WO2016067982A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2016067982A1
WO2016067982A1 PCT/JP2015/079627 JP2015079627W WO2016067982A1 WO 2016067982 A1 WO2016067982 A1 WO 2016067982A1 JP 2015079627 W JP2015079627 W JP 2015079627W WO 2016067982 A1 WO2016067982 A1 WO 2016067982A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
current sensor
value
smoothing capacitor
Prior art date
Application number
PCT/JP2015/079627
Other languages
English (en)
French (fr)
Inventor
紘和 三本菅
恒平 明円
和人 大山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP15856081.3A priority Critical patent/EP3214754B1/en
Priority to CN201580056983.3A priority patent/CN106852184B/zh
Priority to JP2016556513A priority patent/JP6363221B2/ja
Priority to US15/520,746 priority patent/US10090790B2/en
Publication of WO2016067982A1 publication Critical patent/WO2016067982A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/15Indicating the presence of current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor control device.
  • the inverter In the system that converts the output from the power source into an AC voltage by the inverter and drives the motor, the inverter has an element that performs switching at high speed in order to control the voltage applied to the motor. In order to smooth the voltage that fluctuates due to this switching, a smoothing capacitor is disposed between the inverter and the power source. Further, a relay is provided between the power source and the inverter in order to open and close the connection between them.
  • the voltage of the smoothing capacitor is approximately the same as the power supply voltage, and it is several hundred volts for hybrid and electric vehicles.
  • the inverter it is necessary to discharge the smoothing capacitor quickly after opening the relay so that the work can be performed safely.
  • Patent Document 1 proposes a method of discharging the electric charge of the smoothing capacitor by passing an electric current through the motor.
  • Supply to the motor so that the d-axis current that excites the motor together with the permanent magnet for exciting the motor is non-zero, and the q-axis current that goes straight to the d-axis and gives torque to the motor is zero
  • Control the current The current supplied to the motor is determined by feedback control that operates so that the difference between the current value detected by the current sensor and flowing through the motor and the target current value approaches zero.
  • the unintended current is a current whose q-axis current is non-zero. q When the shaft current flows, torque is generated in the motor and the motor may rotate.
  • the problem to be solved by the present invention is to reduce the generation of torque in the motor due to the unintentional flow of the motor q-axis current when the smoothing capacitor is discharged.
  • a motor control device detects an inverter having a smoothing capacitor connected to a power supply via a relay, a motor connected to the inverter, and a current flowing through the motor.
  • a current sensor correction unit that corrects the current sensor in a state where no current of the motor is flowing until the start of discharge control by the control unit, and the discharge control unit is corrected by the current sensor correction unit. Further, discharging is performed by controlling the motor current based on the value of the current sensor.
  • FIG. 1 is a diagram for explaining an outline of a motor control system including an apparatus for performing discharge processing of a power source, a motor, and a smoothing capacitor in the first embodiment of the present invention.
  • the motor control system includes a power supply 10, a relay 20, a motor 30, a magnetic pole position detection circuit 40 of the motor 30, an inverter 50, a smoothing capacitor 60, a voltage detection circuit 70 for the smoothing capacitor 60, a motor 30 and an inverter. 50 current sensors 80 and a control device 90 are provided.
  • the power source 10 is a DC power source of several hundreds [V], and a nickel metal hydride battery or a lithium ion battery is used.
  • Relay 20 is arranged between power supply 10 and inverter 50. When the relay 20 is in the open state, the power source 10 and the inverter 50 are electrically disconnected. When the relay 20 is in the closed state, the power source 10 and the inverter 50 are electrically connected, and the power of the power source 10 is supplied to the inverter 50.
  • the smoothing capacitor 60 smoothes the output of the power supply 10 and becomes substantially the same voltage as the power supply 10 when the relay 20 is closed.
  • the voltage value Vdc of the smoothing capacitor 60 is detected by the voltage detection circuit 70 and transmitted to the control device 90.
  • the inverter 50 incorporates a plurality of switching element portions 51 (for example, IGBTs and diodes) that perform switching, and converts power from the power supply 10 from direct current to three-phase alternating current.
  • the switching element unit 51 built in the inverter 50 is arranged for each of three phases on the positive electrode side and the negative electrode side of the power supply 10, and changes the pulse width of the voltage generated by the switching of the total of six elements, thereby changing the predetermined voltage Can be applied to the motor 30 by pulse width modulation.
  • the motor 30 is composed of two parts: a stator having three-phase (here, U-phase, V-phase, and W-phase) windings, and a rotor that generates torque by magnetic flux that changes when current flows through the windings. Is done.
  • the current flowing through the motor 30 is detected by the current sensor 80 and transmitted to the current sensor correction unit 95.
  • the current values Iu, Iv, and Iw detected by the current sensor 80 include a current sensor detection error called an offset error.
  • the magnetic pole position detection circuit 40 detects a magnetic pole position ⁇ that changes as the rotor of the motor 30 rotates, and the magnetic pole position ⁇ is transmitted to the rotation speed calculation unit 91 and the PI control unit 94.
  • the control device 90 includes a rotation speed calculation unit 91, a current command generation unit 92, a discharge control unit 93, a PI control unit 94, a current sensor correction unit 95, and a PWM generation unit 96, and generates torque from the outside.
  • the command Trq is received and the current supplied to the motor 30 is controlled.
  • the rotation speed calculation unit 91 acquires the magnetic pole position ⁇ from the magnetic pole position detection circuit 40, and generates the motor rotation speed ⁇ from the change amount of the magnetic pole position ⁇ .
  • the current command generation unit 92 Based on the torque command Trq received from the outside, the current command generation unit 92 outputs the target current values of the d-axis and the q-axis to output the designated torque, the motor rotation speed ⁇ , and the smoothing capacitor voltage Vdc of the smoothing capacitor 60. Generate according to.
  • the current sensor correction unit 95 corrects the detection error caused by the offset error of the current sensor 80 with respect to the current values Iu, Iv, and Iw detected by the current sensor 80.
  • the corrected current values Iu ′, Iv ′, Iw ′ corrected by the current sensor correction unit 95 are used by the PI control unit 94.
  • the PI control unit 94 compares the target current values of the d-axis and the q-axis with the current values obtained by converting the corrected current values Iu ′, Iv ′, and Iw ′ into the d-axis current and the q-axis current.
  • a PI command is applied to generate a voltage command value.
  • the PWM generation unit 96 generates a PWM drive signal for on / off control of the switching element unit 51 based on the voltage command value and the smoothing capacitor voltage Vdc.
  • the discharge controller 93 outputs target current values for the d-axis and the q-axis that are necessary for the discharge by the winding of the motor 30.
  • the discharge control unit 93 performs switching so that the target current value output from the discharge control unit 93 is input to the PI control unit 94.
  • FIG. 2 is a flowchart for explaining the flow from the start to the stop of the control device 90.
  • step 10 When the system is started in step 10, the relay 20 is closed in step 20, the power supply 10 and the inverter 50 are connected, and a voltage is applied to the smoothing capacitor 60.
  • step 30 the process proceeds to step 30, and the motor 30 can be controlled.
  • the control device 90 calculates a voltage command value from the target torque command and performs output control of the PWM drive signal.
  • step 40 When the stop request to the system is confirmed in step 40, the output of the PWM drive signal is stopped and the relay 20 is opened in step 50, and the power source 10 and the inverter 50 are electrically disconnected.
  • the current sensor correction process in step 60 is performed.
  • the current sensor detection value in a state where the current becomes zero is held as an offset error correction value.
  • the current sensor correction unit 95 corrects the detection error caused by the offset error by subtracting the offset error correction value acquired from the current values Iu, Iv, and Iw detected by the current sensor 80.
  • Step 70 In order to discharge the electric charge remaining in the smoothing capacitor 60, a discharge process in Step 70 is performed.
  • the smoothing capacitor voltage Vdc falls below a predetermined value due to the discharge process, the completion of the discharge process is confirmed in step 80, and the system is stopped in step 90.
  • FIG. 3 is a flowchart for explaining the flow of the current sensor correction process performed prior to the discharge process when the relay 20 of the motor control system is in the open state.
  • the current sensor correction process is started.
  • the current sensor correction unit 95 determines the current state of the motor 30, and if it determines that no current is flowing, acquires a current sensor detection value in step 120.
  • the current sensor correction unit 95 sets the current sensor detection value acquired in step 120 as an offset error correction value.
  • the current sensor correction unit 95 generates corrected current values Iu ′, Iv ′, and Iw ′ that correct the offset error by subtracting the offset error correction value from the current sensor detection value while the motor control system is activated.
  • the initial value of the offset error correction value is 0, and is updated every time the current sensor correction process is performed.
  • FIG. 4 is a diagram showing a relationship between a current sensor detection value with respect to a current value (true value) and an offset error included in the detection value.
  • a detection error called an offset error is added to a current value (true value) that is the amount of current actually flowing.
  • the offset error is a constant value regardless of the magnitude of the current value (true value). The magnitude of the offset error varies depending on individual differences of current sensors.
  • FIG. 5 is a diagram showing the current sensor detection value with respect to the current value (true value) and the temperature characteristics of the offset error.
  • the offset error has a characteristic that varies depending on the temperature of the current sensor (temperature characteristic).
  • FIG. 6 shows the offset error (with temperature characteristics), offset error correction value, current value (true value), and current value after correction when current sensor correction processing is performed at the time of system startup. It is a figure. Here, a current sensor having a larger offset error as the temperature is higher will be described.
  • the temperature of the current sensor 80 gradually increases from the start of the controllable state of the motor 30 (time T1), and is higher than that at the time of system startup (time T0 to time T1) at the start of discharge processing (time T3). Yes.
  • the offset error gradually increases from time T1 as with the current sensor temperature.
  • the offset error correction value becomes the same value as the offset error (with temperature characteristics) at time T5.
  • the lower part of FIG. 6 shows the relationship between the current value (true value) and the corrected current value.
  • an offset error correction value is set, and the corrected current value becomes the same as the current value (true value).
  • the offset error becomes larger than time T5 as the current sensor temperature rises.
  • the corrected current value is different from the current value (true value) at the start of the discharge process (time T3), and there is a possibility that an unintended current flows in the motor and torque is generated.
  • FIG. 7 shows an offset error (with temperature characteristics), offset error correction value, current value (true value), and corrected current value when the current sensor correction process is performed immediately before the start of the discharge process.
  • FIG. 8 is a flowchart for explaining the flow of the current sensor correction process that is performed prior to the discharge process when the relay 20 of the motor control device is opened in the second embodiment of the present invention.
  • the smoothing capacitor voltage Vdc is set to the voltage threshold 1 in step 111.
  • step 112 if it is determined that the elapsed time from the execution of step 111 has passed the time threshold 1, the process proceeds to step 113.
  • step 113 If it is determined in step 113 that the smoothing capacitor voltage Vdc is equal to or lower than the voltage threshold 1, the process proceeds to step 120. If the smoothing capacitor voltage Vdc is not less than or equal to the voltage threshold 1, the process proceeds to step 111, where the voltage threshold 1 is updated and set with the current smoothing capacitor voltage Vdc.
  • step 120 the detection value of the current sensor is acquired.
  • step 130 the current sensor correction unit 95 sets the current sensor detection value acquired in step 120 as an offset error correction value.
  • the current sensor correction unit 95 generates corrected current values Iu ′, Iv ′, and Iw ′ that correct the offset error by subtracting the offset error correction value from the current sensor detection value while the motor control device is activated.
  • the initial value of the offset error correction value is 0, and is updated every time the current sensor correction process is performed.
  • the current sensor offset error correction by the current sensor correction unit 95 shown in FIG. 1 is based on the premise that no current flows between the inverter 50 and the motor 30.
  • the controller 90 controls the inverter 50 and does not flow current to the motor 30 after the relay 20 is cut off until the discharge process is started.
  • the switching element unit 51 of the inverter 50 is not performing a switching operation.
  • an induced voltage is generated in the motor 30 while the motor 30 is still rotating when the relay 20 is open, depending on the magnitude of the smoothing capacitor voltage value Vdc, it passes through the diode of the switching element portion 51 of the inverter 50.
  • a current flows to the smoothing capacitor 60.
  • the smoothing capacitor voltage Vdc increases. Therefore, the current sensor correction unit 95 performs a current sensor correction process when it is determined that the smoothing capacitor voltage Vdc has not increased as shown in step 113 of FIG. If it is determined that the smoothing capacitor voltage Vdc has not increased, no voltage increase has occurred due to the induced voltage of the motor 30. That is, no current is flowing from the motor 30 to the smoothing capacitor 60 via the inverter 50. Accordingly, whether or not the current sensor correction can be performed can be determined by determining the increase in the smoothing capacitor voltage Vdc.

Abstract

 平滑コンデンサの放電時にモータのq軸電流が意図せず流れることによってモータにトルクが発生することを低減する。 本発明に係るモータ制御装置は、リレーを介して電源と接続される平滑コンデンサを有するインバータと、前記インバータと接続されるモータと、前記モータに流れる電流を検出する電流センサと、を有するシステムを制御するモータ制御装置であって、前記インバータを介して前記平滑コンデンサに溜まった電荷を前記モータで放電する放電制御部と、前記リレーが遮断された後から前記放電制御部による放電制御開始までの間に前記モータの電流が流れていない状態で前記電流センサの補正を行う電流センサ補正部と、を備え、前記放電制御部は、前記電流センサ補正部により補正された前記電流センサの値に基づいてモータの電流を制御することで放電を行う。

Description

モータ制御装置
 本発明は、モータ制御装置に関する。
 電源からの出力をインバータにより交流電圧に変換し、モータを駆動するシステムにおいて、モータへ印加する電圧を制御するために、インバータは高速でスイッチングを行う素子を有している。このスイッチングにより変動する電圧を平滑化するために、インバータと電源の間に平滑コンデンサが配置される。また、電源とインバータとの間には、両者の間の接続を開閉するために、リレーが設けられている。
 モータの駆動時には、平滑コンデンサの電圧は電源電圧と略同じになり、ハイブリッド自動車や電気自動車では数100Vになる。インバータの保守、点検、修理時には、リレーを開状態とした上で平滑コンデンサの電荷をすばやく放出し、作業が安全に行えるようにする必要がある。
 特許文献1に、モータに電流を流すことで平滑コンデンサの電荷を放電する方法が提案されている。ロータの磁束方向でありモータ励磁用の永久磁石とともにモータを励磁するd軸電流を非ゼロに、d軸に直行しモータにトルクを付与するq軸電流がゼロとなるように、モータに供給する電流を制御する。モータに供給する電流は、電流センサにより検出したモータに流れている電流値と、目標の電流値の差をゼロに近づけるように動作するフィードバック制御により決定される。
 これにより、モータにトルクが発生することなくモータに電流を流すことが可能になり、巻線のインピーダンスで電力が消費されるため、平滑コンデンサの電荷の放電が行われる。
 しかしながら、モータ電流を検出する電流センサに検出誤差が有る場合、意図しない電流がモータに流れてしまうおそれがある。意図しない電流とは、q軸電流が非ゼロの電流である。q軸電流が流れるとモータにトルクが発生し、モータが回転してしまうおそれがある。
特開平9-70196号公報
 本発明が解決しようとする課題は、平滑コンデンサの放電時にモータのq軸電流が意図せず流れることによってモータにトルクが発生することを低減する。
 上記課題を解決するための、本発明に係るモータ制御装置は、リレーを介して電源と接続される平滑コンデンサを有するインバータと、前記インバータと接続されるモータと、前記モータに流れる電流を検出する電流センサと、を有するシステムを制御するモータ制御装置であって、前記インバータを介して前記平滑コンデンサに溜まった電荷を前記モータで放電する放電制御部と、前記リレーが遮断された後から前記放電制御部による放電制御開始までの間に前記モータの電流が流れていない状態で前記電流センサの補正を行う電流センサ補正部と、を備え、前記放電制御部は、前記電流センサ補正部により補正された前記電流センサの値に基づいてモータの電流を制御することで放電を行う。
 本発明により、平滑コンデンサの放電時にモータにトルクが発生することを低減させ、信頼性を向上させることができる。
本発明の第1の実施形態における電源、モータ、平滑コンデンサの放電処理を実施する装置を含むモータ制御システムの概要を説明する図である。 制御装置90の起動から停止までの流れを説明するフロー図である。 モータ制御システムのリレー20が開状態となり、放電処理に先んじて行う電流センサ補正処理の流れを説明するフロー図である。 電流値(真値)に対する電流センサ検出値と、検出値に含まれるオフセット誤差の関係を示した図である。 電流値(真値)に対する電流センサ検出値と、オフセット誤差の温度特性を示した図である。 システム起動時に電流センサ補正処理を実施した場合の、システムの起動から停止までのオフセット誤差(温度特性あり)、オフセット誤差補正値、電流値(真値)、補正後電流値を示した図である。 放電処理開始直前に電流センサ補正処理を実施した場合の、システムの起動から停止までのオフセット誤差(温度特性あり) 、オフセット誤差補正値、電流値(真値)、補正後電流値を示した図である。 本発明の第2の実施形態において、モータ制御装置のリレー20が開状態となり、放電処理に先んじて行う電流センサ補正処理の流れを説明するフロー図である。
 本発明の実施するための形態を図面を用いて説明する。
 図1は、本発明の第1の実施形態における電源、モータ、平滑コンデンサの放電処理を実施する装置を含むモータ制御システムの概要を説明する図である。
 モータ制御システムは、電源10と、リレー20と、モータ30と、モータ30の磁極位置検出回路40と、インバータ50と、平滑コンデンサ60と、平滑コンデンサ60の電圧検出回路70と、モータ30とインバータ50間の電流センサ80と、制御装置90を備える。
 電源10は、数100[V]の直流電源であり、ニッケル水素バッテリやリチウムイオンバッテリなどが用いられる。リレー20は、電源10とインバータ50の間に配置される。リレー20が開状態の時は電源10とインバータ50は電気的に遮断され、リレー20が閉状態の時電源10とインバータ50は電気的に接続され電源10の電力がインバータ50に供給される。
 平滑コンデンサ60は、電源10の出力を平滑化し、リレー20が閉状態のときには電源10と略同じ電圧となる。平滑コンデンサ60の電圧値Vdcは、電圧検出回路70により検出され、制御装置90へ伝達される。
 インバータ50は、複数個のスイッチングを行うスイッチング素子部51(たとえばIGBTとダイオード)を内蔵し、電源10からの電力を直流から三相交流への電力変換を行う。インバータ50に内蔵されるスイッチング素子部51は、電源10の正極側と負極側にそれぞれ3相分ずつ配置され、この合計6つの素子のスイッチングにより発生する電圧のパルス幅を変化させ、所定の電圧をモータ30へ印加するパルス幅変調方式が可能である。
 モータ30は、3相(ここではU相、V相、W相とする)巻線を有するステータと、巻線に電流が流れることで変化する磁束によってトルクが発生するロータの2つの部分から構成される。モータ30を流れる電流は、電流センサ80により検出され電流センサ補正部95へ伝達される。電流センサ80により検出された電流値Iu,Iv,Iwは、オフセット誤差とよばれる電流センサの検出誤差を含んでいる。
 磁極位置検出回路40は、モータ30のロータの回転により変化する磁極位置θを検出し、磁極位置θは回転数演算部91とPI制御部94へと伝達される。
 制御装置90は、回転数演算部91と、電流指令生成部92と、放電制御部93と、PI制御部94と、電流センサ補正部95と、PWM生成部96から構成され、外部からのトルク指令Trqを受信し、モータ30へ供給する電流を制御する。
 回転数演算部91は、磁極位置検出回路40から磁極位置θを取得し、磁極位置θの変化量からモータ回転数ωを生成する。
 電流指令生成部92は、外部から受信したトルク指令Trqに基づいて、指定したトルクを出力するためにd軸とq軸の目標電流値を、モータ回転数ωと平滑コンデンサ60の平滑コンデンサ電圧Vdcに応じて生成する。
 電流センサ補正部95は、電流センサ80により検出した電流値Iu,Iv,Iwに対し、電流センサ80のオフセット誤差に起因する検出誤差を補正する。電流センサ補正部95により補正された補正後電流値Iu’,Iv’,Iw’は、PI制御部94で使用される。
 PI制御部94は、 d軸とq軸の目標電流値と、補正後電流値Iu’,Iv’,Iw’をd軸電流とq軸電流に変換した電流値とを比較し、その差分に対しPI演算を施して、電圧指令値を生成する。 
 PWM生成部96は、電圧指令値と平滑コンデンサ電圧Vdcに基づいて、スイッチング素子部51をオンオフ制御するためのPWM駆動信号を生成する。
〔放電処理の概要〕
 放電制御部93は、モータ30の巻き線による放電に必要なd軸とq軸の目標電流値を出力する。リレー20が開状態となり平滑コンデンサ60の放電処理を行う場合、放電制御部93は、PI制御部94に放電制御部93から出力された目標電流値が入力されるように切り替えを行う。
 図2は、制御装置90の起動から停止までの流れを説明するフロー図である。
 ステップ10においてシステムが起動すると、ステップ20においてリレー20が閉状態となり電源10とインバータ50が接続され、平滑コンデンサ60に電圧が印加される。
 モータ30を制御する準備が完了するとステップ30に遷移し、モータ30を制御することができる状態となる。制御装置90は目標となるトルク指令から電圧指令値を算出し、PWM駆動信号の出力制御を行う。
 ステップ40においてシステムへの停止要求が確認されると、PWM駆動信号の出力を停止しステップ50にてリレー20は開状態となり、電源10とインバータ50は電気的に切り離される。
 リレー20が開状態となり、モータ30へ流れる電流がゼロとなる状態において、ステップ60の電流センサ補正処理を行う。電流センサ補正処理は、電流がゼロとなる状態における電流センサ検出値をオフセット誤差補正値として保持する。
 電流センサ補正部95は、電流センサ80により検出した電流値Iu,Iv,Iwから取得したオフセット誤差補正値分を減算することで、オフセット誤差に起因する検出誤差を補正する。
 次に、平滑コンデンサ60に残っている電荷を放電するためステップ70の放電処理が実施される。放電処理により平滑コンデンサ電圧Vdcが所定値を下回った場合、ステップ80において放電処理の完了が確認され、ステップ90においてシステムは停止する。
 電流センサ補正処理の詳細を図3のフロー図により説明する。図3は、モータ制御システムのリレー20が開状態となり、放電処理に先んじて行う電流センサ補正処理の流れを説明するフロー図である。 
 ステップ100において、電流センサ補正処理を起動する。ステップ110において、電流センサ補正部95はモータ30の電流の状態を判定し、電流が流れていないと判断すると、ステップ120で電流センサ検出値を取得する。 
 ステップ130において、電流センサ補正部95はステップ120で取得した電流センサ検出値を、オフセット誤差補正値として設定する。 
 電流センサ補正部95は、モータ制御システムが起動中、電流センサ検出値からオフセット誤差補正値を減算することで、オフセット誤差を補正した補正後電流値Iu’,Iv’,Iw’を生成する。 オフセット誤差補正値の初期値は0であり、電流センサ補正処理が実施される毎に更新される。 
 図4は、電流値(真値)に対する電流センサ検出値と、検出値に含まれるオフセット誤差の関係を示した図である。 
 電流センサ検出値は、実際に流れている電流量である電流値(真値)に対し、オフセット誤差とよばれる検出誤差が加算されている。オフセット誤差は、電流値(真値)の大小にかかわらず、一定の値となる。オフセット誤差の大きさは、電流センサの個体差により変化する。 
〔電流センサオフセット誤差の算出方法〕
 これらの関係から、電流センサ80のオフセット誤差は、電流値(真値)がゼロ、つまり電流が流れてない状態における電流センサ検出値と同じになる。図5は、電流値(真値)に対する電流センサ検出値と、オフセット誤差の温度特性を示した図である。 オフセット誤差は、電流センサの温度により変化する特性を持つ(温度特性)。 
 図6は、システム起動時に電流センサ補正処理を実施した場合の、システムの起動から停止までのオフセット誤差(温度特性あり)、オフセット誤差補正値、電流値(真値)、補正後電流値を示した図である。ここでは、温度が高いほどオフセット誤差が大きい電流センサについて説明する。 
 電流センサ80の温度は、モータ30の制御可能状態開始(時刻T1) より徐々に上昇し、放電処理開始時(時刻T3)にはシステム起動時(時刻T0~時刻T1)より高い状態となっている。オフセット誤差は、電流センサ温度と同様に時刻T1より徐々に上昇する。
 ここで時刻T5に電流センサ補正処理を実施すると、時刻T5においてオフセット誤差補正値がオフセット誤差(温度特性あり)と同じ値になる。 図6の下部に、電流値(真値)と補正後電流値の関係を示す。
 時刻T5において、オフセット誤差補正値が設定され補正後電流値が電流値(真値)と同じとなる。放電処理を開始する時刻T3では、電流センサ温度の上昇に伴い、時刻T5よりオフセット誤差は大きくなる。 
 これにより、放電処理開始時(時刻T3)において補正後電流値は電流値(真値)と差異があり、モータに意図しない電流が流れトルクが発生してしまう可能性がある。
 図7は、放電処理開始直前に電流センサ補正処理を実施した場合の、システムの起動から停止までのオフセット誤差(温度特性あり) 、オフセット誤差補正値、電流値(真値)、補正後電流値を示した図である。
 電流センサ補正処理を放電処理開始(時刻T3)の直前に実施することで、放電処理時と略同じの電流センサ温度に対するオフセット誤差を補正可能となる。 
 これにより、放電開始時(時刻T3)において補正後電流値は電流値(真値)と略同じになり、放電処理にてモータ30へ意図しない電流が流れることを防止できる。
 図8は、本発明の第2の実施形態において、モータ制御装置のリレー20が開状態となり、放電処理に先んじて行う電流センサ補正処理の流れを説明するフロー図である。
 ステップ100において、電流センサ補正処理が起動すると、ステップ111にて平滑コンデンサ電圧Vdcを電圧閾値1に設定する。
 ステップ112において、ステップ111を実施後からの経過時間が時間閾値1を経過したと判定するとステップ113へ遷移する。
 ステップ113において、平滑コンデンサ電圧Vdcが電圧閾値1以下と判定すると、ステップ120に遷移する。平滑コンデンサ電圧Vdcが電圧閾値1以下になっていない場合、ステップ111に遷移し、現在の平滑コンデンサ電圧Vdcにて電圧閾値1を更新設定する。
 ステップ120では、電流センサの検出値を取得する。ステップ130において、電流センサ補正部95はステップ120で取得した電流センサ検出値を、オフセット誤差補正値として設定する。 
 電流センサ補正部95は、モータ制御装置が起動中、電流センサ検出値からオフセット誤差補正値を減算することで、オフセット誤差を補正した補正後電流値Iu’,Iv’,Iw’を生成する。オフセット誤差補正値の初期値は0であり、電流センサ補正処理が実施される毎に更新される。 
 図1に示される電流センサ補正部95による電流センサのオフセット誤差補正は、インバータ50とモータ30間で、電流が流れていないことが前提となる。制御装置90は、リレー20遮断後から放電処理開始までの間で、インバータ50を制御しモータ30へ電流を流すことはない。つまり、インバータ50のスイッチング素子部51がスイッチング動作をしていないということである。 
 しかしながら、リレー20開状態時にモータ30がまだ回転している状態でモータ30に誘起電圧が発生した場合に、平滑コンデンサ電圧値Vdcの大きさによっては、インバータ50のスイッチング素子部51のダイオードを通って、平滑コンデンサ60へ電流が流れてしまう。 結果として、平滑コンデンサ電圧Vdcは上昇する。 
 そこで電流センサ補正部95は、図8のステップ113に示すように、平滑コンデンサ電圧Vdcが上昇していないと判断した場合に、電流センサ補正処理を実施する。 
 平滑コンデンサ電圧Vdcが上昇していないと判断した場合は、モータ30の誘起電圧による電圧上昇が発生していない。つまり、モータ30からインバータ50を経由して平滑コンデンサ60に電流が流れていないことを示している。これにより、平滑コンデンサ電圧Vdcの上昇を判定することで、電流センサ補正の実施可否を判断できる。
  10…電源
  20…リレー
  30…モータ
  40…磁極位置検出回路
  50…インバータ
  51…スイッチング素子部
  60…平滑コンデンサ
  70…電圧検出回路
  80…電流センサ
  90…制御装置
  91…回転数演算部
  92…電流指令生成部
  93…放電制御部
  94…PI制御部
  95…電流センサ補正部
  Iu,Iv,Iw…電流値
  Iu’,Iv’,Iw’…補正後電流値
  96…PWM生成部
  Vdc…平滑コンデンサ電圧
  Trq…トルク指令
  θ…磁極位置
  ω…モータ回転数

Claims (2)

  1.  リレーを介して電源と接続される平滑コンデンサを有するインバータと、前記インバータと接続されるモータと、前記モータに流れる電流を検出する電流センサと、を有するシステムを制御するモータ制御装置であって、
     前記インバータを介して前記平滑コンデンサに溜まった電荷を前記モータで放電する放電制御部と、
     前記リレーが遮断された後から前記放電制御部による放電制御開始までの間に前記モータの電流が流れていない状態で前記電流センサの補正を行う電流センサ補正部と、を備え、
     前記放電制御部は、前記電流センサ補正部により補正された前記電流センサの値に基づいてモータの電流を制御することで放電を行うモータ制御装置。 
  2.  請求項1に記載のモータ制御装置であって、
     前記電流センサ補正部は、前記平滑コンデンサの電圧変化から前記モータに電流が流れていない状態を検知するモータ制御装置。
PCT/JP2015/079627 2014-10-30 2015-10-21 モータ制御装置 WO2016067982A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15856081.3A EP3214754B1 (en) 2014-10-30 2015-10-21 Motor control device
CN201580056983.3A CN106852184B (zh) 2014-10-30 2015-10-21 电动机控制装置
JP2016556513A JP6363221B2 (ja) 2014-10-30 2015-10-21 モータ制御装置
US15/520,746 US10090790B2 (en) 2014-10-30 2015-10-21 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220955 2014-10-30
JP2014-220955 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067982A1 true WO2016067982A1 (ja) 2016-05-06

Family

ID=55857323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079627 WO2016067982A1 (ja) 2014-10-30 2015-10-21 モータ制御装置

Country Status (5)

Country Link
US (1) US10090790B2 (ja)
EP (1) EP3214754B1 (ja)
JP (1) JP6363221B2 (ja)
CN (1) CN106852184B (ja)
WO (1) WO2016067982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100399A1 (en) * 2016-12-02 2018-06-07 Cambridge Medical Robotics Limited Sensing motor current

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129338A1 (ja) * 2015-02-12 2016-08-18 日立オートモティブシステムズ株式会社 モータ駆動制御装置
CN111106744A (zh) * 2018-10-26 2020-05-05 上海汽车集团股份有限公司 一种逆变器主动放电方法和装置
JP7200758B2 (ja) * 2019-03-05 2023-01-10 株式会社デンソー 電圧変換装置
US11489472B2 (en) * 2021-03-03 2022-11-01 GM Global Technology Operations LLC Current source inverter control systems and methods
DE102021204397A1 (de) * 2021-05-03 2022-11-03 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Plausibilisierung einer Strommessung zwischen einemelektrischen Energiespeichersystem und einem elektrischen Verbraucher

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130570A (ja) * 2003-10-22 2005-05-19 Koyo Seiko Co Ltd パワーステアリング装置および電流検出手段のゲイン差補償方法
JP2008094342A (ja) * 2006-10-16 2008-04-24 Jtekt Corp 電動パワーステアリング装置
JP2013128403A (ja) * 2011-12-19 2013-06-27 Ls Industrial Systems Co Ltd 電流センサにおけるオフセット補償装置及びその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289567B2 (ja) 1995-08-31 2002-06-10 トヨタ自動車株式会社 インバータ内部蓄電手段の放電装置
JP3225901B2 (ja) * 1997-10-13 2001-11-05 トヨタ自動車株式会社 電池蓄電量検出装置
JP2005176580A (ja) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd 電気車の制御装置
JP4539431B2 (ja) * 2005-05-11 2010-09-08 トヨタ自動車株式会社 電源制御装置
US7944161B2 (en) * 2008-03-12 2011-05-17 GM Global Technology Operations LLC DC bus discharge in an electric motor system
JP2011200105A (ja) * 2010-02-26 2011-10-06 Denso Corp 回転機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130570A (ja) * 2003-10-22 2005-05-19 Koyo Seiko Co Ltd パワーステアリング装置および電流検出手段のゲイン差補償方法
JP2008094342A (ja) * 2006-10-16 2008-04-24 Jtekt Corp 電動パワーステアリング装置
JP2013128403A (ja) * 2011-12-19 2013-06-27 Ls Industrial Systems Co Ltd 電流センサにおけるオフセット補償装置及びその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214754A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100399A1 (en) * 2016-12-02 2018-06-07 Cambridge Medical Robotics Limited Sensing motor current
US10976353B2 (en) 2016-12-02 2021-04-13 Cmr Surgical Limited Sensing motor current
US11353481B2 (en) 2016-12-02 2022-06-07 Cmr Surgical Limited Sensing motor current
US11747368B2 (en) 2016-12-02 2023-09-05 Cmr Surgical Limited Sensing motor current

Also Published As

Publication number Publication date
US20170331401A1 (en) 2017-11-16
JPWO2016067982A1 (ja) 2017-07-06
US10090790B2 (en) 2018-10-02
EP3214754A1 (en) 2017-09-06
EP3214754A4 (en) 2018-07-04
CN106852184B (zh) 2019-09-06
EP3214754B1 (en) 2020-10-14
CN106852184A (zh) 2017-06-13
JP6363221B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6363221B2 (ja) モータ制御装置
KR100617670B1 (ko) 전동 파워 스티어링 제어 장치
JP5091535B2 (ja) モータ制御装置
JP5055836B2 (ja) 同期モーター用磁極位置センサーの位相ズレ検出装置および検出方法
US9590551B2 (en) Control apparatus for AC motor
JPH11308704A (ja) 電気車の制御装置及び制御方法
WO2012111505A1 (ja) モータ制御装置
US20150211533A1 (en) Electric compressor
JP2010246182A (ja) インバータの故障検知装置
JP2016083977A (ja) モータ制御装置
JP5375052B2 (ja) インバータの放電装置
JP6396869B2 (ja) モータ制御装置
JP5316551B2 (ja) 回転機の制御装置
JP4739290B2 (ja) 電動パワーステアリング制御装置
KR101171914B1 (ko) 친환경 자동차의 모터온도 추정방법 및 장치
JP2005176580A (ja) 電気車の制御装置
JP5904583B2 (ja) モータの制御装置
CN112075021B (zh) 电动机控制装置
JP2007228662A (ja) 誘導電動機の制御装置
JP2015154579A (ja) モータ制御装置
JP2012223026A (ja) 駆動装置
JP5542168B2 (ja) 電動機の制御装置
JP6933118B2 (ja) 駆動装置
JP5082586B2 (ja) 交流電動機の制御方法
JP2016067079A (ja) 電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556513

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520746

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015856081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015856081

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE