WO2016070376A1 - 热控制装置和方法 - Google Patents

热控制装置和方法 Download PDF

Info

Publication number
WO2016070376A1
WO2016070376A1 PCT/CN2014/090446 CN2014090446W WO2016070376A1 WO 2016070376 A1 WO2016070376 A1 WO 2016070376A1 CN 2014090446 W CN2014090446 W CN 2014090446W WO 2016070376 A1 WO2016070376 A1 WO 2016070376A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
user
temperature control
ambient temperature
state information
Prior art date
Application number
PCT/CN2014/090446
Other languages
English (en)
French (fr)
Inventor
陈文娟
宋文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2017542225A priority Critical patent/JP6529195B2/ja
Priority to EP14905488.4A priority patent/EP3203712B1/en
Priority to CN201480079396.1A priority patent/CN106464748B/zh
Priority to US15/524,709 priority patent/US10697661B2/en
Priority to PCT/CN2014/090446 priority patent/WO2016070376A1/zh
Publication of WO2016070376A1 publication Critical patent/WO2016070376A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to the field of computer and Internet technologies, and in particular, to a thermal control apparatus and method.
  • Terminals such as smartphones, tablets and multimedia players have become increasingly important in people's daily work and life.
  • the inventors have found that the above-mentioned technology has at least the following problem: since some components inside the terminal generate heat during the operation, the heat will be transmitted to the user through the body casing that is in direct contact with the user. Affect the user's thermal comfort.
  • the embodiment of the invention provides a thermal control device and method.
  • the technical solution is as follows:
  • a thermal control device comprising:
  • a first acquiring module configured to acquire terminal status information of the terminal, where the terminal status information includes at least a terminal temperature parameter
  • a second acquiring module configured to acquire environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter, a user ECG parameter, At least one of a user's brain electrical parameter and a user skin electrical resistance parameter;
  • a policy execution module configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, where the hot control policy includes terminal temperature control Strategy and / or ambient temperature control strategy.
  • the terminal state information further includes a charge and discharge state parameter and/or a use state parameter.
  • the second acquiring module includes:
  • An environment acquisition submodule configured to acquire the environmental status information by using an environmental sensor, where the environmental sensor is disposed in the terminal and/or a wearable device and/or a temperature control device, where the environmental sensor includes at least a temperature sensor and/or Or humidity sensor;
  • a user acquisition submodule configured to acquire the user status information by using a biosensor, where the biosensor includes a body temperature sensor, an electrocardiogram sensor, an EEG sensor, At least one of skin resistance sensors.
  • the policy execution module includes : mode determination submodule and policy execution submodule;
  • the mode determining submodule is configured to determine a scenario in which the user is located according to any one or both of the environment state information and the user state information, and the terminal state information;
  • the policy execution submodule is configured to execute a thermal control policy corresponding to the scenario mode.
  • the policy execution sub-module includes: a first computing unit and a first execution unit;
  • the first calculating unit is configured to calculate heat according to the terminal state information, the scenario mode, and a thermal sensation error term corresponding to the scenario mode when the thermal control policy includes the terminal temperature control policy a sensation value, the thermal sensation value error term is used to reflect a difference in thermal sensation of different users in the scene mode;
  • the first execution unit is configured to determine and execute a corresponding terminal temperature control policy according to the scene mode and the thermal sensation value.
  • the policy execution submodule further includes: a first recording unit and a first update unit;
  • the first recording unit is configured to record the number K of executions of the terminal temperature control strategy when the scene mode is V and the thermal sensation error term corresponding to the scene mode V is ⁇ v
  • the Kth terminal temperature control strategy the number of times K' of the terminal temperature control policy that satisfies the first predetermined condition; wherein the first predetermined condition is that the user is within the first predetermined time period after the terminal temperature control policy is effective Generating a first predetermined reaction;
  • the first updating unit is configured to update the thermal sensation value error term ⁇ v according to the number of times K of the terminal temperature control policy and the number K′ of the terminal temperature control policies satisfying the first predetermined condition.
  • the policy execution sub-module includes: a second computing unit and a second execution unit;
  • the second calculating unit is configured to calculate a expectation according to the terminal state information, the scenario mode, and a desired ambient temperature error term corresponding to the scenario mode when the thermal control policy includes the ambient temperature control policy Ambient temperature, the expected ambient temperature error term is used to reflect differences in perception of ambient temperature by different users in the context mode;
  • the second execution unit is configured to determine and execute the ambient temperature control policy according to the desired ambient temperature.
  • the policy execution sub-module further includes: a second recording unit and a second update unit;
  • the second recording unit is configured to record the number M of executions of the ambient temperature control strategy when the context mode is V and the expected ambient temperature error term corresponding to the context mode V is ⁇ v In the M-th environment temperature control strategy, the number M′ of the ambient temperature control policies satisfying the second predetermined condition; wherein the second predetermined condition refers to the user within the second predetermined time period after the ambient temperature control policy is effective Generating a second predetermined reaction;
  • the second updating unit is configured to update the expected ambient temperature error term ⁇ v according to the number M of the ambient temperature control policy and the number M′ of the ambient temperature control policies satisfying the second predetermined condition.
  • a thermal control apparatus comprising: a bus, and a processor and a memory coupled to the bus, wherein the memory is for storing one or more instructions, the instructions being Configured to be executed by the processor;
  • the processor is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter;
  • the processor is further configured to acquire environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter and a user heart electrical parameter. At least one of a user brain electrical parameter and a user skin electrical resistance parameter;
  • the processor is further configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the terminal control information, where the hot control policy includes a terminal Temperature control strategy and / or ambient temperature control strategy.
  • the terminal status information further includes a charge and discharge status parameter and/or a use status parameter.
  • the processor is further configured to acquire the environmental status information by using an environmental sensor, where the environmental sensor is disposed in the terminal and/or a wearable device and/or a temperature control device, where the environmental sensor includes at least a temperature sensor and / or humidity sensor;
  • the processor is further configured to acquire the user status information by using a biosensor disposed in the terminal and/or the wearable device, where the biosensor includes a body temperature sensor, an electrocardiogram sensor, and an EEG sensor. At least one of skin resistance sensors.
  • the processor is further configured to determine, according to any one or both of the environment state information and the user state information, and the terminal state information, a scenario mode in which the user is located;
  • the processor is further configured to execute a thermal control policy corresponding to the scenario mode.
  • the processor is further configured to: when the thermal control policy includes the terminal temperature control policy, calculate a thermal sensation according to the terminal state information, the scene mode, and a thermal sensation error term corresponding to the scene mode a value, the thermal sensation error item is used to reflect a difference in thermal perception of different users in the scene mode;
  • the processor is further configured to determine and execute a corresponding terminal temperature control policy according to the scene mode and the thermal sensation value.
  • the processor is further configured to: when the scene mode is V and the thermal sensation error term corresponding to the scene mode V is ⁇ v , record the number K of executions of the terminal temperature control policy, and In the K-th order temperature control strategy, the number of times K' of the terminal temperature control policy that satisfies the first predetermined condition; wherein the first predetermined condition is that the user is generated within the first predetermined time period after the terminal temperature control policy is in effect First predetermined reaction;
  • the processor is further configured to update the thermal sensation value error term ⁇ v according to the number of times K of the terminal temperature control policy and the number of times K' of the terminal temperature control policy satisfying the first predetermined condition.
  • the processor is further configured to calculate a desired environment according to the terminal state information, the scenario mode, and a desired ambient temperature error term corresponding to the scenario mode when the thermal control policy includes the ambient temperature control policy a temperature, the expected ambient temperature error term is used to reflect a difference in perception of ambient temperature by different users in the context mode;
  • the processor is further configured to determine and execute the ambient temperature control policy according to the desired ambient temperature.
  • the processor is further configured to record a number M of performing the ambient temperature control policy when the context mode is V and a desired ambient temperature error term corresponding to the context mode V is ⁇ v , and in the In the M-th environment temperature control strategy, the number M′ of the ambient temperature control policies satisfying the second predetermined condition; wherein the second predetermined condition is that the user generates the second predetermined time after the ambient temperature control policy is effective.
  • Second predetermined reaction
  • the processor is further configured to update the expected ambient temperature error term ⁇ v according to the number M of the ambient temperature control strategy and the number M′ of the ambient temperature control policies satisfying the second predetermined condition.
  • a method of thermal control comprising:
  • the terminal status information includes at least a terminal temperature parameter
  • the environmental status information including at least an environmental temperature parameter and/or an environmental humidity parameter
  • the user status information including a user body temperature parameter, a user ECG parameter, a user brain electrical parameter, and a user skin At least one of resistance parameters;
  • Determining and executing a thermal control policy according to any one or both of the environmental state information and the user state information, and the terminal control information includes a terminal temperature control policy and/or an ambient temperature Control Strategy.
  • the terminal state information further includes a charge and discharge state parameter and/or a use state parameter.
  • the acquiring the environmental state information and/or the user state information includes:
  • an environmental sensor Obtaining the environmental status information by an environmental sensor, the environmental sensor being disposed in the terminal and/or a wearable device and/or a temperature control device, the environmental sensor comprising at least a temperature sensor and/or a humidity sensor;
  • the biosensor including at least one of a body temperature sensor, an electrocardiogram sensor, an EEG sensor, and a skin resistance sensor kind.
  • the first possible implementation manner of the third aspect, or the second possible implementation manner of the third aspect in a third possible implementation manner of the third aspect, Determining and executing a thermal control policy by using any one or both of the information and the user status information, and the terminal status information, including:
  • a thermal control strategy corresponding to the context mode is executed.
  • the performing a heat control policy corresponding to the scenario mode includes:
  • the thermal control strategy includes the terminal temperature control policy, calculating a thermal sensation value according to the terminal state information, the scene mode, and a thermal sensation value error term corresponding to the scene mode, the thermal sensation value error
  • the item is used to reflect the difference in thermal perception of different users in the scene mode;
  • a corresponding terminal temperature control strategy is determined and executed according to the scene mode and the thermal sensation value.
  • the method further includes:
  • the thermal sensation value error term ⁇ v is updated according to the number of times K of the terminal temperature control strategy and the number of times K' of the terminal temperature control strategy satisfying the first predetermined condition.
  • a sixth possible implementation in the third aspect includes:
  • the thermal control strategy includes the ambient temperature control strategy, calculating a desired ambient temperature based on the terminal state information, the context mode, and a desired ambient temperature error term corresponding to the context mode, the desired ambient temperature error
  • the item is used to reflect the difference in the perception of the ambient temperature of different users in the scenario mode;
  • the ambient temperature control strategy is determined and executed based on the desired ambient temperature.
  • the method further includes:
  • the scene mode is V and the expected ambient temperature error term corresponding to the scene mode V is ⁇ v , recording the number M of executions of the ambient temperature control strategy, and in the M times ambient temperature control strategy, a number of times M' of the ambient temperature control policy that satisfies the second predetermined condition; wherein the second predetermined condition is that the user generates a second predetermined reaction within a second predetermined time period after the ambient temperature control policy is in effect;
  • the desired ambient temperature error term ⁇ v is updated according to the number M of the ambient temperature control strategy and the number M′ of the ambient temperature control strategies satisfying the second predetermined condition.
  • the terminal state information including the terminal temperature parameter, and acquiring the environment state information and/or the user state information, and determining and executing the heat control policy according to the obtained information related to the user's thermal experience; and solving the terminal in the running process
  • the generated heat affects the user's thermal comfort problem; combined with the obtained information related to the user's thermal experience, an effective thermal control strategy is implemented, which reduces the influence of the heat generated by the terminal during the operation on the user, and improves the user's Thermal comfort.
  • the user actually simulates the situation from the perspectives of the terminal state, the environment state, and the user state, understands the user's thermal experience, and understands the reasons that affect the user's thermal comfort. It is helpful to select the thermal control strategy in a targeted manner to improve the efficiency and accuracy of thermal control.
  • the terminal temperature control strategy is used to regulate the temperature of the terminal, thereby improving the local thermal comfort, so that the performance of the terminal is balanced with the local thermal comfort of the user; and the ambient temperature control strategy is used to adjust the ambient temperature to further improve The overall thermal comfort of the user.
  • the parameter can be more accurately updated by updating the thermal sensory error term and/or the desired ambient temperature error term in real time, timing or timed according to the response of the user to the thermal control strategy. It reflects the difference in thermal perception of different users in the corresponding scene mode, and meets the user's personalized thermal comfort requirements.
  • FIG. 1 is a schematic structural view of an implementation environment according to various embodiments of the present invention.
  • FIG. 2 is a block diagram showing the structure of a thermal control device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a thermal control device according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a thermal control device according to still another embodiment of the present invention.
  • FIG. 5 is a block diagram showing the structure of a thermal control device according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a thermal control system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a thermal control device according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method of a thermal control method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method of a thermal control method according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a method of a thermal control method according to still another embodiment of the present invention.
  • FIG. 11 is a flow chart of a method of a thermal control method according to still another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an implementation environment involved in various embodiments of the present invention.
  • the implementation environment may include: a terminal 120 and a temperature control device 140 . among them:
  • the terminal 120 may be a mobile terminal such as a mobile phone, a tablet computer, an e-book reader, a personal digital assistant (English: Personal Digital Assistant; PDA), a laptop portable computer, or a portable electronic device.
  • a temperature sensor may be disposed in the terminal 120 for collecting the surface temperature of the terminal contacted by the user.
  • the terminal 120 is connected to the temperature control device 140 by means of a wireless connection.
  • the wireless connection method may be an infrared connection or a wireless network connection.
  • the temperature control device 140 can be a temperature control device, such as a smart air conditioner; or a temperature control device cluster composed of a plurality of temperature control devices, such as an intelligent constant temperature system.
  • the temperature control device 140 is used to regulate the ambient temperature.
  • An environmental sensor may be disposed in the temperature control device 140, and the environmental sensor may include a temperature sensor and/or a humidity sensor.
  • the temperature sensor is used to collect the temperature of the environment in which the user is located, and the humidity sensor is used to collect the humidity of the environment in which the user is located.
  • the implementation environment may further include: a wearable device 160.
  • Wearable device 160 can be coupled to terminal 120 and/or temperature control device 140 over a wireless network.
  • the wearable device 160 can be a smart watch, a smart bracelet, a smart helmet, or the like.
  • a biosensor may be disposed in the wearable device 160.
  • the biosensor is configured to collect parameters related to physiological conditions of the user, and the biosensor may include at least one of a body temperature sensor, an electrocardiographic sensor, an electroencephalogram sensor, and a skin resistance sensor.
  • the implementation environment may further include: a server 180.
  • the server 180 can be connected to one or more of the terminal 120, the temperature control device 140, and the wearable device 160 through a wireless network.
  • the server 180 can be a server, or a server cluster consisting of several servers, or a cloud computing service center.
  • the sensors included in each of the above devices are merely exemplary. In practical applications, different sensors may be disposed in different devices according to actual needs.
  • FIG. 2 is a structural block diagram of a thermal control device according to an embodiment of the present invention.
  • the embodiment is illustrated by using the thermal control device in the implementation environment shown in FIG.
  • the thermal control device may be implemented as part or all of the terminal in the implementation environment shown in FIG. 1 by software, hardware or a combination of both.
  • the thermal control device may include a first acquisition module 210, a second acquisition module 220, and a policy execution module 230.
  • the first obtaining module 210 is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • the second obtaining module 220 is configured to obtain environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter and a user heart electrical parameter. At least one of a user's brain electrical parameter and a user skin electrical resistance parameter.
  • the policy execution module 230 is configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the hot control policy includes a terminal temperature. Control strategy and / or ambient temperature control strategy.
  • the thermal control device obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • FIG. 3 is a structural block diagram of a thermal control device according to another embodiment of the present invention.
  • the present embodiment is exemplified by the application of the thermal control device to the implementation environment shown in FIG.
  • the thermal control device may be implemented as part or all of the terminal in the implementation environment shown in FIG. 1 by software, hardware or a combination of both.
  • the thermal control device may include a first acquisition module 210, a second acquisition module 220, and a policy execution module 230.
  • the first obtaining module 210 is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • the terminal status information further includes a charging and discharging status parameter and/or a usage status parameter.
  • the second obtaining module 220 is configured to obtain environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter and a user heart electrical parameter. At least one of a user's brain electrical parameter and a user skin electrical resistance parameter.
  • the second obtaining module 220 includes: an environment obtaining submodule 220a; and/or a user obtaining submodule 220b.
  • the environment acquisition sub-module 220a is configured to acquire the environment state information by using an environment sensor, where the environment sensor is disposed in the terminal and/or the wearable device and/or the temperature control device, where the environment sensor includes at least a temperature sensor and / or humidity sensor.
  • the user acquisition sub-module 220b is configured to acquire the user status information by using a biosensor, where the biosensor includes a body temperature sensor, an electrocardiogram sensor, and an EEG sensor. At least one of skin resistance sensors.
  • the policy execution module 230 is configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the hot control policy includes a terminal temperature. Control strategy and / or ambient temperature control strategy.
  • the policy execution module 230 includes: a mode determination submodule 230a and a policy execution submodule 230b.
  • the mode determining sub-module 230a is configured to determine a scenario in which the user is located according to any one or both of the environment state information and the user state information, and the terminal state information.
  • the policy execution sub-module 230b is configured to execute a thermal control policy corresponding to the scenario mode.
  • the thermal control device obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the thermal control device provided by the embodiment further simulates the actual situation of the user from different perspectives of the terminal state, the environment state, and the user state by setting different scenario modes, understanding the user's thermal experience, and understanding the affected users.
  • the reason for thermal comfort is to facilitate the targeted selection of thermal control strategies to improve the efficiency and accuracy of thermal control.
  • the thermal control device provided by the embodiment further adjusts the temperature of the terminal through the terminal temperature control strategy, improves the local thermal comfort of the user, and balances the performance of the terminal with the thermal comfort of the user; and also controls the ambient temperature.
  • the strategy regulates the ambient temperature and further improves the overall thermal comfort of the user.
  • FIG. 4 is a structural block diagram of a thermal control device according to another embodiment of the present invention.
  • the embodiment is illustrated by using the thermal control device in the implementation environment shown in FIG.
  • the thermal control device may be implemented as part or all of the terminal in the implementation environment shown in FIG. 1 by software, hardware or a combination of both.
  • the thermal control device may include a first acquisition module 210, a second acquisition module 220, and a policy execution module 230.
  • the first obtaining module 210 is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • the terminal status information further includes a charging and discharging status parameter and/or a usage status parameter.
  • the second obtaining module 220 is configured to obtain environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter and a user heart electrical parameter. At least one of a user's brain electrical parameter and a user skin electrical resistance parameter.
  • the second obtaining module 220 includes: an environment acquiring a submodule Block 220a; and/or, user acquisition sub-module 220b.
  • the environment acquisition sub-module 220a is configured to acquire the environment state information by using an environment sensor, where the environment sensor is disposed in the terminal and/or the wearable device and/or the temperature control device, where the environment sensor includes at least a temperature sensor and / or humidity sensor.
  • the user acquisition sub-module 220b is configured to acquire the user status information by using a biosensor, where the biosensor includes a body temperature sensor, an electrocardiogram sensor, and an EEG sensor. At least one of skin resistance sensors.
  • the policy execution module 230 is configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the hot control policy includes a terminal temperature. Control strategy and / or ambient temperature control strategy.
  • the policy execution module 230 includes: a mode determination submodule 230a and a policy execution submodule 230b.
  • the mode determining sub-module 230a is configured to determine a scenario in which the user is located according to any one or both of the environment state information and the user state information, and the terminal state information.
  • the policy execution sub-module 230b is configured to execute a thermal control policy corresponding to the scenario mode.
  • the policy execution submodule 230b includes: a first calculating unit 230b1 and a first executing unit 230b2.
  • the first calculating unit 230b1 is configured to calculate, according to the terminal state information, the scenario mode, and a thermal sensation error term corresponding to the scenario mode, when the thermal control policy includes the terminal temperature control policy
  • the thermal sensation value is used to reflect the difference in thermal perception of different users in the scene mode.
  • the first executing unit 230b2 is configured to determine and execute a corresponding terminal temperature control policy according to the scene mode and the thermal sensation value.
  • the policy execution submodule 230b further includes: a first recording unit 230b3 and a first updating unit 230b4.
  • the first recording unit 230b3 is configured to record the number K of executions of the terminal temperature control policy when the scene mode is V and the thermal sensation error term corresponding to the scene mode V is ⁇ v , and In the K-th terminal temperature control strategy, the number of times K' of the terminal temperature control policy that satisfies the first predetermined condition; wherein the first predetermined condition is within a first predetermined time period after the terminal temperature control policy is effective The user generates a first predetermined reaction.
  • the first updating unit 230b4 is configured to update the thermal sensation value error term ⁇ v according to the number of times K of the terminal temperature control policy and the number K′ of the terminal temperature control policies satisfying the first predetermined condition.
  • the thermal control device obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the thermal control device provided by the embodiment further updates the thermal sensation value error term in real time, timing or irregularity according to the response of the user to the terminal temperature control strategy, so that the thermal sensation value error term can more accurately reflect different The difference in thermal perception of the user in the corresponding scene mode satisfies the user's personalized thermal comfort requirement.
  • FIG. 5 is a structural block diagram of a thermal control device according to another embodiment of the present invention.
  • the embodiment is illustrated by using the thermal control device in the implementation environment shown in FIG.
  • the thermal control device may be implemented as part or all of the terminal in the implementation environment shown in FIG. 1 by software, hardware or a combination of both.
  • the thermal control device may include a first acquisition module 210, a second acquisition module 220, and a policy execution module 230.
  • the first obtaining module 210 is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • the terminal status information further includes a charging and discharging status parameter and/or a usage status parameter.
  • the second obtaining module 220 is configured to obtain environment state information and/or user state information, where the environment state information includes at least an ambient temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter and a user heart electrical parameter. At least one of a user's brain electrical parameter and a user skin electrical resistance parameter.
  • the second obtaining module 220 includes: an environment obtaining submodule 220a; and/or a user obtaining submodule 220b.
  • the environment acquisition sub-module 220a is configured to acquire the environment state information by using an environment sensor, where the environment sensor is disposed in the terminal and/or the wearable device and/or the temperature control device, where the environment sensor includes at least a temperature sensor and / or humidity sensor.
  • a user acquisition submodule 220b configured to acquire the user status information by using a biosensor
  • the biosensor is disposed in the terminal and/or the wearable device, and the biosensor includes at least one of a body temperature sensor, an electrocardiographic sensor, an electroencephalogram sensor, and a skin resistance sensor.
  • the policy execution module 230 is configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the hot control policy includes a terminal temperature. Control strategy and / or ambient temperature control strategy.
  • the policy execution module 230 includes: a mode determination submodule 230a and a policy execution submodule 230b.
  • the mode determining sub-module 230a is configured to determine a scenario in which the user is located according to any one or both of the environment state information and the user state information, and the terminal state information.
  • the policy execution sub-module 230b is configured to execute a thermal control policy corresponding to the scenario mode.
  • the policy execution sub-module 230b includes: a second computing unit 230b5 and a second executing unit 230b6.
  • the second calculating unit 230b5 is configured to calculate, according to the terminal state information, the scenario mode, and a desired ambient temperature error term corresponding to the scenario mode, when the thermal control policy includes the ambient temperature control policy An ambient temperature is desired, the expected ambient temperature error term being used to reflect differences in the perception of ambient temperature by different users in the context mode.
  • the second execution unit 230b6 is configured to determine and execute the ambient temperature control policy according to the desired ambient temperature.
  • the policy execution submodule 230b further includes: a second recording unit 230b7 and a second updating unit 230b8.
  • the second recording unit 230b7 is configured to record the number M of executions of the ambient temperature control strategy when the context mode is V and the expected ambient temperature error term corresponding to the context mode V is ⁇ v , and In the M-th environment temperature control strategy, the number M′ of the ambient temperature control policies satisfying the second predetermined condition; wherein the second predetermined condition is within a second predetermined time period after the ambient temperature control policy is effective The user generates a second predetermined reaction.
  • the second updating unit 230b8 is configured to update the expected ambient temperature error term ⁇ v according to the number M of the ambient temperature control policy and the number M′ of the ambient temperature control policies satisfying the second predetermined condition.
  • the thermal control apparatus obtaineds the terminal status information including the terminal temperature parameter, and acquires the environmental status information and/or the user status information, and then obtains the information according to the foregoing.
  • the information related to the user's thermal experience determines and executes the thermal control strategy; solves the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; and performs effective thermal control in combination with the acquired information related to the user's thermal experience
  • the strategy reduces the impact of the heat generated by the terminal during the operation on the user and improves the user's thermal comfort.
  • the thermal control device provided by the embodiment further updates the desired ambient temperature error term in real time, timing or irregularity according to the response of the user to the environmental temperature control strategy, so that the expected environmental temperature error term can more accurately reflect different The user's perception of the ambient temperature in the corresponding scene mode satisfies the user's personalized thermal comfort requirements.
  • the thermal control device may only include a functional module for executing a terminal temperature control strategy, or may only include a functional module for executing an environmental temperature control strategy, or a functional module for performing a terminal temperature control strategy.
  • a functional module for executing an environmental temperature control strategy which is not specifically limited.
  • the thermal control device can be separately implemented by software, hardware or a combination of the two. Part or all of a device in the implementation environment shown.
  • the thermal control device can be implemented as part or all of the terminal in the implementation environment shown in FIG. 1 by software, hardware, or a combination of both.
  • the thermal control device may be implemented as part or all of two or more devices in the implementation environment shown in FIG. 1 by software, hardware, or a combination of both.
  • the functional modules are implemented as part or all of the terminal by software, hardware or a combination of the two, and another part of the functional modules are implemented as part or all of the server by software, hardware or a combination of the two.
  • different functional modules can be configured in different devices according to actual needs, and the entire thermal control scheme can be realized through interaction and cooperation between the various devices.
  • FIG. 6 is a schematic structural diagram of a thermal control system according to an embodiment of the present invention.
  • the thermal control system includes a terminal 620 and a temperature control device 640.
  • the terminal 620 is connected to the temperature control device 640 by means of a wireless connection.
  • the wireless connection method may be an infrared connection or a wireless network connection.
  • the thermal control system may further include: a wearable device 660.
  • Wearable device 660 can be coupled to terminal 620 and/or temperature control device 640 over a wireless network.
  • the thermal control system may further include: a server 680.
  • Server 680 can be coupled to one or more of terminal 620, temperature control device 640, and wearable device 660 over a wireless network.
  • the terminal 620 may include all or part of the functional modules in the thermal control device provided by the embodiment shown in FIG. 2, FIG. 3, FIG. 4 or FIG.
  • the terminal 620 includes some functional modules in the thermal control device provided by the embodiment shown in FIG. 2, FIG. 3, FIG. 4 or FIG. 5, the remaining functional modules may be integrated into the software through software, hardware or a combination of the two.
  • One or more of the control device 640, the wearable device 660, and the server 680 may be integrated into the software through software, hardware or a combination of the two.
  • the thermal control system obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • thermal control device and the system provided by the above embodiments are only exemplified by the division of the above functional modules when performing the thermal control operation. In actual applications, the functions may be assigned differently according to needs.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • thermal control device and the system provided by the foregoing embodiments are the same as the method embodiment of the thermal control method, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a thermal control device according to another embodiment of the present invention.
  • the thermal control device can be separately applied to the terminal in the implementation environment shown in FIG. 1, or can be applied to two or more devices in the implementation environment shown in FIG. 1.
  • the thermal control device 700 includes a bus 710, and a processor 720 and a memory 730 coupled to the bus 710.
  • the memory 730 is configured to store one or more instructions that are configured to be executed by the processor 720. among them:
  • the processor 720 is configured to acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • the processor 720 is further configured to acquire environment state information and/or user state information, where the environment The status information includes at least an ambient temperature parameter and/or an environmental humidity parameter, and the user status information includes at least one of a user body temperature parameter, a user ECG parameter, a user brain electrical parameter, and a user skin resistance parameter.
  • the processor 720 is further configured to determine and execute a thermal control policy according to any one or both of the environment state information and the user state information, and the terminal state information, where the hot control policy includes Terminal temperature control strategy and / or ambient temperature control strategy.
  • the thermal control device obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the terminal status information further includes a charge and discharge status parameter and/or a use status parameter.
  • the processor 720 is further configured to acquire the environmental status information by using an environmental sensor, where the environmental sensor is disposed in the terminal and/or the wearable device and/or the temperature control device, where the environmental sensor includes at least a temperature sensor And/or humidity sensor;
  • the processor 720 is further configured to acquire the user state information by using a biosensor disposed in the terminal and/or the wearable device, where the biosensor includes a body temperature sensor, an electrocardiogram sensor, and an electroencephalogram At least one of a sensor and a skin resistance sensor.
  • the processor 720 is further configured to determine, according to any one or both of the environment state information and the user state information, and the terminal state information, a scenario mode in which the user is located;
  • the processor 720 is further configured to execute a thermal control policy corresponding to the scenario mode.
  • the processor 720 is further configured to: when the thermal control policy includes the terminal temperature control policy, calculate heat according to the terminal state information, the scenario mode, and a thermal sensation error term corresponding to the scenario mode a sensation value, the thermal sensation value error term is used to reflect a difference in thermal sensation of different users in the scene mode;
  • the processor 720 is further configured to determine and execute according to the scene mode and the thermal sensation value. Corresponding terminal temperature control strategy.
  • the processor 720 is further configured to record, when the scene mode is V, and the thermal sensation error term corresponding to the scene mode V is ⁇ v , record the number K of performing the terminal temperature control strategy, and In the Kth terminal temperature control strategy, the number of times K' of the terminal temperature control policy that satisfies the first predetermined condition; wherein the first predetermined condition is that the user is within the first predetermined time period after the terminal temperature control policy is effective Generating a first predetermined reaction;
  • the processor 720 is further configured to update the thermal sensation value error term ⁇ v according to the number of times K of the terminal temperature control policy and the number K′ of the terminal temperature control policies satisfying the first predetermined condition.
  • the processor 720 is further configured to: when the thermal control policy includes the ambient temperature control policy, calculate a expectation according to the terminal state information, the scenario mode, and a desired ambient temperature error term corresponding to the scenario mode Ambient temperature, the expected ambient temperature error term is used to reflect differences in perception of ambient temperature by different users in the context mode;
  • the processor 720 is further configured to determine and execute the ambient temperature control policy according to the desired ambient temperature.
  • the processor 720 is further configured to: when the scenario mode is V and the expected ambient temperature error term corresponding to the scenario mode V is ⁇ v , record the number M of executions of the ambient temperature control policy, and In the M-th environment temperature control strategy, the number M′ of the ambient temperature control policies satisfying the second predetermined condition; wherein the second predetermined condition refers to the user within the second predetermined time period after the ambient temperature control policy is effective Generating a second predetermined reaction;
  • the processor 720 is further configured to update the expected ambient temperature error term ⁇ v according to the number M of the ambient temperature control policy and the number M′ of the ambient temperature control policies satisfying the second predetermined condition.
  • the thermal control device provided by the embodiment further simulates a situation in which the user is actually located from a different perspective of the terminal state, the environment state, and the user state by setting different scenario modes, and understands the user's thermal experience and understanding
  • the reason that affects the user's thermal comfort is to facilitate the targeted selection of thermal control strategies to improve the efficiency and accuracy of thermal control.
  • the thermal control device provided in this embodiment further controls the temperature of the terminal through the terminal temperature control strategy, thereby improving local thermal comfort, so that the performance of the terminal is compared with the thermal comfort of the user. Balance is achieved; the ambient temperature is also controlled by the ambient temperature control strategy to further improve the overall thermal comfort of the user.
  • the thermal sensation error term and/or the expected ambient temperature error term are updated in real time, timed or irregular according to the response of the user to the thermal control strategy, so that the parameter can more accurately reflect that the different users are corresponding.
  • the difference in thermal perception in the scene mode satisfies the user's personalized thermal comfort needs.
  • FIG. 8 is a flowchart of a method for controlling a thermal control method according to an embodiment of the present invention. This embodiment is exemplified by the application of the thermal control method to the implementation environment shown in FIG. 1 .
  • the thermal control method can include the following steps:
  • Step 802 Acquire terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • Step 804 Acquire environmental state information and/or user state information, where the environment state information includes at least an environmental temperature parameter and/or an environmental humidity parameter, where the user state information includes a user body temperature parameter, a user ECG parameter, a user brain electrical parameter, and a user. At least one of skin resistance parameters.
  • Step 806 Determine and execute a thermal control policy according to any one or both of the environmental state information and the user state information, and the terminal state information, where the thermal control policy includes a terminal temperature control policy and/or an ambient temperature control policy.
  • the thermal control method obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • FIG. 9 is a flowchart of a method for controlling a thermal control method according to another embodiment of the present invention.
  • the present embodiment is illustrated by using the thermal control method in the implementation environment shown in FIG. 1 .
  • the thermal control method can include the following steps:
  • Step 901 Obtain terminal state information of the terminal, where the terminal state information includes at least a terminal temperature. parameter.
  • the terminal temperature parameter may be the temperature of the terminal housing directly contacted by the user.
  • a temperature sensor may be preset in the terminal, and the temperature parameter of the terminal is collected by the temperature sensor.
  • the terminal status information includes one or more parameters for reflecting the usage of the terminal.
  • the terminal status information further includes a charging and discharging status parameter and/or a usage status parameter.
  • the charge and discharge state parameter is used to reflect whether the terminal is in a charging state or in a discharging state.
  • the usage status parameter is used to reflect the usage status of the terminal. Common usage statuses include call status, camera status, and application status.
  • the charge and discharge state parameters and the use state parameters can be obtained through relevant human-computer interaction information.
  • Step 902 Acquire environmental state information and/or user state information.
  • the environmental status information includes one or more parameters that reflect the environment in which the user is located.
  • the environmental status information includes at least an ambient temperature parameter and/or an ambient humidity parameter.
  • Environmental status information is available through environmental sensors.
  • the environmental sensor is disposed in the terminal and/or the wearable device and/or the temperature control device. When the environmental status information includes an ambient temperature parameter, the environmental sensor includes a temperature sensor; when the environmental status information includes an environmental humidity parameter, the environmental sensor includes a humidity sensor.
  • User status information includes one or more parameters that are used to reflect the user's physiology and/or activity.
  • the user status information includes at least one of a user body temperature parameter, a user heart rate parameter, a user brain electrical parameter, and a user skin resistance parameter.
  • User status information can reflect the user's thermal experience from different aspects such as user's body temperature, heartbeat, and emotion.
  • User status information is available through biosensors.
  • the biosensor is disposed in the terminal and/or the wearable device, and the biosensor includes at least one of a body temperature sensor, an electrocardiographic sensor, an electroencephalogram sensor, and a skin resistance sensor.
  • the biosensor may further include a myoelectric sensor, a blood pressure sensor, or the like.
  • user status information may be collected in conjunction with motion sensors such as gravity sensors, three-axis accelerometers, and gyroscopes.
  • the information related to the user's thermal experience involved in the above steps 901 and 902 can be collected by different devices in the implementation environment shown in FIG. 1.
  • the temperature sensor in the terminal collects the terminal temperature parameter
  • the temperature sensor in the temperature control device collects the ambient temperature parameter
  • the ECG sensor in the wearable device collects the user's ECG parameter.
  • each device sends the collected information related to the user's thermal experience to the terminal for integration.
  • the terminal acquires the information related to the user's thermal experience, and processes and analyzes the acquired information through the following steps, and then performs a reasonable thermal control strategy.
  • Step 903 according to any one or both of the environmental state information and the user state information, And the terminal status information determines the context mode in which the user is located.
  • a profile mode library may be pre-stored in the terminal, and the profile library includes multiple profiles. After obtaining the information related to the user's thermal experience, the terminal pre-processes the acquired information, and matches the corresponding scene mode from the scene pattern library according to the processing result. The scene mode simulates the actual situation of the user from the perspectives of the terminal state, the environment state and the user state, and reflects the user's thermal experience.
  • At least one classification condition may be set from a different perspective of the terminal state, the environmental state, and the user state.
  • a classification condition for distinguishing the state of charge and discharge of the terminal a classification condition for distinguishing the state of use of the terminal, and a classification condition for distinguishing the ambient temperature
  • the environment may be set for distinguishing the environment.
  • the classification condition of the humidity; for the user state, a classification condition for distinguishing the user's body temperature state, a classification condition for distinguishing the user's heart rate state, a classification condition for distinguishing the user's emotional state, and the like may be set.
  • the acquired information includes: a charge and discharge state parameter, a use state parameter, and a user ECG parameter as an example.
  • the terminal preprocesses the above parameters to obtain three classification conditions. specific:
  • the first classification condition is used to distinguish the state of charge and discharge of the terminal.
  • the first classification condition is that the terminal is in a charging state or a discharging state.
  • the heating condition of the terminal is more obvious.
  • the charging and discharging state of the terminal is used as a classification condition for distinguishing different scene modes, which can more intuitively reflect the cause of the heat generated by the terminal and the characteristics of the scene mode, so as to select and execute the heat control strategy in a targeted manner in the subsequent process.
  • the second classification condition is used to distinguish the terminal usage status.
  • the second classification condition is that the terminal is in a call state, uses a camera state, or uses an application state.
  • the above three usage states are three common usage states of the terminal.
  • the use of the camera state means that the camera is being used for taking pictures or taking pictures.
  • the applications involved in using the application state can be any application installed in the terminal, including but not limited to browsers, email, instant messaging services, word processing, keyboard virtualization, widgets, encryption, digital rights management, Speech recognition, voice copying, positioning, audio and video playback, etc.
  • Using the use status of the terminal as a classification condition for distinguishing different scene modes can more intuitively reflect the cause of the heat generated by the terminal and the characteristics of the scene mode, so as to select and execute the heat control strategy in a targeted manner in the subsequent process.
  • this embodiment is divided into a call state, a camera state, and a use only by the state of use of the terminal.
  • An example is given in the application state three.
  • the usage status may be divided into different numbers and different types according to actual conditions, which is not specifically limited in this embodiment.
  • the third classification condition is used to distinguish the user status.
  • User status can be reflected in different aspects such as user's body temperature, heartbeat, and emotion.
  • the user ECG parameter may be processed as follows to determine a third classification condition: the time interval between adjacent sinus beats in different time periods is extracted according to the user's ECG parameter; Calculating the rate of change of the standard deviation according to the standard deviation of the time interval; determining the third classification condition according to the relationship between the rate of change of the standard deviation and the threshold of the rate of change, the third classification condition is that the rate of change of the standard deviation is greater than the threshold of the rate of change or the standard The rate of change of the difference is less than the rate of change threshold.
  • the terminal acquires the user's ECG parameters within the last 10 minutes.
  • the time interval between adjacent sinus beats in the first period consisting of the first five minutes is detected from the user's ECG parameters in the last 10 minutes, and between the adjacent sinus beats in the second period consisting of the last 5 minutes. time interval.
  • the standard deviation x 1 of the time interval in the first time period and the standard deviation x 2 of the time interval in the second time period are respectively calculated.
  • N ⁇ 1 and n is an integer.
  • the rate of change ⁇ of the standard deviation is calculated.
  • the magnitude relationship between the rate of change ⁇ of the standard deviation and the rate of change threshold ⁇ 0 is determined, and the rate of change threshold ⁇ 0 is a predetermined empirical value, such as 0.1.
  • the user status information is a user's brain electrical parameter
  • the user's brain electrical parameter may be processed and identified, and a third classification condition related to the user's emotion may be determined accordingly.
  • the user's thermal experience can be reflected by the user's body temperature condition, the user's heart rate change or the user's emotion change, so as to select more accurately and effectively in the subsequent process. And implement a thermal control strategy.
  • the profile mode library may include 12 scene modes as shown in Table-1 below:
  • a scene pattern matching each classification condition is matched from the scene pattern library.
  • the first classification condition is the charging state
  • the second classification condition is the call state
  • the third classification condition is ⁇ > ⁇ 0
  • the scene mode that satisfies the above three classification conditions is the scene mode 1.
  • the scene mode is the scene mode 1
  • the terminal has a fever due to charging and talking, which affects the user's thermal comfort
  • the user's heart rate changes are more obvious, indicating that the terminal fever is also more obvious.
  • Step 904 executing a thermal control policy corresponding to the scenario mode, the thermal control strategy including a terminal temperature control policy and/or an ambient temperature control strategy.
  • the terminal temperature control strategy is used to regulate the terminal temperature.
  • the user's local thermal comfort can be improved, that is, the thermal comfort of the hand and the skin directly contacted by the user and the terminal can be improved, and the user can avoid thermal pain during the process of using the terminal.
  • the ambient temperature control strategy is used to regulate the ambient temperature. By regulating the ambient temperature, the overall thermal comfort of the user can be improved, allowing the user to use the terminal in a more suitable environment.
  • the terminal temperature control strategy is to perform one or more of the following operations on the terminal: 1. lowering the screen brightness; 2. limiting the charging current; 3. cleaning the background process; 4. processor limit/limitation; 5 , stop the data service; 6, power back; 7, turn off the image optimization function; 8, turn off the flash; 9, drop frame; 10, high temperature prompt; 11, off screen.
  • the terminal temperature control strategy of the above-mentioned serial number 6 refers to reducing the transmission power of the radio frequency circuit used for communication; for the terminal temperature control strategy of the above sequence number 9, it is to reduce the screen switching during video or game. frequency.
  • the terminal temperature control policy corresponding to the scenario mode 1 may include the terminal temperature control policies of the above-mentioned serial numbers 1, 2, 3, 4, 5, 10, and 11; for example, the terminal corresponding to the scenario mode 3
  • the temperature control strategy may include the terminal temperature control strategies of the above-mentioned serial numbers 1, 2, 3, 4, 7, 8, 10, and 11.
  • the ambient temperature control strategy refers to regulating the temperature of the environment in which the user is located through the temperature control device.
  • the terminal can calculate the desired ambient temperature based on the terminal temperature parameter and the context mode, and then control the temperature control device to adjust the ambient temperature to the desired ambient temperature.
  • steps 901 to 904 may be separately performed by the terminal in the implementation environment shown in FIG. 1, or may be separately performed by the temperature control device, the wearable device, or the server in the implementation environment shown in FIG. It can be performed by two or more devices in the implementation environment shown in FIG.
  • This embodiment is exemplified by the terminal in the implementation environment shown in FIG. 1 by the above steps 901 to 904, which is not specifically limited.
  • the thermal control method obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the thermal control method provided by the embodiment further simulates the actual situation of the user from different perspectives of the terminal state, the environment state, and the user state by setting different scenario modes, understanding the user's thermal experience, and understanding the affected users.
  • the reason for thermal comfort is to facilitate the targeted selection of thermal control strategies to improve the efficiency and accuracy of thermal control.
  • the thermal control method provided by the embodiment further controls the terminal temperature through the terminal temperature control strategy, improves the local thermal comfort, and balances the performance of the terminal with the local thermal comfort of the user;
  • the strategy regulates the ambient temperature and further improves the overall thermal comfort of the user.
  • the determination process of the terminal temperature control strategy and the determination process of the environmental temperature control strategy will be introduced and illustrated by the two embodiments of FIG. 10 and FIG. 11 respectively.
  • the determination process of the terminal temperature control strategy is first introduced.
  • FIG. 10 is a flowchart of a method for controlling a thermal control method according to another embodiment of the present invention.
  • the present embodiment is illustrated by using the thermal control method in the implementation environment shown in FIG.
  • the thermal control method can include the following steps:
  • Step 1001 Obtain terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • Step 1002 Acquire environmental state information and/or user state information.
  • the environmental status information includes at least an ambient temperature parameter and/or an ambient humidity parameter.
  • the user status information includes at least one of a user body temperature parameter, a user ECG parameter, a user brain electrical parameter, and a user skin resistance parameter.
  • Step 1003 Determine a scenario in which the user is located according to any one or both of the environmental state information and the user state information, and the terminal state information.
  • steps 1001 to 1003 are the same as or similar to the steps 901 to 903 in the embodiment shown in FIG. 9. For details, refer to the description and description in the embodiment shown in FIG. After the scenario mode is determined according to the obtained information related to the user's thermal experience, the corresponding terminal temperature control policy is determined by the following steps 1004 to 1005.
  • Step 1004 When the thermal control strategy includes the terminal temperature control policy, calculate the thermal sensation value according to the terminal state information, the scene mode, and the thermal sensation value error term corresponding to the scene mode.
  • the thermal sensation error item is used to reflect the difference in thermal perception of different users in the scene mode.
  • the initial value of the thermal sensation value error term corresponding to the scene mode may be preset to zero.
  • the thermal sensation error term can be dynamically adjusted according to the user's response to the terminal temperature control strategy in the subsequent process to meet the user's personalized thermal comfort requirements.
  • the thermal experience value T can be calculated by the first custom algorithm g ( ⁇ ):
  • T g ( ⁇ ) + ⁇ v ;
  • g( ⁇ ) represents the first custom algorithm formulated according to the terminal state information and the scene mode V
  • ⁇ v represents the thermal sensation value error term corresponding to the scene mode V
  • the thermal sensation value error term ⁇ v is used to reflect different users The difference in thermal perception in scenario mode V.
  • the first custom algorithm g( ⁇ ) may include the following possible situations:
  • the first custom algorithm g( ⁇ ) is:
  • g( ⁇ ) g(x,y,m v );
  • the terminal temperature parameter x is positively correlated with the thermal sensing value T;
  • the ambient temperature parameter y is positively correlated with the thermal sensing value T;
  • m v represents the scenario factor corresponding to the scene mode V, and the scenario factor m v and the thermal sensing value T are positive relationship.
  • the scenario factor m v corresponding to the scenario mode V is a preset empirical value. Different scenarios correspond to different scenario factors. For example, the scenario factor m 1 corresponding to the scenario mode 1 can be preset to 1.1.
  • the first custom algorithm g( ⁇ ) is:
  • ⁇ (y) represents the influence function of the ambient temperature parameter y on the thermal susceptibility value T
  • y min represents the influence function of the ambient temperature parameter y on the thermal susceptibility value T
  • y max represents the upper limit of the ambient temperature regulatable range
  • y min represents the lower limit of the ambient temperature regulatable range.
  • the first custom algorithm g( ⁇ ) is:
  • g( ⁇ ) g(x,y,z,m v );
  • the terminal temperature parameter x is positively correlated with the thermal sensation value T
  • the environmental temperature parameter y is positively correlated with the thermal sensation value T
  • the environmental humidity parameter z is positively correlated with the thermal sensation value T
  • the scenario factor m v and the thermal sensation value T Positive correlation.
  • the first custom algorithm g( ⁇ ) is:
  • ⁇ (y) represents the influence function of the ambient temperature parameter y on the thermal susceptibility value T
  • y min ⁇ y ⁇ y max
  • y>y max When y ⁇ y min ,
  • y 0 represents the reference ambient temperature
  • y max represents the upper limit of the ambient temperature regulatable range
  • y min represents the lower limit of the ambient temperature regulatable range.
  • the terminal temperature parameter x is positively correlated with the thermal susceptibility value T; when y min ⁇ y ⁇ y max , the ambient temperature parameter y is positively correlated with the thermal sensation value T When z min ⁇ z ⁇ z max , the environmental humidity parameter z is positively correlated with the thermal sensation value T; different scene modes V affect the value of the thermal sensation value T by its corresponding scene factor m v .
  • the first custom algorithm g( ⁇ ) is:
  • g( ⁇ ) g(x,y,w,m v );
  • the terminal temperature parameter x is positively correlated with the thermal sensation value T
  • the environmental temperature parameter y is positively correlated with the thermal sensation value T
  • the user body temperature parameter w is positively correlated with the thermal sensation value T
  • the scenario factor m v and the thermal sensation value T Positive correlation.
  • the first custom algorithm g( ⁇ ) is:
  • the terminal temperature parameter x is positively correlated with the thermal susceptibility value T; when y min ⁇ y ⁇ y max , the ambient temperature parameter y is positively correlated with the thermal sensation value T When w min ⁇ w ⁇ w max , the user body temperature parameter w is positively correlated with the thermal sensation value T; different scene modes V affect the value of the thermal sensation value T by their corresponding different scene factors ⁇ v .
  • Step 1005 Determine and execute a corresponding terminal temperature control strategy according to the scene mode and the thermal experience value.
  • the terminal temperature control strategy corresponding to the scene mode V and the thermal sensation value T is determined and executed.
  • the terminal temperature control strategy is used to regulate the terminal temperature of the terminal.
  • the terminal temperature control strategy is to perform one or more of the following operations on the terminal: 1. lowering the screen brightness; 2. limiting the charging current; 3. cleaning the background process; 4. processor limit/limitation; 5 , stop the data service; 6, power back; 7, turn off the image optimization function; 8, turn off the flash; 9, drop frame; 10, high temperature prompt; 11, off screen.
  • the step may include the following sub-steps:
  • the terminal temperature control strategy corresponding to the interval in which the thermal experience value T is located is selected according to the terminal temperature control correspondence relationship.
  • the terminal temperature control correspondence relationship includes a correspondence between intervals in which different thermal sensation values are located and different terminal temperature control strategies.
  • the correspondence between the terminal temperature control corresponding to the scenario mode 1 can be as shown in the following Table-2:
  • the thermal control method provided by the embodiment may further update the thermal sensing value error term in real time, timing or irregular according to the response of the user to the terminal temperature control strategy, so that the thermal sensing value is obtained.
  • the error term can more accurately reflect the difference in thermal perception of different users in the corresponding scene mode.
  • the thermal control method provided in this embodiment may further include the following steps 1006 and 1007:
  • Step 1006 When the scene mode is V and the thermal sensation error term corresponding to the scene mode V is ⁇ v , the number K of performing the terminal temperature control strategy is recorded, and in the K-th terminal temperature control strategy, the first predetermined condition is satisfied.
  • the number of times the terminal temperature control strategy is K'.
  • the first predetermined condition is that the user generates the first predetermined reaction within the first predetermined time period after the terminal temperature control policy is valid.
  • the first predetermined duration is a preset empirical value, such as 3 minutes.
  • the first predetermined reaction includes, but is not limited to, one or more of the following situations: 1. The user changes the holding manner of the terminal; 2. The user stops using the terminal; 3. The user's heart rate increases beyond a preset heart rate increasing threshold.
  • the value of the thermal sensation error term ⁇ v can be appropriately adjusted, so that the thermal sensation error term ⁇ v can more accurately reflect the user's thermal experience.
  • Step 1007 The thermal sensation value error term ⁇ v is updated according to the number of times K of the terminal temperature control policy and the number of times K' of the terminal temperature control strategy satisfying the first predetermined condition.
  • the thermal susceptibility error term ⁇ v can be updated by the following formula:
  • K represents the number of terminal temperature control strategies
  • K' represents the number of terminal temperature control strategies that satisfy the first predetermined condition
  • ⁇ v ' represents the updated thermal sensation error term
  • ⁇ v represents the thermal sensation error before updating Item
  • ⁇ T is a constant.
  • the thermal sensory error term ⁇ v can more accurately reflect different The difference in thermal perception of the user in the corresponding scene mode V satisfies the personalized thermal comfort requirement of the user.
  • the above steps 1001 to 1007 may be performed by the terminal in the implementation environment shown in FIG. 1 separately, or may be separately performed by the temperature control device, the wearable device or the server in the implementation environment shown in FIG. It can be performed by two or more devices in the implementation environment shown in FIG.
  • the above steps 1001 to 1006 may be performed by the terminal.
  • the terminal After the terminal records the parameters K and K', the parameters K and K' are sent to the server in real time, periodically or irregularly, and the server executes step 1007 to complete the heat.
  • the update of the error value term ⁇ v is sensed, and the updated thermal sensation error term is fed back to the terminal.
  • the thermal control method obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the thermal control method provided by the embodiment further updates the thermal sensation error term in real time, timing or irregularity according to the response of the user to the terminal temperature control strategy, so that the thermal sensation error term can more accurately reflect different The difference in thermal perception of the user in the corresponding scene mode satisfies the user's personalized thermal comfort requirement.
  • FIG. 11 is a flowchart of a method for controlling a thermal control method according to another embodiment of the present invention.
  • the present embodiment is described by using the thermal control method in the implementation environment shown in FIG. 1 .
  • the thermal control method can include the following steps:
  • Step 1101 Obtain terminal state information of the terminal, where the terminal state information includes at least a terminal temperature parameter.
  • Step 1102 Acquire environmental state information and/or user state information.
  • the environmental status information includes at least an ambient temperature parameter and/or an ambient humidity parameter.
  • the user status information includes at least one of a user body temperature parameter, a user ECG parameter, a user brain electrical parameter, and a user skin resistance parameter.
  • Step 1103 Determine a scenario in which the user is located according to any one or both of the environmental state information and the user state information, and the terminal state information.
  • steps 1101 to 1103 are the same as or similar to the steps 901 to 903 in the embodiment shown in FIG. 9. For details, refer to the description and description in the embodiment shown in FIG. After determining the scenario according to the acquired information related to the user's thermal experience, the corresponding ambient temperature control strategy is determined by the following steps 1104 to 1105.
  • Step 1104 When the thermal control strategy includes an ambient temperature control strategy, calculate a desired ambient temperature based on the terminal status information, the context mode, and a desired ambient temperature error term corresponding to the context mode.
  • the initial value of the desired ambient temperature error term corresponding to the scene mode may be preset to zero.
  • the expected ambient temperature error term can be dynamically adjusted in the subsequent process according to the user's response to the ambient temperature control strategy to meet the user's personalized thermal comfort requirements.
  • the desired ambient temperature E can be calculated by the second custom algorithm h( ⁇ ):
  • h( ⁇ ) represents a second custom algorithm formulated according to the terminal state information and the scene mode V
  • ⁇ v represents a desired ambient temperature error term corresponding to the scene mode V
  • the expected ambient temperature error term ⁇ v is used to reflect different users The difference in perception of ambient temperature in scenario mode V.
  • the second custom algorithm h( ⁇ ) also has various calculation methods. In a possible calculation manner, it is assumed that the scene mode determined in the above step 1103 is V, and the second custom algorithm h( ⁇ ) is:
  • the terminal temperature parameter x is positively correlated with the desired ambient temperature E;
  • m v represents a scenario factor corresponding to the scenario mode V, and the scenario factor m v is positively correlated with the desired ambient temperature E.
  • the scenario factor m v corresponding to the scenario mode V is a preset empirical value. Different scenarios correspond to different scenario factors. For example, the scenario factor m 1 corresponding to the scenario mode 1 can be preset to 1.1.
  • step 1104 the following steps may also be performed:
  • the preset reference ambient temperature is taken as the desired ambient temperature E.
  • the ambient temperature can be adjusted within a more reasonable range, and is not affected by the terminal temperature parameter too much, and the ambient temperature is regulated too high or too Low, it is possible to maintain the ambient temperature in a range that makes the user feel comfortable.
  • the desired ambient temperature E can be determined by:
  • the magnitude relationship between the product x ⁇ m v of the scenario factor m v corresponding to the terminal temperature parameter x and the scenario mode V and the predetermined threshold X is compared; if x ⁇ m v ⁇ X, the desired environment is calculated by the following formula Temperature E: If x ⁇ m v ⁇ X, the preset reference ambient temperature y 0 is taken as the desired ambient temperature E.
  • y 0 represents the reference ambient temperature
  • y min represents the lower limit of the ambient temperature regulatable range
  • ⁇ v represents the desired ambient temperature error term corresponding to the context mode V
  • is a constant and ⁇ > 0.
  • Step 1105 determining and executing an ambient temperature control strategy based on the desired ambient temperature.
  • the ambient temperature control strategy is used to regulate the ambient temperature.
  • the target of the ambient temperature can be referenced to the calculated desired ambient temperature.
  • the overall thermal comfort of the user can be improved, allowing the user to use the terminal in a more suitable environment.
  • the terminal wirelessly transmits a desired ambient temperature or a control command corresponding to the desired ambient temperature to the temperature control device; correspondingly, after receiving the information sent by the terminal, the temperature control device receives the information according to the receiving The information obtained regulates the ambient temperature to the desired ambient temperature.
  • the thermal control method provided by the embodiment may further update the desired ambient temperature error term in real time, timing or irregular according to the response of the user to the ambient temperature control strategy, so that the desired ambient temperature is obtained.
  • the error term can more accurately reflect the difference in perception of ambient temperature between different users in the corresponding scene mode.
  • the thermal control method provided in this embodiment may further include the following steps 1006 and 1007:
  • Step 1106 when the scene mode is V and the expected ambient temperature error term corresponding to the scene mode V is ⁇ v , the number M of executing the ambient temperature control strategy is recorded, and in the M ambient temperature control strategy, the second predetermined condition is satisfied.
  • the number of times the ambient temperature control strategy is M'.
  • the second predetermined condition is that the user generates a second predetermined reaction within a second predetermined time period after the ambient temperature control policy is in effect.
  • the second predetermined reaction is that the user manually re-adjusts the ambient temperature.
  • the second predetermined duration is a predetermined empirical value, such as 5 minutes.
  • the ambient temperature control strategy when the second predetermined reaction is generated, it indicates that the user is not satisfied with the ambient temperature that is automatically adjusted according to the desired ambient temperature.
  • the expected ambient temperature error term may be appropriately adjusted to ⁇ v The value is such that the desired ambient temperature error term [mu] v more accurately reflects the user's environmental temperature requirements so that the desired ambient temperature calculated in subsequent processes is more in line with the user's individual needs.
  • Step 1107 depending on the ambient temperature conditions of ambient temperature a second predetermined number M and the control strategy to meet the control policy number M 'in a desired ambient temperature update error term ⁇ v.
  • the step may include the following two sub-steps:
  • the desired ambient temperature corresponding to the manual regulation and the regulated ambient temperature corresponding to the manual regulation are recorded.
  • ⁇ v ' represents the updated expected ambient temperature error term
  • ⁇ v denotes the expected ambient temperature error term before the update
  • E i denotes the desired ambient temperature corresponding to the i-th manual regulation
  • E i ' denotes the i-th manual regulation
  • Corresponding regulated ambient temperature, i ⁇ [1, M'] and i is an integer.
  • the user for the reaction temperature control strategy learns the user's habits, and dynamically adjusts the desired value of the error term ⁇ v ambient temperature according to the user's habits, such that a desired error term ⁇ v ambient temperature can be more accurately reflect the different
  • the user's perception of the ambient temperature in the corresponding scene mode V satisfies the user's personalized thermal comfort requirements.
  • steps 1101 to 1107 may be separately performed by the terminal in the implementation environment shown in FIG. 1, or may be separately performed by the temperature control device, the wearable device or the server in the implementation environment shown in FIG. It can be performed by two or more devices in the implementation environment shown in FIG.
  • the above steps 1101 to 1104 are performed by the terminal, and the step 1105 is performed by the terminal and the temperature control device.
  • Step 1106 and step 1107 are performed by the terminal and the server.
  • the data storage capability and the data processing capability of each device may be assigned to different devices according to different steps, which is not specifically limited in this embodiment.
  • the thermal control method obtains the terminal state information including the terminal temperature parameter, and acquires the environment state information and/or the user state information, and further obtains the information related to the user's thermal experience according to the foregoing. Determining and executing the thermal control strategy; solving the problem that the heat generated by the terminal during the operation affects the user's thermal comfort; combining the acquired information related to the user's thermal experience to implement an effective thermal control strategy, reducing the terminal's operation The heat generated in the process affects the user and improves the user's thermal comfort.
  • the thermal control method provided by the embodiment further controls the policy according to the user according to the ambient temperature. Slight reaction, real-time, timing or irregular update of the expected ambient temperature error term, so that the expected ambient temperature error term can more accurately reflect the different user perceptions of the ambient temperature in the corresponding context mode, satisfying the user's personalization Thermal comfort needs.
  • the terminal temperature control strategy may be separately executed, or the ambient temperature control strategy may be separately executed, or the terminal temperature control strategy and the ambient temperature control strategy may be executed at the same time, which is not specifically limited in this embodiment.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Air Conditioning Control Device (AREA)
  • Telephone Function (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种热控制装置和方法,所述方法包括:获取终端(120)的终端状态信息,终端状态信息至少包括终端温度参数;获取环境状态信息和/或用户状态信息,环境状态信息至少包括环境温度参数和/或环境湿度参数,用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;根据环境状态信息和用户状态信息中的任意一项或全部两项,以及终端状态信息确定并执行热控制策略。解决了终端(120)在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端(120)在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。

Description

热控制装置和方法 技术领域
本发明涉及计算机及互联网技术领域,特别涉及一种热控制装置和方法。
背景技术
诸如智能手机、平板电脑和多媒体播放器这类终端在人们的日常工作和生活中已经起到了越来越重要的作用。
为了满足用户不断提升的需求,设计者对终端的性能和结构都做了很大的改进。在性能方面,终端的计算处理能力越来越强,所支持的功能也越来越多。在结构方面,终端的机身设计越来越纤薄化,使得终端更加轻便。
在实现本发明的过程中,发明人发现上述技术至少存在以下问题:由于终端在运行过程中其内部的一些组件会产生热量,这些热量将会通过与用户直接接触的机身外壳传递给用户,影响用户的热舒适度。
发明内容
为了解决终端在运行过程中产生的热量影响用户热舒适度的问题,本发明实施例提供了一种热控制装置和方法。所述技术方案如下:
第一方面,提供了一种热控制装置,所述装置包括:
第一获取模块,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
第二获取模块,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
策略执行模块,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
在第一方面的第一种可能的实施方式中,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
结合第一方面,在第一方面的第二种可能的实施方式中,所述第二获取模块,包括:
环境获取子模块,用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
和/或,
用户获取子模块,用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
结合第一方面、第一方面的第一种可能的实施方式或者第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,所述策略执行模块,包括:模式确定子模块和策略执行子模块;
所述模式确定子模块,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
所述策略执行子模块,用于执行与所述情景模式对应的热控制策略。
结合第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,所述策略执行子模块,包括:第一计算单元和第一执行单元;
所述第一计算单元,用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
所述第一执行单元,用于根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述策略执行子模块,还包括:第一记录单元和第一更新单元;
所述第一记录单元,用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
所述第一更新单元,用于根据所述终端温度控制策略的次数K和所述满足 第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
结合第一方面的第三种可能的实施方式,在第一方面的第六种可能的实施方式中,所述策略执行子模块,包括:第二计算单元和第二执行单元;
所述第二计算单元,用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
所述第二执行单元,用于根据所述期望环境温度确定并执行所述环境温度控制策略。
结合第一方面的第六种可能的实施方式,在第一方面的第七种可能的实施方式中,所述策略执行子模块,还包括:第二记录单元和第二更新单元;
所述第二记录单元,用于当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
所述第二更新单元,用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
第二方面,提供了一种热控制装置,所述装置包括:总线,以及连接到所述总线的处理器和存储器,其中,所述存储器用于存储一个或者一个以上的指令,所述指令被配置成由所述处理器执行;
所述处理器,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
所述处理器,还用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
所述处理器,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
在第二方面的第一种可能的实施方式中,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
结合第二方面,在第二方面的第二种可能的实施方式中,
所述处理器,还用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
和/或,
所述处理器,还用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
结合第二方面、第二方面的第一种可能的实施方式或者第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,
所述处理器,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
所述处理器,还用于执行与所述情景模式对应的热控制策略。
结合第二方面的第三种可能的实施方式,在第二方面的第四种可能的实施方式中,
所述处理器,还用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
所述处理器,还用于根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
结合第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式中,
所述处理器,还用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
所述处理器,还用于根据所述终端温度控制策略的次数K和所述满足第一 预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
结合第二方面的第三种可能的实施方式,在第二方面的第六种可能的实施方式中,
所述处理器,还用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
所述处理器,还用于根据所述期望环境温度确定并执行所述环境温度控制策略。
结合第二方面的第六种可能的实施方式,在第二方面的第七种可能的实施方式中,
所述处理器,还用于当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
所述处理器,还用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
第三方面,提供了一种热控制方法,所述方法包括:
获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
在第三方面的第一种可能的实施方式中,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
结合第三方面,在第三方面的第二种可能的实施方式中,所述获取环境状态信息和/或用户状态信息,包括:
通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
和/或,
通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
结合第三方面、第三方面的第一种可能的实施方式或者第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,所述根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,包括:
根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
执行与所述情景模式对应的热控制策略。
结合第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,所述执行与所述情景模式对应的热控制策略包括:
当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
结合第三方面的第四种可能的实施方式,在第三方面的第五种可能的实施方式中,所述方法还包括:
当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
结合第三方面的第三种可能的实施方式,在第三方面的第六种可能的实施 方式中,所述执行与所述情景模式对应的热控制策略,包括:
当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
根据所述期望环境温度确定并执行所述环境温度控制策略。
结合第三方面的第六种可能的实施方式,在第三方面的第七种可能的实施方式中,所述方法还包括:
当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
本发明实施例提供的技术方案的有益效果可以包括:
通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
可选的,还通过设定不同的情景模式,从终端状态、环境状态和用户状态不同的角度模拟用户实际所处的情境,了解用户的热感受,以及了解影响用户热舒适度的原因,有利于有针对性地选取热控制策略,提高热控制效率和准确度。
可选的,还通过终端温度控制策略调控终端温度,提高用户局部的热舒适度,使得终端的性能与用户局部的热舒适度之间达到平衡;还通过环境温度控制策略调控环境温度,进一步提高了用户整体的热舒适度。
可选的,还通过根据用户针对热控制策略的反应,实时、定时或不定时地更新热感受值误差项和/或期望环境温度误差项,使得上述参数能够更为精确地 反映不同用户在对应情景模式下的热感受差异,满足了用户的个性化热舒适需求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明各个实施例所涉及的一种实施环境的结构示意图;
图2是本发明一个实施例提供的热控制装置的结构方框图;
图3是本发明另一实施例提供的热控制装置的结构方框图;
图4是本发明再一实施例提供的热控制装置的结构方框图;
图5是本发明还一实施例提供的热控制装置的结构方框图;
图6是本发明一个实施例提供的热控制系统的结构示意图;
图7是本发明又一实施例提供的热控制装置的结构示意图;
图8是本发明一个实施例提供的热控制方法的方法流程图;
图9是本发明另一实施例提供的热控制方法的方法流程图;
图10是本发明再一实施例提供的热控制方法的方法流程图;
图11是本发明还一实施例提供的热控制方法的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图1,其示出了本发明各个实施例所涉及的一种实施环境的结构示意图,该实施环境可以包括:终端120和温控设备140。其中:
终端120可以是手机、平板电脑、电子书阅读器、个人数字助理(英文:Personal Digital Assistant;简称:PDA)、膝上型便携计算机等移动终端或者便携式电子设备。终端120中可设置有温度传感器,用于采集用户接触的终端表面温度。
终端120通过无线连接方式与温控设备140相连。该无线连接方式可以是红外线连接,也可以是无线网络连接。
温控设备140可以是一台温控设备,比如智能空调;也可以是多台温控设备组成的温控设备集群,比如智能恒温系统。温控设备140用于调节环境温度。温控设备140中可设置有环境传感器,该环境传感器可以包括温度传感器和/或湿度传感器。其中,温度传感器用于采集用户所处环境的温度,湿度传感器用于采集用户所处环境的湿度。
可选的,该实施环境还可以包括:可穿戴设备160。
可穿戴设备160可以通过无线网络与终端120和/或温控设备140相连。可穿戴设备160可以是智能手表、智能手环、智能头盔等。可穿戴设备160中可设置有生物传感器。生物传感器用于采集与用户生理相关的参数,生物传感器可以包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
可选的,该实施环境还可以包括:服务器180。
服务器180可以通过无线网络与终端120、温控设备140和可穿戴设备160中的一种或者多种相连。服务器180可以是一台服务器,或者由若干台服务器组成的服务器集群,或者是一个云计算服务中心。
另外,上述各设备中包含的传感器仅是示例性的,在实际应用中,可根据实际需求将不同的传感器设置于不同的设备中。
请参考图2,其示出了本发明一个实施例提供的热控制装置的结构方框图,本实施例以该热控制装置应用于图1所示实施环境中进行举例说明。在一种可能的实施方式中,该热控制装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端的部分或者全部。该热控制装置可以包括:第一获取模块210、第二获取模块220和策略执行模块230。
第一获取模块210,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数。
第二获取模块220,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
策略执行模块230,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
综上所述,本实施例提供的热控制装置,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
请参考图3,其示出了本发明另一实施例提供的热控制装置的结构方框图,本实施例以该热控制装置应用于图1所示实施环境中进行举例说明。在一种可能的实施方式中,该热控制装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端的部分或者全部。该热控制装置可以包括:第一获取模块210、第二获取模块220和策略执行模块230。
第一获取模块210,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数。
可选的,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
第二获取模块220,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
在一种可能的实现方式中,所述第二获取模块220,包括:环境获取子模块220a;和/或,用户获取子模块220b。
环境获取子模块220a,用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器。
用户获取子模块220b,用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
策略执行模块230,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
具体来讲,所述策略执行模块230,包括:模式确定子模块230a和策略执行子模块230b。
所述模式确定子模块230a,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式。
所述策略执行子模块230b,用于执行与所述情景模式对应的热控制策略。
综上所述,本实施例提供的热控制装置,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制装置,还通过设定不同的情景模式,从终端状态、环境状态和用户状态不同的角度模拟用户实际所处的情境,了解用户的热感受,以及了解影响用户热舒适度的原因,有利于有针对性地选取热控制策略,提高热控制效率和准确度。
另外,本实施例提供的热控制装置,还通过终端温度控制策略调控终端温度,提高用户局部的热舒适度,使得终端的性能与用户局部的热舒适度之间达到平衡;还通过环境温度控制策略调控环境温度,进一步提高了用户整体的热舒适度。
请参考图4,其示出了本发明再一实施例提供的热控制装置的结构方框图,本实施例以该热控制装置应用于图1所示实施环境中进行举例说明。在一种可能的实施方式中,该热控制装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端的部分或者全部。该热控制装置可以包括:第一获取模块210、第二获取模块220和策略执行模块230。
第一获取模块210,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数。
可选的,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
第二获取模块220,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
在一种可能的实现方式中,所述第二获取模块220,包括:环境获取子模 块220a;和/或,用户获取子模块220b。
环境获取子模块220a,用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器。
用户获取子模块220b,用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
策略执行模块230,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
具体来讲,所述策略执行模块230,包括:模式确定子模块230a和策略执行子模块230b。
所述模式确定子模块230a,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式。
所述策略执行子模块230b,用于执行与所述情景模式对应的热控制策略。
在一种可能的实施方式中,所述策略执行子模块230b,包括:第一计算单元230b1和第一执行单元230b2。
所述第一计算单元230b1,用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异。
所述第一执行单元230b2,用于根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
可选的,所述策略执行子模块230b,还包括:第一记录单元230b3和第一更新单元230b4。
所述第一记录单元230b3,用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应。
所述第一更新单元230b4,用于根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
综上所述,本实施例提供的热控制装置,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制装置,还通过根据用户针对终端温度控制策略的反应,实时、定时或不定时地更新热感受值误差项,使得热感受值误差项能够更为精确地反映不同用户在对应情景模式下的热感受差异,满足了用户的个性化热舒适需求。
请参考图5,其示出了本发明还一实施例提供的热控制装置的结构方框图,本实施例以该热控制装置应用于图1所示实施环境中进行举例说明。在一种可能的实施方式中,该热控制装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端的部分或者全部。该热控制装置可以包括:第一获取模块210、第二获取模块220和策略执行模块230。
第一获取模块210,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数。
可选的,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
第二获取模块220,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
在一种可能的实现方式中,所述第二获取模块220,包括:环境获取子模块220a;和/或,用户获取子模块220b。
环境获取子模块220a,用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器。
用户获取子模块220b,用于通过生物传感器获取所述用户状态信息,所述 生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
策略执行模块230,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
具体来讲,所述策略执行模块230,包括:模式确定子模块230a和策略执行子模块230b。
所述模式确定子模块230a,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式。
所述策略执行子模块230b,用于执行与所述情景模式对应的热控制策略。
与图4所示实施例不同的是,在另一种可能的实施方式中,所述策略执行子模块230b,包括:第二计算单元230b5和第二执行单元230b6。
所述第二计算单元230b5,用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异。
所述第二执行单元230b6,用于根据所述期望环境温度确定并执行所述环境温度控制策略。
可选的,所述策略执行子模块230b,还包括:第二记录单元230b7和第二更新单元230b8。
所述第二记录单元230b7,用于当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应。
所述第二更新单元230b8,用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
综上所述,本实施例提供的热控制装置,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的 与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制装置,还通过根据用户针对环境温度控制策略的反应,实时、定时或不定时地更新期望环境温度误差项,使得期望环境温度误差项能够更为精确地反映不同用户在对应情景模式下对环境温度的感受差异,满足了用户的个性化热舒适需求。
需要说明的一点是:上述图4和图5所示实施例仅针对用于执行终端温度控制策略的功能模块,和针对用于执行环境温度控制策略的功能模块分别进行举例说明。在实际应用中,热控制装置可只包含用于执行终端温度控制策略的功能模块,也可以只包含用于执行环境温度控制策略的功能模块,或者同时包含用于执行终端温度控制策略的功能模块和用于执行环境温度控制策略的功能模块,对此不作具体限定。
还需要说明的一点是:在上述图2、图3、图4和图5所示实施例提供的热控制装置中,该热控制装置可以通过软件、硬件或者两者的结合单独实现成为图1所示实施环境中某一设备的部分或者全部。比如,该热控制装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端的部分或全部。或者,该热控制装置也可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的两个或者两个以上的设备的部分或全部。比如,其中一部分功能模块通过软件、硬件或者两者的结合实现成为终端的部分或全部,而另一部分功能模块通过软件、硬件或者两者的结合实现成为服务器的部分或全部。在实际应用中,可以根据实际需求在不同设备中配置不同的功能模块,通过各个设备之间的交互与配合以实现整个热控制方案。
请参考图6,其示出了本发明一个实施例提供的热控制系统的结构示意图。该热控制系统包括:终端620和温控设备640。
终端620通过无线连接方式与温控设备640相连。该无线连接方式可以是红外线连接,也可以是无线网络连接。
可选的,该热控制系统还可以包括:可穿戴设备660。
可穿戴设备660可以通过无线网络与终端620和/或温控设备640相连。
可选的,该热控制系统还可以包括:服务器680。
服务器680可以通过无线网络与终端620、温控设备640和可穿戴设备660中的一种或者多种相连。
其中,终端620可以包括如上述图2、图3、图4或图5所示实施例提供的热控制装置中的全部或部分功能模块。当终端620包括如上述图2、图3、图4或图5所示实施例提供的热控制装置中的部分功能模块时,其余部分功能模块可通过软件、硬件或两者的结合集成于温控设备640、可穿戴设备660和服务器680中的一个或多个设备中。
综上所述,本实施例提供的热控制系统,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
还需要说明的一点是:上述实施例提供的热控制装置和系统在进行热控制操作时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的热控制装置和系统与热控制方法的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
请参考图7,其示出了本发明又一实施例提供的热控制装置的结构示意图。该热控制装置可以单独应用于图1所示实施环境中的终端中,也可以应用于图1所示实施环境中的两个或两个以上设备中。该热控制装置700包括:总线710,以及连接到总线710的处理器720和存储器730。其中,存储器730用于存储一个或者一个以上的指令,该指令被配置成由处理器720执行。其中:
所述处理器720,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数。
所述处理器720,还用于获取环境状态信息和/或用户状态信息,所述环境 状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
所述处理器720,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
综上所述,本实施例提供的热控制装置,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
在基于图7所示实施例提供的可选实施例中,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
和/或,
所述处理器720,还用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
所述处理器720,还用于执行与所述情景模式对应的热控制策略。
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
所述处理器720,还用于根据所述情景模式和所述热感受值,确定并执行 对应的终端温度控制策略。
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
所述处理器720,还用于根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
所述处理器720,还用于根据所述期望环境温度确定并执行所述环境温度控制策略。
在基于图7所示实施例提供的可选实施例中,
所述处理器720,还用于当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
所述处理器720,还用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
可选的,本实施例提供的热控制装置,还通过设定不同的情景模式,从终端状态、环境状态和用户状态不同的角度模拟用户实际所处的情境,了解用户的热感受,以及了解影响用户热舒适度的原因,有利于有针对性地选取热控制策略,提高热控制效率和准确度。
可选的,本实施例提供的热控制装置,还通过终端温度控制策略调控终端温度,提高用户局部的热舒适度,使得终端的性能与用户局部的热舒适度之间 达到平衡;还通过环境温度控制策略调控环境温度,进一步提高了用户整体的热舒适度。
可选的,还通过根据用户针对热控制策略的反应,实时、定时或不定时地更新热感受值误差项和/或期望环境温度误差项,使得上述参数能够更为精确地反映不同用户在对应情景模式下的热感受差异,满足了用户的个性化热舒适需求。
下面是本发明的方法实施例,各个方法实施例与上面的装置实施例互相对应。对于本发明装置实施例中未披露的细节,请参照本发明方法实施例。
请参考图8,其示出了本发明一个实施例提供的热控制方法的方法流程图,本实施例以该热控制方法应用于图1所示实施环境中进行举例说明。该热控制方法可以包括如下几个步骤:
步骤802,获取终端的终端状态信息,该终端状态信息至少包括终端温度参数。
步骤804,获取环境状态信息和/或用户状态信息,该环境状态信息至少包括环境温度参数和/或环境湿度参数,该用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
步骤806,根据环境状态信息和用户状态信息中的任意一项或全部两项,以及终端状态信息确定并执行热控制策略,该热控制策略包括终端温度控制策略和/或环境温度控制策略。
综上所述,本实施例提供的热控制方法,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
请参考图9,其示出了本发明另一实施例提供的热控制方法的方法流程图,本实施例以该热控制方法应用于图1所示实施环境中进行举例说明。该热控制方法可以包括如下几个步骤:
步骤901,获取终端的终端状态信息,该终端状态信息至少包括终端温度 参数。
其中,终端温度参数可以是用户直接接触的终端外壳的温度。终端中可预先设置有温度传感器,通过温度传感器采集终端温度参数。
终端状态信息包括用于反映终端使用情况的一项或多项参数。可选的,终端状态信息还包括充放电状态参数和/或使用状态参数。其中,充放电状态参数用于反映终端是处于充电状态还是处于放电状态。使用状态参数用于反映终端的使用状态,常见的使用状态包括通话状态、使用摄像头状态和使用应用程序状态等。充放电状态参数和使用状态参数可通过相关的人机交互信息得到。
步骤902,获取环境状态信息和/或用户状态信息。
环境状态信息包括用于反映用户所处环境的一项或多项参数。在一个实施例中,环境状态信息至少包括环境温度参数和/或环境湿度参数。环境状态信息可通过环境传感器获取。环境传感器设置于终端和/或可穿戴设备和/或温控设备中。当环境状态信息包括环境温度参数时,环境传感器包括温度传感器;当环境状态信息包括环境湿度参数时,环境传感器包括湿度传感器。
用户状态信息包括用于反映用户生理和/或活动情况的一项或多项参数。在一个实施例中,用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。用户状态信息可以从用户体温、心搏、情绪等不同方面体现用户的热感受。用户状态信息可通过生物传感器获取。生物传感器设置于终端和/或可穿戴设备中,生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
当然,在其它可能的实施例中,生物传感器还可包括肌电传感器、血压传感器等。或者,还可结合诸如重力传感器、三轴加速计、陀螺仪之类的运动传感器采集用户状态信息。
上述步骤901和步骤902中涉及的各项与用户热感受相关的信息可通过图1所示实施环境中的不同设备采集得到。在一个具体的例子中,终端中的温度传感器采集终端温度参数,温控设备中的温度传感器采集环境温度参数,可穿戴设备中的心电传感器采集用户心电参数。之后,各设备将采集得到的各项与用户热感受相关的信息发送给终端进行整合。对应的,终端获取上述各项与用户热感受相关的信息,并通过下述步骤对获取的信息进行处理、分析,然后执行合理的热控制策略。
步骤903,根据环境状态信息和用户状态信息中的任意一项或全部两项, 以及终端状态信息确定用户所处的情景模式。
终端中可预先存储情景模式库,该情景模式库中包含多个情景模式。终端获取到上述各项与用户热感受相关的信息后,对获取的信息进行预处理,并根据处理结果从情景模式库中匹配出相应的情景模式。情景模式从终端状态、环境状态和用户状态不同的角度,模拟用户实际所处的情境,体现用户的热感受。
在划分不同的情景模式时,可以从终端状态、环境状态和用户状态不同的角度设定至少一个分类条件。比如,针对终端状态,可设定用于区分终端充放电状态的分类条件、用于区分终端使用状态的分类条件;针对环境状态,可设定用于区分环境温度的分类条件、用于区分环境湿度的分类条件;针对用户状态,可设定用于区分用户体温状态的分类条件、用于区分用户心搏状态的分类条件、用于区分用户情绪状态的分类条件,等等。
在本实施例中,以获取的信息包括:充放电状态参数、使用状态参数和用户心电参数为例。终端分别对上述各项参数进行预处理得到三个分类条件。具体的:
1、根据充放电状态参数确定第一分类条件。
第一分类条件用于区分终端充放电状态。可选的,第一分类条件为终端处于充电状态或者放电状态。当终端处于充电状态时,终端的发热情况较为明显。将终端的充放电状态作为区分不同情景模式的一个分类条件,可以更为直观地反映终端产生热量的原因和情景模式的特征,以便在后续过程中有针对性地选取和执行热控制策略。
2、根据使用状态参数确定第二分类条件。
第二分类条件用于区分终端使用状态。可选的,第二分类条件为终端处于通话状态、使用摄像头状态或者使用应用程序状态。上述三种使用状态为终端常见的三种使用状态。其中,使用摄像头状态是指正在使用摄像头进行拍照或摄像。使用应用程序状态中所涉及的应用程序可以是终端中安装的任何应用程序,包括但不限于浏览器、电子邮件、即时消息服务、文字处理、键盘虚拟、窗口小部件、加密、数字版权管理、语音识别、语音复制、定位、音视频播放等。将终端的使用状态作为区分不同情景模式的一个分类条件,可以更为直观地反映终端产生热量的原因和情景模式的特征,以便在后续过程中有针对性地选取和执行热控制策略。
另外,本实施例仅以终端的使用状态分为通话状态、使用摄像头状态和使 用应用程序状态三种进行举例说明。在其它可能的实现方式中,可根据实际情况划分成不同数量、不同类型的使用状态,对此本实施例不作具体限定。
3、根据用户心电参数确定第三分类条件。
第三分类条件用于区分用户状态。用户状态可以从用户体温、心搏、情绪等不同方面体现。
以用户状态信息为用户心电参数为例,可以对用户心电参数作如下处理以确定第三分类条件:根据用户心电参数提取不同时段内的相邻窦性心搏之间的时间间隔;根据不同时段内时间间隔的标准差计算标准差的变化率;根据标准差的变化率与变化率阈值的大小关系确定第三分类条件,该第三分类条件为标准差的变化率大于变化率阈值或者标准差的变化率小于变化率阈值。
具体的,假设终端获取到了最近10分钟内的用户心电参数。首先,从最近10分钟内的用户心电参数中检测出前五分钟构成的第一时段内相邻窦性心搏之间的时间间隔,以及后5分钟构成的第二时段内相邻窦性心搏之间的时间间隔。之后,分别计算第一时段内的时间间隔的标准差x1和第二时段内的时间间隔的标准差x2。以计算第一时段内的时间间隔{t1、t2、…、ti、…、tn}的标准差x1为例,
Figure PCTCN2014090446-appb-000001
n≥1且n为整数。之后,计算标准差的变化率ε,
Figure PCTCN2014090446-appb-000002
最后,比对标准差的变化率ε与变化率阈值ε0之间的大小关系,该变化率阈值ε0为预先设定的经验值,比如0.1。
或者,当用户状态信息为用户脑电参数时,可以对用户脑电参数进行处理和识别,并据此确定与用户情绪相关的第三分类条件。
将用户状态作为区分不同情景模式的一个分类条件,可以借助于用户体温情况、用户心搏的变化情况或者用户情绪的变化情况反映用户的热感受,以便在后续过程中更为准确、有效地选取和执行热控制策略。
结合上述三种分类条件,在一个具体的例子中,情景模式库中可包含如下表-1所示的12中情景模式:
Figure PCTCN2014090446-appb-000003
Figure PCTCN2014090446-appb-000004
表-1
在得到至少一个分类条件后,从情景模式库中匹配出一个符合各个分类条件的情景模式。结合上述表-1,假设第一分类条件为充电状态、第二分类条件为通话状态且第三分类条件为ε>ε0,则符合上述三个分类条件的情景模式为情景模式1。
通过设定不同的情景模式,可以从终端状态、环境状态和用户状态不同的角度模拟用户实际所处的情境,了解用户的热感受,以及了解影响用户热舒适度的原因。比如,当情景模式为情景模式1时,可以确定终端因充电和通话导致发热而影响用户热舒适度,且用户心搏变化较为明显,说明终端发热情况也较为明显。
步骤904,执行与情景模式对应的热控制策略,该热控制策略包括终端温度控制策略和/或环境温度控制策略。
终端温度控制策略用于调控终端温度。通过调控终端温度,可以提高用户局部的热舒适度,也即提高用户与终端直接接触的手部、皮肤的热舒适度,避免用户在使用终端的过程中产生热痛觉。环境温度控制策略用于调控环境温度。通过调控环境温度,可以提高用户整体的热舒适度,使得用户在一个更为适宜的环境下使用终端。
其中,终端温度控制策略为对终端执行下述操作中的一种或多种:1、降低屏幕亮度;2、限制充电电流;3、清理后台进程;4、处理器限核/限频;5、停止数据业务;6、功率回退;7、关闭图像优化功能;8、关闭闪光灯;9、降帧;10、高温提示;11、灭屏。
下面,对部分终端温度控制策略进行简单介绍:对于上述序号为5的终端温度控制策略,是指停止网页浏览、信息收发、视频电话、网络视频、网络游 戏等业务;对于上述序号为6的终端温度控制策略,是指降低用于通讯的射频电路的发送功率;对于上述序号为9的终端温度控制策略,是指降低视频或游戏过程中的画面切换频率。
在可能的实施例中,可以针对不同的情景模式设置不同的终端温度控制策略。结合上述表-1,比如,情景模式1对应的终端温度控制策略可以包括上述序号为1、2、3、4、5、10和11的终端温度控制策略;再比如,情景模式3对应的终端温度控制策略可以包括上述序号为1、2、3、4、7、8、10和11的终端温度控制策略。
另外,环境温度控制策略是指通过温控设备调控用户所处环境的温度。在可能的实施例中,终端可根据终端温度参数和情景模式计算期望环境温度,然后控制温控设备将环境温度调控至期望环境温度。
需要说明的一点是:上述步骤901至步骤904可以由图1所示实施环境中的终端单独执行,也可以由图1所示实施环境中的温控设备、可穿戴设备或服务器单独执行,还可以由图1所示实施环境中的两个或两个以上设备相互配合执行。本实施例仅以上述步骤901至步骤904由图1所示实施环境中的终端单独执行进行举例说明,对此不作具体限定。
综上所述,本实施例提供的热控制方法,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制方法,还通过设定不同的情景模式,从终端状态、环境状态和用户状态不同的角度模拟用户实际所处的情境,了解用户的热感受,以及了解影响用户热舒适度的原因,有利于有针对性地选取热控制策略,提高热控制效率和准确度。
另外,本实施例提供的热控制方法,还通过终端温度控制策略调控终端温度,提高用户局部的热舒适度,使得终端的性能与用户局部的热舒适度之间达到平衡;还通过环境温度控制策略调控环境温度,进一步提高了用户整体的热舒适度。
下面,将通过图10和图11两个实施例分别对终端温度控制策略的确定过程和环境温度控制策略的确定过程进行介绍和说明。在图10所示实施例中,首先介绍终端温度控制策略的确定过程。
请参考图10,其示出了本发明再一实施例提供的热控制方法的方法流程图,本实施例以该热控制方法应用于图1所示实施环境中进行举例说明。该热控制方法可以包括如下几个步骤:
步骤1001,获取终端的终端状态信息,该终端状态信息至少包括终端温度参数。
步骤1002,获取环境状态信息和/或用户状态信息。
其中,环境状态信息至少包括环境温度参数和/或环境湿度参数。用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
步骤1003,根据环境状态信息和用户状态信息中的任意一项或全部两项,以及终端状态信息确定用户所处的情景模式。
上述步骤1001至步骤1003与图9所示实施例中的步骤901至步骤903相同或者类似,具体详见图9所示实施例中的介绍和说明,本实施例不再赘述。在根据获取到的各项与用户热感受相关的信息确定出情景模式后,通过下述步骤1004至步骤1005确定对应的终端温度控制策略。
步骤1004,当热控制策略包括终端温度控制策略时,根据终端状态信息、情景模式和对应于该情景模式的热感受值误差项计算热感受值。
其中,热感受值误差项用于反映不同用户在情景模式下的热感受差异。对于每一个情景模式,对应于该情景模式的热感受值误差项的初始值可以预先设定为0。热感受值误差项在后续过程中可根据用户对终端温度控制策略的反应进行动态调整,以满足用户的个性化热舒适需求。
在一种可能的实现方式中,假设在上述步骤1003中确定的情景模式为V,可通过第一自定义算法g(Ω)计算热感受值T:
T=g(Ω)+δv
其中,g(Ω)表示根据终端状态信息和情景模式V制定的第一自定义算法;δv表示对应于情景模式V的热感受值误差项,热感受值误差项δv用于反映不同用户在情景模式V下的热感受差异。
另外,根据获取的信息的不同,第一自定义算法g(Ω)可以包括如下几种可能的情况:
1、当获取的信息包括终端温度参数x和环境温度参数y时,第一自定义算法g(Ω)为:
g(Ω)=g(x,y,mv);
其中,终端温度参数x与热感受值T呈正相关关系;环境温度参数y与热感受值T呈正相关关系;mv表示与情景模式V对应的情景因子,情景因子mv与热感受值T呈正相关关系。
情景模式V对应的情景因子mv是预先设定的经验值。不同的情景模式对应于不同的情景因子。比如,情景模式1所对应的情景因子m1可以预先设定为1.1。
在一个具体的例子中,第一自定义算法g(Ω)为:
g(Ω)=g(x,y,mv)=x×φ(y)×mv
其中,φ(y)表示环境温度参数y对热感受值T的影响函数,当ymin≤y≤ymax时,
Figure PCTCN2014090446-appb-000005
当y>ymax时,
Figure PCTCN2014090446-appb-000006
当y<ymin时,
Figure PCTCN2014090446-appb-000007
其中,y0表示基准环境温度,ymax表示环境温度可调控范围的上限值,ymin表示环境温度可调控范围的下限值。y0、ymax、ymin均可根据实际情况预先设定,比如,y0=26℃、ymax=36℃且ymin=16℃。
由上述第一自定义算法g(Ω)可以看出,终端温度参数x与热感受值T呈正相关关系;当ymin≤y≤ymax时,环境温度参数y与热感受值T呈正相关关系;不同的情景模式V通过其对应的情景因子mv影响着热感受值T的取值。
2、当获取的信息包括终端温度参数x、环境温度参数y和环境湿度参数z时,第一自定义算法g(Ω)为:
g(Ω)=g(x,y,z,mv);
其中,终端温度参数x与热感受值T呈正相关关系,环境温度参数y与热感受值T呈正相关关系,环境湿度参数z与热感受值T呈正相关关系,情景因子mv与热感受值T呈正相关关系。
在一个具体的例子中,第一自定义算法g(Ω)为:
Figure PCTCN2014090446-appb-000008
其中,φ(y)表示环境温度参数y对热感受值T的影响函数,当ymin≤y≤ymax 时,
Figure PCTCN2014090446-appb-000009
当y>ymax时,
Figure PCTCN2014090446-appb-000010
当y<ymin时,
Figure PCTCN2014090446-appb-000011
其中,y0表示基准环境温度,ymax表示环境温度可调控范围的上限值,ymin表示环境温度可调控范围的下限值。
Figure PCTCN2014090446-appb-000012
表示环境湿度参数z对热感受值T的影响函数,当zmin≤z≤zmax时,
Figure PCTCN2014090446-appb-000013
当z>zmax时,
Figure PCTCN2014090446-appb-000014
当z<zmin时,
Figure PCTCN2014090446-appb-000015
其中,z0表示基准环境湿度,zmax表示环境湿度的上限值,zmin表示环境湿度的下限值,β为比例系数。比例系数β用于反映相对湿度变化与热感受变化之间的比例关系。比如,当β=3时,即表示相对湿度变化10%所带来的热感受变化为0.3。z0、zmax、zmin、β均可根据实际情况预先设定,比如,z0=50%、zmax=70%、zmin=30%且β=3。
由上述第一自定义算法g(Ω)可以看出,终端温度参数x与热感受值T呈正相关关系;当ymin≤y≤ymax时,环境温度参数y与热感受值T呈正相关关系;当zmin≤z≤zmax时,环境湿度参数z与热感受值T呈正相关关系;不同的情景模式V通过其对应的情景因子mv影响着热感受值T的取值。
3、当获取的信息包括终端温度参数x、环境温度参数y和用户体温参数w时,第一自定义算法g(Ω)为:
g(Ω)=g(x,y,w,mv);
其中,终端温度参数x与热感受值T呈正相关关系,环境温度参数y与热感受值T呈正相关关系,用户体温参数w与热感受值T呈正相关关系,情景因子mv与热感受值T呈正相关关系。
在一个具体的例子中,第一自定义算法g(Ω)为:
g(Ω)=g(x,y,w,mv)=x×φ(y)×mv×τ(w);
其中,φ(y)表示环境温度参数y对热感受值T的影响函数,当ymin≤y≤ymax时,
Figure PCTCN2014090446-appb-000016
当y>ymax时,
Figure PCTCN2014090446-appb-000017
当y<ymin时,
Figure PCTCN2014090446-appb-000018
其中,y0表示基准环境温度,ymax表示环境温度可调控范围的上限值,ymin表示环境温度可调控范围的下限值;τ(w)表示用户体温参数w对热感受值T的影响函数,当wmin≤w≤wmax时,τ(w)=1,当w>wmax时,
Figure PCTCN2014090446-appb-000019
当w<wmin时,
Figure PCTCN2014090446-appb-000020
其中,wmax表示热舒适状态下用户体温的上限值,wmin表示热舒适状态下用户体温的下限值。wmax和wmin均可根据实际情况预先设定,比如,wmax=33.7℃且wmin=32.6℃。需要说明的一点是:上述用户体温是指用户皮肤温度。
由上述第一自定义算法g(Ω)可以看出,终端温度参数x与热感受值T呈正相关关系;当ymin≤y≤ymax时,环境温度参数y与热感受值T呈正相关关系; 当wmin≤w≤wmax时,用户体温参数w与热感受值T呈正相关关系;不同的情景模式V通过其对应的不同的情景因子mv影响着热感受值T的取值。
需要说明的一点是:本实施例仅以上述三种第一自定义算法进行举例说明。在实际应用中,可根据获取的信息的不同,预先设定不同的算法以计算热感受值,对此本实施例不作具体限定。
步骤1005,根据情景模式和热感受值,确定并执行对应的终端温度控制策略。
在计算出热感受值T之后,确定并执行与情景模式V和热感受值T对应的终端温度控制策略。终端温度控制策略用于调控终端的终端温度。通过调控终端温度,可以提高用户局部的热舒适度,也即提高用户与终端直接接触的手部、皮肤的热舒适度,避免用户在使用终端的过程中产生热痛觉。
其中,终端温度控制策略为对终端执行下述操作中的一种或多种:1、降低屏幕亮度;2、限制充电电流;3、清理后台进程;4、处理器限核/限频;5、停止数据业务;6、功率回退;7、关闭图像优化功能;8、关闭闪光灯;9、降帧;10、高温提示;11、灭屏。
在一种可能的实现方式中,假设在上述步骤1003中确定的情景模式为V,本步骤可以包括如下几个子步骤:
第一,获取与情景模式V对应的终端温度控制对应关系;
第二,根据终端温度控制对应关系选取与热感受值T所在的区间对应的终端温度控制策略。
不同的情景模式对应于不同的终端温度控制对应关系。对于每一组终端温度控制对应关系,该终端温度控制对应关系包括不同热感受值所在的区间与不同终端温度控制策略之间的对应关系。
比如,情景模式1所对应的终端温度控制对应关系可以如下表-2所示:
Figure PCTCN2014090446-appb-000021
表-2
需要说明的一点是:本实施例仅以上述几种终端温度控制策略进行举例说明,在其它可能的实施例中,还可以根据实际情况制定其它不同的终端温度控制策略。
另外,为了满足用户的个性化热舒适需求,本实施例提供的热控制方法还可以根据用户针对终端温度控制策略的反应,实时、定时或不定时地更新热感受值误差项,使得热感受值误差项能够更为精确地反映不同用户在对应情景模式下的热感受差异。具体的,本实施例提供的热控制方法,还可以包括如下步骤1006和步骤1007:
步骤1006,当情景模式为V且对应于情景模式V的热感受值误差项为δv时,记录执行终端温度控制策略的次数K,以及在K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′。
其中,第一预定条件是指在终端温度控制策略生效后的第一预定时长内用户产生第一预定反应。第一预定时长为预先设定的经验值,比如3分钟。第一预定反应包括但不限于下述情况中的一项或多项:1、用户更改终端的持握方式;2、用户停止使用终端;3、用户心率增幅超过预先设定的心率增幅阈值。
在终端温度控制策略生效后的一段时间内,当用户出现上述反应时,表明用户的热感受较为明显,此时可以适当调整热感受值误差项δv的值,使得该热感受值误差项δv能够更为精确地反映用户的热感受。
步骤1007,根据终端温度控制策略的次数K和满足第一预定条件的终端温度控制策略的次数K′更新热感受值误差项δv
在一种可能的实现方式中,可通过下述公式更新热感受值误差项δv
Figure PCTCN2014090446-appb-000022
其中,K表示终端温度控制策略的次数;K′表示满足第一预定条件的终端温度控制策略的次数;δv′表示更新后的热感受值误差项;δv表示更新前的热感受值误差项;△T为常数。△T为预先设定的经验值,比如△T=0.5℃。K′值越大,表明用户对终端发热情况越敏感,其对应的热感受值误差项δv的变化幅度也越大;反之,K′值越小,表明用户对终端发热情况越不敏感,其对应的热感受值误差项δv的变化幅度也越小。
通过根据用户针对终端温度控制策略的反应,学习用户的使用习惯,并根据用户的使用习惯动态调整热感受值误差项δv的值,使得热感受值误差项δv能够更为精确地反映不同用户在对应情景模式V下的热感受差异,满足了用户的个性化热舒适需求。
需要说明的一点是:上述步骤1001至步骤1007可以由图1所示实施环境 中的终端单独执行,也可以由图1所示实施环境中的温控设备、可穿戴设备或服务器单独执行,还可以由图1所示实施环境中的两个或两个以上设备相互配合执行。比如,上述步骤1001至步骤1006可以由终端执行,终端记录上述参数K和K′后,实时、定时或不定时地将参数K和K′发送给服务器,并由服务器执行步骤1007以完成对热感受值误差项δv的更新,并将更新后的热感受值误差项反馈给终端。
综上所述,本实施例提供的热控制方法,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制方法,还通过根据用户针对终端温度控制策略的反应,实时、定时或不定时地更新热感受值误差项,使得热感受值误差项能够更为精确地反映不同用户在对应情景模式下的热感受差异,满足了用户的个性化热舒适需求。
在上述图10所示实施例中,介绍了终端温度控制策略的确定过程。下面,将通过图11所示实施例,介绍环境温度控制策略的确定过程。
请参考图11,其示出了本发明还一实施例提供的热控制方法的方法流程图,本实施例以该热控制方法应用于图1所示实施环境中进行举例说明。该热控制方法可以包括如下几个步骤:
步骤1101,获取终端的终端状态信息,该终端状态信息至少包括终端温度参数。
步骤1102,获取环境状态信息和/或用户状态信息。
其中,环境状态信息至少包括环境温度参数和/或环境湿度参数。用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种。
步骤1103,根据环境状态信息和用户状态信息中的任意一项或全部两项,以及终端状态信息确定用户所处的情景模式。
上述步骤1101至步骤1103与图9所示实施例中的步骤901至步骤903相同或者类似,具体详见图9所示实施例中的介绍和说明,本实施例不再赘述。在根据获取到的各项与用户热感受相关的信息确定出情景模式后,通过下述步骤1104至步骤1105确定对应的环境温度控制策略。
步骤1104,当热控制策略包括环境温度控制策略时,根据终端状态信息、情景模式和对应于该情景模式的期望环境温度误差项计算期望环境温度。
与热感受值误差项类似,对于每一个情景模式,对应于该情景模式的期望环境温度误差项的初始值可以预先设定为0。期望环境温度误差项在后续过程中可根据用户对环境温度控制策略的反应进行动态调整,以满足用户的个性化热舒适需求。
在一种可能的实现方式中,假设在上述步骤1103中确定的情景模式为V,可通过第二自定义算法h(Ω)计算期望环境温度E:
E=h(Ω)+μv
其中,h(Ω)表示根据终端状态信息和情景模式V制定的第二自定义算法;μv表示对应于情景模式V的期望环境温度误差项,期望环境温度误差项μv用于反映不同用户在情景模式V下对环境温度的感受差异。
另外,根据获取的信息的不同,第二自定义算法h(Ω)也存在多种计算方式。在一种可能的计算方式中,假设在上述步骤1103中确定的情景模式为V,第二自定义算法h(Ω)为:
h(Ω)=h(x,mv);
其中,终端温度参数x与期望环境温度E呈正相关关系;mv表示与情景模式V对应的情景因子,情景因子mv与期望环境温度E呈正相关关系。情景模式V对应的情景因子mv是预先设定的经验值。不同的情景模式对应于不同的情景因子。比如,情景模式1所对应的情景因子m1可以预先设定为1.1。
另外,在执行上述步骤1104之前,还可执行如下步骤:
1、判断终端温度参数和情景模式V对应的情景因子mv的乘积是否大于预定阈值。
2、若大于预定阈值,则执行上述步骤1104。
3、若小于预定阈值,则将预先设定的基准环境温度作为期望环境温度E。
通过上述步骤的判断,可以使得环境温度被调控在一个更为合理的范围内,不至于受终端温度参数的影响过大,而导致环境温度被调控地过高或者过 低,可以实现将环境温度维持在使得用户感觉舒适的区间。
在一个具体的例子中,可通过如下方式确定期望环境温度E:
首先,比对终端温度参数x和情景模式V对应的情景因子mv的乘积x×mv与预定阈值X之间的大小关系;若x×mv≥X,则通过下述公式计算期望环境温度E:
Figure PCTCN2014090446-appb-000023
若x×mv<X,则将预先设定的基准环境温度y0作为期望环境温度E。
其中,y0表示基准环境温度;ymin表示环境温度可调控范围的下限值;μv表示对应于情景模式V的期望环境温度误差项;α为常数且α>0。y0、ymin、α均可根据实际情况预先设定,比如,y0=26℃、ymin=16℃且α=2。
步骤1105,根据期望环境温度确定并执行环境温度控制策略。
环境温度控制策略用于调控环境温度。环境温度的调控目标,可以以计算得到的期望环境温度为参考。通过调控环境温度,可以提高用户整体的热舒适度,使得用户在一个更为适宜的环境下使用终端。
比如,终端在计算得到期望环境温度后,通过无线方式将期望环境温度或者对应于该期望环境温度的控制指令发送给温控设备;对应地,温控设备接收到终端发送的信息后,根据接收到的信息将环境温度调控至期望环境温度。
另外,为了满足用户的个性化热舒适需求,本实施例提供的热控制方法还可以根据用户针对环境温度控制策略的反应,实时、定时或不定时地更新期望环境温度误差项,使得期望环境温度误差项能够更为精确地反映不同用户在对应情景模式下对环境温度的感受差异。具体的,本实施例提供的热控制方法,还可以包括如下步骤1006和步骤1007:
步骤1106,当情景模式为V且对应于情景模式V的期望环境温度误差项为μv时,记录执行环境温度控制策略的次数M,以及在M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′。
其中,第二预定条件是指在环境温度控制策略生效后的第二预定时长内用户产生第二预定反应。比如,该第二预定反应为用户重新手动调控了环境温度。第二预定时长为预先设定的经验值,比如5分钟。
在环境温度控制策略生效后的一段时间内,当产生第二预定反应时,表明用户对之前根据期望环境温度进行自动调控的环境温度不够满意,此时可适当调整期望环境温度误差项为μv的值,使得该期望环境温度误差项μv能够更为精确地反映用户对环境温度的要求,以便在后续过程中计算得的期望环境温度更 加符合用户个人需求。
步骤1107,根据环境温度控制策略的次数M和满足第二预定条件的环境温度控制策略的次数M′更新期望环境温度误差项μv
在一个具体的例子中,当第二预定反映为用户重新手动调控了环境温度时,本步骤可以包括如下两个子步骤:
第一,对于每一次满足第二预定条件的环境温度控制策略,记录此次手动调控对应的期望环境温度和此次手动调控对应的调控环境温度。
第二,通过下述公式更新期望环境温度误差项μv
Figure PCTCN2014090446-appb-000024
其中,μv′表示更新后的期望环境温度误差项;μv表示更新前的期望环境温度误差项;Ei表示第i次手动调控对应的期望环境温度;Ei′表示第i次手动调控对应的调控环境温度,i∈[1,M′]且i为整数。
通过根据用户针对环境温度控制策略的反应,学习用户的使用习惯,并根据用户的使用习惯动态调整期望环境温度误差项μv的值,使得期望环境温度误差项μv能够更为精确地反映不同用户在对应情景模式V下对环境温度的感受差异,满足了用户的个性化热舒适需求。
需要说明的一点是:上述步骤1101至步骤1107可以由图1所示实施环境中的终端单独执行,也可以由图1所示实施环境中的温控设备、可穿戴设备或服务器单独执行,还可以由图1所示实施环境中的两个或两个以上设备相互配合执行。比如,上述步骤1101至步骤1104由终端执行,步骤1105由终端和温控设备配合执行,步骤1106和步骤1107由终端和服务器配合执行。在实际应用中,可以根据各个设备的数据存储能力、数据处理能力分配不同的步骤给不同的设备执行,对此本实施例不作具体限定。
综上所述,本实施例提供的热控制方法,通过获取包括终端温度参数的终端状态信息,并获取环境状态信息和/或用户状态信息,进而根据上述获取到的与用户热感受相关的信息确定并执行热控制策略;解决了终端在运行过程中产生的热量影响用户热舒适度的问题;结合获取到的各项与用户热感受相关的信息执行有效的热控制策略,降低了终端在运行过程中产生的热量对用户的影响,提高了用户的热舒适度。
另外,本实施例提供的热控制方法,还通过根据用户针对环境温度控制策 略的反应,实时、定时或不定时地更新期望环境温度误差项,使得期望环境温度误差项能够更为精确地反映不同用户在对应情景模式下对环境温度的感受差异,满足了用户的个性化热舒适需求。
还需要说明的一点是:上述图10和图11所示实施例仅针对终端温度控制策略的确定过程和环境温度控制策略的确定过程分别进行举例说明。在实际应用中,可单独执行终端温度控制策略,也可单独执行环境温度控制策略,或者同时执行终端温度控制策略和环境温度控制策略,对此本实施例不作具体限定。
应当理解的是,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”(“a”、“an”、“the”)旨在也包括复数形式。还应当理解的是,在本文中使用的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种热控制装置,其特征在于,所述装置包括:
    第一获取模块,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
    第二获取模块,用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
    策略执行模块,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
  2. 根据权利要求1所述的装置,其特征在于,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
  3. 根据权利要求1所述的装置,其特征在于,所述第二获取模块,包括:
    环境获取子模块,用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
    和/或,
    用户获取子模块,用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
  4. 根据权利要求1至3任一所述的装置,其特征在于,所述策略执行模块,包括:模式确定子模块和策略执行子模块;
    所述模式确定子模块,用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
    所述策略执行子模块,用于执行与所述情景模式对应的热控制策略。
  5. 根据权利要求4所述的装置,其特征在于,所述策略执行子模块,包括: 第一计算单元和第一执行单元;
    所述第一计算单元,用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
    所述第一执行单元,用于根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
  6. 根据权利要求5所述的装置,其特征在于,所述策略执行子模块,还包括:第一记录单元和第一更新单元;
    所述第一记录单元,用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
    所述第一更新单元,用于根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
  7. 根据权利要求4所述的装置,其特征在于,所述策略执行子模块,包括:第二计算单元和第二执行单元;
    所述第二计算单元,用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
    所述第二执行单元,用于根据所述期望环境温度确定并执行所述环境温度控制策略。
  8. 根据权利要求7所述的装置,其特征在于,所述策略执行子模块,还包括:第二记录单元和第二更新单元;
    所述第二记录单元,用于当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及 在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
    所述第二更新单元,用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
  9. 一种热控制装置,其特征在于,所述装置包括:总线,以及连接到所述总线的处理器和存储器,其中,所述存储器用于存储一个或者一个以上的指令,所述指令被配置成由所述处理器执行;
    所述处理器,用于获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
    所述处理器,还用于获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
    所述处理器,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
  10. 根据权利要求9所述的装置,其特征在于,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
  11. 根据权利要求9所述的装置,其特征在于,
    所述处理器,还用于通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
    和/或,
    所述处理器,还用于通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
  12. 根据权利要求9至11任一所述的装置,其特征在于,
    所述处理器,还用于根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
    所述处理器,还用于执行与所述情景模式对应的热控制策略。
  13. 根据权利要求12所述的装置,其特征在于,
    所述处理器,还用于当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
    所述处理器,还用于根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理器,还用于当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
    所述处理器,还用于根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
  15. 根据权利要求12所述的装置,其特征在于,
    所述处理器,还用于当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
    所述处理器,还用于根据所述期望环境温度确定并执行所述环境温度控制策略。
  16. 根据权利要求15所述的装置,其特征在于,
    所述处理器,还用于当所述情景模式为V且对应于所述情景模式V的期望 环境温度误差项为μv时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
    所述处理器,还用于根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
  17. 一种热控制方法,其特征在于,所述方法包括:
    获取终端的终端状态信息,所述终端状态信息至少包括终端温度参数;
    获取环境状态信息和/或用户状态信息,所述环境状态信息至少包括环境温度参数和/或环境湿度参数,所述用户状态信息包括用户体温参数、用户心电参数、用户脑电参数、用户皮肤电阻参数中的至少一种;
    根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定并执行热控制策略,所述热控制策略包括终端温度控制策略和/或环境温度控制策略。
  18. 根据权利要求17所述的方法,其特征在于,所述终端状态信息还包括充放电状态参数和/或使用状态参数。
  19. 根据权利要求17所述的方法,其特征在于,所述获取环境状态信息和/或用户状态信息,包括:
    通过环境传感器获取所述环境状态信息,所述环境传感器设置于所述终端和/或可穿戴设备和/或温控设备中,所述环境传感器至少包括温度传感器和/或湿度传感器;
    和/或,
    通过生物传感器获取所述用户状态信息,所述生物传感器设置于所述终端和/或可穿戴设备中,所述生物传感器包括体温传感器、心电传感器、脑电传感器、皮肤电阻传感器中的至少一种。
  20. 根据权利要求17至19任一所述的方法,其特征在于,所述根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状 态信息确定并执行热控制策略,包括:
    根据所述环境状态信息和所述用户状态信息中的任意一项或全部两项,以及所述终端状态信息确定用户所处的情景模式;
    执行与所述情景模式对应的热控制策略。
  21. 根据权利要求20所述的方法,其特征在于,所述执行与所述情景模式对应的热控制策略,包括:
    当所述热控制策略包括所述终端温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的热感受值误差项计算热感受值,所述热感受值误差项用于反映不同用户在所述情景模式下的热感受差异;
    根据所述情景模式和所述热感受值,确定并执行对应的终端温度控制策略。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    当所述情景模式为V且对应于所述情景模式V的热感受值误差项为δv时,记录执行所述终端温度控制策略的次数K,以及在所述K次终端温度控制策略中,满足第一预定条件的终端温度控制策略的次数K′;其中,所述第一预定条件是指在所述终端温度控制策略生效后的第一预定时长内用户产生第一预定反应;
    根据所述终端温度控制策略的次数K和所述满足第一预定条件的终端温度控制策略的次数K′更新所述热感受值误差项δv
  23. 根据权利要求20所述的方法,其特征在于,所述执行与所述情景模式对应的热控制策略,包括:
    当所述热控制策略包括所述环境温度控制策略时,根据所述终端状态信息、所述情景模式和对应于所述情景模式的期望环境温度误差项计算期望环境温度,所述期望环境温度误差项用于反映不同用户在所述情景模式下对环境温度的感受差异;
    根据所述期望环境温度确定并执行所述环境温度控制策略。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    当所述情景模式为V且对应于所述情景模式V的期望环境温度误差项为μv 时,记录执行所述环境温度控制策略的次数M,以及在所述M次环境温度控制策略中,满足第二预定条件的环境温度控制策略的次数M′;其中,所述第二预定条件是指在所述环境温度控制策略生效后的第二预定时长内用户产生第二预定反应;
    根据所述环境温度控制策略的次数M和所述满足第二预定条件的环境温度控制策略的次数M′更新所述期望环境温度误差项μv
PCT/CN2014/090446 2014-11-06 2014-11-06 热控制装置和方法 WO2016070376A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017542225A JP6529195B2 (ja) 2014-11-06 2014-11-06 熱制御装置および方法
EP14905488.4A EP3203712B1 (en) 2014-11-06 2014-11-06 Thermal control device and method
CN201480079396.1A CN106464748B (zh) 2014-11-06 2014-11-06 热控制装置和方法
US15/524,709 US10697661B2 (en) 2014-11-06 2014-11-06 Thermal control apparatus and method
PCT/CN2014/090446 WO2016070376A1 (zh) 2014-11-06 2014-11-06 热控制装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090446 WO2016070376A1 (zh) 2014-11-06 2014-11-06 热控制装置和方法

Publications (1)

Publication Number Publication Date
WO2016070376A1 true WO2016070376A1 (zh) 2016-05-12

Family

ID=55908393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090446 WO2016070376A1 (zh) 2014-11-06 2014-11-06 热控制装置和方法

Country Status (5)

Country Link
US (1) US10697661B2 (zh)
EP (1) EP3203712B1 (zh)
JP (1) JP6529195B2 (zh)
CN (1) CN106464748B (zh)
WO (1) WO2016070376A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109710003A (zh) * 2018-12-26 2019-05-03 联想(北京)有限公司 温度控制方法及系统
CN112824999A (zh) * 2019-11-20 2021-05-21 Oppo广东移动通信有限公司 温度控制方法及相关产品
CN115614908A (zh) * 2022-09-30 2023-01-17 珠海格力电器股份有限公司 空调控制方法、装置和空调

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393397B2 (en) * 2016-06-24 2019-08-27 International Business Machines Corporation Dynamic climate control adjustment system
CN109916013A (zh) * 2017-12-13 2019-06-21 广东美的制冷设备有限公司 空气调节器的控制方法、装置及计算机可读存储介质
WO2019147684A1 (en) * 2018-01-24 2019-08-01 Gentherm Inc. Temperature control of an environment to achieve occupant comfort based on heart rate variability parameters
CN111903111A (zh) * 2018-03-27 2020-11-06 华为技术有限公司 一种终端设备及确定外部环境温度的方法
CN110529987B (zh) 2018-05-24 2023-05-23 开利公司 生物特征空调控制系统
CN109210678B (zh) * 2018-08-14 2020-06-30 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
US11140243B1 (en) 2019-03-30 2021-10-05 Snap Inc. Thermal state inference based frequency scaling
US11442513B1 (en) 2019-04-16 2022-09-13 Snap Inc. Configuration management based on thermal state
CN110470033B (zh) * 2019-08-06 2021-07-23 青岛海尔空调器有限总公司 用于控制空调的方法、装置和空调
CN114413420A (zh) * 2021-12-24 2022-04-29 珠海格力电器股份有限公司 空调的控制方法以及空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378418A (zh) * 2008-09-25 2009-03-04 深圳华为通信技术有限公司 获取终端温度的方法和终端
CN101917515A (zh) * 2010-08-12 2010-12-15 惠州Tcl移动通信有限公司 一种移动终端及其温度提示方法和装置
CN201680551U (zh) * 2010-05-26 2010-12-22 洛阳同翔电子科技有限公司 一种节能限温无线智能空调控制器
US20110303393A1 (en) * 2010-06-11 2011-12-15 Hewlett-Packard Development Company, L.P. Thermal distribution systems and methods
CN102841615A (zh) * 2011-06-24 2012-12-26 中兴通讯股份有限公司 一种调节终端温度的方法、装置和终端
WO2013033951A1 (zh) * 2011-09-06 2013-03-14 中兴通讯股份有限公司 一种移动终端及其实现温度智能控制的方法
CN203432022U (zh) * 2013-05-29 2014-02-12 东莞市瑞明电子科技有限公司 一种远程室内空调和温湿度检测的控制装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493705B1 (ko) * 2002-10-02 2005-06-02 엘지전자 주식회사 사용자의 특성에 맞게 운전되는 공조 시스템 및 공조 방법
US7310737B2 (en) * 2003-06-30 2007-12-18 Hewlett-Packard Development Company, L.P. Cooling system for computer systems
KR100646868B1 (ko) 2004-12-29 2006-11-23 삼성전자주식회사 피부전도도와 심박 정보를 이용한 홈 제어시스템 및 그 방법
US7194645B2 (en) * 2005-02-09 2007-03-20 International Business Machines Corporation Method and apparatus for autonomic policy-based thermal management in a data processing system
US8140191B2 (en) * 2005-07-11 2012-03-20 Panasonic Corporation Environment control device, environment control method, environment control program, and computer-readable recording medium containing the environment control program
JP4359300B2 (ja) 2006-09-21 2009-11-04 株式会社東芝 温冷感判定装置、温冷感判定方法、温冷感判定プログラム、空調制御装置、空調制御方法および空調制御プログラム
CN101436091A (zh) 2007-11-13 2009-05-20 英业达股份有限公司 根据使用者体温控制中央处理器的工作温度的系统及方法
US8341433B2 (en) * 2008-01-04 2012-12-25 Dell Products L.P. Method and system for managing the power consumption of an information handling system
US8214658B2 (en) * 2008-08-20 2012-07-03 International Business Machines Corporation Enhanced thermal management for improved module reliability
JP5063541B2 (ja) 2008-09-16 2012-10-31 富士通株式会社 電子機器
US8392340B2 (en) 2009-03-13 2013-03-05 Apple Inc. Method and apparatus for detecting conditions of a peripheral device including motion, and determining/predicting temperature(S) wherein at least one temperature is weighted based on detected conditions
US8996330B2 (en) * 2011-01-06 2015-03-31 Qualcomm Incorporated Method and system for managing thermal policies of a portable computing device
US9504386B2 (en) * 2011-10-20 2016-11-29 International Business Machines Corporation Controlling devices based on physiological measurements
KR102078093B1 (ko) 2011-11-10 2020-02-18 삼성전자 주식회사 휴대단말기의 온도 제어장치 및 방법
US20130137946A1 (en) * 2011-11-30 2013-05-30 Nellcor Puritan Bennett Llc Medical device with conditional power consumption
US9798335B2 (en) * 2011-12-29 2017-10-24 Intel Corporation Adaptive thermal throttling with user configuration capability
JP2013213635A (ja) 2012-04-03 2013-10-17 Nippon Telegr & Teleph Corp <Ntt> 空調制御方法および空調制御システム
US9304520B2 (en) * 2012-04-27 2016-04-05 Hewlett-Packard Development Company, L.P. Thermal management
CN102745209A (zh) 2012-07-06 2012-10-24 希姆通信息技术(上海)有限公司 自动温度控制系统及其控制方法
JP5996371B2 (ja) 2012-10-29 2016-09-21 株式会社東芝 電子機器
US10025329B2 (en) * 2013-08-21 2018-07-17 Google Technology Holdings LLC Method and apparatus for adjusting portable electronic device operation based on ambient temperature
US9152178B2 (en) * 2013-11-06 2015-10-06 Symbol Technologies, Llc Environmental controls for mobile electronic devices
US20170038806A1 (en) * 2015-08-06 2017-02-09 Qualcomm Incorporated System and method for improved thermal management of a portable computing device with skin temperature sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378418A (zh) * 2008-09-25 2009-03-04 深圳华为通信技术有限公司 获取终端温度的方法和终端
CN201680551U (zh) * 2010-05-26 2010-12-22 洛阳同翔电子科技有限公司 一种节能限温无线智能空调控制器
US20110303393A1 (en) * 2010-06-11 2011-12-15 Hewlett-Packard Development Company, L.P. Thermal distribution systems and methods
CN101917515A (zh) * 2010-08-12 2010-12-15 惠州Tcl移动通信有限公司 一种移动终端及其温度提示方法和装置
CN102841615A (zh) * 2011-06-24 2012-12-26 中兴通讯股份有限公司 一种调节终端温度的方法、装置和终端
WO2013033951A1 (zh) * 2011-09-06 2013-03-14 中兴通讯股份有限公司 一种移动终端及其实现温度智能控制的方法
CN203432022U (zh) * 2013-05-29 2014-02-12 东莞市瑞明电子科技有限公司 一种远程室内空调和温湿度检测的控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203712A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109710003A (zh) * 2018-12-26 2019-05-03 联想(北京)有限公司 温度控制方法及系统
CN112824999A (zh) * 2019-11-20 2021-05-21 Oppo广东移动通信有限公司 温度控制方法及相关产品
CN115614908A (zh) * 2022-09-30 2023-01-17 珠海格力电器股份有限公司 空调控制方法、装置和空调

Also Published As

Publication number Publication date
JP6529195B2 (ja) 2019-06-12
CN106464748A (zh) 2017-02-22
EP3203712A4 (en) 2018-03-14
CN106464748B (zh) 2020-01-03
JP2017537569A (ja) 2017-12-14
US10697661B2 (en) 2020-06-30
EP3203712A1 (en) 2017-08-09
US20170321921A1 (en) 2017-11-09
EP3203712B1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2016070376A1 (zh) 热控制装置和方法
US20220007955A1 (en) Method for measuring biological signal and wearable electronic device for the same
US11561561B2 (en) System and method of machine learning and autonomous execution on user preferences for use in garments
US10606226B2 (en) Method for controlling an external device and an electronic device therefor
TWI700611B (zh) 可穿戴電子裝置
JP6692828B2 (ja) 睡眠補助のためのウェアラブルデバイス
KR102384756B1 (ko) 활동 가이드 정보 제공 방법 및 이를 지원하는 전자 장치
EP3070579A2 (en) Electronic device including touch panel and method for controlling the same
US20160157773A1 (en) Electronic Device for Determining Sleep State and Method of Controlling Same
CN107997767A (zh) 用于识别用户活动的方法及其电子设备
EP2919434B1 (en) Method for determining data source
US11247021B2 (en) Craniaofacial emotional response influencer for audio and visual media
CN108133742A (zh) 身体活动和健身监视器
CN103581428A (zh) 终端及其控制方法
CN106293055A (zh) 电子设备以及用于提供其触觉反馈的方法
CN109259724A (zh) 一种用眼监控方法、装置、存储介质及穿戴式设备
US10835782B2 (en) Electronic device, system, and method for determining suitable workout in consideration of context
WO2018086427A1 (zh) 一种控制智能设备的方法及装置
CN108431731A (zh) 用于执行基于生物计量信号的功能的方法、存储介质和电子设备
US9973615B2 (en) Electronic apparatus and method for controlling recording thereof
CN109471520A (zh) 智能升降桌的调整方法、装置及存储介质和智能升降桌
CN107657221A (zh) 一种面部信息采集方法及相关设备
US20220230753A1 (en) Techniques for executing transient care plans via an input/output device
WO2023027578A1 (en) Nose-operated head-mounted device
CN109144263A (zh) 社交辅助方法、装置、存储介质及穿戴式设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542225

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014905488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15524709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE