WO2016067925A1 - Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste - Google Patents

Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste Download PDF

Info

Publication number
WO2016067925A1
WO2016067925A1 PCT/JP2015/079128 JP2015079128W WO2016067925A1 WO 2016067925 A1 WO2016067925 A1 WO 2016067925A1 JP 2015079128 W JP2015079128 W JP 2015079128W WO 2016067925 A1 WO2016067925 A1 WO 2016067925A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
component
paste
imide resin
acid
Prior art date
Application number
PCT/JP2015/079128
Other languages
French (fr)
Japanese (ja)
Inventor
翔子 内山
智晴 栗田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016502558A priority Critical patent/JP6699546B2/en
Priority to CN201580048829.1A priority patent/CN106715590B/en
Priority to KR1020167034825A priority patent/KR102285047B1/en
Publication of WO2016067925A1 publication Critical patent/WO2016067925A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a polycarbonate imide resin paste. Particularly useful for COF (Chip On Film) substrate applications, having excellent heat resistance and flexibility, and suitable for coating methods such as printing presses, dispensers or spin coaters, and obtained by curing the paste.
  • the present invention relates to an electronic component having a solder resist layer, a surface protective layer, an interlayer insulating layer, or an adhesive layer.
  • polyimide resins are widely used as insulating materials for electric and electronic equipment because they are excellent in heat resistance, insulation and chemical resistance.
  • it is frequently used as a raw material for COF substrates, and is applied to wiring board materials and mounting substrate materials for electronic devices that require flexibility and small space.
  • coverlay material circuit protective layer
  • a solder resist is widely used as a permanent protective film for circuits.
  • Solder resist is a film formed on the entire surface excluding the part to be soldered of the circuit conductor. When wiring electronic parts on the printed wiring board, it prevents the solder from adhering to unnecessary parts and the circuit. Is used as a protective film to prevent direct exposure to air.
  • the solder resist layer, the surface protective layer or the adhesive layer which is a component of the COF substrate, is often applied and printed in the form of a solution, a composition comprising a solvent-soluble ring-closing polyimide resin as the material thereof
  • a solvent for varnishing a polyimide resin a high-boiling nitrogen solvent such as N-methyl-2-pyrrolidone has been used. The above high temperature and long time curing process is required, and there is a problem in that the electronic components are thermally deteriorated.
  • polyimide resins are generally hard and have a high elastic modulus
  • a substrate such as a film or copper foil
  • warping or the like occurs due to the difference in elastic modulus, which has a problem in the subsequent process.
  • the cured film lacks flexibility and has a problem of poor flexibility.
  • examples of polyimide resins that are soluble in non-nitrogen solvents and have low warpage and flexibility in which the resin is made flexible and have a low elastic modulus include (Patent Document 1), (Patent Document 2), and the like. Discloses a polysiloxane-modified polyimide resin.
  • polysiloxane-modified polyimide resins use an expensive diamine having a dimethylsiloxane bond as a starting material for reducing the elastic modulus, and are inferior in economic efficiency.
  • amount of polysiloxane copolymerized increases, there is a problem that adhesion, solvent resistance, and chemical resistance decrease.
  • Patent Document 3 the composition which improved the moldability of the resin composition by mixing a fixed amount of polycarbonate resin with a polyimide resin and imparting flexibility is disclosed (Patent Document 3) and (Patent Document 4).
  • Patent Document 5 the thermoplastic resin composition which improved the moldability by mixing a polyimide resin, an epoxy resin, and a polycarbonate resin is disclosed (Patent Document 5). These are listed as resins suitable for melt kneading and melt extrusion, and have excellent heat resistance and mechanical strength, but are not soluble in non-nitrogen solvents and have low warpage and flexibility. It's hard to say.
  • the present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is (1) non-nitrogen solvent solubility (2) low temperature drying / curability (3) low warpage (4) flexibility (5) printing characteristics (6) excellent alkali resistance, heat resistance Another object of the present invention is to provide an electronic component having a polycarbonate imide resin paste having excellent properties, chemical resistance and electrical characteristics, and a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste.
  • component (A) (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (1), and ( c) a polycarbonate imide resin containing an isocyanate compound or an amine compound as an essential copolymer component, (B) As an ingredient, an epoxy resin having two or more epoxy groups per molecule, (C) Polycarbonate imide resin paste containing a filler as a component.
  • m and n are each an integer of 1 or more, and a plurality of m may be the same or different from each other.
  • component (D) it is preferable to contain a curing accelerator as component (D).
  • the degree of change of the polycarbonate imide resin paste is 1.2 or more.
  • An electronic component having a solder resist layer, a surface protective layer, or an adhesive layer obtained by curing the polycarbonate imide resin paste according to any one of the above.
  • non-nitrogen solvent solubility (2) low temperature drying / curing properties (3) low warpage (4) flexibility (5) printing properties (6)
  • a polycarbonate imide resin paste having excellent alkali resistance and excellent heat resistance, chemical resistance, and electrical characteristics, and an electronic component having a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste. Can do.
  • the polycarbonate imide resin paste of the present invention is composed of a polycarbonate imide resin (A) as component (A) and an epoxy resin having two or more epoxy groups per molecule (hereinafter referred to as epoxy resin (B) as component (B). ) And (C) component contains an inorganic or organic filler (hereinafter also referred to as filler (C)).
  • the polycarbonate imide resin (A) includes (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an oxalic anhydride group (hereinafter also referred to as component (a)), (b) a general formula ( An essential copolymer of an acid dianhydride having a polycarbonate skeleton represented by 1) (hereinafter also referred to as component (b)) and (c) an isocyanate compound or an amine compound (hereinafter also referred to as component (c)). Ingredients.
  • the polycarbonate imide resin (A) used in the present invention will be described.
  • the polycarbonate imide resin (A) includes (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, and (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (1). And (c) a polycarbonate imide resin having an isocyanate compound or an amine compound as an essential copolymer component, preferably the components (a), (b) and (c) as essential copolymer components. Polycarbonate imide resin.
  • ⁇ (A) Trivalent and / or tetravalent polycarboxylic acid derivative having acid anhydride group As the component (a) constituting the polycarbonate imide resin (A) used in the present invention, a trivalent and / 4 valent acid anhydride group that generally reacts with an isocyanate component or an amine component to form a polyimide resin.
  • the polycarboxylic acid derivative is not particularly limited, and an aromatic polycarboxylic acid derivative, an aliphatic polycarboxylic acid derivative, or an alicyclic polycarboxylic acid derivative can be used.
  • the aromatic polycarboxylic acid derivative is not particularly limited.
  • trimellitic anhydride, pyromellitic dianhydride, ethylene glycol bisanhydro trimellitate, propylene glycol bisan hydrotrimellitate, 1,4- Alkylene glycol bisan hydrotrimellitate such as butanediol bisanhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene glycol bis anhydro trimellitate, 3, 3 '-4,4'-benzophenonetetracarboxylic dianhydride, 3,3'-4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, , 4,5,8-Naphthalene Tracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenet
  • the aliphatic or alicyclic polycarboxylic acid derivative is not particularly limited, but for example, butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic acid Dianhydride, cyclobutanetetracarboxylic dianhydride, hexahydropyromellitic dianhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1- Ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1
  • trivalent and / or tetravalent polycarboxylic acid derivatives having an acid anhydride group may be used alone or in combination of two or more.
  • pyromellitic anhydride, trimellitic anhydride, ethylene glycol bisanhydro trimellitate, 3,3'-4,4 ' -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride are preferred, trimellitic anhydride, and ethylene glycol bisanhydro trimellitate are more preferred.
  • the amount of copolymerization of component (a) is preferably 10 mol% or more and 90 mol% or less, and more preferably 20 mol% or more and 80 mol% or less, when the total acid component to be reacted is 100 mol%. Preferably, it is 30 mol% or more and 70 mol% or less. If it is less than 10 mol%, flame retardancy, mechanical properties, and heat resistance may not be obtained. If it exceeds 90 mol%, the components (b) and (c) described later cannot be copolymerized in a sufficient amount. Sometimes. Therefore, low warpage and solubility in non-nitrogen solvents may be reduced.
  • the component (b) constituting the polycarbonate imide resin (A) used in the present invention is a common component as a flexible component that imparts low warpage, non-nitrogen solvent solubility, etc. to the polycarbonate polyimide resin (A). Polymerized. By copolymerizing these, the elastic modulus of the polycarbonate imide resin (A) is lowered and the solubility in a non-nitrogen solvent used as a polymerization solvent is increased.
  • the component (b) is an acid dianhydride having a polycarbonate skeleton represented by the general formula (1).
  • m is preferably 1 or more, more preferably 2 or more, and further preferably 4 or more. Although an upper limit is not specifically limited, It is preferable that it is 20 or less, More preferably, it is 10 or less.
  • the plurality of m may be the same or different.
  • n is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. Although an upper limit is not specifically limited, It is preferable that it is 20 or less, More preferably, it is 10 or less.
  • (B) Although it does not specifically limit as a method to manufacture a component, It can synthesize
  • the reaction temperature is ⁇ 20 to 50 ° C., and more preferably 20 to 40 ° C. from the viewpoint of reaction selectivity.
  • a reaction ratio between the trimellitic anhydride chloride and the polycarbonate diol compound it is preferable to react 2 mol or more of trimellitic anhydride chloride with respect to 1 mol of the polycarbonate diol compound.
  • the concentration of the solute in the reaction is preferably 5 to 80% by weight, more preferably 40 to 60% by weight.
  • the precipitated hydrochloride is filtered off, and the solvent is concentrated to give an acid dianhydride having a polycarbonate skeleton represented by the general formula (1) (hereinafter referred to as a polycarbonate skeleton-containing tetracarboxylic dianhydride).
  • a polycarbonate skeleton-containing tetracarboxylic dianhydride an acid dianhydride having a polycarbonate skeleton represented by the general formula (1) (hereinafter referred to as a polycarbonate skeleton-containing tetracarboxylic dianhydride).
  • Examples of the method for producing the polycarbonate diol compound include transesterification between a diol as a raw material and carbonates, and a dehydrochlorination reaction between a diol as a raw material and phosgene.
  • carbonate which is a raw material For example, dialkyl carbonates, such as a dimethyl carbonate and a diethyl carbonate, are mentioned.
  • diol a linear diol compound having two hydroxyl groups can be used.
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like can be mentioned.
  • Duranor series manufactured by Asahi Kasei Chemicals Corporation and the like can be mentioned.
  • DURANOL (registered trademark) -T5650E Asahi Kasei Chemicals Co., Ltd.
  • polycarbonate diol 1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 500
  • DURANOL-T5651 Alignment-T5652
  • Polycarbonate diol 1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 1,000
  • DURANOL-T5652 polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6- Hexanediol, number average molecular weight of about 2,000
  • the amount of copolymerization of component (b) is preferably 10 mol% or more and 90 mol% or less, more preferably 20 mol% or more and 80 mol% or less, when the total acid component is 100 mol%. It is particularly preferably 30 mol% or more and 70 mol% or less. If it is less than 10 mol%, the elastic modulus may not be sufficiently reduced, and warping may occur when laminated, and the solubility in non-nitrogen solvents may be reduced. Therefore, the resin may be deposited within 5 months at 5 ° C to 30 ° C. On the other hand, when it exceeds 90 mol%, the above-mentioned component (a) and the component (c) described later cannot be contained in a sufficient amount, so that flexibility (mechanical properties) and heat resistance may be lowered.
  • the component (c) constituting the polycarbonate imide resin (A) used in the present invention is not particularly limited as long as it is an isocyanate compound or an amine compound, and is an aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate, Or the polyamine corresponding to these is mentioned.
  • An aromatic polyisocyanate or an aromatic polyamine is preferably used.
  • aromatic polyisocyanates include, but are not limited to, diphenylmethane-2,4′-diisocyanate, 3,2′- or 3,3′- or 4,2′- or 4,3′- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- Or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3 ' -Or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4 , 4'-diisocyanate, diphenylmethane-3,3'--
  • diphenylmethane-4,4′-diisocyanate, tolylene-2,4-diisocyanate, m-xylylene diisocyanate, 3,3′- or 2,2 ′ -Dimethylbiphenyl-4,4'-diisocyanate is preferred, and 3,3'-dimethylbiphenyl-4,4'-diisocyanate (o-tolidine diisocyanate, TODI) and tolylene-2,4-diisocyanate (TDI) are more preferred.
  • TODI o-tolidine diisocyanate
  • TDI tolylene-2,4-diisocyanate
  • these can be used alone or in combination of two or more.
  • an aromatic polyamine the polyamine corresponding to the said aromatic polyisocyanate can be used.
  • the amine component used in the polycarbonate imide resin (A) of the present invention is 100 mol%, it is preferable that any one of the isocyanate compounds is 100 mol%.
  • a diamine compound corresponding to the isocyanate is used instead of the isocyanate, it passes through a polyamic acid as a precursor of the polycarbonate polyimide resin.
  • a paste containing polyamic acid is necessary to imidize at a high temperature of about 200 ° C. or more after applying a paste containing polyamic acid to a substrate such as COF (Chip On Film), which may cause thermal degradation of COF. Yes, and there may be restrictions on equipment.
  • COF Chip On Film
  • the polycarbonate imide-based resin (A) used in the present invention may be further copolymerized with aliphatic, alicyclic, or aromatic polycarboxylic acids as necessary as long as the target performance is not impaired.
  • aliphatic dicarboxylic acid examples include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedicarboxylic acid, 2-methyloctanedicarboxylic acid, 3,8-dimethyldecanedicarboxylic acid, 3,7-dimethyldecanedicarboxylic acid, 9,12-dimethyleicosane diacid, fumaric acid
  • alicyclic dicarboxylic acids such as maleic acid, dimer acid, hydrogenated dimer acid and the like include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexane, and the like.
  • aromatic dicarboxylic acids such as dicarboxylic acid and 4,4′-dicyclohexyldicarboxylic acid
  • isophthalic acid Terephthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, stilbene dicarboxylic acid and the like. These dicarboxylic acids may be used alone or in combination of two or more. In view of heat resistance, adhesion, solubility, cost, etc., sebacic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, and isophthalic acid are preferable.
  • aliphatic / aromatic polyester diols (trade name VYLON (registered trademark) 220 manufactured by Toyobo Co., Ltd.), aliphatic / aromatic polycarbonate diols (produced by Daicel Chemical Industries, Ltd., trade name PLACEL (registered trademark)) ) -CD220, manufactured by Kuraray Co., Ltd., trade names Kuraray polyol C-1015N, C-2015N, etc., manufactured by Asahi Kasei Chemicals Corporation, trade names Duranol (registered trademark) T5650E, T5650J, T5651, T5652, etc.), polycaprolactone diol (Daicel Chemical Industries, Ltd., trade name PLACEL (registered trademark) -220, etc.), carboxy-modified acrylonitrile butadiene rubbers (U
  • the polycarbonate imide resin (A) As a method for producing the polycarbonate imide resin (A), a method (isocyanate) produced from a polycarboxylic acid component having an acid anhydride group (component (a) and component (b)) and an isocyanate component (component (c)). Method), or a method of reacting a polycarboxylic acid component having an acid anhydride group (components (a) and (b)) with an amine component (component (c)) to form an amic acid, followed by ring closure (direct method) There are known methods. Industrially, the isocyanate method is advantageous.
  • the polymerization reaction of the polycarbonate imide resin (A) used in the present invention is preferably performed in a non-nitrogen solvent. Specifically, in the presence of one or more organic solvents selected from the group consisting of ether solvents, ester solvents, ketone solvents, and aromatic hydrocarbon solvents, for example, in the isocyanate method, carbon dioxide that is liberated is generated. It is preferable to carry out the heat condensation while removing from the reaction system.
  • the solvent is not particularly limited, but examples of ether solvents include diethylene glycol dimethyl ether (diglyme), diethylene glycol diethyl ether (ethyl diglyme), triethylene glycol dimethyl ether (triglyme), and triethylene glycol diethyl ether (ethyl triglyme).
  • ester solvents include ⁇ -butyrolactone and cellosolve acetate
  • examples of ketone solvents include methyl isobutyl ketone, cyclopentanone, cyclohexanone, and isophorone
  • examples of aromatic hydrocarbon solvents include toluene, xylene, and sorbeso. Can be mentioned. These may be used alone or in combination of two or more.
  • the polycarbonate imide resin (A) When producing the polycarbonate imide resin (A), it is preferable to select and use a solvent that dissolves the polycarbonate imide resin (A) to be produced, and is suitable as a solvent for the polycarbonate imide resin paste after polymerization. More preferably, one is used. By doing so, complicated operations such as solvent replacement are eliminated, and it becomes possible to manufacture at low cost.
  • the boiling point of the solvent is preferably 140 ° C. or higher and 230 ° C. or lower. When the temperature is lower than 140 ° C., the solvent may be volatilized during the polymerization reaction. In addition, when screen printing is performed, for example, the solvent is rapidly volatilized and the plate may be clogged.
  • ⁇ -butyrolactone, cyclohexanone, diglyme, or triglyme is preferable for relatively high volatility, imparting low temperature drying / curing property, excellent varnish stability, and conducting the reaction in a homogeneous system efficiently.
  • the amount of the solvent used is preferably 0.8 to 5.0 times (mass ratio), more preferably 0.9 to 2.0 times that of the polycarbonate imide resin (A) to be produced. If it is less than 0.8 times, the viscosity at the time of synthesis is too high, and the synthesis tends to be difficult due to the inability to stir, and if it exceeds 5.0 times, the reaction rate tends to decrease.
  • the reaction temperature is preferably 60 to 200 ° C, more preferably 100 to 180 ° C. If it is less than 60 ° C., the reaction time becomes too long, and if it exceeds 200 ° C., the monomer component may be decomposed during the reaction. In addition, a three-dimensional reaction occurs and gelation is likely to occur.
  • the reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, particularly the reaction concentration.
  • the components (a), (b), (c), polymerization catalyst and polymerization solvent are added to the reaction vessel, dissolved, and then stirred at 80 to 190 ° C., preferably 100 to 180 ° C. with stirring in a nitrogen stream. After reacting for 5 hours or more, the target polycarbonate imide resin (A) can be obtained by diluting to an appropriate solvent viscosity with a polymerization solvent and cooling.
  • the polycarbonate imide resin (A) used in the present invention preferably has a molecular weight corresponding to a logarithmic viscosity of 0.1 to 2.0 dl / g at 30 ° C. in ⁇ -butyrolactone, more preferably It has a molecular weight corresponding to a logarithmic viscosity of 2 to 1.5 dl / g.
  • the logarithmic viscosity is less than 0.1 dl / g, the heat resistance may be lowered or the coating film may be brittle. In addition, the tackiness of the paste is strong and the release of the plate may worsen.
  • the glass transition temperature of the polycarbonate imide resin (A) used in the present invention is preferably 20 ° C. or higher, more preferably 60 ° C. or higher. If it is less than 20 degreeC, heat resistance may be insufficient and resin may block. Although an upper limit is not specifically limited, 300 degrees C or less is preferable from a solvent solubility viewpoint.
  • the epoxy resin of component (B) used in the present invention is not particularly limited as long as it is an epoxy resin having two or more epoxy groups per molecule.
  • the epoxy resin (B) is not particularly limited.
  • bisphenol A type epoxy resin such as trade name jER (registered trademark) 828, 1001 manufactured by Mitsubishi Chemical Corporation, or trade name ST manufactured by Toto Kasei Co., Ltd. -Hydrogenated bisphenol A type epoxy resins such as 2004 and 2007, brand name YDF-170, manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy such as 2004, brand names YDB-400, 600 manufactured by Toto Kasei Co., Ltd.
  • Brominated bisphenol A type epoxy resin trade name jER (registered trademark) 152, 154 manufactured by Mitsubishi Chemical Co., Ltd., phenol novolak type epoxy resin such as trade name jER (registered trademark) 157S65 manufactured by Mitsubishi Chemical Corporation, Bisphenol A novolac type epoxy resin such as 157S70, trifunctional phenol type epoxy tree such as trade name jER (registered trademark) 1032H60 manufactured by Mitsubishi Chemical Corporation Fat, a phenol novolac type epoxy resin such as Nippon Kayaku Co., Ltd. trade name EPPN (registered trademark) -201, BREN (registered trademark), Dow Chemical Co., Ltd. trade name DEN-438, manufactured by Tohto Kasei Co., Ltd.
  • jER registered trademark
  • 157S65 manufactured by Mitsubishi Chemical Corporation
  • Bisphenol A novolac type epoxy resin such as 157S70
  • trifunctional phenol type epoxy tree such as trade name jER (registered trademark) 1032H60 manufactured by Mitsubishi Chemical Corporation Fat
  • Triglycidyl isocyanurate such as TEPIC (registered trademark), bixylenol type epoxy resin such as trade name YX-4000 manufactured by Yuka Shell Epoxy Co., Ltd., trade name YL-6056 manufactured by Yuka Shell Epoxy Co., Ltd.
  • TEPIC registered trademark
  • bixylenol type epoxy resin such as trade name YX-4000 manufactured by Yuka Shell Epoxy Co., Ltd., trade name YL-6056 manufactured by Yuka Shell Epoxy Co., Ltd.
  • Examples thereof include bisphenol type epoxy resins, and these may be used alone or in combination of two or more.
  • epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin having more than two epoxy groups in one molecule, and o-cresol novolak type epoxy resin are preferable.
  • the amine type epoxy resin is non-halogen type, and is preferable in terms of compatibility with the polycarbonate imide resin (A), solvent resistance, chemical resistance, and moisture resistance.
  • the amount of the epoxy resin (B) used in the present invention is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, particularly preferably 3 to 100 parts by mass with respect to 100 parts by mass of the polycarbonate imide resin (A). 30 parts by mass.
  • the blending amount of the epoxy resin (B) is less than 1 part by mass, solder heat resistance, solvent resistance, chemical resistance, and moisture resistance tend to decrease, and when it exceeds 50 parts by mass, low warpage, mechanical properties, There exists a tendency for heat resistance, varnish stability, and compatibility with a polycarbonate imide-type resin (A) to fall.
  • the epoxy resin (B) used in the present invention may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
  • the addition method of the epoxy resin (B) is not particularly limited, and it may be added after dissolving the epoxy resin (B) to be added in advance in the same solvent as that contained in the polycarbonate imide resin (A). Alternatively, it may be added directly to the polycarbonate imide resin (A).
  • the filler (C) used in the present invention (hereinafter also simply referred to as component (C)) is preferably an inorganic or organic filler.
  • the filler (C) is not particularly limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin (A) to form a paste and can impart thixotropic properties (thixotropic properties) to the paste. That is, an inorganic or organic filler that can impart thixotropic properties to the polycarbonate imide resin paste of the present invention is preferable.
  • inorganic fillers examples include silica (SiO 2 , trade name AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO ⁇ TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO ⁇ TiO 2 ), zirconate titanate lead (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3), spinel (MgO ⁇ Al 2 O 3) , mullite (3Al 2 O 3 ⁇ 2SiO 2 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), talc (3MgO ⁇ 4SiO 2 ⁇ H
  • the inorganic filler used in the present invention preferably has an average particle size of 50 ⁇ m or less and a maximum particle size of 100 ⁇ m or less, more preferably an average particle size of 20 ⁇ m or less, and most preferably an average particle size of 10 ⁇ m or less.
  • the average particle diameter (median diameter) referred to here is a value obtained on a volume basis using a laser diffraction / scattering particle size distribution measuring apparatus. When the average particle diameter exceeds 50 ⁇ m, it becomes difficult to obtain a paste having sufficient thixotropy, and the flexibility of the coating film may be lowered. When the maximum particle diameter exceeds 100 ⁇ m, the appearance and adhesion of the coating film tend to be insufficient.
  • the organic filler used in the present invention is not limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin solution to form a paste and can impart thixotropy to the paste.
  • the amount of the filler (C) used in the present invention is preferably 1 to 25 parts by mass when the component (A) is 100 parts by mass. More preferably, it is 2 to 15 parts by mass, and particularly preferably 3 to 12 parts by mass. If the blending amount of the inorganic or organic filler is less than 1 part by mass, the printability tends to decrease, and if it exceeds 25 parts by mass, the mechanical properties such as the flexibility of the coating film and the transparency tend to decrease.
  • a curing accelerator can be added as the component (D) in order to further improve the properties such as adhesion, chemical resistance and heat resistance.
  • the curing accelerator (D) used in the present invention is not particularly limited as long as it can accelerate the curing reaction of the polycarbonate imide resin (A) and the epoxy resin (B).
  • such a curing accelerator (D) include, for example, 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ manufactured by Shikoku Chemicals Co., Ltd. -CN, 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z -AZINE, 2MA-OK, 2P4MHZ, 2PHZ, 2P4BHZ and other imidazole derivatives, acetoguanamine, benzoguanamine, etc.
  • Quaternary ammonium salts such as phosphonium salts, benzyltrimethylammonium chloride, phenyltributylammonium chloride, the polycarboxylic acid anhydride, diphenyliodonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyri Rium hexafluorophosphate, Irgacure (registered trademark) 261 (manufactured by Ciba Specialty Chemicals), Optoma-SP- 170 (manufactured by ADEKA), photocationic polymerization catalyst, styrene-maleic anhydride resin, equimolar reaction product of phenyl isocyanate and dimethylamine, organic polyisocyanate such as tolylene diisocyanate, isophorone diisocyanate and dimethylamine, etc.
  • phosphonium salts such as benz
  • Molar reactants and the like You may use these individually or in combination of 2 or more types.
  • it is a curing accelerator having latent curing properties, such as DBU, DBN organic acid salts and / or tetraphenylborate (U-CAT5002 (manufactured by San Apro Co., Ltd.)), DBU phenol salt (U-CAT SA 1 (Sun Apro). Manufactured by Co., Ltd.), and a cationic photopolymerization catalyst.
  • a curing accelerator having latent curing properties such as DBU, DBN organic acid salts and / or tetraphenylborate (U-CAT5002 (manufactured by San Apro Co., Ltd.)), DBU phenol salt (U-CAT SA 1 (Sun Apro). Manufactured by Co., Ltd.), and a cationic photopolymerization catalyst.
  • the amount of the curing accelerator (D) used is preferably 0 to 20 parts by mass when the component (A) is 100 parts by mass. If it exceeds 20 parts by mass, the storage stability of the polycarbonate imide resin composition and the heat resistance of the coating film may be lowered.
  • the polycarbonate imide resin paste of the present invention is a composition containing the aforementioned component (A), component (B), and component (C). Further, if necessary, the component (D) and other blending components can be blended preferably in the above proportions. What is obtained by uniformly mixing these components with a roll mill, a mixer, a three roll or the like is preferable. The mixing method is not particularly limited as long as sufficient dispersion can be obtained. Multiple kneading with three rolls is preferred.
  • the polycarbonate imide resin and paste of the present invention preferably have a viscosity in a Brookfield viscometer (hereinafter also referred to as a B-type viscometer) in the range of 50 dPa ⁇ s to 1000 dPa ⁇ s at 25 ° C., and 100 dPa ⁇ s to 800 dPa. -The range of s is more preferable.
  • a Brookfield viscometer hereinafter also referred to as a B-type viscometer
  • the viscosity is less than 50 dPa ⁇ s, there is a tendency for the paste to flow out after printing and the film thickness to be reduced.
  • the viscosity exceeds 1000 dPa ⁇ s, the transferability of the paste to the base material is lowered during printing, and there is a tendency for voids and pinholes in the printed film to increase.
  • the degree of change of the polycarbonate imide resin paste is preferably 1.2 or more, more preferably 1.5 or more in the measurement method described later.
  • the upper limit is preferably 7.0 or less, and more preferably 6.0 or less. If the degree of change is less than 1.2, the flow of paste after printing increases and the film thickness tends to be reduced. If it exceeds 7.0, the paste tends not to flow.
  • the thixotropic degree can be adjusted by the blending amount of the component (C) as a thixotropic agent.
  • colorings such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc.
  • Agents hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol, phenothiazine, and other known and conventional polymerization inhibitors, such as olben, benton, and montmorillonite, known and commonly used thickeners, silicone-based, fluorine-based, polymer-based, etc.
  • the polycarbonate imide resin paste of the present invention can be cured as a solder resist as follows to obtain a cured product. That is, methods such as screen printing, spraying, roll coating, electrostatic coating, curtain coating, etc. on COF (Chip On Film) substrates formed by plating copper on resin substrates such as polyimide films Then, the polycarbonate imide resin paste of the present invention is applied to a film thickness of 5 to 80 ⁇ m, the coating film is pre-dried at 60 to 120 ° C., and then dried at 120 to 200 ° C. Drying may be in air or in an inert atmosphere.
  • electroless plating may be used, or a method of sputtering copper on the resin substrate may be used.
  • the layer of the polycarbonate imide resin paste of the COF substrate thus obtained becomes a solder resist layer, a surface protective layer or an adhesive layer of the COF substrate.
  • the polycarbonate imide resin paste of the present invention is useful as a film forming material for semiconductor elements, overcoat inks for various electronic components, solder resist inks, and can also be used as paints, coating agents, adhesives, and the like.
  • the solder resist layer is a film formed on the entire surface excluding the part to be soldered of the circuit conductor, and when wiring electronic parts on the printed wiring board, the solder adheres to unnecessary parts. It is used as a protective coating that prevents the circuit from being directly exposed to air.
  • the surface protective layer is used for mechanically and chemically protecting the electronic member from a processing step or a use environment by being attached to the surface of the circuit member.
  • the adhesive layer is mainly used when a metal layer and a film layer are bonded and a bonding process is performed.
  • V1 represents the solvent viscosity measured with an Ubbelohde viscosity tube
  • V1 and V2 were determined from the time required for the polymer solution and the solvent (N-methyl-2-pyrrolidone) to pass through the capillary of the viscosity tube
  • V3 is the polymer concentration (g / dl).
  • laminated film As the laminated film, as a commercially available polyimide base film, trade name Viroflex (registered trademark) (manufactured by Toyobo) and trade name Esperflex (registered trademark) (manufactured by Sumitomo Metal Mining) were used.
  • CCL for COF trade name Esperflex (registered trademark)
  • ⁇ Printing characteristics> The printability when the polycarbonate imide resin paste was screen-printed by the method described in the section ⁇ Preparation of laminated film> was evaluated. (Evaluation) ⁇ : The release property is good and the printing surface is flat. ⁇ : The release property is poor, or unevenness is observed on the printing surface. ⁇ : The release property is poor and unevenness is seen on the printing surface. Be
  • ⁇ Insulation resistance between lines> The insulation resistance value ( ⁇ ) between lines when a DC voltage of 500 V ⁇ 1 minute was applied to the obtained laminated film was measured. The higher the number, the better.
  • the obtained laminated film was evaluated according to JIS-K5600-5-4 (1999).
  • the pencil hardness is preferably 2H or higher, and more preferably 3H or higher.
  • Example 1 10 parts by mass of jER154 (trade name of phenol novolac type epoxy resin manufactured by Mitsubishi Chemical Corporation) is added to 100 parts by mass of the nonvolatile content of the polycarbonate imide resin solution A-1 obtained in Production Example 2, and ⁇ -butyrolactone is added.
  • jER154 trade name of phenol novolac type epoxy resin manufactured by Mitsubishi Chemical Corporation
  • Lucentite SEN synthetic smectite manufactured by Corp Chemical Co.
  • Ucat 5002 manufactured by San Apro Co., Ltd.
  • BYK-054 as an antifoaming agent
  • BYK-354 Bic Chemie Co., Ltd.
  • BYK-E410 Bic Chemie Co., Ltd.
  • the composition is first kneaded roughly, and then kneaded three times using a high-speed three-roll, whereby the filler is uniformly dispersed and the polycarbonate imide resin paste (1) of the present invention having thixotropic properties Got.
  • the viscosity was adjusted with ⁇ -butyrolactone, the solution viscosity was 232 poise and the throttling rate was 1.48.
  • Polycarbonate imide of the present invention on a copper circuit (L / S 50/50) obtained by a subtractive method from Toyobo's two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 ⁇ m, base material 20 ⁇ m)
  • a predetermined pattern was printed on the resin-based resin paste (1) with a SUS mesh plate (150 mesh manufactured by Murakami Co., Ltd., emulsion thickness 30 ⁇ m) at a printing speed of 5 cm / second, and dried in an air atmosphere at 80 ° C. for 6 minutes.
  • Example 2 Preparation of evaluation samples 2 to 9 after preparing a paste in the same manner as in Example 1 except that the polycarbonate imide resin (A) solution and the components (B) to (D) shown in Table 1 were used. did. The evaluation results are shown in Table 1.
  • Example 10 and 11 A paste was prepared in the same manner as in Example 1 except that the polycarbonate imide resin (A) solution and the components (B) to (D) listed in Table 1 were used, and then the CCL for COF manufactured by Sumitomo Metal Mining was used.
  • the polycarbonate imide resin paste of the present invention was printed with a SUS mesh plate (Murakami Co., Ltd. 150 mesh, emulsion thickness 30 ⁇ m) at a printing speed of 5 cm / sec and dried in an air atmosphere at 80 ° C. for 6 minutes.
  • Example 2 Example 1 except that the polycarbonate imide resin solution A-3 obtained in Production Example 3 was used and jER154 (trade name of phenol novolac type epoxy resin manufactured by Mitsubishi Chemical Corporation) was not blended. A paste was prepared in the same manner as above. Since the epoxy resin was not blended, the curing of the paste was insufficient, and the solder heat resistance and alkali resistance were lowered. The evaluation results are shown in Table 2.
  • Example 3 A paste was prepared in the same manner as in Example 1 except that the polycarbonate imide resin solution A-3 obtained in Production Example 3 was used and no filler was added. Since no filler was blended, the thixotropy was insufficient and screen printing was impossible. Therefore, a laminated film sample for evaluation could not be produced.
  • the polycarbonate imide resin paste obtained by the present invention has both excellent heat resistance and flexibility as a film forming material. For this reason, it is useful for overcoat inks and solder resist inks for various electronic components such as COF substrates, and it can be used in a wide range of electronic equipment as paints, coating agents, adhesives, etc. There is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Provided is a polycarbonate-imide-based resin paste which is excellent in terms of (1) solubility in nitrogen-free solvents, (2) low-temperature dryability/curability, (3) low warpage, (4) flexing characteristics, (5) printability, and (6) alkali resistance and in terms of heat resistance, chemical resistance, and electrical property. Also provided is an electronic component having a solder resist layer, surface protective layer, or adhesive layer which is obtained by curing the paste. The polycarbonate-imide-based resin paste comprises component (A), which is a polycarbonate-imide resin obtained from comonomer ingredients essentially including (a) one or more tri- and/or tetravalent polycarboxylic acid derivatives having an acid anhydride group, (b) an acid dianhydride having a polycarbonate skeleton that has a specific structure, and (c) an isocyanate compound or amine compound, component (B), which is an epoxy resin having two or more epoxy groups per molecule, and component (C), which is a filler.

Description

ポリカーボネートイミド系樹脂ペーストおよび該ペーストを硬化して得られるソルダーレジスト層、表面保護層、層間絶縁層または接着層を有する電子部品Electronic component having polycarbonate imide resin paste and solder resist layer, surface protective layer, interlayer insulation layer or adhesive layer obtained by curing the paste
 本発明は、ポリカーボネートイミド系樹脂ペーストに関する。特にCOF(Chip On Film)基板用途に有用な、優れた耐熱性、柔軟性を有し、印刷機、ディスペンサーまたはスピンコーターなどの塗布方法に適したポリカーボネートイミド樹脂ペーストおよび該ペーストを硬化して得られるソルダーレジスト層、表面保護層、層間絶縁層または接着層を有する電子部品に関する。 The present invention relates to a polycarbonate imide resin paste. Particularly useful for COF (Chip On Film) substrate applications, having excellent heat resistance and flexibility, and suitable for coating methods such as printing presses, dispensers or spin coaters, and obtained by curing the paste. The present invention relates to an electronic component having a solder resist layer, a surface protective layer, an interlayer insulating layer, or an adhesive layer.
 一般に、ポリイミド系樹脂は、耐熱性、絶縁性および、耐薬品性などに優れるため、電気電子機器用の絶縁材料として広く使用されている。特に、COF基板の原材料としての使用が多く、柔軟性や小スペース性が必要な電子機器の配線板材料、実装用基板材料へ適用されている。例えば、液晶表示機器、プラズマディスプレイ、有機ELディスプレイなどに使用される表示装置用デバイス実装基板や、スマートホン、タブレット機器端末、デジタルカメラ、携帯型ゲーム機などの基板間中継ケーブル、操作スイッチ部基板、或いは、これら基板のカバーレイ材料(回路の保護層)等に広く使用されている。特に、プリント配線板では、回路の永久保護皮膜としてソルダーレジストが広く用いられている。ソルダーレジストとは、回路導体のはんだ付けする部分を除いた全面に皮膜形成されるもので、プリント配線板に電子部品を配線する際、はんだが不必要な部分に付着するのを防ぐとともに、回路が直接空気に暴露されるのを防止する保護皮膜として使用されるものである。 Generally, polyimide resins are widely used as insulating materials for electric and electronic equipment because they are excellent in heat resistance, insulation and chemical resistance. In particular, it is frequently used as a raw material for COF substrates, and is applied to wiring board materials and mounting substrate materials for electronic devices that require flexibility and small space. For example, device mounting substrates for display devices used for liquid crystal display devices, plasma displays, organic EL displays, etc., inter-board relay cables for smart phones, tablet device terminals, digital cameras, portable game machines, operation switch unit substrates, etc. Alternatively, it is widely used as a coverlay material (circuit protective layer) for these substrates. In particular, in a printed wiring board, a solder resist is widely used as a permanent protective film for circuits. Solder resist is a film formed on the entire surface excluding the part to be soldered of the circuit conductor. When wiring electronic parts on the printed wiring board, it prevents the solder from adhering to unnecessary parts and the circuit. Is used as a protective film to prevent direct exposure to air.
 ところで、COF基板の構成要素であるソルダーレジスト層、表面保護層または接着層は、溶液形態で塗布、印刷される場合が多いため、その材料として、溶剤可溶な閉環型ポリイミド樹脂からなる配合物が提案されている、しかしながら、従来、ポリイミド系樹脂のワニス化のための溶媒としては、N-メチル-2-ピロリドン等の高沸点窒素系溶媒が用いられているため、乾燥/硬化時には200℃以上の高温長時間の硬化工程が必要となり、電子部品の熱劣化が生じる問題があった。 By the way, since the solder resist layer, the surface protective layer or the adhesive layer, which is a component of the COF substrate, is often applied and printed in the form of a solution, a composition comprising a solvent-soluble ring-closing polyimide resin as the material thereof However, conventionally, as a solvent for varnishing a polyimide resin, a high-boiling nitrogen solvent such as N-methyl-2-pyrrolidone has been used. The above high temperature and long time curing process is required, and there is a problem in that the electronic components are thermally deteriorated.
 さらにポリイミド系樹脂は一般的に高弾性率で硬いため、フィルム、銅箔などの基材に積層した場合、弾性率の差から反り等が発生するため、後工程上問題があった。また、硬化膜は柔軟性に欠け、屈曲性に劣る問題があった。 Furthermore, since polyimide resins are generally hard and have a high elastic modulus, when laminated on a substrate such as a film or copper foil, warping or the like occurs due to the difference in elastic modulus, which has a problem in the subsequent process. In addition, the cured film lacks flexibility and has a problem of poor flexibility.
 また、非窒素系溶媒に可溶であり、樹脂を可とう化及び低弾性率化した低反り及び柔軟性を有するポリイミド系樹脂としては、例えば、(特許文献1)、(特許文献2)等に、ポリシロキサン変性ポリイミド系樹脂が開示されている。 In addition, examples of polyimide resins that are soluble in non-nitrogen solvents and have low warpage and flexibility in which the resin is made flexible and have a low elastic modulus include (Patent Document 1), (Patent Document 2), and the like. Discloses a polysiloxane-modified polyimide resin.
 これらのポリシロキサン変性ポリイミド系樹脂は、低弾性率化のため高価なジメチルシロキサン結合を有するジアミンを出発原料として用いており、経済性に劣る。また、ポリシロキサン共重合量の増加に伴い、密着性、耐溶剤性、耐薬品性が低下する問題がある。 These polysiloxane-modified polyimide resins use an expensive diamine having a dimethylsiloxane bond as a starting material for reducing the elastic modulus, and are inferior in economic efficiency. In addition, as the amount of polysiloxane copolymerized increases, there is a problem that adhesion, solvent resistance, and chemical resistance decrease.
 また、ポリイミド樹脂にポリカーボネート樹脂を一定量混合し、柔軟性を付与することで、樹脂組成物の成形加工性を向上させた組成物が開示されている(特許文献3)、(特許文献4)。さらに、ポリイミド樹脂とエポキシ樹脂及びポリカーボネート樹脂を混合することによって、成形加工性を向上させた熱可塑性樹脂組成物が開示されている(特許文献5)。これらは、溶融混練、溶融押出しに適した樹脂として挙げられており、耐熱性や機械的強度は優れたものであるが、非窒素系溶媒に可溶ではなく、低反り及び柔軟性を有するものとは言い難い。 Moreover, the composition which improved the moldability of the resin composition by mixing a fixed amount of polycarbonate resin with a polyimide resin and imparting flexibility is disclosed (Patent Document 3) and (Patent Document 4). . Furthermore, the thermoplastic resin composition which improved the moldability by mixing a polyimide resin, an epoxy resin, and a polycarbonate resin is disclosed (Patent Document 5). These are listed as resins suitable for melt kneading and melt extrusion, and have excellent heat resistance and mechanical strength, but are not soluble in non-nitrogen solvents and have low warpage and flexibility. It's hard to say.
特開平7-304950号公報Japanese Patent Laid-Open No. 7-304950 特開平8-333455号公報JP-A-8-333455 特開平5-320492号公報JP-A-5-320492 特開平6-136267号公報JP-A-6-136267 特開昭62-7758号公報JP-A-62-2758
 かかる例からわかるように、これまでの従来技術では、(1)非窒素系溶媒溶解性(2)低温乾燥/硬化性(3)低反り性(4)屈曲性(5)印刷特性、さらに(6)耐アルカリ性を同時に満足する、ソルダーレジスト層、表面保護層又は接着層として適用可能なポリイミド系樹脂ペーストは得られていなかった。 As can be seen from such examples, in the conventional techniques so far, (1) non-nitrogen solvent solubility (2) low temperature drying / curability (3) low warpage (4) flexibility (5) printing characteristics, 6) A polyimide resin paste applicable as a solder resist layer, a surface protective layer or an adhesive layer that simultaneously satisfies alkali resistance has not been obtained.
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、(1)非窒素系溶媒溶解性(2)低温乾燥/硬化性(3)低反り性(4)屈曲性(5)印刷特性(6)耐アルカリ性に優れ、耐熱性、耐薬品性、電気特性、に優れるポリカーボネートイミド系樹脂ペースト並びに前記ペーストを硬化して得られるソルダーレジスト層、表面保護層または接着層を有する電子部品を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is (1) non-nitrogen solvent solubility (2) low temperature drying / curability (3) low warpage (4) flexibility (5) printing characteristics (6) excellent alkali resistance, heat resistance Another object of the present invention is to provide an electronic component having a polycarbonate imide resin paste having excellent properties, chemical resistance and electrical characteristics, and a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste.
 (A)成分として、(a) 酸無水物基を有する3価及び/または4価のポリカルボン酸誘導体、(b) 一般式(1)で示されるポリカーボネート骨格を有する酸二無水物、および(c)イソシアネート化合物またはアミン化合物を必須の共重合成分とするポリカーボネートイミド樹脂、
 (B)成分として、1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、
 (C)成分として、フィラー
を含有するポリカーボネートイミド系樹脂ペースト。
Figure JPOXMLDOC01-appb-C000002
 (一般式(1)において、mおよびnはそれぞれ1以上の整数であって、複数あるmは互いに同じであっても異なっていてもよい。)
As component (A), (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (1), and ( c) a polycarbonate imide resin containing an isocyanate compound or an amine compound as an essential copolymer component,
(B) As an ingredient, an epoxy resin having two or more epoxy groups per molecule,
(C) Polycarbonate imide resin paste containing a filler as a component.
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), m and n are each an integer of 1 or more, and a plurality of m may be the same or different from each other.)
 さらに(D)成分として、硬化促進剤を含有することが好ましい。 Furthermore, it is preferable to contain a curing accelerator as component (D).
 前記ポリカーボネートイミド系樹脂ペーストの揺変度が1.2以上であることが好ましい。 It is preferable that the degree of change of the polycarbonate imide resin paste is 1.2 or more.
 COF用である前記いずれかに記載のポリカーボネートイミド系樹脂ペースト。 The polycarbonate imide resin paste according to any one of the above, which is for COF.
 前記のいずれかに記載のポリカーボネートイミド系樹脂ペーストを硬化したソルダーレジスト層、表面保護層または接着層を有する電子部品。 An electronic component having a solder resist layer, a surface protective layer, or an adhesive layer obtained by curing the polycarbonate imide resin paste according to any one of the above.
 本発明により、従来同時に満足することが困難であった(1)非窒素系溶媒溶解性(2)低温乾燥/硬化性(3)低反り性(4)屈曲性(5)印刷特性(6)耐アルカリ性に優れ、かつ耐熱性、耐薬品性、電気特性に優れるポリカーボネートイミド系樹脂ペースト、並びに前記ペーストを硬化して得られるソルダーレジスト層、表面保護層または接着層を有する電子部品を提供することができる。 According to the present invention, (1) non-nitrogen solvent solubility (2) low temperature drying / curing properties (3) low warpage (4) flexibility (5) printing properties (6) Disclosed is a polycarbonate imide resin paste having excellent alkali resistance and excellent heat resistance, chemical resistance, and electrical characteristics, and an electronic component having a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste. Can do.
 以下、本発明を詳述する。本発明のポリカーボネートイミド系樹脂ペーストは、(A)成分として、ポリカーボネートイミド系樹脂(A)、(B)成分として、1分子あたり2個以上のエポキシ基を有するエポキシ樹脂(以下、エポキシ樹脂(B)ともいう。)、および(C)成分として、無機または有機フィラー(以下、フィラー(C)ともいう。)を含有する。また、ポリカーボネートイミド系樹脂(A)は、(a) 酸無水物基を有する3価及び/または4価のポリカルボン酸誘導体(以下、(a)成分ともいう。)、(b) 一般式(1)で示されるポリカーボネート骨格を有する酸二無水物(以下、(b)成分ともいう。)、および(c)イソシアネート化合物またはアミン化合物(以下、(c)成分ともいう。)を必須の共重合成分とする。 Hereinafter, the present invention will be described in detail. The polycarbonate imide resin paste of the present invention is composed of a polycarbonate imide resin (A) as component (A) and an epoxy resin having two or more epoxy groups per molecule (hereinafter referred to as epoxy resin (B) as component (B). ) And (C) component contains an inorganic or organic filler (hereinafter also referred to as filler (C)). The polycarbonate imide resin (A) includes (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an oxalic anhydride group (hereinafter also referred to as component (a)), (b) a general formula ( An essential copolymer of an acid dianhydride having a polycarbonate skeleton represented by 1) (hereinafter also referred to as component (b)) and (c) an isocyanate compound or an amine compound (hereinafter also referred to as component (c)). Ingredients.
<ポリカーボネートイミド系樹脂(A)成分>
 本発明で用いられるポリカーボネートイミド系樹脂(A)について説明する。ポリカーボネートイミド系樹脂(A)は、(a)酸無水物基を有する3価及び/または4価のポリカルボン酸誘導体、(b)一般式(1)で示されるポリカーボネート骨格を有する酸二無水物、および(c)イソシアネート化合物またはアミン化合物を必須の共重合成分とするポリカーボネートイミド系樹脂であり、好ましくは前記(a)成分、(b)成分および(c)成分を必須の共重合成分とするポリカーボネートイミド樹脂である。
<Polycarbonateimide resin (A) component>
The polycarbonate imide resin (A) used in the present invention will be described. The polycarbonate imide resin (A) includes (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, and (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (1). And (c) a polycarbonate imide resin having an isocyanate compound or an amine compound as an essential copolymer component, preferably the components (a), (b) and (c) as essential copolymer components. Polycarbonate imide resin.
<(a)酸無水物基を有する3価及び/または4価のポリカルボン酸誘導体>
 本発明で用いるポリカーボネートイミド系樹脂(A)を構成する(a)成分としては、一般にイソシアネート成分やアミン成分と反応してポリイミド系樹脂を形成する、酸無水物基を有する3価及び/4価のポリカルボン酸誘導体であれば特に限定されず、芳香族ポリカルボン酸誘導体、脂肪族ポリカルボン酸誘導体または脂環族ポリカルボン酸誘導体を用いることができる。
<(A) Trivalent and / or tetravalent polycarboxylic acid derivative having acid anhydride group>
As the component (a) constituting the polycarbonate imide resin (A) used in the present invention, a trivalent and / 4 valent acid anhydride group that generally reacts with an isocyanate component or an amine component to form a polyimide resin. The polycarboxylic acid derivative is not particularly limited, and an aromatic polycarboxylic acid derivative, an aliphatic polycarboxylic acid derivative, or an alicyclic polycarboxylic acid derivative can be used.
 芳香族ポリカルボン酸誘導体として、特に限定されないが、例えば、トリメリット酸無水物、ピロメリット酸二無水物、エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、1,4-ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレングリコールビスアンヒドロトリメリテート等のアルキレングリコールビスアンヒドロトリメリテート、3,3’-4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’-4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’、4,4’-テトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-または3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス[4-(2,3-または3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス[4-(2,3-または3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、または1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物等が挙げられる。 The aromatic polycarboxylic acid derivative is not particularly limited. For example, trimellitic anhydride, pyromellitic dianhydride, ethylene glycol bisanhydro trimellitate, propylene glycol bisan hydrotrimellitate, 1,4- Alkylene glycol bisan hydrotrimellitate such as butanediol bisanhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene glycol bis anhydro trimellitate, 3, 3 '-4,4'-benzophenonetetracarboxylic dianhydride, 3,3'-4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, , 4,5,8-Naphthalene Tracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ′, 4,4′- Diphenylsulfonetetracarboxylic dianhydride, m-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 1,1,1,3 3,3-hexafluoro-2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) Propane dianhydride, 2,2-bis [4- (2,3- or 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 1,1,1,3,3,3-hexafluoro-2 , 2-bis [4- (2,3- or 3,4-dicarboxyl Phenoxy) phenyl] propane dianhydride, or 1,3-bis (3,4-carboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, and the like.
 また脂肪族あるいは脂環族ポリカルボン酸誘導体として、特に限定されないが、例えば、ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、ヘキサヒドロピロメリット酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロへキサン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロへキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-エチルシクロへキサン-1-(1,2),3,4-テトラカルボン酸二無水物、1-プロピルシクロへキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロへキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロへキシル-3,4,3‘,4’-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1-プロピルシクロへキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロへキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロへキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、またはヘキサヒドロトリメリット酸無水物等が挙げられる。 Further, the aliphatic or alicyclic polycarboxylic acid derivative is not particularly limited, but for example, butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic acid Dianhydride, cyclobutanetetracarboxylic dianhydride, hexahydropyromellitic dianhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1- Ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-ethylcyclohexane-1- (1,2), 3,4 -Tetracarboxylic dianhydride 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- (2,3), 3- (2,3 ) -Tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic Acid dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- (2,3), 3 -(2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ', 4'-tetracarboxylic dianhydride, bicyclo [2,2,1] heptane-2,3,5 , 6-Tetracarboxylic dianhydride, bicyclo [2,2,2] octane-2,3,5,6- Tetracarboxylic acid dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, or hexa hydro trimellitic anhydride, and the like.
 これらの酸無水物基を有する3価および/または4価のポリカルボン酸誘導体は単独でも2種以上を組み合わせて用いても構わない。耐熱性、透明性、密着性、溶解性、コスト面などを考慮すれば、ピロメリット酸無水物、トリメリット酸無水物、エチレングリコールビスアンヒドロトリメリテート、3,3’-4、4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’、4,4’-ビフェニルテトラカルボン酸二無水物が好ましく、トリメリット酸無水物、エチレングリコールビスアンヒドロトリメリテートが更に好ましい。 These trivalent and / or tetravalent polycarboxylic acid derivatives having an acid anhydride group may be used alone or in combination of two or more. In view of heat resistance, transparency, adhesion, solubility, cost, pyromellitic anhydride, trimellitic anhydride, ethylene glycol bisanhydro trimellitate, 3,3'-4,4 ' -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride are preferred, trimellitic anhydride, and ethylene glycol bisanhydro trimellitate are more preferred.
 (a)成分の共重合量は、反応対象の全酸成分100モル%とした場合、10モル%以上90モル%以下であることが好ましく、20モル%以上80モル%以下であることが更に好ましく、30モル%以上70モル%以下であることが特に好ましい。10モル%未満では難燃性、機械特性、耐熱性が得られないことがあり、90モル%より多いと、後述する(b)、(c)成分を十分な量で共重合することができないことがある。そのため、低反り性や非窒素系溶媒への溶解性が低下することがある。 The amount of copolymerization of component (a) is preferably 10 mol% or more and 90 mol% or less, and more preferably 20 mol% or more and 80 mol% or less, when the total acid component to be reacted is 100 mol%. Preferably, it is 30 mol% or more and 70 mol% or less. If it is less than 10 mol%, flame retardancy, mechanical properties, and heat resistance may not be obtained. If it exceeds 90 mol%, the components (b) and (c) described later cannot be copolymerized in a sufficient amount. Sometimes. Therefore, low warpage and solubility in non-nitrogen solvents may be reduced.
<(b)一般式(1)で示されるポリカーボネート骨格を有する酸二無水物>
 本発明で用いられるポリカーボネートイミド系樹脂(A)を構成する、(b)成分は、ポリカーボネートポリイミド系樹脂(A)に低反り性、非窒素系溶媒溶解性等を付与する可とう性成分として共重合される。これらを共重合することでポリカーボネートイミド系樹脂(A)の弾性率が低下するとともに重合溶媒として用いた非窒素系溶媒への溶解安定性が増す。
<(B) Acid dianhydride having a polycarbonate skeleton represented by the general formula (1)>
The component (b) constituting the polycarbonate imide resin (A) used in the present invention is a common component as a flexible component that imparts low warpage, non-nitrogen solvent solubility, etc. to the polycarbonate polyimide resin (A). Polymerized. By copolymerizing these, the elastic modulus of the polycarbonate imide resin (A) is lowered and the solubility in a non-nitrogen solvent used as a polymerization solvent is increased.
 (b)成分としては、一般式(1)で示されるポリカーボネート骨格を有する酸二無水物である。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、mは1以上であることが好ましく、より好ましくは2以上であり、さらに好ましくは4以上である。上限は特に限定されないが、20以下であることが好ましく、より好ましくは10以下である。複数のmは、それぞれ同一でも、異なっていてもよい。nは1以上であることが好ましく、より好ましくは2以上であり、さらに好ましくは3以上である。上限は特に限定されないが、20以下であることが好ましく、より好ましくは10以下である。
The component (b) is an acid dianhydride having a polycarbonate skeleton represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000003
In the general formula (1), m is preferably 1 or more, more preferably 2 or more, and further preferably 4 or more. Although an upper limit is not specifically limited, It is preferable that it is 20 or less, More preferably, it is 10 or less. The plurality of m may be the same or different. n is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. Although an upper limit is not specifically limited, It is preferable that it is 20 or less, More preferably, it is 10 or less.
 (b)成分を製造する方法としては、特に限定されないが、トリメリット酸無水物の塩化物とポリカーボネートジオール化合物とから公知の反応方法により合成できる。より具体的には、まず、溶媒へ溶解させたトリメリット酸無水物の塩化物溶液中へ、ポリカーボネートジオール化合物と脱酸剤を投入し、0.5~24時間攪拌する。反応温度は-20~50℃で行われるが、反応選択性の観点から、より好ましくは20~40℃で行うとよい。トリメリット酸無水物の塩化物とポリカーボネートジオール化合物との反応比率としては、ポリカーボネートジオール化合物1モルに対してトリメリット酸無水物の塩化物を2モル以上用いて反応させることが好ましい。反応における溶質の濃度は5~80重量%が好ましく、より好ましくは40~60重量%の範囲で行うとよい。反応終了後、析出した塩酸塩を濾別し、溶媒を濃縮することで目的の一般式(1)で示されるポリカーボネート骨格を有する酸二無水物(以下、ポリカーボネート骨格含有テトラカルボン酸二無水物ともいう。)を得ることができる。 (B) Although it does not specifically limit as a method to manufacture a component, It can synthesize | combine with a well-known reaction method from the chloride of trimellitic anhydride and a polycarbonate diol compound. More specifically, first, a polycarbonate diol compound and a deoxidizing agent are put into a chloride solution of trimellitic anhydride dissolved in a solvent and stirred for 0.5 to 24 hours. The reaction temperature is −20 to 50 ° C., and more preferably 20 to 40 ° C. from the viewpoint of reaction selectivity. As a reaction ratio between the trimellitic anhydride chloride and the polycarbonate diol compound, it is preferable to react 2 mol or more of trimellitic anhydride chloride with respect to 1 mol of the polycarbonate diol compound. The concentration of the solute in the reaction is preferably 5 to 80% by weight, more preferably 40 to 60% by weight. After completion of the reaction, the precipitated hydrochloride is filtered off, and the solvent is concentrated to give an acid dianhydride having a polycarbonate skeleton represented by the general formula (1) (hereinafter referred to as a polycarbonate skeleton-containing tetracarboxylic dianhydride). Say).
 前記ポリカーボネートジオール化合物の製造方法としては、原料となるジオールと炭酸エステル類とのエステル交換、原料となるジオールとホスゲンとの脱塩化水素反応を挙げることができる。原料である炭酸エステルとしては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネートが挙げられる。 Examples of the method for producing the polycarbonate diol compound include transesterification between a diol as a raw material and carbonates, and a dehydrochlorination reaction between a diol as a raw material and phosgene. Although it does not specifically limit as carbonate which is a raw material, For example, dialkyl carbonates, such as a dimethyl carbonate and a diethyl carbonate, are mentioned.
 前記ジオールとしては、2つの水酸基を有する直鎖状のジオール化合物を用いることができる。特に限定されないが、例えば、エチレングリコールや1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等が挙げられる。 As the diol, a linear diol compound having two hydroxyl groups can be used. Although not particularly limited, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like can be mentioned.
 本発明に使用できるポリカーボネートジオール化合物の市販品として、旭化成ケミカルズ(株)製デュラノールシリーズなどが挙げられる。例えば、DURANOL(登録商標)-T5650E(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約500)、DURANOL-T5651(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)、DURANOL-T5652(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)などを挙げることができる。 As a commercial product of the polycarbonate diol compound that can be used in the present invention, Duranor series manufactured by Asahi Kasei Chemicals Corporation and the like can be mentioned. For example, DURANOL (registered trademark) -T5650E (Asahi Kasei Chemicals Co., Ltd. polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 500), DURANOL-T5651 (Asahi Kasei Chemicals Co., Ltd.) Polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 1,000, DURANOL-T5652 (polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6- Hexanediol, number average molecular weight of about 2,000) and the like.
 (b)成分の共重合量は、全酸成分を100モル%とした場合、10モル%以上90モル%以下であることが好ましく、20モル%以上80モル%以下であることが更に好ましく、30モル%以上70モル%以下であることが特に好ましい。10モル%未満だと弾性率が十分に低下しないことがあり、積層した場合に反りが発生したり、非窒素系溶媒への溶解性が低下することがある。そのため、5℃~30℃において一ヶ月以内に樹脂が析出するおそれがある。一方、90モル%を超えると、前述の(a)成分や後述する(c)成分を十分な量で含有することができないため、屈曲性(機械特性)、耐熱性が低下する場合がある。 The amount of copolymerization of component (b) is preferably 10 mol% or more and 90 mol% or less, more preferably 20 mol% or more and 80 mol% or less, when the total acid component is 100 mol%. It is particularly preferably 30 mol% or more and 70 mol% or less. If it is less than 10 mol%, the elastic modulus may not be sufficiently reduced, and warping may occur when laminated, and the solubility in non-nitrogen solvents may be reduced. Therefore, the resin may be deposited within 5 months at 5 ° C to 30 ° C. On the other hand, when it exceeds 90 mol%, the above-mentioned component (a) and the component (c) described later cannot be contained in a sufficient amount, so that flexibility (mechanical properties) and heat resistance may be lowered.
<(c)イソシアネート化合物またはアミン化合物>
 本発明で用いられるポリカーボネートイミド系樹脂(A)を構成する、(c)成分はイソシアネート化合物またはアミン化合物であれば特に限定されず、芳香族ポリイソシアネート、脂肪族ポリイソシアネートもしくは脂環族ポリイソシアネート、またはこれらに対応するポリアミンが挙げられる。好ましくは芳香族ポリイソシアネート、または芳香族ポリアミンが用いられる。特に限定されないが、具体的には、芳香族ポリイソシアネートでは例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-又は3,3’-又は4,2’-又は4,3’-又は5,2’-又は5,3’-又は6,2’-又は6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-又は3,3’-又は4,2’-又は4,3’-又は5,2’-又は5,3’-又は6,2’-又は6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-又は3,3’-又は4,2’-又は4,3’-又は5,2’-又は5,3’-又は6,2’-又は6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3, 4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート(TDI)、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-[2,2ビス(4-フェノキシフェニル)プロパン]ジイソシアネート、3,3’または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネート等が挙げられる。耐熱性、密着性、溶解性、コスト面などを考慮すれば、ジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、m-キシリレンジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネートが好ましく、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート(o-トリジンジイソシアネート、TODI)、トリレン-2,4-ジイソシアネート(TDI)が更に好ましい。これらを単独で、または2種以上を併用することができる。また、芳香族ポリアミンを用いる場合は、上記芳香族ポリイソシアネートに対応するポリアミンを用いることができる。
<(C) Isocyanate compound or amine compound>
The component (c) constituting the polycarbonate imide resin (A) used in the present invention is not particularly limited as long as it is an isocyanate compound or an amine compound, and is an aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate, Or the polyamine corresponding to these is mentioned. An aromatic polyisocyanate or an aromatic polyamine is preferably used. Specific examples of aromatic polyisocyanates include, but are not limited to, diphenylmethane-2,4′-diisocyanate, 3,2′- or 3,3′- or 4,2′- or 4,3′- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- Or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3 ' -Or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4 , 4'-diisocyanate, diphenylmethane-3,3'-diisocyanate, diphenylme -3,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate (TDI), tolylene- 2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, naphthalene-2,6-diisocyanate, 4,4 '-[2,2bis (4-phenoxyphenyl) propane] diisocyanate, 3,3' Or 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'- or 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4,4'- Diisocyanate, 3,3'-diethoxybiphenyl-4,4'-diisocyanate Sulfonates, and the like. In consideration of heat resistance, adhesion, solubility, cost, etc., diphenylmethane-4,4′-diisocyanate, tolylene-2,4-diisocyanate, m-xylylene diisocyanate, 3,3′- or 2,2 ′ -Dimethylbiphenyl-4,4'-diisocyanate is preferred, and 3,3'-dimethylbiphenyl-4,4'-diisocyanate (o-tolidine diisocyanate, TODI) and tolylene-2,4-diisocyanate (TDI) are more preferred. These can be used alone or in combination of two or more. Moreover, when using an aromatic polyamine, the polyamine corresponding to the said aromatic polyisocyanate can be used.
 本発明のポリカーボネートイミド樹脂(A)に用いられるアミン成分を100モル%とした場合、前記いずれかのイソシアネート化合物が100モル%であることが好ましい。前記イソシアネートの代わりに前記イソシアネートに対応するジアミン化合物を用いると、ポリカーボネートポリイミド樹脂の前駆体として、ポリアミック酸を経由する。ポリアミック酸を経由すると、ポリアミック酸含有のペーストをCOF(Chip On Film)等の基板に塗布した後、通常200℃程度以上の高温でイミド化をする必要があり、COFを熱劣化させる可能性があり、また設備面での制限を受けてしまうことがある。本発明では、アミン成分にTODIを含むイソシアネート化合物のみを用いるため、ポリアミック酸含有のペーストに比べて低温で処理することができ、上記のような問題がないため好ましい。 When the amine component used in the polycarbonate imide resin (A) of the present invention is 100 mol%, it is preferable that any one of the isocyanate compounds is 100 mol%. When a diamine compound corresponding to the isocyanate is used instead of the isocyanate, it passes through a polyamic acid as a precursor of the polycarbonate polyimide resin. When passing through a polyamic acid, it is necessary to imidize at a high temperature of about 200 ° C. or more after applying a paste containing polyamic acid to a substrate such as COF (Chip On Film), which may cause thermal degradation of COF. Yes, and there may be restrictions on equipment. In the present invention, since only an isocyanate compound containing TODI is used as an amine component, it can be treated at a lower temperature than a polyamic acid-containing paste, and there is no such problem, which is preferable.
<その他の酸成分>
 本発明で用いられるポリカーボネートイミド系樹脂(A)には、目的とする性能を損なわない範囲で必要に応じ、さらに脂肪族、脂環族、芳香族ポリカルボン酸類を共重合しても構わない。脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸、ドデカン二酸、エイコサン二酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタンジカルボン酸、2-メチルオクタンジカルボン酸、3,8-ジメチルデカンジカルボン酸、3,7-ジメチルデカンジカルボン酸、9,12-ジメチルエイコサン二酸、フマル酸、マレイン酸、ダイマー酸、水添ダイマー酸等、脂環族ジカルボン酸としては、例えば、1,4-シクロへキサンジカルボン酸、1,3-シクロへキサンジカルボン酸、1,2-シクロへキサンジカルボン酸、4,4‘-ジシクロへキシルジカルボン酸等、芳香族ジカルボン酸としては、例えばイソフタル酸、テレフタル酸、オルソフタル酸、ナフタレンジカルボン酸、オキシジ安息香酸、スチルベンジカルボン酸等が挙げられる。これらのジカルボン酸類は単独でも二種以上を組み合わせて用いても構わない。耐熱性、密着性、溶解性、コスト面などを考慮すれば、セバシン酸、1,4-シクロへキサンジカルボン酸、ダイマー酸、イソフタル酸が好ましい。
<Other acid components>
The polycarbonate imide-based resin (A) used in the present invention may be further copolymerized with aliphatic, alicyclic, or aromatic polycarboxylic acids as necessary as long as the target performance is not impaired. Examples of the aliphatic dicarboxylic acid include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedicarboxylic acid, 2-methyloctanedicarboxylic acid, 3,8-dimethyldecanedicarboxylic acid, 3,7-dimethyldecanedicarboxylic acid, 9,12-dimethyleicosane diacid, fumaric acid Examples of alicyclic dicarboxylic acids such as maleic acid, dimer acid, hydrogenated dimer acid and the like include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexane, and the like. Examples of aromatic dicarboxylic acids such as dicarboxylic acid and 4,4′-dicyclohexyldicarboxylic acid include isophthalic acid. Terephthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, stilbene dicarboxylic acid and the like. These dicarboxylic acids may be used alone or in combination of two or more. In view of heat resistance, adhesion, solubility, cost, etc., sebacic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, and isophthalic acid are preferable.
 また、(b)成分の他に、目的とする性能を損なわない範囲で必要に応じ、さらに他の可とう性成分を共重合しても構わない。例えば、脂肪族/芳香族ポリエステルジオール類(東洋紡(株)製、商品名VYLON(登録商標)220)、脂肪族/芳香族ポリカーボネートジオール類(ダイセル化学工業(株)製、商品名PLACCEL(登録商標)-CD220、(株)クラレ製、商品名 クラレポリオールC-1015N、C-2015N等、旭化成ケミカルズ(株)製、商品名 Duranol(登録商標) T5650E、T5650J、T5651、T5652等)、ポリカプロラクトンジオール類(ダイセル化学工業(株)製、商品名PLACCEL(登録商標)-220等)、カルボキシ変性アクリロニトリルブタジエンゴム類(宇部興産(株)製、商品名HyproCTBN1300×13等)、ポリジメチルシロキサンジオール、ポリメチルフェニルシロキサンジオール、カルボキシ変性ポリジメチルシロキサン類といったポリシロキサン誘導体等が挙げられる。 Further, in addition to the component (b), other flexible components may be copolymerized as necessary within the range not impairing the intended performance. For example, aliphatic / aromatic polyester diols (trade name VYLON (registered trademark) 220 manufactured by Toyobo Co., Ltd.), aliphatic / aromatic polycarbonate diols (produced by Daicel Chemical Industries, Ltd., trade name PLACEL (registered trademark)) ) -CD220, manufactured by Kuraray Co., Ltd., trade names Kuraray polyol C-1015N, C-2015N, etc., manufactured by Asahi Kasei Chemicals Corporation, trade names Duranol (registered trademark) T5650E, T5650J, T5651, T5652, etc.), polycaprolactone diol (Daicel Chemical Industries, Ltd., trade name PLACEL (registered trademark) -220, etc.), carboxy-modified acrylonitrile butadiene rubbers (Ube Industries, Ltd., trade name HyproCTBN1300 × 13, etc.), polydimethylsiloxane diol, poly Examples thereof include polysiloxane derivatives such as methylphenylsiloxane diol and carboxy-modified polydimethylsiloxanes.
 ポリカーボネートイミド系樹脂(A)を製造する方法としては、酸無水物基を有するポリカルボン酸成分((a)成分および(b)成分)とイソシアネート成分((c)成分)から製造する方法(イソシアネート法)、または酸無水物基を有するポリカルボン酸成分((a)成分および(b)成分)とアミン成分((c)成分)を反応させアミック酸にした後、閉環させる方法(直接法)などの公知の方法がある。工業的にはイソシアネート法が有利である。 As a method for producing the polycarbonate imide resin (A), a method (isocyanate) produced from a polycarboxylic acid component having an acid anhydride group (component (a) and component (b)) and an isocyanate component (component (c)). Method), or a method of reacting a polycarboxylic acid component having an acid anhydride group (components (a) and (b)) with an amine component (component (c)) to form an amic acid, followed by ring closure (direct method) There are known methods. Industrially, the isocyanate method is advantageous.
 イソシアネート法の場合、(a)成分、(b)成分、および(c)成分の配合量は、酸無水物基数とイソシアネート基数の比率が、イソシアネート基数/酸無水物基数=0.8~1.2となるようにすることが好ましい。0.8未満ではポリカーボネートイミド系樹脂(A)の分子量を高くすることが困難になることがあり、耐熱性、屈曲性が低下したり、塗膜が脆い場合がある。また1.2より高い場合はポリカーボネートイミド系樹脂(A)の粘性が高くなることがあり、インク化した場合の印刷時に版離れが悪くなる場合がある。 In the case of the isocyanate method, the amount of component (a), component (b), and component (c) is such that the ratio of the number of acid anhydride groups to the number of isocyanate groups is: number of isocyanate groups / number of acid anhydride groups = 0.8 to 1. 2 is preferable. If it is less than 0.8, it may be difficult to increase the molecular weight of the polycarbonate imide resin (A), heat resistance and flexibility may be lowered, and the coating film may be brittle. On the other hand, when the viscosity is higher than 1.2, the viscosity of the polycarbonate imide resin (A) may be increased, and the separation of the plate may be deteriorated at the time of printing when the ink is formed.
 本発明で用いられるポリカーボネートイミド系樹脂(A)の重合反応は、非窒素系溶媒下で行うことが好ましい。具体的には、エーテル系溶媒、エステル系溶媒、ケトン系溶媒及び芳香族炭化水素系溶媒からなる群より選ばれる1種以上の有機溶媒の存在下に、例えばイソシアネート法では遊離発生する炭酸ガスを反応系より除去しながら加熱縮合させることにより行うことが好ましい。 The polymerization reaction of the polycarbonate imide resin (A) used in the present invention is preferably performed in a non-nitrogen solvent. Specifically, in the presence of one or more organic solvents selected from the group consisting of ether solvents, ester solvents, ketone solvents, and aromatic hydrocarbon solvents, for example, in the isocyanate method, carbon dioxide that is liberated is generated. It is preferable to carry out the heat condensation while removing from the reaction system.
 上記溶媒としては、特に限定されないが、エーテル系溶媒では例えば、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールジエチルエーテル(エチルジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールジエチルエーテル(エチルトリグライム)等、エステル系溶媒では例えば、γ-ブチロラクトン、酢酸セロソルブ等、ケトン系溶媒では例えば、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等、芳香族炭化水素系溶媒では例えば、トルエン、キシレン、ソルベッソ等が挙げられる。これらは単独でも二種以上を組み合わせて用いても構わない。 The solvent is not particularly limited, but examples of ether solvents include diethylene glycol dimethyl ether (diglyme), diethylene glycol diethyl ether (ethyl diglyme), triethylene glycol dimethyl ether (triglyme), and triethylene glycol diethyl ether (ethyl triglyme). Examples of ester solvents include γ-butyrolactone and cellosolve acetate; examples of ketone solvents include methyl isobutyl ketone, cyclopentanone, cyclohexanone, and isophorone; examples of aromatic hydrocarbon solvents include toluene, xylene, and sorbeso. Can be mentioned. These may be used alone or in combination of two or more.
 ポリカーボネートイミド系樹脂(A)を製造する際には、生成するポリカーボネートイミド系樹脂(A)を溶解する溶媒を選択して用いることが好ましく、重合後、そのままポリカーボネートイミド系樹脂ペーストの溶媒として好適なものを用いることがさらに好ましい。そうすることで、溶剤置換などの煩雑な操作がなくなり、安価に製造することが可能となる。また、溶媒の沸点は140℃以上230℃以下のものが好ましい。140℃未満では、重合反応中に溶媒が揮発するおそれがある他、例えばスクリーン印刷を行う場合、溶媒の揮発がはやく、版詰まりをおこす可能性がある。230℃を超えると、低温乾燥/硬化性を付与することが困難になることがある。比較的高揮発性であって、低温乾燥/硬化性を付与でき、かつワニス安定性に優れ、効率よく均一系で反応を行うためには、γ-ブチロラクトン、シクロヘキサノン、ジグライム、またはトリグライムが好ましい。 When producing the polycarbonate imide resin (A), it is preferable to select and use a solvent that dissolves the polycarbonate imide resin (A) to be produced, and is suitable as a solvent for the polycarbonate imide resin paste after polymerization. More preferably, one is used. By doing so, complicated operations such as solvent replacement are eliminated, and it becomes possible to manufacture at low cost. Further, the boiling point of the solvent is preferably 140 ° C. or higher and 230 ° C. or lower. When the temperature is lower than 140 ° C., the solvent may be volatilized during the polymerization reaction. In addition, when screen printing is performed, for example, the solvent is rapidly volatilized and the plate may be clogged. If it exceeds 230 ° C., it may be difficult to impart low temperature drying / curing properties. Γ-butyrolactone, cyclohexanone, diglyme, or triglyme is preferable for relatively high volatility, imparting low temperature drying / curing property, excellent varnish stability, and conducting the reaction in a homogeneous system efficiently.
 溶媒の使用量は、生成するポリカーボネートイミド系樹脂(A)の0.8~5.0倍(質量比)とすることが好ましく、0.9~2.0倍とすることがより好ましい。0.8倍未満では、合成時の粘度が高すぎて、撹拌不能により合成が困難となる傾向があり、5.0倍を超えると、反応速度が低下する傾向がある。 The amount of the solvent used is preferably 0.8 to 5.0 times (mass ratio), more preferably 0.9 to 2.0 times that of the polycarbonate imide resin (A) to be produced. If it is less than 0.8 times, the viscosity at the time of synthesis is too high, and the synthesis tends to be difficult due to the inability to stir, and if it exceeds 5.0 times, the reaction rate tends to decrease.
 イソシアネート法の場合、反応温度は60~200℃とすることが好ましく、100~180℃とすることがより好ましい。60℃未満では反応時間が長くなりすぎ、200℃を超えると反応中に、モノマー成分の分解が生じる場合がある。また、三次元化反応が生じてゲル化が起こりやすい。反応温度は多段階で行ってもよい。反応時間は、バッチの規模、採用される反応条件、特に反応濃度により適宜選択することができる。 In the case of the isocyanate method, the reaction temperature is preferably 60 to 200 ° C, more preferably 100 to 180 ° C. If it is less than 60 ° C., the reaction time becomes too long, and if it exceeds 200 ° C., the monomer component may be decomposed during the reaction. In addition, a three-dimensional reaction occurs and gelation is likely to occur. The reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, particularly the reaction concentration.
 イソシアネート法の場合、反応を促進するためにトリエチルアミン、ルチジン、ピコリン、ウンデセン、トリエチレンジアミン(1,4-ジアザビシクロ[2,2,2]オクタン)、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)等のアミン類、リチウムメチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムブトキサイド、フッ化カリウム、フッ化ナトリウム等のアルカリ金属、アルカリ土類金属化合物あるいはチタン、コバルト、スズ、亜鉛、アルミニウムなどの金属、半金属化合物などの触媒の存在下に行っても良い。 In the case of the isocyanate method, triethylamine, lutidine, picoline, undecene, triethylenediamine (1,4-diazabicyclo [2,2,2] octane), DBU (1,8-diazabicyclo [5,4,0] are used to accelerate the reaction. ] -7-undecene), alkali metals such as lithium methylate, sodium methylate, sodium ethylate, potassium butoxide, potassium fluoride, sodium fluoride, alkaline earth metal compounds or titanium, cobalt, The reaction may be carried out in the presence of a catalyst such as a metal such as tin, zinc or aluminum, or a metalloid compound.
<ポリカーボネートイミド系樹脂(A)の製造>
 ポリカーボネートイミド系樹脂(A)の製造方法の一例を挙げるならば、(a)成分と(b)成分、(c)成分とを縮合反応(ポリイミド化)させて得ることができる。以下、本発明のポリカーボネートイミド系樹脂の製造方法を例示するが、本発明はこれにより限定されるものではない。
<Production of polycarbonate imide resin (A)>
If an example of the manufacturing method of polycarbonate imide-type resin (A) is given, it can obtain by making (a) component, (b) component, and (c) component condense-react (polyimidize). Hereinafter, although the manufacturing method of the polycarbonate imide-type resin of this invention is illustrated, this invention is not limited by this.
 反応容器に(a)成分、(b)成分、(c)成分、重合触媒、重合溶媒を加え、溶解した後、窒素気流下、撹拌しながら、80~190℃、好ましくは100~180℃で5時間以上反応させた後、重合溶媒で適当な溶剤粘度まで希釈し、冷却することで目的のポリカーボネートイミド系樹脂(A)を得ることができる。 The components (a), (b), (c), polymerization catalyst and polymerization solvent are added to the reaction vessel, dissolved, and then stirred at 80 to 190 ° C., preferably 100 to 180 ° C. with stirring in a nitrogen stream. After reacting for 5 hours or more, the target polycarbonate imide resin (A) can be obtained by diluting to an appropriate solvent viscosity with a polymerization solvent and cooling.
 本発明で用いられるポリカーボネートイミド系樹脂(A)は、γ-ブチロラクトン中、30℃で0.1から2.0dl/gの対数粘度に相当する分子量を有するものが好ましく、より好ましくは、0.2から1.5dl/gの対数粘度に相当する分子量を有するものである。対数粘度が0.1dl/g未満では耐熱性が低下したり、塗膜が脆い場合がある。また、ペーストのタック性が強く版離れが悪くなることがある。一方、2.0dl/gを越えると溶媒に溶解しにくくなり、重合中に不溶化しやすい。また、ワニスの粘度が高くなりハンドリングが困難になったり、基材との密着性が低下することがある。 The polycarbonate imide resin (A) used in the present invention preferably has a molecular weight corresponding to a logarithmic viscosity of 0.1 to 2.0 dl / g at 30 ° C. in γ-butyrolactone, more preferably It has a molecular weight corresponding to a logarithmic viscosity of 2 to 1.5 dl / g. When the logarithmic viscosity is less than 0.1 dl / g, the heat resistance may be lowered or the coating film may be brittle. In addition, the tackiness of the paste is strong and the release of the plate may worsen. On the other hand, when it exceeds 2.0 dl / g, it becomes difficult to dissolve in a solvent, and it tends to become insoluble during polymerization. In addition, the viscosity of the varnish becomes high and handling becomes difficult, and the adhesion to the substrate may be reduced.
 本発明で用いられるポリカーボネートイミド系樹脂(A)のガラス転移温度は好ましくは20℃以上であり、さらに好ましくは60℃以上である。20℃未満では耐熱性が不足し、また樹脂がブロッキングするおそれがある。上限は特に限定されないが、溶剤溶解性の観点から300℃以下が好ましい。 The glass transition temperature of the polycarbonate imide resin (A) used in the present invention is preferably 20 ° C. or higher, more preferably 60 ° C. or higher. If it is less than 20 degreeC, heat resistance may be insufficient and resin may block. Although an upper limit is not specifically limited, 300 degrees C or less is preferable from a solvent solubility viewpoint.
<エポキシ樹脂(B)成分>
 本発明で用いられる(B)成分のエポキシ樹脂は、1分子あたり2個以上のエポキシ基を有するエポキシ樹脂であれば特に限定されない。エポキシ樹脂(B)としては、特に限定されないが、例えば、三菱化学(株)製の商品名jER(登録商標)828,1001等のビスフェノールA型エポキシ樹脂、東都化成(株)製の商品名ST-2004、2007等の水添ビスフェノールA型エポキシ樹脂、東都化成(株)製の商品名YDF-170、2004等のビスフェノールF型エポキシ、東都化成(株)製の商品名YDB-400、600等の臭素化ビスフェノールA型エポキシ樹脂、三菱化学(株)製の商品名jER(登録商標)152、154等のフェノールノボラック型エポキシ樹脂、三菱化学(株)製の商品名jER(登録商標)157S65、157S70等のビスフェノールAノボラック型エポキシ樹脂、三菱化学(株)製の商品名jER(登録商標)1032H60等の3官能フェノール型エポキシ樹脂、日本化薬(株)製の商品名EPPN(登録商標)-201、BREN(登録商標)、ダウケミカル社製の商品名DEN-438等のフェノールノボラック型エポキシ樹脂、東都化成(株)製の商品名YDCN-702、703、日本化薬(株)製の商品名EOCN(登録商標)-125S、103S、104S等のo-クレゾールノボラック型エポキシ樹脂、東都化成(株)製の商品名YD-171等の可撓性エポキシ樹脂、油化シェルエポキシ(株)製の商品名Epon1031S、チバ・スペシャルティ・ケミカルズ(株)製の商品名アラルダイト(登録商標)0163、ナガセケムテック(株)製の商品名デナコール(登録商標)EX-611、EX-614、EX-622、EX-512、EX-521、EX-421、EX-411、EX-321等の多官能エポキシ樹脂、油化シェルエポキシ(株)製の商品名エピコート(登録商標)604、東都化成(株)製の商品名YH-434、三菱ガス化学(株)製の商品名TETRAD(登録商標)-X、TETRAD-C、日本化薬(株)製の商品名GAN、住友化学(株)製の商品名ELM-120等のアミン型エポキシ樹脂、チバ・スペシャルティ・ケミカルズ(株)製の商品名アラルダイト(登録商標)PT810等の複素環含有エポキシ樹脂、ダイセル化学工業(株)製の商品名セロキサイド(登録商標)2021、EHPE(登録商標)3150、UCC社製のERL4234等の脂環式エポキシ樹脂、大日本インキ化学工業(株)製の商品名エピクロン(登録商標)EXA-1514等のビスフェノールS型エポキシ樹脂、日産化学工業(株)製のTEPIC(登録商標)等のトリグリシジルイソシアヌレート、油化シェルエポキシ(株)製の商品名YX-4000等のビキシレノール型エポキシ樹脂、油化シェルエポキシ(株)製の商品名YL-6056等のビスフェノール型エポキシ樹脂、等が挙げられ、これらを単独で又は2種類以上組み合わせて用いても構わない。
<Epoxy resin (B) component>
The epoxy resin of component (B) used in the present invention is not particularly limited as long as it is an epoxy resin having two or more epoxy groups per molecule. The epoxy resin (B) is not particularly limited. For example, bisphenol A type epoxy resin such as trade name jER (registered trademark) 828, 1001 manufactured by Mitsubishi Chemical Corporation, or trade name ST manufactured by Toto Kasei Co., Ltd. -Hydrogenated bisphenol A type epoxy resins such as 2004 and 2007, brand name YDF-170, manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy such as 2004, brand names YDB-400, 600 manufactured by Toto Kasei Co., Ltd. Brominated bisphenol A type epoxy resin, trade name jER (registered trademark) 152, 154 manufactured by Mitsubishi Chemical Co., Ltd., phenol novolak type epoxy resin such as trade name jER (registered trademark) 157S65 manufactured by Mitsubishi Chemical Corporation, Bisphenol A novolac type epoxy resin such as 157S70, trifunctional phenol type epoxy tree such as trade name jER (registered trademark) 1032H60 manufactured by Mitsubishi Chemical Corporation Fat, a phenol novolac type epoxy resin such as Nippon Kayaku Co., Ltd. trade name EPPN (registered trademark) -201, BREN (registered trademark), Dow Chemical Co., Ltd. trade name DEN-438, manufactured by Tohto Kasei Co., Ltd. Trade name YDCN-702, 703, trade name EOCN (registered trademark) -125S, 103S, 104S, etc. manufactured by Nippon Kayaku Co., Ltd., trade name YD, manufactured by Toto Kasei Co., Ltd. -171 and other flexible epoxy resins, Yuka Shell Epoxy Co., Ltd. trade name Epon 1031S, Ciba Specialty Chemicals Co., Ltd. trade name Araldite (registered trademark) 0163, manufactured by Nagase Chemtech Co., Ltd. Product Name Denacol (registered trademark) EX-611, EX-614, EX-622, EX-512, EX-521, EX-421, EX-411, EX-3 No. 1 polyfunctional epoxy resin, Yuka Shell Epoxy Co., Ltd. trade name Epicoat (registered trademark) 604, Toto Kasei Co., Ltd. trade name YH-434, Mitsubishi Gas Chemical Co., Ltd. trade name TETRAD (Registered trademark) -X, TETRAD-C, Nippon Kayaku Co., Ltd. trade name GAN, Sumitomo Chemical Co., Ltd. trade name ELM-120, and other amine type epoxy resins, Ciba Specialty Chemicals Co., Ltd. Products such as Araldite (registered trademark) PT810 made of heterocyclic ring-containing epoxy resin, Daicel Chemical Industries, Ltd., trade name Celoxide (registered trademark) 2021, EHPE (registered trademark) 3150, UCC ERL4234, etc. Cyclic epoxy resins, bisphenol S-type epoxy resins such as Epicron (registered trademark) EXA-1514 manufactured by Dainippon Ink and Chemicals, manufactured by Nissan Chemical Industries, Ltd. Triglycidyl isocyanurate such as TEPIC (registered trademark), bixylenol type epoxy resin such as trade name YX-4000 manufactured by Yuka Shell Epoxy Co., Ltd., trade name YL-6056 manufactured by Yuka Shell Epoxy Co., Ltd. Examples thereof include bisphenol type epoxy resins, and these may be used alone or in combination of two or more.
 これらのエポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、1分子中にエポキシ基を2個より多く有するフェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂が好ましい。また、アミン型エポキシ樹脂は、非ハロゲン系であり、ポリカーボネートイミド系樹脂(A)との相溶性、耐溶剤性、耐薬品性、耐湿性向上の点で好ましい。 Among these epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin having more than two epoxy groups in one molecule, and o-cresol novolak type epoxy resin are preferable. The amine type epoxy resin is non-halogen type, and is preferable in terms of compatibility with the polycarbonate imide resin (A), solvent resistance, chemical resistance, and moisture resistance.
 本発明で用いられるエポキシ樹脂(B)の使用量は、ポリカーボネートイミド系樹脂(A)100質量部に対して好ましくは1~50質量部、さらに好ましくは2~40質量部、特に好ましくは3~30質量部である。エポキシ樹脂(B)の配合量が1質量部未満では、半田耐熱性、耐溶剤性、耐薬品性、耐湿性が低下する傾向にあり、50質量部を超えると、低反り性、機械特性、耐熱性、ワニス安定性およびポリカーボネートイミド系樹脂(A)との相溶性が低下する傾向がある。 The amount of the epoxy resin (B) used in the present invention is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, particularly preferably 3 to 100 parts by mass with respect to 100 parts by mass of the polycarbonate imide resin (A). 30 parts by mass. When the blending amount of the epoxy resin (B) is less than 1 part by mass, solder heat resistance, solvent resistance, chemical resistance, and moisture resistance tend to decrease, and when it exceeds 50 parts by mass, low warpage, mechanical properties, There exists a tendency for heat resistance, varnish stability, and compatibility with a polycarbonate imide-type resin (A) to fall.
 本発明で用いられるエポキシ樹脂(B)には、希釈剤としてさらに、1分子中にエポキシ基を1個だけ有するエポキシ化合物を含んでいても構わない。 The epoxy resin (B) used in the present invention may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
 エポキシ樹脂(B)の添加方法としては、特に限定されず、あらかじめ添加するエポキシ樹脂(B)をポリカーボネートイミド系樹脂(A)に含まれる溶媒と同一の溶媒に溶解してから添加しても良く、また直接、ポリカーボネートイミド系樹脂(A)に添加してもよい。 The addition method of the epoxy resin (B) is not particularly limited, and it may be added after dissolving the epoxy resin (B) to be added in advance in the same solvent as that contained in the polycarbonate imide resin (A). Alternatively, it may be added directly to the polycarbonate imide resin (A).
<フィラー(C)成分>
 本発明で用いられるフィラー(C)(以下、単に(C)成分ともいう。)は、無機あるいは有機のフィラーであることが好ましい。フィラー(C)としては、上記のポリカーボネートイミド系樹脂(A)中に分散してペーストを形成し、そのペーストにチキソトロピー性(揺変性)を付与できるものであればよく、特に制限はない。すなわち、本発明のポリカーボネートイミド系樹脂ペーストに揺変性を付与できる無機あるいは有機フィラーであることが好ましい。このような無機フィラーとしては、例えば、シリカ(SiO2、日本アエロジル(株)製の商品名AEROSIL(登録商標))、アルミナ(Al2O3)、チタニア(TiO2)、酸化タンタル(Ta2O5)、ジルコニア(ZrO2)、窒化ケイ素(Si3N4)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga2O3)、スピネル(MgO・Al2O3)、ムライト(3Al2O3・2SiO2)、コーディエライト(2MgO・2Al2O3・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2-Al2O3)、イットリア含有ジルコニア(Y2O3-ZrO2)、ケイ酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、硫酸バリウム(BaSO4)、有機化ベントナイト、カーボン(C)、有機化スメクタイト(コープケミカル(株)製の商品名ルーセンタイト(登録商標)STN、ルーセンタイトSPN、ルーセンタイトSAN、ルーセンタイトSEN)などを使用することができ、これらは単独でも二種以上を組み合わせて用いても構わない。得られるペーストの色調、透明性、機械特性、チキソトロピー性付与の点から、シリカやルーセンタイトを使用するのが好ましい。
<Filler (C) component>
The filler (C) used in the present invention (hereinafter also simply referred to as component (C)) is preferably an inorganic or organic filler. The filler (C) is not particularly limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin (A) to form a paste and can impart thixotropic properties (thixotropic properties) to the paste. That is, an inorganic or organic filler that can impart thixotropic properties to the polycarbonate imide resin paste of the present invention is preferable. Examples of such inorganic fillers include silica (SiO 2 , trade name AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO · TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO · TiO 2 ), zirconate titanate lead (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3), spinel (MgO · Al 2 O 3) , mullite (3Al 2 O 3 · 2SiO 2 ), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ), talc (3MgO · 4SiO 2 · H 2 O), aluminum titanate (TiO 2 -Al 2 O 3) , yttria-containing zirconia (Y 2 O 3 -ZrO 2) , silicate Barium (BaO · 8SiO 2 ), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate ( CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO · TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, carbon (C), organic smectite (trade name manufactured by Coop Chemical Co., Ltd.) Tight (registered trademark) STN, Lucentite SPN, Lucentite SAN, Lucentite SEN) and the like can be used, and these may be used alone or in combination of two or more. From the viewpoint of imparting color tone, transparency, mechanical properties and thixotropy of the obtained paste, it is preferable to use silica or lucentite.
 本発明に用いられる無機フィラーとしては、平均粒子径50μm以下、最大粒子径100μm以下の粒子径のものが好ましく、平均粒子径20μm以下が更に好ましく、平均粒子径10μm以下が最も好ましい。ここでいう平均粒子径(メジアン径)は、レーザ回折・散乱式粒度分布測定装置を用いて体積基準で求められる値である。平均粒子径が50μmを超えると十分なチキソトロピー性を有するペーストが得られにくくなり、塗膜の屈曲性が低下することがある。最大粒子径が100μmを超えると、塗膜の外観、密着性が不十分となる傾向にある。 The inorganic filler used in the present invention preferably has an average particle size of 50 μm or less and a maximum particle size of 100 μm or less, more preferably an average particle size of 20 μm or less, and most preferably an average particle size of 10 μm or less. The average particle diameter (median diameter) referred to here is a value obtained on a volume basis using a laser diffraction / scattering particle size distribution measuring apparatus. When the average particle diameter exceeds 50 μm, it becomes difficult to obtain a paste having sufficient thixotropy, and the flexibility of the coating film may be lowered. When the maximum particle diameter exceeds 100 μm, the appearance and adhesion of the coating film tend to be insufficient.
 本発明に用いられる有機フィラーとしては上記したポリカーボネートイミド系樹脂溶液中に分散してペーストを形成し、そのペーストにチキソトロピー性を付与できるものであればよく、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、エポキシ樹脂粒子等が挙げられる。 The organic filler used in the present invention is not limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin solution to form a paste and can impart thixotropy to the paste. Polyimide resin particles, benzoguanamine resin particles, epoxy resin Particles and the like.
 本発明に用いられるフィラー(C)の使用量は、(A)成分を100質量部とした場合、好ましくは1~25質量部である。さらに好ましくは2~15質量部、特に好ましくは3~12質量部である。無機あるいは有機フィラーの配合量が1質量部未満では印刷性が低下する傾向にあり、25質量部を超えると、塗膜の屈曲性などの機械特性、透明性が低下する傾向にある。 The amount of the filler (C) used in the present invention is preferably 1 to 25 parts by mass when the component (A) is 100 parts by mass. More preferably, it is 2 to 15 parts by mass, and particularly preferably 3 to 12 parts by mass. If the blending amount of the inorganic or organic filler is less than 1 part by mass, the printability tends to decrease, and if it exceeds 25 parts by mass, the mechanical properties such as the flexibility of the coating film and the transparency tend to decrease.
<硬化促進剤(D)>
 本発明のポリカーボネートイミド系樹脂ペーストには、密着性、耐薬品性、耐熱性等の特性をよりいっそう向上するために、(D)成分として硬化促進剤を添加することができる。本発明で用いられる硬化促進剤(D)としては、上記のポリカーボネートイミド系樹脂(A)、エポキシ樹脂(B)の硬化反応を促進できるものであればよく、特に制限はない。
<Curing accelerator (D)>
To the polycarbonate imide resin paste of the present invention, a curing accelerator can be added as the component (D) in order to further improve the properties such as adhesion, chemical resistance and heat resistance. The curing accelerator (D) used in the present invention is not particularly limited as long as it can accelerate the curing reaction of the polycarbonate imide resin (A) and the epoxy resin (B).
 このような硬化促進剤(D)の具体例としては、例えば、四国化成工業(株)製、2MZ、2E4MZ、C11Z、C17Z、2PZ、1B2MZ、2MZ-CN、2E4MZ-CN、C11Z-CN、2PZ-CN、2PHZ-CN、2MZ-CNS、2E4MZ-CNS、2PZ-CNS、2MZ-AZINE、2E4MZ-AZINE、C11Z -AZINE、2MA-OK、2P4MHZ、2PHZ、2P4BHZ等のイミダゾール誘導体、アセトグアナミン、ベンゾグアナミン等のグアナミン類、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類、これらの有機酸塩および/またはエポキシアダクト、三フッ化ホウ素のアミン錯体、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4,3,0]-5-ノネン)等の三級アミン類、これらの有機酸塩及び/又はテトラフェニルボレート、ポリビニルフェノール、ポリビニルフェノール臭素化物、トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボレート等の四級ホスホニウム塩類、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の四級アンモニウム塩類、前記ポリカルボン酸無水物、ジフェニルヨードニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート、イルガキュア(登録商標)261(チバ・スペシャルティ・ケミカルズ(株)製)、オプトマ-SP-170(ADEKA(株)製)等の光カチオン重合触媒、スチレン-無水マレイン酸樹脂、フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物等が挙げられる。これらを単独で又は2種類以上組み合わせて用いても構わない。好ましくは潜在硬化性を有する硬化促進剤であり、DBU、DBNの有機酸塩及び/又はテトラフェニルボレート(U-CAT5002(サンアプロ(株)製)や、DBUフェノール塩(U-CAT SA 1 (サンアプロ(株)製) 、光カチオン重合触媒等が挙げられる。 Specific examples of such a curing accelerator (D) include, for example, 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ manufactured by Shikoku Chemicals Co., Ltd. -CN, 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z -AZINE, 2MA-OK, 2P4MHZ, 2PHZ, 2P4BHZ and other imidazole derivatives, acetoguanamine, benzoguanamine, etc. Guanamines, diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polybasic hydrazide, and other organic acid salts and / or epoxies thereof Adducts, amine complexes of boron trifluoride, triazine derivatives such as ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-xylyl-S-triazine, trimethylamine, triethanol Amine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa (N-methyl) melamine, 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, DBU ( Tertiary amines such as 1,8-diazabicyclo [5,4,0] -7-undecene) and DBN (1,5-diazabicyclo [4,3,0] -5-nonene), organic acid salts thereof and / Or tetraphenylborate, polyvinylphenol, polyvinylphenol bromide, tributylphosphine Quaternary compounds such as phosphine, triphenylphosphine, tris-2-cyanoethylphosphine, etc., tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide, hexadecyltributylphosphonium chloride, tetraphenylphosphonium tetraphenylborate, etc. Quaternary ammonium salts such as phosphonium salts, benzyltrimethylammonium chloride, phenyltributylammonium chloride, the polycarboxylic acid anhydride, diphenyliodonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyri Rium hexafluorophosphate, Irgacure (registered trademark) 261 (manufactured by Ciba Specialty Chemicals), Optoma-SP- 170 (manufactured by ADEKA), photocationic polymerization catalyst, styrene-maleic anhydride resin, equimolar reaction product of phenyl isocyanate and dimethylamine, organic polyisocyanate such as tolylene diisocyanate, isophorone diisocyanate and dimethylamine, etc. Molar reactants and the like. You may use these individually or in combination of 2 or more types. Preferably, it is a curing accelerator having latent curing properties, such as DBU, DBN organic acid salts and / or tetraphenylborate (U-CAT5002 (manufactured by San Apro Co., Ltd.)), DBU phenol salt (U-CAT SA 1 (Sun Apro). Manufactured by Co., Ltd.), and a cationic photopolymerization catalyst.
 硬化促進剤(D)の使用量は、(A)成分を100質量部とした場合、0~20質量部が好ましい。20質量部を超えると、ポリカーボネートイミド系樹脂組成物の保存安定性や塗膜の耐熱性が低下することがある。 The amount of the curing accelerator (D) used is preferably 0 to 20 parts by mass when the component (A) is 100 parts by mass. If it exceeds 20 parts by mass, the storage stability of the polycarbonate imide resin composition and the heat resistance of the coating film may be lowered.
<ポリカーボネートイミド系樹脂ペースト>
 本発明のポリカーボネートイミド系樹脂ペーストは、前述した(A)成分、(B)成分、および(C)成分を含有する組成物である。さらに必要に応じて、(D)成分やその他の配合成分を好ましくは前記の割合で配合することができる。これら各成分をロールミル、ミキサー、3本ロール等で均一に混合することにより得られるものが好ましい。混合方法は、十分な分散が得られる方法であれば特に制限はない。3本ロールによる複数回の混練が好ましい。
<Polycarbonate imide resin paste>
The polycarbonate imide resin paste of the present invention is a composition containing the aforementioned component (A), component (B), and component (C). Further, if necessary, the component (D) and other blending components can be blended preferably in the above proportions. What is obtained by uniformly mixing these components with a roll mill, a mixer, a three roll or the like is preferable. The mixing method is not particularly limited as long as sufficient dispersion can be obtained. Multiple kneading with three rolls is preferred.
 本発明のポリカーボネートイミド系樹脂及びペーストは、ブルックフィールド粘度計(以下、B型粘度計ともいう。)での粘度が25℃で50dPa・s~1000dPa・sの範囲が好ましく、100dPa・s~800dPa・sの範囲がさらに好ましい。粘度が50dPa・s未満であると、印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。粘度が1000dPa・sを超えると印刷の際、ペーストの基材への転写性が低下しカスレが発生するとともに印刷膜中のボイド及びピンホールが増加する傾向がある。 The polycarbonate imide resin and paste of the present invention preferably have a viscosity in a Brookfield viscometer (hereinafter also referred to as a B-type viscometer) in the range of 50 dPa · s to 1000 dPa · s at 25 ° C., and 100 dPa · s to 800 dPa. -The range of s is more preferable. When the viscosity is less than 50 dPa · s, there is a tendency for the paste to flow out after printing and the film thickness to be reduced. When the viscosity exceeds 1000 dPa · s, the transferability of the paste to the base material is lowered during printing, and there is a tendency for voids and pinholes in the printed film to increase.
 揺変度(チキソトロピー性)も重要である。ポリカーボネートイミド系樹脂ペーストの揺変度は、後述する測定方法において1.2以上が好ましく、1.5以上が更に好ましい。上限は7.0以下が好ましく、6.0以下が更に好ましい。揺変度が1.2未満では印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。7.0を超えるとペーストがフローしなくなる傾向にある。揺変度は、揺変度付与剤としての(C)成分の配合量で調整することができる。 Stability (thixotropic properties) is also important. The degree of change of the polycarbonate imide resin paste is preferably 1.2 or more, more preferably 1.5 or more in the measurement method described later. The upper limit is preferably 7.0 or less, and more preferably 6.0 or less. If the degree of change is less than 1.2, the flow of paste after printing increases and the film thickness tends to be reduced. If it exceeds 7.0, the paste tends not to flow. The thixotropic degree can be adjusted by the blending amount of the component (C) as a thixotropic agent.
 本発明のポリカーボネートイミド系樹脂組成物及びペーストには、必要に応じてフタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の重合禁止剤、オルベン、ベントン、モンモリロナイト等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系、有機アルミニウム化合物、有機チタン化合物、有機シラン化合物などのカップリング剤/密着性付与剤、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシレニルフォスフェート、トリエチルフォスフェート、クレジルジフェニルフォスフェート、キシレニルジフェニルフォスフェート、クレジルビス(2,6-キシレニル)フォスフェート、2-エチルヘキシルフォスフェート、ジメチルメチルフォスフェート、レゾルシノールビス(ジフェノールAビス(ジクレジル)フォスフェート、ジエチル-N,N-ビス(2-ヒドロキシエチル)アミノメチルフォスフェート、リン酸アミド、有機ホスフィンオキサイド、赤燐等のリン系難燃剤、ポリリン酸アンモニウム、トリアジン、メラミンシアヌレート、サクシノグアナミン、エチレンジメラミン、トリグアナミン、シアヌル酸トリアジニル塩、メレム、メラム、トリス(β-シアノエチル)イソシアヌレート、アセトグアナミン、硫酸グアニルメラミン、硫酸メレム、硫酸メラム等の窒素系難燃剤、ジフェニルスルホン-3-スルホン酸カリウム、芳香族スルフォンイミド金属塩、ポリスチレンスルフォン酸アルカリ金属塩等の金属塩系難燃剤、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニウム、酸化スズ等の水和金属系難燃剤、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化アンチモン、酸化ニッケル、酸化銅、酸化タングステン、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、スズ酸亜鉛等無機系難燃剤、シリコーンパウダー等の等の難燃剤/難燃助剤、熱安定剤、酸化防止剤、滑剤のような公知慣用の添加剤類を用いることができる。 For the polycarbonate imide resin composition and paste of the present invention, known and commonly used colorings such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc. Agents, hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol, phenothiazine, and other known and conventional polymerization inhibitors, such as olben, benton, and montmorillonite, known and commonly used thickeners, silicone-based, fluorine-based, polymer-based, etc. Antifoaming agent, leveling agent, imidazole, thiazole, triazole, coupling agent such as organoaluminum compound, organotitanium compound, organosilane compound, adhesion promoter, triphenyl phosphate , Tricresyl phosphate, trixylenyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, cresyl bis (2,6-xylenyl) phosphate, 2-ethylhexyl phosphate, dimethylmethyl Phosphoric flame retardants such as phosphate, resorcinol bis (diphenol A bis (dicresyl) phosphate, diethyl-N, N-bis (2-hydroxyethyl) aminomethyl phosphate, phosphoric acid amide, organic phosphine oxide, red phosphorus , Ammonium polyphosphate, triazine, melamine cyanurate, succinoguanamine, ethylenedimelamine, triguanamine, triazinyl cyanurate, melem, melam, tris (β-cyanoethyl) isocyanate Nitrogen flame retardants such as rate, acetoguanamine, guanyl melamine sulfate, melem sulfate, melam sulfate, metal salt flame retardants such as potassium diphenylsulfone-3-sulfonate, aromatic sulfonimide metal salt, and alkali metal polystyrene sulfonate Hydrated metal flame retardants such as aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, barium hydroxide, basic magnesium carbonate, zirconium hydroxide, tin oxide, silica, aluminum oxide, iron oxide, titanium oxide, Manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, tin oxide, antimony oxide, nickel oxide, copper oxide, tungsten oxide, zinc borate, zinc metaborate, barium metaborate , Zinc carbonate Conventional additives such as inorganic flame retardants such as magnesium carbonate, calcium carbonate, barium carbonate, zinc stannate, flame retardants / flame retardants such as silicone powder, heat stabilizers, antioxidants, and lubricants Can be used.
<硬化塗膜>
 本発明のポリカーボネートイミド系樹脂ペーストは、例えば、ソルダーレジストとしては次のようにして硬化し、硬化物を得ることができる。即ち、ポリイミドフィルム等の樹脂基材に銅をめっきすることによって形成されたCOF (Chip On Film)基板に、スクリーン印刷法、スプレー法、ロールコート法、静電塗装法、カーテンコート法等の方法により5~80μmの膜厚で本発明のポリカーボネートイミド系樹脂ペーストを塗布し、塗膜を60~120℃で予備乾燥させた後、120~200℃で本乾燥させる。乾燥は空気中でも不活性雰囲気中でもよい。ここで、樹脂基材に銅をめっきする方法としては、無電解めっきでも良いし、樹脂基材に銅をスパッタリングする方法でも良い。
<Curing coating>
For example, the polycarbonate imide resin paste of the present invention can be cured as a solder resist as follows to obtain a cured product. That is, methods such as screen printing, spraying, roll coating, electrostatic coating, curtain coating, etc. on COF (Chip On Film) substrates formed by plating copper on resin substrates such as polyimide films Then, the polycarbonate imide resin paste of the present invention is applied to a film thickness of 5 to 80 μm, the coating film is pre-dried at 60 to 120 ° C., and then dried at 120 to 200 ° C. Drying may be in air or in an inert atmosphere. Here, as a method of plating copper on the resin substrate, electroless plating may be used, or a method of sputtering copper on the resin substrate may be used.
 このようにして得られたCOF基板のポリカーボネートイミド系樹脂ペーストの層は、COF基板のソルダーレジスト層、表面保護層または接着層となる。このように本発明のポリカーボネートイミド系樹脂ペーストは、被膜形成材料として、半導体素子や各種電子部品用オーバーコートインキ、ソルダーレジストインキに有用である他、塗料、コーティング剤、接着剤等としても使用できる。ここで、ソルダーレジスト層とは、回路導体のはんだ付けする部分を除いた全面に皮膜形成されるもので、プリント配線板に電子部品を配線する際、はんだが不必要な部分に付着するのを防ぐとともに、回路が直接空気に暴露されるのを防止する保護皮膜として使用されるものである。表面保護層とは、回路部材の表面に貼り付けて加工工程や使用環境から電子部材を機械的、化学的に保護するために使用されるものである。接着層とは、主に金属層とフィルム層を接着し、貼り合わせ加工を行う場合に使用されるものである。 The layer of the polycarbonate imide resin paste of the COF substrate thus obtained becomes a solder resist layer, a surface protective layer or an adhesive layer of the COF substrate. As described above, the polycarbonate imide resin paste of the present invention is useful as a film forming material for semiconductor elements, overcoat inks for various electronic components, solder resist inks, and can also be used as paints, coating agents, adhesives, and the like. . Here, the solder resist layer is a film formed on the entire surface excluding the part to be soldered of the circuit conductor, and when wiring electronic parts on the printed wiring board, the solder adheres to unnecessary parts. It is used as a protective coating that prevents the circuit from being directly exposed to air. The surface protective layer is used for mechanically and chemically protecting the electronic member from a processing step or a use environment by being attached to the surface of the circuit member. The adhesive layer is mainly used when a metal layer and a film layer are bonded and a bonding process is performed.
 本発明をさらに具体的に説明するために、以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定されたものである。 In order to describe the present invention more specifically, examples are given below, but the present invention is not limited to the examples. In addition, the measured value described in the Example is measured by the following method.
<対数粘度>
 ポリカーボネートイミド系樹脂(A)を、ポリマー濃度が0.5g/dlとなるようにN-メチル-2-ピロリドンに溶解した。その溶液の溶液粘度及び溶媒粘度を30℃で、ウベローデ型粘度管により測定して、下記の式で計算した。
 対数粘度(dl/g)=[ln(V1/V2)]/V3
 上記式中、V1はウベローデ型粘度管により測定した溶媒粘度を示すが、V1及びV2はポリマー溶液及び溶媒(N-メチル-2-ピロリドン)が粘度管のキャピラリーを通過する時間から求めた。また、V3はポリマー濃度(g/dl)である。
<Logarithmic viscosity>
The polycarbonate imide resin (A) was dissolved in N-methyl-2-pyrrolidone so that the polymer concentration was 0.5 g / dl. The solution viscosity and solvent viscosity of the solution were measured at 30 ° C. with an Ubbelohde type viscosity tube and calculated according to the following formula.
Logarithmic viscosity (dl / g) = [ln (V1 / V2)] / V3
In the above formula, V1 represents the solvent viscosity measured with an Ubbelohde viscosity tube, and V1 and V2 were determined from the time required for the polymer solution and the solvent (N-methyl-2-pyrrolidone) to pass through the capillary of the viscosity tube. V3 is the polymer concentration (g / dl).
<非窒素系溶媒溶解性>
 ポリカーボネートイミド系樹脂(A)重合時、反応容器内に(a)成分、(b)成分、(c)成分およびγ-ブチロラクトンを加えて昇温し、内温が100℃に達した時点で原料((a)成分、(b)成分、(c)成分)が溶解したかどうかで評価した。
(評価) ○:完全に溶解
     △:わずかに溶け残りあり
     ×:ほとんど不溶
<Non-nitrogen solvent solubility>
During polymerization of polycarbonate imide resin (A), ingredients (a), (b), (c) and γ-butyrolactone are added to the reaction vessel and the temperature is raised. When the internal temperature reaches 100 ° C., the raw material It evaluated by whether ((a) component, (b) component, (c) component) melt | dissolved.
(Evaluation) ○: Completely dissolved △: Slightly undissolved ×: Almost insoluble
<ポリカーボネートイミド系樹脂ペーストの作製>
 ポリカーボネートイミド系樹脂(A)にエポキシ樹脂(B)を加え、γ-ブチロラクトンで希釈してポリカーボネートイミド系樹脂組成物を得た。この溶液にフィラー(C)、硬化促進剤(D)、消泡剤、レベリング剤を加えた。この溶液を粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散したポリカーボネートイミド系樹脂ペーストを得た。
<Production of polycarbonate imide resin paste>
The epoxy resin (B) was added to the polycarbonate imide resin (A) and diluted with γ-butyrolactone to obtain a polycarbonate imide resin composition. Filler (C), curing accelerator (D), antifoaming agent and leveling agent were added to this solution. This solution was roughly kneaded and then kneaded three times using a high-speed three-roll to obtain a polycarbonate imide resin paste in which the filler was uniformly dispersed.
<積層フィルムの作製>
 積層フィルムには、市販のポリイミド製ベースフィルムとして、商品名バイロフレックス(登録商標)(東洋紡製)、商品名エスパーフレックス(登録商標)(住友金属鉱山製)を使用した。
 東洋紡製2層CCL(商品名バイロフレックス(登録商標)、銅箔18μm、基材20μm)からサブトラクティブ法で得られた銅回路(L/S=50/50)上にポリカーボネートイミド系樹脂ペーストをSUSメッシュ版(株式会社ムラカミ製150メッシュ、乳剤厚30μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中で80℃で6分間乾燥した(スクリーン印刷)。その後、120℃にて90分加熱硬化することで、ポリカーボネートイミド系樹脂ペーストからなるカバーレイ(被膜)を施した積層フィルムを得た。被膜の厚みは15μmであった。住友金属鉱山製COF用CCL(商品名エスパーフレックス(登録商標)、銅層8μm、基材12.5μm)使用の場合もサブトラクティブ法で得られた銅回路(L/S=16/16)を使用し、上記と同様に積層フィルムを得た。
<Preparation of laminated film>
As the laminated film, as a commercially available polyimide base film, trade name Viroflex (registered trademark) (manufactured by Toyobo) and trade name Esperflex (registered trademark) (manufactured by Sumitomo Metal Mining) were used.
A polycarbonate imide resin paste is applied onto a copper circuit (L / S = 50/50) obtained by a subtractive method from Toyobo's two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 μm, base material 20 μm). A predetermined pattern was printed with a SUS mesh plate (150 mesh manufactured by Murakami Co., Ltd., emulsion thickness 30 μm) at a printing speed of 5 cm / second, and dried in an air atmosphere at 80 ° C. for 6 minutes (screen printing). Then, the laminated film which gave the coverlay (coating) which consists of a polycarbonate imide-type resin paste was obtained by heat-hardening for 90 minutes at 120 degreeC. The thickness of the coating was 15 μm. When using CCL for COF (trade name Esperflex (registered trademark), copper layer 8μm, base material 12.5μm) manufactured by Sumitomo Metal Mining, the copper circuit (L / S = 16/16) obtained by the subtractive method is used. And a laminated film was obtained as described above.
<低温乾燥/硬化性>
 ポリカーボネートイミド系樹脂ペーストを厚さ100μmのポリプロピレンフィルムに、乾燥後の厚みが20μmになるようにアプリケーターで塗布した。次いで、120℃の温度で90分乾燥後、ポリプロピレンフィルムから剥離した。剥離したフィルム0.125gをN-メチル-2-ピロリドン25ml中、100℃で2時間溶解した後、ガラスフィルターで溶剤を濾別した。残ったゲル分を150℃で10時間以上真空乾燥し、下記式にてゲル分率を算出し、評価した。
 ゲル分率(%)=溶剤溶解後の重量/初期の質量×100
(評価)  ○:ゲル分率≧85%
      ×:ゲル分率85%未満
<Low temperature drying / curability>
The polycarbonate imide resin paste was applied to a polypropylene film having a thickness of 100 μm with an applicator so that the thickness after drying was 20 μm. Subsequently, after drying for 90 minutes at a temperature of 120 ° C., the film was peeled off from the polypropylene film. After 0.125 g of the peeled film was dissolved in 25 ml of N-methyl-2-pyrrolidone at 100 ° C. for 2 hours, the solvent was filtered off with a glass filter. The remaining gel content was vacuum-dried at 150 ° C. for 10 hours or more, and the gel fraction was calculated and evaluated by the following formula.
Gel fraction (%) = weight after solvent dissolution / initial mass × 100
(Evaluation) ○: Gel fraction ≧ 85%
X: Gel fraction less than 85%
<揺変度(チキソ比)>
 ブルックフィールドBH型回転粘度計を用いて、次の手順で測定した。広口型遮光瓶(100ml)にポリカーボネートイミド系樹脂ペーストを90ml入れ、恒温水槽を用いて液温を25℃±0.5℃に調整した。次いで、ガラス棒を用いて12~15秒かけて40回撹拌した後、所定のローターを設置して、5分静置した後、10rpmで3分回転させた時の目盛りを読み取り、粘度を算出した。同じく、25℃、1rpmで測定した粘度の値から次式で計算した。
 揺変度=粘度(1rpm)/粘度(10rpm)
<Fluctuation (thixo ratio)>
Using a Brookfield BH rotational viscometer, the measurement was performed in the following procedure. 90 ml of a polycarbonate imide resin paste was placed in a wide-mouthed light-shielding bottle (100 ml), and the liquid temperature was adjusted to 25 ° C. ± 0.5 ° C. using a constant temperature water bath. Next, after stirring 40 times for 12-15 seconds using a glass rod, install the prescribed rotor, let stand for 5 minutes, then read the scale when rotated for 3 minutes at 10 rpm, and calculate the viscosity did. Similarly, it calculated by the following formula from the viscosity value measured at 25 ° C. and 1 rpm.
Deflection = viscosity (1 rpm) / viscosity (10 rpm)
<印刷特性>
 ポリカーボネートイミド系樹脂ペーストを、前記<積層フィルムの作製>の欄に記載の方法でスクリーン印刷した際の印刷性を評価した。
(評価) ○:版離れ性が良好であり、印刷表面が平坦である
     △:版離れ性が悪い、もしくは、印刷表面に凹凸が見られる
     ×:版離れ性が悪く、印刷表面に凹凸が見られる
<Printing characteristics>
The printability when the polycarbonate imide resin paste was screen-printed by the method described in the section <Preparation of laminated film> was evaluated.
(Evaluation) ○: The release property is good and the printing surface is flat. Δ: The release property is poor, or unevenness is observed on the printing surface. ×: The release property is poor and unevenness is seen on the printing surface. Be
<低反り性>
 得られた積層フィルムを10cm×10cmに切り出した。25℃、65%RHで24時間調湿したサンプルを下に凸な状態で水平なガラス板に載せ、四隅の高さの平均を評価した。
(判定) ○:高さ2mm未満
     △:高さ2mm以上10mm未満
     ×:高さ10mm以上
<Low warpage>
The obtained laminated film was cut into 10 cm × 10 cm. A sample conditioned for 24 hours at 25 ° C. and 65% RH was placed on a horizontal glass plate in a convex state, and the average height of the four corners was evaluated.
(Judgment) ○: less than 2 mm in height Δ: height of 2 mm or more and less than 10 mm ×: height of 10 mm or more
<屈曲性>
 得られた積層フィルムに、JIS-C-6471(1995)に準じて評価を行った。荷重300g、心棒の直径は0.38mmとしクラック発生の有無を確認し、クラックが発生した時の折り曲げ回数を記録した。
(判定) ◎:250回以上の折り曲げでクラック発生なし
     ○:200回以上の折り曲げでクラック発生なし
     ×:200回未満でクラック発生
<Flexibility>
The obtained laminated film was evaluated according to JIS-C-6471 (1995). The load was 300 g, the diameter of the mandrel was 0.38 mm, the presence or absence of cracks was confirmed, and the number of bendings when the cracks occurred was recorded.
(Judgment) ◎: No cracking when bent 250 times or more ○: No cracking when bending 200 times or more ×: Crack generated after less than 200 times
<線間絶縁抵抗>
 得られた積層フィルムに直流電圧500V×1分印加した場合の線間絶縁抵抗値(Ω)を測定した。数値が高いほうが良好といえる。
<Insulation resistance between lines>
The insulation resistance value (Ω) between lines when a DC voltage of 500 V × 1 minute was applied to the obtained laminated film was measured. The higher the number, the better.
<半田耐熱性>
 得られた積層フィルムを、JIS-C6481(1996)に準じて260℃の半田浴に30秒間浸漬し、剥がれや膨れ等の外観異常の有無を観察した。
(判定) ○:外観異常なし
     △:わずかに外観異常あり
     ×:全面外観異常あり
<Solder heat resistance>
The obtained laminated film was immersed in a solder bath at 260 ° C. for 30 seconds according to JIS-C6481 (1996), and the presence or absence of appearance abnormality such as peeling or swelling was observed.
(Judgment) ○: No appearance abnormality △: Slight appearance abnormality ×: Overall appearance abnormality
<密着性>
 得られた積層フィルムに、JIS-K5600-5-6(1999)に準じて、1mmの碁盤目を100ヶ所作り、セロテープによる剥離試験を行い、碁盤目の剥離状態を評価した。
(判定) ○:100/100で剥離なし
     △:70~99/100
     ×:0~69/100
<Adhesion>
In accordance with JIS-K5600-5-6 (1999), the obtained laminated film was made with 100 1 mm grids and subjected to a peel test using cello tape to evaluate the peeled state of the grids.
(Judgment) ○: No peeling at 100/100 Δ: 70 to 99/100
×: 0 to 69/100
<鉛筆硬度>
 得られた積層フィルムについて、JIS-K5600-5-4(1999)に準じて評価を行った。鉛筆硬度は2H以上が好ましく、3H以上がさらに好ましい。
<Pencil hardness>
The obtained laminated film was evaluated according to JIS-K5600-5-4 (1999). The pencil hardness is preferably 2H or higher, and more preferably 3H or higher.
<耐アルカリ性>
 ポリカーボネートイミド系樹脂ペーストを厚さ100μmのポリプロピレンフィルムに乾燥後の厚みが20μmになるようにアプリケーターで塗布した。次いで、120℃の温度で90分乾燥後、ポリプロピレンフィルムから剥離した。得られた評価サンプルを10重量%水酸化ナトリウム水溶液に40℃で3時間浸漬後取り出し、塗膜の状態を判定評価した。
(判定) ○:外観異常なし
     △:わずかに外観異常あり
     ×:塗膜に膨潤脱落があるあるいは溶解している
<Alkali resistance>
The polycarbonate imide resin paste was applied to a 100 μm thick polypropylene film with an applicator so that the thickness after drying was 20 μm. Subsequently, after drying for 90 minutes at a temperature of 120 ° C., the film was peeled off from the polypropylene film. The obtained evaluation sample was immersed in a 10% by weight aqueous sodium hydroxide solution at 40 ° C. for 3 hours and then taken out, and the state of the coating film was evaluated.
(Judgment) ○: No appearance abnormality △: Slight appearance abnormality ×: Swelling or dropping off of coating film or dissolved
(製造例1)(b)一般式(1)で示されるポリカーボネート骨格を有する酸二無水物の合成
 反応容器にトリメリット酸無水物(TMA)167g(0.87モル)と塩化チオニルとを仕込み、反応させてトリメリット酸無水物の塩化物を合成した。次いでトリメリット酸無水物の塩化物183g(0.87モル)とジオール化合物としてデュラノールT5651(旭化成(製)、分子量1000)434g(0.43モル)とをトルエン中で、30℃でエステル化させることでポリカーボネート骨格含有テトラカルボン酸二無水物を合成した。
(Production Example 1) (b) Synthesis of acid dianhydride having a polycarbonate skeleton represented by general formula (1) A reaction vessel was charged with 167 g (0.87 mol) of trimellitic anhydride (TMA) and thionyl chloride. The trimellitic anhydride chloride was synthesized by reaction. Next, 183 g (0.87 mol) of trimellitic anhydride chloride and 434 g (0.43 mol) of Duranol T5651 (Asahi Kasei Co., Ltd., molecular weight 1000) as a diol compound are esterified in toluene at 30 ° C. Thus, a polycarbonate skeleton-containing tetracarboxylic dianhydride was synthesized.
(製造例2)
 製造例1で合成した、(b)成分60.0g(0.04モル)、トリメリット酸無水物3.8g(0.02モル)、エチレングリコールビスアンヒドロトリメリテート(TMEG)16.4g(0.04モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)26.4g(0.1モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン97.9gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン83.9g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-1を得た。
(Production Example 2)
The component (b) 60.0 g (0.04 mol), trimellitic anhydride 3.8 g (0.02 mol), ethylene glycol bisanhydro trimellitate (TMEG) 16.4 g synthesized in Production Example 1 (0.04 mol), 26.4 g (0.1 mol) of o-tolidine diisocyanate (TODI) as the diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) 0. 08 g was added and dissolved in 97.9 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring in a nitrogen stream, diluted by adding 83.9 g of γ-butyrolactone, and cooled to room temperature. To obtain a polycarbonate imide resin solution A-1.
(製造例3)
 製造例1で合成した、(b)成分60.0g(0.04モル)、トリメリット酸無水物3.8g(0.02モル)、エチレングリコールビスアンヒドロトリメリテート(TMEG)16.4g(0.04モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)21.1g(0.08モル)、2,4-トリレンジイソシアネート(TDI)3.4g(0.02モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン96.1gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン82.3g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-2を得た。
(Production Example 3)
The component (b) 60.0 g (0.04 mol), trimellitic anhydride 3.8 g (0.02 mol), ethylene glycol bisanhydro trimellitate (TMEG) 16.4 g synthesized in Production Example 1 (0.04 mol), 21.1 g (0.08 mol) of o-tolidine diisocyanate (TODI) as diisocyanate, 3.4 g (0.02 mol) of 2,4-tolylene diisocyanate (TDI), 1 as a polymerization catalyst , 8-diazabicyclo [5,4,0] -7-undecene (DBU) (0.08 g) was added and dissolved in 96.1 g of γ-butyrolactone. Thereafter, the mixture was reacted for 6 hours at 80 ° C. to 190 ° C. with stirring in a nitrogen stream, diluted by adding 82.3 g of γ-butyrolactone, and cooled to room temperature, whereby the solution was cooled to room temperature to give a brown viscous viscosity of 35% by mass. To obtain a polycarbonate imide resin solution A-2.
(製造例4)
 製造例1で合成した、(b)成分90.0g(0.06モル)、トリメリット酸無水物3.8g(0.02モル)、エチレングリコールビスアンヒドロトリメリテート(TMEG)8.2g(0.02モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)21.1g(0.08モル)、2,4-トリレンジイソシアネート(TDI)3.4g(0.02モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン117.9gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン101.1g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-3を得た。
(Production Example 4)
The component (b) 90.0 g (0.06 mol), trimellitic anhydride 3.8 g (0.02 mol), ethylene glycol bisanhydro trimellitate (TMEG) 8.2 g synthesized in Production Example 1 (0.02 mol), 21.1 g (0.08 mol) of o-tolidine diisocyanate (TODI) as diisocyanate, 3.4 g (0.02 mol) of 2,4-tolylene diisocyanate (TDI), 1 as a polymerization catalyst , 8-diazabicyclo [5,4,0] -7-undecene (DBU) (0.08 g) was added and dissolved in 117.9 g of γ-butyrolactone. Thereafter, the mixture was reacted for 6 hours at 80 ° C. to 190 ° C. with stirring under a nitrogen stream, diluted by adding 101.1 g of γ-butyrolactone, and cooled to room temperature. To obtain a polycarbonate imide resin solution A-3.
(製造例5)
 製造例1で合成した、(b)成分120.0g(0.08モル)、トリメリット酸無水物3.8g(0.02モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)21.1g(0.08モル)、2,4-トリレンジイソシアネート(TDI)3.4g(0.02モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン139.6gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン119.7g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-4を得た。
(Production Example 5)
The component (b) 120.0 g (0.08 mol), trimellitic anhydride 3.8 g (0.02 mol) synthesized in Production Example 1 and diisocyanate o-tolidine diisocyanate (TODI) 21.1 g (0 .08 mol), 3.4 g (0.02 mol) of 2,4-tolylene diisocyanate (TDI), and 0.08 g of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) as a polymerization catalyst. Was dissolved in 139.6 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring in a nitrogen stream, diluted by adding 119.7 g of γ-butyrolactone, and cooled to room temperature. To obtain a polycarbonate imide resin solution A-4.
(製造例6)
 製造例1で合成した、(b)成分90.0g(0.06モル)、トリメリット酸無水物3.8g(0.02モル)、エチレングリコールビスアンヒドロトリメリテート(TMEG)8.2g(0.02モル)、ジイソシアネートとして4,4-ジフェニルメタンジイソシアネート(MDI)25.0g(0.1モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン118.3gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン101.4g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-5を得た。
(Production Example 6)
The component (b) 90.0 g (0.06 mol), trimellitic anhydride 3.8 g (0.02 mol), ethylene glycol bisanhydro trimellitate (TMEG) 8.2 g synthesized in Production Example 1 (0.02 mol), 2,5-diphenylmethane diisocyanate (MDI) 25.0 g (0.1 mol) as the diisocyanate, and 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) as the polymerization catalyst 0.08 g was added and dissolved in 118.3 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted by adding 101.4 g of γ-butyrolactone, and cooled to room temperature. To obtain a polycarbonate imide resin solution A-5.
(製造例7)
 製造例1で合成した、(b)成分75.0g(0.05モル)、トリメリット酸無水物3.8g(0.02モル)、エチレングリコールビスアンヒドロトリメリテート(TMEG)12.3g(0.03モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)26.4g(0.1モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.08gを入れ、γ-ブチロラクトン108.8gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン93.2g加えて希釈し、室温まで冷却することにより、不揮発分35質量%の褐色で粘調なポリカーボネートイミド系樹脂溶液A-6を得た。
(Production Example 7)
Component (b) 75.0 g (0.05 mol), trimellitic anhydride 3.8 g (0.02 mol), ethylene glycol bisanhydro trimellitate (TMEG) 12.3 g synthesized in Production Example 1 (0.03 mol), 26.4 g (0.1 mol) of o-tolidine diisocyanate (TODI) as the diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) 0. 08 g was added and dissolved in 108.8 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring in a nitrogen stream, diluted by adding 93.2 g of γ-butyrolactone, and cooled to room temperature, whereby a brown viscous solution having a nonvolatile content of 35% by mass was obtained. To obtain a polycarbonate imide resin solution A-6.
(実施例1)
 製造例2で得られたポリカーボネートイミド樹脂溶液A-1の不揮発分100質量部に対して、jER154(三菱化学(株)製フェノールノボラック型エポキシ樹脂の商品名)10質量部を加え、γ-ブチロラクトンで希釈した。さらにフィラーとしてルーセンタイトSEN(コープケミカル(株)製合成スメクタイト)を3.0質量部、硬化促進剤としてUcat5002(サンアプロ(株)製)を1.0質量部、消泡剤としてBYK-054(ビックケミー(株)製)を0.9質量部、レベリング剤としてBYK-354(ビックケミー(株)製)を1.9質量部、レオロジーコントロール剤としてBYK-E410(ビックケミー(株)製)を0.5質量部加えポリカーボネートイミド樹脂組成物を得た。該組成物を、まず粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散しチキソトロピー性を有する、本発明のポリカーボネートイミド系樹脂ペースト(1)を得た。γ-ブチロラクトンで粘度を調整したところ、溶液粘度が232ポイズ、揺変度は1.48であった。東洋紡製2層CCL(商品名バイロフレックス(登録商標)、銅箔18μm、基材20μm)からサブトラクティブ法で得られた銅回路(L/S=50/50)上に、本発明のポリカーボネートイミド系樹脂ペースト(1)をSUSメッシュ版(株式会社ムラカミ製150メッシュ、乳剤厚30μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中で80℃で6分間乾燥した。その後、120℃にて90分加熱硬化することで、ポリカーボネートイミド系樹脂ペーストからなるカバーレイ(被膜)を施したCOF基板(評価サンプル1)を得た。被膜の厚みは15μmであった。評価結果を表1に示す。
(Example 1)
10 parts by mass of jER154 (trade name of phenol novolac type epoxy resin manufactured by Mitsubishi Chemical Corporation) is added to 100 parts by mass of the nonvolatile content of the polycarbonate imide resin solution A-1 obtained in Production Example 2, and γ-butyrolactone is added. Diluted with Furthermore, 3.0 parts by mass of Lucentite SEN (synthetic smectite manufactured by Corp Chemical Co.) as a filler, 1.0 part by mass of Ucat 5002 (manufactured by San Apro Co., Ltd.) as a curing accelerator, and BYK-054 (as an antifoaming agent) 0.9 parts by mass of BYK-Chemie Co., Ltd., 1.9 parts by mass of BYK-354 (Bic Chemie Co., Ltd.) as a leveling agent, and 0. BYK-E410 (Bic Chemie Co., Ltd.) as a rheology control agent. 5 parts by mass was added to obtain a polycarbonate imide resin composition. The composition is first kneaded roughly, and then kneaded three times using a high-speed three-roll, whereby the filler is uniformly dispersed and the polycarbonate imide resin paste (1) of the present invention having thixotropic properties Got. When the viscosity was adjusted with γ-butyrolactone, the solution viscosity was 232 poise and the throttling rate was 1.48. Polycarbonate imide of the present invention on a copper circuit (L / S = 50/50) obtained by a subtractive method from Toyobo's two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 μm, base material 20 μm) A predetermined pattern was printed on the resin-based resin paste (1) with a SUS mesh plate (150 mesh manufactured by Murakami Co., Ltd., emulsion thickness 30 μm) at a printing speed of 5 cm / second, and dried in an air atmosphere at 80 ° C. for 6 minutes. Then, the COF board | substrate (evaluation sample 1) which gave the coverlay (coating) which consists of a polycarbonate imide-type resin paste was obtained by heat-hardening for 90 minutes at 120 degreeC. The thickness of the coating was 15 μm. The evaluation results are shown in Table 1.
(実施例2~9)
 ポリカーボネートイミド系樹脂(A)溶液、および(B)~(D)成分を表1記載のものを用いた他は、実施例1と同様にしてペーストを調製した後、評価サンプル2~9を作製した。評価結果を表1に示す。
(Examples 2 to 9)
Preparation of evaluation samples 2 to 9 after preparing a paste in the same manner as in Example 1 except that the polycarbonate imide resin (A) solution and the components (B) to (D) shown in Table 1 were used. did. The evaluation results are shown in Table 1.
(実施例10、11)
 ポリカーボネートイミド系樹脂(A)溶液、および(B)~(D)成分を表1記載のものを用いた他は、実施例1と同様にしてペーストを調製した後、住友金属鉱山製COF用CCL(商品名エスパーフレックス(登録商標)、銅層8μm、基材12.5μm)からサブトラクティブ法で得られた銅回路(L/S=16/16)上に、本発明のポリカーボネートイミド系樹脂ペーストをSUSメッシュ版(株式会社ムラカミ製150メッシュ、乳剤厚30μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中で80℃で6分間乾燥した。その後、120℃にて90分加熱硬化することで、ポリカーボネートイミド系樹脂ペーストからなるカバーレイ(被膜)を施したCOF基板(評価サンプル10、11)を得た。被膜の厚みは15μmであった。評価結果を表1に示す。
(Examples 10 and 11)
A paste was prepared in the same manner as in Example 1 except that the polycarbonate imide resin (A) solution and the components (B) to (D) listed in Table 1 were used, and then the CCL for COF manufactured by Sumitomo Metal Mining was used. (Product name Esperflex (registered trademark), copper layer 8 μm, base material 12.5 μm) on a copper circuit (L / S = 16/16) obtained by a subtractive method, the polycarbonate imide resin paste of the present invention Was printed with a SUS mesh plate (Murakami Co., Ltd. 150 mesh, emulsion thickness 30 μm) at a printing speed of 5 cm / sec and dried in an air atmosphere at 80 ° C. for 6 minutes. Then, the COF board | substrate (evaluation samples 10 and 11) which gave the coverlay (coating) which consists of a polycarbonate imide-type resin paste was obtained by heat-hardening for 90 minutes at 120 degreeC. The thickness of the coating was 15 μm. The evaluation results are shown in Table 1.
(比較例1)
 トリメリット酸無水物28.8g(0.1モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)31.7g(0.08モル)、2,4-トリレンジイソシアネート(TDI)5.2g(0.02モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.11gを入れ、γ-ブチロラクトン52.5gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で反応させた。しかし、γ-ブチロラクトンに溶解せず、溶液にかすみが生じた(A-6)。評価結果を表2に示す。
(Comparative Example 1)
28.8 g (0.1 mol) of trimellitic anhydride, 31.7 g (0.08 mol) of o-tolidine diisocyanate (TODI) as a diisocyanate, 5.2 g (0. 02 mol), 0.11 g of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) was added as a polymerization catalyst and dissolved in 52.5 g of γ-butyrolactone. Thereafter, the reaction was carried out at 80 ° C. to 190 ° C. with stirring in a nitrogen stream. However, it did not dissolve in γ-butyrolactone, and the solution became hazy (A-6). The evaluation results are shown in Table 2.
(比較例2)
 製造例3で得られたポリカーボネートイミド系樹脂溶液A-3を用いたこと、およびjER154(三菱化学(株)製フェノールノボラック型エポキシ樹脂の商品名)を配合しなかったこと以外は、実施例1と同様にペーストを調製した。エポキシ樹脂を配合しなかったため、ペーストの硬化が不十分であり、半田耐熱性や耐アルカリ性が低下した。評価結果を表2に示す。
(Comparative Example 2)
Example 1 except that the polycarbonate imide resin solution A-3 obtained in Production Example 3 was used and jER154 (trade name of phenol novolac type epoxy resin manufactured by Mitsubishi Chemical Corporation) was not blended. A paste was prepared in the same manner as above. Since the epoxy resin was not blended, the curing of the paste was insufficient, and the solder heat resistance and alkali resistance were lowered. The evaluation results are shown in Table 2.
(比較例3)
 製造例3で得られたポリカーボネートイミド系樹脂溶液A-3を用いたこと、およびフィラーを配合しなかったこと以外は、実施例1と同様にペーストを調製した。フィラーを配合しなかったため、チキソトロピー性が不十分であり、スクリーン印刷が不可能であった。そのため、評価用の積層フィルムサンプルを作製することができなかった。
(Comparative Example 3)
A paste was prepared in the same manner as in Example 1 except that the polycarbonate imide resin solution A-3 obtained in Production Example 3 was used and no filler was added. Since no filler was blended, the thixotropy was insufficient and screen printing was impossible. Therefore, a laminated film sample for evaluation could not be produced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明により得られたポリカーボネートイミド系樹脂ペーストは、被膜形成材料として優れた耐熱性、柔軟性を併せ持つ。このため、COF基板などの各種電子部品用オーバーコートインキ、ソルダーレジストインキに有用である他、塗料、コーティング剤、接着剤等として電子機器の幅広い分野で使用できるため、産業界に大きく寄与することが期待される。 The polycarbonate imide resin paste obtained by the present invention has both excellent heat resistance and flexibility as a film forming material. For this reason, it is useful for overcoat inks and solder resist inks for various electronic components such as COF substrates, and it can be used in a wide range of electronic equipment as paints, coating agents, adhesives, etc. There is expected.

Claims (5)

  1.  (A)成分として、(a) 酸無水物基を有する3価及び/または4価のポリカルボン酸誘導体、(b) 一般式(1)で示されるポリカーボネート骨格を有する酸二無水物、および(c)イソシアネート化合物またはアミン化合物を必須の共重合成分とするポリカーボネートイミド樹脂、
     (B)成分として、1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、
     (C)成分として、フィラー
    を含有するポリカーボネートイミド系樹脂ペースト。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)において、mおよびnはそれぞれ1以上の整数であって、複数のmは、それぞれ同じであっても異なっていてもよい。)
    As component (A), (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (1), and ( c) a polycarbonate imide resin containing an isocyanate compound or an amine compound as an essential copolymer component,
    (B) As an ingredient, an epoxy resin having two or more epoxy groups per molecule,
    (C) Polycarbonate imide resin paste containing a filler as a component.
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), m and n are each an integer of 1 or more, and a plurality of m may be the same or different.)
  2.  さらに(D)成分として、硬化促進剤を含有する請求項1に記載のポリカーボネートイミド系樹脂ペースト。 The polycarbonate imide resin paste according to claim 1, further comprising a curing accelerator as component (D).
  3.  揺変度が1.2以上である請求項1または2に記載のポリカーボネートイミド系樹脂ペースト。 The polycarbonate imide resin paste according to claim 1 or 2, wherein the degree of change is 1.2 or more.
  4.  COF用である請求項1~3のいずれかに記載のポリカーボネートイミド系樹脂ペースト。 The polycarbonate imide resin paste according to any one of claims 1 to 3, which is used for COF.
  5.  請求項1~4のいずれかに記載のポリカーボネートイミド系樹脂ペーストを硬化したソルダーレジスト層、表面保護層または接着層を有する電子部品。
     
    An electronic component having a solder resist layer, a surface protective layer, or an adhesive layer obtained by curing the polycarbonate imide resin paste according to any one of claims 1 to 4.
PCT/JP2015/079128 2014-10-28 2015-10-15 Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste WO2016067925A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016502558A JP6699546B2 (en) 2014-10-28 2015-10-15 Polycarbonate imide resin paste and electronic component having solder resist layer, surface protection layer, interlayer insulating layer or adhesive layer obtained by curing the paste
CN201580048829.1A CN106715590B (en) 2014-10-28 2015-10-15 Polycarbonate imide resin paste and electronic component having solder resist layer, surface protective layer, interlayer insulating layer or adhesive layer obtained by curing the paste
KR1020167034825A KR102285047B1 (en) 2014-10-28 2015-10-15 Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-218966 2014-10-28
JP2014218966 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016067925A1 true WO2016067925A1 (en) 2016-05-06

Family

ID=55857266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079128 WO2016067925A1 (en) 2014-10-28 2015-10-15 Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste

Country Status (5)

Country Link
JP (1) JP6699546B2 (en)
KR (1) KR102285047B1 (en)
CN (1) CN106715590B (en)
TW (1) TWI687492B (en)
WO (1) WO2016067925A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098776B1 (en) * 2015-10-19 2017-03-22 東洋紡株式会社 Polycarbonate imide resin and paste using the same
WO2017068999A1 (en) * 2015-10-19 2017-04-27 東洋紡株式会社 Polycarbonate-imide resin and paste including same
WO2018084013A1 (en) * 2016-11-04 2018-05-11 東洋紡株式会社 Polycarbonate imide resin and resin composition including same
WO2019244600A1 (en) * 2018-06-22 2019-12-26 東洋紡株式会社 Polycarbonate-imide resin and paste including same
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175679A (en) * 2018-03-28 2019-10-10 東特塗料株式会社 Electrical insulation material, electrical insulation paint and electrical insulated wire made of stilbene-based polyesterimide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211095A (en) * 2009-03-12 2010-09-24 Toray Ind Inc Photosensitive coverlay
JP2011105811A (en) * 2009-11-13 2011-06-02 Kaneka Corp Insulating polyimide film, cover lay film, and flexible printed wiring board
JP2013095894A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Polyimide precursor or polyimide and photosensitive resin composition
JP2013095895A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Tetracarboxylic dianhydride

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611833B2 (en) 1985-07-03 1994-02-16 電気化学工業株式会社 Transparent and heat resistant thermoplastic resin composition
JPH05320492A (en) 1992-05-25 1993-12-03 Mitsui Toatsu Chem Inc Polycarbonate resin composition
JP3083210B2 (en) 1992-10-26 2000-09-04 三井化学株式会社 Polyimide resin composition
JP3136942B2 (en) 1994-03-18 2001-02-19 宇部興産株式会社 Polyimide siloxane composition
JP2865198B2 (en) 1996-07-19 1999-03-08 宇部興産株式会社 Flexible wiring board with polymer film
JP2005255936A (en) * 2004-03-15 2005-09-22 Hitachi Chem Co Ltd Resin paste and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211095A (en) * 2009-03-12 2010-09-24 Toray Ind Inc Photosensitive coverlay
JP2011105811A (en) * 2009-11-13 2011-06-02 Kaneka Corp Insulating polyimide film, cover lay film, and flexible printed wiring board
JP2013095894A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Polyimide precursor or polyimide and photosensitive resin composition
JP2013095895A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Tetracarboxylic dianhydride

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098776B1 (en) * 2015-10-19 2017-03-22 東洋紡株式会社 Polycarbonate imide resin and paste using the same
WO2017068999A1 (en) * 2015-10-19 2017-04-27 東洋紡株式会社 Polycarbonate-imide resin and paste including same
JP7028182B2 (en) 2016-11-04 2022-03-02 東洋紡株式会社 Polycarbonate imide resin and resin composition containing it
CN109843981A (en) * 2016-11-04 2019-06-04 东洋纺株式会社 Polycarbonate imide resin and resin combination containing the resin
KR20190077302A (en) * 2016-11-04 2019-07-03 도요보 가부시키가이샤 Polycarbonate imide resin and resin composition containing it
JPWO2018084013A1 (en) * 2016-11-04 2019-09-19 東洋紡株式会社 Polycarbonate imide resin and resin composition containing the same
WO2018084013A1 (en) * 2016-11-04 2018-05-11 東洋紡株式会社 Polycarbonate imide resin and resin composition including same
CN109843981B (en) * 2016-11-04 2022-05-31 东洋纺株式会社 Polycarbonate imide resin and resin composition containing the same
KR102422913B1 (en) * 2016-11-04 2022-07-21 도요보 가부시키가이샤 Polycarbonate imide resin and resin composition comprising same
WO2019244600A1 (en) * 2018-06-22 2019-12-26 東洋紡株式会社 Polycarbonate-imide resin and paste including same
JPWO2019244600A1 (en) * 2018-06-22 2021-06-24 東洋紡株式会社 Polycarbonate imide resin and paste using it
JP7310808B2 (en) 2018-06-22 2023-07-19 東洋紡株式会社 Polycarbonate imide resin and paste using the same
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive
JP7446887B2 (en) 2020-03-30 2024-03-11 リンテック株式会社 film adhesive

Also Published As

Publication number Publication date
CN106715590A (en) 2017-05-24
JP6699546B2 (en) 2020-05-27
JPWO2016067925A1 (en) 2017-08-03
TW201623486A (en) 2016-07-01
TWI687492B (en) 2020-03-11
KR20170077060A (en) 2017-07-05
CN106715590B (en) 2022-01-04
KR102285047B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6699546B2 (en) Polycarbonate imide resin paste and electronic component having solder resist layer, surface protection layer, interlayer insulating layer or adhesive layer obtained by curing the paste
JP4994679B2 (en) Film material forming paste
JP5901141B2 (en) Light-emitting element mounting substrate, light-emitting element mounting substrate manufacturing method, light-emitting device, light-emitting device manufacturing method, and white resin composition
JP2006348278A (en) Carboxy group-containing polyurethane, thermosetting resin composition and their use
KR20100076016A (en) Resin composition
JP5223458B2 (en) Urethane-modified polyimide resin composition, paste comprising the composition, and electronic component obtained from the paste
JP2008297388A (en) Modified polyimide resin composition, paste containing the composition and electronic part manufactured by using the paste
JP2008101123A (en) Modified polyimide resin composition, paste composed thereof and electronic device produced therefrom
JP7028182B2 (en) Polycarbonate imide resin and resin composition containing it
JP6592640B1 (en) Adhesive composition comprising acrylonitrile butadiene rubber copolymerized polyamideimide resin
JP5610301B2 (en) Thermosetting resin composition
KR102233604B1 (en) Polycarbonate imide resin and paste using the same
JP7310808B2 (en) Polycarbonate imide resin and paste using the same
KR102587386B1 (en) Adhesive composition comprising acrylonitrile butadiene rubber copolymerized polyamide imide resin
JP6098776B1 (en) Polycarbonate imide resin and paste using the same
JP5510780B2 (en) Urethane-modified polyimide resin
JPWO2008047866A1 (en) Resin composition and film-forming material containing the same
TW201805341A (en) Polyesterimide resin film, resin used therein and resin composition simultaneously having good heat resistance, flexibility and low moisture absorption property

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016502558

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034825

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854830

Country of ref document: EP

Kind code of ref document: A1