WO2016068635A1 - 비정질막 및 질소를 포함하는 나노구조막의 제조방법 - Google Patents
비정질막 및 질소를 포함하는 나노구조막의 제조방법 Download PDFInfo
- Publication number
- WO2016068635A1 WO2016068635A1 PCT/KR2015/011536 KR2015011536W WO2016068635A1 WO 2016068635 A1 WO2016068635 A1 WO 2016068635A1 KR 2015011536 W KR2015011536 W KR 2015011536W WO 2016068635 A1 WO2016068635 A1 WO 2016068635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- atomic
- amorphous
- sputtering
- target
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
Definitions
- the present invention relates to an amorphous film, a nanostructure film containing nitrogen and a method of manufacturing the same, and more particularly, formed by sputtering a crystalline alloy target implemented by heat treatment of an amorphous alloy containing a metal element having an amorphous forming ability It relates to an amorphous film, a nanostructure film containing nitrogen, and a method of manufacturing the same.
- a technique of forming a thin film having low friction characteristics on the surface of the base material may be applied.
- energy consumption may occur due to friction between various components generated during driving of an automobile engine.
- the fuel consumption can be improved by reducing the consumption of automobile fuel.
- the thin film having such a low friction property must withstand harsh frictional environments, it must have a certain degree of hardness and adhesion to the base material in addition to the low friction property and high resistance to oxidation atmosphere.
- nitride, carbide-based ceramic material, or DLC (diamond like carbon) having high hardness may be used, and applied to the base material by physical vapor deposition, chemical vapor deposition, plasma spray coating, or the like.
- the conventional ceramic thin film exhibits high hardness of about 2000 Hv or more, but exhibits a high difference in elastic modulus from metal materials such as steel, aluminum, and magnesium, which are used as base materials.
- the modulus of elasticity of most high-melting-point ceramic materials is 400-700 GPa, whereas aluminum alloys are about 70 GPa, magnesium alloys are about 45 GPa, and steel is about 200 GPa.
- the DLC film exhibits a high coefficient of friction for application to critical drive members such as automobile engines.
- Severe wear of the membrane which is incompatible with additives such as added friction modifiers in the lubricant, for example, organic molybdenum compounds (MoDTC, Molybdenum dialkyldithiocarbamate), which reduces additive efficiency and reduces wear and friction of DLC membranes.
- additives such as added friction modifiers in the lubricant, for example, organic molybdenum compounds (MoDTC, Molybdenum dialkyldithiocarbamate), which reduces additive efficiency and reduces wear and friction of DLC membranes.
- MoDTC organic molybdenum
- the present invention provides a nanostructured film or a highly corrosion-resistant amorphous film and a method for producing a nanostructure film containing nitrogen exhibiting significantly lower friction coefficient than the conventional thin film, but exhibits low friction properties with high hardness and adhesion
- a nanostructured film or a highly corrosion-resistant amorphous film and a method for producing a nanostructure film containing nitrogen exhibiting significantly lower friction coefficient than the conventional thin film, but exhibits low friction properties with high hardness and adhesion
- these problems are exemplary, and the scope of the present invention is not limited thereby.
- a method for producing a nanostructure film containing nitrogen In the method of manufacturing a nanostructure film containing nitrogen, a step of forming a nanostructure film including nitrogen by sputtering an alloy target while injecting a reaction gas containing nitrogen gas (N 2 ) or a nitrogen element (N) into a sputtering apparatus It includes;
- the alloy target is Zr 58 atomic% to 80 atomic%;
- Cu is 4 atomic% to 26 atomic%; Fe, Ni and Co at least any one selected from 4 atomic% to 26 atomic%; consisting of a crystalline alloy consisting of.
- the solidus and liquidus temperature of the crystalline alloy may be present in the range of 800 °C to 1050 °C.
- the crystalline alloy may be a cast alloy implemented by casting a molten metal.
- the crystalline alloy may be an alloy in which a plurality of amorphous or nanocrystalline alloys having a shape of powder, ribbon, ingot or rod are sintered and integrated.
- a nanostructure film including nitrogen is provided.
- the nanostructure film containing the nitrogen is implemented by the above-described manufacturing method.
- a method for producing an amorphous membrane In the method of manufacturing the amorphous film, a non-reactive sputtering of an alloy target inside the sputtering apparatus in an argon (Ar) atmosphere to observe a vane structure at a fracture surface, and to form an amorphous film in which no crystalline peak appears during X-ray diffraction analysis.
- the alloy target is Zr 58 atomic% to 80 atomic%; Cu is 4 atomic% to 26 atomic%; Fe, Ni and Co at least any one selected from 4 atomic% to 26 atomic%; consisting of a crystalline alloy consisting of.
- the crystalline alloy may be a casting alloy implemented by casting the molten metal.
- the crystalline alloy may be an alloy in which a plurality of amorphous or nanocrystalline alloys having a shape of powder, ribbon, ingot or rod are sintered and integrated.
- the amorphous film formed Zr is 58 atomic% to 80 atomic%; Cu is 4 atomic% to 26 atomic%; At least one selected from Fe, Ni, and Co may be 4 atomic% to 26 atomic%.
- an amorphous membrane is provided.
- the amorphous film is implemented by the above-described manufacturing method.
- the argon (Ar) atmosphere may further contain a small amount of nitrogen.
- the argon (Ar) atmosphere containing a small amount of nitrogen may be a ratio of the flow rate of nitrogen and the flow rate of argon is 4:45 or less (greater than zero).
- the amorphous film thus implemented may have an alloy structure in which nitrogen is dissolved therein and may have a metallic color.
- the present invention it is possible to manufacture a nanostructured composite thin film having a high hardness and adhesion while showing a significantly improved friction characteristics compared to the prior art. Therefore, when the nanostructured composite thin film is applied to various members used in a frictional environment, the energy consumed by friction can be significantly reduced, and it can greatly contribute to improving the durability of mechanical parts.
- the hardness and resistance of the conventional amorphous film has the property of increasing, and to prepare an amorphous film that can be applied to decorative and / or radio wave transmission coating, etc. Can be.
- 1 is a view showing a part of the state diagram of zirconium and any one of copper, nickel and cobalt.
- Figure 2 is a photograph showing the microstructure of the cast alloy target according to an embodiment of the present invention (Example 21; Zr 73 Co 8 Cu 19 ).
- Figure 3 is a photograph showing the microstructure of the cast alloy target according to another embodiment of the present invention (Example 28; Zr 74.1 Co 6 Cu 19.9 ).
- Figure 4 is a photograph showing the microstructure of the cast alloy target according to another embodiment of the present invention (Example 33; Zr 75.7 Ni 6 Co 8.6 Cu 9.7 ).
- Figure 6 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to an embodiment of the present invention (Example 21; Zr 73 Co 8 Cu 19 ).
- Figure 7 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to another embodiment of the present invention (Example 28; Zr 74.1 Co 6 Cu 19.9 ).
- Figure 8 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to another embodiment of the present invention (Example 33; Zr 75.7 Ni 6 Co 8.6 Cu 9.7 ).
- Figure 9 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to the comparative example (Zr 63.9 Al 10 Cu 26.1 ) of the present invention.
- Example 10 is a microstructure after Vickers hardness indenter test in the microstructure of the alloy target implemented by sintering in the composition according to another embodiment of the present invention (Example 5; Zr 62.9 Ni 6 Co 10.5 Cu 20.6 ) One picture.
- Figure 11a is a photograph showing the result of observing the target surface after the sputtering of the cast alloy target according to another comparative example (Zr 62.5 Al 10 Mo 5 Cu 22.5 ) of the present invention.
- FIG. 11B (a) is a photograph showing the results of observing the microstructure before sputtering with respect to the cast alloy target of FIG. 11A
- FIG. 11B (b) shows the result of observing the surface of the target where sputtering occurs after sputtering. It is a photograph.
- Example 12 and 13 are low magnification and high magnification photographs of the target surface after sputtering in a cast alloy target according to an embodiment of the present invention (Example 21; Zr 73 Co 8 Cu 19 ).
- Example 14 and 15 are low and high magnification photographs of the target surface after sputtering in a cast alloy target according to another embodiment (Example 28; Zr 74.1 Co 6 Cu 19.9 ).
- 16 and 17 are low magnification photographs of the target surface after sputtering in a cast alloy target according to another embodiment of the present invention (Example 33; Zr 75.7 Ni 6 Co 8.6 Cu 9.7 ).
- FIG. 18 is a meterograph showing a fracture surface of an amorphous thick film formed on a silicon wafer by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 2.
- FIG. 18 is a meterograph showing a fracture surface of an amorphous thick film formed on a silicon wafer by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 2.
- FIG. 19 is a photograph showing a polishing cross section of a structure of an amorphous thick film formed on the tappet by performing a sputtering process under the conditions indicated using the tappet and the target of Example 28 in Table 2.
- FIG. 19 is a photograph showing a polishing cross section of a structure of an amorphous thick film formed on the tappet by performing a sputtering process under the conditions indicated using the tappet and the target of Example 28 in Table 2.
- EDS energy spectroscopy
- EDS 21 and 22 are energy spectroscopy (EDS) analysis results showing the contents of the compositions for the amorphous thick film and the tappet, respectively.
- FIG. 23 is an X-ray diffraction analysis result of a thin film formed under a sputtering process using the targets of Examples 9 and 33 in Table 2.
- FIG. 23 is an X-ray diffraction analysis result of a thin film formed under a sputtering process using the targets of Examples 9 and 33 in Table 2.
- FIG. 24 is a grafograph showing low and high magnification fracture surfaces of the nanonitride film formed on a tappet by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 3.
- Example 25 is an X-ray diffraction analysis result after performing a sputtering process according to the change of nitrogen content using the target of Example 28 in Table 3.
- FIG. 26 is an X-ray diffraction analysis result according to the thickness of the nitride nano thin film formed using the target of Example 28 in Table 3.
- FIG. 27 shows an amorphous film formed on a tappet by performing a sputtering process under the conditions indicated by using the target of Example 28 in Table 2 and a nanoparticle formed by performing the sputtering process under the conditions indicated by using the target of Example 28 in Table 3
- FIG. 28 is an energy spectroscopy (EDS) analysis result showing uniformity of the composition according to the thickness of the gradient functional thin film of FIG. 27.
- EDS energy spectroscopy
- EDS 29 and 30 are energy spectroscopy (EDS) analysis results showing the content of the composition for the nanonitride film and the amorphous film, respectively.
- FIG. 31 is a grafograph showing fracture surfaces of an amorphous film and a nano nitride film forming the gradient functional thin film of FIG. 27.
- 32A to 32D illustrate friction test results of nitride thin films formed using the targets of Example 28 of Table 3 and the targets of Comparative Examples.
- FIG. 33 is a cam-tappet rig test result showing low friction characteristics of a nitride thin film formed using the target of Example 28 of the present invention.
- the film referred to herein may also be referred to as a thin film or a thick film depending on the thickness of the film.
- the nitride film may be referred to as a nitride thin film in some cases
- the amorphous film may be referred to as an amorphous thin film in some cases.
- the hardness and modulus of elasticity of the thin film were measured by the nano-indentation method, and the structure and crystallinity of the thin film were determined by X-ray diffraction analysis.
- cross-sectional structure observation was measured by scanning electron microscopy (SEM), and the components of the thin film were analyzed by energy dispersive spectroscopy (EDS).
- a monolithic alloy target using a multicomponent alloy system having an amorphous forming ability is required.
- Amorphous targets and microcrystalline targets may be used to prepare the alloy target, but in the case of the amorphous target, the destruction of the target occurs due to partial crystallization during the process, and in the case of the microcrystalline target, the manufacturing price is very expensive. .
- a coarse crystalline target using a casting method may be used.
- brittleness is increased by intermetallic compounds formed upon cooling, and the target is destroyed, or coarse grains are formed.
- uniformity of the components of the thin film is inferior.
- the casting method has an advantage in that it is possible to manufacture a multi-component alloy target in an economical manner
- the present inventors want to provide a cast alloy and a sputtering cast alloy target using the same, which can overcome the aforementioned disadvantages. .
- Casting material alloy according to the present invention has a glass forming ability of 0.5mm or more, or is made of three or more metal elements that can form an amorphous thin film when sputtering in an inert gas atmosphere using a sputtering target, It includes a multi-component zirconium-based cast material alloy that can maintain the strength of the alloy by controlling the microstructure using a cold crucible, and can produce a uniform thin film during sputtering.
- Amorphous forming ability means a relative measure of how much an alloy of a specific composition can be easily amorphous to a certain cooling rate.
- a relatively slow casting method for example, copper mold casting method
- Rapid solidification methods such as melt spinning, in which molten alloys are dropped onto a rotating copper roll and solidified with ribbons or wire rods, can achieve a maximum cooling rate of 10 4 K / sec to 10 6 K / sec.
- the composition range can be expanded. Therefore, the evaluation of how much amorphous formation ability a specific composition has in general is characterized by a relative value depending on the cooling rate of a given rapid cooling process.
- This amorphous forming ability depends on the alloy composition and cooling rate, and in general, the cooling rate is inversely proportional to the casting thickness ([cooling rate] ⁇ [cast thickness] -2 ), so the critical thickness of the casting material which can obtain amorphous during casting is evaluated.
- the amorphous forming ability can be relatively quantified.
- the critical casting thickness diameter in the case of rod shape
- the ribbon is formed by melt spinning, it may be indicated by the critical thickness of the ribbon on which amorphous is formed.
- an alloy having an amorphous forming ability means that an amorphous ribbon is obtained at a casting thickness in a range of 20 ⁇ m to 100 ⁇ m when the molten alloy of the alloy is cast at a cooling rate in a range of 10 4 K / sec to 10 6 K / sec. It means an alloy that can.
- the amorphous alloy has a vane structure at the fracture surface and has substantially no specific crystal structure, and the X-ray diffraction pattern does not show a sharp peak at a specific Bragg angle, but broadly over a wide angle range. It may mean a metal alloy body having a phase in which a peak is observed.
- the cast alloy according to the present invention is composed of a multi-component of three or more elements, the difference in atomic radius between the main elements is greater than 12%, and has a characteristic that the heat of mixing between the main elements has a negative value . Therefore, the cast alloy according to the present invention may have an amorphous forming ability (glass forming ability) of 0.5mm or more, or may be used as a sputtering target to form an amorphous thin film when sputtering in an inert gas atmosphere.
- the present inventors have developed a cast alloy based on a relatively high content of zirconium and a relatively low content of copper.
- Casting material alloy according to an embodiment of the present invention is made of three or more metal elements, Zr is 58 atomic% to 80 atomic%; Cu is 4 atomic% to 26 atomic%; At least one selected from Fe, Ni and Co is 4 atomic% to 26 atomic%.
- the chemical composition (unit: atomic%) of the cast material alloy may be Zr 73 Co 8 Cu 19 .
- the chemical composition (unit: atomic%) of the cast material alloy may be Zr 74.1 Co 6 Cu 19.9 .
- the chemical composition (unit: atomic%) of the cast material alloy may be Zr 75.7 Ni 6 Co 8.6 Cu 9.7 .
- the amorphous forming ability in the composition of the cast material alloy may be 0.5 mm or more. It was confirmed that the cast alloy having the composition did not generate cracks under indentation load conditions of 10 kgf of the Vickers hardness test.
- the cast alloy according to the present invention has a very excellent thermal stability compared to the amorphous alloy of the same composition. That is, in the case of the amorphous alloy, due to thermal instability, the local crystallization is locally formed by locally transmitted thermal energy due to thermal instability, and nanocrystalline is locally formed. This local crystallization is weakened by the structure relaxation phenomenon of the amorphous alloy and the fracture toughness is reduced.
- the cast alloy according to the present invention does not show a large change in the microstructure even when heat is applied from the outside, and therefore does not appear to be destroyed due to the thermal and mechanical instability of the conventional amorphous alloy.
- the cast alloy according to the embodiments of the present invention can be successfully applied to the field that requires thermal stability, for example can be applied to the target for sputtering.
- a sputtering target made of a cast alloy of three or more metal elements may be used.
- ions accelerated from the plasma continue to collide during the process, and thus the sputtering target inevitably increases in temperature during the process.
- the sputtering target is amorphous, local crystallization may occur at the target surface due to the temperature rise during the sputtering process, and such local crystallization may increase the brittleness of the target, which may result in the target being easily destroyed during the sputtering process.
- the alloy target for sputtering prepared according to the present invention i) the alloy solidification structure is not composed of a brittle intermetallic compound can maintain the strength of the alloy, ii) the crystal grain size is relatively small Therefore, it is possible to realize uniformity of composition during sputtering.
- the crystalline alloy for example, the alloy constituting the sputtering target
- the crystalline alloy has a microstructure in which crystal grains having a specific size range controlled by heat treatment are uniformly distributed, and thus thermal / mechanical Stability is greatly improved so that no local tissue change occurs even in the temperature rise of the target generated during sputtering, and thus no mechanical instability as described above.
- an alloy target for sputtering made of a crystalline alloy according to an embodiment of the present invention it can be used to stably form an amorphous thin film or a nanostructured composite thin film using sputtering.
- the crystalline alloy according to an embodiment of the present invention is produced by a casting method, the strength is not reduced even if a relatively large crystal grains are present and the advantage that the manufacturing cost is relatively low Has Conventionally, when producing a crystalline target by the casting method, it has a limit in that it is weak in strength and cannot increase the crystalline size.
- the crystalline alloy (for example, the alloy constituting the sputtering target) according to another embodiment of the present invention can be implemented by sintering a number of amorphous or nanocrystalline alloys having the shape of powder, ribbon, ingot or rod by sintering.
- the sputtering target may have a plurality of amorphous alloys or nanocrystalline alloys containing a metal element having an amorphous forming ability, and the temperature range of the glass transition temperature (Tg) or more of the crystallization initiation temperature (Tx) or less of the amorphous alloy or the nanocrystalline alloy.
- the crystalline alloy according to another embodiment of the present invention can control the grain size.
- Table 1 shows the chemical composition and physical properties of the alloy constituting the alloy target for sputtering according to the embodiments of the present invention.
- the temperatures shown in Table 1 include the glass transition temperature (T g ), the crystallization start temperature (T x ), the solidus temperature (T s ), and the liquidus temperature (T l ) of the alloy.
- the alloy for sputtering target according to an aspect of the present invention consists of three or more metal elements, specifically, Zr is 58 atomic% to 80 atomic%; Cu is 4 atomic% to 26 atomic%; At least one selected from Fe, Ni and Co is 4 atomic% to 26 atomic%.
- the solidus and liquidus temperatures may be present in the range of 800 ° C to 1050 ° C, and may be strictly in the range of 850 ° C to 1010 ° C.
- the alloy for sputtering targets according to an aspect of the present invention does not generate cracks under indentation load conditions of 10kgf of the Vickers hardness test.
- Embodiments of the present invention shown in Table 1 satisfy the above-described composition range, temperature range, hardness range.
- the alloy target according to Example 21 has a chemical composition (atomic%) of Zr 73 Co 8 Cu 19
- the alloy target according to Example 28 has a chemical composition (atomic%) of Zr 74.1 Co 6 Cu 19.9
- the alloy target of Example 33 has a chemical composition (atomic%) of Zr 75.7 Ni 6 Co 8.6 Cu 9.7 .
- the amorphous forming ability is 0.5 mm.
- the alloy target according to Example 9 has a chemical composition (atomic%) of Zr 65 Ni 5 Co 5 Fe 5 Cu 20 .
- Example 9 The composition of 0.5 mm thick amorphous formation was not observed by the copper mold casting method, but it was confirmed that the amorphous thin film can be obtained during the sputtering process in an inert gas atmosphere after preparing the sputtering target through the experiment described below.
- Figure 2 is a photograph showing the microstructure of the alloy target prepared by the casting method according to Example 21 (Zr 73 Co 8 Cu 19 ) of the present invention
- Figure 3 is Example 28 (Zr 74.1 Co 6 Cu 19.9 ) of the present invention
- the microstructure of the alloy target prepared by the casting method according to Figure 4 is a photograph showing the microstructure of the alloy target prepared by the casting method according to Example 33 (Zr 75.7 Ni 6 Co 8.6 Cu 9.7 ) of the present invention.
- Figure 5 is a photograph showing the microstructure of the alloy target prepared by the casting method according to a comparative example (Zr 63.9 Al 10 Cu 26.1 ) of the present invention.
- (a) is a low magnification photograph
- (b) is a high magnification photograph.
- Zr is 58 atomic% to 80 atomic%
- Cu is 4 atomic% to 26 atomic%
- at least one selected from Fe, Ni, and Co forms a cast alloy consisting of 4 atomic% to 26 atomic%; it can be seen that the grains of the cast alloy can be finely controlled without coarsening.
- the balance of the alloy is not composed of a brittle intermetallic compound, so that the strength of the alloy can be maintained, and the composition during sputtering is relatively small in grain size. Uniformity can be achieved.
- the alloy according to the comparative example of the present invention it was confirmed that the grains are relatively coarse (FIG. 5).
- the alloy has an equilibrium coagulation structure, including brittle intermetallic compounds, which cannot maintain the strength of the alloy, and the composition is sputtered due to its relatively large crystal grain size. It may be difficult to ensure uniformity of the.
- Figure 6 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to Example 21 (Zr 73 Co 8 Cu 19 ) of the present invention
- Figure 7 is an embodiment of the present invention
- the microstructure of the cast alloy target according to 28 (Zr 74.1 Co 6 Cu 19.9 ) was observed after the Vickers hardness indenter test
- Figure 8 is an embodiment 33 of the present invention (Zr 75.7 Ni 6 Co 8.6
- the microstructure of the cast alloy target according to Cu 9.7 was observed after the Vickers hardness indenter test.
- Figure 9 is a photograph of the microstructure after the Vickers hardness indenter test in the microstructure of the cast alloy target according to the comparative example (Zr 63.9 Al 10 Cu 26.1 ) of the present invention.
- (a) is a low magnification photograph
- (b) is a high magnification photograph.
- Zr is 58 atomic% to 80 atomic%
- Cu is 4 atomic% to 26 atomic%
- At least one selected from Fe, Ni, and Co is 4 atomic% to 26 atomic%
- the cast alloy does not crack under 10 kgf indentation load conditions of Vickers hardness test can confirm.
- the cast alloy according to Examples 21 and 28 did not crack at 30 kgf indentation load conditions of the Vickers hardness test
- the cast alloy according to Example 33 was 20 kgf indentation load conditions of the Vickers hardness test There was no crack in.
- FIG. 10 is a microstructure after Vickers hardness indenter test in the microstructure of the alloy target implemented by sintering in the composition according to another embodiment of the present invention (Example 5; Zr 62.9 Ni 6 Co 10.5 Cu 20.6 )
- Figure 10 (a) is a low magnification photograph, (b) is a high magnification photograph. Specifically, Zr is 62.9 atomic%; Ni is 6 atomic%; Co is 10.5 atomic%; When Cu is formed by sintering a plurality of amorphous alloys or nanocrystalline alloys composed of 20.6 atomic% to form an integrated crystalline alloy, it can be seen that the crystalline alloy does not crack under 10 kgf indentation load conditions of the Vickers hardness test.
- Figure 11a is a photograph showing the result of observing the target surface after the sputtering of the alloy target prepared by the casting method according to another comparative example (Zr 62.5 Al 10 Mo 5 Cu 22.5 ) of the present invention
- (a ) Is a photograph showing the result of observing the microstructure before sputtering with respect to the cast alloy target of Figure 11a
- Figure 11b (b) is a photograph showing the result of observing the surface of the target sputtered after sputtering.
- the cast alloy target according to the comparative example of the present invention shows a non-uniform microstructure in which coarse phases of various sizes and shapes having different compositions such as columnar crystal structure or dendritic form in the solidification process are mixed. . Due to the nonuniformity of this microstructure, the sputtered surface is also formed nonuniformly.
- the uniformity of the thin film composition produced by sputtering may exhibit poor characteristics.
- a significant difference may appear between the composition of the target and the composition of the thin film formed through sputtering, and may adversely affect the thin film properties such as the composition of the thin film changes as the sputtering proceeds.
- particles may be generated from the target during sputtering to contaminate the sputtering chamber.
- various intermetallic compounds having high brittleness may be formed, so that the target may be brittle and fractured during processing of the target during or after casting.
- FIGS. 12 and 13 are low magnification and high magnification photographs of the target surface after sputtering in the cast alloy target according to Example 21 (Zr 73 Co 8 Cu 19 ) of the present invention
- FIGS. 14 and 15 are views of the present invention.
- Low and high magnification photographs of the target surface after sputtering in a cast alloy target according to Example 28 (Zr 74.1 Co 6 Cu 19.9)
- FIGS. 16 and 17 illustrate Example 33 of the present invention (Zr 75.7 Ni 6 Co).
- 8.6 Cu 9.7 is a low and high magnification photograph of the target surface after sputtering in a cast alloy target.
- the sputtering surface is relatively uniform and flat than the comparative example, which is fine of the cast material alloy target It is judged that the tissue is not coarse but fine and uniform so that sputtering on its surface occurs uniformly. Furthermore, the uniformity of the thin film composition produced by sputtering can be ensured by the uniformity of the cast material alloy target. In addition, there is little difference between the composition of the target and the composition of the thin film formed through sputtering, and as the sputtering progresses, a relatively uniform effect of the thin film can be expected. Furthermore, particles are generated from the target during sputtering to contaminate the sputtering chamber. It is expected to be able to prevent the problem.
- the nitride film formed by the sputtering process using the cast material alloy target for sputtering according to the technical idea of the present invention may be referred to as a nanostructure film, a nano nitride film containing nitrogen, or a nanostructured composite film.
- an amorphous film formed by a sputtering process using a cast material alloy target for sputtering according to the technical idea of the present invention may be referred to as an amorphous alloy film hereinafter.
- the thin film When the thin film is formed on the base material by reactive sputtering using the cast material alloy target, the thin film may have a nanostructured composite thin film.
- a gas containing nitrogen gas (N 2 ) or nitrogen (N) as a reactive gas, for example, NH 3 a reactive gas
- Zr may react with nitrogen to form Zr nitride.
- Other elements may be dissolved in Zr nitride or present in the metal phase.
- the nanostructured composite thin film has fine grains corresponding to grain sizes ranging from 5 nm to 30 nm, strictly ranging from 5 nm to 10 nm, in which a nitride phase of the metal and one or more metal phases are mixed with each other. It may refer to a thin film having a.
- the nitride phase of the metal may be, for example, Zr as a member of the nitride.
- the nanostructured composite film shows a crystal structure of Zr nitride, and other metal elements may be dissolved in Zr nitride in the form of nitride.
- Zr nitride includes ZrN or Zr 2 N.
- the metal phase may include a metal element having a lower nitride forming ability than a metal element constituting the nitride, for example, may include Co.
- the nitride phase of the metal has a nanocrystalline structure composed of grains ranging in size from several tens of nanometers.
- the metal phase may be distributed in a small amount at such nano grain boundaries.
- the metal phase is distributed in several atomic units and may exist in a form that does not have a special crystal structure.
- such a metal phase is not uniformly distributed in a specific region but uniformly distributed throughout the thin film.
- the thin film when the thin film is formed on the base material by non-reactive sputtering using the cast material alloy target according to the embodiments of the present invention, the thin film may be an amorphous alloy film.
- Non-reactive sputtering herein refers to sputtering which sputters only with an inert gas, for example, argon, without introducing a gas that is intentionally reactive with the material constituting the alloy target into the sputtering apparatus.
- the cast alloy target according to the embodiments of the present invention has an amorphous forming ability, and thus may exhibit an amorphous alloy structure in a process of forming a solid phase at a high cooling rate such as sputtering.
- the amorphous alloy film formed may have a composition close to that of the cast alloy target used for sputtering.
- the amorphous alloy has substantially no specific crystal structure, and the X-ray diffraction pattern does not show a sharp peak at a specific Bragg angle, but a broad peak at a wide angle range. It can mean a metal alloy body having an observed phase.
- the present inventors have experimentally confirmed that even if a small amount of nitrogen is contained in the argon atmosphere of the non-reactive sputtering process (for example, Ar: 45sccm, N 2 : 4sccm), an amorphous alloy film may be formed.
- a small amount of nitrogen it is determined that ZrN is not produced in the crystalline and that nitrogen is dissolved in the amorphous alloy film.
- the amorphous film formed by sputtering in an argon atmosphere containing a small amount of nitrogen maintains a metallic color and has a property of increasing hardness and resistance than a general amorphous film, and thus may be applied to decorative and / or radio wave coating.
- Nanostructured composite film or amorphous alloy film according to embodiments of the present invention may be formed by a sputtering process using a cast alloy target according to the embodiments of the present invention described above.
- Table 2 shows the results of evaluating the characteristics of the amorphous film formed from the cast material alloy target for sputtering according to the embodiments of the present invention.
- Table 3 shows the results of evaluating the properties of the nanostructured composite thin film formed from the cast material alloy target for sputtering according to the embodiments of the present invention.
- Target division Target Alloy Composition (at%) Sputtering conditions Longitude (GPa) Modulus of elasticity (GPa) Example 9 Zr 65 Ni 5 Co 5 Fe 5 Cu 20 840W-300minAr: 50sccm 5.87 91.54 Example 28 Zr 74.1 Co 6 Cu 19.9 840W-780minAr: 50sccm 4.81 86.2 Example 33 Zr 75.7 Ni 6 Co 8.6 Cu 9.7 840W-300minAr: 50sccm 5.08 90.7
- Example Target composition (at%) Sputtering conditions Longitude (GPa) Modulus of elasticity (GPa)
- Example 21 Zr 73 Co 8 Cu 19 840W-45minAr: 45sccm, N 2 : 6sccm 24.93 279.5
- Example 28 Zr 74.1 Co 6 Cu 19.9 840W-60minAr: 45sccm, N 2 : 6sccm 24.67 290.0
- Example 33 Zr 75.7 Ni 6 Co 8.6 Cu 9.7 840W-45minAr: 45sccm, N 2 : 6sccm 25.81 277.61
- FIG. 18 is a meterograph showing a fracture surface of an amorphous thick film formed on a silicon wafer by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 2.
- FIG. 19 is a photograph showing a polishing cross section of a tappet and a structure of an amorphous thick film formed on the tappet by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 2
- FIG. 20 is an amorphous thick film.
- Figure 21 and 22 are energy spectroscopy (EDS) analysis results showing the content of the composition for the amorphous thick film and tappet, respectively.
- the film formed by performing the sputtering process under the conditions indicated using the target of Example 28 in Table 2 has the characteristics of a typical amorphous film.
- 19 and 20 it can be seen that the amorphous film formed using the cast material alloy target for sputtering according to the embodiments of the present invention has a uniform composition according to thickness.
- Table 4 is an energy spectroscopy (EDS) analysis results showing the content of the composition for the amorphous thick film shown in Figure 21
- Table 5 is an energy spectroscopy (EDS) analysis results showing the content of the composition for the tappet shown in Figure 22 .
- Table 4 is an energy spectroscopy (EDS) analysis results showing the content of the composition for the tappet shown in Figure 22 .
- the cast material alloy target for sputtering according to the embodiments of the present invention has a high thermal / mechanical stability, the microstructure of the target is very uniform.
- FIG. 23 shows the results of X-ray diffraction analysis of an amorphous film formed by performing a sputtering process under the conditions indicated using the targets of Examples 9 and 33 in Table 2. From the results of FIG. 23A, the amorphous forming ability could not be measured by the copper mold inhalation method. However, it was confirmed that the amorphous thin film could be obtained by sputtering in an inert gas atmosphere after being manufactured as a sputtering target.
- FIG. 24 is a low magnification and high magnification photograph showing a fracture surface of a nano nitride film formed on a Si wafer by performing a sputtering process under the conditions indicated using the target of Example 28 in Table 3.
- the sputtering process is performed for 60 minutes by applying a sputtering power of 840 W under a nitrogen gas atmosphere having a flow rate.
- an alloy film formed by sputtering a cast alloy target while injecting nitrogen gas (N 2 ) or a reaction gas containing nitrogen (N) into the sputtering apparatus at a ratio of the above-described conditions is typical. It can be seen that the nanostructured composite film has the characteristics.
- FIG. 25 is an X-ray diffraction analysis result of a thin film formed under various conditions using the alloy target for sputtering according to Example 28 of Table 2 and Table 3.
- FIG. Specifically, (a) of FIG. 25 is a result of analyzing a thin film formed by performing a sputtering process for 50 minutes in an argon gas having a flow rate of 45 sccm and a nitrogen gas having a flow rate of 4 sccm with respect to the target.
- (B) is a result of analyzing a thin film formed by performing a sputtering process for 45 minutes in an argon gas having a flow rate of 45 sccm and a nitrogen gas having a flow rate of 6 sccm with respect to the target, and FIG.
- a small amount of nitrogen is contained in the argon atmosphere of the non-reactive sputtering process (eg, Ar: 45sccm, N 2 : 4sccm), it was confirmed that an amorphous alloy film may be formed.
- a small amount of nitrogen it is determined that ZrN is not produced in the crystalline and that nitrogen is dissolved in the amorphous alloy film.
- the amorphous film formed by sputtering in an argon atmosphere containing a small amount of nitrogen maintains a metallic color and has a property of increasing hardness and resistance than a general amorphous film, and thus may be applied to decorative and / or radio wave coating.
- the present inventors for example, when the sputtering process is performed in an atmosphere in which the ratio of the flow rate of nitrogen and the flow rate of argon is 4:45 or less (greater than 0), as described above, the metallic amorphous color is maintained and the general amorphous film is maintained. Since the hardness and resistance are more increased, it was confirmed that an amorphous film that can be applied to decorative and / or radio transmission coating may be implemented.
- the amorphous film which can be applied to the above-mentioned decorative and / or radio transmission coating may be applied to an electronic component exterior material or a sensor exterior material for automobile smart cruise.
- an electronic component exterior material or a sensor exterior material for automobile smart cruise For example, in the case of the exterior material of the mobile phone, by coating the above-mentioned amorphous film on the existing plastic cover, it is possible to realize the metal appearance while satisfying the corrosion resistance and electromagnetic properties required in the electronic product exterior material.
- FIG. 26 is an X-ray diffraction analysis result after changing the thickness of the coating thin film according to the sputtering time under the condition of 45 sccm of argon gas and 6 sccm of nitrogen gas using the sputtering target having the alloy composition of Example 28.
- FIG. FIG. 26A illustrates a case where a 3.5 ⁇ m thick film is formed through a 60 minute process
- FIG. 26B illustrates a case where a 21 ⁇ m thick film is formed through a 270 minute process. Is a case where a 53 ⁇ thick film is formed through a 700 minute process. As shown in the result of FIG.
- the nanostructured composite thin film according to the embodiments of the present invention exhibits high hardness as the Zr nitride of high hardness and a metal alloy having a relatively low modulus of elasticity are mixed in the thin film and exhibit very fine nano-level grains.
- the elastic modulus of the difference is not great. In particular, it exhibits significantly improved low friction characteristics compared to the prior art.
- a buffer layer may be further formed between the base material and the nanostructured composite thin film.
- the buffer layer may function as an adhesion layer for further improving adhesion to the base material of the nanostructured composite thin film.
- another example may be a stress relaxation layer for relaxing the stress between the base material and the nanostructured composite thin film
- another example may be a corrosion resistant layer for improving the corrosion resistance.
- the present invention is not limited thereto and refers to all layers that may be interposed between the nanostructured composite film and the base material in terms of the structure of the thin film.
- an amorphous alloy thin film formed by using the above-described cast alloy target may be used. Specifically, in the process of mounting a cast alloy target in the sputtering chamber and then coating the base material by sputtering, in the first step, an amorphous alloy thin film is formed on the base material by a predetermined thickness in a non-reactive sputtering process, and then inside the sputtering chamber. Sputtering may be performed while introducing nitrogen gas into the nanostructured composite thin film. In this case, the buffer layer and the nanostructured composite thin film may be formed in-situ using the same cast material alloy target.
- the present invention is not limited thereto, and the amorphous alloy thin film and the nanostructured composite thin film, which are buffer layers, may be formed by using targets having different compositions, and may also be formed in separate chambers.
- a metal layer using a separate target for example, a Ti layer using a Ti target, may be used.
- the Ti layer and the amorphous alloy thin film layer may be sequentially formed from the surface of the metal base material as described above.
- the interface between the buffer layer and the nanostructured composite thin film may include a boundary layer in which nitrogen or elements constituting the buffer layer are gradiently formed. That is, the composition may not gradually change at the interface but gradually change, so that a boundary layer having a composition inclined may be formed.
- FIG. 27 shows an amorphous film formed on a tappet by performing a sputtering process under the conditions indicated by using the target of Example 28 in Table 2 and a nanoparticle formed by performing the sputtering process under the conditions indicated by using the target of Example 28 in Table 3
- FIG. 28 is an energy spectroscopy (EDS) analysis result showing uniformity of composition according to the thickness of the gradient functional thin film of FIG. 27, and FIGS. 29 and 30 Results of energy spectroscopy (EDS) analysis showing the content of compositions for nanonitride and amorphous films, respectively.
- FIG. 31 is a chromatograph showing fracture surfaces of an amorphous film and a nano nitride film forming the gradient functional thin film of FIG. 27.
- an amorphous film was formed on a tappet by performing a sputtering process for 780 minutes by applying a sputtering power of 840 W in an argon atmosphere using a caster alloy target for sputtering having a composition of Zr 74.1 Co 6 Cu 19.9. Subsequently, a sputtering process was performed for 60 minutes by applying a sputtering power of 840 W in a nitrogen atmosphere using the same cast material alloy target to form a nano nitride film on the amorphous film.
- the amorphous film and the nano-nitride film formed using the cast material alloy target for sputtering according to the embodiments of the present invention have a uniform composition according to the thickness.
- Table 6 is an energy spectroscopy (EDS) analysis result showing the content of the composition for the nano-nitride film shown in Figure 29
- Table 7 is an energy spectroscopy (EDS) analysis results showing the content of the composition for the tappet shown in Figure 30 . According to this, it can be seen that the composition does not change rapidly at the interface but gradually changes to form a boundary layer having a gradient in composition.
- the cast material alloy target for sputtering according to the embodiments of the present invention is high thermal / mechanical stability, it can be seen that the microstructure of the target is very uniform.
- the nano-nitride film according to the embodiments of the present invention has a high hardness and adhesiveness while exhibiting an improved friction property compared to the conventional.
- a technique of forming a thin film having low friction characteristics on the surface of the base material may be applied.
- energy consumption may occur due to friction between various components generated during driving of an automobile engine.
- the fuel consumption can be improved by reducing the consumption of automobile fuel.
- the thin film having such a low friction property must withstand harsh frictional environments, it must have a certain degree of hardness and adhesion to the base material in addition to the low friction property and high resistance to oxidation atmosphere.
- nitride, carbide-based ceramic material, or DLC (diamond like carbon) having high hardness may be used, and applied to the base material by physical vapor deposition, chemical vapor deposition, plasma spray coating, or the like. Can be.
- the conventional ceramic thin film exhibits high hardness of about 2000 Hv or more, but exhibits a high difference in elastic modulus from metal materials such as steel, aluminum, and magnesium, which are used as base materials.
- the modulus of elasticity of most high-melting-point ceramic materials is 400-700 GPa, whereas aluminum alloys are about 70 GPa, magnesium alloys are about 45 GPa, and steel is about 200 GPa. Can be represented. In addition, it exhibits a high coefficient of friction for application to critical drive members such as automobile engines.
- 32C and 32D illustrate friction test results of a nitride thin film formed using an alloy target having a composition of Example 28 of the present invention.
- DLC coated parts see FIG. 32A
- uncoated parts see FIG. 32B
- the friction coefficient of the nitride film formed by some embodiments of the present invention was found to show a significantly lower coefficient of friction than DLC coated parts and uncoated parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 스퍼터링 장치 내부로 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하면서 합금타겟을 스퍼터링하여 질소를 포함하는 나노구조막을 형성하는 단계;를 포함하되, 상기 합금타겟은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 구성된 결정질 합금으로 이루어진, 질소를 포함하는 나노구조막의 제조방법을 제공한다.
Description
본 발명은 비정질막, 질소를 포함하는 나노구조막 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는, 비정질 형성능을 가지는 금속원소를 포함하는 비정질 합금의 열처리에 의하여 구현된 결정질 합금 타겟을 스퍼터링함으로써 형성된 비정질막, 질소를 포함하는 나노구조막 및 그의 제조방법에 관한 것이다.
각종 기계장치의 구동부품이나 습동부재 혹은 각종 공구류에서는 우수한 윤활특성을 필요로 하는 경우가 다수 발생한다. 이러한 윤활특성의 개선을 위해서 모재의 표면에 저마찰 특성을 가지는 박막을 형성하는 기술이 적용될 수 있다. 예를 들어, 자동차 엔진의 구동 중에 발생되는 각종 부품간의 마찰로 인하여 에너지의 소모가 발생될 수 있다. 이러한 구동부품간의 마찰을 저감시키게 될 경우 자동차 연료의 소모를 감소시킴에 따라 연비 향상의 효과를 가져 올 수 있다. 이러한 저마찰특성을 가지는 박막은 가혹한 마찰환경에서 견뎌야 하므로 저마찰 특성 이외에도 일정정도 이상의 경도와 모재에 대한 밀착력을 갖추어야 하며 산화분위기에 대한 높은 저항성이 요구된다. 이러한 저마찰 특성을 가지는 박막으로 고경도를 가지는 질화물이나 탄화물 계열의 세라믹 재료, 혹은 DLC(diamond like carbon) 등이 이용될 수 있으며, 물리증착법, 화학증착법, 플라즈마 용사코팅법 등에 의해 모재상에 도포될 수 있다. 그러나 종래의 세라믹 계열의 박막은 약 2000Hv 이상의 고경도를 나타내기는 하나 모재로 이용되는 강, 알루미늄, 마그네슘과 같은 금속소재와 탄성계수의 높은 차이를 나타낸다. 예를 들어 대부분의 고융점 세라믹재료의 탄성계수는 400 내지 700GPa임에 비해 알루미늄합금은 약70GPa, 마그네슘합금은 약 45GPa, 강은 약 200GPa로서 불일치되는 정도가 매우 높으며, 이러한 차이로 인하여 내구성에 문제를 나타낼 수 있다. 또한 자동차용 엔진 등과 같은 중요한 구동부재에 적용하기에는 높은 마찰계수값을 나타낸다. 한편 DLC 막의 경우 경계윤활환경에서 마찰저감효과가 크지 않고, 준안정상으로서 마찰부의 고체간 접촉에 의해 온도상승을 동반하는 경계윤활환경 하에서 마모에 의한 흑연화(graphitization, sp3 →sp2)가 진행되어 막의 심각한 마모가 발생할 수 있고, 윤활유내의 첨가된 마찰조정제(friction modifier), 예를 들어 유기몰리브덴 화합물(MoDTC, Molybdenum dialkyldithiocarbamate) 등의 첨가제와 부합되지 않아 첨가제 효율을 떨어뜨리고, DLC막의 마모 마찰을 촉진하는 문제점이 발생될 수 있다.
본 발명은 종래의 박막에 비해 마찰계수가 월등히 낮은 값을 나타내면서도 높은 경도와 밀착성을 가지는 저마찰 특성을 나타내는 질소를 포함하는 나노구조막 또는 고내식 특성의 비정질막 및 이의 제조방법의 제공을 여러 목적들 중의 하나로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 의한 질소를 포함하는 나노구조막의 제조방법이 제공된다. 상기 질소를 포함하는 나노구조막의 제조방법은 스퍼터링 장치 내부로 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하면서 합금타겟을 스퍼터링하여 질소를 포함하는 나노구조막을 형성하는 단계;를 포함한다. 상기 합금타겟은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 구성된 결정질 합금으로 이루어진다.
상기 질소를 포함하는 나노구조막의 제조방법에서, 상기 결정질 합금의 고상선 및 액상선 온도는 800℃ 내지 1050℃ 범위에 존재할 수 있다.
상기 질소를 포함하는 나노구조막의 제조방법에서, 상기 결정질 합금은 용탕을 주조하여 구현한 주조 합금일 수 있다.
상기 질소를 포함하는 나노구조막의 제조방법에서, 상기 결정질 합금은 분말, 리본, 괴 또는 봉의 형상을 가지는 다수의 비정질 또는 나노결정질 합금을 소결하여 일체화 시킨 합금일 수 있다.
본 발명의 다른 관점에 의한 질소를 포함하는 나노구조막이 제공된다. 상기 질소를 포함하는 나노구조막은 상술한 제조방법에 의하여 구현된다.
본 발명의 또 다른 관점에 의한 비정질막의 제조방법이 제공된다. 상기 비정질막의 제조방법은 스퍼터링 장치 내부의 합금타겟을 아르곤(Ar) 분위기에서 비반응성 스퍼터링하여 파단면에서 베인(vein) 구조가 관찰되며 X-선 회절 분석 시 결정질 피크가 나타나지 않는 비정질막을 형성하는 단계;를 포함하되, 상기 합금타겟은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 구성된 결정질 합금으로 이루어진다.
상기 비정질막의 제조방법에서, 상기 결정질 합금은 용탕을 주조하여 구현한 주조 합금일 수 있다.
상기 비정질막의 제조방법에서, 상기 결정질 합금은 분말, 리본, 괴 또는 봉 의 형상을 가지는 다수의 비정질 또는 나노결정질 합금을 소결하여 일체화 시킨 합금일 수 있다.
상기 비정질막의 제조방법에서, 형성된 상기 비정질막은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어질 수 있다.
본 발명의 또 다른 관점에 의한 비정질막이 제공된다. 상기 비정질막은 상술한 제조방법에 의하여 구현된다.
한편, 상기 비정질막의 제조방법에서, 상기 아르곤(Ar) 분위기는 소량의 질소를 더 함유할 수 있다. 이 경우, 상기 소량의 질소를 함유하는 상기 아르곤(Ar) 분위기는 질소의 유량과 아르곤의 유량의 비가 4:45 이하(0 초과)일 수 있다. 이에 따라 구현되는 비정질막은 질소가 내부에 고용된 합금조직을 가지며, 금속색의 칼라(color)를 가질 수 있다.
본 발명의 일부 실시예들을 따를 경우, 종래에 비해 월등하게 개선된 마찰특성을 나타내면서도 높은 경도와 밀착성을 가지는 나노구조 복합박막을 제조할 수 있다. 따라서 이러한 나노구조 복합박막을 마찰환경에 이용되는 각종 부재에 적용할 경우, 마찰에 의해 소모되는 에너지를 획기적으로 감소시킬 수 있으며 기계부품의 내구성 향상에도 크게 기여할 수 있다.
또한, 본 발명의 일부 다른 실시예들을 따를 경우, 금속색의 칼라를 유지하며 일반적인 비정질막보다 경도 및 저항이 상승하는 특성을 가지며, 장식용 및/또는 전파투과코팅 등에 응용될 수 있는 비정질막을 제조할 수 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 구리, 니켈 및 코발트 중에서 어느 하나와 지르코늄의 상태도의 일부를 도시한 도면이다.
도 2는 본 발명의 일 실시예(실시예21;Zr73Co8Cu19)에 따른 주조재 합금 타겟의 미세조직을 나타낸 사진들이다.
도 3은 본 발명의 다른 실시예(실시예28;Zr74.1Co6Cu19.9)에 따른 주조재 합금 타겟의 미세조직을 나타낸 사진들이다.
도 4는 본 발명의 또 다른 실시예(실시예33;Zr75.7Ni6Co8.6Cu9.7)에 따른 주조재 합금 타겟의 미세조직을 나타낸 사진들이다.
도 5는 본 발명의 비교예(Zr63.9Al10Cu26.1)에 따른 합금 타겟의 미세조직을 나타낸 사진들이다.
도 6은 본 발명의 일 실시예(실시예21;Zr73Co8Cu19)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다.
도 7은 본 발명의 다른 실시예(실시예28;Zr74.1Co6Cu19.9)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다.
도 8은 본 발명의 또 다른 실시예(실시예33;Zr75.7Ni6Co8.6Cu9.7)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다.
도 9는 본 발명의 비교예(Zr63.9Al10Cu26.1)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다.
도 10은 본 발명의 또 다른 실시예(실시예5;Zr62.9Ni6Co10.5Cu20.6)에 따른 조성에서 소결에 의하여 구현된 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다.
도 11a는 본 발명의 다른 비교예(Zr62.5Al10Mo5Cu22.5)에 따른 주조재 합금 타겟의 스퍼터링 후 타겟 표면을 관찰한 결과를 나타낸 사진이다.
도 11b의 (a)는 도 11a의 주조재 합금 타겟에 대하여 스퍼터링 전의 미세조직을 관찰한 결과를 나타낸 사진이고, 도 11b의 (b)는 스퍼터링 후 스퍼터링이 일어난 타겟의 표면을 관찰한 결과를 나타낸 사진이다.
도 12 및 도 13은 본 발명의 일 실시예(실시예21;Zr73Co8Cu19)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 및 고배율 사진이다.
도 14 및 도 15는 다른 실시예(실시예28;Zr74.1Co6Cu19.9)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 및 고배율 사진이다.
도 16 및 도 17은 본 발명의 또 다른 실시예(실시예33;Zr75.7Ni6Co8.6Cu9.7)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 사진이다.
도 18은 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 실리콘 웨이퍼(Si wafer) 상에 형성된 비정질 후막의 파단면을 나타낸 사진(fractograph)이다.
도 19는 태핏(tappet) 및 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 상기 태핏 상에 형성된 비정질 후막의 구조체에 대한 연마단면을 나타낸 사진이다.
도 20은 비정질 후막의 두께에 따라 조성의 균일도를 보여주는 에너지 분광(EDS) 분석 결과이다.
도 21 및 도 22는 각각 비정질 후막과 태핏에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다.
도 23은 표 2에서 실시예 9 및 실시예 33의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정 하에서 형성된 박막의 X선회절 분석결과이다.
도 24는 표 3에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 태핏(tappet) 상에 형성된 나노질화막의 저배율 및 고배율 파단면을 나타낸 사진(fractograph)이다.
도 25는 표 3에서 실시예 28의 타겟을 이용하여 질소함유량의 변화에 따라 스퍼터링 공정을 수행 한 후의 X선 회절 분석 결과이다.
도.26은 표 3에서 실시예 28의 타겟을 이용하여 형성된 질화물 나노박막의 막 두께에 따른 X선 회절 분석결과이다.
도 27은 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 태핏 상에 형성된 비정질막과 표 3에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 형성된 나노질화막으로 구성된 경사기능형 박막 구조체의 연마단면을 나타낸 사진이다.
도 28은 도 27의 경사기능형 박막의 두께에 따라 조성의 균일도를 보여주는 에너지 분광(EDS) 분석 결과이다.
도 29 및 도 30은 각각 나노질화막과 비정질막에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다.
도 31은 도 27의 경사기능형 박막을 구성하는 비정질막과 나노질화막의 파단면을 나타낸 사진(fractograph)이다.
도 32a 내지 도 32d는 표 3의 실시예 28의 타겟과 비교예의 타겟을 이용하여 형성된 질화물 박막의 마찰시험 결과이다.
도 33은 본 발명의 실시예 28의 타겟을 이용하여 형성된 질화물 박막의 저마찰 특성을 나타내는 캠-태핏(cam-tappet) 리그시험 결과이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
본 명세서에서 언급하는 막은 막의 두께에 따라 박막 또는 후막으로도 명명될 수 있다. 예를 들어, 질화물막은 경우에 따라서는 질화물 박막으로 명명될 수 있으며, 비정질막은 경우에 따라서는 비정질 박막으로 명명될 수도 있다.
얻어진 박막의 평가를 위해서 박막의 경도 및 탄성계수는 나노 인덴테이션 방법으로 측정하였고, 박막의 구조 및 결정성의 확인은 X선 회절분석을 이용하였다. 미세구조를 관찰하기 위하여 단면 구조 관찰은 SEM(scanning electron microscopy)으로 측정하였고, 박막의 성분은 EDS(Energy dispersive spectroscopy)로 분석하였다.
스퍼터링용 합금 타겟
스퍼터링 공정을 통하여 다기능성의 나노구조 복합박막 또는 비정질 박막 합성을 위해서는 비정질 형성능을 갖는 다성분 합금계를 이용한 단일체 합금 타겟이 필요하다. 상기 합금 타겟을 제조하기 위해서 비정질 타겟 및 마이크로 결정질 타겟이 사용될 수 있으나, 비정질 타겟의 경우 공정 중에 부분 결정화에 의한 타겟의 파괴현상이 발생하고, 미세 결정질 타겟의 경우 제조가격이 매우 비싸다는 단점을 가진다.
합금 타겟을 제조하기 위한 또 다른 방법으로 주조법을 이용한 조대결정질 타겟을 사용할 수 있으나, 지르코늄기 비정질 합금계의 경우 냉각 시 형성되는 금속간 화합물에 의해 취성이 증가하여 타겟이 파괴되거나, 조대한 결정립에 의해 박막의 성분 균일성이 떨어지는 단점이 있다.
그러나, 주조법의 경우 경제적인 방법으로 다성분계 합금 타겟을 제조할 수 있다는 장점을 가지므로, 본 발명자는 상술한 단점들을 극복할 수 있는 주조재 합금 및 이를 이용한 스퍼터링용 주조재 합금 타겟을 제공하고자 한다.
본 발명을 따르는 주조재 합금은 0.5mm 이상의 비정질 형성능(glass forming ability)을 가지거나, 스퍼터링 타겟으로 이용하여 비활성가스 분위기에서 스퍼터링 시 비정질 박막을 형성할 수 있는 3 이상의 금속원소로 이루어지며, 주조 시 콜드 크루시블(cold crucible)을 이용하여 미세조직을 제어함으로써 합금의 강도를 유지하고, 스퍼터링 시 균일한 박막을 제조할 수 있는 다성분 지르코늄계 주조재 합금을 포함한다.
비정질 형성능이란 특정조성의 합금이 어느 정도의 냉각속도까지 용이하게 비정질화가 될 수 있는지를 나타내는 상대적인 척도를 의미하다. 일반적으로 주조를 통해 비정질 합금을 형성하기 위해서는 일정 수준 이상의 높은 냉각속도를 필요로 하며, 응고속도가 상대적으로 느린 주조방법(예를 들어 구리금형주조법)으로 사용할 경우 비정질 형성 조성범위가 줄어들게 되는 반면, 회전하는 구리 롤에 용융합금을 떨어뜨려 리본이나 선재로 응고시키는 멜트스피닝(melt spinning)과 같은 급속응고법은 104 K/sec ~ 106 K/sec 이상의 극대화된 냉각속도를 얻을 수 있어서 비정질을 형성할 수 있는 조성범위가 확대되게 된다. 따라서 특정조성이 얼마정도의 비정질 형성능을 갖고 있는지에 대한 평가는 일반적으로 주어진 급속냉각공정의 냉각속도에 따라 상대적인 값을 나타내는 특징을 가진다.
이러한 비정질 형성능은 합금조성과 냉각속도에 의존적이며, 일반적으로 냉각속도는 주조 두께에 역비례([냉각속도]∝[주조두께]-2)하기 때문에 주조시 비정질을 얻을 수 있는 주조재의 임계두께를 평가함으로써 비정질 형성능을 상대적으로 정량화 할 수 있다. 예를 들어, 구리금형주조법에 의할 시, 비정질구조를 얻을 수 있는 주조재의 임계주조두께(봉상인 경우에는 지름)로 표시할 수 있다. 다른 예로서 멜트스피닝에 의해 리본 형성시, 비정질이 형성되는 리본의 임계두께로 표시할 수 있다.
본 발명에 있어서, 비정질 형성능을 가지는 합금의 의미는 상기 합금의 용탕을 104 K/sec ~ 106 K/sec 범위의 냉각속도로 주조시 20㎛ 내지 100㎛ 범위의 주조두께로 비정질리본을 얻을 수 있는 합금을 의미한다.
본 명세서에서 비정질 합금은 파단면에서 베인(vein) 구조가 관찰되며 실질적으로 특정한 결정구조를 가지지 않으며 X-선 회절패턴이 특정한 브래그각도에서 뚜렷한 결정 피크(sharp peak)를 보이지 않고 넓은 각도 범위에서 브로드 피크(broad peak)가 관찰되는 상을 가진 금속합금체를 의미할 수 있다.
본 발명을 따르는 주조재 합금은 3 원소 이상의 다성분으로 구성되며, 주 원소간의 원자반경의 차이가 12%이상으로 크고, 주 원소간의 혼합열(heat of mixing)이 음의 값을 갖는 특징을 가진다. 따라서 본 발명에 따르는 주조재 합금의 경우 0.5mm 이상의 비정질 형성능(glass forming ability)을 가지거나, 스퍼터링 타겟으로 이용하여 비활성가스 분위기에서 스퍼터링 시 비정질 박막을 형성할 수 있다.
부식특성을 개선하고 고경도 질화물 박막을 합성하기 위하여, 본 발명자는 지르코늄의 함량은 상대적으로 높고, 구리의 함량은 상대적으로 낮은 조성을 중심으로 주조재 합금을 개발하였다.
본 발명의 일 실시예를 따르는 주조재 합금은 3 이상의 금속원소로 이루어지며, Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어진다.
구체적인 예를 들면, 상기 주조재 합금의 화학조성(단위:원자%)은 Zr73Co8Cu19일 수 있다. 구체적인 다른 예를 들면, 상기 주조재 합금의 화학조성(단위:원자%)은 Zr74.1Co6Cu19.9일 수 있다. 구체적인 또 다른 예를 들면, 상기 주조재 합금의 화학조성(단위:원자%)은 Zr75.7Ni6Co8.6Cu9.7일 수 있다. 상기 주조재 합금의 조성에서 비정질 형성능은 0.5 mm 이상일 수 있다. 상기 조성을 가지는 주조재 합금은 비커스 경도 시험의 10kgf의 압입하중 조건에서 크랙이 발생하지 않음을 확인하였다.
이러한 본 발명을 따르는 주조재 합금은 동일조성의 비정질 합금에 비해 매우 우수한 열적 안정성을 가진다. 즉, 비정질 합금의 경우 열적 불안정성으로 인해 외부에서 전달된 열에너지에 의해 국부적으로 부분 결정화가 일어나면서 나노결정질이 국부적으로 형성된다. 이러한 국부적인 결정화는 비정질 합금의 구조완화 현상에 의해 취약해지며 파괴인성이 감소하게 된다.
그러나 본 발명을 따르는 주조재 합금은 외부에서 열이 가해지더라도 미세조직의 큰 변화를 보이지 않으며, 따라서 종래의 비정질 합금이 가지는 열적, 기계적 불안전성에 기인한 파괴가 나타나지 않는다.
이러한 본 발명의 실시예들을 따르는 주조재 합금은 열적 안정성이 필요한 분야에 성공적으로 적용될 수 있으며, 일 예로서 스퍼터링용 타겟에 적용될 수 있다.
스퍼터링 및 반응성 스퍼터링을 통해 비정질 박막 또는 나노구조 복합박막을 형성하기 위하여 3 이상의 금속원소로 이루어진 주조재 합금으로 이루어진 스퍼터링 타겟이 이용될 수 있다. 스퍼터링 타겟의 경우 공정 중에 플라즈마로부터 가속되는 이온이 계속 충돌하게 되며, 이로 인해 스퍼터링 타겟은 공정 중에 필연적으로 온도가 상승하게 된다. 스퍼터링 타겟이 비정질로 이루어진 경우, 스퍼터링 과정 중에 온도상승에 따른 타겟 표면에서의 국부적 결정화가 진행될 수 있으며, 이러한 국부적 결정화는 타겟의 취성을 증가시켜 스퍼터링 공정 중에 타겟이 쉽게 파괴되는 결과를 초래할 수 있다.
반면, 본 발명에 의한 제조된 스퍼터링용 합금 타겟에서는 i) 합금계의 평형응고조직이 취성이 강한 금속간 화합물로 구성되지 않아 합금의 강도를 유지할 수 있으며, ii) 구성상의 결정립크기가 상대적으로 작기 때문에 스퍼터링시 조성의 균일성을 구현할 수 있다.
즉, 본 발명에 의한 일 실시예를 따르는 결정질 합금(예를 들어, 스퍼터링 타겟을 구성하는 합금)은 열처리에 의해 제어된 특정한 크기범위를 가지는 결정립이 균일하게 분포하는 미세조직을 가지므로 열적/기계적 안정성이 크게 향상되어 스퍼터링 중에 발생되는 타겟의 온도상승에도 국부적인 조직의 변화가 나타나지 않으며, 따라서 상술한 것과 같은 기계적 불안정성이 나타나지 않는다. 본 발명에 의한 일 실시예를 따르는 결정질 합금으로 이루어진 스퍼터링용 합금 타겟의 경우에는 스퍼터링을 이용하여 비정질 박막 또는 나노구조 복합박막을 안정적으로 형성하는데 이용될 수 있다. 본 발명에서 제안한 조성의 범위에서, 본 발명에 의한 일 실시예를 따르는 결정질 합금은 주조법으로 제조되는 것으로서, 상대적으로 매우 큰 결정립이 존재하더라도 강도가 저하되지 않는다는 장점과 제조비용이 상대적으로 낮다는 장점을 가진다. 종래에는 주조법으로 결정질 타겟을 제조하는 경우, 강도 측면에서 취약하여 결정질 크기를 크게 할 수 없다는 한계를 가졌다.
한편, 본 발명의 다른 실시예를 따르는 결정질 합금(예를 들어, 스퍼터링 타겟을 구성하는 합금)은 분말, 리본, 괴 또는 봉의 형상을 가지는 다수의 비정질 또는 나노결정질 합금을 소결하여 일체화시켜 구현할 수 있다. 예를 들어, 스퍼터링 타겟은 비정질 형성능을 가지는 금속원소를 포함하는 복수개의 비정질 합금 또는 나노결정질 합금을 상기 비정질 합금 또는 나노결정질 합금의 유리천이온도(Tg) 이상 결정화 개시온도(Tx) 이하의 온도범위에서 소정의 시간 동안 유지하면서 가압함으로써 제 1 차 수축하는 단계; 및 상기 복수개의 비정질 합금 또는 나노결정질 합금을 상기 비정질 합금 또는 나노결정질 합금의 용융온도(Tm)의 0.7 배 내지 0.9 배의 온도범위에서 소정의 시간 동안 유지하면서 가압함으로써 제 2 차 수축하는 단계;를 포함하여 수행함으로써 형성된 결정질 합금으로 이루어질 수 있다. 본 발명에 의한 다른 실시예를 따르는 결정질 합금으로 이루어진 스퍼터링용 합금 타겟의 경우에는 스퍼터링을 이용하여 비정질 박막 또는 나노구조 복합박막을 안정적으로 형성하는데 이용될 수 있다. 본 발명에서 제안한 조성의 범위에서, 본 발명에 의한 다른 실시예를 따르는 결정질 합금은 결정립 크기의 제어가 가능하다.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제공한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실시예들에 의해서 한정되는 것은 아니다.
표 1은 본 발명의 실시예들에 의한 스퍼터링용 합금 타겟을 구성하는 합금의 화학조성과 물성 등을 나타낸다. 표 1에 나타난 온도는 합금의 유리천이온도(Tg), 결정화 개시온도(Tx), 고상선 온도(Ts), 액상선 온도(Tl)를 포함한다.
실시예 | 조성 | 형성능(mm) | 압입자 한계 | Tg(℃) | Tx(℃) | Ts(℃) | Tl(℃) |
실시예1 | Zr58.9Ni7Co9Cu25.1 | 0.5 | 10이상 | 391.88 | 416.22 | 917.69 | 943.84 |
실시예2 | Zr60Co20Cu20 | 미확인 | 10이상 | 미확인 | 미확인 | 899.46 | 910.14 |
실시예3 | Zr61.8Ni6Co7.5Cu24.7 | 0.5 | 10이상 | 미확인 | 미확인 | 934 | 955.07 |
실시예4 | Zr61.8Co7.5Fe6Cu24.7 | 0.5 | 10이상 | 386.66 | 409.98 | 892.5 | 938.92 |
실시예5 | Zr62.9Ni6Co10.5Cu20.6 | 0.5 | 10이상 | 345.52 | 395.07 | 912.51 | 940.31 |
실시예6 | Zr64Co25Cu11 | 0.5 | 10이상 | 미확인 | 미확인 | 947.37 | 1002.75 |
실시예7 | Zr63Co20Cu17 | 미확인 | 10이상 | 미확인 | 미확인 | 934.52 | 998.74 |
실시예8 | Zr65Ni10Co5Cu20 | 1 | 10이상 | 368.16 | 394.83 | 917.56 | 941.41 |
실시예9 | Zr65Ni5Co5Fe5Cu20 | 미확인 | 10이상 | 미확인 | 미확인 | 892.18 | 913.56 |
실시예10 | Zr65Co20Cu15 | 미확인 | 10이상 | 미확인 | 미확인 | 898.62 | 954.85 |
실시예11 | Zr66.4Ni8Co16Cu9.6 | 0.5 | 10이상 | 미확인 | 미확인 | 952.71 | 997.66 |
실시예12 | Zr66.5Co7.5Fe6Cu20 | 미확인 | 10이상 | 미확인 | 미확인 | 890.91 | 922.18 |
실시예13 | Zr67.1Co6Fe6Ni6Cu14.9 | 미확인 | 10이상 | 미확인 | 미확인 | 899.07 | 935.67 |
실시예14 | Zr69.86Co12Cu18.14 | 0.5 | 10이상 | 360.12 | 377.34 | 876.28 | 929.99 |
실시예15 | Zr70Co8Cu22 | 미확인 | 10이상 | 미확인 | 미확인 | 893.52 | 969.43 |
실시예16 | Zr70Co12Ni1Cu17 | 미확인 | 10이상 | 미확인 | 미확인 | 894.75 | 931.82 |
실시예17 | Zr70.2Ni1Co11Cu17.8 | 0.5 | 10이상 | 349.29 | 377.67 | 893.9 | 940.58 |
실시예18 | Zr70.4Ni3Co6Cu20.6 | 1 | 10이상 | 349.76 | 383.62 | 880.15 | 955.01 |
실시예19 | Zr71.2Co7Fe2Cu19.8 | 미확인 | 10이상 | 미확인 | 미확인 | 886.04 | 956.11 |
실시예20 | Zr71.3Co7Fe2.4Cu19.3 | 0.5 | 10이상 | 342.57 | 379.88 | 885.54 | 950.42 |
실시예21 | Zr73Co8Cu19 | 0.5 | 10이상 | 342.67 | 373.36 | 927.16 | 962.02 |
실시예22 | Zr73.1Co9Cu17.9 | 0.5 | 10이상 | 351.57 | 380.02 | 889.98 | 945.18 |
실시예23 | Zr73.16Co8Cu18.84 | 0.5 | 10이상 | 346.4 | 379.6 | 888.74 | 951.8 |
실시예24 | Zr73.56Co9Cu17.44 | 0.5 | 10이상 | 353.57 | 375.91 | 890.36 | 943.11 |
실시예25 | Zr73.8Co5Cu21.2 | 미확인 | 10이상 | 미확인 | 미확인 | 921.39 | 980.62 |
실시예26 | Zr74Co10Cu16 | 0.5 | 10이상 | 348.3 | 370.8 | 888.95 | 937.34 |
실시예27 | Zr74.05Ni2Co4.8Cu19.15 | 0.5 | 10이상 | 331.9 | 348.54 | 853.15 | 960.48 |
실시예28 | Zr74.1Co6Cu19.9 | 0.5 | 10이상 | 337.51 | 350.26 | 928.35 | 973.52 |
실시예29 | Zr74.67Co8Cu17.33 | 미확인 | 10이상 | 미확인 | 미확인 | 895.01 | 953.36 |
실시예30 | Zr74.7Co20.3Cu5 | 미확인 | 10이상 | 미확인 | 미확인 | 921.36 | 974.97 |
실시예31 | Zr75Co8Cu17 | 미확인 | 10이상 | 미확인 | 미확인 | 923.06 | 950.41 |
실시예32 | Zr75.5Co14Cu10.5 | 0.5 | 10이상 | 343.02 | 371.73 | 890.74 | 916.12 |
실시예33 | Zr75.7Ni6Co8.6Cu9.7 | 0.5 | 10이상 | 335.77 | 349.06 | 846.57 | 919.7 |
실시예34 | Zr75.7Co8.6Fe6Cu9.7 | 미확인 | 10이상 | 미확인 | 미확인 | 882.67 | 906.45 |
실시예35 | Zr77Co12Cu11 | 미확인 | 10이상 | 미확인 | 미확인 | 889.79 | 909.12 |
실시예36 | Zr77.1Ni3Co15.1Cu4.8 | 0.5 | 10이상 | 348.51 | 394.21 | 869.23 | 962.79 |
실시예37 | Zr80Co11Cu9 | 미확인 | 10이상 | 미확인 | 미확인 | 891.86 | 908.68 |
표 1을 참조하면, 본 발명의 일 관점에 따른 스퍼터링 타겟용 합금은 3 이상의 금속원소로 이루어지는 바, 구체적으로, Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어진다. 또한, 본 발명의 일 관점에 따른 스퍼터링 타겟용 합금에서 고상선 및 액상선 온도는 800℃ 내지 1050℃ 범위에 존재할 수 있으며, 엄격하게는, 850℃ 내지 1010℃ 범위에 존재할 수 있다. 나아가, 본 발명의 일 관점에 따른 스퍼터링 타겟용 합금은 비커스 경도 시험의 10kgf의 압입하중 조건에서 크랙이 발생하지 않는다.
표 1에 나타난 본 발명의 실시예들은 상술한 조성 범위, 온도 범위, 경도 범위를 만족한다. 예를 들어, 실시예21에 따른 합금타겟은 Zr73Co8Cu19의 화학조성(원자%)을 가지며, 실시예28에 따른 합금타겟은 Zr74.1Co6Cu19.9의 화학조성(원자%)을 가지며, 실시예33에 따른 합금타겟은 Zr75.7Ni6Co8.6Cu9.7의 화학조성(원자%)을 가진다. 실시예21, 실시예28 및 실시예33에 따른 합금타겟을 구성하는 합금의 조성에서 비정질 형성능은 0.5mm이다.
또 다른 일 예로 실시예9에 따른 합금타겟은 Zr65Ni5Co5Fe5Cu20의 화학조성(원자%)을 가진다. 실시예9 조성은 구리금형 주조법에 의해 0.5mm 두께의 비정질 형성능은 관찰되지 않았지만 후술의 실험을 통하여 스퍼터링 타겟으로 제조 한 후, 불활성 가스 분위기에서 스퍼터링 공정 시 비정질 박막을 얻을 수 있음을 확인하였다.
도 2는 본 발명의 실시예21(Zr73Co8Cu19)에 따른 주조법으로 제조한 합금 타겟의 미세조직을 나타낸 사진들이고, 도 3은 본 발명의 실시예28(Zr74.1Co6Cu19.9)에 따른 주조법으로 제조한 합금 타겟의 미세조직을 나타낸 사진들이고, 도 4는 본 발명의 실시예33(Zr75.7Ni6Co8.6Cu9.7)에 따른 주조법으로 제조한 합금 타겟의 미세조직을 나타낸 사진들이다. 도 5는 본 발명의 비교예(Zr63.9Al10Cu26.1)에 따른 주조법으로 제조한 합금 타겟의 미세조직을 나타낸 사진들이다. 도 2 내지 도 5에서 (a)는 저배율 사진이며, (b)는 고배율 사진이다.
도 2 내지 도 4를 참조하면, 콜드 크루시블(cold crucible)을 이용하여, Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어진 주조재 합금을 형성한 경우, 상기 주조재 합금의 결정립이 조대하지 않고 미세하게 제어될 수 있음을 확인할 수 있다.
본 실시예들에 따른 스퍼터링용 주조재 합금 타겟에서는 합금계의 평형응고조직이 취성이 강한 금속간 화합물로 구성되지 않아 합금의 강도를 유지할 수 있으며, 구성상의 결정립크기가 상대적으로 작기 때문에 스퍼터링시 조성의 균일성을 구현할 수 있다.
이에 반하여, 본 발명의 비교예에 따른 합금에서는 결정립이 상대적으로 조대함을 확인하였다(도 5). 본 발명의 비교예에 의한 스퍼터링용 주조재 합금 타겟에서는 합금계의 평형응고조직이 취성이 강한 금속간 화합물을 포함하여 합금의 강도를 유지할 수 없으며, 구성상의 결정립크기가 상대적으로 크기 때문에 스퍼터링시 조성의 균일성을 확보하기 어려울 수 있다.
도 6은 본 발명의 실시예21(Zr73Co8Cu19)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이고, 도 7은 본 발명의 실시예28(Zr74.1Co6Cu19.9)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이고, 도 8은 본 발명의 실시예33(Zr75.7Ni6Co8.6Cu9.7)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다. 도 9는 본 발명의 비교예(Zr63.9Al10Cu26.1)에 따른 주조재 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다. 도 6 내지 도 9에서 (a)는 저배율 사진이며, (b)는 고배율 사진이다.
도 6 내지 도 8을 참조하면, 콜드 크루시블(cold crucible)을 이용하여, Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어진 합금을 주조법을 이용하여 형성한 경우, 상기 주조재 합금은 비커스 경도 시험의 10kgf 압입하중 조건에서 크랙이 발생하지 않음을 확인할 수 있다. 예를 들어, 실시예21 및 실시예28에 의한 주조재 합금은 비커스 경도 시험의 30kgf 압입하중 조건에서 크랙이 발생하지 않았으며, 실시예33에 의한 주조재 합금은 비커스 경도 시험의 20kgf 압입하중 조건에서 크랙이 발생하지 않았다.
이에 반하여, 본 발명의 비교예에 따른 합금은 비커스 경도 시험의 5kgf 압입하중 조건에서도 크랙 발생이 관찰되었다. 이에 따르면, 본 발명의 비교예에 의한 스퍼터링용 합금 타겟에서는 합금계의 평형응고조직이 취성이 강한 금속간 화합물을 포함하고 결정질이 조대하여 합금의 강도가 상대적으로 낮은 것으로 판단된다.
도 10은 본 발명의 또 다른 실시예(실시예5;Zr62.9Ni6Co10.5Cu20.6)에 따른 조성에서 소결에 의하여 구현된 합금 타겟의 미세조직에서 비커스경도 압입자 시험 이후의 미세조직을 관찰한 사진들이다. 도 10에서 (a)는 저배율 사진이며, (b)는 고배율 사진이다. 구체적으로 설명하면, Zr이 62.9원자%; Ni이 6원자%; Co가 10.5원자%; Cu가 20.6원자%로 이루어진 다수의 비정질 합금 또는 나노결정질 합금을 소결하여 일체화시킨 결정질 합금을 형성한 경우, 상기 결정질 합금은 비커스 경도 시험의 10kgf 압입하중 조건에서 크랙이 발생하지 않음을 확인할 수 있다.
한편, 도 11a는 본 발명의 다른 비교예(Zr62.5Al10Mo5Cu22.5)에 따른 주조법을 이용하여 제조한 합금 타겟의 스퍼터링 후 타겟 표면을 관찰한 결과를 나타낸 사진이며, 도 11b의 (a)는 도 11a의 주조재 합금 타겟에 대하여 스퍼터링 전의 미세조직을 관찰한 결과를 나타낸 사진이고, 도 11b의 (b)는 스퍼터링 후 스퍼터링이 일어난 타겟의 표면을 관찰한 결과를 나타낸 사진이다.
도 11a 및 도 11b을 참조하면, 본 발명의 비교예에 따른 주조재 합금 타겟의 경우 스퍼터링이 일어난 면이 불균일하고 매우 거칠었음을 알 수 있으며, 이는 주조재 합금 타겟의 미세조직이 조대하고 불균일하여 그 표면에서의 스퍼터링이 불균일하게 일어나기 때문으로 판단된다.
나아가, 본 발명의 비교예에 따른 주조재 합금 타겟의 경우 응고과정에서 주상정 조직 또는 수지상 형태의 초정 등과 같은 서로 다른 조성을 가지는 다양한 크기 및 형태의 조대한 상들이 혼재되어 있는 불균일한 미세조직을 나타낸다. 이러한 미세조직의 불균일성에 기인하여 스퍼터링된 표면도 불균일하게 형성된다.
이러한 주조재 합금 타겟의 불균일성에 의해 스퍼터링에 의해 제조된 박막조성의 균일성이 열악한 특성을 보일 수 있다. 또한 타겟의 조성과 스퍼터링을 통해 형성된 박막의 조성 간에 현저한 차이가 나타날 수 있으며, 스퍼터링이 진행됨에 따라 박막의 조성이 변하는 등의 박막특성에 악영향을 줄 수 있다. 더 나아가 스퍼터링 중에 타겟으로부터 파티클이 발생되어 스퍼터링 챔버를 오염시키는 문제를 발생시킬 수도 있다.
또한 다원계 합금을 주조하는 경우에는 높은 취성을 가지는 다양한 금속간화합물이 형성될 수 있음에 따라 주조 중 혹은 주조 이후 타겟을 가공하는 과정에서 타겟이 취성파괴 되는 현상이 나타날 수 있다.
도 12 및 도 13은 본 발명의 실시예21(Zr73Co8Cu19)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 및 고배율 사진이며, 도 14 및 도 15는 본 발명의 실시예28(Zr74.1Co6Cu19.9)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 및 고배율 사진이며, 도 16 및 도 17은 본 발명의 실시예33(Zr75.7Ni6Co8.6Cu9.7)에 따른 주조재 합금 타겟에서 스퍼터링 이후의 타겟 표면을 관찰한 저배율 및 고배율 사진이다.
도 12 내지 도 17을 참조하면, 본 발명의 실시예들에 따른 주조재 합금 타겟의 경우 스퍼터링이 일어난 면이 상술한 비교예보다 상대적으로 균일하고 평탄함을 알 수 있으며, 이는 주조재 합금 타겟의 미세조직이 조대하지 않고 미세하고 균일하여 그 표면에서의 스퍼터링이 균일하게 일어나기 때문으로 판단된다. 나아가, 이러한 주조재 합금 타겟의 균일성에 의해 스퍼터링에 의해 제조된 박막조성의 균일성이 확보될 수 있다. 또한 타겟의 조성과 스퍼터링을 통해 형성된 박막의 조성 간에 차이가 거의 없으며, 스퍼터링이 진행됨에 따라 박막의 조성이 상대적으로 균일한 효과를 기대할 수 있다 더 나아가 스퍼터링 중에 타겟으로부터 파티클이 발생되어 스퍼터링 챔버를 오염시키는 문제를 방지할 수 있을 것으로 기대된다.
또한 본 발명의 실시예들에 따른 주조재 합금을 형성하는 경우에는 높은 취성을 가지는 다양한 금속간화합물이 형성되지 않음에 따라 주조 중 혹은 주조 이후 타겟을 가공하는 과정에서 타겟이 취성파괴 되는 현상을 방지할 수 있다.
합금 타겟으로부터 형성된 스퍼터링 박막
본 발명의 기술적 사상에 의한 스퍼터링용 주조재 합금 타겟을 이용하여 스퍼터링 공정으로 형성된 질화물막은, 이하에서, 질소를 포함하는 나노구조막, 나노 질화막으로 언급되거나 또는 나노구조 복합박막으로 언급될 수 있다. 또한, 본 발명의 기술적 사상에 의한 스퍼터링용 주조재 합금 타겟을 이용하여 스퍼터링 공정으로 형성된 비정질막은, 이하에서, 비정질 합금막으로 언급될 수 있다.
상기 주조재 합금 타겟을 이용한 반응성 스퍼터링으로 모재 상에 박막을 형성하는 경우, 상기 박막은 나노구조 복합박막을 가질 수 있다. 예를 들어 반응성 가스로서 질소가스(N2) 또는 질소(N)를 포함하는 가스, 예를 들어 NH3와 같은 가스를 스퍼터링 챔버 내부로 도입하면서 스퍼터링을 수행하는 경우 합금 내에서 질소와 반응성이 높은 Zr은 질소와 반응하여 Zr 질화물을 형성할 수 있다. 그 외의 원소들은 Zr 질화물에 고용되거나 금속상으로 존재할 수 있다.
본 명세서 및 특허청구범위에 있어서 나노구조 복합박막은 5nm 내지 30nm의 범위, 엄격하게는 5nm 내지 10nm 범위의 결정립 크기에 해당하는 미세한 결정립을 가지며 금속의 질화물상과 하나 이상의 금속상이 서로 혼합되어 있는 구조를 가지는 박막을 지칭할 수 있다. 이때 상기 금속의 질화물상은 질화물의 구성원소로서, 예를 들어, Zr을 포함할 수 있다. 이때 상기 나노구조 복합박막은 Zr 질화물의 결정구조를 나타내며, 다른 금속원소들은 질화물의 형태로 Zr 질화물에 고용될 수 있다. 이때 Zr 질화물은 ZrN 또는 Zr2N을 포함한다. 한편 상기 금속상은 질화물을 구성하는 금속원소에 비해 질화물 형성능력이 더 낮은 금속원소를 포함할 수 있는 바, 예를 들어, Co을 포함할 수 있다.
나노구조 복합박막에서 금속의 질화물상은 수 내지 수십 나노미터 크기 수준의 결정립으로 이루어진 나노 결정질 구조를 갖는다. 이에 비해 금속상은 이러한 나노 결정립계에 미량 분포될 수 있다. 예를 들어 금속상은 수개의 원자 단위로 분포하며 특별한 결정구조를 이루지 못한 형태로 존재할 수 있다. 다만 이러한 금속상은 특정 영역에 집중적으로 분포하는 것이 아니라 박막 전체에 균일하게 분포하게 된다.
한편, 본 발명의 실시예들에 따른 주조재 합금 타겟을 이용한 비반응성 스퍼터링으로 모재 상에 박막을 형성하는 경우, 상기 박막은 비정질 합금막일 수 있다. 여기서 비반응성 스퍼터링은 스퍼터링 장치 내부로 의도적으로 합금 타겟을 구성하는 물질과 반응성이 있는 가스를 도입하지 않고 불활성 가스, 예를 들어 아르곤과 같은 가스 만으로 스퍼터링을 수행하는 스퍼터링을 의미한다. 본 발명의 실시예들에 따른 주조재 합금 타겟은 비정질 형성능을 가지고 있으며, 따라서 스퍼터링과 같이 높은 냉각속도로 고상이 형성되는 프로세스에서는 비정질 합금 조직을 나타낼 수 있다. 이때 성막된 비정질 합금막은 스퍼터링에 이용된 주조재 합금 타겟의 조성과 근사한 조성을 가질 수 있다. 본 명세서 및 특허청구범위에 있어서 비정질 합금은 실질적으로 특정한 결정구조를 가지지 않으며 X-선 회절패턴이 특정한 브래그각도에서 뚜렷한 결정 피크(sharp peak)를 보이지 않고 넓은 각도 범위에서 브로드 피크(broad peak)가 관찰되는 상을 가진 금속합금체를 의미할 수 있다.
한편, 본 발명자는 비반응성 스퍼터링 공정의 아르곤 분위기에 질소가 소량 함유되어도(예를 들어, Ar:45sccm, N2:4sccm), 비정질 합금막이 형성될 수 있음을 실험으로 확인하였다. 질소가 소량인 경우에는 결정질은 ZrN이 생성되지 않고 질소가 비정질 합금막 내에 고용되어 있는 것으로 판단된다. 소량의 질소를 함유하는 아르곤 분위기에서 스퍼터링함으로써 형성된 상기 비정질막은 금속색의 칼라를 유지하며 일반적인 비정질막보다 경도 및 저항이 상승하는 특성을 가지므로, 장식용 및/또는 전파투과코팅 등에 응용될 수 있다.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제공한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실시예들에 의해서 한정되는 것은 아니다. 본 발명의 실시예들을 따르는 나노구조 복합박막 또는 비정질 합금막은 상술한 본 발명의 실시예들에 따른 주조재 합금 타겟을 이용한 스퍼터링 공정에 의해 성막될 수 있다.
표 2는 본 발명의 실시예들에 의한 스퍼터링용 주조재 합금 타겟으로부터 형성된 비정질막의 특성을 평가한 결과를 나타낸다. 표 3은 본 발명의 실시예들에 의한 스퍼터링용 주조재 합금 타겟으로부터 형성된 나노구조 복합박막의 특성을 평가한 결과를 나타낸다.
타겟 구분 | 타겟 합금조성(at%) | 스퍼터링 조건 | 경도(GPa) | 탄성률(GPa) |
실시예9 | Zr65Ni5Co5Fe5Cu20 | 840W-300minAr:50sccm | 5.87 | 91.54 |
실시예28 | Zr74.1Co6Cu19.9 | 840W-780minAr:50sccm | 4.81 | 86.2 |
실시예33 | Zr75.7Ni6Co8.6Cu9.7 | 840W-300minAr:50sccm | 5.08 | 90.7 |
실시예 | 타겟조성(at%) | 스퍼터링 조건 | 경도(GPa) | 탄성률(GPa) |
실시예21 | Zr73Co8Cu19 | 840W-45minAr:45sccm, N2:6sccm | 24.93 | 279.5 |
실시예28 | Zr74.1Co6Cu19.9 | 840W-60minAr:45sccm, N2:6sccm | 24.67 | 290.0 |
실시예33 | Zr75.7Ni6Co8.6Cu9.7 | 840W-45minAr:45sccm, N2:6sccm | 25.81 | 277.61 |
도 18은 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 실리콘 웨이퍼(Si wafer) 상에 형성된 비정질 후막의 파단면을 나타낸 사진(fractograph)이다. 도 19는 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 태핏(tappet) 및 상기 태핏 상에 형성된 비정질 후막의 구조체에 대한 연마단면을 나타낸 사진이고, 도 20은 비정질 후막의 두께에 따라 조성의 균일도를 보여주는 에너지 분광(EDS) 분석 결과이며, 도 21 및 도 22는 각각 비정질 후막과 태핏에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다.
도 18에 나타난 파단면의 관찰에 의하면 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 형성된 막은 전형적인 비정질막의 특성을 가짐을 확인할 수 있다. 도 19 및 도 20을 참조하면, 본 발명의 실시예들에 따른 스퍼터링용 주조재 합금 타겟을 이용하여 형성된 비정질막은 두께에 따른 조성이 균일함을 확인할 수 있다. 표 4는 도 21에 도시된 비정질 후막에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이고, 표 5는 도 22에 도시된 태핏에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다. 표 4, 표 5, 도 21 및 도 22를 참조하면, 본 발명의 실시예들에 따른 타겟을 구성하는 다성분의 스퍼터링율(sputtering yield) 차이에 기인한 타겟조성과 박막조성간의 조성 편차는 상대적으로 근소함을 확인할 수 있다.
이러한 결과들을 종합하면, 본 발명의 실시예들에 따른 스퍼터링용 주조재 합금 타겟은 열적/기계적 안정성이 높으며, 타겟의 미세조직이 매우 균일함을 확인할 수 있다.
wt% | at% | |
ZrL | 78.75 | 71.58 |
CoK | 6.72 | 9.46 |
CuK | 14.53 | 18.96 |
wt% | at% | |
CrK | 1.36 | 1.45 |
MnK | 1.33 | 1.35 |
FeK | 97.32 | 97.2 |
도 23은 표 2에서 실시예 9 및 실시예33의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행하여 형성된 비정질 막의 X선 회절분석 결과이다. 도 23의 (a)의 결과로부터 구리몰드흡입법으로 비정질 형성능을 측정할 수 없었지만 스퍼터링 타겟으로 제조 후 불활성가스 분위기에서 스퍼터링 시 비정질 박막을 얻을 수 있음을 확인하였다.
도 24는 표 3에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 Si wafer 상에 형성된 나노질화막의 파단면(fractograph)을 나타낸 저배율 및 고배율 사진이다. 표 3에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행한다는 것은 Zr75.7Ni6Co8.6Cu9.7 조성을 가지는 스퍼터링용 주조재 합금 타겟을 이용하여, 45sccm의 유량을 가지는 아르곤 가스 및 6sccm의 유량을 가지는 질소 가스 분위기 하에서 840W의 스퍼터링 파워를 인가하여 60분 동안 스퍼터링 공정을 수행함을 의미한다.
도 24에 나타난 파단면의 관찰에 의하면 스퍼터링 장치 내부로 질소가스(N2) 또는 질소(N)를 포함하는 반응가스를 상술한 조건의 비율로 투입하면서 주조재 합금 타겟을 스퍼터링하여 형성된 합금막은 전형적인 나노구조 복합박막의 특성을 가짐을 확인할 수 있다.
도 25는 표 2 및 표 3의 실시예28에 따른 스퍼터링용 합금타겟을 이용하여 다양한 조건 하에서 형성된 박막의 X선 회절분석 결과이다. 구체적으로, 도 25의 (a)는 상기타겟에 대하여 45sccm의 유량을 가지는 아르곤 가스 및 4sccm의 유량을 가지는 질소 가스 분위기 하에서 50분 동안 스퍼터링 공정을 수행하여 형성한 박막을 분석한 결과이며, 도 25의 (b)는 상기 타겟에 대하여 45sccm의 유량을 가지는 아르곤 가스 및 6sccm의 유량을 가지는 질소 가스 분위기 하에서 45분 동안 스퍼터링 공정을 수행하여 형성한 박막을 분석한 결과이며, 도 25의 (c)는 상기 타겟에 대하여 45sccm의 유량을 가지는 아르곤 가스 및 7sccm의 유량을 가지는 질소 가스 분위기 하에서 45분 동안 스퍼터링 공정을 수행하여 형성한 박막을 분석한 결과이다.
도 25의 (a)를 참조하면, 비반응성 스퍼터링 공정의 아르곤 분위기에 질소가 소량 함유되어도(예를 들어, Ar:45sccm, N2:4sccm), 비정질 합금막이 형성될 수 있음을 확인하였다. 질소가 소량인 경우에는 결정질은 ZrN이 생성되지 않고 질소가 비정질 합금막 내에 고용되어 있는 것으로 판단된다. 소량의 질소를 함유하는 아르곤 분위기에서 스퍼터링함으로써 형성된 상기 비정질막은 금속색의 칼라를 유지하며 일반적인 비정질막보다 경도 및 저항이 상승하는 특성을 가지므로, 장식용 및/또는 전파투과코팅 등에 응용될 수 있다.
도 25의 (b) 및 (c)를 참조하면, 아르곤 유량이 45sccm인 경우에서 질소 유량이 4sccm보다 큰 분위기 하에서 수행된 스퍼터링 박막은 질화 반응에 의해 형성된 Zr 질화물의 피크가 관찰되었다. 이때 Zr 질화물은 ZrN가 관찰되었다. 성막된 Zr 질화물 중 ZrN은 성막조건에 따라 우선방위가 변화하였다. 예를 들어 ZrN의 (200) 우선방위가 나타났다.
본 발명자는, 예를 들어, 질소의 유량과 아르곤의 유량의 비가 4:45 이하(0 초과)인 분위기에서 스퍼터링 공정을 수행한 경우, 상술한 바와 같이, 금속색의 칼라를 유지하며 일반적인 비정질막보다 경도 및 저항이 상승하는 특성을 가지므로, 장식용 및/또는 전파투과코팅 등에 응용될 수 있는 비정질막을 구현할 수 있음을 확인하였다.
상술한 장식용 및/또는 전파투과코팅 등에 응용될 수 있는 비정질막은, 전자부품 외장재 또는 자동차 스마트 크루즈용 센서 외장재 등에 적용될 수 있다. 예를 들어, 휴대폰의 외장재의 경우, 기존 플라스틱 재질 커버에 상술한 비정질막을 코팅함으로써 전자제품 외장재에서 요구되는 내부식특성 및 전자기적 특성을 만족하면서도 금속외관을 구현할 수 있다.
도 26은 실시예28의 합금조성을 갖는 스퍼터링 타겟을 이용하여 아르곤가스 45sccm, 질소가스 6sccm으로 조건 하에서 스퍼터링 시간을 변경함에 따라 코팅박막의 두께를 변화시킨 후 관찰한 X선 회절분석 결과이다. 도 26의 (a)는 60분 공정을 통하여 3.5㎛ 두께의 막을 형성한 경우이고, 도 26의 (b)는 270분 공정을 통하여 21㎛ 두께의 막을 형성한 경우이며, 도 26의 (c)는 700분의 공정을 통하여 53㎛ 두께의 막을 형성한 경우이다. 도 26의 결과에서와 같이 질화물 막의 두께 변경에 따른 ZrN 픽의 변화는 관찰되지 않았음을 알 수 있으며, 본 발명의 실시예 조성을 갖는 스퍼터링 합금타겟을 이용 시 700분 이상의 장시간 코팅이 가능함을 확인할 수 있다.
본 발명의 실시예들을 따르는 나노구조 복합박막은 경도가 높은 Zr 질화물과 상대적으로 탄성계수가 낮은 금속 합금이 박막 내에 혼합되어 있으면서 매우 미세한 나노수준의 결정립을 나타냄에 따라 높은 경도를 나타내면서도 금속 모재와의 탄성계수 차이가 크게 나지 않는 특징이 있다. 특히 종래에 비해 현저하게 개선된 저마찰 특성을 나타내게 된다.
나노구조 복합박막이 도포된 모재의 특성을 더욱 향상시키기 위해서 나노구조 복합박막의 하부, 즉 모재와 나노구조 복합박막의 사이에는 버퍼층(buffer layer)이 더 형성될 수 있다. 이때 버퍼층은, 예를 들어 나노구조 복합박막의 모재에 대한 접착력을 더욱 향상시키기 위한 접착층(adhesion layer)로서 기능할 수 있다. 다른 예로서 모재와 나노구조 복합박막 사이의 응력을 이완시키기 위한 응력이완층이 될 수 있으며, 또 다른 예로서 내식성을 향상시키기 위한 내식층이 될 수도 있다. 그러나 이에 한정되지 않으며 박막의 구조적인 측면에서 나노구조 복합박막과 모재 사이에 개재될 수 있는 층을 모두 지칭한다.
이러한 버퍼층으로는 상술한 주조재 합금 타겟을 이용하여 성막한 비정질 합금박막이 이용될 수 있다. 구체적으로 스퍼터링 챔버 내에 주조재 합금 타겟을 장착한 후 스퍼터링으로 모재를 코팅하는 공정에서, 제 1 단계에서는 비반응성 스퍼터링 공정으로 모재의 상부에 비정질 합금박막을 소정의 두께만큼 형성한 후 상기 스퍼터링 챔버 내부로 질소가스를 도입하면서 스퍼터링을 수행하여 나노구조 복합박막을 형성할 수 있다. 이 경우 동일한 주조재 합금 타겟을 이용하여 버퍼층 및 나노구조 복합박막을 인-시츄(in-situ)로 형성할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 버퍼층인 비정질 합금박막과 나노구조 복합박막을 서로 다른 조성을 가지는 타겟을 이용하여 형성하는 것도 가능하며, 나아가 별도의 챔버에서 각각 형성하는 것도 포함할 수 있다. 버퍼층의 다른 예로서 별도의 다른 타겟을 이용한 금속층, 예를 들어 Ti 타겟을 이용한 Ti층이 이용될 수 있다. 또 다른 예로서, 상술한 금속모재의 표면으로부터 Ti층과 비정질 합금박막층이 순차적으로 적층된 2중층으로 구성될 수 있다.
상기 버퍼층 및 나노구조 복합박막의 계면은 질소 또는 상기 버퍼층을 구성하는 원소들이 경사조성화된 경계층을 포함할 수 있다. 즉, 계면에서 조성이 급격하게 변화되지 않고 점진적으로 변화되어 조성이 경사를 가지는 경계층이 형성될 수 있다.
도 27은 표 2에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 태핏 상에 형성된 비정질막과 표 3에서 실시예28의 타겟을 이용하여 표시된 조건으로 스퍼터링 공정을 수행함으로써 형성된 나노질화막으로 구성된 경사기능형 박막 구조체의 연마단면을 나타낸 사진이고, 도 28은 도 27의 경사기능형 박막의 두께에 따라 조성의 균일도를 보여주는 에너지 분광(EDS) 분석 결과이며, 도 29 및 도 30은 각각 나노질화막과 비정질막에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다. 도 31은 도 27의 경사기능형 박막을 구성하는 비정질막과 나노질화막의 파단면을 나타낸 사진(fractograph)이다.
도 27에 도시된 박막 구조체는 Zr74.1Co6Cu19.9 조성을 가지는 스퍼터링용 주조재 합금 타겟을 이용하여 아르곤 분위기에서 840W의 스퍼터링 파워를 인가하여 780분 동안 스퍼터링 공정을 수행하여 태핏 상에 비정질막을 형성한 후에, 동일한 주조재 합금 타겟을 이용하여 질소 분위기에서 840W의 스퍼터링 파워를 인가하여 60분 동안 스퍼터링 공정을 수행하여 비정질막 상에 나노질화막을 형성하여 구현하였다.
도 27 및 도 28을 참조하면, 본 발명의 실시예들에 따른 스퍼터링용 주조재 합금 타겟을 이용하여 형성된 비정질막과 나노질화막은 두께에 따른 조성이 균일함을 확인할 수 있다. 표 6은 도 29에 도시된 나노질화막에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이고, 표 7은 도 30에 도시된 태핏에 대한 조성의 함량을 보여주는 에너지 분광(EDS) 분석 결과이다. 이에 따르면, 계면에서 조성이 급격하게 변화되지 않고 점진적으로 변화되어 조성이 경사를 가지는 경계층이 형성됨을 확인할 수 있다. 나아가, 본 발명의 실시예들에 따른 스퍼터링용 주조재 합금 타겟은 열적/기계적 안정성이 높으며, 타겟의 미세조직이 매우 균일함을 확인할 수 있다.
wt% | at% | |
NK | 7.14 | 31.22 |
ZrL | 72.5 | 48.68 |
CoK | 6.11 | 6.35 |
CuK | 14.25 | 13.74 |
wt% | at% | |
ZrL | 79.46 | 72.49 |
CoK | 6.03 | 8.51 |
CuK | 14.51 | 19.00 |
이하에서는, 본 발명의 실시예들에 따른 나노질화막이 종래에 비해 월등하게 개선된 마찰특성을 나타내면서도 높은 경도와 밀착성을 가짐을 설명한다.
각종 기계장치의 구동부품이나 습동부재 혹은 각종 공구류에서는 우수한 윤활특성을 필요로 하는 경우가 다수 발생한다. 이러한 윤활특성의 개선을 위해서 모재의 표면에 저마찰 특성을 가지는 박막을 형성하는 기술이 적용될 수 있다. 예를 들어, 자동차 엔진의 구동 중에 발생되는 각종 부품간의 마찰로 인하여 에너지의 소모가 발생될 수 있다. 이러한 구동부품간의 마찰을 저감시키게 될 경우 자동차 연료의 소모를 감소시킴에 따라 연비 향상의 효과를 가져 올 수 있다. 이러한 저마찰특성을 가지는 박막은 가혹한 마찰환경에서 견뎌야 하므로 저마찰 특성 이외에도 일정정도 이상의 경도와 모재에 대한 밀착력을 갖추어야 하며 산화분위기에 대한 높은 저항성이 요구된다. 이러한 저마찰 특성을 가지는 박막으로 고경도를 가지는 질화물이나 탄화물 계열의 세라믹 재료, 혹은 DLC(diamond like carbon) 등이 이용될 수 있으며, 물리증착법, 화학증착법, 플라즈마 용사코팅법 등에 의해 모재상에 도포될 수 있다.
그러나 종래의 세라믹 계열의 박막은 약 2000Hv 이상의 고경도를 나타내기는 하나 모재로 이용되는 강, 알루미늄, 마그네슘과 같은 금속소재와 탄성계수의 높은 차이를 나타낸다. 예를 들어 대부분의 고융점 세라믹재료의 탄성계수는 400 내지 700GPa임에 비해 알루미늄합금은 약70GPa, 마그네슘합금은 약 45GPa, 강은 약 200GPa로서 불일치되는 정도가 매우 높으며, 이러한 차이로 인하여 내구성에 문제를 나타낼 수 있다. 또한 자동차용 엔진 등과 같은 중요한 구동부재에 적용하기에는 높은 마찰계수값을 나타낸다. 한편 DLC 막의 경우 경계윤활환경에서 마찰저감효과가 크지 않고, 준안정상으로서 마찰부의 고체간 접촉에 의해 온도상승을 동반하는 경계윤활환경 하에서 마모에 의한 흑연화(graphitization, sp3 →sp2)가 진행되어 막의 심각한 마모가 발생할 수 있고, 윤활유내의 첨가된 마찰조정제(friction modifier), 예를 들어 유기몰리브덴 화합물(MoDTC, Molybdenum dialkyldithiocarbamate)등의 첨가제와 부합되지 않아 첨가제 효율을 떨어뜨리고, DLC막의 마모 마찰을 촉진하는 문제점이 발생될 수 있다.
도 32c와 도 32d는 본 발명의 실시예28 조성의 합금타겟을 이용하여 형성된 질화물 박막의 마찰시험 결과이다. 비교재로서 DLC 코팅부품(도 32a 참조) 및 코팅처리되지 않은 부품(도 32b 참조)을 사용하였다. 본 발명의 일부 실시예에 의하여 형성된 질화물막의 마찰계수는 DLC 코팅부품 및 비코팅부품에 비해 현저히 낮은 마찰계수를 보임을 확인하였다.
도 33은 본 발명의 실시예 28 조성의 합금타겟을 이용하여 형성된 나노질화막의 저마찰 특성을 나타내는 캠-태핏(cam-tappet) 리그시험 결과이다.
도 33을 참조하면, 모재 상에 코팅막이 형성되지 않은 경우 보다 모재 상에 DLC가 형성된 경우 저마찰 특성이 더 우수하며, 모재 상에 DLC가 형성된 경우보다 모재 상에 본 발명의 실시예에 따른 나노질화막이 형성된 경우 저마찰 특성이 더 우수함을 확인할 수 있다. 따라서 본 발명의 실시예에 따른 나노질화막을 마찰환경에 이용되는 각종 부재에 적용할 경우, 마찰에 의해 소모되는 에너지를 획기적으로 감소시킬 수 있으며 기계부품의 내구성 향상에도 크게 기여할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
Claims (13)
- 스퍼터링 장치 내부로 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하면서 합금타겟을 스퍼터링하여 질소를 포함하는 나노구조막을 형성하는 단계;를 포함하되,상기 합금타겟은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 구성된 결정질 합금으로 이루어진,질소를 포함하는 나노구조막의 제조방법.
- 제 1 항에 있어서,상기 결정질 합금의 고상선 및 액상선 온도는 800℃ 내지 1050℃ 범위에 존재하는, 질소를 포함하는 나노구조막의 제조방법.
- 제 1 항에 있어서,상기 결정질 합금은 용탕을 주조하여 구현한 주조 합금인, 질소를 포함하는 나노구조막의 제조방법.
- 제 1 항에 있어서,상기 결정질 합금은 분말, 리본, 괴 또는 봉의 형상을 가지는 다수의 비정질 또는 나노결정질 합금을 소결하여 일체화 시킨 합금인, 질소를 포함하는 나노구조막의 제조방법
- 제 1 항 내지 제 4 항 중 어느 한 항에 따른 상기 제조방법에 의하여 구현된, 질소를 포함하는 나노구조막.
- 스퍼터링 장치 내부의 합금타겟을 아르곤(Ar) 분위기에서 비반응성 스퍼터링하여 파단면에서 베인(vein) 구조가 관찰되며 X-선 회절 분석 시 결정질 피크가 나타나지 않는 비정질막을 형성하는 단계;를 포함하되,상기 합금타겟은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 구성된 결정질 합금으로 이루어진,비정질막의 제조방법.
- 제 6 항에 있어서,상기 결정질 합금은 용탕을 주조하여 구현한 주조 합금인, 비정질막의 제조방법.
- 제 6 항에 있어서,상기 결정질 합금은 분말, 리본, 괴 또는 봉의 형상을 가지는 다수의 비정질 또는 나노결정질 합금을 소결하여 일체화 시킨 합금인, 비정질막의 제조방법
- 제 6 항에 있어서,형성된 상기 비정질막은 Zr이 58원자% 내지 80원자%; Cu가 4원자% 내지 26원자%; Fe, Ni 및 Co 중에서 선택된 어느 하나 이상이 4원자% 내지 26원자%;로 이루어진, 비정질막의 제조방법.
- 제 6 항 내지 제 9 항 중 어느 한 항에 따른 상기 제조방법에 의하여 구현된, 비정질막.
- 제 6 항 및 제 8 항 중 어느 한 항에 있어서,상기 아르곤(Ar) 분위기는 소량의 질소를 더 함유하는, 비정질막의 제조방법.
- 제 11 항에 있어서,상기 소량의 질소를 함유하는 상기 아르곤(Ar) 분위기는 질소의 유량과 아르곤의 유량의 비가 4:45 이하(0 초과)인, 비정질막의 제조방법.
- 제 11 항에 따른 상기 제조방법에 의하여 구현되는 비정질막으로서,질소가 내부에 고용된 합금조직을 가지며, 금속색의 칼라(color)를 가지는, 비정질막.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0149305 | 2014-10-30 | ||
KR1020140149305A KR20160051952A (ko) | 2014-10-30 | 2014-10-30 | 비정질막 및 질소를 포함하는 나노구조막의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016068635A1 true WO2016068635A1 (ko) | 2016-05-06 |
Family
ID=55857857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/011536 WO2016068635A1 (ko) | 2014-10-30 | 2015-10-30 | 비정질막 및 질소를 포함하는 나노구조막의 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160051952A (ko) |
WO (1) | WO2016068635A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019045519A1 (ko) * | 2017-08-31 | 2019-03-07 | 한국생산기술연구원 | 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711833B1 (ko) * | 2006-01-04 | 2007-05-02 | 한국생산기술연구원 | 나노 구조 코팅용 타겟 제조공정 및 그 제품 |
KR20080019067A (ko) * | 2005-07-11 | 2008-02-29 | 미쓰비시 마테리알 가부시키가이샤 | 상변화막 형성용 스퍼터링 타겟 및 그 제조 방법 |
JP2011066070A (ja) * | 2009-09-15 | 2011-03-31 | Idemitsu Kosan Co Ltd | 多結晶薄膜、その成膜方法、及び薄膜トランジスタ |
KR20110055473A (ko) * | 2009-11-19 | 2011-05-25 | 한국생산기술연구원 | 다성분 단일체의 스퍼터링 타겟 및 그 제조방법, 이를 이용한 다성분 합금계 나노구조 박막 제조방법 |
KR20130135743A (ko) * | 2012-06-01 | 2013-12-11 | 한국생산기술연구원 | 저마찰 특성을 가지는 나노구조 복합박막, 그 제조방법 및 저마찰 특성 부재 및 그 제조방법 |
-
2014
- 2014-10-30 KR KR1020140149305A patent/KR20160051952A/ko active Search and Examination
-
2015
- 2015-10-30 WO PCT/KR2015/011536 patent/WO2016068635A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080019067A (ko) * | 2005-07-11 | 2008-02-29 | 미쓰비시 마테리알 가부시키가이샤 | 상변화막 형성용 스퍼터링 타겟 및 그 제조 방법 |
KR100711833B1 (ko) * | 2006-01-04 | 2007-05-02 | 한국생산기술연구원 | 나노 구조 코팅용 타겟 제조공정 및 그 제품 |
JP2011066070A (ja) * | 2009-09-15 | 2011-03-31 | Idemitsu Kosan Co Ltd | 多結晶薄膜、その成膜方法、及び薄膜トランジスタ |
KR20110055473A (ko) * | 2009-11-19 | 2011-05-25 | 한국생산기술연구원 | 다성분 단일체의 스퍼터링 타겟 및 그 제조방법, 이를 이용한 다성분 합금계 나노구조 박막 제조방법 |
KR20130135743A (ko) * | 2012-06-01 | 2013-12-11 | 한국생산기술연구원 | 저마찰 특성을 가지는 나노구조 복합박막, 그 제조방법 및 저마찰 특성 부재 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20160051952A (ko) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120247948A1 (en) | Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same | |
WO2014175697A1 (ko) | 비정질 합금막의 제조방법 및 질소를 포함하는 나노구조막의 제조방법 | |
WO2013085237A1 (ko) | 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법 | |
EP3365304B1 (fr) | Grains fondus de zircone - spinelle et produit refractaire obtenu a partir desdits grains | |
WO2011062450A2 (ko) | 다성분 단일체의 스퍼터링 타겟 및 그 제조방법, 이를 이용한 다성분 합금계 나노구조 박막 제조방법 | |
EP0861912B9 (en) | Wear-resistant coated member | |
KR20070010024A (ko) | 주조기계 부품용 금속재료 및 알루미늄 용탕 접촉부재와 그제조방법 | |
WO2016068635A1 (ko) | 비정질막 및 질소를 포함하는 나노구조막의 제조방법 | |
WO2016068562A1 (ko) | 스퍼터링 타겟용 합금 및 이로 이루어진 스퍼터링 타겟 | |
KR102030456B1 (ko) | 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법 | |
KR101504332B1 (ko) | 질소를 포함하는 나노구조막의 제조방법 | |
KR102154823B1 (ko) | 저마찰 코팅막이 형성된 피스톤 링 및 그 제조방법 | |
KR101539647B1 (ko) | 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법 | |
KR101529235B1 (ko) | 저마찰 특성을 가지는 나노구조 복합박막, 그 제조방법 및 저마찰 특성 부재 및 그 제조방법 | |
WO2016068636A1 (ko) | 비정질막 및 질소를 포함하는 나노구조막의 제조방법 | |
KR101493357B1 (ko) | 비정질 합금막의 제조방법 | |
WO2018147585A1 (ko) | 고성능 고체 윤활 타이타늄 비정질 합금 | |
KR101517146B1 (ko) | 저마찰 특성을 가지는 나노구조 복합박막, 그 제조방법 및 저마찰 특성 부재 및 그 제조방법 | |
WO2016064213A1 (ko) | 결정질 합금 및 그 제조방법 | |
KR102174327B1 (ko) | 저마찰 코팅막이 형성된 피스톤 핀 및 그 제조방법 | |
KR101552242B1 (ko) | 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법 | |
WO2019045520A1 (ko) | 저마찰 코팅막이 형성된 피스톤 링 및 그 제조방법 | |
WO2019045519A1 (ko) | 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법 | |
KR20230075591A (ko) | Mo계 비정질 합금 및 박막 | |
KR20230080666A (ko) | Ti계 비정질, 결정질 합금 및 나노복합코팅 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15853942 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15853942 Country of ref document: EP Kind code of ref document: A1 |