Fluidfördersystem (10) umfassend:
- Einen stromgesteuerten elektrischen Motor (11), der von einem Motorsteuergerät (12) gesteuert wird; und
- Eine Fluidpumpe (13), die von dem elektrischen Motor (11) angetrieben wird;
umfassend die Schritte:
- Bestimmen einer Drehzahl des elektrischen Motors (11);
- Bestimmen eines Stroms des elektrischen Motors (11), insbesondere Auslesen eines Ansteuerstroms des Motor¬ steuergeräts (12);
- Berechnen eines Druckwerts in Abhängigkeit der Drehzahl und des Stroms des elektrischen Motors (11);
- Vergleichen des berechneten Druckwerts mit dem Parame¬ ter .
Verfahren nach Anspruch 1, wobei zusätzlich der folgende Schritt durchgeführt wird:
- Überprüfen eines Ergebnisses aus dem Schritt des Ver¬ gleichens auf Plausibilität anhand eines vorbestimmten Referenzwerts .
Verfahren nach einem der Ansprüche 1 oder 2, wobei ein Er gebnis aus dem Schritt des Vergleichens charakteristisch für wenigstens eines der folgenden Ereignisse ist:
- Einstellen eines Unterdrucks im Fluidfördersystem (10);
- Einstellen eines Überdrucks im Fluidfördersystem (10);
- Destabilisierung eines Fluiddrucks im Fluidfördersystem (10) ;
- Trockenlaufen der Fluidpumpe (13)
- Auftreten von Gasblasen im Fluidfördersystem (10), ins¬ besondere gasing; - Auftreten eines Lecks im Fluidfördersystem (10) .
Verfahren nach einem der Ansprüche 1 bis 3, wobei das Flu¬ idfördersystem (10) druckgeführt oder drehzahlgeführt ist.
Verfahren nach einem der Ansprüche 1 bis 4, wobei das Flu¬ idfördersystem weiter ein Kalibrierventil (14) umfasst, das an einer Auslassseite der Fluidpumpe (13) angeordnet ist und sich in Abhängigkeit eines vorbestimmten Drucks öffnet, um eine druckabhängige Kalibrierfunktion bereitzu¬ stellen und wobei der Schritt des Berechnens zusätzlich von der Kalibrierfunktion abhängt.
Steuergerät für Fluidfördersystem (10) für Benzin oder ein Fluidfördersystem (10) für Diesel, das dazu ausgebildet ist, ein Verfahren gemäß einem der Ansprüche 1 bis 5 durchzuführen .
Fluidfördersystem (10), umfassend einen elektrischen Motor
(11) , ein Motorsteuergerät (12), eine Fluidpumpe (13) und ein Kalibrierventil (14), wobei der elektrische Motor (11) dazu eingerichtet ist, die Fluidpumpe (13) anzutreiben, wobei das Kalibrierventil an einer Auslassseite der Fluid¬ pumpe (13) angeordnet ist und sich in Abhängigkeit eines vorbestimmten Drucks öffnet und wobei das Motorsteuergerät
(12) dazu eingerichtet ist, den elektrischen Motor (11) basierend auf einer Durchflussregelung mit einem Ansteuer- strom anzusteuern, wobei eine Überwachung und /oder eine Plausibilitatsprüfung des Fluidfördersystems (10) mittels eines Verfahrens nach einem der Ansprüche 1 bis 5 durchge¬ führt wird.
PCT/EP2015/075476 2014-11-03 2015-11-02 Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem WO2016071288A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15788054.3A EP3215729A1 (de) 2014-11-03 2015-11-02 Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem
US15/523,878 US20170335788A1 (en) 2014-11-03 2015-11-02 Method for checking a parameter correlating with a pressure in a pressure-dependent fluid-conveying system, control device and fluid-conveying system
CN201580063629.3A CN107002607A (zh) 2014-11-03 2015-11-02 在与压力有关的流体输送系统中用于检查与压力相关的参数的方法、控制装置及流体输送系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222404.7 2014-11-03
DE102014222404.7A DE102014222404A1 (de) 2014-11-03 2014-11-03 Verfahren zur Überprüfung eines mit einem Druck korrelierenden Parameters in einem druckabhängigen Fluidfördersystem, Steuergerät und Fluidfördersystem

Publications (1)

Publication Number Publication Date
WO2016071288A1 true WO2016071288A1 (de) 2016-05-12

Family

ID=54365262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/075476 WO2016071288A1 (de) 2014-11-03 2015-11-02 Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem

Country Status (5)

Country Link
US (1) US20170335788A1 (de)
EP (1) EP3215729A1 (de)
CN (1) CN107002607A (de)
DE (1) DE102014222404A1 (de)
WO (1) WO2016071288A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226972A1 (de) * 2014-12-23 2016-06-23 Continental Automotive Gmbh Fördervorrichtung zum Befördern eines Mediums und zum Begrenzen eines Systemdrucks
DE102015207702B3 (de) * 2015-04-27 2016-07-28 Continental Automotive Gmbh Verfahren zur Regelung eines Kraftstofffördersystems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089400A1 (de) * 2010-12-27 2012-07-05 Robert Bosch Gmbh Kraftstoffversorgungssystem für eine brennkraftmaschine
DE102011015154A1 (de) * 2011-03-25 2012-09-27 Continental Automotive Gmbh Verfahren zur Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe und Kraftstofffördereinheit mit einer Kraftstoffpumpe
US20140105758A1 (en) * 2012-10-12 2014-04-17 Continental Automotive Systems, Inc. Pressure control by phase current and initial adjustment at car line
WO2014061233A1 (ja) * 2012-10-15 2014-04-24 株式会社デンソー 燃料供給装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655930B2 (ja) * 2011-03-14 2015-01-21 トヨタ自動車株式会社 燃料供給システムの異常検出装置
JP5891787B2 (ja) * 2011-12-28 2016-03-23 株式会社ジェイテクト オイル供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089400A1 (de) * 2010-12-27 2012-07-05 Robert Bosch Gmbh Kraftstoffversorgungssystem für eine brennkraftmaschine
DE102011015154A1 (de) * 2011-03-25 2012-09-27 Continental Automotive Gmbh Verfahren zur Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe und Kraftstofffördereinheit mit einer Kraftstoffpumpe
US20140105758A1 (en) * 2012-10-12 2014-04-17 Continental Automotive Systems, Inc. Pressure control by phase current and initial adjustment at car line
WO2014061233A1 (ja) * 2012-10-15 2014-04-24 株式会社デンソー 燃料供給装置

Also Published As

Publication number Publication date
US20170335788A1 (en) 2017-11-23
DE102014222404A1 (de) 2016-05-04
CN107002607A (zh) 2017-08-01
EP3215729A1 (de) 2017-09-13

Similar Documents

Publication Publication Date Title
DE102011015154B4 (de) Verfahren zur Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe und Kraftstofffördereinheit mit einer Kraftstoffpumpe
WO1996038664A1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
DE102011011348A1 (de) Verfahren zur Ermittlung von Kavitation in hydrostatischen Vorrichtungen und Steuervorrichtung
EP3795830B1 (de) Verfahren und vorrichtung zum betreiben einer drehzahlgeregelten fluidpumpe
DE102012203097B3 (de) Verfahren und Vorrichtung zum Bestimmen eines Fehlers einer Druckmessung in einem Druckbehälter
DE102012108027A1 (de) Ölpumpenregelungssystem für ein Fahrzeug und Betriebsverfahren davon
DE19908352A1 (de) Kraftstoffeinspritzverfahren für eine Brennkraftmaschine
DE102014213648B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
EP3289205B1 (de) Verfahren zum erkennen einer dauereinspritzung im betrieb einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine und brennkraftmaschine
WO2016071288A1 (de) Verfahren zur überprüfung eines mit einem druck korrelierenden parameters in einem druckabhängigen fluidfördersystem, steuergerät und fluidfördersystem
DE102005032636A1 (de) Verfahren und Vorrichtung zur Erkennung von Fehlern in einem Kraftstoffversorgungssystem eines Kraftfahrzeugs
WO2017092972A1 (de) Verfahren und vorrichtung zur steuerung eines kraftstoffversorgungssystems
EP3390130B1 (de) System zur füllstandsbestimmung
DE102011012321A1 (de) System zur Zumessung von Fluid
DE112014001033B4 (de) Überwachungseinheit und Verfahren zur Überwachung eines Kraftstoffsystems
DE102013220831B3 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftstoffeinspritzsystems
DE102018217327B4 (de) Verfahren und Vorrichtung zur Plausibilisierung der Funktionsfähigkeit eines Hochdrucksensors einer Hochdruckkraftstoffeinspritzvorrichtung eines Kraftfahrzeugs
DE102019210340B3 (de) Verfahren und Vorrichtung zur Vermeidung von Überdruck in einem Kraftstoff-Hochdruckeinspritzsystem eines Kraftfahrzeugs
DE102011101825A1 (de) Kraftfahrzeugmotorsteuervorrichtung
DE19935237B4 (de) Verfahren und Vorrichtung zum Bestimmen des Beladungszustandes eines Kraftstoffilters
DE102015223848A1 (de) Verfahren zum Ermitteln einer Viskosität eines Kraftstoffs
DE102014208874A1 (de) Verfahren zur Bestimmung einer mittels eines Injektors in einen Zylinder eines Verbrennungsmotors eines Kraftfahrzeugs eingespritzten Kraftstoffmenge
DE102022110335B3 (de) Leckagediagnosesystem und Verfahren für eine Funktionsdiagnose eines Leckagediagnosesystems
DE102009058781B4 (de) Verfahren und Vorrichtung zur Überprüfung der Messfähigkeit eines Hochdrucksensors
WO2009040214A1 (de) Verfahren und vorrichtung zum betreiben einer membranpumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788054

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015788054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015788054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE