WO2016068469A1 - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting Download PDF

Info

Publication number
WO2016068469A1
WO2016068469A1 PCT/KR2015/008949 KR2015008949W WO2016068469A1 WO 2016068469 A1 WO2016068469 A1 WO 2016068469A1 KR 2015008949 W KR2015008949 W KR 2015008949W WO 2016068469 A1 WO2016068469 A1 WO 2016068469A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion nozzle
continuous casting
cao
nozzle
mixture
Prior art date
Application number
PCT/KR2015/008949
Other languages
French (fr)
Korean (ko)
Inventor
김장훈
김세훈
배극남
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201580058580.2A priority Critical patent/CN107073565B/en
Priority to JP2017521580A priority patent/JP6419331B2/en
Publication of WO2016068469A1 publication Critical patent/WO2016068469A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates

Definitions

  • the present invention relates to an immersion nozzle for continuous casting, and more particularly, to an immersion nozzle for continuous casting that can suppress nozzle clogging by reacting with an alumina (Al 2 O 3 ) inclusion to form a low melting point material.
  • the molten steel contained in the ladle is injected into the tundish, the molten steel injected from the tundish is continuously injected into the mold to cool the molten steel first, and then the cooling water is sprayed on the surface of the first cooled slab. It is the process of making cast slab by solidifying molten steel as it cools. At this time, in the process of supplying the molten steel accommodated in the tundish into the mold, the molten steel is interrupted by a gate or a stopper installed in the tapping outlet of the tundish, and is supplied into the mold through the immersion nozzle.
  • the method using Ar gas can reduce the inclusion of inclusions on the inner wall of the immersion nozzle to some extent, but there is a limit to suppressing the inclusion of inclusions due to the cooling effect by Ar gas.
  • the method of forming a material layer containing CaO in the inner cavities is considered to be one of the most effective methods for suppressing the inclusion of inclusions on the inner wall of the immersion nozzle.
  • As the material layer containing CaO calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C) are used as shown in Korean Patent Publication No. 194-0014253. CaO elutes from the CaO and reacts with alumina to inhibit inclusion adhesion.
  • the CaO content in the inner cavity should be increased, and for this purpose, the content of calcium zirconate must be increased.
  • ZrO 2 destabilizes with CaO elution, resulting in volume change due to the phase transition from cubic or monoclinic to tetragonal at the casting temperature. do. This may cause problems such as cracking or dropping of the discharge port during casting, which is why it is impossible to increase the CaO content by increasing the calcium zirconate content.
  • the immersion nozzle is preheated at 800 to 1100 °C. This requires higher control of the immersion nozzle preheating.
  • the present invention provides an immersion nozzle for continuous casting that can suppress adhesion of inclusions by allowing a low melting point compound to be easily formed when the alumina inclusions adhere to the inner cavity.
  • the present invention provides an immersion nozzle for continuous casting that can increase the CaO content without causing problems such as cracking or dropping of the discharge port during casting.
  • the present invention provides an immersion nozzle for continuous casting using a mixture containing rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C). do.
  • the continuous casting immersion nozzle includes a tubular nozzle body, an internal hole provided to surround at least a portion of the inner wall of the nozzle body, and an outlet provided in the lower portion of the nozzle body. Is formed from a mixture containing rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ) and graphite (C).
  • the inner cavity is formed to a thickness of 3mm to 5mm.
  • the rare titanium, calcium zirconate, calcium silicate and graphite are added in an amount of 95 wt% to 99 wt% and mixed with a binder of 1 wt% to 5 wt% with respect to 100 wt% of the mixture.
  • the rare titanium and calcium zirconate are contained in an amount of 40 wt% to 90 wt% with respect to 100 wt% of the mixture.
  • the rare titanium is contained in 5% to 50% of calcium zirconate.
  • the graphite is contained in an amount of 5 wt% to 35 wt% with respect to 100 wt% of the mixture.
  • the calcium silicate is contained in an amount of 1 wt% to 25 wt% with respect to 100 wt% of the mixture.
  • the discharge port is formed of a mixture containing rare titanium, calcium zirconate, calcium silicate and graphite.
  • the discharge port has a less CaO content than the inner cavity.
  • CaO content of the inner cavity is 15wt% to 35wt%
  • CaO content of the discharge port is 10wt% to 25wt%
  • the inner cavity and the discharge port are formed with a porosity of 15% to 35%.
  • a mixture including a rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C) To form.
  • a rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C) To form.
  • the present invention even if the preheating time of the immersion nozzle is short or the preheating temperature is low, the likelihood of problems such as crack generation and discharge port dropping becomes low, and as TiO 2 is present in the inner cavity and the CaO content is increased, The inclusion of inclusions can be effectively suppressed. Therefore, it is possible to realize the long life of the immersion nozzle to achieve the productivity and cost reduction effect at the same time.
  • FIG. 1 is a schematic view of a continuous casting apparatus is applied to the immersion nozzle according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the immersion nozzle for continuous casting according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a continuous casting apparatus including an immersion nozzle according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the immersion nozzle of the present invention.
  • the continuous casting apparatus to which the present invention is applied includes a tundish 200 for storing molten steel that has undergone a steelmaking process in the ladle 100 and a lower side of the tundish 200 to solidify the molten steel.
  • An immersion nozzle 500 for guiding the molten steel in the mold 200 to the mold 300.
  • the gate 400 may use a sliding gate, and the sliding gate may include upper and lower fixing plates 410 and 420, and a sliding plate 430 provided between the upper fixing plate 410 and the lower fixing plate 420. It includes.
  • the continuous casting device may control the tapping of the molten steel by sliding the sliding plate 430 to control the communication between the tapping hole 210 of the tundish 200 and the immersion nozzle 500.
  • the present invention is not limited thereto, and any means capable of controlling communication between the tapping hole 201 of the tundish 200 and the immersion nozzle 500 may be used.
  • the immersion nozzle 500 is formed in the tubular nozzle body 510 and the inner wall of the nozzle body 510 to guide the molten steel in the tundish 200 into the mold 300, as shown in FIG.
  • the molten steel in the immersion nozzle 500 is formed so as to be symmetrical with each other on the inner cavities 520, the sloughed portion 530 outside the nozzle body 510, and both sides of the lower part of the nozzle body 510.
  • the nozzle body 510 may be manufactured using any one material of Al 2 O 3 -C and Al 2 O 3 -SiO 2 -C, and is manufactured in a tubular shape so that molten steel can flow.
  • the slain portion 530 may be formed using a material of ZrO 2 -C, it may be formed on the outer surface of the nozzle body 510 above the discharge port 540.
  • the inner cavity 520 is formed on the inner wall of the nozzle body 510. That is, the inner cavities 520 may be formed on the inner wall of the immersion nozzle 500 to have a predetermined thickness, for example, 3 mm to 5 mm, to be in contact with the molten steel. At this time, the inner cavity 520 may be formed so as not to protrude from the inner wall of the nozzle body 510. That is, the internal hole 520 may be formed on the inner wall of the immersion nozzle 500 to a depth of 3 mm to 5 mm. Of course, the inner cavities 520 may be inserted into the inner wall of the immersion nozzle 500 at some depth and protruded from the inner wall of the immersion nozzle 500.
  • the internal hole 520 may be formed to have a length of 50% or more from the lower side in the longitudinal direction of the nozzle body 510.
  • the inner cavity 520 is preferably formed on the entire inner wall of the nozzle body 510.
  • the inner cavity 520 of the present invention may be formed using a mixture of rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO ⁇ SiO 2 ), and graphite (C) and a binder. have.
  • CaO is eluted by the following reaction and CaO is reacted with alumina to inhibit inclusions.
  • CaO and TiO 2 are separated from the raretite, CaO and ZrO 2 are separated from the calcium zirconate, and then CaO and alumina react to form 12CaO.7Al 2 O 3 , thereby forming inclusions on the inner wall of the immersion nozzle 500. Will be suppressed.
  • the rare titanium is lower in activation energy than the calcium zirconate and the rare titanium is separated into CaO and TiO 2 before the calcium zirconate is separated into CaO and ZrO 2 .
  • CaO is first separated from the rare titite before CaO is separated from calcium zirconate, the overall CaO content is increased, thereby improving the reactivity of CaO and alumina, thereby further suppressing adhesion of inclusions. can do.
  • TiO 2 and ZrO 2 serve to maintain the shape of the inner cavity 520.
  • ZrO 2 may be destabilized and cracks may be generated during casting.
  • ZrO 2 does not react with alumina, but TiO 2 may react with alumina to further suppress inclusion adhesion. That is, the reaction scheme described the main reaction of CaO and alumina, but TiO 2 also reacts with alumina.
  • the content of CaO can be increased without increasing the content of calcium zirconate, and the reactivity with alumina can be further improved by TiO 2 reacting with alumina, further suppressing adhesion of inclusions. can do.
  • TiO 2 does not use CaO as a stabilizer, generation of cracks or the like during casting can be prevented.
  • the internal vacancy part 520 is formed by mixing a rare titanium, calcium zirconate, calcium silicate, and graphite with a binder.
  • the internal vaccinating material including the rare titanium is mixed at 95 wt% to 99 wt%
  • the binder may be mixed at 1 wt% to 5 wt%. That is, with respect to 100 wt% of the mixture of the internal cavity material and the binder, the internal cavity material is mixed at 95wt% to 99wt%, and the binder is mixed at 1wt% to 5wt%.
  • Thermosetting resins such as a phenol resin, can be used as a binder.
  • the rare titanium and calcium zirconate in the mixture may be contained in 40wt% to 90wt%. That is, the rare-tarite and calcium zirconate may be contained in an amount of 40 wt% or more and 90 wt% or less with respect to 100 wt% of the mixture of the inner cavity material and the binder.
  • the rare titanium and calcium zirconate have a role of maintaining TiO 2 and ZrO 2 in the shape of the inner cavity 520 after CaO is eluted, it should be contained at least 40wt% to maintain the shape of the inner cavity 520. It should be contained below 90wt% for addition of other ingredients.
  • the rare titanium may be contained in 5% to 50% compared to calcium zirconate. That is, the rare titanium may be contained in an amount of 5 wt% to 50 wt% with respect to 100 wt% of the mixture of rare titanium and calcium zirconate.
  • the effect of the present invention is insignificant, and when it is mixed in excess of 50wt%, the reactivity is excessive and the life of the immersion nozzle 500 may be shortened. That is, when the excessive content of the rare titanium stones, the inner cavity 520 is quickly consumed due to the excessive reaction, and the life of the immersion nozzle 500 may be shortened accordingly.
  • graphite may be contained in 5wt% to 35wt% with respect to 100wt% of the mixture. Graphite should be added at least 5wt% for heat transfer to the outside of the immersion nozzle 500, and may be oxidized when excessively added in excess of 35wt%.
  • the calcium silicate is composed of CaO.SiO 2 + 2CaO.SiO 2 and may be contained in an amount of 1 wt% to 25 wt% with respect to 100 wt% of the mixture.
  • the amount of calcium silicate may vary depending on the amount of rare titanium, but in order to induce a reaction with alumina, the amount of calcium silicate must be contained in an amount of 1 wt% or more, and when added in excess of 25 wt%, the life of the immersion nozzle 500 is excessive. Can be shortened.
  • the discharge port 540 may also be provided with the same material as the internal hole 520. That is, it can be formed using a mixture of rare titanium, calcium zirconate, calcium silicate and graphite (C) and a binder. However, the discharge port 540 may be formed to a content lower than the content of the mixture of the internal cavity 520 to form a total CaO content less than the total CaO content of the internal cavity 520. That is, the CaO content of the rare titanium, calcium zirconate, calcium silicate, and graphite may be formed in the inner cavities 520 of 15wt% to 35wt%, and the discharge holes 540 may be formed of 10wt% to 25wt%.
  • the inner cavity 520 and the discharge port 540 is preferably manufactured so that the porosity is 15% to 35%. If the porosity of the inner cavity 520 and the discharge port 540 is dense to less than 15%, cracks may occur during casting, and if it exceeds 35%, the strength may decrease.
  • An immersion nozzle 500 is three in studying diluent titanium 520 formed on the inner wall of the nozzle body (510) (CaTiO 3), calcium zirconate (CaZrO 3) in accordance with one embodiment of the present invention as described above, It is formed of a material containing calcium silicate (CaO.SiO 2 ) and graphite (C).
  • the inclusion of rare titanium can increase the content of CaO without increasing the content of calcium zirconate, improve the reactivity with alumina by reacting TiO 2 with alumina, and further suppress the adhesion of inclusions. Heavy cracking can be prevented.
  • FIG. 3 is an image after the alumina adhesion reaction test according to the material of the sample, the image after the alumina adhesion reaction test for Al 2 O 3 -C, CaZrO 3 and CaTiO 3 . That is, FIG. 3 (a) is an image of the Al 2 O 3 -C substrate, Figure 3 (b) is an image of CaZrO 3 substrate, and Fig. 3 (c) is the image of the CaTiO 3 substrate. As shown, it can be seen that the inclusion adhesion level is the lowest in Al 2 O 3 -C and the highest in order of CaZrO 3 and CaTiO 3 .
  • FIGS. 4 to 7 are mixed with CaTiO 3 and CaZrO 3 in a ratio of 0: 100, 30:70, 50:50, and 70:30 on an alumina substrate, and then maintained at 1550 ° C. for 3 hours to observe reactivity. to be.
  • FIGS. 4 to 7 (a) show the reactivity of Al
  • FIGS. 4 to 7 (b) show the reactivity of Ca.
  • FIGS. 4 to 7 it can be seen that all of Ca in the sample is diffused into the alumina substrate.
  • CaTiO 3 and CaZrO 3 are mixed in a ratio of 30:70, the sample remains intact.
  • the content of CaTiO 3 is preferably added in not more than 50% compared to CaZrO 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention suggests a submerged nozzle for continuous casting, the submerged nozzle comprising: a tubular nozzle body; an internally hollow part provided so as to surround the internal wall of the nozzle body; and a discharge opening provided at the bottom part of the nozzle body, and the internally hollow part is formed from a mixture comprising perovskite (CaTiO3), calcium zirconate (CaZrO3), calcium silicate (CaOㆍSiO2) and graphite (C).

Description

연속주조용 침지노즐Immersion nozzle for continuous casting
본 발명은 연속주조용 침지노즐에 관한 것으로, 특히 알루미나(Al2O3) 개재물과 반응하여 저융점 물질을 형성시킴으로써 노즐 막힘을 억제할 수 있는 연속주조용 침지노즐에 관한 것이다.The present invention relates to an immersion nozzle for continuous casting, and more particularly, to an immersion nozzle for continuous casting that can suppress nozzle clogging by reacting with an alumina (Al 2 O 3 ) inclusion to form a low melting point material.
일반적인 연속 주조 공정은 레이들에 수용된 용강을 턴디쉬로 주입하고, 턴디쉬에서 주입된 용강을 주형에 연속적으로 주입시켜 용강을 1차 냉각시킨 후 1차 냉각된 주편의 표면에 냉각수를 살수하여 2차 냉각시킴에 따라 용강을 응고시켜 주편을 제조하는 공정이다. 이때, 턴디쉬에 수용된 용강을 주형 내로 공급하는 과정에서 용강은 턴디쉬의 출탕구에 설치되는 게이트 또는 스토퍼에 의해 출탕이 단속되고, 침지노즐을 통하여 주형 내로 공급된다. In general continuous casting process, the molten steel contained in the ladle is injected into the tundish, the molten steel injected from the tundish is continuously injected into the mold to cool the molten steel first, and then the cooling water is sprayed on the surface of the first cooled slab. It is the process of making cast slab by solidifying molten steel as it cools. At this time, in the process of supplying the molten steel accommodated in the tundish into the mold, the molten steel is interrupted by a gate or a stopper installed in the tapping outlet of the tundish, and is supplied into the mold through the immersion nozzle.
용강 중에는 알루미나(Al2O3)성 개재물들이 존재하는데, 부상 분리에 의해 제거되지 않은 미세 개재물들이 턴디쉬와 주형을 연결하는 침지노즐의 내벽에 부착되어 침지노즐 막힘의 원인으로 작용한다. 이를 해결하기 위해 종래에는 Ar 가스를 침지노즐 내벽에 공급하여 버블(bubble)로 개재물을 트래핑(traping)시킴으로써 침지노즐 내벽에 개재물이 부착되는 것을 억제하는 방법과, CaO를 포함한 물질층을 침지노즐의 내벽에 형성하여 알루미나와 저융점 물질을 형성함으로써 부착된 개재물을 제거하는 방법 등이 있다.There are alumina (Al 2 O 3 ) inclusions in the molten steel. Fine inclusions that are not removed by flotation are attached to the inner wall of the immersion nozzle connecting the tundish and the mold and act as a cause of the immersion nozzle clogging. In order to solve this problem, conventionally, Ar gas is supplied to the inner wall of the immersion nozzle to trap the inclusions in a bubble, thereby suppressing the inclusion of the inclusions on the inner wall of the immersion nozzle. And a method of removing the inclusions by forming on the inner wall to form alumina and a low melting point material.
Ar 가스를 이용하는 방법은 침지노즐 내벽의 개재물 부착을 어느 정도 저감시킬 수 있지만, Ar 가스에 의한 냉각 효과 등에 의해 개재물 부착을 억제하는데 한계가 있다. 또한, CaO를 포함하는 물질층을 내공부에 형성하는 방법은 침지노즐 내벽에 개재물 부착을 억제하는 가장 효과적인 방법 중 하나로 여겨지고 있다. CaO를 포함하는 물질층으로는 한국공개특허 제1994-0014253호에 제시된 바와 같이 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2), 흑연(C)이 사용되는데, 주조 온도에서 이들로부터 CaO가 용출되고 CaO가 알루미나와 반응하여 개재물 부착을 억제하게 된다.The method using Ar gas can reduce the inclusion of inclusions on the inner wall of the immersion nozzle to some extent, but there is a limit to suppressing the inclusion of inclusions due to the cooling effect by Ar gas. In addition, the method of forming a material layer containing CaO in the inner cavities is considered to be one of the most effective methods for suppressing the inclusion of inclusions on the inner wall of the immersion nozzle. As the material layer containing CaO, calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C) are used as shown in Korean Patent Publication No. 194-0014253. CaO elutes from the CaO and reacts with alumina to inhibit inclusion adhesion.
그러나, CaO의 용출이 부족할 경우 CaOㆍ2Al2O3, CaOㆍ7Al2O3 등의 고융점 물질이 형성되고, 이로 인해 오히려 노즐 막힘이 가속화되는 경우가 발생될 수 있다.However, if the elution of CaO run out of a refractory material such as CaO. 2Al 2 O 3, CaO and 7Al 2 O 3 is formed, which results can be rather occurs when the acceleration nozzle clogging.
또한, 저융점 물질(12CaOㆍ7Al2O3)을 효과적으로 형성하기 위해서는 내공부 내의 CaO 함량을 증가시켜야 하고, 이를 위해 칼슘지르코네이트의 함량을 증가시켜야 한다. 그러나, 칼슘지르코네이트의 함량을 증가시킬 경우 CaO 용출에 따라 ZrO2가 탈안정화되어 주조 온도에서 큐빅(cubic) 또는 모노클리닉(Monoclinic)에서 테트라고날(tetragonal)로의 상전이가 진행되어 부피 변화가 발생한다. 이로 인해 주조중 크랙(crack) 발생 또는 토출구 탈락 등의 문제가 발생할 수 있기 때문에 칼슘지르코네이트 함량을 증가시켜 CaO 함량을 증가시키지 못하고 있는 실정이다. 그리고, 상온에서 1550℃의 용강이 직접 접촉하면 열충격으로 인한 순간적인 팽창 때문에 침지노즐에 크랙 등이 발생될 수 있기 때문에 침지노즐을 800∼1100℃에서 예열하는데, 이 경우 상전이가 가속화되어 트러블 발생 가능성이 높아지므로 침지노즐 예열에 대한 철저한 관리가 필요하다.In addition, in order to effectively form the low melting point material (12CaO.7Al 2 O 3 ), the CaO content in the inner cavity should be increased, and for this purpose, the content of calcium zirconate must be increased. However, when the content of calcium zirconate is increased, ZrO 2 destabilizes with CaO elution, resulting in volume change due to the phase transition from cubic or monoclinic to tetragonal at the casting temperature. do. This may cause problems such as cracking or dropping of the discharge port during casting, which is why it is impossible to increase the CaO content by increasing the calcium zirconate content. In addition, when the molten steel of 1550 ℃ directly contacts at room temperature, cracks may occur in the immersion nozzle due to instantaneous expansion due to thermal shock, and thus, the immersion nozzle is preheated at 800 to 1100 ℃. This requires higher control of the immersion nozzle preheating.
본 발명은 알루미나성 개재물이 내공부에 부착 시 쉽게 저융점 화합물이 형성되도록 함으로써 개재물 부착을 억제시킬 수 있는 연속주조용 침지노즐을 제공한다.The present invention provides an immersion nozzle for continuous casting that can suppress adhesion of inclusions by allowing a low melting point compound to be easily formed when the alumina inclusions adhere to the inner cavity.
본 발명은 주조 중 크랙 발생 또는 토출구 탈락 등의 문제를 발생시키지 않으면서 CaO 함량을 증가시킬 수 있는 연속주조용 침지노즐을 제공한다.The present invention provides an immersion nozzle for continuous casting that can increase the CaO content without causing problems such as cracking or dropping of the discharge port during casting.
본 발명은 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2), 흑연(C)을 포함하는 혼합물을 이용하여 내공부가 형성된 연속주조용 침지노즐을 제공한다.The present invention provides an immersion nozzle for continuous casting using a mixture containing rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C). do.
본 발명의 실시 예들에 따른 연속주조용 침지노즐은 관 형상의 노즐 몸체와, 상기 노즐 몸체의 내벽을 적어도 일부 둘러싸도록 마련된 내공부와, 상기 노즐 몸체의 하부에 마련된 토출구를 포함하고, 상기 내공부는 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2) 및 흑연(C)을 포함하는 혼합물로 형성된다.The continuous casting immersion nozzle according to the embodiments of the present invention includes a tubular nozzle body, an internal hole provided to surround at least a portion of the inner wall of the nozzle body, and an outlet provided in the lower portion of the nozzle body. Is formed from a mixture containing rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ) and graphite (C).
상기 내공부는 3㎜ 내지 5㎜ 두께로 형성된다.The inner cavity is formed to a thickness of 3mm to 5mm.
상기 혼합물 100wt%에 대하여 상기 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연은 95wt% 내지 99wt% 첨가되어 1wt% 내지 5wt%의 바인더와 혼합된다.The rare titanium, calcium zirconate, calcium silicate and graphite are added in an amount of 95 wt% to 99 wt% and mixed with a binder of 1 wt% to 5 wt% with respect to 100 wt% of the mixture.
상기 혼합물 100wt%에 대하여 희티탄석 및 칼슘지르코네이트는 40wt% 내지 90wt%로 함유된다.The rare titanium and calcium zirconate are contained in an amount of 40 wt% to 90 wt% with respect to 100 wt% of the mixture.
상기 희티탄석은 칼슘지르코네이트 대비 5% 내지 50%로 함유된다.The rare titanium is contained in 5% to 50% of calcium zirconate.
상기 혼합물 100wt%에 대하여 상기 흑연은 5wt% 내지 35wt%로 함유된다.The graphite is contained in an amount of 5 wt% to 35 wt% with respect to 100 wt% of the mixture.
상기 혼합물 100wt%에 대하여 상기 칼슘실리케이트는 1wt% 내지 25wt%로 함유된다.The calcium silicate is contained in an amount of 1 wt% to 25 wt% with respect to 100 wt% of the mixture.
상기 토출구는 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연을 포함하는 혼합물로 형성된다.The discharge port is formed of a mixture containing rare titanium, calcium zirconate, calcium silicate and graphite.
상기 토출구는 상기 내공부보다 CaO 함량이 적게 형성된다.The discharge port has a less CaO content than the inner cavity.
상기 내공부의 CaO 함량은 15wt% 내지 35wt%이고, 상기 토출구의 CaO의 함량은 10wt% 내지 25wt%이다.CaO content of the inner cavity is 15wt% to 35wt%, CaO content of the discharge port is 10wt% to 25wt%.
상기 내공부 및 토출구는 15% 내지 35%의 기공율로 형성된다.The inner cavity and the discharge port are formed with a porosity of 15% to 35%.
본 발명의 실시 예는 연속 주조용 침지노즐의 내공부를 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2), 흑연(C)를 포함하는 혼합물을 이용하여 형성한다. 본 발명에 의하면, 침지노즐을 예열 시간이 짧거나 예열 온도가 낮아도 크랙 발생 및 토출구 탈락 등의 문제가 발생할 가능성이 낮아지고, 내공부에 TiO2가 존재하고 CaO 함량이 증가함에 따라 침지노즐 내벽에 개재물이 부착되는 것을 효과적으로 억제할 수 있다. 따라서, 침지노즐의 장수명화를 구현할 수 있어 생산성 향상과 비용 절감 효과를 동시에 달성할 수 있다.In an embodiment of the present invention, a mixture including a rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ), and graphite (C) To form. According to the present invention, even if the preheating time of the immersion nozzle is short or the preheating temperature is low, the likelihood of problems such as crack generation and discharge port dropping becomes low, and as TiO 2 is present in the inner cavity and the CaO content is increased, The inclusion of inclusions can be effectively suppressed. Therefore, it is possible to realize the long life of the immersion nozzle to achieve the productivity and cost reduction effect at the same time.
도 1은 본 발명의 일 실시 예에 따른 침지노즐이 적용되는 연속 주조 장치의 개략도.1 is a schematic view of a continuous casting apparatus is applied to the immersion nozzle according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 연속 주조용 침지노즐의 단면도.Figure 2 is a cross-sectional view of the immersion nozzle for continuous casting according to an embodiment of the present invention.
도 3은 Al2O3-C, CaZrO3 및 CaTiO3에 대한 알루미나 부착 반응 시험 후의 이미지.3 is an image after the alumina adhesion reaction test for Al 2 O 3 -C, CaZrO 3 and CaTiO 3 .
도 4 내지 도 7은 알루미나 기판 상에 CaTiO3와 CaZrO3를 각각 다른 비율로 성형한 시료의 반응성 실험 결과 이미지.4 to 7 is a result of the reactivity experiment of the sample formed by CaTiO 3 and CaZrO 3 in different ratios on the alumina substrate.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 일 실시 예에 따른 침지노즐을 포함하는 연속 주조 장치의 개략도이고, 도 2는 본 발명의 침지노즐의 단면도이다.1 is a schematic diagram of a continuous casting apparatus including an immersion nozzle according to an embodiment of the present invention, Figure 2 is a cross-sectional view of the immersion nozzle of the present invention.
도 1을 참조하면, 본 발명이 적용되는 연속 주조 장치는 레이들(100)에서 제강 공정을 거친 용강을 저장하는 턴디쉬(200)와, 턴디쉬(200)의 하측에 배치되어 용강을 응고시켜 주편을 제조하는 주형(300)과, 턴디쉬(200)의 출탕구(210) 하측에 대응 배치되어 용강의 출탕을 제어하는 게이트(400)와, 게이트(400)의 하부에 대응 배치되어 턴디쉬(200) 내의 용강을 주형(300)으로 안내하는 침지노즐(500)을 포함한다. 또한, 게이트(400)는 슬라이딩 게이트를 이용할 수 있는데, 슬라이딩 게이트는 상부 및 하부 고정 플레이트(410, 420)와, 상부 고정 플레이트(410)와 하부 고정 플레이트(420) 사이에 마련된 슬라이딩 플레이트(430)를 포함한다. 이러한 연속 주조 장치는 슬라이딩 플레이트(430)를 슬라이딩시켜 턴디쉬(200)의 출탕구(210)와 침지노즐(500) 사이의 연통을 제어함으로써 용강의 출탕을 제어할 수 있다. 물론 이에 한정되지 않고, 턴디쉬(200)의 출탕구(201)와 침지노즐(500) 사이의 연통을 제어할 수 있는 어떠한 수단이 사용되어도 무방하다.Referring to FIG. 1, the continuous casting apparatus to which the present invention is applied includes a tundish 200 for storing molten steel that has undergone a steelmaking process in the ladle 100 and a lower side of the tundish 200 to solidify the molten steel. A mold 300 for manufacturing a cast steel, a gate 400 corresponding to a lower side of the tapping hole 210 of the tundish 200 to control tapping of molten steel, and a tapped dish correspondingly disposed below the gate 400. An immersion nozzle 500 for guiding the molten steel in the mold 200 to the mold 300. In addition, the gate 400 may use a sliding gate, and the sliding gate may include upper and lower fixing plates 410 and 420, and a sliding plate 430 provided between the upper fixing plate 410 and the lower fixing plate 420. It includes. The continuous casting device may control the tapping of the molten steel by sliding the sliding plate 430 to control the communication between the tapping hole 210 of the tundish 200 and the immersion nozzle 500. Of course, the present invention is not limited thereto, and any means capable of controlling communication between the tapping hole 201 of the tundish 200 and the immersion nozzle 500 may be used.
침지노즐(500)은 도 2에 도시된 바와 같이 턴디쉬(200) 내의 용강을 주형(300) 내로 안내할 수 있도록 관 형상으로 제작된 노즐 몸체(510)와, 노즐 몸체(510)의 내벽을 둘러싸도록 마련된 내공부(520)와, 노즐 몸체(510) 외부의 슬라그라인부(530)와, 노즐 몸체(510) 하부의 양측에 서로 대칭되도록 형성되어 침지노즐(500) 내의 용강이 주형(300)으로 토출되도록 하는 토출구(540)를 포함한다. The immersion nozzle 500 is formed in the tubular nozzle body 510 and the inner wall of the nozzle body 510 to guide the molten steel in the tundish 200 into the mold 300, as shown in FIG. The molten steel in the immersion nozzle 500 is formed so as to be symmetrical with each other on the inner cavities 520, the sloughed portion 530 outside the nozzle body 510, and both sides of the lower part of the nozzle body 510. A discharge port 540 to be discharged to
노즐 몸체(510)는 Al2O3-C 및 Al2O3-SiO2-C 중 어느 하나의 재료를 이용하여 제작할 수 있으며, 용강이 흐를 수 있도록 관 형상으로 제작된다. 또한, 슬라그라인부(530)은 ZrO2-C의 재료를 이용하여 형성할 수 있으며, 토출구(540) 상측의 노즐 몸체(510)의 외면에 형성될 수 있다.The nozzle body 510 may be manufactured using any one material of Al 2 O 3 -C and Al 2 O 3 -SiO 2 -C, and is manufactured in a tubular shape so that molten steel can flow. In addition, the slain portion 530 may be formed using a material of ZrO 2 -C, it may be formed on the outer surface of the nozzle body 510 above the discharge port 540.
내공부(520)는 노즐 몸체(510)의 내벽에 형성된다. 즉, 내공부(520)는 침지노즐(500)의 내벽에 소정 두께, 예를 들어 3㎜∼5㎜ 두께로 형성되어 용강과 접촉될 수 있다. 이때, 내공부(520)는 노즐 몸체(510)의 내벽으로부터 돌출되지 않도록 형성될 수 있다. 즉, 내공부(520)는 침지노즐(500) 내벽에 3㎜∼5㎜의 깊이로 형성될 수 있다. 물론, 내공부(520)는 침지노즐(500) 내벽에 일부 깊이로 삽입되고 나머지가 돌출된 형태로 마련될 수도 있고, 침지노즐(500) 내벽으로부터 돌출된 형태로 마련될 수도 있다. 또한, 내공부(520)는 노즐 몸체(510)의 길이 방향으로 하측으로부터 50% 이상의 길이로 형성될 수 있다. 물론, 내공부(520)는 노즐 몸체(510) 내벽 전체에 형성되는 것이 바람직하다. 이러한 본 발명의 내공부(520)는 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2) 및 흑연(C)과 바인더의 혼합물을 이용하여 형성할 수 있다. 내공부(520)를 희티탄석을 포함하는 혼합물로 형성함으로써 다음과 같은 반응에 의해 CaO가 용출되고 CaO가 알루미나와 반응하여 개재물 부착을 억제하게 된다.The inner cavity 520 is formed on the inner wall of the nozzle body 510. That is, the inner cavities 520 may be formed on the inner wall of the immersion nozzle 500 to have a predetermined thickness, for example, 3 mm to 5 mm, to be in contact with the molten steel. At this time, the inner cavity 520 may be formed so as not to protrude from the inner wall of the nozzle body 510. That is, the internal hole 520 may be formed on the inner wall of the immersion nozzle 500 to a depth of 3 mm to 5 mm. Of course, the inner cavities 520 may be inserted into the inner wall of the immersion nozzle 500 at some depth and protruded from the inner wall of the immersion nozzle 500. In addition, the internal hole 520 may be formed to have a length of 50% or more from the lower side in the longitudinal direction of the nozzle body 510. Of course, the inner cavity 520 is preferably formed on the entire inner wall of the nozzle body 510. The inner cavity 520 of the present invention may be formed using a mixture of rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO · SiO 2 ), and graphite (C) and a binder. have. By forming the inner cavity 520 into a mixture containing rare titanium, CaO is eluted by the following reaction and CaO is reacted with alumina to inhibit inclusions.
CaTiO3 → CaO + TiO2 CaTiO 3 → CaO + TiO 2
CaZrO3 → CaO + ZrO2 CaZrO 3 → CaO + ZrO 2
CaOㆍZrO2 → CaO + ZrO2 CaOZrO 2 → CaO + ZrO 2
12CaO + 7Al2O3 → 12CaOㆍ7Al2O3 12CaO + 7Al 2 O 3 → 12CaO7Al 2 O 3
즉, 희티탄석으로부터 CaO와 TiO2가 분리되고 칼슘지르코네이트로부터 CaO와 ZrO2가 분리된 후 CaO와 알루미나가 반응하여 12CaOㆍ7Al2O3를 형성함으로써 침지노즐(500) 내벽의 개재물 부착을 억제하게 된다. 여기서, 희티탄석은 칼슘지르코네이트보다 활성화 에너지가 낮아 칼슘지르코네이트가 CaO와 ZrO2로 분리되기 이전에 희티탄석이 CaO와 TiO2로 분리된다. 따라서, 칼슘지르코네이트로부터 CaO가 분리되기 이전에 희티탄석으로부터 CaO가 먼저 분리되어 존재하기 때문에 결국 전체적인 CaO 함량이 증가하게 되고, 그에 따라 CaO와 알루미나의 반응성이 향상되어 개재물의 부착을 더욱 억제할 수 있다. 이때, CaO가 분리된 후 TiO2와 ZrO2는 내공부(520)의 형체를 유지하는 역할을 한다. 그런데, CaO의 함량을 증가시키기 위해 칼슘지르코네이트의 함량을 증가시키게 되면 ZrO2가 탈안정화되어 주조중 크랙이 발생될 수 있지다. 즉, 칼슘지르코네이트로부터 CaO가 분리되면 ZrO2가 남는데 ZrO2의 안정화제로 이용되는 CaO가 분리되기 때문에 ZrO2가 안정화되지 않고, 그로 인해 내공부(520)에 용강이 접촉될 때 또는 침지노즐(500)을 예열하는 동안 크랙 등이 발생된다. 그러나, 희티탄석을 포함시키게 되면 희티탄석으로부터 CaO가 분리된 후 남는 TiO2는 안정화 상태를 유지하고 CaO가 안정화제로 이용되지 않기 때문에 크랙 등이 발생되지 않는다. 따라서, 희티탄석이 포함되고 그로부터 분리된 TiO2가 존재하기 때문에 침지노즐(500)의 예열 시간이 짧거나 예열 온도가 낮아도 크랙 발생 및 토출구 탈락 등의 문제가 발생할 가능성이 낮아진다. 또한, ZrO2는 알루미나와 반응하지 않지만 TiO2는 알루미나와 반응함으로써 개재물 부착을 더욱 억제할 수 있다. 즉, 상기 반응식에는 CaO와 알루미나의 주요 반응을 기재하였지만, TiO2 또한 알루미나와 반응한다. 결국, 희티탄석을 함유함으로써 칼슘지르코네이트의 함량을 증가시키지 않고도 CaO의 함량을 증가시킬 수 있고, TiO2가 알루미나와 반응함으로써 알루미나와의 반응성을 더욱 향상시킬 수 있어 개재물의 부착을 더욱 억제할 수 있다. 또, TiO2가 CaO를 안정화제로 이용하지 않으므로 주조 중 크랙 등의 발생을 방지할 수 있다. That is, CaO and TiO 2 are separated from the raretite, CaO and ZrO 2 are separated from the calcium zirconate, and then CaO and alumina react to form 12CaO.7Al 2 O 3 , thereby forming inclusions on the inner wall of the immersion nozzle 500. Will be suppressed. Here, the rare titanium is lower in activation energy than the calcium zirconate and the rare titanium is separated into CaO and TiO 2 before the calcium zirconate is separated into CaO and ZrO 2 . Therefore, since CaO is first separated from the rare titite before CaO is separated from calcium zirconate, the overall CaO content is increased, thereby improving the reactivity of CaO and alumina, thereby further suppressing adhesion of inclusions. can do. In this case, after CaO is separated, TiO 2 and ZrO 2 serve to maintain the shape of the inner cavity 520. However, when the content of calcium zirconate is increased to increase the content of CaO, ZrO 2 may be destabilized and cracks may be generated during casting. That is, when CaO is separated from calcium zirconate, ZrO 2 remains, but since CaO used as a stabilizer of ZrO 2 is separated, ZrO 2 is not stabilized, and thus molten steel contacts the inner cavity 520 or the immersion nozzle. Cracks and the like occur during preheating 500. However, when the rare titanium is included, the TiO 2 remaining after the CaO is separated from the rare titanium is maintained in a stabilized state and no crack is generated because CaO is not used as a stabilizer. Therefore, since the titanium dioxide is contained and TiO 2 separated therefrom, even if the preheating time of the immersion nozzle 500 is short or the preheating temperature is low, problems such as cracking and dropping of the discharge port are reduced. In addition, ZrO 2 does not react with alumina, but TiO 2 may react with alumina to further suppress inclusion adhesion. That is, the reaction scheme described the main reaction of CaO and alumina, but TiO 2 also reacts with alumina. As a result, by containing rare titanium, the content of CaO can be increased without increasing the content of calcium zirconate, and the reactivity with alumina can be further improved by TiO 2 reacting with alumina, further suppressing adhesion of inclusions. can do. In addition, since TiO 2 does not use CaO as a stabilizer, generation of cracks or the like during casting can be prevented.
본 발명에 따른 내공부(520)는 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연과 바인더가 혼합되어 형성되는데, 희티탄석을 포함하는 내공부 재료는 95wt% 내지 99wt%로 혼합되고, 바인더는 1wt% 내지 5wt%로 혼합될 수 있다. 즉, 내공부 재료와 바인더의 혼합물 100wt%에 대하여 내공부 재료는 95wt% 내지 99wt%로 혼합되고, 바인더는 1wt% 내지 5wt%로 혼합된다. 바인더로는 페놀 수지 등의 열경화성 수지를 이용할 수 있다. 여기서, 바인더가 1wt% 미만이면 내공부 재료의 혼합이 어렵고, 바인더가 5wt% 초과하면 습도가 높아 내공부(520)의 성형이 어려운 문제가 있다. 또한, 상기 혼합물에서 희티탄석 및 칼슘지르코네이트는 40wt% 내지 90wt%로 함유될 수 있다. 즉, 내공부 재료와 바인더의 혼합물 100wt%에 대하여 희타탄석과 칼슘지르코네이트가 40wt% 이상 90wt% 이하로 함유될 수 있다. 희티탄석 및 칼슘지르코네이트는 CaO가 용출된 후에 TiO2와 ZrO2가 내공부(520)의 형상을 유지하는 역할을 하기 때문에 40wt% 이상 함유되어야 내공부(520)의 형상을 유지할 수 있고, 기타 다른 성분의 첨가를 위해 90wt% 이하로 함유되어야 한다. 그리고, 희티탄석은 칼슘지르코네이트 대비 5% 내지 50%로 함유될 수 있다. 즉, 희티탄석과 칼슘지르코네이트의 혼합물 100wt%에 대하여 희티탄석은 5wt% 내지 50wt%로 함유될 수 있다. 희티탄석이 칼슘지르코니아 대비 5% 미만 혼합될 경우 본 발명의 효과가 미미하며, 50wt%를 초과하여 혼합될 경우 반응성이 과다하여 침지노즐(500)의 수명이 단축될 수 있다. 즉, 희티탄석의 과다 함유되면 과다 반응으로 인해 내공부(520)가 빨리 소모되고 그에 따라 침지노즐(500)의 수명이 단축될 수 있다. 그리고, 흑연은 혼합물 100wt%에 대해 5wt% 내지 35wt%로 함유될 수 있다. 흑연은 침지노즐(500) 외부와의 열전달을 위해 5wt% 이상 첨가되어야 하고, 35wt%를 초과하여 지나치게 과량 첨가될 경우 산화될 수 있다. 또한, 칼슘실리케이트는 CaOㆍSiO2+2CaOㆍSiO2로 구성되고 혼합물 100wt%에 대해 1wt% 내지 25wt%로 함유될 수 있다. 희티탄석의 양에 따라 칼슘실리케이트의 양이 달라질 수 있지만, 알루미나와의 반응을 유도하기 위해서는 1wt% 이상 함유되어야 하고, 25wt%를 초과하여 첨가될 경우 반응이 과다하여 침지노즐(500)의 수명이 단축될 수 있다.The internal vacancy part 520 according to the present invention is formed by mixing a rare titanium, calcium zirconate, calcium silicate, and graphite with a binder. The internal vaccinating material including the rare titanium is mixed at 95 wt% to 99 wt%, The binder may be mixed at 1 wt% to 5 wt%. That is, with respect to 100 wt% of the mixture of the internal cavity material and the binder, the internal cavity material is mixed at 95wt% to 99wt%, and the binder is mixed at 1wt% to 5wt%. Thermosetting resins, such as a phenol resin, can be used as a binder. Here, if the binder is less than 1wt%, the mixing of the internal cavity material is difficult, and if the binder is more than 5wt%, the humidity is high, so that molding of the internal cavity 520 is difficult. In addition, the rare titanium and calcium zirconate in the mixture may be contained in 40wt% to 90wt%. That is, the rare-tarite and calcium zirconate may be contained in an amount of 40 wt% or more and 90 wt% or less with respect to 100 wt% of the mixture of the inner cavity material and the binder. Since the rare titanium and calcium zirconate have a role of maintaining TiO 2 and ZrO 2 in the shape of the inner cavity 520 after CaO is eluted, it should be contained at least 40wt% to maintain the shape of the inner cavity 520. It should be contained below 90wt% for addition of other ingredients. In addition, the rare titanium may be contained in 5% to 50% compared to calcium zirconate. That is, the rare titanium may be contained in an amount of 5 wt% to 50 wt% with respect to 100 wt% of the mixture of rare titanium and calcium zirconate. When the rare titanium is mixed less than 5% compared to calcium zirconia, the effect of the present invention is insignificant, and when it is mixed in excess of 50wt%, the reactivity is excessive and the life of the immersion nozzle 500 may be shortened. That is, when the excessive content of the rare titanium stones, the inner cavity 520 is quickly consumed due to the excessive reaction, and the life of the immersion nozzle 500 may be shortened accordingly. And, graphite may be contained in 5wt% to 35wt% with respect to 100wt% of the mixture. Graphite should be added at least 5wt% for heat transfer to the outside of the immersion nozzle 500, and may be oxidized when excessively added in excess of 35wt%. In addition, the calcium silicate is composed of CaO.SiO 2 + 2CaO.SiO 2 and may be contained in an amount of 1 wt% to 25 wt% with respect to 100 wt% of the mixture. The amount of calcium silicate may vary depending on the amount of rare titanium, but in order to induce a reaction with alumina, the amount of calcium silicate must be contained in an amount of 1 wt% or more, and when added in excess of 25 wt%, the life of the immersion nozzle 500 is excessive. Can be shortened.
한편, 토출구(540)도 내공부(520)와 동일 재질로 마련될 수 있다. 즉, 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연(C)과 바인더의 혼합물을 이용하여 형성할 수 있다. 그러나, 토출구(540)는 내공부(520)의 상기 혼합물의 함량보다 낮은 함량으로 형성하여 총 CaO 함량이 내공부(520)의 총 CaO 함량보다 적게 형성할 수 있다. 즉, 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연의 CaO 함량이 내공부(520)는 15wt% 내지 35wt%로 형성되고, 토출구(540)는 10wt% 내지 25wt%로 형성할 수 있다. 한편, 내공부(520) 및 토출구(540)는 기공율이 15% 내지 35%가 되도록 제작되는 것이 바람직하다. 내공부(520) 및 토출구(540)의 기공율이 15% 미만으로 치밀하면 주조 중 크랙이 발생될 수 있고 35%를 초과하면 강도가 저하될 수 있다.On the other hand, the discharge port 540 may also be provided with the same material as the internal hole 520. That is, it can be formed using a mixture of rare titanium, calcium zirconate, calcium silicate and graphite (C) and a binder. However, the discharge port 540 may be formed to a content lower than the content of the mixture of the internal cavity 520 to form a total CaO content less than the total CaO content of the internal cavity 520. That is, the CaO content of the rare titanium, calcium zirconate, calcium silicate, and graphite may be formed in the inner cavities 520 of 15wt% to 35wt%, and the discharge holes 540 may be formed of 10wt% to 25wt%. On the other hand, the inner cavity 520 and the discharge port 540 is preferably manufactured so that the porosity is 15% to 35%. If the porosity of the inner cavity 520 and the discharge port 540 is dense to less than 15%, cracks may occur during casting, and if it exceeds 35%, the strength may decrease.
상기한 바와 같이 본 발명의 일 실시 예에 따른 침지노즐(500)은 노즐 본체(510)의 내벽에 형성된 내공부(520)를 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2) 및 흑연(C)을 포함하는 재질로 형성한다. 희티탄석이 포함됨으로써 칼슘지르코네이트의 함량을 증가시키지 않고도 CaO의 함량을 증가시킬 수 있고 TiO2가 알루미나와 반응함으로써 알루미나와의 반응성을 향상시킬 수 있어 개재물의 부착을 더욱 억제할 수 있으며, 주조 중 크랙 등의 발생을 방지할 수 있다. An immersion nozzle 500 is three in studying diluent titanium 520 formed on the inner wall of the nozzle body (510) (CaTiO 3), calcium zirconate (CaZrO 3) in accordance with one embodiment of the present invention as described above, It is formed of a material containing calcium silicate (CaO.SiO 2 ) and graphite (C). The inclusion of rare titanium can increase the content of CaO without increasing the content of calcium zirconate, improve the reactivity with alumina by reacting TiO 2 with alumina, and further suppress the adhesion of inclusions. Heavy cracking can be prevented.
도 3은 시료의 재질에 따른 알루미나 부착 반응 시험 후의 이미지으로서, Al2O3-C, CaZrO3 및 CaTiO3에 대한 알루미나 부착 반응 시험 후의 이미지이다. 즉, 도 3(a)는 Al2O3-C 기판의 이미지이고, 도 3(b)는 CaZrO3 기판의 이미지이며, 도 3(c)는 CaTiO3 기판의 이미지이다. 도시된 바와 같이 개재물 부착 수준이 Al2O3-C가 가장 낮고 CaZrO3 및 CaTiO3의 순으로 높은 것을 알 수 있다. 또한, 각 기판의 알루미나 부착 반응 시험 후 성분 분석 결과, Al2O3-C는 Al2O3가 98wt%이고 기타 2wt%로 나타났고, CaZrO3는 Al2O3가 57wt%, CaO-Al2O3 화합물이 37wt%, 그리고 기타 6wt%로 나타났다. 또한, CaTiO3는 Al2O3가 15wt%, CaO-Al2O3 화합물이 78wt%, 그리고 기타 7wt%로 났다. 따라서, 반응성이 가장 뛰어난 CaTiO3는 CaZrO3에 비해 재료내 CaO의 용출이 용이하고, CaO가 알루미나와 저융점 물질을 만들기에 용이하다. 이와 같은 결과로 볼 때, 침지노즐(500)의 내공부(520) 및 토출구(540)의 재질로 CaTiO3를 첨가할 경우, 침지노즐(500)의 개재물 부착을 효과적으로 억제할 수 있다. 3 is an image after the alumina adhesion reaction test according to the material of the sample, the image after the alumina adhesion reaction test for Al 2 O 3 -C, CaZrO 3 and CaTiO 3 . That is, FIG. 3 (a) is an image of the Al 2 O 3 -C substrate, Figure 3 (b) is an image of CaZrO 3 substrate, and Fig. 3 (c) is the image of the CaTiO 3 substrate. As shown, it can be seen that the inclusion adhesion level is the lowest in Al 2 O 3 -C and the highest in order of CaZrO 3 and CaTiO 3 . Further, after the alumina reaction tests for each substrate component analysis, Al 2 O 3 is -C Al 2 O 3 is 98wt% and the other appeared to 2wt%, CaZrO 3 is a 57wt% Al 2 O 3, CaO -Al 2 O 3 compound was found to be 37wt% and the other 6wt%. In addition, CaTiO 3 was 15 wt% in Al 2 O 3 , 78 wt% in CaO-Al 2 O 3 , and 7 wt% in the other. Therefore, CaTiO 3 having the highest reactivity is easier to dissolve CaO in the material than CaZrO 3 , and CaO is easy to make alumina and low melting point materials. As a result, when CaTiO 3 is added as the material of the inner cavities 520 and the discharge holes 540 of the immersion nozzle 500, the adhesion of the inclusions of the immersion nozzle 500 can be effectively suppressed.
도 4 내지 도 7은 알루미나 기판 상에 CaTiO3와 CaZrO3를 각각 0:100, 30:70, 50:50, 70:30의 비로 섞어 성형한 후 1550℃에서 3시간 유지하여 반응성을 관찰한 결과이다. 여기서, 도 4 내지 도 7의 (a)는 Al의 반응성을 도시한 것이고, 도 4 내지 도 7의 (b)는 Ca의 반응성을 도시한 것이다. 도 4 내지 도 7의 (b)에 도시된 바와 같이 모두 시료 내의 Ca가 알루미나 기판으로 확산되어 있는 것을 볼 수 있는데, CaTiO3와 CaZrO3가 30:70의 비로 섞인 경우 시료가 온전하게 남아있고, 50:50의 경우는 시료가 반응이 활발하나 모두 녹지 않고 3시간 후에도 남아있는 것이 확인된다. 그러나, CaTiO3와 CaZrO3가 70:30의 비로 섞인 경우 3시간 만에 시료가 모두 녹아 없어진 것을 확인할 수 있고, 이 경우 너무 빠른 반응으로 인해 침지노즐의 내공부로 사용할 수 없다. 따라서, CaTiO3의 함량은 CaZrO3 대비 50% 이하로 첨가되는 것이 바람직하다.4 to 7 are mixed with CaTiO 3 and CaZrO 3 in a ratio of 0: 100, 30:70, 50:50, and 70:30 on an alumina substrate, and then maintained at 1550 ° C. for 3 hours to observe reactivity. to be. Here, FIGS. 4 to 7 (a) show the reactivity of Al, and FIGS. 4 to 7 (b) show the reactivity of Ca. As shown in (b) of FIGS. 4 to 7, it can be seen that all of Ca in the sample is diffused into the alumina substrate. When CaTiO 3 and CaZrO 3 are mixed in a ratio of 30:70, the sample remains intact. In the case of 50:50, it was confirmed that the sample was active but remained undissolved after 3 hours without melting. However, when CaTiO 3 and CaZrO 3 are mixed in a ratio of 70:30, it can be confirmed that all of the samples are dissolved after 3 hours, and in this case, they cannot be used as internal parts of the immersion nozzle due to the rapid reaction. Therefore, the content of CaTiO 3 is preferably added in not more than 50% compared to CaZrO 3.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.On the other hand, although the technical spirit of the present invention has been described in detail according to the above embodiment, it should be noted that the above embodiment is for the purpose of explanation and not for the limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

Claims (11)

  1. 관 형상의 노즐 몸체와, 상기 노즐 몸체의 내벽을 적어도 일부 둘러싸도록 마련된 내공부와, 상기 노즐 몸체의 하부에 마련된 토출구를 포함하고,A tubular nozzle body, an internal hole provided to at least partially surround the inner wall of the nozzle body, and a discharge port provided at a lower portion of the nozzle body,
    상기 내공부는 희티탄석(CaTiO3), 칼슘지르코네이트(CaZrO3), 칼슘실리케이트(CaOㆍSiO2) 및 흑연(C)을 포함하는 혼합물로 형성된 연속 주조용 침지노즐.The inner cavity is a continuous casting immersion nozzle formed of a mixture containing rare titanium (CaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium silicate (CaO.SiO 2 ) and graphite (C).
  2. 청구항 1에 있어서, 상기 내공부는 3㎜ 내지 5㎜ 두께로 형성되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 1, wherein the inner cavities have a thickness of 3 mm to 5 mm.
  3. 청구항 1 또는 2에 있어서, 상기 혼합물 100wt%에 대하여 상기 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연은 95wt% 내지 99wt% 첨가되어 1wt% 내지 5wt%의 바인더와 혼합되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 1 or 2, wherein the rare titanium, calcium zirconate, calcium silicate and graphite are added in an amount of 95 wt% to 99 wt% and mixed with a binder of 1 wt% to 5 wt% with respect to 100 wt% of the mixture. .
  4. 청구항 3에 있어서, 상기 혼합물 100wt%에 대하여 희티탄석 및 칼슘지르코네이트는 40wt% 내지 90wt%로 함유되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 3, wherein the rare titanium and calcium zirconate are contained in an amount of 40 wt% to 90 wt% with respect to 100 wt% of the mixture.
  5. 청구항 4에 있어서, 상기 희티탄석은 칼슘지르코네이트 대비 5% 내지 50%로 함유되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 4, wherein the rare titanium is contained in an amount of 5% to 50% relative to calcium zirconate.
  6. 청구항 4에 있어서, 상기 혼합물 100wt%에 대하여 상기 흑연은 5wt% 내지 35wt%로 함유되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 4, wherein the graphite is contained in an amount of 5 wt% to 35 wt% with respect to 100 wt% of the mixture.
  7. 청구항 6에 있어서, 상기 혼합물 100wt%에 대하여 상기 칼슘실리케이트는 1wt% 내지 25wt%로 함유되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 6, wherein the calcium silicate is contained in an amount of 1 wt% to 25 wt% based on 100 wt% of the mixture.
  8. 청구항 1 또는 청구항 2에 있어서, 상기 토출구는 희티탄석, 칼슘지르코네이트, 칼슘실리케이트 및 흑연을 포함하는 혼합물로 형성된 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 1 or 2, wherein the discharge port is formed of a mixture containing rare titanium, calcium zirconate, calcium silicate and graphite.
  9. 청구항 8에 있어서, 상기 토출구는 상기 내공부보다 CaO 함량이 적게 형성되는 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 8, wherein the discharge port has a lower CaO content than the inner cavity.
  10. 청구항 9에 있어서, 상기 내공부의 CaO 함량은 15wt% 내지 35wt%이고, 상기 토출구의 CaO의 함량은 10wt% 내지 25wt%인 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 9, wherein the CaO content of the inner cavity is 15wt% to 35wt%, and the CaO content of the discharge port is 10wt% to 25wt%.
  11. 청구항 10에 있어서, 상기 내공부 및 토출구는 15% 내지 35%의 기공율로 형성된 연속주조용 침지노즐.The immersion nozzle for continuous casting according to claim 10, wherein the inner hole and the discharge hole are formed at a porosity of 15% to 35%.
PCT/KR2015/008949 2014-10-31 2015-08-26 Submerged nozzle for continuous casting WO2016068469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580058580.2A CN107073565B (en) 2014-10-31 2015-08-26 Immersion nozzle for continuous casting
JP2017521580A JP6419331B2 (en) 2014-10-31 2015-08-26 Immersion nozzle for continuous casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0150365 2014-10-31
KR1020140150365A KR101597254B1 (en) 2014-10-31 2014-10-31 Submerged nozzle for continuous casting

Publications (1)

Publication Number Publication Date
WO2016068469A1 true WO2016068469A1 (en) 2016-05-06

Family

ID=55449902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008949 WO2016068469A1 (en) 2014-10-31 2015-08-26 Submerged nozzle for continuous casting

Country Status (4)

Country Link
JP (1) JP6419331B2 (en)
KR (1) KR101597254B1 (en)
CN (1) CN107073565B (en)
WO (1) WO2016068469A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119917A (en) * 2016-04-20 2017-10-30 주식회사 포스코 A nozzle
KR101839839B1 (en) 2018-01-11 2018-03-19 주식회사 포스코 A nozzle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102436B2 (en) * 1991-06-18 1995-11-08 黒崎窯業株式会社 Nozzle for continuous casting containing calcium zirconate
JPH11188463A (en) * 1997-12-25 1999-07-13 Kurosaki Refract Co Ltd Immersion nozzle for continuous casting
JP2002205149A (en) * 2000-12-28 2002-07-23 Nkk Corp Immersion nozzle for continuously casting steel
JP2007130653A (en) * 2005-11-09 2007-05-31 Nippon Steel Corp Immersion nozzle for continuous casting
KR20090076011A (en) * 2008-01-07 2009-07-13 조선내화 주식회사 Refractories of submerged entry nozzle for continuos casting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440154A (en) * 1987-08-07 1989-02-10 Akechi Ceramics Kk Nozzle for continuous casting
JPH02207951A (en) * 1989-02-07 1990-08-17 Akechi Ceramics Kk Nozzle for continuous casting
JPH0437450A (en) * 1990-05-31 1992-02-07 Nippon Steel Corp Nozzle for casting wide and thin slab
JP2919753B2 (en) * 1994-10-17 1999-07-19 品川白煉瓦株式会社 Calcia-titania refractory material
JP2941186B2 (en) * 1994-12-13 1999-08-25 品川白煉瓦株式会社 Calcia-titania-zirconia refractory material
WO2010109887A1 (en) * 2009-03-25 2010-09-30 新日本製鐵株式会社 Immersion nozzle for continuous casting
CN102416451B (en) * 2011-12-12 2013-07-10 辽宁科技大学 Anti-plugging tundish water supplying opening and manufacturing method thereof
CN103626498B (en) * 2013-12-13 2015-07-08 山东鹏程陶瓷新材料科技有限公司 Boron nitride based ceramic nozzle and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102436B2 (en) * 1991-06-18 1995-11-08 黒崎窯業株式会社 Nozzle for continuous casting containing calcium zirconate
JPH11188463A (en) * 1997-12-25 1999-07-13 Kurosaki Refract Co Ltd Immersion nozzle for continuous casting
JP2002205149A (en) * 2000-12-28 2002-07-23 Nkk Corp Immersion nozzle for continuously casting steel
JP2007130653A (en) * 2005-11-09 2007-05-31 Nippon Steel Corp Immersion nozzle for continuous casting
KR20090076011A (en) * 2008-01-07 2009-07-13 조선내화 주식회사 Refractories of submerged entry nozzle for continuos casting

Also Published As

Publication number Publication date
JP6419331B2 (en) 2018-11-07
CN107073565A (en) 2017-08-18
KR101597254B1 (en) 2016-02-24
CN107073565B (en) 2019-05-10
JP2018501109A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JPWO2014148530A1 (en) Refractories and casting nozzles
WO2016068469A1 (en) Submerged nozzle for continuous casting
KR100916145B1 (en) refractories of submerged entry nozzle for continuos casting
JPH07214259A (en) Nozzle for continuous casting of molten steel
JPH05200508A (en) Nozzle for continuous casting of molten steel
CN107303603B (en) Water gap
EP0588218B1 (en) Molten steel pouring nozzle
JP4431111B2 (en) Continuous casting nozzle
KR101639754B1 (en) Submerged entry nozzle for continuous casting, Continuous casting method using same and Method for manufacturing submerged entry nozzle
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
KR101658182B1 (en) Nozzle
US20200282457A1 (en) Continuous casting nozzle
WO2019098611A1 (en) Submerged nozzle and molten steel treatment method
KR100303871B1 (en) refractories for metal mixing cart ladle and method for preventing oxidation of carbon there of
KR101839839B1 (en) A nozzle
JP2004074242A (en) Refractory for continuous casting and continuous casting method using this refractory
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
KR101949700B1 (en) Refractory compositions and tundish using the same
JP2001113345A (en) Continuous casting method for steel
JP2011206781A (en) Nozzle for continuous casting
Biswas et al. Refractory for Casting
WO2018074659A1 (en) Nozzle and manufacturing method therefor
JPH09142946A (en) Prepared unshaped flowed-in refractories and their molding
KR20240010490A (en) Continuous casting method of steel
KR20100076113A (en) Porous refractories and

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855330

Country of ref document: EP

Kind code of ref document: A1