WO2016068235A1 - 部品加工支援システムおよび方法 - Google Patents

部品加工支援システムおよび方法 Download PDF

Info

Publication number
WO2016068235A1
WO2016068235A1 PCT/JP2015/080552 JP2015080552W WO2016068235A1 WO 2016068235 A1 WO2016068235 A1 WO 2016068235A1 JP 2015080552 W JP2015080552 W JP 2015080552W WO 2016068235 A1 WO2016068235 A1 WO 2016068235A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
processing support
jig
dimensional measurement
parts
Prior art date
Application number
PCT/JP2015/080552
Other languages
English (en)
French (fr)
Inventor
直弘 中村
信一 中野
繁一 志子田
政彦 赤松
臣吾 米本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US15/523,508 priority Critical patent/US20170309067A1/en
Priority to CN201580059154.0A priority patent/CN107111658A/zh
Priority to KR1020197001228A priority patent/KR20190008990A/ko
Priority to JP2016556621A priority patent/JPWO2016068235A1/ja
Priority to KR1020177014455A priority patent/KR20170075007A/ko
Publication of WO2016068235A1 publication Critical patent/WO2016068235A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41805Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by assembly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/12Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
    • G01C11/26Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken using computers to control the position of the pictures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31066Virtual assembly disassembly planning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2008Assembling, disassembling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a part processing support system and method for supporting a part processing operation.
  • the three-dimensional shape data of the processed parts is acquired by a three-dimensional scanner, and the three-dimensional shape data is compared with the CAD data of the parts. Then, there is a method for confirming a deviation from the design value of the part.
  • Patent Document 1 data on a product to be packed is acquired by a three-dimensional scanner, and a supporting packing material to be placed inside the packing box is automatically designed based on the acquired three-dimensional shape data. The technology to do is described.
  • the conventional method of comparing the three-dimensional shape data of the part acquired by the three-dimensional scanner with the CAD data is effective in ensuring the processing accuracy of each part, but the assembly when the part is actually assembled is performed. The error cannot be confirmed.
  • the present invention has been made in view of the above-described problems of the prior art, and provides a component processing support system and method that can confirm an assembly error prior to an actual assembly operation of components. Objective.
  • a first aspect of the present invention is a component processing support system for supporting a processing operation of a component, and a three-dimensional measurement unit for acquiring three-dimensional measurement data related to the component And display means for displaying the part based on the three-dimensional measurement data, and virtual assembly means for virtually assembling the part displayed by the display means on the display means. It is characterized by that.
  • a jig for obtaining a reference position at the time of virtual assembly by the virtual assembly means is provided in the component, and the three-dimensional measurement data is It contains data on jigs.
  • a third aspect of the present invention is characterized in that, in the second aspect, the jig is provided so as to extend on an axis of a hole formed in the component.
  • a fourth aspect of the present invention is characterized in that, in the second aspect, the jig has three planes measured by the three-dimensional measuring means.
  • the three-dimensional measurement data is obtained by two or more different three-dimensional measurement means.
  • the three-dimensional measurement data obtained by two or more different types of three-dimensional measurement means includes data relating to a common measurement location. It is characterized by.
  • the virtual assembly unit is ideal when the part displayed by the display unit is virtually assembled on the display unit. It is configured to perform alignment of the component using design information as a state.
  • the virtual assembly unit when the virtual assembly unit virtually assembles the component displayed by the display unit on the display unit, the present invention is characterized in that the virtual assembly is performed by using a part of data regarding the part.
  • a ninth aspect of the present invention is a component processing support method for supporting a processing operation of a component, the data acquisition step of acquiring three-dimensional measurement data related to the component, A display step of displaying the part on a display unit based on three-dimensional measurement data, and a virtual assembly step of virtually assembling the part on the display unit are provided.
  • a jig for obtaining a reference position at the time of virtual assembly in the virtual assembly process is provided in the part, and the three-dimensional measurement data relates to the jig. It contains data.
  • the eleventh aspect of the present invention is characterized in that, in the tenth aspect, the jig is provided so as to extend on an axis of a hole formed in the component.
  • the twelfth aspect of the present invention is characterized in that, in the tenth aspect, the jig has three planes measured by the three-dimensional measuring means.
  • a thirteenth aspect of the present invention is characterized in that, in any of the ninth to twelfth aspects, the three-dimensional measurement data is acquired by two or more different three-dimensional measurement means.
  • the three-dimensional measurement data acquired by two or more different types of three-dimensional measurement means includes data relating to a common measurement location. It is characterized by.
  • design information as an ideal state is used when the part is virtually assembled on the display means in the virtual assembly step. Then, the positioning of the parts is performed.
  • any one of the ninth to fourteenth aspects when the part is virtually assembled on the display means in the virtual assembly step, a part of data regarding the part is obtained. It is characterized in that virtual assembly is performed by using.
  • FIG. 1 is a block diagram showing a schematic configuration of a component processing support system according to an embodiment of the present invention.
  • the schematic diagram which showed schematic structure of the component processing assistance system shown in FIG. 1 with the measurement object.
  • the schematic diagram for demonstrating the component processing assistance method using the component processing assistance system shown in FIG. The other schematic diagram for demonstrating the component processing assistance method using the component processing assistance system shown in FIG.
  • FIG. 1 The figure for demonstrating the method of aligning using design information (ideal state) in embodiment shown in FIG.
  • the schematic diagram for demonstrating the method of using only some data in virtual assembly in embodiment shown in FIG. The other schematic diagram for demonstrating the method of utilizing only some data in virtual assembly in embodiment shown in FIG.
  • the component processing support system 1 includes a three-dimensional measurement unit 2 for acquiring three-dimensional measurement data related to components constituting a product.
  • the three-dimensional measuring means 2 includes a stationary type three-dimensional scanner 3 and a handy type three-dimensional scanner 4.
  • 3D shape data acquired by the 3D scanners 3 and 4 is sent to a computer (PC) 5 online or offline.
  • the three-dimensional shape data acquired by the three-dimensional scanners 3 and 4 is data related to the shape of the measurement object.
  • the computer 5 is based on the three-dimensional measurement data acquired by the stationary three-dimensional scanner 3 and the handy three-dimensional scanner 4, and the display unit 6 for displaying the part P that is a measurement object, and the display unit 6 displays the display unit 6. And a virtual assembly means 7 for virtually assembling the plurality of parts P on the display means 6.
  • the stationary three-dimensional scanner 3 is used in a state where it is placed on the floor or the like, and can acquire data at high speed, but it is necessary to ensure a certain distance from the measurement object.
  • the hand-held type three-dimensional scanner 4 can freely acquire data while being carried by an operator. However, when the object to be measured becomes large, much time is required.
  • the side surface and the upper surface of the component P are measured by, for example, the stationary three-dimensional scanner 3 in consideration of the above characteristics of the three-dimensional scanners 3 and 4.
  • the hand-held three-dimensional scanner 4 measures the lower surface of the component P that cannot be measured by the stationary three-dimensional scanner 3 due to height restrictions.
  • the three-dimensional shape data acquired by each of the three-dimensional scanners 3 and 4 is sent to the computer 5, and the data acquired by both the scanners 3 and 4 are combined and handled as one part data.
  • the hand-held three-dimensional scanner 4 measures a common measurement location other than the component P that is the original measurement object, for example, the support 8 and the floor surface 9 of the component P shown in FIG.
  • the 3D shape data acquired by the stationary 3D scanner includes data related to the support 8 and the floor surface 9 of the part P, the 3D measurement data of both the scanners 3 and 4 are shared with each other. It can be used and joined smoothly. Thereby, it is possible to reduce the load on the computer 5 when the data of the stationary scanner 3 and the data of the handy scanner 4 are combined.
  • the stationary three-dimensional scanner 3 and the handy three-dimensional scanner 4 are used in combination.
  • the combination of the three-dimensional measuring means 2 is not limited to this, and measurement accuracy, etc. Two or more types of three-dimensional measuring means 2 different from each other can be combined.
  • the cylindrical jig 10 is provided in the bolt hole Pa of the component P to be measured so as to extend on the axis of the bolt hole Pa.
  • the cylindrical jig 10 is for acquiring a reference position of the bolt hole Pa at the time of virtual assembly by the virtual assembly means 7 and is provided in at least one of the plurality of components P to be measured.
  • the three-dimensional measuring unit 2 measures the part P so as to include the columnar jig 10. That is, the three-dimensional measurement data acquired by the three-dimensional measurement unit 2 includes data regarding the cylindrical jig 10.
  • three-dimensional measurement data regarding a plurality of parts P is acquired using the above-described three-dimensional measurement means 2 (data acquisition step).
  • the acquired three-dimensional measurement data is sent to the computer 5, and a plurality of parts P are displayed on the display means 6 based on the three-dimensional measurement data (display process).
  • the component P is measured by the stationary three-dimensional scanner 3 and the handy three-dimensional scanner 4, and the three-dimensional measurement data acquired by both the scanners 3 and 4. They are combined using data on common measurement points.
  • FIG. 3 shows a plurality (three in this example) of parts P1, P2, and P3 displayed on the display means 6 of the computer 5.
  • Each component P1, P2, P3 is a large component having a diameter exceeding 10 m, for example.
  • Each component P1, P2, P3 has a thick disk shape having a central opening, and a plurality of bolt holes Pa through which bolts for fastening the components are inserted are formed in the circumferential direction.
  • the cylindrical jig 10 is used as shown in FIG. That is, by measuring the cylindrical jig 10 arranged so as to extend on the axis of the bolt hole Pa with the three-dimensional measuring means 2, the data of the axis of the bolt hole Pa can be reliably acquired.
  • the axis of the bolt hole Pa can be specified, the three-dimensional shape data of the jig part is deleted, and thereby, the component data obtained from the axis of the bolt hole Pa is obtained.
  • a plurality of components P1, P2, and P3 are virtually assembled on the display means 6 of the computer 5 (virtual assembly process).
  • the component P is virtually assembled with reference to the central axis of the component P, the presence or absence of interference between the mating faces Pb of the component P, and the state of axial misalignment between the bolt holes Pa Alternatively, the degree of deviation of the outer shape of the parts P is confirmed on the display means 6. Thereby, the assembly error when assembling a plurality of parts P can be confirmed in advance without actually assembling the parts P.
  • the temporary assembly at the factory becomes unnecessary, and there is no need to correct it after matching the actual products.
  • the time and man-hours can be reduced and the delivery time of the product can be shortened.
  • provisional assembly in the factory is not required for the parts P of the product shipped in parts.
  • the reference at the time of virtual assembly is the central axis of the part P.
  • the assembly reference is not limited to this, and for example, the machining surface of the part P can be used as the assembly reference.
  • the jig 10 is provided in the bolt hole Pa.
  • the installation location of the jig is not limited to the bolt hole Pa, and the hole in which the jig is provided may be a through hole or a recess. good.
  • the shape of the jig is not limited to a cylindrical shape, and it is only necessary to acquire three-dimensional shape data that can specify the axis of the hole.
  • the cylindrical jig 10 is used as an alignment jig.
  • alignment using three planes as described below is used.
  • a jig can also be used.
  • the positioning jig 11 has the planes 11 a, 11 b, and 11 c that can be measured by the three-dimensional measuring means 2 in a state of being attached to the measurement target component P. Three are provided.
  • alignment may be performed using design information as an ideal state.
  • the measurement data A1 is superposed on the design data B1 (S1).
  • the measurement data A2 is superimposed on the design data B2 (S2).
  • the remaining measurement data is fine-tuned based on the measurement information at the end and the joint (S5). Since positioning with high accuracy has already been performed with the design information, the fine adjustment here is extremely small.
  • the following cases can be considered as a case of using a plurality of three-dimensional measuring means in order to acquire measurement data used for virtual assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Automation & Control Theory (AREA)
  • Architecture (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 部品加工支援システム(1)は、部品に関する3次元計測データを取得するための3次元計測手段(2)と、3次元計測データに基づいて部品を表示するための表示手段(6)と、表示手段(6)により表示された部品を表示手段(6)上で仮想的に組み立てるための仮想組立手段(7)と、を備える。本システムによれば、部品の実際の組立作業に先立って組立誤差を確認することができる。

Description

部品加工支援システムおよび方法
 本発明は、部品の加工作業を支援するための部品加工支援システムおよび方法に関する。
 近年、製品の複雑化に伴い、部品単体で加工精度を担保したとしても、組み立てる過程で組立誤差が累積し、その結果、現場で組み立てられなくなることがある。これは特に、大型製品において生じやすい。
 組立誤差により現場での組み立てができなかった場合、修正のために加工工場へ部品を移動させ、修正後に再度組立工場へ移動させる必要があった。大型製品の部品の場合、その重量が大きいため、クレーンなどを使用して移動させる必要があり、そのための作業時間・工数が多大なものとなっていた。
 従来、製品を構成する個々の部品の加工精度を担保するために、加工後の部品の3次元形状データを3次元スキャナで取得し、この3次元形状データと、該部品のCADデータとを比較して、該部品の設計値に対する偏差を確認する方法がある。
 また、特許文献1には、梱包対象の品物について3次元スキャナでデータを取得し、取得した3次元形状データに基づいて、梱包箱の内部に配置すべき支持用の梱包材を自動的に設計する技術が記載されている。
特開2007-164257号公報
 しかしながら、3次元スキャナで取得した部品の3次元形状データをCADデータと比較する従来の方法は、個々の部品の加工精度を担保する上では有効であるが、部品を実際に組み立てた際の組立誤差を確認することはできない。
 また、特許文献1に記載の技術も、加工済みの個々の部品を組み立てた際の組立誤差を確認することは不可能である。
 本発明は、上述した従来の技術の問題点に鑑みてなされたものであって、部品の実際の組立作業に先立って組立誤差を確認することができる部品加工支援システムおよび方法を提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様は、部品の加工作業を支援するための部品加工支援システムであって、前記部品に関する3次元計測データを取得するための3次元計測手段と、前記3次元計測データに基づいて前記部品を表示するための表示手段と、前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てるための仮想組立手段と、を備えたことを特徴とする。
 本発明の第2の態様は、第1の態様において、前記仮想組立手段による仮想組立時の基準位置を取得するための治具が前記部品に設けられており、前記3次元計測データは、前記治具に関するデータを含んでいる、ことを特徴とする。
 本発明の第3の態様は、第2の態様において、前記治具は、前記部品に形成された穴の軸線上に延在するように設けられている、ことを特徴とする。
 本発明の第4の態様は、第2の態様において、前記治具は、前記3次元計測手段によって計測される3つの平面を有している、ことを特徴とする。
 本発明の第5の態様は、第1乃至第4のいずれかの態様において、前記3次元計測データは、種類の異なる2つ以上の前記3次元計測手段により取得されたものである、ことを特徴とする。
 本発明の第6の態様は、第5の態様において、前記種類の異なる2つ以上の3次元計測手段により得られた前記3次元計測データは、共通の測定箇所に関するデータを含んでいる、ことを特徴とする。
 本発明の第7の態様は、第1乃至第6のいずれかの態様において、前記仮想組立手段は、前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てる際に、理想状態としての設計情報を利用して前記部品の位置合わせを実施するように構成されている、ことを特徴とする。
 本発明の第8の態様は、第1乃至第7のいずれかの態様において、前記仮想組立手段は、前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てる際に、前記部品に関する一部のデータを利用して仮想組立を実施するように構成されている、ことを特徴とする。
 上記課題を解決するために、本発明の第9の態様は、部品の加工作業を支援するための部品加工支援方法であって、前記部品に関する3次元計測データを取得するデータ取得工程と、前記3次元計測データに基づいて前記部品を表示手段に表示する表示工程と、前記表示手段上で前記部品を仮想的に組み立てる仮想組立工程と、を備えたことを特徴とする。
 本発明の第10の態様は、第9の態様において、前記仮想組立工程における仮想組立時の基準位置を取得するための治具を前記部品に設け、前記3次元計測データは、前記治具に関するデータを含んでいる、ことを特徴とする。
 本発明の第11の態様は、第10の態様において、前記治具を、前記部品に形成された穴の軸線上に延在するように設ける、ことを特徴とする。
 本発明の第12の態様は、第10の態様において、前記治具は、前記3次元計測手段によって計測される3つの平面を有している、ことを特徴とする。
 本発明の第13の態様は、第9乃至第12のいずれかの態様において、前記3次元計測データを、種類の異なる2つ以上の3次元計測手段により取得する、ことを特徴とする。
 本発明の第14の態様は、第13の態様において、前記種類の異なる2つ以上の3次元計測手段により取得された前記3次元計測データは、共通の測定箇所に関するデータを含んでいる、ことを特徴とする。
 本発明の第15の態様は、第9乃至第14のいずれかの態様において、前記仮想組立工程において、前記表示手段上で前記部品を仮想的に組み立てる際に、理想状態としての設計情報を利用して前記部品の位置合わせを実施する、ことを特徴とする。
 本発明の第16の態様は、第9乃至第14のいずれかの態様において、前記仮想組立工程において、前記表示手段上で前記部品を仮想的に組み立てる際に、前記部品に関する一部のデータを利用して仮想組立を実施する、ことを特徴とする。
 本発明による部品加工支援システムおよび方法によれば、部品の実際の組立作業に先立って組立誤差を確認することができる。
本発明の一実施形態による部品加工支援システムの概略構成を示したブロック図。 図1に示した部品加工支援システムの概略構成を測定対象物と共に示した模式図。 図1に示した部品加工支援システムを用いた部品加工支援方法を説明するための模式図。 図1に示した部品加工支援システムを用いた部品加工支援方法を説明するための他の模式図。 位置合わせ用治具の一変形例を説明するための模式図。 図5に示した位置合わせ用治具を拡大して示した模式図。 図5および図6に示した位置合わせ用治具の使用方法を説明するための模式図。 図5および図6に示した位置合わせ用治具の使用方法を説明するための他の模式図。 図1に示した実施形態において、設計情報(理想状態)を利用して位置合わせを実施する方法を説明するための図。 図1に示した実施形態において、仮想組立にて一部のデータのみを利用する方法を説明するための模式図。 図1に示した実施形態において、仮想組立にて一部のデータのみを利用する方法を説明するための他の模式図。
 以下、本発明の一実施形態による部品加工支援システムおよび部品加工支援方法について、図面を参照して説明する。
 図1および図2に示したように、本実施形態による部品加工支援システム1は、製品を構成する部品に関する3次元計測データを取得するための3次元計測手段2を備えている。3次元計測手段2には、据え置き型3次元スキャナ3およびハンディ型3次元スキャナ4が含まれている。
 各3次元スキャナ3、4で取得した3次元形状データは、オンラインまたはオフラインにて計算機(PC)5に送られる。なお、3次元スキャナ3、4で取得する3次元形状データは、測定対象物の形状に関するデータである。
 計算機5は、据え置き型3次元スキャナ3およびハンディ型3次元スキャナ4で取得した3次元計測データに基づいて、計測対象物である部品Pを表示するための表示手段6と、表示手段6により表示された複数の部品Pを表示手段6上で仮想的に組み立てるための仮想組立手段7と、を構成している。
 なお、据え置き型3次元スキャナ3は、床面等に置いた状態で使用されるものであり、高速にデータを取得できるが、計測対象物から一定の距離を確保する必要がある。一方、ハンディ型3次元スキャナ4は、作業者が持ち運びながら自由自在にデータを取得できるが、測定対象物が大きくなると、その分多大の時間を要する。
 そこで、本実施形態による部品加工支援システム1においては、それぞれの3次元スキャナ3、4の上記特性を考慮して、例えば、据え置き型3次元スキャナ3で部品Pの側面および上面を計測する。一方、ハンディ型3次元スキャナ4は、高さの制約から据え置き型3次元スキャナ3では計測できない部品Pの下面を計測する。
 そして、各3次元スキャナ3、4で取得した3次元形状データを計算機5に送り、両スキャナ3、4で取得したデータを結合して、一つの部品データとして扱う。
 ここで、据え置き型3次元スキャナ3で取得した3次元形状データと、ハンディ型3次元スキャナ4で取得した3次元形状とをスムーズに結合するために、結合するデータ同士に共通する部分が含まれるようにする。具体的には、ハンディ型3次元スキャナ4によって、本来の計測対象物である部品P以外の共通の測定箇所、例えば図2に示した部品Pの支え8や床面9を余分に計測する。
 据え置き型3次元スキャナで取得した3次元形状データには、部品Pの支え8や床面9に関するデータが含まれているので、両スキャナ3、4の3次元計測データ同士を、共通のデータを利用してスムーズに結合することができる。これにより、据え置き型スキャナ3のデータと、ハンディ型スキャナ4のデータとを結合する際の計算機5の負荷を軽減することができる。
 なお、本実施形態においては、据え置き型3次元スキャナ3とハンディ型3次元スキャナ4とを組み合わせて使用しているが、3次元計測手段2の組み合わせはこれに限られるものではなく、測定精度などが互いに異なる2種類以上の3次元計測手段2を組み合わせることができる。
 また、本実施形態においては、図2に示したように、計測対象の部品Pのボルト穴Paに、ボルト穴Paの軸線上に延在するように円柱状治具10が設けられている。この円柱状治具10は、仮想組立手段7による仮想組立時のボルト穴Paの基準位置を取得するためものであり、計測対象の複数の部品Pの少なくとも1つに設けられている。そして、3次元計測手段2は、円柱状治具10の部分を含むようにして部品Pを計測する。すなわち、3次元計測手段2で取得した3次元計測データは、円柱状治具10に関するデータを含んでいる。
 次に、上述した部品加工支援システム1を用いて部品Pの加工作業を支援する部品加工支援方法について参照して説明する。
 まず、上述した3次元計測手段2を用いて、複数の部品Pに関する3次元計測データを取得する(データ取得工程)。取得した3次元計測データは計算機5に送られ、3次元計測データに基づいて複数の部品Pが表示手段6に表示される(表示工程)。
 なお、上述したように本実施形態による部品加工支援システム1においては、据え置き型3次元スキャナ3およびハンディ型3次元スキャナ4で部品Pを計測し、両スキャナ3、4で取得した3次元計測データ同士を、共通の計測箇所に関するデータを利用して結合する。
 図3は、計算機5の表示手段6上に表示された複数(本例では3つ)の部品P1、P2、P3を示している。各部品P1、P2、P3は、例えば直径が10mを超える大型部品である。各部品P1、P2、P3は、中央開口を有する厚肉円板状を成しており、部品同士を締結するためのボルトを挿通するボルト穴Paが円周方向に複数形成されている。
 3次元計測手段2を用いて部品P1、P2、P3のボルト穴Paの軸のデータを確実に取得するため、図2に示したように円柱状治具10を使用する。すなわち、ボルト穴Paの軸線上に延在するように配置した円柱状治具10を3次元計測手段2で計測することにより、ボルト穴Paの軸のデータを確実に取得することができる。ボルト穴Paの軸が特定できたら、治具部分の3次元形状データを削除し、これにより、ボルト穴Paの軸を取得した部品データが得られる。
 実際に3つの部品P1、P2、P3を組み立てる際には、各部品の合わせ面Pb同士を当接させると共に、各部品のボルト穴Pa同士を軸合わせし、ボルト穴Paに挿通したボルトで部品同士を締結する。
 本実施形態による部品加工支援方法においては、複数の部品P1、P2、P3を計算機5の表示手段6上で仮想的に組み立てる(仮想組立工程)。
 そして、図4に示したように、例えば部品Pの中心軸を基準にして部品Pを仮想的に組み立てて、部品Pの合わせ面Pb同士の干渉の有無、ボルト穴Pa同士の軸ずれの状態、或いは部品P同士の外形のずれ具合などを、表示手段6上で確認する。これにより、複数の部品Pを組み立てた場合の組立誤差を、実際に部品Pを組み立てることなく事前に確認することができる。
 計算機5の表示手段6上での仮想組立により、許容できない組立誤差が確認された場合には、部品Pを現場に搬送する前に、工場にて修正加工を施す。これにより、現場での実際の組立に先立って、組立誤差を許容範囲内に収めることができ、現場での組立作業の不具合を確実に回避することができる。
 特に大型製品の場合、現場から工場に部品Pを送り返すための作業負担が大きく、また、製品が大き過ぎて、そもそも工場での仮組立が実施できない場合もあるので、現場での組立作業の不具合を未然に防ぐことのメリットは大きい。
 また、工場での仮組立が可能な製品の場合でも、本実施形態による部品加工支援システム1および方法を用いることにより、工場での仮組立が不要となり、現物合わせの上で修正する必要が無くなり、時間・工数を削減して製品の納期を短縮することができる。
 また、本実施形態によれば、製品の部品Pを部品単位で出荷するものについても、工場内での仮組が不要となる。
 また、部品Pを組み立てる相手方が設備に固定されているような場合には、工場で仮組を行なうことができないが、本実施形態による部品加工支援システム1を用いて仮想的に組立を行なうことにより、実際の組立に先立って組立誤差を確認することができる。
 なお、上記実施形態では仮想組立時の基準を部品Pの中心軸としたが、組立基準はこれに限られるものではなく、例えば部品Pの機械加工面を組立基準とすることができる。
 また、上記実施形態ではボルト穴Paに治具10を設けるようにしたが、治具の設置箇所はボルト穴Paに限られるものではなく、また、治具を設ける穴は、貫通孔でも凹部でも良い。また、治具の形状は円柱状に限られず、穴の軸線を特定できる3次元形状データを取得できれば良い。
 また、上述した実施形態においては、位置合わせ用治具として円柱状治具10を用いているが、これに代えて、或いはこれに加えて、以下に述べるような3つの平面を利用した位置合わせ用治具を用いることもできる。
 すなわち、図5および図6に示したように、この位置合わせ用治具11は、計測対象の部品Pに取り付けられた状態で、3次元計測手段2により計測可能な平面11a、11b、11cを3つ備えている。
 例えば、図7に示したように、部品Pの表面に激しい凹凸がある場合や、部品Pの角部が90度となっていない場合(本例では88度)には、それらの箇所を計測対象としても、十分な精度の計測データを取得できない場合がある。
 そこで、図5および図8に示したように、部品Pの角部に位置合わせ用治具11を取り付けることで、計測対象としての平面を部品P上で定義することが可能となる。
 また、他の変形例としては、上述した実施形態において、理想状態としての設計情報を利用して位置合わせを実施するようにしても良い。
 すなわち、図9に示したように、計測データA1を設計データB1と重ね合わせる(S1)。その一方で、計測データA2を設計データB2と重ね合わせる(S2)。
 次に、設計データB1と設計データB2の情報でそれぞれ重ね合わせた計測データA1、A2と一緒に組み立てる(S3)。続いて、完成したデータから、計測データを残して設計データを削除する(S4)。
 最後に、残された計測データを端部や結合個所の計測情報を基に微調整する(S5)。既に確度の高い位置合わせが設計情報で行われているので、ここでの微調整は極々小さいものである。
 また、他の変形例としては、上述した実施形態において、仮想組立にて一部のデータのみを利用するようにしても良い。
 例えば、図10に示したように、製品全体が同じ形の複数の部品P(本例では6個)で構成される場合に、図11に示したように、部品Pの計測データを必要個数(本例では5個)だけコピーする。そして、全体の出来形を、一部の計測データで仮想組立することにより予測して、干渉等の確認が可能となる。
 また、確認したい箇所が限定される場合も、計測データの一部だけを利用することが可能である。この場合、不要部分は計測データから削除するか、或いは最初から計測しないという方法が考えられる。
 また、他の変形例としては、仮想組立に利用する計測データを取得するために、3次元計測手段を複数用いる場合として、以下のような場合が考えられる。
 例えば、金属加工面は、光が乱反射するために非接触式計測機で計測することが困難である。通常、探傷剤等を塗布して光が乱反射することを防ぐことで計測が可能となるが、掃除の必要が出るため、該当箇所が多数ある場合には作業が困難である。
 そういった場合に、金属加工面については接触式の計測機を用いることが考えられる。この時、位置合わせ用に、接触式の計測機でも、非接触式の計測機で計測する箇所の一部を計測する。
 1 部品加工支援システム
 2 3次元計測手段
 3 据え置き型3次元スキャナ
 4 ハンディ型3次元スキャナ
 5 計算機(PC)
 6 表示手段
 7 仮想組立手段
 8 部品の支え
 9 工場の床面
 10 円柱状治具
 11 3つの平面を有する位置合わせ用治具
 P、P1、P2、P3 部品
 Pa 部品のボルト穴
 Pb 部品の合わせ面
 

Claims (16)

  1.  部品の加工作業を支援するための部品加工支援システムであって、
     前記部品に関する3次元計測データを取得するための3次元計測手段と、
     前記3次元計測データに基づいて前記部品を表示するための表示手段と、
     前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てるための仮想組立手段と、を備えた部品加工支援システム。
  2.  前記仮想組立手段による仮想組立時の基準位置を取得するための治具が前記部品に設けられており、
     前記3次元計測データは、前記治具に関するデータを含んでいる、請求項1記載の部品加工支援システム。
  3.  前記治具は、前記部品に形成された穴の軸線上に延在するように設けられている、請求項2記載の部品加工支援システム。
  4.  前記治具は、前記3次元計測手段によって計測される3つの平面を有している、請求項2記載の部品加工支援システム。
  5.  前記3次元計測データは、種類の異なる2つ以上の前記3次元計測手段により取得されたものである、請求項1乃至4のいずれか一項に記載の部品加工支援システム。
  6.  前記種類の異なる2つ以上の3次元計測手段により得られた前記3次元計測データは、共通の測定箇所に関するデータを含んでいる、請求項5記載の部品加工支援システム。
  7.  前記仮想組立手段は、前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てる際に、理想状態としての設計情報を利用して前記部品の位置合わせを実施するように構成されている、請求項1乃至6のいずれか一項に記載の部品加工支援システム。
  8.  前記仮想組立手段は、前記表示手段により表示された前記部品を前記表示手段上で仮想的に組み立てる際に、前記部品に関する一部のデータを利用して仮想組立を実施するように構成されている、請求項1乃至7のいずれか一項に記載の部品加工支援システム。
  9.  部品の加工作業を支援するための部品加工支援方法であって、
     前記部品に関する3次元計測データを取得するデータ取得工程と、
     前記3次元計測データに基づいて前記部品を表示手段に表示する表示工程と、
     前記表示手段上で前記部品を仮想的に組み立てる仮想組立工程と、を備えた部品加工支援方法。
  10.  前記仮想組立工程における仮想組立時の基準位置を取得するための治具を前記部品に設け、
     前記3次元計測データは、前記治具に関するデータを含んでいる、請求項9記載の部品加工支援方法。
  11.  前記治具を、前記部品に形成された穴の軸線上に延在するように設ける、請求項10記載の部品加工支援方法。
  12.  前記治具は、前記3次元計測手段によって計測される3つの平面を有している、請求項10記載の部品加工支援方法。
  13.  前記3次元計測データを、種類の異なる2つ以上の3次元計測手段により取得する、請求項9乃至12のいずれか一項に記載の部品加工支援方法。
  14.  前記種類の異なる2つ以上の3次元計測手段により取得された前記3次元計測データは、共通の測定箇所に関するデータを含んでいる、請求項13記載の部品加工支援方法。
  15.  前記仮想組立工程において、前記表示手段上で前記部品を仮想的に組み立てる際に、理想状態としての設計情報を利用して前記部品の位置合わせを実施する、請求項9乃至14のいずれか一項に記載の部品加工支援方法。
  16.  前記仮想組立工程において、前記表示手段上で前記部品を仮想的に組み立てる際に、前記部品に関する一部のデータを利用して仮想組立を実施する、請求項9乃至15のいずれか一項に記載の部品加工支援方法。
PCT/JP2015/080552 2014-10-29 2015-10-29 部品加工支援システムおよび方法 WO2016068235A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/523,508 US20170309067A1 (en) 2014-10-29 2015-10-29 Parts processing assistance system and method
CN201580059154.0A CN107111658A (zh) 2014-10-29 2015-10-29 零件加工支援系统及方法
KR1020197001228A KR20190008990A (ko) 2014-10-29 2015-10-29 부품 가공 지원 시스템 및 방법
JP2016556621A JPWO2016068235A1 (ja) 2014-10-29 2015-10-29 部品加工支援システムおよび方法
KR1020177014455A KR20170075007A (ko) 2014-10-29 2015-10-29 부품 가공 지원 시스템 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-220723 2014-10-29
JP2014220723 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016068235A1 true WO2016068235A1 (ja) 2016-05-06

Family

ID=55857570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080552 WO2016068235A1 (ja) 2014-10-29 2015-10-29 部品加工支援システムおよび方法

Country Status (5)

Country Link
US (1) US20170309067A1 (ja)
JP (1) JPWO2016068235A1 (ja)
KR (2) KR20190008990A (ja)
CN (1) CN107111658A (ja)
WO (1) WO2016068235A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652018A (zh) * 2016-09-29 2017-05-10 北京京东尚科信息技术有限公司 物品三维重建方法、装置和系统
CN106971031A (zh) * 2017-03-15 2017-07-21 上海森松制药设备工程有限公司 一种模块组装适配度检测系统及方法
WO2018189870A1 (ja) * 2017-04-13 2018-10-18 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置
JP2019125187A (ja) * 2018-01-17 2019-07-25 株式会社東芝 ガス絶縁開閉装置の製造方法、ガス絶縁開閉装置の据付方法、ガス絶縁開閉装置の据付支援装置、およびガス絶縁開閉装置の据付支援方法
JP2019175327A (ja) * 2018-03-29 2019-10-10 パンチ工業株式会社 図面データ生成システム、図面データ生成方法およびプログラム
JP2019175328A (ja) * 2018-03-29 2019-10-10 パンチ工業株式会社 図面データ生成システム、図面データ生成方法およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230019912A1 (en) * 2021-07-13 2023-01-19 Applied Materials, Inc. Virtual manufacturing using virtual build and analysis tools

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077609A (ja) * 1996-09-02 1998-03-24 Kawada Kogyo Kk 鋼橋部材製作方法
JP2007058508A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 形状測定に基づく構造解析システム及び解析方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956764A (en) * 1987-04-14 1990-09-11 Northrop Corporation Assembly data model tool system
US5380978A (en) * 1991-07-12 1995-01-10 Pryor; Timothy R. Method and apparatus for assembly of car bodies and other 3-dimensional objects
JP2007164257A (ja) 2005-12-09 2007-06-28 Kawayoshi:Kk 3d梱包設計システム
CN101082993A (zh) * 2006-06-02 2007-12-05 中国农业机械化科学研究院 一种数字化机械设计方法
US7787979B2 (en) * 2007-03-14 2010-08-31 The Boeing Company Splicing fuselage sections without shims
CN101890638A (zh) * 2010-06-17 2010-11-24 北京航空航天大学 复杂结构件装配系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077609A (ja) * 1996-09-02 1998-03-24 Kawada Kogyo Kk 鋼橋部材製作方法
JP2007058508A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 形状測定に基づく構造解析システム及び解析方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652018A (zh) * 2016-09-29 2017-05-10 北京京东尚科信息技术有限公司 物品三维重建方法、装置和系统
CN106652018B (zh) * 2016-09-29 2021-01-26 北京京东尚科信息技术有限公司 物品三维重建方法、装置和系统
CN106971031A (zh) * 2017-03-15 2017-07-21 上海森松制药设备工程有限公司 一种模块组装适配度检测系统及方法
WO2018189870A1 (ja) * 2017-04-13 2018-10-18 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置
JPWO2018189870A1 (ja) * 2017-04-13 2020-02-27 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置、および完成品の作成方法
JP2019125187A (ja) * 2018-01-17 2019-07-25 株式会社東芝 ガス絶縁開閉装置の製造方法、ガス絶縁開閉装置の据付方法、ガス絶縁開閉装置の据付支援装置、およびガス絶縁開閉装置の据付支援方法
JP2019175327A (ja) * 2018-03-29 2019-10-10 パンチ工業株式会社 図面データ生成システム、図面データ生成方法およびプログラム
JP2019175328A (ja) * 2018-03-29 2019-10-10 パンチ工業株式会社 図面データ生成システム、図面データ生成方法およびプログラム

Also Published As

Publication number Publication date
KR20170075007A (ko) 2017-06-30
KR20190008990A (ko) 2019-01-25
CN107111658A (zh) 2017-08-29
US20170309067A1 (en) 2017-10-26
JPWO2016068235A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016068235A1 (ja) 部品加工支援システムおよび方法
KR101490311B1 (ko) 레이저 스캐너를 이용한 플랜트 구조물의 품질 및 시공성 검사방법
Millar et al. Reconfigurable flexible tooling for aerospace wing assembly
EP2122422B1 (en) A method and an apparatus for compensating for geometrical errors between work objects and a holding device
Jayaweera et al. Metrology-assisted robotic processing of aerospace applications
Axinte et al. Free-leg Hexapod: A novel approach of using parallel kinematic platforms for developing miniature machine tools for special purpose operations
JP7060475B2 (ja) 自動リベット測定システム
JP2009264956A (ja) 三次元形状・位置品質評価システム及びその方法
CN107530819A (zh) 用于将铆钉施加在零件上的包括用于检查并校正铆接操作装置相对于所述零件的位置的装置的设备
US11073383B2 (en) Geometric error measurement method for feed drive system and computer-readable recording medium having program recorded for executing same
Barhak et al. Integration of reconfigurable inspection with stream of variations methodology
EP3382654A1 (en) Method for virtually inspecting an actual produced part
Lowth et al. An assessment of “variation conscious” precision fixturing methodologies for the control of circularity within large multi-segment annular assemblies
Boldsaikhan Measuring and estimating rotary joint axes of an articulated robot
KR101391885B1 (ko) 삼차원 변위 측정 장치
JP4660464B2 (ja) 圧延設備の圧延生産物に関する検査システム
KR20190135111A (ko) 이송계의 기하학적 직각도 오차 측정방법 및 그 방법을 수행하는 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체
JP2017129439A (ja) 加工孔の座標位置測定方法
JP6824322B2 (ja) 部材取付位置の確認方法
US11810315B2 (en) Alignment method for use in plant
KR101438657B1 (ko) 산업 로봇 지그 측정방법
WO2013004780A1 (en) Backlash measurement and compensation to increase the accuracy of laser shaft alignment
WO2020105218A1 (ja) 測定方法
JP2017198563A (ja) 三次元座標測定器
Pshenichnikova Geometrical product specifications: Basing precision of pin connection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556621

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15523508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014455

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15854959

Country of ref document: EP

Kind code of ref document: A1