WO2016068220A1 - ユーシェアリライド類の製造方法 - Google Patents

ユーシェアリライド類の製造方法 Download PDF

Info

Publication number
WO2016068220A1
WO2016068220A1 PCT/JP2015/080469 JP2015080469W WO2016068220A1 WO 2016068220 A1 WO2016068220 A1 WO 2016068220A1 JP 2015080469 W JP2015080469 W JP 2015080469W WO 2016068220 A1 WO2016068220 A1 WO 2016068220A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
compound
obtaining
represented
Prior art date
Application number
PCT/JP2015/080469
Other languages
English (en)
French (fr)
Inventor
椎名 勇
貴之 殿井
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2016556615A priority Critical patent/JP6621755B2/ja
Priority to US15/519,279 priority patent/US10696703B2/en
Priority to EP15855388.3A priority patent/EP3214088B1/en
Publication of WO2016068220A1 publication Critical patent/WO2016068220A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65525Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a seven-(or more) membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to usharelides, methods for producing usharelides, production intermediates, and pharmaceutical compositions containing usharelides.
  • Eushearlide is a natural macrolide isolated from Eupencillium shearii IMF54447, a kind of blue mold in 2006, and is expected to be used as a medicine (Non-patent Document 1).
  • usharelide is a 24-membered macrolide having two olefins and two asymmetric carbon atoms, and has a characteristic structure not found in other macrolide compounds. It turns out that all three-dimensional structures have not yet been determined.
  • Non-patent Document 2 Examples of total synthesis of Eushalylide analogs are known (Non-patent Document 2), but in order to study bioactivity, a further production method for efficiently and massively supplying Eushalilide and its derivatives Is needed. In addition, it is necessary to supply various usharelide derivatives for pharmaceutical research using usharelide as a lead compound.
  • An object of the present invention is to eliminate such problems of the prior art, and it is possible to control stereochemistry and to supply a large amount and efficiently of usharelide and its derivatives. It is intended to provide a production method and to provide a new and useful intermediate that enables efficient production of various usharelide derivatives.
  • Another object of the present invention is to provide a novel usharelide derivative and a pharmaceutical composition containing the usesharelide derivative. Furthermore, the subject of this invention is providing the antibacterial agent containing the said ushare lide derivative, especially the antibacterial agent for resistant bacteria.
  • the present inventors have demonstrated that some novel euchelides obtained by the above production method have excellent antibacterial activity, particularly against resistant bacteria such as methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE). It has been found that it has antibacterial activity, and the present invention has been completed.
  • MRSA methicillin resistant Staphylococcus aureus
  • VRE vancomycin resistant enterococci
  • the present invention is as shown below.
  • Step 1 Formula (I-1) (In the formula, P 1 represents a protecting group.)
  • a compound represented by Formula (I-2) (In the formula, R 1 represents a hydrogen atom or an optionally substituted hydrocarbon group, P 2 represents a protecting group, and X represents a halogen atom.)
  • a compound represented by formula (I-3) (Wherein R 1 , P 1 and P 2 are as described above.)
  • Step 2 Deprotecting the compound represented by the formula (I-3) to give the formula (I-4) (In the formula, R 1 and P 2 are as described above.)
  • Step 3 Oxidizing the compound represented by formula (I-4) to formula (I-5) (In the formula, R 1 and P 2 are as described above.)
  • the compound represented by the formula (Ia-9) is represented by the formula (I-1) (In the formula, P 1 represents a protecting group.)
  • a compound represented by Formula (Ia-2) (In the formula, R 1 represents a hydrogen atom or an optionally substituted hydrocarbon group, P 2 represents a protecting group, and X represents a halogen atom.)
  • a compound represented by formula (Ia-3) (Wherein R 1 , P 1 and P 2 are as described above.)
  • the compound represented by the formula (Ia-3) is deprotected to give the formula (Ia-4) (In the formula, R 1 and P 2 are as described above.)
  • the compound represented by formula (Ia-4) is oxidized to form formula (Ia-5) (In the formula, R 1 and P 2 are as described above.)
  • a compound of formula (Ia-5) is subjected to an aldo
  • a Ushare chloride compound represented by the formula (Ia) is represented by the formula (A)
  • Formula (I) (In the formula, R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or an optionally substituted hydrocarbon group.)
  • a pharmaceutical composition comprising a compound represented by the formula (excluding the following compound (D)).
  • the compound represented by the formula (I) is represented by the following formula (A), (B), (C), (E), (F), (G), or (H).
  • the compound represented by the formula (I) is represented by the following formula (A), (B), (C), (D), (E), (F), (G), or (H).
  • the antibacterial agent for resistant bacteria according to the above (11) or (12), wherein the resistant bacteria is methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant enterococci (VRE) or vancomycin resistant Staphylococcus aureus (VRSA) .
  • MRSA methicillin resistant Staphylococcus aureus
  • VRE vancomycin resistant enterococci
  • VRSA vancomycin resistant Staphylococcus aureus
  • R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or an optionally substituted hydrocarbon group.
  • Formula (I) for producing an antibacterial agent for resistant bacteria (In the formula, R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or an optionally substituted hydrocarbon group.) Use of a compound represented by
  • the pharmaceutical composition containing some novel optically active euchelides obtained by the said manufacturing method can be provided.
  • an antibacterial agent containing the optically active Vietnameseelides, particularly an antibacterial agent for resistant bacteria can be provided.
  • Usharelilides are 24-membered macrolides and have the formula As a basic skeleton.
  • the numbers in the above formulas represent the positions of atoms constituting the basic skeleton.
  • the “protecting group” means a hydroxyl protecting group in general. Hydroxyl protecting groups include all groups that can be used as conventional hydroxyl protecting groups. W. Green et al., Protective Groups in Organic Synthesis, 3rd Edition, pp. 17-245, 1999, John Wiley & Sons (John Wiley & Sons, INC.). Examples of the protecting group include an acyl group, an alkyloxycarbonyl group, an aralkyloxycarbonyl group, a heterocyclic oxycarbonyl group, an alkyl group, an alkenyl group, an aralkyl group, an oxygen-containing heterocyclic group, and a sulfur-containing heterocyclic group.
  • protecting groups include organosilicon protecting groups such as tert-dimethylsilyl group, aralkyl groups such as benzyl group and 4-methoxybenzyl group, alkoxyalkyl groups such as butoxymethyl group, tetrahydropyran-2-yl group Etc.
  • the “hydrocarbon group” means an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
  • Alkyl group refers to an alkyl group having 1 to 8 carbon atoms, including straight-chain, branched-chain, and cyclic groups, such as methyl, ethyl, propyl, isopropyl, and cyclopropyl groups. Is done.
  • Alkenyl group and “alkynyl group” are alkyl groups having 2 to 8 carbon atoms, and include linear, branched, and cyclic groups such as ethenyl group, ethynyl group, propenyl group, propynyl group, A cyclohexenyl group is exemplified.
  • the “aryl group” refers to an aryl group having 6 to 18 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the “optionally substituted” substituent in the present invention include a hydroxyl group, an alkoxycarbonyl group, an amino group, an alkylamino group, an arylamino group, a nitro group, a cyano group, an alkoxy group, a carboxyl group, and phosphoric acid. Groups and the like.
  • Process 1 In the present invention, first, the compound represented by the above formula (I-1) and the compound represented by the formula (I-2) are coupled by subjecting to a Wittig reaction in the presence of a base, A compound represented by the formula (I-3) is synthesized.
  • the base include alkyllithium such as butyllithium, aryllithium such as phenyllithium, alkyl metal salt of hexamethyldisilazane such as lithium hexamethyldisilazide, and alkali metal salt of alcohol such as potassium tert-butoxide. Is preferably used.
  • the reaction solvent is not particularly limited as long as it is stable to the above base.
  • ether solvents such as tetrahydrofuran and diethyl ether are used.
  • the said solvent may be 1 type and can also use 2 or more types of mixed solvents.
  • the reaction temperature is not particularly limited but is preferably -78 ° C to room temperature.
  • the geometric isomerism of the double bond to be generated can be made differently.
  • a Z-olefin it is preferable to use an alkyl metal salt of hexamethyldisilazane such as sodium hexamethyldisilazide as the base.
  • an E-form olefin it is preferable to use 2 or more equivalents of alkyllithium such as butyllithium and aryllithium such as phenyllithium with respect to the compound represented by formula (I-2).
  • step 2 the protecting group P 1 in the compound represented by formula (I-3) is deprotected to synthesize a compound represented by formula (I-4).
  • Any deprotecting agent can be used without particular limitation as long as it can deprotect the protecting group P 1 without damaging the protecting group P 2 depending on the chemical properties of the protecting groups P 1 and P 2. .
  • the primary hydroxyl group of the compound represented by formula (I-4) is oxidized to synthesize a compound represented by formula (I-5).
  • the oxidizing agent is not particularly limited as long as it can oxidize a primary hydroxyl group to an aldehyde.
  • sulfur trioxide pyridine complex tetrapropylammonium perruthenate, 2,2,6,6-tetramethyl-1- Piperidinyloxy radical, pyridinium chlorochromate, pyridinium dichromate, 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3 (1H) -one are preferably used.
  • step 4 the compound represented by formula (I-5) is subjected to an aldol reaction to synthesize the compound represented by formula (I-6).
  • an aldol reaction is performed using the compound represented by the formula (I-5) as an electrophile and using an enolate capable of increasing two carbon chains as a nucleophile.
  • the enolate which is a nucleophile silyl enol ether derived from acetate ester is preferable.
  • step 5 a compound represented by formula (I-7) is synthesized by a transesterification reaction of the compound represented by formula (I-6). This step is performed by reacting an alcohol corresponding to the alkoxy group portion of the target product.
  • step 6 the compound represented by formula (I-7) is protected and deprotected to synthesize the compound represented by formula (I-8).
  • the protecting groups P 2 and P 3 can be used without particular limitation as long as they have different chemical properties such as stability to other organic compounds.
  • Step 7 the compound represented by formula (I-8) is hydrolyzed to synthesize the compound represented by formula (I-9).
  • the reagent used for hydrolysis is not particularly limited as long as it is used for hydrolysis of esters, and can be preferably used with either an alkali or an acid.
  • step 8 the compound represented by formula (I-9) is cyclized to synthesize the compound represented by formula (I-10).
  • the reagent used for cyclization is not particularly limited as long as it is used for macrolactonization.
  • 2-methyl-6-nitrobenzoic anhydride (MNBA) is preferably used.
  • Step 9 the compound represented by formula (I-10) is deprotected to synthesize the compound represented by formula (I-11).
  • the deprotecting agent can be used without particular limitation as long as it does not impair the structure of the compound depending on the chemical properties of the protecting group P 3 .
  • Step 10 a compound represented by formula (I) is synthesized from a compound represented by formula (I-11).
  • the reaction is carried out between the compound represented by formula (I-11) and the following formula: It is carried out by reacting a phosphorus compound such as a compound represented by formula (I) and subsequently reacting with an amine R 2 R 3 R 4 N.
  • usharelides represented by the formula (I) can also be produced from the compound represented by the formula (I-7) according to the following scheme.
  • the protecting group P 2 of the compound represented by the formula (I-7) is deprotected, and the ester COOR 5 is hydrolyzed to carboxylic acid COOH to obtain the compound represented by the formula (I-12).
  • a compound is synthesized.
  • the reagent used for deprotection and the reagent used for hydrolysis can be used without particular limitation as long as they do not impair the structure of the compound.
  • the deprotection and hydrolysis may be performed step by step or simultaneously. When performing one step at a time, the order of deprotection and hydrolysis is not particularly limited.
  • the compound represented by the formula (I-12) is cyclized to synthesize the compound represented by the formula (I-11).
  • the reagent used for cyclization is not particularly limited as long as it is used for macrolactonization.
  • 2-methyl-6-nitrobenzoic anhydride (MNBA) is preferably used.
  • Process 1 The compound represented by the formula (I-1) and the compound represented by the formula (Ia-2) are coupled by subjecting them to a Wittig reaction in the presence of a base to obtain a compound represented by the formula (Ia-3). Is synthesized.
  • the protecting group P 1 in the formula (I-1) is an organosilicon protecting group such as a tert-butyldimethylsilyl group, or the protecting group P 2 in the formula (Ia-2). Is preferably a benzyloxymethyl group (BOM).
  • Step 2 the protecting group P 1 in the compound represented by the formula (Ia-3) is deprotected to synthesize a compound represented by the formula (Ia-4).
  • Any deprotecting agent can be used without particular limitation as long as it can deprotect the protecting group P 1 without damaging the protecting group P 2 depending on the chemical properties of the protecting groups P 1 and P 2.
  • the protecting group P 1 is a tert-butyldimethylsilyl group and the protecting group P 2 is a benzyloxymethyl group (BOM), tetrabutylammonium fluoride (TBAF), hydrofluoric acid, etc.
  • BOM benzyloxymethyl group
  • TBAF tetrabutylammonium fluoride
  • hydrofluoric acid etc.
  • step 3 the primary hydroxyl group of the compound represented by formula (Ia-4) is oxidized to synthesize a compound represented by formula (Ia-5).
  • the oxidizing agent is not particularly limited as long as it can oxidize a primary hydroxyl group to an aldehyde.
  • a sulfur trioxide pyridine complex is preferably used.
  • step 4 the compound represented by formula (Ia-5) is subjected to aldol reaction to synthesize the compound represented by formula (Ia-6).
  • step 4 in the presence of a tin compound and a chiral diamine compound, the compound represented by the formula (Ia-5) and the following formula (In the formula, R 5 represents a hydrogen atom or an optionally substituted hydrocarbon group, and R 6 to R 8 independently represent an optionally substituted hydrocarbon group.) It is carried out by the so-called Mukaiyama aldol reaction in which the silyl enol ether represented by
  • tin triflate is preferably used.
  • the chiral diamine for example, the following formula (Wherein R 11 represents a hydrocarbon group, R 12 and R 13 independently represent a hydrogen atom or an aryl group, and R 12 and R 13 may be combined to form a ring.) are preferably used, and among them, the following formula Is particularly preferably used.
  • the tin compound and chiral diamine you may use what was previously complexed.
  • the reaction temperature is preferably a low temperature from the viewpoint of obtaining high stereoselectivity, specifically, ⁇ 78 ° C. to room temperature.
  • an aprotic non-coordinating solvent is preferably used, and specifically, a halogen solvent such as dichloromethane and a nitrile solvent such as propionitrile are preferably used.
  • tin (IV) salts such as tributyltin fluoride and dibutyltin diacetate may be further added.
  • reaction may be performed under conditions appropriately modified from the above reaction conditions within a range that does not impair the stereoselectivity and yield.
  • Isamu Shiina The Chemical Record, January 25, 2014, Volume 14 , Pages 144-183 and other references cited therein, may be carried out under the reaction conditions described.
  • step 5 a compound represented by formula (Ia-7) is synthesized by subjecting the compound represented by formula (Ia-6) to a transesterification reaction. This step is performed by reacting an alcohol corresponding to the alkoxy group portion of the target product. As reaction conditions, it is preferable to add silver trifluoroacetate and a base in addition to the alcohol.
  • Step 6 the compound represented by formula (Ia-7) is synthesized by protecting and deprotecting the compound represented by formula (Ia-7).
  • the protecting groups P 2 and P 3 can be used without particular limitation as long as they have different chemical properties such as stability to other organic compounds.
  • P 2 is benzyloxymethyl (BOM)
  • P 3 is a 4-methoxybenzyl group (PMB).
  • Step 7 the compound represented by formula (Ia-8) is hydrolyzed to synthesize the compound represented by formula (Ia-9).
  • the reagent used for hydrolysis is not particularly limited as long as it is used for ester hydrolysis, and can be preferably used with either an alkali or an acid.
  • lithium hydroxide is preferred.
  • Step 8 the compound represented by the formula (Ia-9) is cyclized to synthesize the compound represented by the formula (Ia-10).
  • the reagent used for cyclization is not particularly limited as long as it is used for macrolactonization. From the viewpoint of efficiency such as reactivity and yield, 2-methyl-6-nitrobenzoic anhydride (MNBA) is preferably used as a reagent for cyclization.
  • MNBA 2-methyl-6-nitrobenzoic anhydride
  • Step 9 the compound represented by formula (Ia-11) is synthesized by deprotecting the compound represented by formula (Ia-10).
  • the deprotecting agent can be used without particular limitation as long as it does not impair the structure of the compound depending on the chemical properties of the protecting group P 3 .
  • P 3 is 4-methoxybenzyl (PMB)
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • Step 10 a compound represented by formula (I) is synthesized from a compound represented by formula (Ia-11).
  • the reaction is carried out between the compound represented by formula (I-11) and the following formula: It is carried out by reacting a phosphorus compound such as a compound represented by formula (I) and subsequently reacting with an amine R 2 R 3 R 4 N.
  • usharelides represented by the formula (Ia) can also be produced from the compound represented by the formula (Ia-7) according to the following scheme.
  • the protecting group P 2 of the compound represented by the formula (Ia-7) is deprotected and the ester COOR 5 is hydrolyzed to a carboxylic acid COOH to obtain a compound represented by the formula (Ia-12).
  • a compound is synthesized.
  • the reagent used for deprotection and the reagent used for hydrolysis can be used without particular limitation as long as they do not impair the structure of the compound.
  • the deprotection and hydrolysis may be performed step by step or simultaneously. When performing one step at a time, the order of deprotection and hydrolysis is not particularly limited.
  • the compound represented by the formula (Ia-12) is cyclized to synthesize the compound represented by the formula (Ia-11).
  • the reagent used for cyclization is not particularly limited as long as it is used for macrolactonization.
  • 2-methyl-6-nitrobenzoic anhydride (MNBA) is preferably used.
  • the compound represented by the formula (I-1) can be produced according to the following production scheme.
  • the compound represented by formula (Ia-12) is reduced with a reducing agent such as lithium aluminum hydride (LAH) to synthesize the compound represented by formula (Ia-13).
  • LAH lithium aluminum hydride
  • the compound represented by the formula (Ia-14) is synthesized by protecting only one primary hydroxyl group with the protecting group P 1 .
  • the compound represented by the formula (I-1) can be synthesized by oxidizing the primary hydroxyl group of the compound represented by the formula (Ia-14).
  • the compound represented by the formula (Ia-2) can be produced according to the following production scheme.
  • a compound represented by the formula (Ia-16) is synthesized by protecting the hydroxyl group of the compound represented by the formula (Ia-15) with P 4 .
  • the protecting group P 4 is not particularly limited as long as it can be used as a protecting group for a hydroxyl group.
  • a tetrahydropyran-2-yl group (THP) is preferable.
  • a compound represented by the formula (Ia-16) is reacted with a base such as butyllithium to give an acetylide, and then the formula (Ia-17) (In the formula, R 1 represents a hydrogen atom or an optionally substituted hydrocarbon group.)
  • the compound represented by the formula (Ia-18) is synthesized by reacting the epoxy compound represented by the formula: In this reaction, when R 1 in the formula (Ia-17) is an optionally substituted hydrocarbon group, an asymmetric carbon exists, but an optically active epoxy compound having an absolute configuration different from the above chemical structural formula is used. When used, a compound having an absolute configuration different from that of the compound represented by the formula (Ia-18) can be obtained. Therefore, the stereochemistry at the 23-position of the 24-membered macrolide can be controlled by the absolute configuration of the optically active epoxy compound used.
  • the triple bond of the compound represented by the formula (Ia-18) is reduced with a reducing agent such as lithium aluminum hydride to synthesize the compound represented by the formula (Ia-19).
  • a reducing agent such as lithium aluminum hydride
  • the protecting group P 4 of the compound represented by the formula (Ia-20) is deprotected to synthesize a compound represented by the formula (Ia-21).
  • the compound represented by the formula (Ia-22) is synthesized by halogenating the hydroxyl group of the compound represented by the formula (Ia-21).
  • a compound represented by the formula (Ia-2) can be synthesized by reacting a compound represented by the formula (Ia-22) with triphenylphosphine.
  • the compound represented by the formula (I) produced according to the production method of the present invention exhibits physiological activity, it can be used as a medicine.
  • formulation adjuvants such as excipients, carriers and diluents usually used for formulation may be appropriately mixed.
  • excipients such as excipients, carriers and diluents usually used for formulation
  • these are tablets, capsules, powders, syrups, granules, pills, suspensions, emulsions, solutions, powder formulations, suppositories, eye drops, nasal drops, ear drops, It can be administered orally or parenterally in the form of a patch, ointment or injection.
  • the administration method, the dosage, and the number of administrations can be appropriately selected according to the age, weight and symptoms of the patient.
  • the compound represented by the formula (I) of the present invention treats local infections or systemic infections of humans and animals caused by Gram-positive bacteria, Gram-negative bacteria, anaerobic bacteria, acid-fast bacteria, etc. Useful to do.
  • the compounds represented by formula (I) of the present invention are useful for treating or preventing resistant bacterial infections.
  • resistant bacteria include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-resistant Staphylococcus aureus (VRSA), and the like.
  • a “therapeutically effective amount” in the present invention refers to the amount of a compound that produces a desired biological result such as preventing the onset of bacterial infection, alleviating symptoms, stopping progression, or improving clinical symptoms.
  • the “subject” in the present invention refers to a mammal, a plant, a lower animal, or a cell culture medium. In one embodiment, the subject is a human or other animal patient in need of antimicrobial treatment.
  • “Administration” in the present invention refers to providing a compound of the present invention (for example, a compound represented by the formula (I)) to a subject in need of treatment.
  • the subject is a mammal, more preferably a human.
  • Example 1 Compound (11) A solution of compound (7) (46 mg, 0.0723 mmol) in THF (1.4 mL) was cooled to ⁇ 78 ° C., and lithium bromide (69 mg, 0.0795 mmol), PhLi (phenyllithium) (1.6 M in Butyl ether). , 0.05 mL, 0.0723 mmol) and stirred for 30 minutes. This was slowly added dropwise to a solution of compound (10) (25 mg, 0.0723 mmol) in diethyl ether (1.4 mL) cooled to ⁇ 78 ° C. using a cannula.
  • Example 2 Compound (12) A solution of compound (11) (860 mg, 1.50 mL) in THF (15 mL) is cooled to 0 ° C., and TBAF (tetrabutylammonium fluoride) (1.0 M in THF, 4.5 mL, 4.5 mmol) is added to room temperature. For 2 hours. The reaction system was cooled to 0 ° C., saturated aqueous sodium hydrogen carbonate solution was added to stop the reaction, the organic phase was separated, and the aqueous phase was extracted with ethyl acetate three times. The organic phases were combined, washed with saturated brine, and dried over anhydrous sodium sulfate.
  • TBAF tetrabutylammonium fluoride
  • Example 3 Compound (13) A mixed solution of compound (12) (850 mg, 1.85 mmol) in methylene chloride (15.2 mL) and DMSO (3.8 mL) was cooled to 0 ° C., and Et 3 N (2.1 mL, 14.8 mmol) was added. After adding SO 3 ⁇ Py complex (1.2 g, 7.4 mmol), the mixture was warmed to room temperature and stirred for 2 hours. The reaction system was cooled to 0 ° C., saturated ammonium chloride aqueous solution was added to stop the reaction, the organic phase was separated, and the aqueous phase was extracted with methylene chloride three times. The organic phases were combined, washed with saturated brine, and dried over anhydrous sodium sulfate.
  • SO 3 ⁇ Py complex 1.2 g, 7.4 mmol
  • Example 4 Compound (14) Sn (OTf) 2 (tin triflate) (953 mg, 2.29 mmol) was dried under reduced pressure at 110 ° C. for 6 hours, methylene chloride (21 mL) was added, and (S) -1-methyl-2- (1- A solution of naphthylaminomethyl) pyrrolidine (598 mg, 2.49 mmol) in methylene chloride (5 mL) and n Bu 3 SnF (tributyltin fluoride) (708 mg, 2.29 mmol) were quickly added.
  • Sn (OTf) 2 tin triflate
  • Example 5 Compound (15) A solution of compound (14) (470 mg, 0.84 mmol) in ethanol (8.4 mL) is cooled to 0 ° C., and diisopropylethylamine (0.6 mL, 3.35 mmol) and AgOCOCF 3 (371 mg, 1.68 mmol) are sequentially added. Thereafter, the mixture was warmed to room temperature and stirred for 3 hours. Water was added to the reaction system to stop the reaction, celite filtration was performed with ethyl acetate, the organic phase was separated, and the aqueous phase was extracted three times with ethyl acetate. The organic phases were combined, washed with saturated brine, and dried over anhydrous sodium sulfate.
  • Example 6 Compound (16) (Step 1) Molecular sieves 4A (1 mg) was heated to dryness under reduced pressure, allowed to cool to room temperature, and then a solution of compound (15) (105 mg, 0.19 mmol) in methylene chloride (3.9 mL) was added. It was. After cooling to 0 ° C., 4-methoxybenzoyl-2,2,2-trichloroacetimidate (80 ⁇ L, 0.39 mmol) and TsOH ⁇ H 2 O (tosylic acid monohydrate) (13 mg, 77 ⁇ mol) were added, and the temperature was raised to room temperature. Warmed and stirred for 12 hours.
  • Step 2 The crude product was cooled to 0 ° C., a mixed solution of THF / 12N HCl (5/1) (3.8 mL) was added, and then the reaction system was warmed to room temperature and stirred for 12 hours. After separating the organic phase, the aqueous phase was extracted three times with diethyl ether. The organic phases were combined, washed with saturated brine, and dried over anhydrous sodium sulfate.
  • Example 8 Compound (18) To a solution of MNBA (19 mg, 52.8 ⁇ mol) and DMAP (4-dimethylaminopyridine) (30 mg, 0.24 mmol) in methylene chloride (16.8 mL), compound (17) (21 mg, 40.6 ⁇ mol) in methylene chloride (4 .2 mL) solution was added dropwise over 12 hours using a syringe pump. After completion of the dropwise addition, washing was performed using methylene chloride (1.0 mL), and the mixture was stirred for 1 hour.
  • DMAP dimethylaminopyridine
  • Example 9 Compound (19) A mixed solution of compound (18) (38 mg, 0.10 mmol) in methylene chloride (1.8 mL) and phosphate buffer solution (0.18 mL) was cooled to 0 ° C., and DDQ (27 mg, 0.12 mmol) was added. Thereafter, the mixture was warmed to room temperature and stirred for 2 hours. The reaction system was cooled to 0 ° C., the reaction was stopped by adding a saturated aqueous sodium hydrogen carbonate solution, the organic phase was separated, the aqueous phase was extracted five times with methylene chloride, and the organic phases were combined and dried over anhydrous sodium sulfate. did.
  • Example 10 Compound (A) (Step 1) A solution of compound (19) (15 mg, 39.6 ⁇ mol) in toluene (0.8 mL) was cooled to 0 ° C., and Et 3 N (9.4 ⁇ L, 67.3 ⁇ mol) and 2-chloro-2-oxo were mixed. -1,3,2-dioxaphospholane (4.7 ⁇ L, 51.5 ⁇ mol) was sequentially added, and the mixture was warmed to room temperature and stirred for 3 hours. The amine salt produced by the reaction was suction filtered while washing with anhydrous toluene, and the filtrate was concentrated under reduced pressure to obtain a crude product. Since the crude product was unstable in water and alcohol, it was used for the next reaction without purification.
  • Example 11 Compounds (D) to (H) were produced in the same manner as in the above compound (A). Identification data for the compounds (D) to (H) are shown below.
  • Example 12 A production intermediate of compound (E) was synthesized according to the following scheme.
  • Pharmacological test example 1 The antibacterial activity of the compound synthesized by the production method of the present invention was evaluated by the following method. Structural formulas of the compounds (A) to (C) used in the pharmacological test are shown below.
  • Test microorganism Staphylococcus aureus NBRC 12732 Staphylococcus aureus
  • Aspergillus niger NBRC 105649 black mold
  • Trichophyton mentagrophytes NBRC 5466 white mold
  • test bacterial solution preparation was prepared.
  • the frozen strain was applied to a pre-culture medium for test bacteria and pre-cultured under predetermined conditions.
  • the grown colonies were suspended in a test bacterium culture medium, cultured under predetermined conditions, added to the test bacterium preparation solution, and the number of bacteria was adjusted to about 10 7 to 8 CFU / mL.
  • the prepared test bacterial solution was diluted 10 times and cultured under predetermined conditions to measure the number of bacteria. Table 1 shows the test bacterial solution preparation and culture conditions.
  • test article dilution train Each compound was dissolved in methanol so as to be 1,000 ⁇ g / mL to obtain a sample stock solution. 0.75 mL of Otsuka distilled water was added to 0.75 mL of the sample stock solution to give 500 ⁇ g / mL, and the same two-fold dilution was repeated. Ten test article dilution rows were prepared in total, and the test product concentrations were 1,000, 500, 250, 125, 63, 31, 16, 8, 4, 2 ⁇ g / mL, respectively.
  • Test results Table 2 shows the test results.
  • the compound (A) is 25 ⁇ g / disk, 2.5 mm
  • the compound (B) is 12.5 ⁇ g / disk, 3.9 mm
  • the compound (C) is 12.5 ⁇ g / disk, 5.1 mm. there were. From the above, it became clear that all of the compounds (A) to (C) have antibacterial activity.
  • Pharmacological test example 2 The antibacterial activity of the compounds synthesized by the production method of the present invention (compounds (D) to (H)) was evaluated by the following method.
  • the structural formulas of the compounds (D) to (H) used in the pharmacological test are shown below.
  • MIC measurement Sensitivity measurement of square petri dish (230 ⁇ 80 ⁇ 14.5mm, Eiken) After spreading test bacterial solution evenly with cotton swab on agar medium, ⁇ 8mm thick disc (for antibiotic test, Advantech) was placed on the medium. At this time, the interval between the disks was set to 24 mm or more. On the disk, 50 ⁇ L of the diluted test product was dropped. The amount of the test product per disk is 50, 25, 12.5, 6.3, 3.1, 1.6, 0.8, 0.4.0.2, and 0.1 ⁇ g. Sensitivity measurement The agar medium was cultured under predetermined conditions (Table 4), and the width of the inhibition zone where no bacterial growth was observed was measured in mm using calipers. As a control, methanol dropped onto a disk was used instead of the test product.
  • Test results Table 5 shows the test results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

ユーシェアリライド類、ユーシェアリライド類の製造方法、製造中間体、ユーシェアリライド類を含有する医薬組成物を提供する。 Wittig反応工程、向山アルドール反応工程、マクロラクトン化工程などを鍵工程とすることにより、式(I)で表されるユーシェアリライド類を効率的に製造する。

Description

ユーシェアリライド類の製造方法
 本発明は、ユーシェアリライド類、ユーシェアリライド類の製造方法、製造中間体、ユーシェアリライド類を含有する医薬組成物に関する。
 ユーシェアリライド(Eushearilide)は、2006年に青かびの一種であるEupenicillium shearii IMF54447より単離された天然のマクロライドであり、医薬としての応用が期待されている(非特許文献1)。
 これまでユーシェアリライドの推定構造は上記非特許文献1に提案されている。前記文献によれば、ユーシェアリライドはオレフィンを2か所、不斉炭素原子を2か所持つ24員環マクロライドであり、他のマクロライド化合物には見られない特徴的な構造を有することが分かっているが、全ての立体構造はいまだに決定されていない。
 ユーシェアリライド類縁体の全合成例は知られているが(非特許文献2)、生理活性を研究するにあたり、ユーシェアリライド及びその誘導体を効率的かつ大量に供給するためのさらなる製造方法が必要とされている。また、ユーシェアリライドをリード化合物とする医薬研究のために、様々なユーシェアリライド誘導体を供給することが必要とされている。
T.Hosoe,K.Fukushima,K.Takizawa,T.Itabashi,N.Kawahara,V.Vidotto,K.Kawai,The Journal of Antibiotics,2006年、第59巻、第597~600頁 T.Yamauchi,J.Takidaira,K.Okamoto,T.Sugiura,H.Horikoshi,S.Kudo,S.Sasaki,N.Mizushima,K.Higashiyama,Heterocycles,2014年、第88巻、第1175~1189頁
 本発明の課題は、このような従来技術の問題点を解消することにあり、立体化学を制御することが可能であり、ユーシェアリライド及びその誘導体を大量かつ効率的に供給することのできる製造方法を提供するとともに、様々なユーシェアリライド誘導体の効率的製造を可能にする新規かつ有用な中間体を提供しようとするものである。
 また、本発明の課題は、新規ユーシェアリライド誘導体を提供するとともに、該ユーシェアリライド誘導体を含有する医薬組成物を提供しようとするものである。
 さらに、本発明の課題は、前記ユーシェアリライド誘導体を含有する抗菌剤、特に耐性菌用抗菌剤を提供しようとするものである。
 本発明者らは、鋭意研究の結果、Wittig反応工程、向山アルドール反応工程、マクロラクトン化工程などを鍵工程とすることにより、ユーシェアリライド類を効率的に製造できることを見いだし、本発明を完成するに至った。
 また、本発明者らは、上記製造方法によって得られるいくつかの新規ユーシェリライド類が優れた抗菌活性、特にメチシリン耐性黄色ブドウ球菌(MRSA)やバンコマイシン耐性腸球菌(VRE)などの耐性菌に対する抗菌活性を有することを見いだし、本発明を完成するに至った。
 すなわち、本発明は以下に示されるとおりである。
(1)下記1~10で示される工程を含む、式(I)で表されるユーシェアリライド化合物の製造方法。
工程1:式(I-1)
Figure JPOXMLDOC01-appb-C000056
(式中、Pは保護基を表す。)
で表される化合物と、
式(I-2)
Figure JPOXMLDOC01-appb-C000057
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Xはハロゲン原子を表す。)
で表される化合物とを塩基の存在下にカップリングして式(I-3)
Figure JPOXMLDOC01-appb-C000058
(式中、R、P及びPは前記のとおりである。)
で表される化合物を得る工程、
工程2:式(I-3)で表される化合物を脱保護して式(I-4)
Figure JPOXMLDOC01-appb-C000059
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程3:式(I-4)で表される化合物を酸化して式(I-5)
Figure JPOXMLDOC01-appb-C000060
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程4:式(I-5)で表される化合物をアルドール反応に付して式(I-6)
Figure JPOXMLDOC01-appb-C000061
(式中、Rは炭化水素基を表し、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程5:式(I-6)で表される化合物をエステル交換して式(I-7)
Figure JPOXMLDOC01-appb-C000062
(式中、R、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程6:式(I-7)で表される化合物を保護、脱保護して式(I-8)
Figure JPOXMLDOC01-appb-C000063
(式中、Pは保護基を表し、R及びRは前記のとおりである。)
で表される化合物を得る工程、
工程7:式(I-8)で表される化合物を加水分解して式(I-9)
Figure JPOXMLDOC01-appb-C000064
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程8:式(I-9)で表される化合物を環化して式(I-10)
Figure JPOXMLDOC01-appb-C000065
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
工程9:式(I-10)で表される化合物を脱保護して式(I-11)
Figure JPOXMLDOC01-appb-C000066
(式中、Rは前記のとおりである。)
で表される化合物を得る工程、
工程10:式(I-11)で表される化合物をリン化合物、続いてアミンRNと反応させて式(I)
Figure JPOXMLDOC01-appb-C000067
(式中、Rは前記のとおりであり、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物を得る工程。
(2)式(Ia-11)
Figure JPOXMLDOC01-appb-C000068
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物をリン化合物、続いてアミンRNと反応させることによる、式(Ia)
Figure JPOXMLDOC01-appb-C000069
(式中、R、R、R及びRは、独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表されるユーシェアリライド化合物の製造方法。
(3)式(Ia-11)で表される化合物が、式(Ia-9)
Figure JPOXMLDOC01-appb-C000070
(式中、Rは前記のとおりであり、Pは保護基を表す。)
で表される化合物を2-メチル-6-ニトロ安息香酸無水物と反応させて式(Ia-10)
Figure JPOXMLDOC01-appb-C000071
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-10)で表される化合物を脱保護する工程により得られる、上記(2)に記載の製造方法。
(4)式(Ia-9)で表される化合物が、式(I-1)
Figure JPOXMLDOC01-appb-C000072
(式中、Pは保護基を表す。)
で表される化合物と、
式(Ia-2)
Figure JPOXMLDOC01-appb-C000073
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Xはハロゲン原子を表す。)
で表される化合物とを塩基の存在下にカップリングして式(Ia-3)
Figure JPOXMLDOC01-appb-C000074
(式中、R、P及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-3)で表される化合物を脱保護して式(Ia-4)
Figure JPOXMLDOC01-appb-C000075
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-4)で表される化合物を酸化して式(Ia-5)
Figure JPOXMLDOC01-appb-C000076
(式中、R及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-5)で表される化合物をアルドール反応に付して式(Ia-6)
Figure JPOXMLDOC01-appb-C000077
(式中、Rは炭化水素基を表し、R及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-6)で表される化合物をエステル交換して式(Ia-7)
Figure JPOXMLDOC01-appb-C000078
(式中、R、R及びPは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-7)で表される化合物を保護、脱保護して式(Ia-8)
Figure JPOXMLDOC01-appb-C000079
(式中、Pは保護基を表し、R及びRは前記のとおりである。)
で表される化合物を得る工程、
 式(Ia-8)で表される化合物を加水分解する工程により得られる、上記(3)に記載の製造方法。
(5)式(Ia)で表されるユーシェアリライド化合物が、式(A)
Figure JPOXMLDOC01-appb-C000080
で表される化合物である上記(2)~(4)いずれか1項に記載の製造方法。
(6)式(II)で表される化合物。
Figure JPOXMLDOC01-appb-C000081
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは水素原子又は保護基を表す。)
 ただし、前記式(II)中、Rがメチル基であり、かつ、Pが水素原子又はベンジル基である化合物を除く。
(7)式(A)、(E)、(F)又は(G)で表される化合物。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
(8)式(I)
Figure JPOXMLDOC01-appb-C000086
 
(式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物(ただし、下記化合物(D)を除く。)を含有する医薬組成物。
Figure JPOXMLDOC01-appb-C000087
 
(9)抗菌剤である上記(8)に記載の医薬組成物。
(10)式(I)で表される化合物が、下記式(A)、(B)、(C)、(E)、(F)、(G)、又は(H)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
で表される化合物である上記(9)又は上記(10)に記載の医薬組成物。
(11)式(I)
Figure JPOXMLDOC01-appb-C000095
(式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物を含有する耐性菌用抗菌剤。
(12)式(I)で表される化合物が、下記式(A)、(B)、(C)、(D)、(E)、(F)、(G)、又は(H)
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 
で表される化合物である上記(11)に記載の耐性菌用抗菌剤。
(13)耐性菌がメチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン耐性腸球菌(VRE)又はバンコマイシン耐性黄色ブドウ球菌(VRSA)である上記(11)又は上記(12)に記載の耐性菌用抗菌剤。
(14)式(I)
Figure JPOXMLDOC01-appb-C000104
(式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物を含有する医薬組成物の治療有効量を、それを必要としている対象に投与することを含む、耐性菌感染症の治療または予防の方法。
(15)耐性菌用抗菌剤を製造するための、式(I)
Figure JPOXMLDOC01-appb-C000105
(式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
で表される化合物の使用。
 本発明によれば、立体化学を制御でき、様々な類縁体を大量かつ効率的に供給することのできるユーシェアリライド類の製造方法を提供するとともに、様々なユーシェアリライド類の効率的製造を可能にする新規かつ有用な中間体を提供することができる。
 また、本発明によれば、上記製造方法によって得られるいくつかの新規光学活性ユーシェリライド類を含有する医薬組成物を提供することができる。
 さらに、本発明によれば、前記光学活性ユーシェリライド類を含有する抗菌剤、特に耐性菌用抗菌剤を提供することができる。
 ユーシェアリライド類は24員環マクロライドであり、以下の式
Figure JPOXMLDOC01-appb-C000106
で表される構造を基本骨格として有する。上記式中の数字は基本骨格を構成する原子の位置を表す。
 以下、本発明の実施形態について詳述する。
 本発明における「保護基」とは、ヒドロキシル保護基一般を示す。ヒドロキシル保護基としては、通常のヒドロキシル保護基として使用し得るすべての基を含み、たとえば、W.グリーン(W.Greene)ら、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)第3版、第17~245頁、1999年、ジョン・ウィリイ・アンド・サンズ社(John Wiley & Sons,INC.)に記載されている基が挙げられる。保護基としては、たとえば、アシル基、アルキルオキシカルボニル基、アルアルキルオキシカルボニル基、複素環オキシカルボニル基、アルキル基、アルケニル基、アルアルキル基、含酸素複素環式基、含硫黄複素環式基、アルコキシアルキル基、アルアルキルオキシアルキル基、アルカンスルホニル基、アリールスルホニル基および置換シリル基などが挙げられる。保護基の具体例としては、tert-ジメチルシリル基等の有機ケイ素系保護基、ベンジル基、4-メトキシベンジル基等のアラルキル基、ブトキシメチル基等のアルコキシアルキル基、テトラヒドロピラン―2-イル基等が挙げられる。
 本発明における「炭化水素基」とは、アルキル基、アルケニル基、アルキニル基、アリール基を意味する。「アルキル基」としては、炭素数1~8のアルキル基を示し、直鎖、分岐鎖、環状のものを包含し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基が例示される。「アルケニル基」、「アルキニル基」としては、炭素数2~8のアルキル基を示し、直鎖、分岐鎖、環状のものを包含し、例えば、エテニル基、エチニル基、プロペニル基、プロピニル基、シクロヘキセニル基が例示される。「アリール基」としては、炭素数6~18のアリール基を示し、例えば、フェニル基、ナフチル基、アントラセニル基が例示される。
 本発明における「置換されていてもよい」の置換基としては、例えば、水酸基、アルコキシカルボニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ニトロ基、シアノ基、アルコキシ基、カルボキシル基、リン酸基等が挙げられる。
 以下、本発明の製造方法における各工程について、下記のスキームを参照して説明する。
Figure JPOXMLDOC01-appb-C000107
工程1
 本発明においては、まず、上記式(I-1)で表される化合物と式(I-2)で表される化合物とを塩基の存在下にWittig反応に付すことにより、カップリングして、式(I-3)で表される化合物を合成する。
 塩基としては、ブチルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウム、リチウムジイソプロピルアミド、ナトリウムヘキサメチルジシラジド等のヘキサメチルジシラザンのアルキル金属塩、カリウムtert-ブトキシド等のアルコールのアルカリ金属塩を用いることが好ましい。
 反応溶媒としては、上記塩基に対して安定なものであれば特に制限はない。好ましくは、テトラヒドロフラン、ジエチルエーテルなどのエーテル系溶媒が用いられる。前記溶媒は1種でもよく、2種以上の混合溶媒も用いることができる。
 反応温度としては、特に制限はないが、-78℃~室温が好ましい。
 工程1では、生成する二重結合の幾何異性を作り分けることができる。Z体オレフィンが所望であれば、塩基としてナトリウムヘキサメチルジシラジド等のヘキサメチルジシラザンのアルキル金属塩を用いることが好ましい。E体オレフィンが所望であれば、式(I-2)で表される化合物に対して2当量以上のブチルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウムを用いることが好ましい。
工程2
 工程2では、式(I-3)で表される化合物における保護基Pを脱保護して式(I-4)で表される化合物を合成する。
 脱保護剤としては、保護基P及びPの化学的性質に依存し、保護基Pを損なうことなく、保護基Pを脱保護できるものであれば、特に制限なく用いることができる。
工程3
 工程3では、式(I-4)で表される化合物の1級水酸基を酸化して式(I-5)で表される化合物を合成する。
 酸化剤としては、1級水酸基をアルデヒドに酸化できるものであれば特に制限はなく、例えば、三酸化硫黄ピリジン錯体、過ルテニウム酸テトラプロピルアンモニウム、2,2,6,6-テトラメチル-1-ピペリジニルオキシ ラジカル、クロロクロム酸ピリジニウム、二クロム酸ピリジニウム、1,1,1-トリアセトキシ-1,1-ジヒドロ-1,2-ベンズヨードキソール-3(1H)-オンが好ましく用いられる
工程4
 工程4では、式(I-5)で表される化合物をアルドール反応に付して式(I-6)で表される化合物を合成する。
 本工程では、式(I-5)で表される化合物を求電子剤として用い、炭素鎖を2つ増加させることのできるエノラートを求核剤として用い、アルドール反応を行う。
 求核剤であるエノラートとしては、酢酸エステル由来のシリルエノールエーテル等が好ましい。
工程5
 工程5では、式(I-6)で表される化合物をエステル交換反応して式(I-7)で表される化合物を合成する。
 本工程では、目的物のアルコキシ基部分に対応するアルコールを反応させることにより行われる。
工程6
 工程6では、式(I-7)で表される化合物を保護、脱保護して式(I-8)で表される化合物を合成する。
 保護基PとPとしては、他の有機化合物に対する安定性等の化学的性質が異なるものであれば、特に制限なく用いることができる。
工程7
 工程7では、式(I-8)で表される化合物を加水分解して式(I-9)で表される化合物を合成する。
 加水分解に用いる試薬としては、エステルの加水分解に用いられるものであれば特に制限がなく、アルカリでも酸でも好ましく用いることができる。
工程8
 工程8では、式(I-9)で表される化合物を環化して式(I-10)で表される化合物を合成する。
 環化に用いる試薬としては、マクロラクトン化に用いられているものであれば特に制限はなく、例えば、2-メチル-6-ニトロ安息香酸無水物(MNBA)が好ましく用いられる。
工程9
 工程9では、式(I-10)で表される化合物を脱保護して式(I-11)で表される化合物を合成する。
 脱保護剤としては、保護基Pの化学的性質に依存し、化合物の構造を損なうものでなければ、特に制限なく用いることができる。
工程10
 工程10では、式(I-11)で表される化合物から式(I)で表される化合物を合成する。
 反応は、式(I-11)で表される化合物と下記式
Figure JPOXMLDOC01-appb-C000108
で表される化合物等のリン化合物を反応させ、続いてアミンRNと反応させることにより行われる。
 本発明では、前記式(I-7)で表される化合物から下記スキームにしたがって、式(I)で表されるユーシェアリライド類を製造することもできる。
Figure JPOXMLDOC01-appb-C000109
 上記スキームの方法では、式(I-7)で表される化合物の保護基Pを脱保護するとともに、エステルCOORをカルボン酸COOHに加水分解して、式(I-12)で表される化合物を合成する。脱保護に用いる試薬及び加水分解に用いる試薬は、化合物の構造を損なうものでなければ、特に制限なく用いることができる。
 前記脱保護と加水分解は、1段階ずつ行ってもよいし、同時に行ってもよい。1段階ずつ行う場合には、脱保護と加水分解の順番は特に制限されない。
 次に、式(I-12)で表される化合物を環化して式(I-11)で表される化合物を合成する。
 環化に用いる試薬としては、マクロラクトン化に用いられているものであれば特に制限はなく、例えば、2-メチル-6-ニトロ安息香酸無水物(MNBA)が好ましく用いられる。
 最後に、前記工程10と同様の方法により、式(I)で表されるユーシェアリライド類を合成する。
 上記製造方法は、立体化学が制御されたユーシェアリライド類を製造するのに特に有用であり、以下のスキームを参照して詳述する。
Figure JPOXMLDOC01-appb-C000110
工程1
 式(I-1)で表される化合物と式(Ia-2)で表される化合物とを塩基の存在下にWittig反応に付すことにより、カップリングして、式(Ia-3)で表される化合物を合成する。
 後の工程との関係から、式(I-1)中の保護基Pとしては、tert-ブチルジメチルシリル基等の有機ケイ素系保護基、式(Ia-2)中の保護基Pとしては、ベンジルオキシメチル基(BOM)が好ましい。
 反応条件としては、E体オレフィンを得るために、式(Ia-2)で表される化合物に対して2当量以上のブチルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウムを用いるシュロッサー条件が好ましい。
工程2
 工程2では、式(Ia-3)で表される化合物における保護基Pを脱保護して式(Ia-4)で表される化合物を合成する。
 脱保護剤としては、保護基P及びPの化学的性質に依存し、保護基Pを損なうことなく、保護基Pを脱保護できるものであれば、特に制限なく用いることができる。例えば、保護基Pがtert-ブチルジメチルシリル基であり、保護基Pがベンジルオキシメチル基(BOM)である場合、脱保護剤としてテトラブチルアンモニウムフルオリド(TBAF)やフッ化水素酸等のフッ素系試薬を用いることが好ましい。
工程3
 工程3では、式(Ia-4)で表される化合物の1級水酸基を酸化して式(Ia-5)で表される化合物を合成する。
 酸化剤としては、1級水酸基をアルデヒドに酸化できるものであれば特に制限はなく、例えば、三酸化硫黄ピリジン錯体が好ましく用いられる。
工程4
 工程4では、式(Ia-5)で表される化合物をアルドール反応に付して式(Ia-6)で表される化合物を合成する。
 本工程は、スズ化合物及びキラルジアミン化合物の存在下に、式(Ia-5)で表される化合物と下記式
Figure JPOXMLDOC01-appb-C000111
(式中、Rは水素原子又は置換されていてもよい炭化水素基、R~Rは独立に置換されていてもよい炭化水素基を表す。)
で表されるシリルエノールエーテルを反応させる、いわゆる向山アルドール反応により行われる。
 スズ化合物としては、スズトリフラートが好ましく用いられる。
 キラルジアミンとしては、例えば、以下の式
Figure JPOXMLDOC01-appb-C000112
(式中、R11は炭化水素基を表し、R12およびR13は独立に水素原子、アリール基を表し、R12およびR13は一緒になって環を形成していてもよい。)
で表される化合物が好ましく用いられ、その中でも、以下の式
Figure JPOXMLDOC01-appb-C000113
で表される化合物が特に好ましく用いられる。
 なお、スズ化合物とキラルジアミンについては、予め錯体となったものを用いてもよい。
 反応温度としては、高い立体選択性を得る観点から低温が好ましく、具体的には、-78℃~室温が好ましい。反応溶媒としては、非プロトン性の非配位性溶媒が好ましく用いられ、具体的には、ジクロロメタン等のハロゲン系溶媒、プロピオニトリル等のニトリル系溶媒が好ましく用いられる。また、立体選択性や収率を向上させるために、フッ化トリブチルスズや二酢酸ジブチルスズなどのスズ(IV)塩をさらに添加してもよい。
 なお、立体選択性や収率を損なわない範囲で、上記の反応条件を適宜改変した条件で反応を行ってもよく、例えば、Isamu Shiina,The Chemical Record,2014年1月25日,第14巻,第144-183頁およびそこで引用される他の文献に記載される反応条件で反応を行ってもよい。
工程5
 工程5では、式(Ia-6)で表される化合物をエステル交換反応して式(Ia-7)で表される化合物を合成する。
 本工程では、目的物のアルコキシ基部分に対応するアルコールを反応させることにより行われる。反応条件としては、上記アルコールの他に、トリフルオロ酢酸銀、塩基を添加することが好ましい。
工程6
 工程6では、式(Ia-7)で表される化合物を保護、脱保護して式(Ia-8)で表される化合物を合成する。
 保護基PとPとしては、他の有機化合物に対する安定性等の化学的性質が異なるものであれば、特に制限なく用いることができる。例えば、Pがベンジルオキシメチル(BOM)であり、Pが4-メトキシベンジル基(PMB)であることが好ましい。
工程7
 工程7では、式(Ia-8)で表される化合物を加水分解して式(Ia-9)で表される化合物を合成する。
 加水分解に用いる試薬としては、エステルの加水分解に用いられるものであれば特に制限がなく、アルカリでも酸でも好ましく用いることができ、例えば、水酸化リチウムが好ましい。
工程8
 工程8では、式(Ia-9)で表される化合物を環化して式(Ia-10)で表される化合物を合成する。
 環化に用いる試薬としては、マクロラクトン化に用いられているものであれば特に制限はない。反応性、収率などの効率性の観点から、2-メチル-6-ニトロ安息香酸無水物(MNBA)が環化の試薬として好ましく用いられる。
工程9
 工程9では、式(Ia-10)で表される化合物を脱保護して式(Ia-11)で表される化合物を合成する。
 脱保護剤としては、保護基Pの化学的性質に依存し、化合物の構造を損なうものでなければ、特に制限なく用いることができる。例えば、Pが4-メトキシベンジル(PMB)である場合、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)が脱保護剤として好ましく用いられる。
工程10
 工程10では、式(Ia-11)で表される化合物から式(I)で表される化合物を合成する。
 反応は、式(I-11)で表される化合物と下記式
Figure JPOXMLDOC01-appb-C000114
で表される化合物等のリン化合物を反応させ、続いてアミンRNと反応させることにより行われる。
 本発明では、前記式(Ia-7)で表される化合物から下記スキームにしたがって、式(Ia)で表されるユーシェアリライド類を製造することもできる。
Figure JPOXMLDOC01-appb-C000115
 上記スキームの方法では、式(Ia-7)で表される化合物の保護基Pを脱保護するとともに、エステルCOORをカルボン酸COOHに加水分解して、式(Ia-12)で表される化合物を合成する。脱保護に用いる試薬及び加水分解に用いる試薬は、化合物の構造を損なうものでなければ、特に制限なく用いることができる。
 前記脱保護と加水分解は、1段階ずつ行ってもよいし、同時に行ってもよい。1段階ずつ行う場合には、脱保護と加水分解の順番は特に制限されない。
 次に、式(Ia-12)で表される化合物を環化して式(Ia-11)で表される化合物を合成する。
 環化に用いる試薬としては、マクロラクトン化に用いられているものであれば特に制限はなく、例えば、2-メチル-6-ニトロ安息香酸無水物(MNBA)が好ましく用いられる。
 最後に、前記工程10と同様の方法により、式(Ia)で表されるユーシェアリライド類を合成する。
 式(I-1)で表される化合物は、以下の製造スキームに従って製造することができる。
Figure JPOXMLDOC01-appb-C000116
 式(Ia-12)で表される化合物を、水素化アルミニウムリチウム(LAH)等の還元剤で還元して式(Ia-13)で表される化合物を合成する。
 式(Ia-13)で表される化合物において、1か所の1級水酸基のみを保護基Pで保護して式(Ia-14)で表される化合物を合成する。
 式(Ia-14)で表される化合物の1級水酸基を酸化して式(I-1)で表される化合物を合成することができる。
 式(Ia-2)で表される化合物は、以下の製造スキームに従って製造することができる。
Figure JPOXMLDOC01-appb-C000117
 式(Ia-15)で表される化合物の水酸基をPで保護して式(Ia-16)で表される化合物を合成する。保護基Pとしては、水酸基の保護基として用いられるものであれば特に制限がなく、例えば、テトラヒドロピラン-2-イル基(THP)が好ましい。
 式(Ia-16)で表される化合物とブチルリチウム等の塩基を反応させてアセチリドとした後に、式(Ia-17)
Figure JPOXMLDOC01-appb-C000118
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表す。)
で表されるエポキシ化合物を反応させて式(Ia-18)で表される化合物を合成する。この反応では、式(Ia-17)におけるRが置換されていてもよい炭化水素基である場合、不斉炭素が存在するが、上記化学構造式とは絶対配置の異なる光学活性エポキシ化合物を用いれば、上記式(Ia-18)で表される化合物とは絶対配置の異なる化合物を得ることができる。したがって、用いる光学活性エポキシ化合物の絶対配置によって、24員マクロライドの23位の立体化学を制御することができる。
 式(Ia-18)で表される化合物の三重結合を水素化アルミニウムリチウム等の還元剤で還元して式(Ia-19)で表される化合物を合成する。
 式(Ia-19)で表される化合物の2級水酸基を保護基Pで保護して式(Ia-20)で表される化合物を合成する。
 式(Ia-20)で表される化合物の保護基Pを脱保護して式(Ia-21)で表される化合物を合成する。
 式(Ia-21)で表される化合物の水酸基をハロゲン化して式(Ia-22)で表される化合物を合成する。
 式(Ia-22)で表される化合物をトリフェニルホスフィンと反応させて式(Ia-2)で表される化合物を合成することができる。
 創薬研究においては、一つの中間体から様々な誘導体を製造できることが時間的、経済的に重要である。そのような観点から、本発明では下記の式(II)
Figure JPOXMLDOC01-appb-C000119
(式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは水素原子又は保護基を表す。)
で表される化合物は、例えば2級アルコール部分を手掛かりにして様々な誘導体を製造することが可能であり、重要な中間体である。
 上記製造スキームに従えば、様々なユーシェアリライド類、例えば以下に示す式(A)~(H)の化合物を製造することができる。なお、式(A)及び(E)~(G)で表される光学活性ユーシェアリライド類は文献に未収載の新規化合物である。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
 本発明の製造方法に従って製造される式(I)で表される化合物は生理活性を示すので、医薬として使用することができる。
 本発明の式(I)で表される化合物を医薬として用いる場合、通常、製剤化に使用される賦形剤、担体および希釈剤などの製剤補助剤を適宜混合してもよい。これらは、常法にしたがって、錠剤、カプセル剤、散剤、シロップ剤、顆粒剤、丸剤、懸濁剤、乳剤、液剤、粉体製剤、坐剤、点眼剤、点鼻剤、点耳剤、貼付剤、軟膏剤または注射剤などの形態で、経口または非経口で投与することができる。また投与方法、投与量および投与回数は、患者の年齢、体重および症状に応じて適宜選択することができる。通常、成人に対しては、経口または非経口(たとえば、注射、点滴および直腸部位への投与など)投与により、1日、0.01~1000mg/kgを1回から数回に分割して投与すればよい。
 本発明の式(I)で表される化合物は、グラム陽性菌、グラム陰性菌、嫌気性菌、抗酸菌等によってひきおこされる人間や動物の局所性感染症、または全身性感染症を治療するのに有用である。
 本発明の式(I)で表される化合物は、耐性菌感染症を治療または予防するのに有用である。
 耐性菌としては、メチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン耐性腸球菌(VRE)、及びバンコマイシン耐性黄色ブドウ球菌(VRSA)等が挙げられる。
 本発明における「治療有効量」とは、菌感染症の発症を防止する、症状を緩和する、進行を止める、または臨床症状改善などの所望の生物学的結果をもたらす化合物の量をいう。
 本発明における「対象」とは、哺乳類、植物、下等動物、または細胞培養液をいう。一つの実施形態では、対象は抗菌治療を必要とするヒトまたは他の動物患者である。
 本発明における「投与」とは、本発明の化合物(例えば、式(I)で表される化合物)を、治療を必要としている対象に提供することをいう。好ましくは、該対象は哺乳類、より好ましくは、ヒトである。
 以下に、具体的な合成スキームとともに本発明の実施例を示すが、本発明は、特にこれにより限定されるものではない。
Figure JPOXMLDOC01-appb-C000128
製造例1
Figure JPOXMLDOC01-appb-C000129
化合物(1)
 4-ペンチン-1-オール (670mg,7.78mmol)の塩化メチレン(39mL)溶液を0℃に冷却し、PPTS(ピリジニウム-p-トルエンスルホネート)(391mg,1.56mmol)、DHP(ジヒドロピラン)(0.99mL,11.7mmol)を加えた後に室温に昇温し5時間撹拌した。反応系を0℃に冷却して飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相を塩化メチレンで3回抽出した。有機相を合わせて水、および飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(Hexane/ethyl acetate=12/1)によって精製し、化合物(1)(1.22g,93%)を得た。
Rf=0.4(hexane/ethyl acetate=10/1)
H-NMR(500MHz,CDCl):δ4.60,3.89-3.81,3.53-3.46,2.31,1.94,1.82,1.71,1.59-1.50
13C-NMR(125MHz,CDCl):δ94.4,82.6,70.1,68.0,65.2,39.9,38.3,35.7,31.0,27.7
HR-MS(ESI-TOF):m/z C1016Na[M+Na] 理論値:191.1043、測定値:191.1040
IR(neat):3302,2947,2869cm-1
製造例2
Figure JPOXMLDOC01-appb-C000130
化合物(2)
 化合物(1)(613mg,3.64mmol)のTHF(テトラヒドロフラン)(36mL)溶液を-78℃に冷却し、BuLi(2.6M in hexane,1.68mL,4.37mmol)を滴下した後に20分間撹拌した。BF3・OEt2(三フッ化ホウ素ジエチルエーテル錯体)(0.59mL,4.73mmol)をゆっくりと滴下した後に10分間撹拌し、(R)-プロピレンオキシド(0.51mL,7.28mmol)を滴下し-78℃のまま1時間撹拌した。飽和塩化アンモニウム水溶液を加えて反応を停止し、有機相を分取した後に水相を酢酸エチルで3回抽出した。有機相を合わせて飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物シリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=3/1)によって精製し、化合物(2)(663mg,81%)を得た。
Rf=0.4(hexane/ethyl acetate=3/1)
H-NMR(500MHz,CDCl):δ4.59,3.91-3.82,3.53-3.45,2.38-2.27,2.07,1.83-1.68,1.61-1.50,1.23
13C-NMR(125MHz,CDCl):δ98.8,82.4,76.6,66.5,65.9,62.3,30.7,29.4,29.0,25.4,22.2,19.5,15.6
HR-MS(ESI-TOF):m/z C1322Na[M+Na] 理論値:249.1461、測定値:249.1458
IR(neat):3471,2947cm-1
製造例3
Figure JPOXMLDOC01-appb-C000131
化合物(3)
 化合物(2)(145mg,0.641mmol)の1,2-ジメトキシエタン(21mL)溶液を0℃に冷却し、LiAlH(1.0M in THF,1.9mL,1.9mmol)を加えた後に、90℃で72時間加熱還流した。反応系を0℃に冷却し、メタノール、飽和酒石酸カリウムナトリウム水溶液を加えて反応を停止し有機相を分取した後に水相をジエチルエーテルで3回抽出した。有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=3/1によって精製し、化合物(3)(126mg,86%)
Rf=0.5(hexane/ethyl acetate=1/1)
H-NMR(500MHz,CDCl):δ5.55,5.44,4.56,3.90-3.72,3.49,3.39,2.23-2.04,1.83,1.73-1.65,1.60-1.50,1.18
13C-NMR(125MHz,CDCl):δ133.8,126.4(126.4),98.9,67.2,67.1,66.9,62.4,42.6(42.5),30.8,29.4(29.3),25.5,22.6,19.7
HR-MS(ESI-TOF):m/z C1324Na[M+Na] 理論値:251.1618、測定値:251.1611
IR(neat):3433,2939,2877cm-1
製造例4
Figure JPOXMLDOC01-appb-C000132
化合物(4)
 化合物(3)(171mg,0.748mmol)の塩化メチレン(7.5mL)溶液を0℃に冷却し、ジイソプロピルエチルアミン(0.52mL,2.98mmol)、BOMCl(ブトキシメチルクロリド)(0.31mL,2.36mmol)、TBAI(テトラブチルアンモニウムヨージド)(55mg,0.15mmol)を加えた後に22時間攪拌した。飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相を塩化メチレンで3回抽出した。有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=5/1)によって精製し、化合物(4)(235mg,90%を得た。
Rf=0.7(hexane/ethyl acetate=2/1)
H-NMR(500MHz,CDCl):δ7.35-7.27,5.48,4.79,4.62,4.57,3.88-3.71,3.49,3.38,2.28,2.16,2.09,1.81,1.69,1.54,1.17
13C-NMR(125MHz,CDCl):δ138.0,132.5,127.8,127.6,126.5,98.8,92.8,73.0,62.3,40.0,30.7,29.5,29.3,25.5,19.9,19.6 
HR-MS(ESI-TOF):m/z C2132Na[M+Na] 理論値:371.2193、測定値:371.2186
IR(neat):2988,2885cm-1
製造例5
Figure JPOXMLDOC01-appb-C000133
化合物(5)
 化合物(4)(107mg,0.308mmol)のメタノール(3.1mL)溶液にPPTS(7.7mg,0.03087mmol)を加えた後に55℃に昇温し、5時間攪拌した。反応系を室温に戻し飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相をクロロホルムで3回抽出した。有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=3/1)によって精製し、化合物(5)(81.3mg,84%)を得た。
Rf=0.3(hexane/ethyl acetate=3/1)
H-NMR(500MHz,CDCl):δ7.35-7.26(m,5H,BOM),5.52(dt,J=15.2,6.8Hz,1H,4-H or 5-H),5.47(dt,J=15.2,6.8Hz,1H,4-H or 5-H),4.79(m,2H,BOM),4.62(m,2H,BOM),3.81(ddq,J=6.0,6.0,6.0Hzm1H,7-H),3.64(t,J=6.4Hz,2H,1-H),2.28(ddd,J=13.2,6.0,6.8Hz,1H,6-H),2.18(ddd,J=13.2,6.8,6.0Hz,1H,6-H),2.10(dt,J=6.8,6.0Hz,2H,3-H),1.63(tt,J=6.4,6.0Hz,2H,2-H),1.18(d,J=6.0Hz,3H,8-H)
13C-NMR(125MHz,CDCl):δ138.1(BOM),132.4(C4),128.4(BOM),127.8(BOM),127.6(C5),126.8(BOM),92.8(BOM),72.9(BOM),69.3(C7),40.0(C6),32.3(C2),29.1(C3),19.9(C8)
IR(neat):3409,2931cm-1
[α] 20+7.73(c1.17,CHCl
製造例6
Figure JPOXMLDOC01-appb-C000134
化合物(6)
 化合物(5)(1.31g,4.96mmol)のトルエン(50mL)溶液にイミダゾール(440mg,6.45mmol)、PPh(トリフェニルホスフィン)(1.69g,6.45mmol)、ヨウ素(1.39g,5.46mmol)を順次加え室温で1時間攪拌した。反応系を0℃に冷却して飽和チオ硫酸ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相をジエチルエーテルで3回抽出した。有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=10/1)によって精製し、化合物(6)(1.67g,90%)を得た。
Rf=0.4(hexane/ethyl acetate=10/1)
H-NMR(500MHz,CDCl):δ7.35-7.26(m,5H,BOM),5.52(dt,J=15.2,6.8Hz,1H,4-H or 5-H),5.42(dt,J=15.2,6.8Hz,1H,4-H or 5-H),4.79(m,2H,BOM),4,62(m,2H,BOM),3.80(ddq,J=6.4,6.2,6.0Hz,1H,7-H),3.17(t,J=6.8Hz,2H,1-H),2.28(ddd,J=14.0,6.8,6.4Hz,1H,6-H), 2.18(ddd,J=14.0,6.8,6.2Hz,1H,6-H),2.11(dt,J=6.8,6.8Hz,2H,3-H),1.87(tt,J=6.8,6.8Hz,2H,2-H),1.18(d,J=6.4Hz,3H,8-H)
13C-NMR(125MHz,CDCl):δ138.0(BOM),130.6(C4),128.4(BOM),127.9(BOM),127.8(C5),127.6(BOM),92.9(BOM),72.9(BOM),79.3(C7),40.0(C6),33.2(C3),32.9(C2),20.0(C8),6.4(C1)
HR-MS(ESI-TOF):m/z C1623IONa[M+Na] 理論値:397.0635、測定値:397.0646
IR(neat):3031,2962,2931,2892cm-1
[α] 20+5.25(c1.27,CHCl
製造例7
Figure JPOXMLDOC01-appb-C000135
化合物(7)
 化合物(6)(2.89g,7.96mmol)のトルエン(8.0mL)溶液にPPh(4.17g,15.9mmol)を加え、100℃で16時間加熱還流した。減圧下、溶媒を留去した後にその混合物を少量の塩化メチレンとヘキサンの混合溶媒で10回以上洗浄し、得られた粗生成物の精製は行わずH-NMRで純度を確認し次の反応に用いた。
H-NMR(500MHz,CDCl):δ7.82(m,9H,Ar),7.77(m,6H,Ar),7.35-7.26(m,5H,BOM),5.51(dt,J=15.2,6.8Hz,1H,4-H or 5-H),5.38(dt,J=15.2,6.8Hz,1H,4-H or 5-H),4.71(m,2H,BOM),4.54(m,2H,BOM),3.75(ddq,J=6.8,6.4,6.4Hz,1H,7-H),3.66(dt,J=12.6,3.3Hz,1H,1-H), 3.62(dt,J=12.6,3.3Hz,1H,1-H),2.39(dt,J=7.2,6.8Hz,2H,3-H),2.24(ddd,J=14.4,6.8,6.8Hz,1H,6-H),2.14(ddd,J=14.4,6.8,6.4Hz,1H,6-H),1.71(dtt,J=15.2,7.2,3.3Hz,2H,2-H),1.13(d,J=6.4Hz,3H,8-H)
製造例8
Figure JPOXMLDOC01-appb-C000136
化合物(8
 LiAlH(1.73g,45.6mmol)のTHF(280mL)溶液を0℃に冷却し、テトラデカン二酸ジメチル(4.35g,15.2mmol)のTHF(20mL)溶液をゆっくりと滴下した。0℃のまま2時間撹拌し、メタノール、1N HClを用いて反応を停止した。有機相を分取した後に水相をジエチルエーテルで3回抽出した。有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、化合物(8)(3.22g,92%)を得た。
Rf=0.3(chloroform/CHOH=6/1)
H-NMR(500MHz,CDCl):δ3.65,1.58,1.33
13C-NMR(125MHz,CDCl):δ63.1,32.8,29.6,29.6,29.5,29.4,25.7
IR(film):3409,3347,2923,2854cm-1
製造例9
Figure JPOXMLDOC01-appb-C000137
化合物(9)
 化合物(8)(922mg,4.00mmol)のTHF(40mL)溶液にイミダゾール(354mg,5.20mmol)を加え0℃に冷却し、TBSCl(tert-ブチルジメチルクロロシラン)(784mg,5.20mmol)を加えた。55℃に昇温し5時間撹拌し、飽和塩化アンモニウム水溶液を用いて反応を停止した。有機相を分取した後に水相をジエチルエーテルで3回抽出し、有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=10/1)によって精製し、化合物(9)(743mg,56%)を得た。
Rf=0.2(hexane/ethyl acetate=5/1)
H-NMR(500MHz,CDCl):δ3.60,2.28,1.65-1.23,0.89,0.063
13C-NMR(125MHz,CDCl):δ63.4,63.1,32.9,32.8,29.6,29.6,29.6,29.4,29.4,26.0,25.8,25.7,25.6,-5.25
HR-MS(ESI-TOF):m/z C2044SiNa[M+Na] 理論値:367.3003、測定値:367.3001
IR(neat):3394,2927,2865cm-1
製造例10
Figure JPOXMLDOC01-appb-C000138
化合物(10)
 化合物(9)(344mg,1.0mmol)の塩化メチレン(8.0mL)とDMSO(ジメチルスルホキシド)(2.0mL)の混合溶液にEtN(トリエチルアミン)(1.1mL,8.0mmol)を加え0℃に冷却し、SO・Py錯体(三酸化硫黄ピリジン錯体)(637mg,4.0mmol)を加えた。室温に昇温し2時間撹拌し、飽和塩化アンモニウム水溶液を用いて反応を停止した。有機相を分取した後に水相を酢酸エチルで3回抽出し、有機相を合わせて水及び飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=5/1)によって精製し、化合物(10)(302mg,88%)を得た。
Rf=0.4(hexane/ethyl acetate=10/1)
H-NMR(500MHz,CDCl):δ9.77,3.60,2.40,1.67-1.46,1.26,0.89,0.045
13C-NMR(125MHz,CDCl):δ202.9,63.3,43.9,32.9,29.6,29.6,29.6,29.4,29.4,29.3,29.2,26.0,25.8,22.1,18.4,-5.26
HR-MS(ESI-TOF):m/z C2042SiNa[M+Na] 理論値:365.2846、測定値:365.2839
IR(neat):2927,2858,1724cm-1
実施例1
Figure JPOXMLDOC01-appb-C000139
化合物(11)
 化合物(7)(46mg,0.0723mmol)のTHF(1.4mL)溶液を-78℃に冷却し、臭化リチウム(69mg,0.0795mmol)、PhLi(フェニルリチウム)(1.6M in Butyl ether,0.05mL,0.0723mmol)を加えて30分間撹拌した。これを-78℃に冷却した化合物(10)(25mg,0.0723mmol)のジエチルエーテル(1.4mL)溶液にキャニュレーターを用いてゆっくりと滴下した。滴下終了後、PhLi(1.6M in Butyl ether,0.05mL,0.0723mmol)を加え、-78℃を維持したまま2.5時間撹拌した。HCl・EtO(塩化水素・ジエチルエーテル)(1.0M in EtO,0.08mL,0.0795mmol)、KOBu(カリウムtert-ブトキシド)(1.0M in EtO,0.09mL,0.0868mmol)を順次加え-78℃で2時間撹拌した。水を加えて反応を停止し、有機相を分取した後に水相をジエチルエーテルで3回抽出した。有機相を合わせて飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗成生物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=10/1)によって精製し、化合物(11)(28mg,76%)を得た。
Rf=0.53(hexane/ethyl acetate=10/1)
H-NMR(500MHz,CDCl):δ7.35-7.28(m,5H,BOM),5.50-5.34(m,4H,14-H,15-H,18-H,19-H),4.79(q,J=7.2Hz,2H,BOM),4.62(q,J=9.2Hz,2H,BOM),3.79(sx,J=6.3Hz,1H,21-H),3.59(t,J=6.30Hz,2H,1-H),2.22(ddd,J=10.0,6.9,6.3Hz,1H,20-H),2.17(ddd,J=10.0,6.9,6.3Hz,1H,20-H),2.04(m,4H,13-H,16-H),1.95(m,2H,17-H),1.50(m,2H,2-H),1.31-1.25(m,2OH,3-H~12-H),1.17(d,J=6.30Hz,3H,22-H),0.893(s,9H,TBS),0.046(s,6H,TBS) 
13C-NMR(125MHz,CDCl):δ138.0(BOM),132.7(C19),130.8(C14),129.5(C15),128.4(BOM),127.8(C18),127.6(BOM),126.2(BOM),92.8(BOM), 73.0(C21),69.3(BOM),63.4(C1),40.1(C20),32.9(C16 or C17),32.8(C16 or C17),32.6,32.6,29.7,29.6,29.6,29.5,29.2,26.0,25.8(C2~C13),19.9(C22),18.4(TBS),-5.23(TBS)
HR-MS(ESI-TOF):m/z C3664SiNa[M+Na] 理論値:595.4517、測定値:595.4494
IR(neat):2923,2854cm-1
[α] 20+4.39(c1.04,CHCl
実施例2
Figure JPOXMLDOC01-appb-C000140
化合物(12)
 化合物(11)(860mg,1.50mL)のTHF(15mL)溶液を0℃に冷却し、TBAF(テトラブチルアンモニウムフルオリド)(1.0M in THF,4.5mL,4.5mmol)を加え室温で2時間撹拌した。反応系を0℃に冷却して飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相を酢酸エチルで3回抽出した。有機相を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(hexane/ethyl acetate=10/1)によって精製し、化合物(12)(577mg,84%)を得た。
Rf=0.43(hexane/ethyl acetate=3/1)
H-NMR(500MHz,CDCl):δ7.36-7.27(m,5H,BOM),5.51-5.33(m,4H,14-H,15-H,18-H,19-H),4.79(q,J=7.2Hz,2H,BOM),4.61(m,2H,BOM),3.79(sx,J=6.3Hz,1H,21-H),3.64,3.51(t,J=6.30Hz,2H,1-H),2.40,2.28(ddd,J=10.0,6.9,6.3Hz,1H,20-H),2.16(ddd,J=10.0,6.9,6.3Hz,1H,20-H),2.04(m,4H,13-H,16-H),1.95(m,2H,17-H),1.56(m,2H,2-H),1.39,1.25,1.17
13C-NMR(125MHz,CDCl):δ138.0(BOM),132.7(C19),130.8(C14),129.5(C15),128.4(BOM),127.9(C18),127.6(BOM),126.2(BOM),92.8(BOM),73.0(C21),69.3(BOM),63.1(C1),53.9(C2),40.1(C20),32.8(C16 or C17),32.6(C16 or C17),29.6,29.6,29.5,29.4,29.2,29.1,25.7,20.8,19.9(C3-C13),14.1(C22)
HR-MS(ESI-TOF):m/z C3050Na[M+Na] 理論値:481.3652、測定値:481.3659
IR(neat):3402,2923,2854cm-1
[α] 20+4.29(c1.05,CHCl
実施例3
Figure JPOXMLDOC01-appb-C000141
化合物(13)
 化合物(12)(850mg,1.85mmol)の塩化メチレン(15.2mL)溶液とDMSO(3.8mL)の混合溶液を0℃に冷却し、EtN(2.1mL,14.8mmol)とSO・Py錯体(1.2g,7.4mmol)を加えた後に室温に昇温し2時間撹拌した。反応系を0℃に冷却し、飽和塩化アンモニウム水溶液を加えて反応を停止し、有機相を分取した後に水相を塩化メチレンで3回抽出した。有機相を合わせて飽和塩化食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=30/1)によって精製し、化合物(13)(698mg,82%)を得た。
Rf=0.63(hexane/ethyl acetate=3/1)
H-NMR(500MHz,CDCl):δ9.65(s,1H,1-H),7.27-7.18(m,5H,BOM),5.43-5.30(m,4H,14-H,15-H,18-H,19-H),4.70(m,2H,BOM),4.53(m,2H,BOM),3.71(sx,J=6.3Hz,1H,21-H),2.31(m,2H,2-H),2.19(ddd,J=10.0,6.9,6.3Hz,1H,20-H),2.07(ddd,J=10.0,6.9,6.3Hz,1H,20-H),1.97(m,4H,13-H,16-H),1.88(m,2H,17-H),1.53(m,2H,3-H),1.25-1.18(m,20H,4-H~12H),1.09(d,J=6.30Hz,3H,22-H)
13C-NMR(125MHz,CDCl):δ202.5(C1),137.9(BOM),132.5(C19),130.7(C14),129.4(C15),128.2(BOM),127.7(C18),127.4(BOM),126.2(BOM),92.6(BOM),72.8(C21),69.1(BOM),43.7(C2),39.9(C20),32.7(C16 or C17),32.5(C16 or C17),32.4,29.5,29.4,29.4,29.3,29.2,29.0,21.9(C3-C13),19.8(C22)
HR-MS(ESI-TOF):m/z C3048Na[M+Na] 理論値:479.3496、測定値:479.3514
IR(neat):2924,2854,1727cm-1
[α] 20+4.78(c1.02,CHCl
実施例4
Figure JPOXMLDOC01-appb-C000142
化合物(14)
 Sn(OTf)(スズトリフラート)(953mg,2.29mmol)を110℃で6時間減圧乾燥を行った後、塩化メチレン(21mL)を加え、(S)-1-メチル-2-(1-ナフチルアミノメチル)ピロリジン(598mg,2.49mmol)の塩化メチレン(5mL)溶液およびBuSnF(トリブチルスズフルオリド)(708mg,2.29mmolを素早く加えた。反応系を-78℃に冷却した後、ケテンシリルアセタール(404mg,2.29mmol)の塩化メチレン(2mL)溶液および化合物(13)(698mg,1.53mmol)の塩化メチレン(2mL)溶液を加え、-78℃を維持したまま12時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、混合物をセライトを通して濾過し、有機相を分取した後に水相を塩化メチレンで3回抽出した。有機相を合わせて飽和塩化食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=10/1によって精製し、化合物(14)(538mg,63%,ジアステレオマー比=95/5)を得た。なお、上記ジアステレオマー比は高速液体クロマトグラフィー(カラム:DAICEL CHIRALPAK AD-H、展開溶媒:hexane/2-propanol=50/1(V/V)、流量:1.0mL/min、波長:254nm)により決定した。
Rf=0.3(hexane/ethyl acetate=5/1)
H-NMR(500MHz,CDCl):δ7.36-7.27,5.51-5.34,4.80,4.61,4.05,3.80,2.90,2.74,2.65,2.28,2.17,2.09-2.02,1.95,1.55-1.25,1.17
13C-NMR(125MHz,CDCl):δ199.7,138.0,132.7,130.8,129.4,128.4,127.8,127.6,126.2,92.8,73.0,69.2,68.7,50.6,40.0,36.5,32.8,32.6,32.5,29.6,29.6,29.5,29.5,29.5,25.4,23.3,19.9,14.6
HR-MS(ESI-TOF):m/z C3456SNa[M+Na] 理論値:583.3792、測定値:583.3778
IR(neat):2924,2854,1727cm-1
[α] 20-4.89(c1.01,CHCl
実施例5
Figure JPOXMLDOC01-appb-C000143
化合物(15)
 化合物(14)(470mg,0.84mmol)のエタノール(8.4mL)溶液を0℃に冷却し、ジイソプロピルエチルアミン(0.6mL,3.35mmol)とAgOCOCF(371mg,1.68mmol)を順次加えた後に室温に昇温し3時間撹拌した。反応系に水を加えて反応を停止し、酢酸エチルでセライト濾過を行い、有機相を分取した後に水相を酢酸エチルで3回抽出した。有機相を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate=5/1)によって精製し、化合物(15)(419mg,92%)を得た。
Rf=0.23(hexane/ethyl acetate=5/1)
H-NMR(500MHz,CDCl):δ7.35-7.27,5.52-5.34,4.80,4.61,4.17,4.00,3.80,2.94,2.51,2.48,2.28,2.15,2.04,1.95,1.63-1.25,1.17
13C-NMR(125MHz,CDCl):δ173.1,138.0,132.7, 130.8,129.5,128.4,127.8,127.6,126.2,92.8,73.0,69.3,68.0,41.3,40.0,36.5,32.8,32.6,32.6,29.6,29.6,29.5,29.2,25.5,19.9,14.6
HR-MS(ESI-TOF):m/z C3456Na[M+Na] 理論値:567.4020、測定値:567.4000
IR(neat):3464,2924,2854,1728cm-1
[α] 20-5.16(c1.00,CHCl
実施例6
Figure JPOXMLDOC01-appb-C000144
化合物(16)
(工程1) モレキュラーシーブス4A(1mg)を減圧下加熱して乾燥させた後、室温まで放冷してから化合物(15)(105mg,0.19mmol)の塩化メチレン(3.9mL)溶液を加えた。0℃に冷却し、4-methoxybenzyl-2,2,2-trichloroacetimidate(80μL,0.39mmol)とTsOH・HO(トシル酸一水和物)(13mg,77μmol)を加えた後に室温に昇温し12時間撹拌した。反応系にEtNを加えて反応を停止し、塩化メチレンでセライト濾過を行った後に減圧濃縮し、シリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=5/1)によって粗精製した。
(工程2)粗生成物を0℃に冷却し、THF/12N HCl(5/1)の混合溶液(3.8mL)を加えた後に反応系を室温に昇温し12時間撹拌した。有機相を分取した後に水相をジエチルエーテルで3回抽出した。有機相を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=3/1)によって精製し、化合物(16)(75mg,71%)を得た。
Rf=0.3(hexane/ethyl acetate=3/1)
H-NMR(500MHz,CDCl):δ7.25-7.23,6.86,5.58-5.34,4.46,4.14,3.88-3.76,2.58,2.44,2.23-2.17,2.13-2.04,1.96,1.63-1.49,1.43-1.24,1.18
13C-NMR(125MHz,CDCl):δ172.0,159.2,134.3,131.2,130.8,129.4,126.3,113.8,75.9,71.3,67.1,60.5,56.4,42.6,40.1,34.5,32.8,32.7,32.6,29.7,29.7,29.6,29.3,25.3,22.7,14.3
HR-MS(ESI-TOF):m/z C3456Na[M+Na] 理論値:567.4020、測定値:567.4000
IR(neat):3464,2924,2854,1728cm-1
[α] 20-3.12(c1.02,CHCl
実施例7
Figure JPOXMLDOC01-appb-C000145
化合物(17)
 化合物(16)(75mg,1.138mmol)に40mM LiOH溶液 (ethanol/HO=3/1)(3.4mL)を加え室温で20時間撹拌した。1N HClを加えて反応を停止し、有機相を分取した後に水相を酢酸エチルで5回抽出した。有機相を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー (chloroform/methanol=6/1)によって精製し、化合物(17)(61mg,86%)を得た。
Rf=0.59(chloroform/methanol=6/1)
H-NMR(500MHz,CDCl):δ7.35-7.27,5.52-5.34,4.79,4.61,4.17,4.00,3.80,2.93,2.51,2.48,2.40,2.13-2.04,1.97-1.94,1.63-1.25,1.17
13C-NMR(125MHz,CDCl):δ174.0,159.4,134.3,131.1,129.8,129.6,129.4,126.1,113.9,75.3,71.2,67.1,60.5,55.3,42.5,39.0,33.9,32.7,32.6,32.5,29.7,29.6,29.6,29.5,29.5,29.4,29.1,25.0,22.5
HR-MS(ESI-TOF):m/z C3252Na[M+Na] 理論値:539.3707、測定値:539.3727
IR(neat):3464,2924,2854,1728cm-1
[α] 20-15.2(c1.01,CHCl
実施例8
Figure JPOXMLDOC01-appb-C000146
化合物(18)
 MNBA(19mg,52.8μmol)とDMAP(4-ジメチルアミノピリジン)(30mg,0.24mmol)の塩化メチレン(16.8mL)溶液に化合物(17)(21mg,40.6μmol)の塩化メチレン(4.2mL)溶液をシリンジポンプを使用して12時間かけて滴下した。滴下終了後、塩化メチレン(1.0mL)を用いて洗い込みを行い、1時間撹拌した。反応系を0℃に冷却して飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相を塩化メチレンで3回抽出した。有機相を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/ethyl acetate=6/1)によって精製し、化合物(18)(13mg,68%)を得た。
Rf=0.4(hexane/ethyl acetate=6/1)
H-NMR(500MHz,CDCl):δ7.27-7.22,6.87,5.44-5.35,4.91,4.47,3.80,2.65,2.43,2.24,2.04,1.99,1.39-1.27,1.19
13C-NMR(125MHz,CDCl):δ170.9(C1),159.1(PMB),133.5(C20),130.8(C17),130.6(C16),129.8(PMB),129.3(PMB),125.2(C21),113.7(PMB),75.5(C3),70.7(C23),70.6(PMB),55.3(C2),40.0(C22),38.9(C4),33.9(C19),32.7(C18),32.4(C15),31.8(C6),28.8,28.6,28.5,28.4,28.4,28.2,27.5(C7-14),24.4(C5),19.4(C24)
HR-MS(ESI-TOF):m/z C3250Na[M+Na] 理論値:521.3601、測定値:521.3600
IR(neat):2924,2854,1728cm-1
[α] 20+5.13(c1.01,CHCl
実施例9
Figure JPOXMLDOC01-appb-C000147
化合物(19)
 化合物(18)(38mg,0.10mmol)の塩化メチレン(1.8mL)およびリン酸緩衝溶液(0.18mL)の混合溶液を0℃に冷却し、DDQ(27mg,0.12mmol)を加えた後に室温に昇温し、2時間撹拌した。反応系を0℃に冷却して飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機相を分取した後に水相を塩化メチレンで5回抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲル薄層クロマトグラフィー(hexane/diethyl ether=2/1)によって精製し、化合物(19)(31mg,82%)を得た。
Rf=0.16(hexane/diethyl ether=2/1)
H-NMR(500MHz,CDCl):δ5.52-5.34,5.00,3.94,2.54-2.39,2.31-2.17,2.05,2.00,1.34-1.27,1.25,1.24
13C-NMR(125MHz,CDCl):δ172.2(C1),133.7(C20),130.7(C17),129.8(C16),124.9(C21),70.8(C23),68.2(C3),55.3(C2),41.4(C22),38.9(C4),36.1(C19),32.9(C18),32.5(C15),31.9(C6),28.6,28.4,28.2,28.2,28.1,28.1,27.9(C7-14),24.7(C5),19.6(C24)
HR-MS(ESI-TOF):m/z C2442Na[M+Na] 理論値:401.3026、測定値:401.3008
IR(neat):3410,2924,2854,1728cm-1
[α] 20+14.2(c1.03,CHCl
実施例10
Figure JPOXMLDOC01-appb-C000148
化合物(A)
(工程1)化合物(19)(15mg,39.6μmol)のトルエン(0.8mL)溶液を0℃に冷却し、EtN(9.4μL,67.3μmol)と2-クロロ-2-オキソ-1,3,2-ジオキサホスホラン(4.7μL,51.5μmol)を順次加え、室温に昇温し3時間撹拌した。反応によって生じたアミン塩を無水トルエンで洗浄しながら吸引濾過し、濾液を減圧濃縮して粗生成物を得た。粗生成物は水やアルコールに不安定であるため、精製は行わずに次の反応に用いた。
(工程2)オートクレーヴを反応容器とし、粗生成物のアセトニトリル(0.8mL)溶液を-15℃に冷却し、液体のトリエチルアミンを過剰量加えた。反応系を密閉し、70℃に加熱し38時間撹拌した。反応系を室温に戻し、反応混合物をメタノールを溶媒として取り出した。アミノシリカゲルカラムクロマトグラフィー(chloroform/methanol=6/1)によって精製し、化合物(A)(9.7mg,45%)を得た。
Rf=0.27(methanol)
H-NMR(500MHz,CDOD):δ5.52-5.33(4H,m,16,17-H,20,21-H),4.54(1H,m,3-H),4.27(2H,br s,25-H),3.63(m,2H,26-H),3.22(9H,s,27-H),2.82(1H,dd,J=4.0,14.0Hz,2-H),2.54(1H,dd,J=8.6,14.0,2-H),2.31-2.19(2H,m,22-H),2.07(4H,br s,18,19-H),2.00(2H,br d,J=4.6Hz,15-H),1.65(2H,m,4-H),1.30(18H,br s,5-13H),1.19(3H,d,J=6.3Hz,24-H)
13C-NMR(125MHz,CDCl):δ171.8(C1),134.7(C-20),131.8(C16),126.5(C21),74.1(C3),72.3(C23),67.5(C26),60.4(C25),54.7(C27),41.9(C2),40.0(C22),36.1(C4),33.9(C19),33.6(C18),32.7(C15),30.1(C6),29.5(C14),29.2,29.4,29.6,29.7,29.7,29.8(C7-12),28.5(C13),25.4(C5),19.7(C24)
HR-MS(ESI-TOF):m/z C2954NOPNa[M+Na] 理論値:566.3586、測定値:566.3592
IR(neat):3432,2954,2537,2090,1728cm-1
[α] 20-10.9(c0.707,methanol)
実施例11
 上記化合物(A)と同様の方法により、化合物(D)~化合物(H)を製造した。
 化合物(D)~化合物(H)の同定データを以下に示す。
 化合物(D)
Figure JPOXMLDOC01-appb-C000149
(3S,16E,20E,23S)-(+)-Eushearilide (D)
H-NMR(500MHz,CDOD):δ5.52-5.36(m,4H,16-H,17-H,20-H,21-H),4.87(m,1H,23-H),4.54(m,1H,3-H),4.27(br s,2H,25-H),3.63(m,2H,26-H),3.22(s,9H,27-H),2.82(dd,J=4.0,14.0Hz,1H,2-H),2.54(dd,J=8.6,14.0Hz,1H,2-H),2.31-2.19(m,2H,22-H),2.07(br s,4H,18-H,19-H),2.00(d,J=4.6Hz,2H,15-H),1.65(m,2H,4-H),1.40-1.30(m,20H,5-H to 14-H),1.19(d,J=6.3Hz,3H,24-H)
13C-NMR(125MHz,CDOD):δ171.7(C1),134.7(C20),131.8(C16),131.2(C17),126.5(C21),74.1(d,J=6.0Hz,C3),72.3(C23),67.5(C26),60.4(d,J=4.8Hz,C25),54.7(C27(NMe)),41.9(d,J=2.4Hz,C2),40.0(C22),36.1(d,J=6.0Hz,C4),33.9(C19),33.6(C18),32.7(C15),30.1(C6),29.5(C14),29.8,29.7,29.7,29.6,29.4,29.2(C7 to C12),28.5(C13),25.4(C5),19.7(C24)
HR-MS(ESI-TOF):m/z calcd for C2954NOPNa [M+Na] 566.3586,found 566.3592
IR(neat):3432,2954,2537,2090,1728 cm-1
[α] 25 +11.3(c0.85,CHOH)
 
 化合物(E)
Figure JPOXMLDOC01-appb-C000150
(3S,16E,20E,23R)-(+)-Eushearilide (E)
H-NMR(500MHz,CDOD):δ5.51-5.36(m,4H,16-H,17-H,20-H,21-H),4.89(m,1H,23-H),4.53(m,1H,3-H),4.25(brs,2H,25-H),3.62(m,2H,26-H),3.21(s,9H,27-H),2.81(dd,J=4.9,15.2Hz,1H,2-H),2.51(dd,J=8.6,14.3Hz,1H,2-H),2.28-2.19(m,2H,22-H),2.06(br s,4H,18-H,19-H),1.99(m,2H,15-H),1.65(dd,J=6.3Hz,2H,4-H),1.41-1.29(m,20H,5-H to 14-H),1.20(d,J=5.7Hz,3H,24-H)
13C-NMR(125MHz,CDOD):δ172.0(C1),134.6(C20),131.8(C16),131.2(C17),126.6(C21),74.1(d,J=6.0Hz,C3),72.0(C23),67.5(C26),60.3(d,J=4.7Hz,C25),54.7(C27),41.5(d,J=3.6Hz,C2),40.1(C22),36.1(d,J=4.8Hz,C4),34.0(C19),33.7(C18),32.7(C15),30.1(C6),29.5(C14),29.8,29.8,29.7,29.6,29.3,29.2(C7 to C12),28.4(C13),25.4(C5),19.8(C24)
HR-MS(ESI-TOF):m/z calcd for C2954NOPNa [M+Na] 566.3581,found 566.3558
IR(neat):3410,2924,2854,1720cm-1
[α] 27 +9.42(c0.71,CHOH)
 
 化合物(F)
Figure JPOXMLDOC01-appb-C000151
(3R,16E,20E,23S)-(-)-Eushearilide (F)
H-NMR(500MHz,CDOD):δ5.51-5.36(m,4H,16-H,17-H,20-H,21-H),4.88(m,1H,23-H),4.55(m,1H,3-H),4.26(brs,2H,25-H),3.63(m,2H,26-H),3.22(s,9H,27-H),2.82(dd,J=4.5,15.5Hz,1H,2-H),2.52(dd,J=8.5,14.5Hz,1H,2-H),2.28-2.19(m,2H,22-H),2.06(br s,4H,18-H,19-H),2.00(d,J=5.5Hz,2H,15-H),1.65(m,2H,4-H),1.42-1.30(m,20H,5-H to 14-H),1.20(d,J=6.3Hz,3H,24-H)
13C-NMR(125MHz,CDOD):δ172.0(C1),134.6(C20),131.8(C16),131.2(C17),126.6(C21),74.1(C3),72.0(C23),67.6(C26),60.3(d,J=6.0Hz,C25),54.7(C27),41.5(d,J=2.4Hz,C2),40.1(C22),36.2(d,J=4.8Hz,C4),34.0(C19),33.7(C18),32.7(C15),30.1(C6),29.5(C14),29.8,29.8,29.7,29.6,29.3,29.2(C7 to C12),28.4(C13),25.4(C5),19.8(C24)
HR-MS(ESI-TOF):m/z calcd for C2954NOPNa [M+Na] 566.3581,found 566.3588
IR(neat):3433,2924,2854,1720cm-1
[α] 26 -11.17(c0.73,CHOH)
 
 化合物(G)
Figure JPOXMLDOC01-appb-C000152
(3S,16Z,20E,23S)-(+)-Eushearilide (G)
H-NMR(500MHz,CDOD):δ5.54-5.35(m,4H,16-H,17-H,20-H,21-H),4.87(m,1H,23-H),4.53(m,1H,3-H),4.26(brs,2H,25-H),3.62(m,2H,26-H),3.21(s,9H,27-H),2.82(dd,J=4.5,14.5Hz,1H,2-H),2.53(dd,J=8.0,14.5Hz,1H,2-H),2.29-2.19(m,2H,22-H),2.08-2.03(m,6H,15-H,18-H,19-H),1.64(m,2H,4-H),1.43-1.30(m,20H,5-H to 14-H),1.20(d,J=6.3Hz,3H,24-H)
13C-NMR(125MHz,CDOD):δ171.8(C1),134.8(C20),131.3(C16),130.3(C17),126.4(C21),74.1(C3),72.2(C23),67.5(d,J=4.8Hz,C26),60.3(C25),54.7(C27),42.0(C2),40.1(C22),36.0(C4),33.8(C19),29.8(C18),29.8(C15),30.0(C6),27.5(C14),29.9,29.8,29.7,29.7,29.4,29.2(C7 to C12),28.4(C13),25.4(C5),19.7(C24)
HR-MS(ESI-TOF):m/z calcd for C2954NOPNa [M+Na] 566.3581,found 566.3590
IR(neat):3433,2924,2862,1720cm-1
[α] 29 +5.91(c0.80,CHOH)
 
 化合物(H)
Figure JPOXMLDOC01-appb-C000153
(3R,16Z,20E,23S)-(-)-Eushearilide (H)
H-NMR(500MHz,CDOD):δ5.54-5.32(m,4H,16-H,17-H,20-H,21-H),4.88(m,1H,23-H),4.54(m,1H,3-H),4.26(brs,2H,25-H),3.63(m,2H,26-H),3.22(s,9H,27-H),2.83(dd,J=3.4,14.9Hz,1H,2-H),2.51(dd,J=8.6,14.9Hz,1H,2-H),2.28-2.19(m,2H,22-H),2.11-2.03(m,6H,15-H,18-H,19-H),1.65(m,2H,4-H),1.43-1.31(m,20H,5-H to 13-H),1.20(d,J=6.3Hz,3H,24-H)
13C-NMR(125MHz,CDOD):δ172.0(C1),134.7(C20),131.3(C16),130.2(C17),126.5(C21),74.1(d,J=6.0Hz,C3),72.1(C23),67.6(C26),60.3(d,J=4.9Hz,C25),54.7(C27),41.6(d,J=3.6Hz,C2),40.2(C22),36.1(d,J=4.8Hz,C4),33.9(C19),29.8(C18),29.7(C15),30.0(C6),27.5(C14),29.9,29.7,29.7,29.6,29.4,29.2(C7 to C12),28.4(C13),25.4(C5),19.8(C24)
HR-MS(ESI-TOF):m/z calcd for C2954NOPNa [M+Na] 566.3581,found 566.3560
IR(neat):3448,2924,2862,1728cm-1
[α] 27 -10.53(c0.81,CHOH)
実施例12
 以下のスキームにしたがって、化合物(E)の製造中間体を合成した。
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
化合物(21)
 化合物(20)(161mg,0.30mmol)に12M塩酸のエタノール溶液(HCl/EtOH=1/5,5.9mL)を加え、室温下、14時間撹拌した。反応溶液を0℃に冷却し、4M LiOH水溶液を加え塩酸を中和した。次に、水1mLを加えて溶液を希釈後、4M LiOH水溶液(0.15mL,2eq.)を加え、室温下、24時間撹拌した。TLCにより反応終了を確認した後、1M塩酸を加え(pH=2-3)、酢酸エチルで5回抽出した。得られた有機層を、再度、抽出操作により精製した。すなわち、10%水酸化ナトリウム水溶液を加え(pH=9-11)分液後、水層を分取した。この水層に1M塩酸を加え(pH=2-3)酢酸エチルで5回抽出した。最終的に得られた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥・減圧濃縮することで目的の化合物(21)(111mg,95%)を得た。
H-NMR(500MHz,CDCl):δ5.55-5.33(m,4H,16-H,17-H,20-H,21-H),4.04-3.99(m,1H,3-H),3.79(sx,J=6.1Hz,23-H),2.55(dd,J=2.6,16.3Hz,1H,2-H),2.45(dd,J=9.2,16.6Hz,1H,2-H),2.22-2.17(m,1H,22-H),2.11-2.04(m,5H,22-H,18-H,19-H),1.96(q,J=6.5Hz,2H,15-H),1.57-1.43(m,4H,4-H,5-H),1.31-1.25(18H,m,6-H to 14-H),1.18(d,J=6.3Hz,3H,24-H)
 
Figure JPOXMLDOC01-appb-C000156
化合物(22)
 MNBA(24mg,0.07mol)とDMAP(40mg,0.33mmol)の塩化メチレン(22.4mL)溶液に化合物(21)(21.5mg,0.05mmol)の塩化メチレン(5.6mL)溶液をシリンジポンプを使用して12時間かけて滴下した。滴下終了後、塩化メチレン(1.0mL)を用いて洗い込みを行い、1時間撹拌した。反応系を0℃に冷却して飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、有機層を分取後、水層を塩化メチレンで3回抽出した。有機層を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(hexane/ethylacetate=5/1)によって精製し、化合物(22)(17.1mg,83%)を得た。
H-NMR(500MHz,CDCl):δ5.51-5.33(m,4H,16-H,17-H,20-H,21-H),5.00(sx,J=6.3Hz,1H,3-H),3.96(m,1H,23-H),2.83(d,J=4.0Hz,1H,OH),2.48(dd,J=3.4,16.0Hz,1H,2-H),2.38(dd,J=8.3,15.8Hz,1H,2-H),2.31-2.18(m,2H,22-H),2.04(br s,4H,18-H,19-H),1.99(dd,J=6.6,11.2Hz,2H,15-H),1.58-1.27(m,22H,4-H to 14-H),1.24(d,J=6.3Hz,3H,24-H)
薬理試験例1
 本発明の製造方法により合成された化合物の抗菌活性を以下の方法で評価した。
 薬理試験に用いた化合物(A)~(C)の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000157
(1)試験微生物
 試験微生物として、Staphylococcus aureus NBRC 12732(黄色ブドウ球菌)、Aspergillus niger NBRC 105649(黒麹カビ)、Trichophyton mentagrophytes NBRC 5466(白癬菌)を用いた。
(2)試験方法
 CLSI(Clinical and Laboratory Standards Institute)で定めるディスク法に準拠して測定した。
(3)試験菌液の調製
 凍結保存された菌株を試験菌前培養用培地に塗布し、所定条件で前培養した。発育したコロニーを試験菌培養培地に懸濁し、所定条件で培養後、試験菌調製液に添加し、菌数を約107~8CFU/mLに調製した。また、調製した試験菌液は、10倍段階希釈し、所定条件で培養して菌数を測定した。試験菌液調製及び培養条件を表1に示す。
Figure JPOXMLDOC01-appb-T000158
(4)試験品希釈列の作成
 各化合物を1,000μg/mLになるようにメタノールで溶解し、試料原液とした。試料原液0.75mLに大塚蒸留水0.75mLを加えて500μg/mLとし、以下同様に2倍希釈を繰り返した。試験品希釈列を合計10段階作成し、試験品濃度をそれぞれ、1,000、500、250、125、63、31、16、8、4、2μg/mLとした。
(5)MIC測定
 角形シャーレの各感受性測定寒天培地に試験菌液を綿棒で均等に塗り広げた後、ディスクを培地上に配置した。このとき、ディスクの間隔は24mm以上となるようにした。
 ディスク上に試験品希釈液50μLを滴下した。ディスクあたりの試験品量は、50、25、12.5、6.3、3.1、1.6、0.8、0.4、0.2、0.1μgとなる。各感受性測定寒天培地を上記表1の条件で培養し、菌発育が見られない阻止体の直径をノギスを用いてmm単位で計測した。
 コントロールとして、試験品の代わりにメタノールをディスクに滴下した。
(6)試験結果
 試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000159
 化合物(A)~(C)のMIC値及び阻止帯の大きさを求めたところ、黄色ブドウ球菌に対しては、化合物(A)が50μg/ディスクで2mm、化合物(B)が50μg/ディスクで2.2mm、化合物(C)が50μg/ディスクで1.5mmであった。黒麹カビに対しては、化合物Aが50μg/ディスクで3.7mm、化合物(B)が50μg/ディスクで3.7mm、化合物(C)が50μg/ディスクで1mmであった。白癬菌に対しては、化合物(A)が25μg/ディスクで2.5mm、化合物(B)が12.5μg/ディスクで3.9mm、化合物(C)が12.5μg/ディスクで5.1mmであった。
 以上のことから、化合物(A)~(C)はいずれも抗菌活性を有することが明らかになった。
薬理試験例2
 本発明の製造方法により合成された化合物(化合物(D)~(H))の抗菌活性を以下の方法で評価した。
 薬理試験に用いた化合物(D)~(H)の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000160
(1)試験微生物
 試験微生物として、Staphylococcus aureus (MRSA) IID1677、Staphylococcus aureus (MRSA) ATCC43300、Enterococcus faecalis (VRE) ATCC51575、Enterococcus faecalis ATCC29212を用いた。
(2)試験方法
 CLSI(Clinical and Laboratory Standards Institute)で定めるディスク法に準拠して測定した。
(3)試験菌液の調製
 凍結保存された菌株を試験菌培養培地に塗布し、所定条件で前培養(表3)した。発育したコロニーを再び前培養(表3)後、試験菌調製液に懸濁し、脱脂綿でろ過後、菌数を約107~8CFU/mLに調整して試験に供した。
 また、調製した試験菌液は、10倍段階希釈し、所定条件(表4)で培養して菌数を測定した。
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
(4)試験品希釈列の作成
 各本発明化合物を1000μg/mLになるようにメタノール(和光純薬、特級、含量99.8%)で溶解し、試料原液とした。試料原液0.8mLに大塚蒸留水0.8mLを加えて、各本発明化合物の濃度を500μg/mLとし、以下同様に2倍希釈を繰り返した。試験品希釈列を合計10段階作成し、試験品濃度をそれぞれ、1000、500、250、125、63、31、16、8、4、及び2μg/mLとした。
(5)MIC測定
 角型シャーレ(230×80×14.5mm、栄研)の感受性測定寒天培地に試験菌液を綿棒で均等に塗り広げた後、φ8mmの厚手のディスク(抗生物質検定用、アドバンテック)を培地上に配置した。このとき、ディスクの間隔は24mm以上となるようにした。
 ディスク上に試験品希釈液50μLを滴下した。ディスクあたりの試験品量は、50、25、12.5、6.3、3.1,1.6、0.8、0.4.0.2、0.1μgとなる。感受性測定寒天培地を所定条件(表4)で培養し、菌発育が観察されない阻止帯の幅をノギスを用いてmm単位で計測した。
 コントロールとして、試験品の代わりにメタノールをディスクに滴下したものを用いた。
(6)試験結果
 試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000163
 以上の結果から、化合物(D)~(H)はいずれも、耐性菌であるメチシリン耐性黄色ブドウ球菌(MRSA)及びバンコマイシン耐性腸球菌(VRE)に対して抗菌活性を示すことが明らかになった。
 バンコマイシン耐性遺伝子は、菌種間を水平伝播することが知られているので(W.C.Noble et al.,FEMS Microbiology Letters 1992,Vol.93,p.195-198;Elena Ramos-Trujillo et al.,Int Microbiol,2003,No.6,p.113-115)、薬剤耐性獲得機構は共通であり、化合物(D)~(H)はいずれも、バンコマイシン耐性黄色ブドウ球菌(VRSA)に対して抗菌活性を示すことが期待される。
 また、化合物(D)及び(F)~(H)は耐性菌以外の菌に対しても抗菌活性を示すことが明らかになった。

Claims (17)

  1.  下記1~10で示される工程を含む、式(I)で表されるユーシェアリライド類の製造方法。
    工程1:式(I-1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Pは保護基を表す。)
    で表される化合物と、
    式(I-2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Xはハロゲン原子を表す。)
    で表される化合物とを塩基の存在下にカップリングして式(I-3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、P及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程2:式(I-3)で表される化合物を脱保護して式(I-4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程3:式(I-4)で表される化合物を酸化して式(I-5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程4:式(I-5)で表される化合物をアルドール反応に付して式(I-6)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは炭化水素基を表し、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程5:式(I-6)で表される化合物をエステル交換して式(I-7)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程6:式(I-7)で表される化合物を保護、脱保護して式(I-8)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Pは保護基を表し、R及びRは前記のとおりである。)
    で表される化合物を得る工程、
    工程7:式(I-8)で表される化合物を加水分解して式(I-9)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程8:式(I-9)で表される化合物を環化して式(I-10)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
    工程9:式(I-10)で表される化合物を脱保護して式(I-11)
    Figure JPOXMLDOC01-appb-C000011
    (式中、Rは前記のとおりである。)
    で表される化合物を得る工程、
    工程10:式(I-11)で表される化合物をリン化合物、続いてアミンRNと反応させて式(I)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは前記のとおりであり、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物を得る工程。
  2.  式(Ia-11)
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物をリン化合物、続いてアミンRNと反応させることによる、式(Ia)
    Figure JPOXMLDOC01-appb-C000014
    (式中、R、R、R及びRは、独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表されるユーシェアリライド類の製造方法。
  3.  式(Ia-11)で表される化合物が、式(Ia-9)
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは前記のとおりであり、Pは保護基を表す。)
    で表される化合物を2-メチル-6-ニトロ安息香酸無水物と反応させて式(Ia-10)
    Figure JPOXMLDOC01-appb-C000016
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-10)で表される化合物を脱保護する工程により得られる、請求項2に記載の製造方法。
  4.  式(Ia-9)で表される化合物が、式(I-1)
    Figure JPOXMLDOC01-appb-C000017
    (式中、Pは保護基を表す。)
    で表される化合物と、
    式(Ia-2)
    Figure JPOXMLDOC01-appb-C000018
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Xはハロゲン原子を表す。)
    で表される化合物とを塩基の存在下にカップリングして式(Ia-3)
    Figure JPOXMLDOC01-appb-C000019
    (式中、R、P及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-3)で表される化合物を脱保護して式(Ia-4)
    Figure JPOXMLDOC01-appb-C000020
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-4)で表される化合物を酸化して式(Ia-5)
    Figure JPOXMLDOC01-appb-C000021
    (式中、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-5)で表される化合物をアルドール反応に付して式(Ia-6)
    Figure JPOXMLDOC01-appb-C000022
    (式中、Rは炭化水素基を表し、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-6)で表される化合物をエステル交換して式(Ia-7)
    Figure JPOXMLDOC01-appb-C000023
    (式中、R、R及びPは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-7)で表される化合物を保護、脱保護して式(Ia-8)
    Figure JPOXMLDOC01-appb-C000024
    (式中、Pは保護基を表し、R及びRは前記のとおりである。)
    で表される化合物を得る工程、
     式(Ia-8)で表される化合物を加水分解する工程により得られる、請求項3に記載の製造方法。
  5.  式(Ia)で表されるユーシェアリライド化合物が、式(A)
    Figure JPOXMLDOC01-appb-C000025
    で表される化合物である請求項2~4いずれか1項に記載の製造方法。
  6.  式(II)で表される化合物。
    Figure JPOXMLDOC01-appb-C000026
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは水素原子又は保護基を表す。)
     ただし、前記式(II)中、Rがメチル基であり、かつ、Pが水素原子又はベンジル基である化合物を除く。
  7.  式(A)、(E)、(F)又は(G)で表される化合物。
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
  8.  式(I)
    Figure JPOXMLDOC01-appb-C000031
    (式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物(ただし、下記化合物(D)を除く。)を含有する医薬組成物。
    Figure JPOXMLDOC01-appb-C000032
  9.  抗菌剤である請求項8に記載の医薬組成物。
  10.  式(I)で表される化合物が、下記式(A)、(B)、(C)、(E)、(F)、(G)、又は(H)
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    Figure JPOXMLDOC01-appb-C000038
    Figure JPOXMLDOC01-appb-C000039
    で表される化合物である請求項9又は10に記載の医薬組成物。
  11.  式(I)
    Figure JPOXMLDOC01-appb-C000040
    (式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物を含有する耐性菌用抗菌剤。
  12.  式(I)で表される化合物が、下記式(A)、(B)、(C)、(D)、(E)、(F)、(G)、又は(H)
    Figure JPOXMLDOC01-appb-C000041
    Figure JPOXMLDOC01-appb-C000042
    Figure JPOXMLDOC01-appb-C000043
    Figure JPOXMLDOC01-appb-C000044
    Figure JPOXMLDOC01-appb-C000045
    Figure JPOXMLDOC01-appb-C000046
    Figure JPOXMLDOC01-appb-C000047
    Figure JPOXMLDOC01-appb-C000048
    で表される化合物である請求項11に記載の耐性菌用抗菌剤。
  13.  耐性菌がメチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン耐性腸球菌(VRE)又はバンコマイシン耐性黄色ブドウ球菌(VRSA)である請求項11又は12に記載の耐性菌用抗菌剤。
  14.   式(I)
    Figure JPOXMLDOC01-appb-C000049
    (式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物を含有する医薬組成物の治療有効量を、それを必要としている対象に投与することを含む、耐性菌感染症の治療または予防の方法。
  15.   耐性菌用抗菌剤を製造するための、式(I)
    Figure JPOXMLDOC01-appb-C000050
    (式中、R、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表される化合物の使用。
  16.  式(I-7)
    Figure JPOXMLDOC01-appb-C000051
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Rは炭化水素基を表す。)
    で表される化合物を脱保護し、次いで環化する工程を含む、式(I)
    Figure JPOXMLDOC01-appb-C000052
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、R、R及びRは独立に水素原子又は置換されていてもよい炭化水素基を表す。)
    で表されるユーシェアリライド類の製造方法。
  17.  式(I-7)
    Figure JPOXMLDOC01-appb-C000053
    (式中、Rは水素原子又は置換されていてもよい炭化水素基を表し、Pは保護基を表し、Rは炭化水素基を表す。)
    で表される化合物を脱保護して式(I-12)
    Figure JPOXMLDOC01-appb-C000054
    (式中、Rは前記のとおりである。)
    で表される化合物を得る工程、
     前記式(I-12)で表される化合物を環化して式(I-11)
    Figure JPOXMLDOC01-appb-C000055
    (式中、Rは前記のとおりである。)
    で表される化合物を得る工程
    を含む請求項16に記載の製造方法。
PCT/JP2015/080469 2014-10-29 2015-10-28 ユーシェアリライド類の製造方法 WO2016068220A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556615A JP6621755B2 (ja) 2014-10-29 2015-10-28 ユーシェアリライド類の製造方法
US15/519,279 US10696703B2 (en) 2014-10-29 2015-10-28 Method for producing eushearlilides
EP15855388.3A EP3214088B1 (en) 2014-10-29 2015-10-28 Method for producing eushearilides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-220491 2014-10-29
JP2014220491 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016068220A1 true WO2016068220A1 (ja) 2016-05-06

Family

ID=55857555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080469 WO2016068220A1 (ja) 2014-10-29 2015-10-28 ユーシェアリライド類の製造方法

Country Status (4)

Country Link
US (1) US10696703B2 (ja)
EP (1) EP3214088B1 (ja)
JP (1) JP6621755B2 (ja)
WO (1) WO2016068220A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141582A (ja) * 1983-01-28 1984-08-14 メルク エンド カムパニー インコーポレーテッド アベルメクチン及びミルベマイシンのリン酸エステル類
JPS62265290A (ja) * 1986-03-12 1987-11-18 アメリカン・サイアナミツド・カンパニー マクロライド抗生物質
JP2007536194A (ja) * 2003-04-25 2007-12-13 ギリアード サイエンシーズ, インコーポレイテッド 免疫調節性ホスホネート抱合体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE62126B1 (en) 1986-03-12 1994-12-14 American Cyanamid Co Macrolide compounds
WO2004096286A2 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Antiviral phosphonate analogs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141582A (ja) * 1983-01-28 1984-08-14 メルク エンド カムパニー インコーポレーテッド アベルメクチン及びミルベマイシンのリン酸エステル類
JPS62265290A (ja) * 1986-03-12 1987-11-18 アメリカン・サイアナミツド・カンパニー マクロライド抗生物質
JP2007536194A (ja) * 2003-04-25 2007-12-13 ギリアード サイエンシーズ, インコーポレイテッド 免疫調節性ホスホネート抱合体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOSOE, TOMOO ET AL.: "A new antifungal macrolide, eushearilide, isolated from Eupenicillium shearii", JOURNAL OF ANTIBIOTICS, vol. 59, no. 9, September 2006 (2006-09-01), pages 597 - 600, XP055377289 *
See also references of EP3214088A4 *
YAMAUCHI, TAKAYASU ET AL.: "Total synthesis of the proposed structures of eushearilide", HETEROCYCLES, vol. 88, no. 2, 18 September 2013 (2013-09-18), pages 1175 - 1189, XP008184808 *

Also Published As

Publication number Publication date
EP3214088B1 (en) 2020-02-26
US20190382425A1 (en) 2019-12-19
JPWO2016068220A1 (ja) 2017-08-10
EP3214088A1 (en) 2017-09-06
JP6621755B2 (ja) 2019-12-18
EP3214088A4 (en) 2017-10-11
US10696703B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
Nicolaou et al. Synthesis of zaragozic acid A/squalestatin S1
JP4183099B2 (ja) エポチロンcおよびd、製造法ならびに組成物
US11345690B2 (en) Methods of synthesizing a difluorolactam analog
JP6621755B2 (ja) ユーシェアリライド類の製造方法
JP7109029B2 (ja) Pge1コアブロック誘導体およびその製造方法
KR20000075623A (ko) 제약 화합물을 제조하기 위한 선택적 에폭시화 방법
Nakato et al. Syntheses and antimicrobial activity of tetrasubstituted tetrahydrofuran lignan stereoisomers
JP2007513070A (ja) ビシクロ[3.1.0]ヘキサン誘導体およびその中間体の製造方法関連出願に対する相互参照本出願は、2003年11月7日に出願された米国仮出願第60/518,391号の合衆国法典第35巻(35U.S.C.)第119条(e)に基づく優先権を主張する。
US9346781B2 (en) Therapeutic compounds
CA2003836A1 (en) Penem derivatives and processes for their preparation
US7612213B2 (en) Compound having antitumor activity and process for producing the same
JP2024022496A (ja) 抗菌組成物
KR100231498B1 (ko) 베타메틸 카르바페넴 유도체 및 그의 제조 방법
JP2023053431A (ja) ハイグロホロン類の新規合成中間体及びハイグロホロン類の製造方法
Rosa Advances in the Total Synthesis of (-)-Muironolide A
JP2004307420A (ja) 細胞死抑制作用を有する化合物、およびその製造方法
Chen Part I. Chemistry and biology of uncialamycin. Part II. Total synthesis of aspidophytine
Gray Semisynthesis of amphotericin B and its derivatives via iterative cross-coupling
JP2004315373A (ja) 抗腫瘍活性および血管新生阻害活性を有する化合物、ならびにその製造方法
JP2002179679A (ja) 新規カルバペネム誘導体
Bogolyubov et al. The Use of 4-(Bromomethylene)-5, 5-dimethyl-1, 3-dioxolan-2-one as “Masked” α-Bromo-α'-Hydroxy Ketone in the Synthesis of Heterocyclic Systems
WO2005035489A2 (en) Improved synthesis of discodermolide and variants thereof
WO2011011665A1 (en) Hemi-phorboxazole a derivatives and methods of their use
MXPA99007770A (en) Process for preparing pharmaceutical compounds
KR19990002112A (ko) 페넴 유도체 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855388

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016556615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855388

Country of ref document: EP