WO2016067999A1 - パケットデータ送信装置、及びパケットデータ送信方法 - Google Patents

パケットデータ送信装置、及びパケットデータ送信方法 Download PDF

Info

Publication number
WO2016067999A1
WO2016067999A1 PCT/JP2015/079716 JP2015079716W WO2016067999A1 WO 2016067999 A1 WO2016067999 A1 WO 2016067999A1 JP 2015079716 W JP2015079716 W JP 2015079716W WO 2016067999 A1 WO2016067999 A1 WO 2016067999A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet data
noise
words
length
time
Prior art date
Application number
PCT/JP2015/079716
Other languages
English (en)
French (fr)
Inventor
知久 畔上
達哉 金原
正知 大牧
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to CN201580056905.3A priority Critical patent/CN107078855B/zh
Priority to JP2016556521A priority patent/JP6635936B2/ja
Priority to US15/521,930 priority patent/US10164741B2/en
Priority to EP15854748.9A priority patent/EP3214787B1/en
Publication of WO2016067999A1 publication Critical patent/WO2016067999A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format

Definitions

  • the present invention relates to a packet data transmitting apparatus and a packet data transmitting method for transmitting a plurality of packet data.
  • Non-Patent Document 1 various data communication standards for industrial digital cameras have been established (for example, see Non-Patent Document 1), and each has characteristics and problems.
  • the “CameraLink (registered trademark) standard” can transfer image data of 2 Gbps, camera control, communication, and power supply with a single cable, but the cost of the cable is high, and the data transmission distance There was a problem that (maximum cable length) was short (about 10 m).
  • the “GigE Vision (registered trademark) standard” realizes a long data transmission distance using a twisted pair cable (about 100 m), but it is vulnerable to electrical noise even if a sealed twisted pair cable is used. There was a problem.
  • the “CoaXPress standard” released in December 2010 enables data transmission of up to 6.25 Gbps data transfer, camera control signal of up to 20.8 Mbps, and 13 W power supply with one coaxial cable.
  • the distance is 100 m or more at 1.25 Gbps, and since the coaxial cable is used, the noise resistance is higher than the twisted pair cable, but the thin cable of about 3 CFB cannot withstand burst noise of about ⁇ 2 kV. was there.
  • the noise is ⁇ 2 kV
  • a thick cable such as 7CFB is used, the error can be suppressed.
  • such a thick cable has a problem that it is expensive and requires labor for laying.
  • USB3.0 standard has a maximum data transfer rate as high as 5 Gbps, but the data transmission distance is as short as about 5 m.
  • the GigE Vision standard and the CoaXPress standard described above have no problem in terms of long-distance transmission, but still have problems in terms of noise resistance.
  • the retransmission mechanism works when the transmitted data is damaged by noise.
  • the data retransmission takes time, as in the above machine vision.
  • the CoaXPress standard does not have such a data re-transmission or correction mechanism itself, and if an error occurs due to noise, it must be re-started from imaging, and for real-time applications. There is a problem that is not suitable.
  • Patent Document 1 An invention for ensuring such real-time properties has been proposed (see, for example, Patent Document 1).
  • FIG. 4 is a block diagram showing an example of the configuration of a conventional data broadcast receiving apparatus, and the data broadcast receiving apparatus 100 is configured to receive data composed of a plurality of continuous packets a plurality of times.
  • Reference numeral 101 in the figure denotes a packet error identification circuit that identifies a packet error.
  • Reference numeral 102 denotes packet data that is transmitted a plurality of times when an error is identified in a packet by the packet error identification circuit 101.
  • 1 shows a majority decision circuit that performs majority decision on a packet (a packet in the same position as a packet in which an error is identified).
  • the data broadcast receiving apparatus 100 has a problem that the packet data must be received at least three times.
  • An object of the present invention is to provide a packet data transmission apparatus and a packet data transmission method capable of solving the above-described problems.
  • FIG. 1 A first aspect of the present invention is illustrated in FIG. 1, and in a packet data transmission device (see reference numeral 1 in FIG. 2) that transmits a plurality of packet data, The first packet data (1A,%) And the second packet data (1B, etc Having the same contents as the first packet data (1A, etc, The first packet data (1A,.
  • a data transmission unit (see reference numeral 1a in FIG. 2) for intermittent transmission in the order of two packet data (1B,%) With First and second packet data (1A, ..., 1B, ... ) the length of the L P, the first packet data (1A, ...) second packet data from being transmitted (1B, 7) There the length L I of the idle time to be transmitted (I), noise generated at longer intervals 10 .mu.sec (reference numeral N.
  • low-frequency noise one low frequency noise (N) is without low frequency noise during the period from the generation to the next low-frequency noise (N) is generated time (hereinafter referred to as "noise-free time") and L C
  • the following expressions (1) and (2) are satisfied.
  • the noise free time L C is equal to or less than 200 ⁇ sec than 10 .mu.sec
  • the first and second packet data (1A, ..., 1B, ... ) the rate to be transferred over 1.25Gbps a 6.25 Gbps or less
  • the size of the first and second packet data (1A,..., 1B,...) Is 1 word or more and 560 words or less
  • the length of the idle time (I) is 10 words. More than 100 words.
  • the noise free time L C is of the order of 10 .mu.sec
  • the first and second packet data (1A, ..., 1B, ... ) the rate of transfer is a 1.25Gbps
  • the size of the first and second packet data (1A,..., 1B,...) Is not less than 64 words and not more than 112 words, and the length of the idle time (I) is about 10 words. To do.
  • a fourth aspect of the present invention is characterized in that the first and second packet data (1A,..., 1B,%) Are respectively redundantly encoded.
  • a packet data transmission method for transmitting a plurality of packet data The first packet data (1A,%) And the second packet data (1B,...) Having the same contents as the first packet data (1A,%), The first packet data (1A,.
  • low-frequency noise one low frequency noise (N) is without low frequency noise during the period from the generation to the next low-frequency noise (N) is generated time (hereinafter referred to as "noise-free time") and L C
  • the following expressions (3) and (4) are satisfied.
  • the noise free time L C is equal to or less than 200 ⁇ sec than 10 .mu.sec
  • the first and second packet data (1A, ..., 1B, ... ) the rate to be transferred over 1.25Gbps a 6.25 Gbps or less
  • the size of the first and second packet data (1A,..., 1B,...) Is 1 word or more and 560 words or less
  • the length of the idle time (I) is 10 words. More than 100 words.
  • the noise free time L C is of the order of 10 .mu.sec
  • the first and second packet data (1A, ..., 1B, ... ) the rate of transfer is a 1.25Gbps
  • the size (1A,..., 1B,...) Of the first and second packet data is 64 words or more and 112 words or less, and the length of the idle time (I) is about 10 words. To do.
  • the eighth aspect of the present invention is characterized in that the first and second packet data (1A,..., 1B,%) Are each redundantly encoded.
  • At least one packet data of two packet data (that is, the first packet data and the second packet data) sequentially transmitted with the same content is low frequency noise generated at an interval of about 10 ⁇ sec. It is received by the packet data receiving apparatus without being affected. Therefore, the packet data transmission apparatus according to the present invention can be used even in the environment where a lot of low-frequency noise due to the power source or the like is generated even if the transmission cable is as thin as 3CFB.
  • Machine vision can be configured by attaching industrial digital cameras to various inspection devices.
  • the packet data transmitting device does not have to retransmit the packet data, and the packet data
  • the data receiving apparatus can acquire normal packet data. Therefore, the delay associated with retransmission of the packet data does not occur, and it is effective against random noise that occurs sporadically.
  • FIG. 1 is a data structure diagram for explaining packet data and the like transmitted by the packet data transmitting apparatus and the packet data transmitting method according to the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration and usage state of the packet data transmitting apparatus according to the present invention.
  • 3A and 3B are data structure diagrams for explaining the effect of the present invention.
  • FIG. 4 is a block diagram showing an example of the configuration of a conventional data broadcast receiving apparatus.
  • the packet data transmitting apparatus transmits a plurality of packet data.
  • two packet data having the same contents for example, two packets indicated by reference numerals 1A and 1B
  • a data transmission unit (see reference numeral 1a in FIG. 2) that intermittently transmits data and two packet data indicated by reference numerals 2A and 2B) is provided.
  • intermittently means that the idle time I is separated.
  • packet data 1A, 2A, 3A,... Transmitted earlier among two packet data having the same contents are referred to as “first packet data”, and the first packet data 1A,.
  • the first packet data “3A” and the second packet data “3B” in the third set are the same content, and so on.
  • the first and second packet data 1A, ..., 1B, and ... of the lengths L P, the first packet data 1A, ... are transmitted said from 2 packet data 1B, ... are transmitted idle length of time I to the L I, noise generated at longer intervals 10 ⁇ sec ( ⁇ 2 ⁇ 3kV about a high burst noise of about ⁇ 4 kV at maximum, hereinafter referred to as "low-frequency noise")
  • the time width of N is L N, and the time period from when one low frequency noise N is generated until the next low frequency noise N is generated (hereinafter referred to as “no noise time”).
  • the packet data transmitting apparatus 1 is configured to satisfy the following formula (5) (6).
  • the first and second packet data 1A and 1B may be affected by the same low-frequency noise N, as illustrated by the hatched portion in FIG. There is also a possibility. If the expression (6) is not satisfied, the first and second packet data 1A and 1B are too long, and the influence of separate low-frequency noises, as illustrated by the hatched portion in FIG. There is also a risk of receiving it. However, according to the present invention, these situations can be avoided.
  • the so said noise free time L C of the low-frequency noise N is about 10 .mu.sec
  • the transfer rate of the first and second packet data 1A, ..., 1B, ... is 1.25 Gbps
  • the size of one packet data 1A, ..., 1B, ... is 64 words or more and 112 words or less.
  • the idle time length L I is preferably about 10 words.
  • the length was about 36 bytes at the maximum. This length varies depending on the transfer speed, cable length, cable thickness, and noise voltage.
  • the noise-free time L C is equal to or less than 200 ⁇ sec than 10 .mu.sec
  • the first and second packet data 1A, ..., 1B, ... speed to be transferred is less than or equal 6.25Gbps least 1.25Gbps
  • the length of the idle time I is 10 words or more and 100 words or less.
  • the packet data transmitting apparatus 1 can be used even in the environment where a lot of low frequency noise N caused by a power source or the like is generated even if the transmission cable is as thin as 3CFB.
  • Machine vision can be configured by attaching industrial digital cameras to robots and various inspection devices.
  • the low frequency noise N described above may be noise that does not occur periodically, but may be noise that occurs periodically.
  • the present invention can be applied to the CoaXPress standard, and can be applied to a packet that transmits data in a packet other than the CoaXPress standard (for example, a device that transmits data using an Ethernet (registered trademark) cable or USB). it can.
  • a packet other than the CoaXPress standard for example, a device that transmits data using an Ethernet (registered trademark) cable or USB.
  • the CoaXPress standard has a bandwidth from 1.25 Gbps to 6.125 Gbps, so the target is 200 Mbps. Can be achieved sufficiently.
  • the packetized data has a CRC (Cyclic Redundancy Check Cyclic Redundancy Check: data error can be detected but cannot be restored) code.
  • the packet data 1A, 1B,... are each redundantly encoded (redundant encoding by Reed-Solomon), and the packet data affected by noise is added to the packet data receiving apparatus 2's. It is recommended to perform FEC (Forward Error Correction) on the side. For example, 256-byte data is redundantly encoded and expanded to 272 bytes, so that an error of up to 8 bytes can be corrected.
  • FEC Forward Error Correction
  • the present invention avoids the influence of low-frequency noise N that causes data corruption continuously at a low frequency by transmitting packet data 1A, 1B,... Having the same contents as shown in FIG.
  • the influence of high-frequency noise (random noise) that occurs sporadically at a frequency higher than low-frequency noise (burst noise) N is avoided by the FEC. If tolerance to burst noise and random noise can be realized in the CoaXPress standard, it is most ideal as an interface for a digital camera attached to an industrial robot or the like.
  • the packet data transmission method transmits a plurality of packet data, First packet data 1A, ... A second packet data 1B having the same contents as the first packet data 1A,. First packet data 1A and second packet data 1B Next next packet data 2A and second packet data 2B ... The process of transmitting in order.
  • the first packet data 1A and the second packet data 1B, the next first packet data 2A and the second packet data 2B, etc. are transmitted intermittently.
  • the first and second packet data 1A, ..., 1B, and ... of the lengths L P, the first packet data 1A, ... are transmitted said from 2 packet data 1B, ... are transmitted
  • the length of the idle time up to LI is set to L I
  • the time width of the low frequency noise N is set to L N
  • the time without noise is set to L C
  • the following expressions (7) and (8) are satisfied. Yes. L I > L N ......... (7) 2 ⁇ L P + L I ⁇ L C (8)
  • the low frequency noise N ( ⁇ 2 ⁇ 3kV about, up to a high burst noise of about ⁇ 4 kV) so the noise free time L C is about 10 .mu.sec, 1 single packet data 1A, ... is the length L P of The length may be shorter than “5 ⁇ sec-L I / 2”.
  • the transfer rate of the first and second packet data 1A, ..., 1B, ... is 1.25 Gbps
  • the size of one packet data 1A, ..., 1B, ... should be 64 words or more and 112 words or less.
  • the idle time length L I is preferably about 10 words.
  • the noise-free time L C is equal to or less than 200 ⁇ sec than 10 .mu.sec
  • the first and second packet data 1A, ..., 1B, ... speed to be transferred is less than or equal 6.25Gbps least 1.25Gbps
  • the length of the idle time I is 10 words or more and 100 words or less.
  • the packet data 1A,..., 1B,... are each redundantly encoded (redundant encoding by Reed-Solomon), and the packet data receiving device receives the packet data affected by noise. It is preferable to perform FEC (Forward Error Correction forward error correction) on the second side.
  • FEC Forward Error Correction forward error correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

課題:同じ内容の2つのパケットデータの内のどちらか一方はノイズの影響を受けないようにする。 解決手段:パケットデータ送信装置(不図示)は、同じ内容の第1パケットデータ1A,…と第2パケットデータ1B,…と、をアイドル時間Iを挟んで間欠的に送信する。いま、該第1及び第2パケットデータ1A,…、1B,…の長さをLとし、アイドル時間Iの長さをLとし、低周波ノイズNの時間幅をLとし、1つの低周波ノイズNが発生してから次の低周波ノイズNが発生するまでの間の低周波ノイズ無しの時間をLとした場合に下式(1)(2)を満足するようにする。これにより、第1パケットデータ及び第2パケットデータの内のどちらか一方はノイズの影響を受けずに受信装置まで伝送されることとなる。 L>L ……… (1) 2×L+L<L ……… (2)

Description

パケットデータ送信装置、及びパケットデータ送信方法
 本発明は、複数のパケットデータを送信するパケットデータ送信装置、及びパケットデータ送信方法に関する。
 従来、産業用デジタルカメラのデータ通信規格としては種々のものが制定されており(例えば、非特許文献1参照)、それぞれに特徴や問題を有している。
 例えば、「CameraLink(登録商標)規格」は2Gbpsの画像データ転送やカメラ制御や通信や電源の供給までがケーブル1本で可能であるが、そのケーブルのコストが高く、しかも、データの伝送可能距離(最大ケーブル長)が短い(10m程度)という問題があった。
 また、「GigE Vision(登録商標)規格」は、ツイストペアケーブルを使用して長いデータ伝送可能距離を実現している(100m程度)が、シールテッドツイストペアケーブルを使用したとしても電気ノイズには弱いという問題があった。
 さらに、2010年12月にリリースされた「CoaXPress規格」は1本の同軸ケーブルで最大6.25Gbpsのデータ転送、最大20.8Mbpsのカメラ制御信号、13Wの電源供給が可能で、データの伝送可能距離は1.25Gbpsにおいて100m以上というものであり、同軸ケーブルを使用するためツイストペアケーブルに比べてノイズ耐性も高いが、3CFB程度の細いケーブルでは±2kV程度のバーストノイズには耐えることができないという問題があった。ただし±2kVのノイズであっても、7CFBのような太いケーブルを使用するとエラーが抑えられるが、そのような太いケーブルはコストが高く、また敷設の労力も必要であるという問題もあった。
 またさらに、汎用的なデータインターフェース規格である「USB3.0規格」では最大データ転送速度が5Gbpsと高速であるが、データの伝送可能距離は5m程度と短い。
特開平7-15412号公報
"マシンビジョン用インターフェース標準規格"、平成26年1月発行、日本インダストリアルイメージング協会、[平成26年10月15日検索]、インターネット〈http://jiia.org/wp-content/themes/jiia/pdf/fsf.pdf〉
 ところで、産業用デジタルカメラのデータ伝送を長距離行なわなければならない場合もある。例えば、産業用ロボットや様々な検査機器などに産業用デジタルカメラを取り付けてマシンビジョンを構成するような場合は、工場の生産ラインから長距離の伝送を行う必要がある。そのような場合においては、伝送距離の短い上述のUSB3.0規格やCameraLink規格は使用できない。
 これに対し、上述のGigE Vision規格やCoaXPress規格は長距離伝送の点では問題は無いものの、ノイズ耐性の点からは問題が残る。なお、該GigE Vision規格では、送信されるデータがノイズで破損した場合には再送メカニズムが機能するようになっているが、そのデータ再送に時間が掛かってしまうので、上述のマシンビジョンのようにリアルタイム性が求められる用途には適さないという問題がある。また、前記CoaXPress規格では、そのようなデータの再送や訂正のメカニズム自体を有しておらず、ノイズによってエラーが発生した場合には撮像からやり直さなければならず、やはりリアルタイム性が求められる用途には適さないという問題がある。
 一方、このようなリアルタイム性を確保するための発明が提案されている(例えば、特許文献1参照)。
 図4は、従来のデータ放送受信装置の構成の一例を示すブロック図であり、該データ放送受信装置100は、連続する複数のパケットで構成されるデータを複数回受信するように構成されている。そして、図中の符号101は、パケットのエラーを識別するパケットエラー識別回路を示し、符号102は、あるパケットに該パケットエラー識別回路101でエラーが識別されたときには複数回送信されるパケットデータ中のパケット(エラーが識別されたパケットと同一位置にあるパケット)に対して多数決判定を行う多数決判定回路を示している。しかし、かかるデータ放送受信装置100においては、パケットデータを少なくとも3回受信しなければならないという問題があった。
 つまり、ノイズ環境が悪くデータの長距離伝送が必要で、かつリアルタイム性が求められるような条件にも使用できる通信規格で適切なものは提案されていなかった。
 本発明は、上述の問題を解消することのできるパケットデータ送信装置及びパケットデータ送信方法を提供することを目的とするものである。
 本発明の第1の観点は、図1に例示するものであって、複数のパケットデータを送信するパケットデータ送信装置(図2の符号1参照)において、
 第1パケットデータ(1A,…)と、該第1パケットデータ(1A,…)と同じ内容の第2パケットデータ(1B,…)と、を該第1パケットデータ(1A,…)及び該第2パケットデータ(1B,…)の順序で間欠的に送信するデータ送信部(図2の符号1a参照)、
を備え、
 該第1及び第2パケットデータ(1A,…、1B,…)の長さをLとし、該第1パケットデータ(1A,…)が送信されてから該第2パケットデータ(1B,…)が送信されるまでのアイドル時間(I)の長さをLとし、10μsec以上の間隔で発生するノイズ(符号N参照。以下、“低周波ノイズ”とする。)の時間幅をLとし、1つの低周波ノイズ(N)が発生してから次の低周波ノイズ(N)が発生するまでの間の低周波ノイズ無しの時間(以下、“ノイズ無し時間”とする)をLとした場合に下式(1)(2)を満足する、ことを特徴とする。
 L>L         ……… (1)
 2×L+L<L    ……… (2)
 本発明の第2の観点は、前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータ(1A,…、1B,…)を転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータ(1A,…、1B,…)のサイズが1ワード以上560ワード以下であって、前記アイドル時間(I)の長さは10ワード以上100ワード以下であることを特徴とする。
 本発明の第3の観点は、前記ノイズ無し時間Lが10μsec程度であって、前記第1及び第2パケットデータ(1A,…、1B,…)を転送する速度が1.25Gbpsであって、前記第1及び第2パケットデータ(1A,…、1B,…)のサイズが64ワード以上112ワード以下であって、前記アイドル時間(I)の長さは10ワード程度であることを特徴とする。
 本発明の第4の観点は、前記第1及び第2パケットデータ(1A,…、1B,…)がそれぞれ冗長符号化されていることを特徴とする。
 本発明の第5の観点は、複数のパケットデータを送信するパケットデータ送信方法において、
 第1パケットデータ(1A,…)と、該第1パケットデータ(1A,…)と同じ内容の第2パケットデータ(1B,…)と、を該第1パケットデータ(1A,…)及び該第2パケットデータ(1B,…)の順序で間欠的に送信する工程、を備え、
 該第1及び第2パケットデータ(1A,…、1B,…)の長さをLとし、該第1パケットデータ(1A,…)が送信されてから該第2パケットデータ(1B,…)が送信されるまでのアイドル時間(I)の長さをLとし、10μsec以上の間隔で発生するノイズ(符号N参照。以下、“低周波ノイズ”とする。)の時間幅をLとし、1つの低周波ノイズ(N)が発生してから次の低周波ノイズ(N)が発生するまでの間の低周波ノイズ無しの時間(以下、“ノイズ無し時間”とする)をLとした場合に下式(3)(4)を満足する、ことを特徴とする。
 L>L         ……… (3)
 2×L+L<L    ……… (4)
 本発明の第6の観点は、前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータ(1A,…、1B,…)を転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータ(1A,…、1B,…)のサイズが1ワード以上560ワード以下であって、前記アイドル時間(I)の長さは10ワード以上100ワード以下であることを特徴とする。
 本発明の第7の観点は、前記ノイズ無し時間Lが10μsec程度であって、前記第1及び第2パケットデータ(1A,…、1B,…)を転送する速度が1.25Gbpsであって、前記第1及び第2パケットデータのサイズ(1A,…、1B,…)が64ワード以上112ワード以下であって、前記アイドル時間(I)の長さは10ワード程度であることを特徴とする。
 本発明の第8の観点は、前記第1及び第2パケットデータ(1A,…、1B,…)がそれぞれ冗長符号化されていることを特徴とする。
 なお、括弧内の番号などは、図面における対応する要素を示す便宜的なものであり、従って、本記述は図面上の記載に限定拘束されるものではない。
 本発明によれば、同じ内容で順次送信される2つのパケットデータ(つまり、前記第1及び第2パケットデータ)の内の少なくとも1つのパケットデータはおよそ10μsec程度の間隔で発生する低周波ノイズの影響を受けずにパケットデータ受信装置に受信されることとなる。したがって、本発明に係るパケットデータ送信装置は、電源などを起因とする低周波ノイズが多く発生する環境下で伝送ケーブルが3CFBのような細いものであっても使用でき、例えば、産業用ロボットや様々な検査機器などに産業用デジタルカメラを取り付けてマシンビジョンを構成することが可能となる。
 また、本発明によれば、ノイズの発生間隔が10μsecよりも短い高周波数ノイズによってパケットデータが影響を受けた場合であっても前記パケットデータ送信装置がパケットデータを再送する必要はなく、前記パケットデータ受信装置は正常なパケットデータを取得できることとなる。したがって、該パケットデータの再送に伴う遅延も発生せず、散発的に発生するランダムなノイズに対しても有効である。
図1は、本発明に係るパケットデータ送信装置及びパケットデータ送信方法により送信されるパケットデータ等を説明するためのデータ構造図である。 図2は、本発明に係るパケットデータ送信装置の構成及び使用状態の一例を示すブロック図である。 図3(a)(b)は、本発明の効果を説明するためのデータ構造図である。 図4は、従来のデータ放送受信装置の構成の一例を示すブロック図である。
 以下、図1乃至図3に沿って、本発明の実施の形態について説明する。
 本発明に係るパケットデータ送信装置は、複数のパケットデータを送信するものであって、図1に例示するように、同じ内容の2つのパケットデータ(例えば、符号1Aと符号1Bで示す2つのパケットデータや、符号2Aと符号2Bで示す2つのパケットデータ)を間欠的に送信するデータ送信部(図2の符号1a参照)を備えている。ここで、“間欠的に”とは、アイドル時間Iを隔ててという意味である。
 また、本明細書においては、同じ内容の2つのパケットデータの内の先に送信されるパケットデータ1A,2A,3A,…を“第1パケットデータ”とし、該第1パケットデータ1A,…と同じ内容であって該第1パケットデータ1A,…の後に送信されるパケットデータ1B,2B,3B,…を“第2パケットデータ”とする。つまり、1組目の第1パケットデータ“1A”と第2パケットデータ“1B”とは同じ内容であり、2組目の第1パケットデータ“2A”と第2パケットデータ“2B”とは同じ内容であり、3組目の第1パケットデータ“3A”と第2パケットデータ“3B”とは同じ内容である……というように構成されている。
 いま、該第1及び第2パケットデータ1A,…、1B,…の長さをLとし、該第1パケットデータ1A,…が送信されてから該第2パケットデータ1B,…が送信されるまでのアイドル時間Iの長さをLとし、10μsec以上の間隔で発生するノイズ(±2~3kV程度、最大で±4kV程度の高いバーストノイズであり、以下、“低周波ノイズ”とする)Nの時間幅をLとし、1つの低周波ノイズNが発生してから次の低周波ノイズNが発生するまでの間の低周波ノイズ無しの時間(以下、“ノイズ無し時間”とする)をLとした場合に、前記パケットデータ送信装置1は下式(5)(6)を満足するように構成されている。
 L>L         ……… (5)
 2×L+L<L    ……… (6)
 前記(5)式を満足しなければ、図3(a)に斜線部で例示するように、第1及び第2パケットデータ1A,1Bが1つの同じ低周波ノイズNの影響を受けてしまうおそれもあり得る。また、前記(6)式を満足しなければ、図3(b)に斜線部で例示するように、前記第1及び第2パケットデータ1A,1Bが長すぎて別々の低周波ノイズの影響を受けてしまうおそれもあり得る。しかし、本発明によれば、それらの事態を回避することがで
きる。
 なお、前記低周波ノイズNの前記ノイズ無し時間Lは10μsec程度となるので、1つのパケットデータ1A,…の長さLは“5μsec-L/2”より短い長さにすれば良い。例えば、前記第1及び第2パケットデータ1A,…、1B,…の転送速度が1.25Gbpsであれば、1つのパケットデータ1A,…、1B,…のサイズは64ワード以上112ワード以下にすると良く、アイドル時間の長さLは10ワード程度にすると良い。なお、本発明においては、1ワード=4バイト=32ビットであるが、10b/8b変換により、実際の転送長(送信時の長さ)は40ビットとなる。また、低周波ノイズの影響を実験で確認したところ、上記条件に加えて40mの3CFBケーブルに±4kVの低周波ノイズを与えた場合、その長さは最大で36バイト程度であった。なお、この長さは転送速度、ケーブル長さ、ケーブル太さ、ノイズ電圧によって変わる。
 前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータ1A,…、1B,…を転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータ1A,…、1B,…のサイズが1ワード以上560ワード以下であって、前記アイドル時間Iの長さは10ワード以上100ワード以下にすると良い。
 本発明によれば、同じ内容で順次送信される2つのパケットデータ(つまり、前記第1及び第2パケットデータ)1A,1Bの内の少なくとも1つのパケットデータは低周波ノイズNの影響を受けずにパケットデータ受信装置(図2の符号2参照)に受信されることとなる。したがって、本発明に係るパケットデータ送信装置1は、電源などを起因とする低周波ノイズNが多く発生する環境下で伝送ケーブルが3CFBのような細いものであっても使用でき、例えば、産業用ロボットや様々な検査機器などに産業用デジタルカメラを取り付けてマシンビジョンを構成することが可能となる。なお、上述の低周波ノイズNは周期的に発生しないノイズであっても良いが、周期的に発生するノイズであっても良い。
 本発明は、CoaXPress規格に適用することができ、CoaXPress規格以外でもデータをパケット化して送信するもの(例えば、イーサネット(登録商標)ケーブルやUSBを使ってデータを送信するもの)に適用することができる。なお、上述のように同じ内容のパケットデータ1A,1Bを2回送信することで、使用帯域は小さくなるが、CoaXPress規格は1.25Gbps~6.125Gbpsまでの帯域があるので、目標とする200Mbpsを十分達成できる。また、CoaXPress規格では、パケット化されたデータにCRC(Cyclic Redundancy Check 巡回冗長検査:データの誤りを検出することができるが、復元することはできないというもの)のコードが付いているので、データ化けが発生するとCRCチェックを行うことでデータ化けを検出することは可能であるから、正しく送信されたパケットデータのほうを選択すればよい。本発明をCoaXPress規格以外に適用する場合にも、
・ 上述のようなCRCコードや、
・ 該CRCコードのようにエラーを検出するためのコード
をパケットデータに付加しておく必要がある。
 一方、本発明においては、前記パケットデータ1A,1B,…をそれぞれ冗長符号化(リード・ソロモンによる冗長符号化)しておいて、ノイズの影響を受けたパケットデータに前記パケットデータ受信装置2の側でFEC(Forward Error Correction:前方誤り訂正)を施すようにすると良い。例えば、256バイトのデータを冗長符号化して272バイトに拡大することで、最大8バイトまでのエラーを訂正できる。これにより、上述した電源などを起因とする低周波ノイズ以外のノイズ(例えば、ノイズの発生間隔が10μsecよりも短い高周波ノイズ)によってパケットデータが影響を受けた場合であっても前記パケットデータ送信装置1がパケットデータを再送する必要はなく、前記パケットデータ受信装置2は正常なパケットデータを取得できることとなる。したがって、該パケットデータの再送に伴う遅延も発生せず、散発的に発生するランダムなノイズに対しても有効である。
 つまり、本発明は、低い周波数で連続してデータ化けが発生する低周波ノイズNの影響は、同じ内容のパケットデータ1A,1B,…を図1に示すように送信することで回避し、該低周波ノイズ(バーストノイズ)Nよりも高い周波数で散発的に発生する高周波ノイズ(ランダムノイズ)の影響は前記FECで回避するようにしたものである。CoaXPress規格においてバーストノイズやランダムノイズへの耐性が実現できれば、産業用ロボット等に取り付けられるデジタル方式カメラのインターフェースとして最も理想的となる。
 ところで、本発明に係るパケットデータ送信方法は、複数のパケットデータを送信するものであって、
・ 第1パケットデータ1A,…と、
・ 該第1パケットデータ1A,…と同じ内容の第2パケットデータ1B,…と、を、
・ 第1パケットデータ1A及び第2パケットデータ1B
・ 次の第1パケットデータ2A及び第2パケットデータ2B……
の順序で送信する工程、を備えている。なお、前記第1パケットデータ1A及び前記第2パケットデータ1Bや、次の第1パケットデータ2A及び第2パケットデータ2Bなどは、それぞれ間欠的に送信されるようになっている。
 いま、該第1及び第2パケットデータ1A,…、1B,…の長さをLとし、該第1パケットデータ1A,…が送信されてから該第2パケットデータ1B,…が送信されるまでのアイドル時間の長さをLとし、低周波ノイズNの時間幅をLとし、ノイズ無し時間をLとした場合に下式(7)(8)を満足するように構成されている。
 L>L         ……… (7)
 2×L+L<L    ……… (8)
 なお、低周波ノイズN(±2~3kV程度、最大で±4kV程度の高いバーストノイズ)の前記ノイズ無し時間Lは10μsec程度となるので、1つのパケットデータ1A,…の長さLは“5μsec-L/2”より短い長さにすれば良い。例えば、第1及び第2パケットデータ1A,…、1B,…の転送速度が1.25Gbpsであれば、1つのパケットデータ1A,…、1B,…のサイズは64ワード以上112ワード以下にすると良く、アイドル時間の長さLは10ワード程度にすると良い。
 前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータ1A,…、1B,…を転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータ1A,…、1B,…のサイズが1ワード以上560ワード以下であって、前記アイドル時間Iの長さは10ワード以上100ワード以下にすると良い。
 一方、本発明においては、前記パケットデータ1A,…、1B,…をそれぞれ冗長符号化(リード・ソロモンによる冗長符号化)しておいて、ノイズの影響を受けたパケットデータに前記パケットデータ受信装置2の側でFEC(Forward Error Correction 前方誤り訂正)を施すようにすると良い。
  1       パケットデータ送信装置
  1a      データ送信部
  1A,…    第1パケットデータ
  1B,…    第2パケットデータ
  LC       ノイズ無し時間
  LI       アイドル時間の長さ
  LN       低周波ノイズの時間幅
  LP       第1及び第2パケットデータの長さ
  N       低周波ノイズ

Claims (8)

  1.  複数のパケットデータを送信するパケットデータ送信装置において、
     第1パケットデータと、該第1パケットデータと同じ内容の第2パケットデータと、を該第1パケットデータ及び該第2パケットデータの順序で間欠的に送信するデータ送信部、
    を備え、
     該第1及び第2パケットデータの長さをLとし、該第1パケットデータが送信されてから該第2パケットデータが送信されるまでのアイドル時間の長さをLとし、10μsec以上の間隔で発生するノイズ(以下、“低周波ノイズ”とする)の時間幅をLとし、1つの低周波ノイズが発生してから次の低周波ノイズが発生するまでの間の低周波ノイズ無しの時間(以下、“ノイズ無し時間”とする)をLとした場合に下式(1)(2)を満足する、
     ことを特徴とするパケットデータ送信装置。
     L>L        ……… (1)
     2×L+L<LC    ……… (2)
  2.  前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータを転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータのサイズが1ワード以上560ワード以下であって、前記アイドル時間の長さは10ワード以上100ワード以下である、
     ことを特徴とする請求項1に記載のパケットデータ送信装置。
  3.  前記ノイズ無し時間Lが10μsec程度であって、前記第1及び第2パケットデータを転送する速度が1.25Gbpsであって、前記第1及び第2パケットデータのサイズが64ワード以上112ワード以下であって、前記アイドル時間の長さは10ワード程度である、
     ことを特徴とする請求項1に記載のパケットデータ送信装置。
  4.  前記第1及び第2パケットデータはそれぞれ冗長符号化されている、
     ことを特徴とする請求項1乃至3の何れか1項に記載のパケットデータ送信装置。
  5.  複数のパケットデータを送信するパケットデータ送信方法において、
     第1パケットデータと、該第1パケットデータと同じ内容の第2パケットデータと、を該第1パケットデータ及び該第2パケットデータの順序で間欠的に送信する工程、
    を備え、
     該第1及び第2パケットデータの長さをLとし、該第1パケットデータが送信されてから該第2パケットデータが送信されるまでのアイドル時間の長さをLとし、10μsec以上の間隔で発生するノイズ(以下、“低周波ノイズ”とする)の時間幅をLとし、1つの低周波ノイズが発生してから次の低周波ノイズが発生するまでの間の低周波ノイズ無しの時間(以下、“ノイズ無し時間”とする)をLとした場合に下式(3)(4)を満足する、
     ことを特徴とするパケットデータ送信方法。
     L>L         ……… (3)
     2×L+L<L    ……… (4)
  6.  前記ノイズ無し時間Lが10μsec以上200μsec以下であって、前記第1及び第2パケットデータを転送する速度が1.25Gbps以上6.25Gbps以下であって、前記第1及び第2パケットデータのサイズが1ワード以上560ワード以下であって、前記アイドル時間の長さは10ワード以上100ワード以下である、
     ことを特徴とする請求項5に記載のパケットデータ送信方法。
  7.  前記ノイズ無し時間Lが10μsec程度であって、前記第1及び第2パケットデータを転送する速度が1.25Gbpsであって、前記第1及び第2パケットデータのサイズが64ワード以上112ワード以下であって、前記アイドル時間の長さは10ワード程度である、
     ことを特徴とする請求項5に記載のパケットデータ送信方法。
  8.  前記第1及び第2パケットデータはそれぞれ冗長符号化されている、
     ことを特徴とする請求項5乃至7の何れか1項に記載のパケットデータ送信方法。
PCT/JP2015/079716 2014-10-30 2015-10-21 パケットデータ送信装置、及びパケットデータ送信方法 WO2016067999A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580056905.3A CN107078855B (zh) 2014-10-30 2015-10-21 分组数据发送装置以及分组数据发送方法
JP2016556521A JP6635936B2 (ja) 2014-10-30 2015-10-21 パケットデータ送信装置、及びパケットデータ送信方法
US15/521,930 US10164741B2 (en) 2014-10-30 2015-10-21 Packet data transmission device and packet data transmission method
EP15854748.9A EP3214787B1 (en) 2014-10-30 2015-10-21 Packet data transmission device and packet data transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221264 2014-10-30
JP2014-221264 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067999A1 true WO2016067999A1 (ja) 2016-05-06

Family

ID=55857339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079716 WO2016067999A1 (ja) 2014-10-30 2015-10-21 パケットデータ送信装置、及びパケットデータ送信方法

Country Status (6)

Country Link
US (1) US10164741B2 (ja)
EP (1) EP3214787B1 (ja)
JP (1) JP6635936B2 (ja)
CN (1) CN107078855B (ja)
TW (1) TWI684336B (ja)
WO (1) WO2016067999A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235430B (zh) * 2017-01-31 2021-01-08 兴和株式会社 相机操作装置
JP7312165B2 (ja) * 2018-05-23 2023-07-20 興和株式会社 通信システム、制御システム及び通信装置
CN109041028A (zh) * 2018-08-25 2018-12-18 咪付(广州)网络科技有限公司 一种基于蓝牙mesh网络的数据传送方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111576A (ja) * 1999-09-27 2001-04-20 Rf Link Systems Inc 非同期時間帯域マルチプルアクセスの電気信号伝送装置及び方法
JP2003152821A (ja) * 2001-10-26 2003-05-23 Silitek Corp 単一周波数無線周辺機器用の無線送受信プロトコルにおいて符号化および識別を行う方法およびシステム
JP2013128207A (ja) * 2011-12-19 2013-06-27 Panasonic Industrial Devices Sunx Co Ltd データ伝送システム、およびデータ伝送方法
JP2014158178A (ja) * 2013-02-15 2014-08-28 Mitsubishi Heavy Ind Ltd 制御装置及び産業機械

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170075B1 (en) * 1997-12-18 2001-01-02 3Com Corporation Data and real-time media communication over a lossy network
ID26232A (id) * 1998-12-17 2000-12-07 Matsushita Electric Ind Co Ltd Sirkuit kontrol frekuensi dan kunci fase
KR20030028841A (ko) * 2001-07-10 2003-04-10 코닌클리케 필립스 일렉트로닉스 엔.브이. 데이터 패킷들의 전송 방법
US8089940B2 (en) * 2001-10-05 2012-01-03 Qualcomm Incorporated Method and system for efficient and reliable data packet transmission
EP1463246A1 (en) * 2003-03-27 2004-09-29 Motorola Inc. Communication of conversational data between terminals over a radio link
US8219869B2 (en) * 2006-06-22 2012-07-10 Lg Electronics Inc. Method of retransmitting data in a mobile communication system
US8289924B2 (en) * 2006-08-24 2012-10-16 Panasonic Corporation Communication system, communication method, radio terminal, radio relay device, and control device
JP4412322B2 (ja) * 2006-12-26 2010-02-10 ソニー株式会社 通信システム及びその障害検出用の情報の提供方法
EP2381580A1 (en) * 2007-04-13 2011-10-26 Global IP Solutions (GIPS) AB Adaptive, scalable packet loss recovery
US8255188B2 (en) * 2007-11-07 2012-08-28 Guidetech, Inc. Fast low frequency jitter rejection methodology
WO2011040006A1 (ja) * 2009-09-30 2011-04-07 パナソニック株式会社 送信装置、受信装置、送受信システム、及び送受信方法
CN101771634B (zh) * 2010-01-25 2013-08-07 东南大学 一种子载波分组的mimo-ofdm检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111576A (ja) * 1999-09-27 2001-04-20 Rf Link Systems Inc 非同期時間帯域マルチプルアクセスの電気信号伝送装置及び方法
JP2003152821A (ja) * 2001-10-26 2003-05-23 Silitek Corp 単一周波数無線周辺機器用の無線送受信プロトコルにおいて符号化および識別を行う方法およびシステム
JP2013128207A (ja) * 2011-12-19 2013-06-27 Panasonic Industrial Devices Sunx Co Ltd データ伝送システム、およびデータ伝送方法
JP2014158178A (ja) * 2013-02-15 2014-08-28 Mitsubishi Heavy Ind Ltd 制御装置及び産業機械

Also Published As

Publication number Publication date
EP3214787A4 (en) 2018-06-06
CN107078855A (zh) 2017-08-18
TW201630374A (zh) 2016-08-16
TWI684336B (zh) 2020-02-01
US10164741B2 (en) 2018-12-25
US20170338909A1 (en) 2017-11-23
EP3214787A1 (en) 2017-09-06
JPWO2016067999A1 (ja) 2017-08-10
JP6635936B2 (ja) 2020-01-29
CN107078855B (zh) 2020-04-21
EP3214787B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
US8004963B2 (en) Apparatus and method for packet redundancy and recovery
JP5295135B2 (ja) 無線通信チャネルを通した非圧縮されたビデオ伝送方法およびシステム
US7889707B2 (en) Method and system for unequal error protection with block codes for wireless transmission
JP4703310B2 (ja) 通信方法および通信システム
WO2008052858B1 (en) Forward error correction encoding for multiple link transmission compatible with 64b/66b scrambling
US8201057B2 (en) System and method for inter-packet channel coding and decoding
JP4283104B2 (ja) パケットベース通信システムの階層的ブロック符号化
US9179362B2 (en) Systems and methods for networking coding using Reed-Solomon codes
CN109905205B (zh) 数据发送、接收的方法及设备、数据传输方法及系统
WO2016067999A1 (ja) パケットデータ送信装置、及びパケットデータ送信方法
WO2012096396A1 (en) Communication apparatus, communication method and storage medium for flexible error correction
TWI385961B (zh) 用於混合自動重複請求傳輸的改進解碼的方法和裝置
KR20110097917A (ko) 온 디멘드 에러 제어
JP2011091677A (ja) 送信装置および通信システム
JP5509438B2 (ja) データ転送装置及びデータ転送システム
US10200154B2 (en) System and method for early packet header verification
JP2013179476A5 (ja)
JP5202376B2 (ja) 通信装置、通信システムおよび通信制御方法
JP2006217530A (ja) データ伝送システム、送信側端末装置、受信側端末装置、データ送信プログラム及びデータ受信プログラム
US9667558B1 (en) Data communication over a frame synchronized digital transmission network
JP6596240B2 (ja) 通信装置
WO2017183706A1 (ja) マルチプレクサ、及び該マルチプレクサを備えた撮影装置
KR102580248B1 (ko) 전자장치, 패킷전송 장치 및 방법
JP2010021758A (ja) 無線通信システム
JP2009225413A (ja) ネットワークにおける映像・音声送受信装置およびシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556521

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015854748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE