WO2019244600A1 - Polycarbonate-imide resin and paste including same - Google Patents

Polycarbonate-imide resin and paste including same Download PDF

Info

Publication number
WO2019244600A1
WO2019244600A1 PCT/JP2019/021726 JP2019021726W WO2019244600A1 WO 2019244600 A1 WO2019244600 A1 WO 2019244600A1 JP 2019021726 W JP2019021726 W JP 2019021726W WO 2019244600 A1 WO2019244600 A1 WO 2019244600A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
mol
imide resin
polycarbonate
represented
Prior art date
Application number
PCT/JP2019/021726
Other languages
French (fr)
Japanese (ja)
Inventor
翔子 内山
啓介 松尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020525437A priority Critical patent/JP7310808B2/en
Publication of WO2019244600A1 publication Critical patent/WO2019244600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides

Definitions

  • the present invention relates to a polycarbonate imide resin and a paste using the same. Particularly useful for COF (Chip ⁇ On ⁇ Film) substrate applications, it has excellent heat resistance and flexibility and is suitable for a coating method such as a printing machine, a dispenser or a spin coater, and a polycarbonate imide resin paste obtained by curing the paste. Electronic component having a solder resist layer, a surface protective layer, or an adhesive layer.
  • polyimide resins are widely used as insulating materials for electric and electronic equipment because of their excellent heat resistance, insulation properties, chemical resistance, and the like.
  • it is often used as a raw material of a COF substrate, and is applied to a wiring board material and a mounting substrate material of an electronic device that requires flexibility and small space.
  • solder resists are widely used as permanent protective films for circuits. Solder resist is a film that is formed on the entire surface of the circuit conductor except for the part to be soldered.When wiring electronic components on printed wiring boards, it prevents solder from adhering to unnecessary parts and Is used as a protective coating to prevent direct exposure to air.
  • polyimide resins are generally high in elasticity and hard, when laminated on a substrate such as a film or a copper foil, there is a problem in a post-process because warpage or the like is generated due to a difference in elasticity. Further, there is a problem that the cured film lacks flexibility and is inferior in flexibility.
  • Examples of a polyimide resin which is soluble in a non-nitrogen-based solvent and has low warpage and flexibility by making the resin flexible and having a low elastic modulus include, for example, (Patent Document 1) and (Patent Document 2). Discloses a polysiloxane-modified polyimide resin.
  • polysiloxane-modified polyimide resins use an expensive diamine having a dimethylsiloxane bond as a starting material for lowering the modulus of elasticity, and are inferior in economical efficiency.
  • adhesion, solvent resistance, and chemical resistance decrease as the polysiloxane copolymerization amount increases.
  • Patent Document 3 a composition in which a certain amount of a polycarbonate resin is mixed with a polyimide resin to impart flexibility, thereby improving the moldability of the resin composition is disclosed (Patent Document 3), (Patent Document 4). .
  • Patent Document 5 a thermoplastic resin composition having improved moldability by mixing a polyimide resin, an epoxy resin and a polycarbonate resin is disclosed (Patent Document 5). These are listed as resins suitable for melt kneading and melt extrusion and have excellent heat resistance and mechanical strength, but are not soluble in non-nitrogen solvents and have low warpage and flexibility. Hard to say.
  • the object of the present invention is (1) non-nitrogen-based solvent solubility (2) low-temperature drying / curability (3) low warpage (4) bending resistance (5) printing characteristics, and (6) high temperature resistance.
  • An object of the present invention is to provide an electronic component having a polycarbonate imide resin having excellent wettability and heat resistance, a polycarbonate imide resin paste using the same, and a solder resist layer, a surface protective layer, or an adhesive layer obtained by curing the paste. is there.
  • the composition contains the components represented by the general formula (1) and the components represented by the general formula (2), and all the components are 200 mol%, the components represented by the general formula (1) and the general formula (The polycarbonate imide resin (A), wherein the total of the components represented by 2) is 45 mol% or more.
  • a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and q independently represents an integer of 1 to 4.
  • a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms, and n is an integer of 1 or more.
  • the polycarbonate imide resin (A) further contains a component represented by the general formula (3).
  • a component represented by the general formula (3) a plurality of R 3 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, r each independently represents an integer of 1 to 4, and p is 0 or 1. is there.
  • the component represented by the general formula (1) is 5 to 45 mol%
  • the component represented by the general formula (2) is 5 to 45 mol%
  • a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and s independently represents an integer of 1 to 4.
  • a plurality of R 5 each independently represent a divalent organic group having 1 or more carbon atoms, and m is an integer of 1 or more.
  • the isocyanate component (c) is preferably a diisocyanate represented by the general formula (6).
  • a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbons, t each independently represents an integer of 1 to 4, and p is 0 or 1. is there.
  • the acid dianhydride having a fluorene structure represented by the general formula (4) is 5 to 45 mol%, and the acid dianhydride having a polycarbonate skeleton represented by the general formula (5) is used.
  • the content of the diisocyanate represented by the general formula (6) is preferably at least 50 mol% when the total isocyanate component is 100 mol%.
  • solubility in non-nitrogen solvents (2) low-temperature drying / curing properties (3) low warpage (4) bending resistance (5) printing characteristics, which have been difficult to satisfy simultaneously at the same time, and (6) It has a polycarbonate imide resin excellent in high temperature and humidity resistance and heat resistance, a polycarbonate imide resin paste using the same, and a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste. Electronic components can be provided.
  • the polycarbonate imide resin (A) of the present invention will be described.
  • the polycarbonate imide resin (A) includes a component represented by the general formula (1) (hereinafter, also referred to as a component of the general formula (1)) and a component represented by the general formula (2) (hereinafter, the general formula (When the total amount of the components is 200 mol%, the total of the components represented by the general formula (1) and the components represented by the general formula (2) is 45 mol. % Or more.
  • a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and q independently represents an integer of 1 to 4.
  • a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms, and n is an integer of 1 or more.
  • the cardo structure means a hinge structure in which four aromatic rings are bonded to carbon atoms, and has a variety of features such as high heat resistance and transparency because it contains a large number of aromatic rings.
  • a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 1 is preferably hydrogen or a methyl group, more preferably a methyl group.
  • q independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1.
  • the position of R 1 is preferably 3-position with respect to the addition position of the fluorene ring, and more preferably, both R 1 are 3-position.
  • the position of the ester group is preferably 4-position with respect to the addition position of the fluorene ring, and more preferably both of the two ester groups are 4-position.
  • a component represented by the formula (7) is particularly preferable.
  • the content of the components of the general formula (1) is preferably 5 mol% or more when all the components are 200 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the solubility in a non-nitrogen solvent or the heat resistance may not be obtained. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If it is too large, it may not be possible to contain a sufficient amount of the components represented by the general formula (2) described later and other acid components. Therefore, heat resistance and bending resistance (mechanical properties) may be reduced.
  • a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms.
  • the number of carbon atoms is preferably 5 or more, more preferably 10 or more, preferably 20 or less, and more preferably 18 or less.
  • the divalent organic group is not particularly limited, but is preferably a linear alkylene group which may have a substituent, and the carbon number preferably includes the carbon of the substituent.
  • n is an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 3 or more, preferably an integer of 10 or less, and more preferably an integer of 8 or less.
  • the content of the components of the general formula (2) is preferably 5 mol% or more when all the components are 200 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, warpage may occur when the layers are laminated, or the solubility in a non-nitrogen-based solvent may decrease. Therefore, at 5 ° C. to 30 ° C., the resin may be precipitated within one month. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If the amount is too large, the heat resistance may decrease. Further, the component represented by the general formula (1) and other acid components may not be contained in a sufficient amount. Therefore, low warpage and bending resistance (mechanical properties) may be reduced.
  • the total amount of the component represented by the general formula (1) and the component represented by the general formula (2) is 45 mol% or more, It is preferably at least 50 mol%, more preferably at least 55 mol%, even more preferably at least 60 mol%. If the amount is too small, low warpage and solubility in a non-nitrogen solvent may be reduced. Further, it is preferably at most 90 mol%, more preferably at most 80 mol%.
  • the polycarbonate imide resin (A) of the present invention preferably further contains a component represented by the general formula (3) (hereinafter, also referred to as a component of the general formula (3)).
  • a component represented by the general formula (3) By including the component represented by the general formula (3), excellent flex resistance can be exhibited.
  • a plurality of R 3 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, r each independently represents an integer of 1 to 4, and p is 0 or 1. is there.
  • each of a plurality of R 3 independently represents hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 3 is preferably hydrogen or a methyl group, and more preferably a methyl group.
  • r independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1.
  • the position of R 3 is preferably 3-position with respect to — (CH 2 ) p—, and more preferably, both R 3 are 3-position.
  • the position of the binding site is preferably at position 4 with respect to-(CH 2 ) p-, and more preferably both of the two binding sites are at position 4.
  • p is 0 or 1, preferably 0 (biphenyl form).
  • components of the general formula (3) include 4,4′-biphenyl diisocyanate residue, 4,3′-biphenyl diisocyanate residue, 4,2′-biphenyl diisocyanate residue, and 3,3′-biphenyl Diisocyanate residue, 3,2'-biphenyl diisocyanate residue, 2,2'-biphenyl diisocyanate residue, 3- or 2-methyl-4,4'-biphenyl diisocyanate residue, 3- or 2- or 2'- Or 4'- or 5'- or 6'-methyl-4,3'-biphenyl diisocyanate residue, 3- or 2- or 3'- or 4'- or 5'- or 6'-methyl-4,2 '-Biphenyl diisocyanate residue, 3- or 2-ethyl-4,4'-biphenyl diisocyanate residue, 3- or 2- or 2'- or 4'- or 5'- 6'-ethyl-4,3'--
  • the content of the components represented by the general formula (3) is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% when all the components are 200 mol%. Mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%. If it is less than 50 mol%, the flex resistance may not be sufficiently exhibited.
  • the polycarbonate imide resin (A) of the present invention contains the components of the general formula (1) and the components of the general formula (2) in predetermined amounts. Therefore, the polycarbonate imide resin (A) includes (a) an acid dianhydride having a fluorene structure represented by the general formula (4), (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5), and (C) When the isocyanate component is an essential copolymer component and the total acid component is 100 mol%, (a) a fluorene structure-containing dianhydride represented by the general formula (4) and (b) a general formula (5) )) Is preferably at least 45 mol%.
  • a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and s independently represents an integer of 1 to 4.
  • a plurality of R 5 each independently represent a divalent organic group having 1 or more carbon atoms, and m is an integer of 1 or more.
  • the component (a) constituting the polycarbonate imide resin (A) used in the present invention needs to be (a) an acid dianhydride having a fluorene structure (hereinafter, also simply referred to as the component (a)).
  • an acid dianhydride having a fluorene structure hereinafter, also simply referred to as the component (a).
  • a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 4 is preferably hydrogen or a methyl group, and more preferably a methyl group.
  • s each independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1.
  • the position of R 4 is preferably 3-position with respect to the addition position of the fluorene ring, and more preferably both R 4 are 3-position.
  • the position of the ester group is preferably 4-position with respect to the addition position of the fluorene ring, and more preferably both of the two ester groups are 4-position.
  • the compound represented by the formula (8) is particularly preferable (hereinafter, also referred to as a compound of the formula (8)).
  • Examples of commercially available products include, but are not limited to, TBIS (registered trademark) -MPN (manufactured by Taoka Chemical), and these can be used alone or in combination of two or more.
  • the copolymerization amount of the component (a) is preferably 5 mol% or more when the total acid component to be reacted is 100 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the solubility in a non-nitrogen solvent or the heat resistance may not be obtained. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If the amount is too large, it may not be possible to copolymerize a sufficient amount of other acid components described later (b). Therefore, low warpage and bending resistance (mechanical properties) may be reduced.
  • the (b) acid dianhydride having a polycarbonate skeleton represented by the general formula (5) (hereinafter, also simply referred to as component (b)) constituting the polycarbonate imide resin (A) of the present invention is a polycarbonate polyimide resin ( It is copolymerized as a flexible component which imparts low warpage, non-nitrogen solvent solubility, etc. to A).
  • the component (b) is an acid dianhydride having a polycarbonate skeleton represented by the general formula (5).
  • a plurality of R 5 each independently represents a divalent organic group having 1 or more carbon atoms.
  • the number of carbon atoms is preferably 5 or more, more preferably 10 or more, preferably 20 or less, and more preferably 18 or less.
  • the divalent organic group is not particularly limited, but is preferably a linear alkylene group which may have a substituent, and the carbon number preferably includes the carbon of the substituent.
  • n is an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 3 or more, preferably an integer of 10 or less, and more preferably an integer of 8 or less.
  • the method for producing the component (b) is not particularly limited, but can be synthesized from a chloride of trimellitic anhydride and the above-mentioned polycarbonate diol compound by a known reaction method. More specifically, first, a polycarbonate diol compound and a deoxidizing agent are charged into a chloride solution of trimellitic anhydride dissolved in a solvent, and the mixture is stirred for 0.5 to 24 hours. The reaction is carried out at a temperature of ⁇ 20 to 50 ° C., and preferably at a temperature of 20 to 40 ° C. from the viewpoint of reaction selectivity.
  • the reaction is preferably performed using 2 mol or more of chloride of trimellitic anhydride with respect to 1 mol of the polycarbonate diol compound.
  • the solute concentration in the reaction is preferably from 5 to 80% by weight, more preferably from 40 to 60% by weight.
  • the precipitated hydrochloride is separated by filtration and the solvent is concentrated to obtain the desired acid dianhydride having a polycarbonate skeleton represented by the general formula (5) (hereinafter also referred to as a polycarbonate skeleton-containing tetracarboxylic dianhydride). ) Can be obtained.
  • Examples of the method for producing the polycarbonate diol compound include transesterification between a diol as a raw material and a carbonate, and a dehydrochlorination reaction between a diol as a raw material and phosgene.
  • the carbonate as a raw material is not particularly limited, and examples thereof include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • a linear diol compound having two hydroxyl groups can be used.
  • examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol.
  • the polycarbonate diol that can be used in the present invention may be a polycarbonate diol having a plurality of types of alkylene groups in its skeleton (copolymerized polycarbonate diol), and as commercial products, for example, Kuraray polyol C-1015N, Kuraray polyol C- 1065N (carbonate diol manufactured by Kuraray Co., Ltd .: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 1,000), Kuraray polyol C-2015N, Kuraray polyol C-2065N (( Kuraray's carbonate diol: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 2,000), Kuraray polyol C-1050, Kuraray polyol C-1090 (Kuraray Co., Ltd.) Carbonate diol: 3-meth 1,5-
  • the copolymerization amount of the component (b) is preferably 5 mol% or more when the total acid component is 100 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the elastic modulus may not be sufficiently reduced, and warpage may occur when laminating, or the solubility in a non-nitrogen-based solvent may be reduced. Therefore, at 5 ° C. to 30 ° C., the resin may be precipitated within one month. On the other hand, it is preferably at most 45 mol%, more preferably at most 40 mol%, even more preferably at most 35 mol%. If the amount is too large, the component (a) and other acid components described below cannot be contained in a sufficient amount, so that low warpage, bending resistance (mechanical properties), and heat resistance may decrease.
  • the total amount of the component (a) and the component (b) needs to be 45 mol% or more, preferably 50 mol% or more, and 55 mol% or more. %, More preferably at least 60 mol%. If the amount is too small, low warpage and solubility in a non-nitrogen solvent may be reduced. Further, it is preferably at most 90 mol%, more preferably at most 80 mol%.
  • a trivalent or tetravalent polycarboxylic acid derivative having an acid anhydride group can be used as the other acid component.
  • the aromatic polycarboxylic acid derivative is not particularly restricted but includes, for example, trimellitic anhydride (TMA), pyromellitic dianhydride, 3,3′-4,4′-benzophenonetetracarboxylic dianhydride, 3 3,3'-4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, , 3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride , M-terphenyl-3,3
  • Examples of the aliphatic or alicyclic polycarboxylic acid derivative include, but are not limited to, butane-1,2,3,4-tetracarboxylic dianhydride and pentane-1,2,4,5-tetracarboxylic acid.
  • the content of the trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group is preferably 10 mol% or more, more preferably 20 mol%, when the acid component is 100 mol%. And more preferably 30 mol% or more. Further, it is preferably at most 55 mol%, more preferably at most 50 mol%.
  • aliphatic, alicyclic, and aromatic dicarboxylic acids may be further copolymerized as needed as long as the desired performance is not impaired.
  • the aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decandioic acid, dodecandioic acid, eicosantioic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedicarboxylic acid, 2-methyloctanedicarboxylic acid, 3,8-dimethyldecanedicarboxylic acid, 3,7-dimethyldecanedicarboxylic acid, 9,12-dimethyleicosandioic acid, fumaric acid
  • alicyclic dicarboxylic acids such as, maleic acid, dimer acid, hydrogenated dimer acid and the like include 1,4-cyclohexan
  • Terephthalic acid Terephthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, stilbene dicarboxylic acid and the like.
  • dicarboxylic acids may be used alone or in combination of two or more. Considering heat resistance, adhesion, solubility, cost, and the like, sebacic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, and isophthalic acid are preferred.
  • the (c) isocyanate component constituting the polycarbonate imide resin (A) of the present invention is preferably a diisocyanate represented by the general formula (6).
  • the diisocyanate represented by the general formula (6) excellent flex resistance can be exhibited.
  • a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbons, t each independently represents an integer of 1 to 4, and p is 0 or 1. is there.
  • a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 6 is preferably hydrogen or a methyl group, more preferably a methyl group.
  • t each independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1.
  • the position of R 6 is preferably 3-position with respect to — (CH 2 ) p-, and more preferably both R 6 are 3-position.
  • the position of the binding site is preferably at position 4 with respect to-(CH 2 ) p-, and more preferably both of the two binding sites are at position 4.
  • p is 0 or 1, preferably 0 (biphenyl form).
  • diisocyanate represented by the general formula (6) examples include 4,4'-biphenyl diisocyanate, 4,3'-biphenyl diisocyanate, 4,2'-biphenyl diisocyanate, 3,3'-biphenyl diisocyanate, 3,2 '-Biphenyl diisocyanate, 2,2'-biphenyl diisocyanate, 3- or 2-methyl-4,4'-biphenyl diisocyanate, 3- or 2- or 2'- or 4'- or 5'- or 6'-methyl -4,3'-biphenyl diisocyanate, 3- or 2- or 3'- or 4'- or 5'- or 6'-methyl-4,2'-biphenyl diisocyanate, 3- or 2-ethyl-4,4 '-Biphenyl diisocyanate, 3- or 2- or 2'- or 4'- or 5'- or 6'-ethyl-4,3' Bipheny
  • the copolymerization amount of the diisocyanate represented by the general formula (6) is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol%, when all the isocyanate components are 100 mol%. Mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%. If it is less than 50 mol%, the value of the elastic modulus is low, and the flex resistance may not be sufficiently exhibited.
  • an isocyanate compound may be further copolymerized as an isocyanate component as long as the desired performance is not impaired. It is not particularly limited as long as it is an isocyanate compound, and examples thereof include an aromatic polyisocyanate, an aliphatic polyisocyanate and an alicyclic polyisocyanate. Preferably, an aromatic polyisocyanate is used. Although not particularly limited, specific examples of the aromatic polyisocyanate include, for example, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3.
  • diphenylmethane-4,4'-diisocyanate MDI
  • tolylene-2,4-diisocyanate TDI
  • m-xylylene diisocyanate 2,4-diisocyanate (TDI) is more preferred. These can be used alone or in combination of two or more.
  • the (c) isocyanate component used in the polycarbonate imide resin (A) of the present invention is 100 mol%, it is preferable that any one of the isocyanate compounds is 100 mol%.
  • a diamine compound corresponding to the isocyanate is used instead of the isocyanate, a polyamic acid is used as a precursor of the polycarbonate polyimide resin. After passing through the polyamic acid, it is necessary to apply the polyamic acid-containing paste to a substrate such as COF (Chip ⁇ On ⁇ Film) and then imidize it at a high temperature of about 200 ° C. or more, which may cause thermal degradation of the COF. Yes, and there may be restrictions on facilities.
  • COF Chip ⁇ On ⁇ Film
  • the isocyanate compound containing the diisocyanate represented by the general formula (6) since only the isocyanate compound containing the diisocyanate represented by the general formula (6) is used as the isocyanate component, it can be processed at a lower temperature than the paste containing polyamic acid, and is preferable because there is no problem as described above. .
  • aliphatic / aromatic polyester diols manufactured by Toyobo Co., Ltd., trade name VYLON (registered trademark) 220
  • aliphatic / aromatic polycarbonate diols manufactured by Daicel Chemical Industries, Ltd., trade name PLACCEL (registered trademark)
  • -CD220 manufactured by Kuraray Co., Ltd., trade names C-1015N, C-1050, C-1065N, C-1090, C-2015N, C-2065N, C-2090, etc., manufactured by Asahi Kasei Chemicals Corporation, trade name Duranol® (registered trademark) T-4671, T-4672, T-5650E, T-5650J, T-5651, T5652, etc.
  • polycaprolactone diols manufactured by Daicel Chemical
  • the polycarbonate imide resin (A) is produced from a polycarboxylic acid component having an acid anhydride group (components (a) and (b)) and an isocyanate component (component (c)) (isocyanate method).
  • the polymerization reaction of the polycarbonate imide resin (A) used in the present invention is preferably performed in a non-nitrogen solvent. Specifically, in the presence of one or more organic solvents selected from the group consisting of ether-based solvents, ester-based solvents, ketone-based solvents, and aromatic hydrocarbon-based solvents, for example, the isocyanate method is used to generate carbon dioxide gas that is liberated. It is preferred to carry out the heat condensation while removing from the reaction system.
  • the solvent is not particularly limited, but examples of ether solvents include diethylene glycol dimethyl ether (diglyme), diethylene glycol diethyl ether (ethyl diglyme), triethylene glycol dimethyl ether (triglyme), and triethylene glycol diethyl ether (ethyl triglyme).
  • Ester solvents such as ⁇ -butyrolactone and cellosolve acetate; ketone solvents such as methyl isobutyl ketone, cyclopentanone, cyclohexanone and isophorone; and aromatic hydrocarbon solvents such as toluene, xylene and solvesso. No. These may be used alone or in combination of two or more.
  • the solvent When producing the polycarbonate imide resin (A), it is preferable to select and use a solvent that dissolves the produced polycarbonate imide resin (A), and after polymerization, use a suitable solvent as the solvent for the polycarbonate imide resin paste as it is Is more preferable. By doing so, complicated operations such as solvent replacement are eliminated, and it is possible to manufacture at low cost.
  • the solvent preferably has a boiling point of 140 ° C. or higher and 230 ° C. or lower. If the temperature is lower than 140 ° C., the solvent may volatilize during the polymerization reaction. In addition, for example, when screen printing is performed, the volatilization of the solvent may be quick and the plate may be clogged.
  • ⁇ -butyrolactone, cyclohexanone, diglyme, or triglyme is preferable in order to have a relatively high volatility, impart low-temperature drying / curing properties, have excellent varnish stability, and efficiently perform the reaction in a homogeneous system.
  • the amount of the solvent used is preferably 0.5 to 7.0 times (mass ratio), more preferably 2.0 to 6.0 times, the polycarbonate imide resin (A) to be produced. If it is less than 0.5 times, the viscosity at the time of synthesis tends to be too high, and the synthesis tends to be difficult due to inability to stir. If it exceeds 7.0 times, the reaction rate tends to decrease.
  • the reaction temperature is preferably from 60 to 200 ° C, more preferably from 100 to 180 ° C. If the temperature is lower than 60 ° C, the reaction time becomes too long. If the temperature is higher than 200 ° C, the monomer component may be decomposed during the reaction. In addition, a three-dimensional reaction occurs and gelation easily occurs.
  • the reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, and particularly the reaction concentration.
  • triethylamine, lutidine, picoline, undecene, triethylenediamine (1,4-diazabicyclo [2,2,2] octane), DBU (1,8-diazabicyclo [5,4,0]) are used to promote the reaction.
  • Amines such as -7-undecene
  • alkali metal and alkaline earth metal compounds such as lithium methylate, sodium methylate, sodium ethylate, potassium butoxide, potassium fluoride and sodium fluoride, or titanium, cobalt and tin
  • the reaction may be performed in the presence of a catalyst such as a metal such as zinc, aluminum, and aluminum, and a metalloid compound.
  • ⁇ Production of polycarbonate imide resin (A)> An example of a method for producing the polycarbonate imide resin (A) can be obtained by subjecting the component (a) to a condensation reaction (polyimide) with the component (b) and the component (c).
  • a method for producing the polycarbonate imide resin of the present invention will be exemplified, but the present invention is not limited thereto.
  • the mixture After adding and dissolving the components (a), (b) and (c), the polymerization catalyst and the polymerization solvent in the reaction vessel, the mixture is dissolved at 80 to 190 ° C., preferably 100 to 180 ° C. while stirring under a nitrogen stream. After reacting for 5 hours or more, the desired polycarbonate imide resin (A) can be obtained by diluting with a polymerization solvent to an appropriate solvent viscosity and cooling.
  • the polycarbonate imide resin (A) used in the present invention preferably has a molecular weight in ⁇ -butyrolactone at 30 ° C. corresponding to an logarithmic viscosity of 0.1 to 2.0 dl / g, more preferably 0.2 to 2.0 dl / g. From 1.5 dl / g to a logarithmic viscosity. If the logarithmic viscosity is less than 0.1 dl / g, the heat resistance may decrease or the coating film may be brittle. In addition, the tackiness of the paste may be so strong that separation of the plate may be deteriorated.
  • the glass transition temperature of the polycarbonate imide resin (A) used in the present invention is preferably 60 ° C or higher, more preferably 100 ° C or higher. If the temperature is lower than 60 ° C., the heat resistance may be insufficient and the resin may be blocked.
  • the upper limit is not particularly limited, but is preferably 300 ° C. or lower from the viewpoint of solvent solubility.
  • an epoxy resin can be blended as the component (B) with the polycarbonate imide resin (A).
  • the epoxy resin (B) used in the present invention is not particularly limited as long as it has two or more epoxy groups per molecule.
  • the epoxy resin (B) is not particularly limited.
  • bisphenol A type epoxy resin such as jER (registered trademark) 828,1001 (trade name, manufactured by Mitsubishi Chemical Corporation) and ST (trade name, manufactured by Toto Kasei Co., Ltd.) -Hydrogenated bisphenol A epoxy resin such as 2004, 2007, etc .
  • Bisphenol F type epoxy such as YDF-170, 2004, manufactured by Toto Kasei Co., Ltd .
  • YDB-400 600, etc.
  • O-Cresol novolak type epoxy resin such as YDCN-702, 703, trade name EOCN (registered trademark) -125S, 103S, 104S manufactured by Nippon Kayaku Co., Ltd., trade name YD-171 manufactured by Toto Kasei Co., Ltd.
  • Epon1031S (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), Araldite (registered trademark) 0163 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), Denacol (trade name, manufactured by Nagase Chemtech Co., Ltd.) (Registered trademark) polyfunctional epoxy resins such as EX-611, EX-614, EX-622, EX-512, EX-521, EX-421, EX-411, EX-321, trade name of DIC Corporation Dicyclopentadiene type epoxy resins such as HP-7200, HP-7200H, HP-7200HH, Yuka Shell Epoxy Co., Ltd.
  • Bisphenol S type epoxy resin such as EPICLON (registered trademark) EXA-1514 and TEPIC (registered trademark) manufactured by Nissan Chemical Industries, Ltd. Glycidyl isocyanurate, a bixylenol-type epoxy resin such as YX-4000 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), and a bisphenol-type epoxy resin such as YL-6056 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.). These may be used alone or in combination of two or more.
  • epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin having more than two epoxy groups in one molecule, o-cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin Resins are preferred.
  • the amine type epoxy resin is a non-halogen type and is preferable in terms of compatibility with the polycarbonate imide resin (A), solvent resistance, chemical resistance and moisture resistance.
  • the amount of the epoxy resin (B) used in the present invention is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, particularly preferably 3 to 40 parts by mass with respect to 100 parts by mass of the polycarbonate imide resin (A). Parts by weight. If the amount of the epoxy resin (B) is less than 1 part by mass, solder heat resistance, solvent resistance, chemical resistance, and moisture resistance tend to decrease. If it exceeds 60 parts by mass, low warpage, mechanical properties and The compatibility with the polycarbonate imide resin (A) tends to decrease.
  • the epoxy resin (B) used in the present invention may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
  • the method for adding the epoxy resin (B) is not particularly limited, and the epoxy resin (B) to be added may be dissolved in the same solvent as the solvent contained in the polycarbonate imide resin (A) in advance, and then added. Further, it may be directly added to the polycarbonate imide resin (A).
  • a filler can be blended as the component (C) with the polycarbonate imide resin (A).
  • the filler (C) (hereinafter, also simply referred to as component (C)) used in the present invention is preferably an inorganic or organic filler.
  • the filler (C) is not particularly limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin (A) to form a paste and impart thixotropic properties (thixotropic) to the paste. That is, an inorganic or organic filler that can impart thixotropic properties to the polycarbonate imide resin paste of the present invention is preferable.
  • Examples of such an inorganic filler include silica (SiO 2 , trade name AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.), alumina (Al 2 O 3 ), titania (TiO 2 ), and tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO.TiO 2 ), zirconate titanate lead (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3), spinel (MgO ⁇ Al 2 O 3) , mullite (3Al 2 O 3 ⁇ 2SiO 2 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), talc (3MgO ⁇ 4SiO 2
  • Tight (registered trademark) STN, Lucentite SPN, Lucentite SAN, Lucentite SEN) and the like may be used, and these may be used alone or in combination of two or more. It is preferable to use silica or lucentite from the viewpoint of imparting the color tone, transparency, mechanical properties, and thixotropic properties of the obtained paste.
  • the inorganic filler used in the present invention those having an average particle diameter of 50 ⁇ m or less and a maximum particle diameter of 100 ⁇ m or less are preferable, the average particle diameter is 20 ⁇ m or less, and the average particle diameter is 10 ⁇ m or less is most preferable.
  • the average particle diameter (median diameter) here is a value obtained on a volume basis using a laser diffraction / scattering type particle size distribution analyzer. If the average particle size exceeds 50 ⁇ m, it becomes difficult to obtain a paste having sufficient thixotropic properties, and the flexibility of the coating film may be reduced. If the maximum particle size exceeds 100 ⁇ m, the appearance and adhesion of the coating film tend to be insufficient.
  • the organic filler used in the present invention may be any as long as it can be dispersed in the above-mentioned polycarbonate imide resin solution to form a paste, and can impart thixotropy to the paste.
  • the amount of the filler (C) used in the present invention is preferably 1 to 25 parts by mass when the component (A) is 100 parts by mass. It is more preferably 2 to 15 parts by mass, particularly preferably 3 to 12 parts by mass. If the amount of the inorganic or organic filler is less than 1 part by mass, printability tends to decrease, and if it exceeds 25 parts by mass, mechanical properties such as flexibility of the coating film and transparency tend to decrease.
  • a curing accelerator can be added to the polycarbonate imide resin paste of the present invention.
  • the curing accelerator used in the present invention is not particularly limited as long as it can promote the curing reaction of the above-mentioned polycarbonate imide resin (A) and epoxy resin (B).
  • Such a curing accelerator include, for example, 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ-CN, manufactured by Shikoku Chemical Industry Co., Ltd.
  • Guanamines such as imidazole derivatives such as 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z -AZINE, 2MA-OK, 2P4MHZ, 2PHZ, 2P4BHZ, acetoguanamine and benzoguanamine , Diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polyamines such as polybasic hydrazide, and their organic acid salts and / or epoxy adducts G, boron trifluoride amine complex, triazine derivatives such as ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4
  • a curing accelerator having latent curing properties examples thereof include organic salts of DBU and DBN and / or tetraphenylboroate, and a cationic photopolymerization catalyst.
  • the amount of the curing accelerator used is preferably 0 to 20 parts by mass when the component (A) is 100 parts by mass. If the amount exceeds 20 parts by mass, the storage stability of the polycarbonate imide resin composition and the heat resistance of the coating film may decrease.
  • the polycarbonate imide resin paste of the present invention is a composition containing the above-described polycarbonate imide resin (A) component, epoxy resin (B) component, and filler (C) component. Further, if necessary, a curing accelerator and other compounding components can be preferably added in the above ratio. What is obtained by uniformly mixing these components with a roll mill, a mixer, a three-roll mill or the like is preferable. The mixing method is not particularly limited as long as a sufficient dispersion can be obtained. Plural kneading with three rolls is preferred.
  • the polycarbonate imide resin paste of the present invention preferably has a Brookfield viscometer (hereinafter also referred to as a B-type viscometer) having a viscosity at 25 ° C. of 50 dPa ⁇ s to 1000 dPa ⁇ s, and 100 dPa ⁇ s to 800 dPa ⁇ s. Is more preferable. If the viscosity is less than 50 dPa ⁇ s, the flow of the paste after printing tends to be large and the film thickness tends to be thin. If the viscosity exceeds 1000 dPa ⁇ s, during printing, the transferability of the paste to the substrate tends to decrease, causing blurring and increasing the number of voids and pinholes in the printed film.
  • a Brookfield viscometer hereinafter also referred to as a B-type viscometer
  • the degree of thixotropic is also important.
  • the thixotropic degree of the polycarbonate imide resin paste is preferably 1.1 or more, more preferably 1.2 or more, in a measuring method described later.
  • the upper limit is preferably equal to or less than 7.0, and more preferably equal to or less than 6.0. If the degree of fluctuation is less than 1.1, the flow of the paste after printing tends to be large and the film thickness tends to be thin. If it exceeds 7.0, the paste tends not to flow.
  • the thixotropic degree can be adjusted by the amount of the component (c) as the thixotropic agent.
  • the polycarbonate imide resin and the paste of the present invention may contain, if necessary, known and commonly used coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black, and hydroquinone.
  • coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black, and hydroquinone.
  • the polycarbonate imide resin paste of the present invention can be cured as follows, for example, as a solder resist, to obtain a cured product. That is, on a COF (Chip On Film) substrate formed by plating copper on a resin substrate such as a polyimide film, a screen printing method, a spray method, a roll coating method, an electrostatic coating method, a curtain coating method, or the like. Then, the polycarbonate imide resin paste of the present invention is applied to a thickness of 5 to 80 ⁇ m, and the coating film is preliminarily dried at 60 to 120 ° C., and then dried at 120 to 200 ° C. Drying may be in air or in an inert atmosphere.
  • electroless plating may be used, or a method of sputtering copper on the resin substrate may be used.
  • the layer of the cured product of the polycarbonate imide resin paste of the COF substrate obtained as described above becomes a solder resist layer, a surface protection layer, or an adhesive layer of the COF substrate.
  • the polycarbonate imide resin paste of the present invention is useful as an overcoat ink for semiconductor elements and various electronic components and a solder resist ink as a film forming material, and can also be used as a paint, a coating agent, an adhesive and the like.
  • the solder resist layer is a film that is formed on the entire surface of the circuit conductor except for the part to be soldered.When wiring electronic components on a printed wiring board, it is necessary to prevent solder from adhering to unnecessary parts.
  • the surface protective layer is used to be attached to the surface of the circuit member to mechanically and chemically protect the electronic member from a processing step and a use environment.
  • the adhesive layer is mainly used for bonding a metal layer and a film layer and performing a bonding process.
  • V1 represents the solvent viscosity measured by an Ubbelohde type viscosity tube
  • V1 and V2 were determined from the time when the polymer solution and the solvent (N-methyl-2-pyrrolidone) passed through the capillary of the viscosity tube.
  • V3 is the polymer concentration (g / dl).
  • ⁇ Preparation of polycarbonate imide resin paste> Filler (C) was added to polycarbonate imide resin (A), and the mixture was diluted with ⁇ -butyrolactone to obtain a polycarbonate imide resin composition. An antifoaming agent and a leveling agent were added to this solution. This solution was roughly kneaded and then kneaded three times using a high-speed three-roll mill to obtain a paste in which the filler was uniformly dispersed. The epoxy resin (B) was mixed with this paste to obtain a polycarbonate imide resin paste.
  • Viroflex registered trademark
  • Toyobo manufactured by Toyobo
  • a polycarbonate imide resin paste is printed on a two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 ⁇ m, base material 20 ⁇ m) manufactured by Toyobo using a SUS mesh plate (150 mesh manufactured by NBC Meshtech, emulsion thickness 21 ⁇ m).
  • a predetermined pattern was printed at a speed of 5 cm / sec, and dried at 80 ° C. for 6 minutes in an air atmosphere (screen printing). Thereafter, by heating and curing at 150 ° C.
  • a laminated film provided with a coverlay (coating) made of a polycarbonate imide resin paste was obtained.
  • the thickness of the coating was 10 ⁇ m.
  • This sample was used for evaluation of printing characteristics, low warpage, solder heat resistance, adhesion, and pencil hardness.
  • ⁇ Thickness (thixotropic ratio)> Using a Brookfield BH rotational viscometer, the measurement was performed according to the following procedure. 90 ml of the polycarbonate imide resin paste was placed in a wide-mouthed light-shielding bottle (100 ml), and the liquid temperature was adjusted to 25 ° C. ⁇ 0.5 ° C. using a thermostatic water bath. Next, after stirring 40 times for 12 to 15 seconds using a glass rod, a predetermined rotor is set, the mixture is allowed to stand for 5 minutes, and then read at a scale when rotated at 10 rpm for 3 minutes to calculate the viscosity. did. Similarly, it was calculated from the value of the viscosity measured at 25 ° C. and 1 rpm by the following equation. Thixotropic degree viscosity (1 rpm) / viscosity (10 rpm)
  • the obtained laminated film was evaluated according to JIS-K-5600-5-4 (1999).
  • the pencil hardness is preferably 2H or more, more preferably 3H or more.
  • the polycarbonate imide resin paste was applied to a 25 ⁇ m-thick Kapton (registered trademark) EN film (a polyimide film manufactured by Du Pont-Toray Co., Ltd.) using an applicator so that the thickness after drying became 10 ⁇ m. Then, after drying at a temperature of 150 ° C. for 2 hours, a sample was prepared. The obtained sample was put into a saturated pressure steam test (PCT: Pressure Cooker Test) at 121 ° C., 2 atm and 100% RH. After 265 hours, the sample was taken out and the surface condition was evaluated. (Judgment) :: No abnormality in appearance ⁇ : Slight abnormality in appearance ⁇ : Swelling and falling off or dissolved in coating film
  • Example 1 With respect to 100 parts by mass of the nonvolatile content of the polycarbonate imide resin solution A-1 obtained in Production Example 2, 4.5 parts by mass of Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.) as a filler and BYK (registered) as an antifoaming agent (Trademark) -054 (manufactured by Big Chemie) and 2.7 parts by mass of BYK-354 (manufactured by Big Chemie) as a leveling agent to obtain a polycarbonate imide resin composition.
  • Aerosil 300 manufactured by Nippon Aerosil Co., Ltd.
  • BYK registered antifoaming agent
  • BYK-354 manufactured by Big Chemie
  • the composition was first roughly kneaded, and then kneaded three times using a high-speed three-roll mill, whereby a paste having uniform filler dispersion and thixotropic properties was obtained.
  • a solution of HP-7200 (trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation, epoxy equivalent: about 278 g / eq) in ⁇ -butyrolactone solution (solid content: 75 %) was added to obtain a polycarbonate imide resin paste (1) of the present invention.
  • the viscosity was adjusted with ⁇ -butyrolactone, the solution viscosity was 200 poise and the thixotropic degree was 1.22.
  • a predetermined pattern was printed on the resin paste (1) with a SUS mesh plate (150 mesh, NBC Meshtec Co., Ltd., emulsion thickness 21 ⁇ m) at a printing speed of 5 cm / sec, and dried in an air atmosphere at 80 ° C. for 6 minutes. Thereafter, by heating and curing at 150 ° C. for 2 hours, a COF substrate (evaluation sample 1) provided with a coverlay (coating) made of a polycarbonate imide resin paste was obtained. The thickness of the coating was 10 ⁇ m. Table 1 shows the evaluation results.
  • Example 2 (Examples 2 to 5) Except that the polycarbonate imide resin (A) solution and the components (B) to (C) shown in Table 1 were used, pastes were prepared in the same manner as in Example 1, and evaluation samples 2 to 5 were produced. . Table 1 shows the evaluation results.
  • Evaluation Sample 7 was produced. Table 1 shows the evaluation results. In this case, since the fluorene structure-containing acid anhydride, which is a rigid component, was not copolymerized, the coating film was flexible and elongated, and the bending resistance effect was not observed. Furthermore, heat resistance was low, and solder heat resistance and high-temperature high-humidity were reduced.
  • Example 1 was repeated except that the polycarbonate imide resin solution A-2 obtained in Production Example 3 was used and that HP-7200H (trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation) was not blended. A paste was prepared in the same manner as described above (evaluation sample 8). Since the epoxy resin was not blended, the curing of the paste was insufficient and the solder heat resistance was reduced. Table 1 shows the evaluation results.
  • the polycarbonate imide resin obtained by the present invention and the paste using the same have excellent non-nitrogen-based solvent solubility, low warpage, bending resistance, and high-temperature and high-humidity resistance as a film-forming material. It is useful for overcoat inks and solder resist inks for various electronic components such as COF substrates, and can be used in a wide range of electronic equipment as paints, coatings, adhesives, etc. There is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polycarbonate-imide resin which satisfies all of (1) solubility in nitrogen-free solvents, (2) low warpage, (3) flex resistance, and (4) resistance to high temperatures and high humidities and which is usable for forming solder resist layers, surface-protective layers, or adhesive layers. The polycarbonate-imide resin (A) is characterized by comprising a component represented by specific structural formula (1) and a component represented by specific structural formula (2), the sum of the component represented by specific structural formula (1) and the component represented by specific structural formula (2) being 45 mol% or greater when all components are taken as 200 mol%.

Description

ポリカーボネートイミド樹脂、およびこれを用いたペーストPolycarbonate imide resin and paste using the same
 本発明は、ポリカーボネートイミド樹脂およびこれを用いてなるペーストに関する。特にCOF(Chip On Film)基板用途に有用な、優れた耐熱性、柔軟性を有し、印刷機、ディスペンサーまたはスピンコーターなどの塗布方法に適したポリカーボネートイミド樹脂ペーストおよび該ペーストを硬化して得られるソルダーレジスト層、表面保護層または接着層を有する電子部品に関する。 The present invention relates to a polycarbonate imide resin and a paste using the same. Particularly useful for COF (Chip \ On \ Film) substrate applications, it has excellent heat resistance and flexibility and is suitable for a coating method such as a printing machine, a dispenser or a spin coater, and a polycarbonate imide resin paste obtained by curing the paste. Electronic component having a solder resist layer, a surface protective layer, or an adhesive layer.
 一般に、ポリイミド系樹脂は、耐熱性、絶縁性および、耐薬品性などに優れるため、電気電子機器用の絶縁材料として広く使用されている。特に、COF基板の原材料としての使用が多く、柔軟性や小スペース性が必要な電子機器の配線板材料、実装用基板材料へ適用されている。例えば、液晶表示機器、プラズマディスプレイ、有機ELディスプレイなどに使用される表示装置用デバイス実装基板や、スマートホン、タブレット機器端末、デジタルカメラ、携帯型ゲーム機などの基板間中継ケーブル、操作スイッチ部基板、或いは、これら基板のカバーレイ材料(回路の保護層)等に広く使用されている。特に、プリント配線板では、回路の永久保護皮膜としてソルダーレジストが広く用いられている。ソルダーレジストとは、回路導体のはんだ付けする部分を除いた全面に皮膜形成されるもので、プリント配線板に電子部品を配線する際、はんだが不必要な部分に付着するのを防ぐとともに、回路が直接空気に暴露されるのを防止する保護皮膜として使用されるものである。 ポ リ イ ミ ド Generally, polyimide resins are widely used as insulating materials for electric and electronic equipment because of their excellent heat resistance, insulation properties, chemical resistance, and the like. In particular, it is often used as a raw material of a COF substrate, and is applied to a wiring board material and a mounting substrate material of an electronic device that requires flexibility and small space. For example, a device mounting board for a display device used for a liquid crystal display device, a plasma display, an organic EL display, and the like, a relay cable between boards for a smartphone, a tablet device terminal, a digital camera, a portable game machine, and the like, an operation switch section board Or, it is widely used as a coverlay material (a protective layer of a circuit) for these substrates. In particular, in printed wiring boards, solder resists are widely used as permanent protective films for circuits. Solder resist is a film that is formed on the entire surface of the circuit conductor except for the part to be soldered.When wiring electronic components on printed wiring boards, it prevents solder from adhering to unnecessary parts and Is used as a protective coating to prevent direct exposure to air.
 ところで、COF基板の構成要素であるソルダーレジスト層、表面保護層または接着層は、溶液形態で塗布、印刷される場合が多いため、その材料として、溶剤可溶な閉環型ポリイミド樹脂からなる配合物が提案されている。しかしながら、従来、ポリイミド系樹脂のワニス化のための溶媒としては、N-メチル-2-ピロリドン等の高沸点窒素系溶媒が用いられているため、乾燥/硬化時には200℃以上の高温長時間の硬化工程が必要となり、電子部品の熱劣化が生じる問題があった。 By the way, since the solder resist layer, the surface protective layer or the adhesive layer, which is a component of the COF substrate, is often applied and printed in the form of a solution, a compound comprising a solvent-soluble ring-closing polyimide resin as its material. Has been proposed. However, since a high-boiling nitrogen-based solvent such as N-methyl-2-pyrrolidone has been conventionally used as a solvent for varnishing a polyimide-based resin, a high-temperature and high-temperature A curing step is required, and there is a problem that the electronic components are thermally degraded.
 さらにポリイミド系樹脂は一般的に高弾性率で硬いため、フィルム、銅箔などの基材に積層した場合、弾性率の差から反り等が発生するため、後工程上問題があった。また、硬化膜は柔軟性に欠け、屈曲性に劣る問題があった。 Furthermore, since polyimide resins are generally high in elasticity and hard, when laminated on a substrate such as a film or a copper foil, there is a problem in a post-process because warpage or the like is generated due to a difference in elasticity. Further, there is a problem that the cured film lacks flexibility and is inferior in flexibility.
 また、非窒素系溶媒に可溶であり、樹脂を可とう化及び低弾性率化した低反り及び柔軟性を有するポリイミド系樹脂としては、例えば、(特許文献1)、(特許文献2)等に、ポリシロキサン変性ポリイミド系樹脂が開示されている。 Examples of a polyimide resin which is soluble in a non-nitrogen-based solvent and has low warpage and flexibility by making the resin flexible and having a low elastic modulus include, for example, (Patent Document 1) and (Patent Document 2). Discloses a polysiloxane-modified polyimide resin.
 これらのポリシロキサン変性ポリイミド系樹脂は、低弾性率化のため高価なジメチルシロキサン結合を有するジアミンを出発原料として用いており、経済性に劣る。また、ポリシロキサン共重合量の増加に伴い、密着性、耐溶剤性、耐薬品性が低下する問題がある。 These polysiloxane-modified polyimide resins use an expensive diamine having a dimethylsiloxane bond as a starting material for lowering the modulus of elasticity, and are inferior in economical efficiency. In addition, there is a problem that the adhesion, solvent resistance, and chemical resistance decrease as the polysiloxane copolymerization amount increases.
 また、ポリイミド樹脂にポリカーボネート樹脂を一定量混合し、柔軟性を付与することで、樹脂組成物の成形加工性を向上させた組成物が開示されている(特許文献3)、(特許文献4)。さらに、ポリイミド樹脂とエポキシ樹脂及びポリカーボネート樹脂を混合することによって、成形加工性を向上させた熱可塑性樹脂組成物が開示されている(特許文献5)。これらは、溶融混練、溶融押出しに適した樹脂として挙げられており、耐熱性や機械的強度は優れたものであるが、非窒素系溶媒に可溶ではなく、低反り及び柔軟性を有するものとは言い難い。 Further, a composition in which a certain amount of a polycarbonate resin is mixed with a polyimide resin to impart flexibility, thereby improving the moldability of the resin composition is disclosed (Patent Document 3), (Patent Document 4). . Further, a thermoplastic resin composition having improved moldability by mixing a polyimide resin, an epoxy resin and a polycarbonate resin is disclosed (Patent Document 5). These are listed as resins suitable for melt kneading and melt extrusion and have excellent heat resistance and mechanical strength, but are not soluble in non-nitrogen solvents and have low warpage and flexibility. Hard to say.
特開平7-304950号公報JP-A-7-304950 特開平8-333455号公報JP-A-8-333455 特開平5-320492号公報JP-A-5-320492 特開平6-136267号公報JP-A-6-136267 特開昭62-7758号公報JP-A-62-2758
 かかる例からわかるように、これまでの従来技術では、(1)非窒素系溶媒溶解性(2)低反り性(3)耐屈曲性(4)耐高温高湿性を同時に満足するソルダーレジスト層、表面保護層または接着層として適用可能なポリイミド樹脂ペーストは得られていなかった。 As can be seen from such an example, in the conventional techniques so far, (1) non-nitrogen-based solvent solubility (2) low warpage (3) flex resistance (4) solder resist layer that simultaneously satisfies high temperature and humidity resistance; A polyimide resin paste applicable as a surface protective layer or an adhesive layer has not been obtained.
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、(1)非窒素系溶媒溶解性(2)低温乾燥/硬化性(3)低反り性(4)耐屈曲性(5)印刷特性、および(6)耐高温高湿性に優れ、かつ耐熱性に優れるポリカーボネートイミド樹脂およびこれを用いてなるポリカーボネートイミド樹脂ペースト並びに前記ペーストを硬化して得られるソルダーレジスト層、表面保護層または接着層を有する電子部品を提供することにある。 The present invention has been made on the background of the problems of the related art. That is, the object of the present invention is (1) non-nitrogen-based solvent solubility (2) low-temperature drying / curability (3) low warpage (4) bending resistance (5) printing characteristics, and (6) high temperature resistance. An object of the present invention is to provide an electronic component having a polycarbonate imide resin having excellent wettability and heat resistance, a polycarbonate imide resin paste using the same, and a solder resist layer, a surface protective layer, or an adhesive layer obtained by curing the paste. is there.
 一般式(1)で示される構成成分および一般式(2)で示される構成成分を含有し、全構成成分を200モル%としたとき、一般式(1)で示される構成成分と一般式(2)で示される構成成分の合計が45モル%以上であることを特徴とするポリカーボネートイミド樹脂(A)。
Figure JPOXMLDOC01-appb-C000007
 (一般式(1)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、qはそれぞれ独立に1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
 (一般式(2)において、複数個のRはそれぞれ独立に、炭素数1以上の2価の有機基を示し、nは1以上の整数である。)
When the composition contains the components represented by the general formula (1) and the components represented by the general formula (2), and all the components are 200 mol%, the components represented by the general formula (1) and the general formula ( The polycarbonate imide resin (A), wherein the total of the components represented by 2) is 45 mol% or more.
Figure JPOXMLDOC01-appb-C000007
(In the general formula (1), a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and q independently represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (2), a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms, and n is an integer of 1 or more.)
 前記ポリカーボネートイミド樹脂(A)の構成成分として、さらに一般式(3)で示される構成成分を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 (一般式(3)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、rはそれぞれ独立に1~4の整数を示し、pは0または1である。)
It is preferable that the polycarbonate imide resin (A) further contains a component represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000009
(In the general formula (3), a plurality of R 3 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, r each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
 前記ポリカーボネートイミド樹脂(A)は、一般式(1)で示される構成成分が5~45モル%であり、一般式(2)で示される構成成分が5~45モル%であり、一般式(3)で示される構成成分が50モル%以上であることが好ましい。 In the polycarbonate imide resin (A), the component represented by the general formula (1) is 5 to 45 mol%, the component represented by the general formula (2) is 5 to 45 mol%, and the general formula ( It is preferable that the component represented by 3) is at least 50 mol%.
 (a)一般式(4)で示されるフルオレン構造含有酸二無水物、(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物および(c)イソシアネート成分を必須の共重合成分とし、全酸成分を100モル%としたとき、(a)一般式(4)で示されるフルオレン構造含有酸二無水物と(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物の合計が45モル%以上であることを特徴とするポリカーボネートイミド樹脂(A)。
Figure JPOXMLDOC01-appb-C000010
 (一般式(4)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、sはそれぞれ独立に1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000011
 (一般式(5)において、複数個のRはそれぞれ独立に炭素数1以上の2価の有機基を示し、mは1以上の整数である。)
(A) an acid dianhydride having a fluorene structure represented by the general formula (4); (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5); Assuming that the total acid component is 100 mol%, (a) an acid dianhydride having a fluorene structure represented by the general formula (4) and (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5) The polycarbonate imide resin (A), wherein the total amount of the components is 45 mol% or more.
Figure JPOXMLDOC01-appb-C000010
(In the general formula (4), a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and s independently represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000011
(In the general formula (5), a plurality of R 5 each independently represent a divalent organic group having 1 or more carbon atoms, and m is an integer of 1 or more.)
 前記(c)イソシアネート成分は、一般式(6)で示されるジイソシアネートであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 (一般式(6)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、tはそれぞれ独立に1~4の整数を示し、pは0または1である。)
The isocyanate component (c) is preferably a diisocyanate represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000012
(In the general formula (6), a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbons, t each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
 前記ポリカーボネートイミド樹脂(A)は、一般式(4)で示されるフルオレン構造含有酸二無水物が5~45モル%であり、一般式(5)で示されるポリカーボネート骨格を有する酸二無水物が5~45モル%であり、全イソシアネート成分を100モル%としたとき、一般式(6)で示されるジイソシアネートが50モル%以上であることが好ましい。 In the polycarbonate imide resin (A), the acid dianhydride having a fluorene structure represented by the general formula (4) is 5 to 45 mol%, and the acid dianhydride having a polycarbonate skeleton represented by the general formula (5) is used. The content of the diisocyanate represented by the general formula (6) is preferably at least 50 mol% when the total isocyanate component is 100 mol%.
 前記ポリカーボネートイミド樹脂(A)、エポキシ樹脂(B)、およびフィラー(C)を含有するポリカーボネートイミド樹脂ペースト。 ポ リ カ ー ボ ネ ー ト A polycarbonate imide resin paste containing the polycarbonate imide resin (A), the epoxy resin (B) and the filler (C).
 本発明により、従来同時に満足することが困難であった(1)非窒素系溶媒溶解性(2)低温乾燥/硬化性(3)低反り性(4)耐屈曲性(5)印刷特性、および(6)耐高温高湿性に優れ、かつ耐熱性に優れるポリカーボネートイミド樹脂およびこれを用いてなるポリカーボネートイミド樹脂ペースト、並びに前記ペーストを硬化して得られるソルダーレジスト層、表面保護層または接着層を有する電子部品を提供することができる。 According to the present invention, (1) solubility in non-nitrogen solvents (2) low-temperature drying / curing properties (3) low warpage (4) bending resistance (5) printing characteristics, which have been difficult to satisfy simultaneously at the same time, and (6) It has a polycarbonate imide resin excellent in high temperature and humidity resistance and heat resistance, a polycarbonate imide resin paste using the same, and a solder resist layer, a surface protective layer or an adhesive layer obtained by curing the paste. Electronic components can be provided.
 以下、本発明のポリカーボネートイミド樹脂(A)、およびポリカーボネートイミド樹脂ペーストを詳述する。 Hereinafter, the polycarbonate imide resin (A) and the polycarbonate imide resin paste of the present invention will be described in detail.
<ポリカーボネートイミド樹脂(A)>
 本発明のポリカーボネートイミド樹脂(A)について説明する。ポリカーボネートイミド樹脂(A)は、一般式(1)で示される構成成分(以下、一般式(1)の構成成分ともいう。)および一般式(2)で示される構成成分(以下、一般式(2)の構成成分ともいう。)を含有し、全構成成分を200モル%としたとき、一般式(1)で示される構成成分と一般式(2)で示される構成成分の合計が45モル%以上であることを特徴とするポリカーボネートイミド樹脂である。
Figure JPOXMLDOC01-appb-C000013
 (一般式(1)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、qはそれぞれ独立に1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000014
 (一般式(2)において、複数個のRはそれぞれ独立に、炭素数1以上の2価の有機基を示し、nは1以上の整数である。)
<Polycarbonate imide resin (A)>
The polycarbonate imide resin (A) of the present invention will be described. The polycarbonate imide resin (A) includes a component represented by the general formula (1) (hereinafter, also referred to as a component of the general formula (1)) and a component represented by the general formula (2) (hereinafter, the general formula ( When the total amount of the components is 200 mol%, the total of the components represented by the general formula (1) and the components represented by the general formula (2) is 45 mol. % Or more.
Figure JPOXMLDOC01-appb-C000013
(In the general formula (1), a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and q independently represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (2), a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms, and n is an integer of 1 or more.)
<一般式(1)で示される構成成分>
 一般式(1)で示される構成成分(カルド構造)を含有することによって、非窒素系溶媒溶解性、耐熱性、塗膜の弾性率向上の効果が期待できる。カルド構造とは炭素原子に4つの芳香環が結合した蝶番の構造を意味し、多数の芳香環を含むことから高い耐熱性、透明性などの様々な特長をもつ構造である。
<Components represented by general formula (1)>
By containing the constituent component (cardo structure) represented by the general formula (1), effects of improving solubility in a non-nitrogen solvent, heat resistance, and an elastic modulus of a coating film can be expected. The cardo structure means a hinge structure in which four aromatic rings are bonded to carbon atoms, and has a variety of features such as high heat resistance and transparency because it contains a large number of aromatic rings.
 一般式(1)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示す。アルキル基としては、メチル基、エチル基、n-プロピル基またはイソプロピル基が挙げられる。Rとしては、水素またはメチル基が好ましく、より好ましくはメチル基である。qはそれぞれ独立に1~4の整数を示し、好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1である。Rの位置はフルオレン環の付加位置に対して、それぞれ3位であることが好ましく、2個のRがともに3位であることがより好ましい。また、エステル基の位置はフルオレン環の付加位置に対して、4位であることが好ましく、2個のエステル基がともに4位であることがより好ましい。具体的には、式(7)で示される構成成分であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000015
In the general formula (1), a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. R 1 is preferably hydrogen or a methyl group, more preferably a methyl group. q independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1. The position of R 1 is preferably 3-position with respect to the addition position of the fluorene ring, and more preferably, both R 1 are 3-position. Further, the position of the ester group is preferably 4-position with respect to the addition position of the fluorene ring, and more preferably both of the two ester groups are 4-position. Specifically, a component represented by the formula (7) is particularly preferable.
Figure JPOXMLDOC01-appb-C000015
 一般式(1)の構成成分の含有量は、全構成成分を200モル%とした場合、5モル%以上であることが好ましい。より好ましくは10モル%以上であり、さらに好ましくは15モル%以上であり、特に好ましくは20モル%以上である。少なすぎると、非窒素系溶媒溶解性や、耐熱性が得られないことがある。また、45モル%以下であることが好ましく、より好ましくは40モル%以下であり、さらに好ましくは35モル%以下である。多すぎると、後述する一般式(2)で示される構成成分やその他の酸成分を十分な量で含有することができないことがある。そのため、耐熱性や耐屈曲性(機械特性)が低下することがある。 含有 The content of the components of the general formula (1) is preferably 5 mol% or more when all the components are 200 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the solubility in a non-nitrogen solvent or the heat resistance may not be obtained. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If it is too large, it may not be possible to contain a sufficient amount of the components represented by the general formula (2) described later and other acid components. Therefore, heat resistance and bending resistance (mechanical properties) may be reduced.
<一般式(2)で示される構成成分>
 一般式(2)で示される構成成分は、可とう性を有することから、本発明のポリカーボネートイミド樹脂(A)に低反り性、非窒素系溶媒溶解性等を付与することができる。
<Components represented by general formula (2)>
Since the component represented by the general formula (2) has flexibility, the polycarbonateimide resin (A) of the present invention can be imparted with low warpage, non-nitrogen-based solvent solubility, and the like.
 一般式(2)において、複数個のRはそれぞれ独立に、炭素数1以上の2価の有機基を示す。好ましい炭素数は5以上であり、より好ましくは10以上であり、20以下が好ましく、18以下がより好ましい。また、2価の有機基としては、特に限定されないが、置換基を有しても良い直鎖のアルキレン基が好ましく、上記炭素数は置換基の炭素も含めることが好ましい。また、nは1以上の整数であり、2以上の整数が好ましく、3以上の整数がより好ましく、10以下の整数が好ましく、8以下の整数がより好ましい。 In the general formula (2), a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms. The number of carbon atoms is preferably 5 or more, more preferably 10 or more, preferably 20 or less, and more preferably 18 or less. The divalent organic group is not particularly limited, but is preferably a linear alkylene group which may have a substituent, and the carbon number preferably includes the carbon of the substituent. Further, n is an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 3 or more, preferably an integer of 10 or less, and more preferably an integer of 8 or less.
 一般式(2)の構成成分の含有量は、全構成成分を200モル%とした場合、5モル%以上であることが好ましい。より好ましくは10モル%以上であり、さらに好ましくは15モル%以上であり、特に好ましくは20モル%以上である。少なすぎると、積層した場合に反りが発生したり、非窒素系溶媒への溶解性が低下することがある。そのため、5℃~30℃において一ヶ月以内に樹脂が析出するおそれがある。また、45モル%以下であることが好ましく、より好ましくは40モル%以下であり、さらに好ましくは35モル%以下である。多すぎると、耐熱性が低下する場合がある。さらに前記一般式(1)で示される構成成分やその他の酸成分を十分な量で含有することができないことがある。そのため、低反り性や耐屈曲性(機械特性)が低下することがある。 含有 The content of the components of the general formula (2) is preferably 5 mol% or more when all the components are 200 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, warpage may occur when the layers are laminated, or the solubility in a non-nitrogen-based solvent may decrease. Therefore, at 5 ° C. to 30 ° C., the resin may be precipitated within one month. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If the amount is too large, the heat resistance may decrease. Further, the component represented by the general formula (1) and other acid components may not be contained in a sufficient amount. Therefore, low warpage and bending resistance (mechanical properties) may be reduced.
 ポリカーボネートイミド樹脂(A)の構成成分としては、前記一般式(1)で示される構成成分と一般式(2)で示される構成成分の合計量が45モル%以上であることが必要であり、50モル%以上であることが好ましく、55モル%以上であることがより好ましく、60モル%以上であることがさらに好ましい。少なすぎると低反り性、非窒素系溶媒への溶解性が低下することがある。また、90モル%以下であることが好ましく、より好ましくは80モル%以下である。 As a component of the polycarbonate imide resin (A), it is necessary that the total amount of the component represented by the general formula (1) and the component represented by the general formula (2) is 45 mol% or more, It is preferably at least 50 mol%, more preferably at least 55 mol%, even more preferably at least 60 mol%. If the amount is too small, low warpage and solubility in a non-nitrogen solvent may be reduced. Further, it is preferably at most 90 mol%, more preferably at most 80 mol%.
<一般式(3)で示される構成成分>
 本発明のポリカーボネートイミド樹脂(A)は、さらに一般式(3)で示される構成成分(以下、一般式(3)の構成成分ともいう。)を含有することが好ましい。一般式(3)で示される構成成分を含有することによって、優れた耐屈曲性を発現することができる。
Figure JPOXMLDOC01-appb-C000016
 (一般式(3)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、rはそれぞれ独立に1~4の整数を示し、pは0または1である。)
<Components represented by general formula (3)>
The polycarbonate imide resin (A) of the present invention preferably further contains a component represented by the general formula (3) (hereinafter, also referred to as a component of the general formula (3)). By including the component represented by the general formula (3), excellent flex resistance can be exhibited.
Figure JPOXMLDOC01-appb-C000016
(In the general formula (3), a plurality of R 3 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, r each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
 一般式(3)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示す。アルキル基としては、メチル基、エチル基、n-プロピル基またはイソプロピル基が挙げられる。Rとしては、水素またはメチル基が好ましく、より好ましくはメチル基である。rはそれぞれ独立に1~4の整数を示し、好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1である。Rの位置は-(CH)p-に対して、それぞれ3位であることが好ましく、2個のRがともに3位であることがより好ましい。また、結合部位の位置は-(CH)p-に対して、4位であることが好ましく、2個の結合部位がともに4位であることがより好ましい。pは0または1であり、好ましくは0(ビフェニル体)である。 In the general formula (3), each of a plurality of R 3 independently represents hydrogen or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. R 3 is preferably hydrogen or a methyl group, and more preferably a methyl group. r independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1. The position of R 3 is preferably 3-position with respect to — (CH 2 ) p—, and more preferably, both R 3 are 3-position. Further, the position of the binding site is preferably at position 4 with respect to-(CH 2 ) p-, and more preferably both of the two binding sites are at position 4. p is 0 or 1, preferably 0 (biphenyl form).
 一般式(3)の構成成分の具体例としては、4,4’-ビフェニルジイソシアネート残基、4,3’-ビフェニルジイソシアネート残基、4,2’-ビフェニルジイソシアネート残基、3,3’-ビフェニルジイソシアネート残基、3,2’-ビフェニルジイソシアネート残基、2,2’-ビフェニルジイソシアネート残基、3-又は2-メチル-4,4’-ビフェニルジイソシアネート残基、3-又は2-又は2’-又は4’-又は5’-又は6’-メチル-4,3’-ビフェニルジイソシアネート残基、3-又は2-又は3’-又は4’-又は5’-又は6’-メチル-4,2’-ビフェニルジイソシアネート残基、3-又は2-エチル-4,4’-ビフェニルジイソシアネート残基、3-又は2-又は2’-又は4’-又は5’-又は6’-エチル-4,3’-ビフェニルジイソシアネート残基、3-又は2-又は3’-又は4’-又は5’-又は6’-エチル-4,2’-ビフェニルジイソシアネート残基、3,3’-又は3,2’-ジメチル-4,4’-ビフェニルジイソシアネート残基、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジメチル-4,3’-ビフェニルジイソシアネート残基、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジメチル-4,2’-ビフェニルジイソシアネート残基、3,3’-又は3,2’-ジエチル-4,4’-ビフェニルジイソシアネート残基、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジエチル-4,3’-ビフェニルジイソシアネート残基、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジエチル-4,2’-ビフェニルジイソシアネート残基、ジフェニルメタン-4,4’-ジイソシアネート残基、ジフェニルメタン-4,3’-ジイソシアネート残基、ジフェニルメタン-4,2’-ジイソシアネート残基、ジフェニルメタン-3,3’-ジイソシアネート残基、ジフェニルメタン-3,2’-ジイソシアネート残基、ジフェニルメタン-2,2’-ジイソシアネート残基、3-又は2-メチルジフェニルメタン-4,4’-ジイソシアネート残基、3-又は2-又は2’-又は4’-又は5’-又は6’-メチルジフェニルメタン-4,3’-ジイソシアネート残基、3-又は2-又は3’-又は4’-又は5’-又は6’-メチルジフェニルメタン-4,2’-ジイソシアネート残基、3,2’-又は3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート残基、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジメチルジフェニルメタン-4,3’-ジイソシアネート残基、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジメチルジフェニルメタン-4,2’-ジイソシアネート残基、などが挙げられ、これらを単独で、または2種以上を併用して使用することができる。なかでも3,3’-ジメチル-4,4’-ビフェニルジイソシアネート残基(o-トリジンジイソシアネート残基)が好ましい。 Specific examples of the components of the general formula (3) include 4,4′-biphenyl diisocyanate residue, 4,3′-biphenyl diisocyanate residue, 4,2′-biphenyl diisocyanate residue, and 3,3′-biphenyl Diisocyanate residue, 3,2'-biphenyl diisocyanate residue, 2,2'-biphenyl diisocyanate residue, 3- or 2-methyl-4,4'-biphenyl diisocyanate residue, 3- or 2- or 2'- Or 4'- or 5'- or 6'-methyl-4,3'-biphenyl diisocyanate residue, 3- or 2- or 3'- or 4'- or 5'- or 6'-methyl-4,2 '-Biphenyl diisocyanate residue, 3- or 2-ethyl-4,4'-biphenyl diisocyanate residue, 3- or 2- or 2'- or 4'- or 5'- 6'-ethyl-4,3'-biphenyl diisocyanate residue, 3- or 2- or 3'- or 4'- or 5'- or 6'-ethyl-4,2'-biphenyl diisocyanate residue, 3, 3'- or 3,2'-dimethyl-4,4'-biphenyl diisocyanate residue, 3,2'- or 3,4'- or 3,5'- or 3,6'- or 2,2'- Or 2,4'- or 2,5'- or 2,6'-dimethyl-4,3'-biphenyl diisocyanate residue, 3,3'- or 3,4'- or 3,5'- or 3, 6'- or 2,3'- or 2,4'- or 2,5'- or 2,6'-dimethyl-4,2'-biphenyl diisocyanate residue, 3,3'- or 3,2'- Diethyl-4,4'-biphenyl diisocyanate residue, 3,2'- or 3,4'- or 3,5 -Or 3,6'- or 2,2'- or 2,4'- or 2,5'- or 2,6'-diethyl-4,3'-biphenyl diisocyanate residue, 3,3'- or 3 , 4'- or 3,5'- or 3,6'- or 2,3'- or 2,4'- or 2,5'- or 2,6'-diethyl-4,2'-biphenyl diisocyanate residue Group, diphenylmethane-4,4'-diisocyanate residue, diphenylmethane-4,3'-diisocyanate residue, diphenylmethane-4,2'-diisocyanate residue, diphenylmethane-3,3'-diisocyanate residue, diphenylmethane-3, 2'-diisocyanate residue, diphenylmethane-2,2'-diisocyanate residue, 3- or 2-methyldiphenylmethane-4,4'-diisocyanate residue, 3- or 2- or Is 2'- or 4'- or 5'- or 6'-methyldiphenylmethane-4,3'-diisocyanate residue, 3- or 2- or 3'- or 4'- or 5'- or 6'-methyl Diphenylmethane-4,2'-diisocyanate residue, 3,2'- or 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate residue, 3,2'- or 3,4'- or 3,5 ' -Or 3,6'- or 2,2'- or 2,4'- or 2,5'- or 2,6'-dimethyldiphenylmethane-4,3'-diisocyanate residue, 3,3'- or 3 , 4'- or 3,5'- or 3,6'- or 2,3'- or 2,4'- or 2,5'- or 2,6'-dimethyldiphenylmethane-4,2'-diisocyanate residue And the like. These may be used alone or in combination of two or more. To be able to use. Of these, a 3,3'-dimethyl-4,4'-biphenyl diisocyanate residue (o-tolidine diisocyanate residue) is preferred.
 一般式(3)で示される構成成分の含有量は、全構成成分を200モル%とした場合、50モル%以上であることが好ましく、より好ましくは60モル%以上であり、さらに好ましくは70モル%以上であり、よりさらに好ましくは80モル%以上であり、特に好ましくは90モル%以上であり、最も好ましくは100モル%である。50モル%未満であると耐屈曲性が十分に発現しないことがある。 The content of the components represented by the general formula (3) is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% when all the components are 200 mol%. Mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%. If it is less than 50 mol%, the flex resistance may not be sufficiently exhibited.
 本発明のポリカーボネートイミド樹脂(A)は、前記一般式(1)の構成成分および一般式(2)の構成成分を所定量含有する。そのため、ポリカーボネートイミド樹脂(A)は、(a)一般式(4)で示されるフルオレン構造含有酸二無水物、(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物、および(c)イソシアネート成分を必須の共重合成分とし、全酸成分を100モル%としたとき、(a)一般式(4)で示されるフルオレン構造含有酸二無水物と(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物の合計が45モル%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 (一般式(4)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、sはそれぞれ独立に1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000018
 (一般式(5)において、複数個のRはそれぞれ独立に炭素数1以上の2価の有機基を示し、mは1以上の整数である。)
The polycarbonate imide resin (A) of the present invention contains the components of the general formula (1) and the components of the general formula (2) in predetermined amounts. Therefore, the polycarbonate imide resin (A) includes (a) an acid dianhydride having a fluorene structure represented by the general formula (4), (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5), and (C) When the isocyanate component is an essential copolymer component and the total acid component is 100 mol%, (a) a fluorene structure-containing dianhydride represented by the general formula (4) and (b) a general formula (5) )) Is preferably at least 45 mol%.
Figure JPOXMLDOC01-appb-C000017
(In the general formula (4), a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and s independently represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000018
(In the general formula (5), a plurality of R 5 each independently represent a divalent organic group having 1 or more carbon atoms, and m is an integer of 1 or more.)
<(a)一般式(4)で示されるフルオレン構造含有酸二無水物>
 本発明で用いるポリカーボネートイミド樹脂(A)を構成する(a)成分としては、(a)フルオレン構造含有酸二無水物(以下、単に(a)成分ともいう。)であることが必要である。フルオレン構造含有酸二無水物を用いることによって、非窒素系溶媒溶解性、耐熱性の優れた効果が期待できる。
<(A) Fluorene structure-containing acid dianhydride represented by general formula (4)>
The component (a) constituting the polycarbonate imide resin (A) used in the present invention needs to be (a) an acid dianhydride having a fluorene structure (hereinafter, also simply referred to as the component (a)). By using the acid dianhydride having a fluorene structure, excellent effects in solubility in non-nitrogen solvents and heat resistance can be expected.
Figure JPOXMLDOC01-appb-C000019
 一般式(4)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示す。アルキル基としては、メチル基、エチル基、n-プロピル基またはイソプロピル基が挙げられる。Rとしては、水素またはメチル基が好ましく、より好ましくはメチル基である。sはそれぞれ独立に1~4の整数を示し、好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1である。Rの位置はフルオレン環の付加位置に対して、それぞれ3位であることが好ましく、2個のRがともに3位であることがより好ましい。また、エステル基の位置はフルオレン環の付加位置に対して、4位であることが好ましく、2個のエステル基がともに4位であることがより好ましい。具体例には、式(8)で示される化合物分(以下、式(8)化合物ともいう。)であることが特に好ましい。市販品としては、特に限定されないが、TBIS(登録商標)-MPN(田岡化学製)などが挙げられ、これらを単独でまたは2種以上を併用することができる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000019
In the general formula (4), a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. R 4 is preferably hydrogen or a methyl group, and more preferably a methyl group. s each independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1. The position of R 4 is preferably 3-position with respect to the addition position of the fluorene ring, and more preferably both R 4 are 3-position. Further, the position of the ester group is preferably 4-position with respect to the addition position of the fluorene ring, and more preferably both of the two ester groups are 4-position. In a specific example, the compound represented by the formula (8) is particularly preferable (hereinafter, also referred to as a compound of the formula (8)). Examples of commercially available products include, but are not limited to, TBIS (registered trademark) -MPN (manufactured by Taoka Chemical), and these can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000020
 (a)成分の共重合量は、反応対象の全酸成分100モル%とした場合、5モル%以上であることが好ましい。より好ましくは10モル%以上であり、さらに好ましくは15モル%以上であり、特に好ましくは20モル%以上である。少なすぎると、非窒素系溶媒溶解性や、耐熱性が得られないことがある。また、45モル%以下であることが好ましく、より好ましくは40モル%以下であり、さらに好ましくは35モル%以下である。多すぎると、後述する(b)、その他の酸成分を十分な量で共重合することができないことがある。そのため、低反り性や耐屈曲性(機械特性)が低下することがある。 The copolymerization amount of the component (a) is preferably 5 mol% or more when the total acid component to be reacted is 100 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the solubility in a non-nitrogen solvent or the heat resistance may not be obtained. Moreover, it is preferable that it is 45 mol% or less, More preferably, it is 40 mol% or less, More preferably, it is 35 mol% or less. If the amount is too large, it may not be possible to copolymerize a sufficient amount of other acid components described later (b). Therefore, low warpage and bending resistance (mechanical properties) may be reduced.
<(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物>
 本発明のポリカーボネートイミド樹脂(A)を構成する、(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物(以下、単に(b)成分ともいう。)は、ポリカーボネートポリイミド樹脂(A)に低反り性、非窒素系溶媒溶解性等を付与する可とう性成分として共重合される。
<(B) Acid dianhydride having polycarbonate skeleton represented by general formula (5)>
The (b) acid dianhydride having a polycarbonate skeleton represented by the general formula (5) (hereinafter, also simply referred to as component (b)) constituting the polycarbonate imide resin (A) of the present invention is a polycarbonate polyimide resin ( It is copolymerized as a flexible component which imparts low warpage, non-nitrogen solvent solubility, etc. to A).
 (b)成分としては、一般式(5)で示されるポリカーボネート骨格を有する酸二無水物である。
Figure JPOXMLDOC01-appb-C000021
 一般式(5)において、複数個のRはそれぞれ独立に、炭素数1以上の2価の有機基を示す。好ましい炭素数は5以上であり、より好ましくは10以上であり、20以下が好ましく、18以下がより好ましい。また、2価の有機基としては、特に限定されないが、置換基を有しても良い直鎖のアルキレン基が好ましく、上記炭素数は置換基の炭素も含めることが好ましい。また、nは1以上の整数であり、2以上の整数が好ましく、3以上の整数がより好ましく、10以下の整数が好ましく、8以下の整数がより好ましい。
The component (b) is an acid dianhydride having a polycarbonate skeleton represented by the general formula (5).
Figure JPOXMLDOC01-appb-C000021
In the general formula (5), a plurality of R 5 each independently represents a divalent organic group having 1 or more carbon atoms. The number of carbon atoms is preferably 5 or more, more preferably 10 or more, preferably 20 or less, and more preferably 18 or less. The divalent organic group is not particularly limited, but is preferably a linear alkylene group which may have a substituent, and the carbon number preferably includes the carbon of the substituent. Further, n is an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 3 or more, preferably an integer of 10 or less, and more preferably an integer of 8 or less.
 (b)成分を製造する方法としては、特に限定されないが、トリメリット酸無水物の塩化物と上述のポリカーボネートジオール化合物とから公知の反応方法により合成できる。より具体的には、まず、溶媒へ溶解させたトリメリット酸無水物の塩化物溶液中へ、ポリカーボネートジオール化合物と脱酸剤を投入し、0.5~24時間攪拌する。反応温度は-20~50℃で行われるが、反応選択性の観点から、より好ましくは20~40℃で行うとよい。トリメリット酸無水物の塩化物とポリカーボネートジオール化合物との反応比率としては、ポリカーボネートジオール化合物1モルに対してトリメリット酸無水物の塩化物を2モル以上用いて反応させることが好ましい。反応における溶質の濃度は5~80重量%が好ましく、より好ましくは40~60重量%の範囲で行うとよい。反応終了後、析出した塩酸塩を濾別し、溶媒を濃縮することで目的の一般式(5)で示されるポリカーボネート骨格を有する酸二無水物(以下、ポリカーボネート骨格含有テトラカルボン酸二無水物ともいう。)を得ることができる。 The method for producing the component (b) is not particularly limited, but can be synthesized from a chloride of trimellitic anhydride and the above-mentioned polycarbonate diol compound by a known reaction method. More specifically, first, a polycarbonate diol compound and a deoxidizing agent are charged into a chloride solution of trimellitic anhydride dissolved in a solvent, and the mixture is stirred for 0.5 to 24 hours. The reaction is carried out at a temperature of −20 to 50 ° C., and preferably at a temperature of 20 to 40 ° C. from the viewpoint of reaction selectivity. Regarding the reaction ratio between the chloride of trimellitic anhydride and the polycarbonate diol compound, the reaction is preferably performed using 2 mol or more of chloride of trimellitic anhydride with respect to 1 mol of the polycarbonate diol compound. The solute concentration in the reaction is preferably from 5 to 80% by weight, more preferably from 40 to 60% by weight. After completion of the reaction, the precipitated hydrochloride is separated by filtration and the solvent is concentrated to obtain the desired acid dianhydride having a polycarbonate skeleton represented by the general formula (5) (hereinafter also referred to as a polycarbonate skeleton-containing tetracarboxylic dianhydride). ) Can be obtained.
 前記ポリカーボネートジオール化合物の製造方法としては、原料となるジオールと炭酸エステル類とのエステル交換、原料となるジオールとホスゲンとの脱塩化水素反応を挙げることができる。原料である炭酸エステルとしては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネートが挙げられる。 Examples of the method for producing the polycarbonate diol compound include transesterification between a diol as a raw material and a carbonate, and a dehydrochlorination reaction between a diol as a raw material and phosgene. The carbonate as a raw material is not particularly limited, and examples thereof include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
 前記ジオールとしては、2つの水酸基を有する直鎖状のジオール化合物を用いることができる。特に限定されないが、例えば、エチレングリコールや1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等が挙げられる。 は As the diol, a linear diol compound having two hydroxyl groups can be used. Although not particularly limited, examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol.
 本発明に使用できるポリカーボネートジオールは、その骨格中に複数種のアルキレン基を有するポリカーボネートジオール(共重合ポリカーボネートジオール)であってもよく、市販品として、例えば、クラレポリオールC-1015N、クラレポリオールC-1065N((株)クラレ製カーボネートジオール:2-メチル-1,8-オクタンジオール/1,9-ノナンジオール、数平均分子量約1,000)、クラレポリオールC-2015N、クラレポリオールC-2065N((株)クラレ製カーボネートジオール:2-メチル-1,8-オクタンジオール/1,9-ノナンジオール、数平均分子量約2,000)、クラレポリオールC-1050、クラレポリオールC-1090((株)クラレ製カーボネートジオール:3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)、クラレポリオールC-2050、クラレポリオールC-2090((株)クラレ製カーボネートジオール:3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)、DURANOL(登録商標)-T5650E(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約500)、DURANOL(登録商標)-T5651(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)、DURANOL(登録商標)-T5652(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)などを挙げることができる。 The polycarbonate diol that can be used in the present invention may be a polycarbonate diol having a plurality of types of alkylene groups in its skeleton (copolymerized polycarbonate diol), and as commercial products, for example, Kuraray polyol C-1015N, Kuraray polyol C- 1065N (carbonate diol manufactured by Kuraray Co., Ltd .: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 1,000), Kuraray polyol C-2015N, Kuraray polyol C-2065N (( Kuraray's carbonate diol: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 2,000), Kuraray polyol C-1050, Kuraray polyol C-1090 (Kuraray Co., Ltd.) Carbonate diol: 3-meth 1,5-pentanediol / 1,6-hexanediol, number average molecular weight about 1,000), Kuraray polyol C-2050, Kuraray polyol C-2090 (carbonate diol manufactured by Kuraray Co., Ltd .: 3-methyl-1) , 5-pentanediol / 1,6-hexanediol, number average molecular weight about 2,000), DURANOL (registered trademark) -T5650E (polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6-) Hexanediol, number average molecular weight about 500), DURANOL (registered trademark) -T5651 (polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight about 1,000), DURANOL (registered trademark) -T5652 (Asahi Kasei Chemical Corporation) Ltd. Polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol, may be mentioned about 2,000) and the number average molecular weight.
 (b)成分の共重合量は、全酸成分を100モル%とした場合、5モル%以上であることが好ましい。より好ましくは10モル%以上であり、さらに好ましくは15モル%以上であり、特に好ましくは20モル%以上である。少なすぎると、弾性率が十分に低下しないことがあり、積層した場合に反りが発生したり、非窒素系溶媒への溶解性が低下することがある。そのため、5℃~30℃において一ヶ月以内に樹脂が析出するおそれがある。一方、45モル%以下であることが好ましく、より好ましくは40モル%以下であり、さらに好ましくは35モル%以下である。多すぎると、前述の(a)成分や後述するその他の酸成分を十分な量で含有することができないため、低反り性、耐屈曲性(機械特性)、耐熱性が低下する場合がある。 The copolymerization amount of the component (b) is preferably 5 mol% or more when the total acid component is 100 mol%. It is more preferably at least 10 mol%, further preferably at least 15 mol%, particularly preferably at least 20 mol%. If the amount is too small, the elastic modulus may not be sufficiently reduced, and warpage may occur when laminating, or the solubility in a non-nitrogen-based solvent may be reduced. Therefore, at 5 ° C. to 30 ° C., the resin may be precipitated within one month. On the other hand, it is preferably at most 45 mol%, more preferably at most 40 mol%, even more preferably at most 35 mol%. If the amount is too large, the component (a) and other acid components described below cannot be contained in a sufficient amount, so that low warpage, bending resistance (mechanical properties), and heat resistance may decrease.
 ポリカーボネートイミド樹脂(A)の酸成分としては、前記(a)成分と(b)成分の合計量が45モル%以上であることが必要であり、50モル%以上であることが好ましく、55モル%以上であることがより好ましく、60モル%以上であることがさらに好ましい。少なすぎると低反り性、非窒素系溶媒への溶解性が低下することがある。また、90モル%以下であることが好ましく、より好ましくは80モル%以下である。 As the acid component of the polycarbonate imide resin (A), the total amount of the component (a) and the component (b) needs to be 45 mol% or more, preferably 50 mol% or more, and 55 mol% or more. %, More preferably at least 60 mol%. If the amount is too small, low warpage and solubility in a non-nitrogen solvent may be reduced. Further, it is preferably at most 90 mol%, more preferably at most 80 mol%.
<その他の酸成分>
 その他の酸成分として、酸無水物基を有する3価または4価のポリカルボン酸誘導体を使用することができる。芳香族ポリカルボン酸誘導体として、特に限定されないが、例えば、トリメリット酸無水物(TMA)、ピロメリット酸二無水物、3,3’-4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’-4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’、4,4’-テトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-または3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス[4-(2,3-または3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス[4-(2,3-または3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、または1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物等が挙げられる。
<Other acid components>
As the other acid component, a trivalent or tetravalent polycarboxylic acid derivative having an acid anhydride group can be used. The aromatic polycarboxylic acid derivative is not particularly restricted but includes, for example, trimellitic anhydride (TMA), pyromellitic dianhydride, 3,3′-4,4′-benzophenonetetracarboxylic dianhydride, 3 3,3'-4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, , 3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride , M-terphenyl-3,3 ', 4,4'-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 1,1,1,3,3,3-hexafluoro-2 , 2-bis (2,3- or 3,4- Carboxyphenyl) propane dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis [4- (2,3- or 3,4- Dicarboxyphenoxy) phenyl] propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis [4- (2,3- or 3,4-dicarboxyphenoxy) phenyl] Examples thereof include propane dianhydride and 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride.
 また脂肪族あるいは脂環族ポリカルボン酸誘導体として、特に限定されないが、例えば、ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、ヘキサヒドロピロメリット酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロへキサン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロへキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-エチルシクロへキサン-1-(1,2),3,4-テトラカルボン酸二無水物、1-プロピルシクロへキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロへキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロへキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1-プロピルシクロへキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロへキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロへキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、またはヘキサヒドロトリメリット酸無水物等が挙げられる。 Examples of the aliphatic or alicyclic polycarboxylic acid derivative include, but are not limited to, butane-1,2,3,4-tetracarboxylic dianhydride and pentane-1,2,4,5-tetracarboxylic acid. Dianhydride, cyclobutanetetracarboxylic dianhydride, hexahydropyromellitic dianhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1- Ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-ethylcyclohexane-1- (1,2), 3,4 -Tetracarboxylic dianhydride 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- (2,3), 3- (2,3 ) -Tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic Acid dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- (2,3), 3 -(2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ', 4'-tetracarboxylic dianhydride, bicyclo [2,2,1] heptane-2,3,5 , 6-Tetracarboxylic dianhydride, bicyclo [2,2,2] octane-2,3,5,6- Tetracarboxylic acid dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, or hexa hydro trimellitic anhydride, and the like.
 これらの酸無水物基を有する3価および/または4価のポリカルボン酸誘導体は単独でも2種以上を組み合わせて用いても構わない。酸無水物基を有する3価および/または4価のポリカルボン酸誘導体の含有量は、酸成分を100モル%としたときに、10モル%以上であることが好ましく、より好ましくは20モル%以上であり、さらに好ましくは30モル%以上である。また、55モル%以下であることが好ましく、より好ましくは50モル%以下である。 3These trivalent and / or tetravalent polycarboxylic acid derivatives having an acid anhydride group may be used alone or in combination of two or more. The content of the trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group is preferably 10 mol% or more, more preferably 20 mol%, when the acid component is 100 mol%. And more preferably 30 mol% or more. Further, it is preferably at most 55 mol%, more preferably at most 50 mol%.
 また、目的とする性能を損なわない範囲で必要に応じ、さらに脂肪族、脂環族、芳香族ジカルボン酸類を共重合しても構わない。脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸、ドデカン二酸、エイコサン二酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタンジカルボン酸、2-メチルオクタンジカルボン酸、3,8-ジメチルデカンジカルボン酸、3,7-ジメチルデカンジカルボン酸、9,12-ジメチルエイコサン二酸、フマル酸、マレイン酸、ダイマー酸、水添ダイマー酸等、脂環族ジカルボン酸としては、例えば、1,4-シクロへキサンジカルボン酸、1,3-シクロへキサンジカルボン酸、1,2-シクロへキサンジカルボン酸、4,4‘-ジシクロへキシルジカルボン酸等、芳香族ジカルボン酸としては、例えばイソフタル酸、テレフタル酸、オルソフタル酸、ナフタレンジカルボン酸、オキシジ安息香酸、スチルベンジカルボン酸等が挙げられる。これらのジカルボン酸類は単独でも二種以上を組み合わせて用いても構わない。耐熱性、密着性、溶解性、コスト面などを考慮すれば、セバシン酸、1,4-シクロへキサンジカルボン酸、ダイマー酸、イソフタル酸が好ましい。 脂肪 Also, aliphatic, alicyclic, and aromatic dicarboxylic acids may be further copolymerized as needed as long as the desired performance is not impaired. Examples of the aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decandioic acid, dodecandioic acid, eicosantioic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedicarboxylic acid, 2-methyloctanedicarboxylic acid, 3,8-dimethyldecanedicarboxylic acid, 3,7-dimethyldecanedicarboxylic acid, 9,12-dimethyleicosandioic acid, fumaric acid Examples of alicyclic dicarboxylic acids such as, maleic acid, dimer acid, hydrogenated dimer acid and the like include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexane Examples of aromatic dicarboxylic acids such as dicarboxylic acid and 4,4′-dicyclohexyldicarboxylic acid include, for example, isophthalic acid. , Terephthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, stilbene dicarboxylic acid and the like. These dicarboxylic acids may be used alone or in combination of two or more. Considering heat resistance, adhesion, solubility, cost, and the like, sebacic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, and isophthalic acid are preferred.
<(c)イソシアネート成分>
 本発明のポリカーボネートイミド樹脂(A)を構成する、(c)イソシアネート成分は一般式(6)で示されるジイソシアネートであることが好ましい。一般式(6)で示されるジイソシアネートを用いることで、優れた耐屈曲性を発現することができる。
Figure JPOXMLDOC01-appb-C000022
 (一般式(6)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、tはそれぞれ独立に1~4の整数を示し、pは0または1である。)
<(C) isocyanate component>
The (c) isocyanate component constituting the polycarbonate imide resin (A) of the present invention is preferably a diisocyanate represented by the general formula (6). By using the diisocyanate represented by the general formula (6), excellent flex resistance can be exhibited.
Figure JPOXMLDOC01-appb-C000022
(In the general formula (6), a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbons, t each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
 一般式(6)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示す。アルキル基としては、メチル基、エチル基、n-プロピル基またはイソプロピル基が挙げられる。Rとしては、水素またはメチル基が好ましく、より好ましくはメチル基である。tはそれぞれ独立に1~4の整数を示し、好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1である。Rの位置は-(CH)p-に対して、それぞれ3位であることが好ましく、2個のRがともに3位であることがより好ましい。また、結合部位の位置は-(CH)p-に対して、4位であることが好ましく、2個の結合部位がともに4位であることがより好ましい。pは0または1であり、好ましくは0(ビフェニル体)である。 In the general formula (6), a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. R 6 is preferably hydrogen or a methyl group, more preferably a methyl group. t each independently represents an integer of 1 to 4, preferably 3 or less, more preferably 2 or less, and still more preferably 1. The position of R 6 is preferably 3-position with respect to — (CH 2 ) p-, and more preferably both R 6 are 3-position. Further, the position of the binding site is preferably at position 4 with respect to-(CH 2 ) p-, and more preferably both of the two binding sites are at position 4. p is 0 or 1, preferably 0 (biphenyl form).
 一般式(6)で示されるジイソシアネートの具体例としては、4,4’-ビフェニルジイソシアネート、4,3’-ビフェニルジイソシアネート、4,2’-ビフェニルジイソシアネート、3,3’-ビフェニルジイソシアネート、3,2’-ビフェニルジイソシアネート、2,2’-ビフェニルジイソシアネート、3-又は2-メチル-4,4’-ビフェニルジイソシアネート、3-又は2-又は2’-又は4’-又は5’-又は6’-メチル-4,3’-ビフェニルジイソシアネート、3-又は2-又は3’-又は4’-又は5’-又は6’-メチル-4,2’-ビフェニルジイソシアネート、3-又は2-エチル-4,4’-ビフェニルジイソシアネート、3-又は2-又は2’-又は4’-又は5’-又は6’-エチル-4,3’-ビフェニルジイソシアネート、3-又は2-又は3’-又は4’-又は5’-又は6’-エチル-4,2’-ビフェニルジイソシアネート、3,3’-又は3,2’-ジメチル-4,4’-ビフェニルジイソシアネート、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジメチル-4,3’-ビフェニルジイソシアネート、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジメチル-4,2’-ビフェニルジイソシアネート、3,3’-又は3,2’-ジエチル-4,4’-ビフェニルジイソシアネート、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジエチル-4,3’-ビフェニルジイソシアネート、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジエチル-4,2’-ビフェニルジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-4,3’-ジイソシアネート、ジフェニルメタン-4,2’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,2’-ジイソシアネート、ジフェニルメタン-2,2’-ジイソシアネート、3-又は2-メチルジフェニルメタン-4,4’-ジイソシアネート、3-又は2-又は2’-又は4’-又は5’-又は6’-メチルジフェニルメタン-4,3’-ジイソシアネート、3-又は2-又は3’-又は4’-又は5’-又は6’-メチルジフェニルメタン-4,2’-ジイソシアネート、3,2’-又は3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、3,2’-又は3,4’-又は3,5’-又は3,6’-又は2,2’-又は2,4’-又は2,5’-又は2,6’-ジメチルジフェニルメタン-4,3’-ジイソシアネート、3,3’-又は3,4’-又は3,5’-又は3,6’-又は2,3’-又は2,4’-又は2,5’-又は2,6’-ジメチルジフェニルメタン-4,2’-ジイソシアネートなどが挙げられ、これらを単独で、または2種以上を併用して使用することができる。なかでも3,3’-ジメチル-4,4’-ビフェニルジイソシアネート(o-トリジンジイソシアネート(TODI))が好ましい。 Specific examples of the diisocyanate represented by the general formula (6) include 4,4'-biphenyl diisocyanate, 4,3'-biphenyl diisocyanate, 4,2'-biphenyl diisocyanate, 3,3'-biphenyl diisocyanate, 3,2 '-Biphenyl diisocyanate, 2,2'-biphenyl diisocyanate, 3- or 2-methyl-4,4'-biphenyl diisocyanate, 3- or 2- or 2'- or 4'- or 5'- or 6'-methyl -4,3'-biphenyl diisocyanate, 3- or 2- or 3'- or 4'- or 5'- or 6'-methyl-4,2'-biphenyl diisocyanate, 3- or 2-ethyl-4,4 '-Biphenyl diisocyanate, 3- or 2- or 2'- or 4'- or 5'- or 6'-ethyl-4,3' Biphenyl diisocyanate, 3- or 2- or 3'- or 4'- or 5'- or 6'-ethyl-4,2'-biphenyl diisocyanate, 3,3'- or 3,2'-dimethyl-4,4 '-Biphenyl diisocyanate, 3,2'- or 3,4'- or 3,5'- or 3,6'- or 2,2'- or 2,4'- or 2,5'- or 2,6 '-Dimethyl-4,3'-biphenyl diisocyanate, 3,3'- or 3,4'- or 3,5'- or 3,6'- or 2,3'- or 2,4'- or 2, 5'- or 2,6'-dimethyl-4,2'-biphenyl diisocyanate, 3,3'- or 3,2'-diethyl-4,4'-biphenyl diisocyanate, 3,2'- or 3,4 ' -Or 3,5'- or 3,6'- or 2,2'- or 2,4'- or 2,5'- or 2,6'-diethyl-4,3'-biphenyl diisocyanate, 3,3'- or 3,4'- or 3,5'- or 3,6'- or 2,3'- Or 2,4'- or 2,5'- or 2,6'-diethyl-4,2'-biphenyl diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-4,3'-diisocyanate, diphenylmethane-4 2'-diisocyanate, diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,2'-diisocyanate, diphenylmethane-2,2'-diisocyanate, 3- or 2-methyldiphenylmethane-4,4'-diisocyanate, 3- or 2- or 2'- or 4'- or 5'- or 6'-methyldiphenylmethane-4,3'-diisocyanate , 3- or 2- or 3'- or 4'- or 5'- or 6'-methyldiphenylmethane-4,2'-diisocyanate, 3,2'- or 3,3'-dimethyldiphenylmethane-4 4'-diisocyanate, 3,2'- or 3,4'- or 3,5'- or 3,6'- or 2,2'- or 2,4'- or 2,5'- or 2,6 '-Dimethyldiphenylmethane-4,3'-diisocyanate, 3,3'- or 3,4'- or 3,5'- or 3,6'- or 2,3'- or 2,4'- or 2, Examples thereof include 5′- or 2,6′-dimethyldiphenylmethane-4,2′-diisocyanate, and these can be used alone or in combination of two or more. Of these, 3,3'-dimethyl-4,4'-biphenyl diisocyanate (o-tolidine diisocyanate (TODI)) is preferred.
 一般式(6)で示されるジイソシアネートの共重合量は、全イソシアネート成分を100モル%とした場合、50モル%以上であることが好ましく、より好ましくは60モル%以上であり、さらに好ましくは70モル%以上であり、よりさらに好ましくは80モル%以上であり、特に好ましくは90モル%以上であり、最も好ましくは100モル%である。50モル%未満であると弾性率の値が低くなり、耐屈曲性が十分に発現しないことがある。 The copolymerization amount of the diisocyanate represented by the general formula (6) is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol%, when all the isocyanate components are 100 mol%. Mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%. If it is less than 50 mol%, the value of the elastic modulus is low, and the flex resistance may not be sufficiently exhibited.
<その他のイソシアネート成分>
 本発明のポリカーボネートイミド樹脂(A)には、目的とする性能を損なわない範囲で必要に応じ、イソシアネート成分として、さらにイソシアネート化合物を共重合しても構わない。イソシアネート化合物であれば特に限定されず、芳香族ポリイソシアネート、脂肪族ポリイソシアネートもしくは脂環族ポリイソシアネートが挙げられる。好ましくは芳香族ポリイソシアネートが用いられる。特に限定されないが、具体的には、芳香族ポリイソシアネートでは例えば、3,2’-又は3,3’-又は4,2’-又は4,3’-又は5,2’-又は5,3’-又は6,2’-又は6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-[2,2ビス(4-フェノキシフェニル)プロパン]ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネート等が挙げられる。耐熱性、密着性、溶解性、コスト面などを考慮すれば、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、トリレン-2,4-ジイソシアネート(TDI)、m-キシリレンジイソシアネートが好ましく、トリレン-2,4-ジイソシアネート(TDI)が更に好ましい。これらを単独で、または2種以上を併用することができる。
<Other isocyanate components>
In the polycarbonate imide resin (A) of the present invention, if necessary, an isocyanate compound may be further copolymerized as an isocyanate component as long as the desired performance is not impaired. It is not particularly limited as long as it is an isocyanate compound, and examples thereof include an aromatic polyisocyanate, an aliphatic polyisocyanate and an alicyclic polyisocyanate. Preferably, an aromatic polyisocyanate is used. Although not particularly limited, specific examples of the aromatic polyisocyanate include, for example, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3. '-Or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'- Diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, m-xylylenediisocyanate, p-xylylenediisocyanate, naphthalene-2,6-diisocyanate, 4,4 '-[2,2bis (4 -Phenoxyphenyl) propane] diisocyanate, 3,3'- or 2,2'-diethylbiphenyl-4,4'-diisocyanate And 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, and 3,3′-diethoxybiphenyl-4,4′-diisocyanate. In consideration of heat resistance, adhesion, solubility, cost, and the like, diphenylmethane-4,4'-diisocyanate (MDI), tolylene-2,4-diisocyanate (TDI), and m-xylylene diisocyanate are preferable. 2,4-diisocyanate (TDI) is more preferred. These can be used alone or in combination of two or more.
 本発明のポリカーボネートイミド樹脂(A)に用いられる(c)イソシアネート成分を100モル%とした場合、前記いずれかのイソシアネート化合物が100モル%であることが好ましい。前記イソシアネートの代わりに前記イソシアネートに対応するジアミン化合物を用いると、ポリカーボネートポリイミド樹脂の前駆体として、ポリアミック酸を経由する。ポリアミック酸を経由すると、ポリアミック酸含有のペーストをCOF(Chip On Film)等の基板に塗布した後、通常200℃程度以上の高温でイミド化をする必要があり、COFを熱劣化させる可能性があり、また設備面での制限を受けてしまうことがある。本発明では、イソシアネート成分に一般式(6)で示されるジイソシアネートを含むイソシアネート化合物のみを用いるため、ポリアミック酸含有のペーストに比べて低温で処理することができ、上記のような問題がないため好ましい。 When the (c) isocyanate component used in the polycarbonate imide resin (A) of the present invention is 100 mol%, it is preferable that any one of the isocyanate compounds is 100 mol%. When a diamine compound corresponding to the isocyanate is used instead of the isocyanate, a polyamic acid is used as a precursor of the polycarbonate polyimide resin. After passing through the polyamic acid, it is necessary to apply the polyamic acid-containing paste to a substrate such as COF (Chip \ On \ Film) and then imidize it at a high temperature of about 200 ° C. or more, which may cause thermal degradation of the COF. Yes, and there may be restrictions on facilities. In the present invention, since only the isocyanate compound containing the diisocyanate represented by the general formula (6) is used as the isocyanate component, it can be processed at a lower temperature than the paste containing polyamic acid, and is preferable because there is no problem as described above. .
 また、(b)成分の他に、目的とする性能を損なわない範囲で必要に応じ、さらに他の可とう性成分を共重合しても構わない。例えば、脂肪族/芳香族ポリエステルジオール類(東洋紡(株)製、商品名VYLON(登録商標)220)、脂肪族/芳香族ポリカーボネートジオール類(ダイセル化学工業(株)製、商品名PLACCEL(登録商標)-CD220、(株)クラレ製、商品名C-1015N、C-1050、C-1065N、C-1090、C-2015N、C-2065N、C-2090等、旭化成ケミカルズ(株)製、商品名 Duranol (登録商標)T-4671、T-4672、T-5650E、T-5650J、T-5651、T5652等)、ポリカプロラクトンジオール類(ダイセル化学工業(株)製、商品名PLACCEL(登録商標)-220等)、カルボキシ変性アクリロニトリルブタジエンゴム類(宇部興産(株)製、商品名HyproCTBN1300×13等)、ポリジメチルシロキサンジオール、ポリメチルフェニルシロキサンジオール、カルボキシ変性ポリジメチルシロキサン類といったポリシロキサン誘導体等が挙げられる。 In addition to the component (b), if necessary, other flexible components may be copolymerized as long as the desired performance is not impaired. For example, aliphatic / aromatic polyester diols (manufactured by Toyobo Co., Ltd., trade name VYLON (registered trademark) 220), aliphatic / aromatic polycarbonate diols (manufactured by Daicel Chemical Industries, Ltd., trade name PLACCEL (registered trademark) ) -CD220, manufactured by Kuraray Co., Ltd., trade names C-1015N, C-1050, C-1065N, C-1090, C-2015N, C-2065N, C-2090, etc., manufactured by Asahi Kasei Chemicals Corporation, trade name Duranol® (registered trademark) T-4671, T-4672, T-5650E, T-5650J, T-5651, T5652, etc., polycaprolactone diols (manufactured by Daicel Chemical Industries, Ltd., trade name PLACCEL (registered trademark)- 220), carboxy-modified acrylonitrile-butadiene rubbers (HyproCTBN1300 × 13, etc., manufactured by Ube Industries, Ltd.), and polysiloxane derivatives such as polydimethylsiloxane diol, polymethylphenylsiloxane diol, and carboxy-modified polydimethylsiloxane. It is.
 ポリカーボネートイミド樹脂(A)は、酸無水物基を有するポリカルボン酸成分((a)成分および(b)成分)とイソシアネート成分((c)成分)から製造する(イソシアネート法)。 The polycarbonate imide resin (A) is produced from a polycarboxylic acid component having an acid anhydride group (components (a) and (b)) and an isocyanate component (component (c)) (isocyanate method).
 イソシアネート法では、(a)成分、(b)成分、および(c)成分の配合量は、酸無水物基数とイソシアネート基数の比率が、イソシアネート基数/酸無水物基数=0.8~1.2となるようにすることが好ましい。0.8未満ではポリカーボネートイミド樹脂(A)の分子量を高くすることが困難になることがあり、耐熱性、耐屈曲性が低下したり、塗膜が脆い場合がある。また1.2より高い場合はポリカーボネートイミド樹脂(A)の粘性が高くなることがあり、インク化した場合の印刷時に版離れが悪くなる場合がある。 In the isocyanate method, the amount of component (a), component (b) and component (c) is such that the ratio of the number of acid anhydride groups to the number of isocyanate groups is such that the number of isocyanate groups / the number of acid anhydride groups = 0.8 to 1.2. It is preferable that If it is less than 0.8, it may be difficult to increase the molecular weight of the polycarbonate imide resin (A), and heat resistance and bending resistance may be reduced, or the coating film may be brittle. On the other hand, when it is higher than 1.2, the viscosity of the polycarbonate imide resin (A) may be high, and the separation of the plate may be deteriorated at the time of printing in the case of ink.
 本発明で用いられるポリカーボネートイミド樹脂(A)の重合反応は、非窒素系溶媒下で行うことが好ましい。具体的には、エーテル系溶媒、エステル系溶媒、ケトン系溶媒及び芳香族炭化水素系溶媒からなる群より選ばれる1種以上の有機溶媒の存在下に、例えばイソシアネート法では遊離発生する炭酸ガスを反応系より除去しながら加熱縮合させることにより行うことが好ましい。 重合 The polymerization reaction of the polycarbonate imide resin (A) used in the present invention is preferably performed in a non-nitrogen solvent. Specifically, in the presence of one or more organic solvents selected from the group consisting of ether-based solvents, ester-based solvents, ketone-based solvents, and aromatic hydrocarbon-based solvents, for example, the isocyanate method is used to generate carbon dioxide gas that is liberated. It is preferred to carry out the heat condensation while removing from the reaction system.
 上記溶媒としては、特に限定されないが、エーテル系溶媒では例えば、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールジエチルエーテル(エチルジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールジエチルエーテル(エチルトリグライム)等、エステル系溶媒では例えば、γ-ブチロラクトン、酢酸セロソルブ等、ケトン系溶媒では例えば、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等、芳香族炭化水素系溶媒では例えば、トルエン、キシレン、ソルベッソ等が挙げられる。これらは単独でも二種以上を組み合わせて用いても構わない。 The solvent is not particularly limited, but examples of ether solvents include diethylene glycol dimethyl ether (diglyme), diethylene glycol diethyl ether (ethyl diglyme), triethylene glycol dimethyl ether (triglyme), and triethylene glycol diethyl ether (ethyl triglyme). Ester solvents such as γ-butyrolactone and cellosolve acetate; ketone solvents such as methyl isobutyl ketone, cyclopentanone, cyclohexanone and isophorone; and aromatic hydrocarbon solvents such as toluene, xylene and solvesso. No. These may be used alone or in combination of two or more.
 ポリカーボネートイミド樹脂(A)を製造する際には、生成するポリカーボネートイミド樹脂(A)を溶解する溶媒を選択して用いることが好ましく、重合後、そのままポリカーボネートイミド樹脂ペーストの溶媒として好適なものを用いることがさらに好ましい。
 そうすることで、溶剤置換などの煩雑な操作がなくなり、安価に製造することが可能となる。また、溶媒の沸点は140℃以上230℃以下のものが好ましい。140℃未満では、重合反応中に溶媒が揮発するおそれがある他、例えばスクリーン印刷を行う場合、溶媒の揮発がはやく、版詰まりをおこす可能性がある。230℃を超えると、低温乾燥/硬化性を付与することが困難になることがある。比較的高揮発性であって、低温乾燥/硬化性を付与でき、かつワニス安定性に優れ、効率よく均一系で反応を行うためには、γ-ブチロラクトン、シクロヘキサノン、ジグライム、またはトリグライムが好ましい。
When producing the polycarbonate imide resin (A), it is preferable to select and use a solvent that dissolves the produced polycarbonate imide resin (A), and after polymerization, use a suitable solvent as the solvent for the polycarbonate imide resin paste as it is Is more preferable.
By doing so, complicated operations such as solvent replacement are eliminated, and it is possible to manufacture at low cost. The solvent preferably has a boiling point of 140 ° C. or higher and 230 ° C. or lower. If the temperature is lower than 140 ° C., the solvent may volatilize during the polymerization reaction. In addition, for example, when screen printing is performed, the volatilization of the solvent may be quick and the plate may be clogged. If the temperature exceeds 230 ° C., it may be difficult to impart low-temperature drying / curing properties. Γ-butyrolactone, cyclohexanone, diglyme, or triglyme is preferable in order to have a relatively high volatility, impart low-temperature drying / curing properties, have excellent varnish stability, and efficiently perform the reaction in a homogeneous system.
 溶媒の使用量は、生成するポリカーボネートイミド樹脂(A)の0.5~7.0倍(質量比)とすることが好ましく、2.0~6.0倍とすることがより好ましい。0.5倍未満では、合成時の粘度が高すぎて、撹拌不能により合成が困難となる傾向があり、7.0倍を超えると、反応速度が低下する傾向がある。 The amount of the solvent used is preferably 0.5 to 7.0 times (mass ratio), more preferably 2.0 to 6.0 times, the polycarbonate imide resin (A) to be produced. If it is less than 0.5 times, the viscosity at the time of synthesis tends to be too high, and the synthesis tends to be difficult due to inability to stir. If it exceeds 7.0 times, the reaction rate tends to decrease.
 イソシアネート法では、反応温度は60~200℃とすることが好ましく、100~180℃とすることがより好ましい。60℃未満では反応時間が長くなりすぎ、200℃を超えると反応中に、モノマー成分の分解が生じる場合がある。また、三次元化反応が生じてゲル化が起こりやすい。反応温度は多段階で行ってもよい。反応時間は、バッチの規模、採用される反応条件、特に反応濃度により適宜選択することができる。 In the isocyanate method, the reaction temperature is preferably from 60 to 200 ° C, more preferably from 100 to 180 ° C. If the temperature is lower than 60 ° C, the reaction time becomes too long. If the temperature is higher than 200 ° C, the monomer component may be decomposed during the reaction. In addition, a three-dimensional reaction occurs and gelation easily occurs. The reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, and particularly the reaction concentration.
 イソシアネート法では、反応を促進するためにトリエチルアミン、ルチジン、ピコリン、ウンデセン、トリエチレンジアミン(1,4-ジアザビシクロ[2,2,2]オクタン)、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)等のアミン類、リチウムメチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムブトキサイド、フッ化カリウム、フッ化ナトリウム等のアルカリ金属、アルカリ土類金属化合物あるいはチタン、コバルト、スズ、亜鉛、アルミニウムなどの金属、半金属化合物などの触媒の存在下に行っても良い。 In the isocyanate method, triethylamine, lutidine, picoline, undecene, triethylenediamine (1,4-diazabicyclo [2,2,2] octane), DBU (1,8-diazabicyclo [5,4,0]) are used to promote the reaction. Amines such as -7-undecene), alkali metal and alkaline earth metal compounds such as lithium methylate, sodium methylate, sodium ethylate, potassium butoxide, potassium fluoride and sodium fluoride, or titanium, cobalt and tin The reaction may be performed in the presence of a catalyst such as a metal such as zinc, aluminum, and aluminum, and a metalloid compound.
<ポリカーボネートイミド樹脂(A)の製造>
 ポリカーボネートイミド樹脂(A)の製造方法の一例を挙げるならば、(a)成分と(b)成分、(c)成分とを縮合反応(ポリイミド化)させて得ることができる。以下、本発明のポリカーボネートイミド系樹脂の製造方法を例示するが、本発明はこれにより限定されるものではない。
<Production of polycarbonate imide resin (A)>
An example of a method for producing the polycarbonate imide resin (A) can be obtained by subjecting the component (a) to a condensation reaction (polyimide) with the component (b) and the component (c). Hereinafter, a method for producing the polycarbonate imide resin of the present invention will be exemplified, but the present invention is not limited thereto.
 反応容器に(a)成分、(b)成分、(c)成分、重合触媒、重合溶媒を加え、溶解した後、窒素気流下、撹拌しながら、80~190℃、好ましくは100~180℃で5時間以上反応させた後、重合溶媒で適当な溶剤粘度まで希釈し、冷却することで目的のポリカーボネートイミド樹脂(A)を得ることができる。 After adding and dissolving the components (a), (b) and (c), the polymerization catalyst and the polymerization solvent in the reaction vessel, the mixture is dissolved at 80 to 190 ° C., preferably 100 to 180 ° C. while stirring under a nitrogen stream. After reacting for 5 hours or more, the desired polycarbonate imide resin (A) can be obtained by diluting with a polymerization solvent to an appropriate solvent viscosity and cooling.
 本発明で用いられるポリカーボネートイミド樹脂(A)は、γ-ブチロラクトン中、30℃で0.1から2.0dl/gの対数粘度に相当する分子量を有するものが好ましく、より好ましくは、0.2から1.5dl/gの対数粘度に相当する分子量を有するものである。対数粘度が0.1dl/g未満では耐熱性が低下したり、塗膜が脆い場合がある。また、ペーストのタック性が強く版離れが悪くなることがある。一方、2.0dl/gを越えると溶媒に溶解しにくくなり、重合中に不溶化しやすい。また、ワニスの粘度が高くなりハンドリングが困難になったり、基材との密着性が低下することがある。 The polycarbonate imide resin (A) used in the present invention preferably has a molecular weight in γ-butyrolactone at 30 ° C. corresponding to an logarithmic viscosity of 0.1 to 2.0 dl / g, more preferably 0.2 to 2.0 dl / g. From 1.5 dl / g to a logarithmic viscosity. If the logarithmic viscosity is less than 0.1 dl / g, the heat resistance may decrease or the coating film may be brittle. In addition, the tackiness of the paste may be so strong that separation of the plate may be deteriorated. On the other hand, if it exceeds 2.0 dl / g, it is difficult to dissolve in a solvent, and it is easily insoluble during polymerization. In addition, the viscosity of the varnish may increase, making handling difficult, or the adhesion to the substrate may be reduced.
 本発明で用いられるポリカーボネートイミド樹脂(A)のガラス転移温度は好ましくは60℃以上であり、さらに好ましくは100℃以上である。60℃未満では耐熱性が不足し、また樹脂がブロッキングするおそれがある。上限は特に限定されないが、溶剤溶解性の観点から300℃以下が好ましい。 ガ ラ ス The glass transition temperature of the polycarbonate imide resin (A) used in the present invention is preferably 60 ° C or higher, more preferably 100 ° C or higher. If the temperature is lower than 60 ° C., the heat resistance may be insufficient and the resin may be blocked. The upper limit is not particularly limited, but is preferably 300 ° C. or lower from the viewpoint of solvent solubility.
<エポキシ樹脂(B)成分>
 本発明では、前記ポリカーボネートイミド樹脂(A)に、(B)成分としてエポキシ樹脂を配合することができる。本発明で用いられる(B)成分のエポキシ樹脂は、1分子あたり2個以上のエポキシ基を有するエポキシ樹脂であれば特に限定されない。エポキシ樹脂(B)としては、特に限定されないが、例えば、三菱化学(株)製の商品名jER(登録商標)828,1001等のビスフェノールA型エポキシ樹脂、東都化成(株)製の商品名ST-2004、2007等の水添ビスフェノールA型エポキシ樹脂、東都化成(株)製の商品名YDF-170、2004等のビスフェノールF型エポキシ、東都化成(株)製の商品名YDB-400、600等の臭素化ビスフェノールA型エポキシ樹脂、三菱化学(株)製の商品名jER(登録商標)152、154、157S70、1032H60、日本化薬(株)製の商品名EPN(登録商標)-201、BREN(登録商標)、ダウケミカル社製の商品名DEN-438等のフェノールノボラック型エポキシ樹脂、東都化成(株)製の商品名YDCN-702、703、日本化薬(株)製の商品名EOCN(登録商標)-125S、103S、104S等のo-クレゾールノボラック型エポキシ樹脂、東都化成(株)製の商品名YD-171等の可撓性エポキシ樹脂、油化シェルエポキシ(株)製の商品名Epon1031S、チバ・スペシャルティ・ケミカルズ(株)製の商品名アラルダイト(登録商標)0163、ナガセケムテック(株)製の商品名デナコール(登録商標)EX-611、EX-614、EX-622、EX-512、EX-521、EX-421、EX-411、EX-321等の多官能エポキシ樹脂、DIC(株)製の商品名HP-7200、HP-7200H、HP-7200HH等のジシクロペンタジエン型エポキシ樹脂、油化シェルエポキシ(株)製の商品名エピコート(登録商標)604、東都化成(株)製の商品名YH-434、三菱ガス化学(株)製の商品名TETRAD(登録商標)-X、TETRAD-C、日本化薬(株)製の商品名GAN、住友化学(株)製の商品名ELM-120等のアミン型エポキシ樹脂、チバ・スペシャルティ・ケミカルズ(株)製の商品名アラルダイト(登録商標)PT810等の複素環含有エポキシ樹脂、ダイセル化学工業(株)製の商品名セロキサイド(登録商標)2021、EHPE(登録商標)3150、UCC社製のERL4234等の脂環式エポキシ樹脂、大日本インキ化学工業(株)製の商品名エピクロン(登録商標)EXA-1514等のビスフェノールS型エポキシ樹脂、日産化学工業(株)製のTEPIC(登録商標)等のトリグリシジルイソシアヌレート、油化シェルエポキシ(株)製の商品名YX-4000等のビキシレノール型エポキシ樹脂、油化シェルエポキシ(株)製の商品名YL-6056等のビスフェノール型エポキシ樹脂、等が挙げられ、これらを単独で又は2種類以上組み合わせて用いても構わない。
<Epoxy resin (B) component>
In the present invention, an epoxy resin can be blended as the component (B) with the polycarbonate imide resin (A). The epoxy resin (B) used in the present invention is not particularly limited as long as it has two or more epoxy groups per molecule. The epoxy resin (B) is not particularly limited. For example, bisphenol A type epoxy resin such as jER (registered trademark) 828,1001 (trade name, manufactured by Mitsubishi Chemical Corporation) and ST (trade name, manufactured by Toto Kasei Co., Ltd.) -Hydrogenated bisphenol A epoxy resin such as 2004, 2007, etc .; Bisphenol F type epoxy such as YDF-170, 2004, manufactured by Toto Kasei Co., Ltd .; YDB-400, 600, etc. manufactured by Toto Kasei Co., Ltd. Brominated bisphenol A type epoxy resin, trade names jER (registered trademark) 152, 154, 157S70, 1032H60, manufactured by Mitsubishi Chemical Corporation, EPN (registered trademark) -201, BREN manufactured by Nippon Kayaku Co., Ltd. (Registered trademark), a phenol novolak type epoxy resin such as DEN-438 (trade name, manufactured by Dow Chemical Company), a product manufactured by Toto Kasei Co., Ltd. O-Cresol novolak type epoxy resin such as YDCN-702, 703, trade name EOCN (registered trademark) -125S, 103S, 104S manufactured by Nippon Kayaku Co., Ltd., trade name YD-171 manufactured by Toto Kasei Co., Ltd. Flexible epoxy resin, Epon1031S (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), Araldite (registered trademark) 0163 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), Denacol (trade name, manufactured by Nagase Chemtech Co., Ltd.) (Registered trademark) polyfunctional epoxy resins such as EX-611, EX-614, EX-622, EX-512, EX-521, EX-421, EX-411, EX-321, trade name of DIC Corporation Dicyclopentadiene type epoxy resins such as HP-7200, HP-7200H, HP-7200HH, Yuka Shell Epoxy Co., Ltd. (Trade name) Epikote (registered trademark) 604, trade name YH-434 (trade name, manufactured by Toto Kasei Co., Ltd.), TETRAD (registered trademark) -X, TETRAD-C (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.), Nippon Kayaku ( Includes amine type epoxy resins such as GAN (trade name) manufactured by Sumitomo Chemical Co., Ltd., and ELM-120 (trade name) manufactured by Sumitomo Chemical Co., Ltd .; and heterocyclic rings such as Araldite (registered trademark) PT810 (trade name) manufactured by Ciba Specialty Chemicals Epoxy resins, alicyclic epoxy resins such as Celloxide (registered trademark) 2021, EHPE (registered trademark) 3150 (trade name, manufactured by Daicel Chemical Industries, Ltd.), ERL4234 (trade name, manufactured by UCC), manufactured by Dainippon Ink and Chemicals, Inc. Bisphenol S type epoxy resin such as EPICLON (registered trademark) EXA-1514 and TEPIC (registered trademark) manufactured by Nissan Chemical Industries, Ltd. Glycidyl isocyanurate, a bixylenol-type epoxy resin such as YX-4000 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), and a bisphenol-type epoxy resin such as YL-6056 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.). These may be used alone or in combination of two or more.
 これらのエポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、1分子中にエポキシ基を2個より多く有するフェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましい。また、アミン型エポキシ樹脂は、非ハロゲン系であり、ポリカーボネートイミド樹脂(A)との相溶性、耐溶剤性、耐薬品性、耐湿性向上の点で好ましい。 Among these epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin having more than two epoxy groups in one molecule, o-cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin Resins are preferred. Further, the amine type epoxy resin is a non-halogen type and is preferable in terms of compatibility with the polycarbonate imide resin (A), solvent resistance, chemical resistance and moisture resistance.
 本発明で用いられるエポキシ樹脂(B)の使用量は、ポリカーボネートイミド樹脂(A)100質量部に対して好ましくは1~60質量部、さらに好ましくは2~50質量部、特に好ましくは3~40質量部である。エポキシ樹脂(B)の配合量が1質量部未満では、半田耐熱性、耐溶剤性、耐薬品性、耐湿性が低下する傾向にあり、60質量部を超えると、低反り性、機械特性およびポリカーボネートイミド樹脂(A)との相溶性が低下する傾向がある。 The amount of the epoxy resin (B) used in the present invention is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, particularly preferably 3 to 40 parts by mass with respect to 100 parts by mass of the polycarbonate imide resin (A). Parts by weight. If the amount of the epoxy resin (B) is less than 1 part by mass, solder heat resistance, solvent resistance, chemical resistance, and moisture resistance tend to decrease. If it exceeds 60 parts by mass, low warpage, mechanical properties and The compatibility with the polycarbonate imide resin (A) tends to decrease.
 本発明で用いられるエポキシ樹脂(B)には、希釈剤としてさらに、1分子中にエポキシ基を1個だけ有するエポキシ化合物を含んでいても構わない。 エ ポ キ シ The epoxy resin (B) used in the present invention may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
 エポキシ樹脂(B)の添加方法としては、特に限定されず、あらかじめ添加するエポキシ樹脂(B)をポリカーボネートイミド樹脂(A)に含まれる溶媒と同一の溶媒に溶解してから添加しても良く、また直接、ポリカーボネートイミド樹脂(A)に添加してもよい。 The method for adding the epoxy resin (B) is not particularly limited, and the epoxy resin (B) to be added may be dissolved in the same solvent as the solvent contained in the polycarbonate imide resin (A) in advance, and then added. Further, it may be directly added to the polycarbonate imide resin (A).
<フィラー(C)成分>
 本発明では、前記ポリカーボネートイミド樹脂(A)に、(C)成分としてフィラーを配合することができる。本発明で用いられるフィラー(C)(以下、単に(C)成分ともいう。)は、無機あるいは有機のフィラーであることが好ましい。フィラー(C)としては、上記のポリカーボネートイミド樹脂(A)中に分散してペーストを形成し、そのペーストにチキソトロピー性(揺変性)を付与できるものであればよく、特に制限はない。すなわち、本発明のポリカーボネートイミド樹脂ペーストに揺変性を付与できる無機あるいは有機フィラーであることが好ましい。このような無機フィラーとしては、例えば、シリカ(SiO2、日本アエロジル(株)製の商品名AEROSIL(登録商標))、アルミナ(Al2O3)、チタニア(TiO2)、酸化タンタル(Ta2O5)、ジルコニア(ZrO2)、窒化ケイ素(Si3N4)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga2O3)、スピネル(MgO・Al2O3)、ムライト(3Al2O3・2SiO2)、コーディエライト(2MgO・2Al2O3・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2-Al2O3)、イットリア含有ジルコニア(Y2O3-ZrO2)、ケイ酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、硫酸バリウム(BaSO4)、有機化ベントナイト、カーボン(C)、有機化スメクタイト(コープケミカル(株)製の商品名ルーセンタイト(登録商標)STN、ルーセンタイトSPN、ルーセンタイトSAN、ルーセンタイトSEN)などを使用することができ、これらは単独でも二種以上を組み合わせて用いても構わない。得られるペーストの色調、透明性、機械特性、チキソトロピー性付与の点から、シリカやルーセンタイトを使用するのが好ましい。
<Filler (C) component>
In the present invention, a filler can be blended as the component (C) with the polycarbonate imide resin (A). The filler (C) (hereinafter, also simply referred to as component (C)) used in the present invention is preferably an inorganic or organic filler. The filler (C) is not particularly limited as long as it can be dispersed in the above-mentioned polycarbonate imide resin (A) to form a paste and impart thixotropic properties (thixotropic) to the paste. That is, an inorganic or organic filler that can impart thixotropic properties to the polycarbonate imide resin paste of the present invention is preferable. Examples of such an inorganic filler include silica (SiO 2 , trade name AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.), alumina (Al 2 O 3 ), titania (TiO 2 ), and tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO.TiO 2 ), zirconate titanate lead (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3), spinel (MgO · Al 2 O 3) , mullite (3Al 2 O 3 · 2SiO 2 ), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ), talc (3MgO · 4SiO 2 · H 2 O), aluminum titanate (TiO 2 -Al 2 O 3) , yttria-containing zirconia (Y 2 O 3 -ZrO 2) , silicate Barium (BaO · 8SiO 2 ), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate ( CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO.TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, carbon (C), organic smectite (brand name manufactured by Corp Chemical Co., Ltd. Tight (registered trademark) STN, Lucentite SPN, Lucentite SAN, Lucentite SEN) and the like may be used, and these may be used alone or in combination of two or more. It is preferable to use silica or lucentite from the viewpoint of imparting the color tone, transparency, mechanical properties, and thixotropic properties of the obtained paste.
 本発明に用いられる無機フィラーとしては、平均粒子径50μm以下、最大粒子径100μm以下の粒子径のものが好ましく、平均粒子径20μm以下が更に好ましく、平均粒子径10μm以下が最も好ましい。ここでいう平均粒子径(メジアン径)は、レーザ回折・散乱式粒度分布測定装置を用いて体積基準で求められる値である。平均粒子径が50μmを超えると十分なチキソトロピー性を有するペーストが得られにくくなり、塗膜の屈曲性が低下することがある。最大粒子径が100μmを超えると、塗膜の外観、密着性が不十分となる傾向にある。 無機 As the inorganic filler used in the present invention, those having an average particle diameter of 50 μm or less and a maximum particle diameter of 100 μm or less are preferable, the average particle diameter is 20 μm or less, and the average particle diameter is 10 μm or less is most preferable. The average particle diameter (median diameter) here is a value obtained on a volume basis using a laser diffraction / scattering type particle size distribution analyzer. If the average particle size exceeds 50 μm, it becomes difficult to obtain a paste having sufficient thixotropic properties, and the flexibility of the coating film may be reduced. If the maximum particle size exceeds 100 μm, the appearance and adhesion of the coating film tend to be insufficient.
 本発明に用いられる有機フィラーとしては上記したポリカーボネートイミド樹脂溶液中に分散してペーストを形成し、そのペーストにチキソトロピー性を付与できるものであればよく、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、エポキシ樹脂粒子等が挙げられる。 The organic filler used in the present invention may be any as long as it can be dispersed in the above-mentioned polycarbonate imide resin solution to form a paste, and can impart thixotropy to the paste.Polyimide resin particles, benzoguanamine resin particles, epoxy resin particles And the like.
 本発明に用いられるフィラー(C)の使用量は、(A)成分を100質量部とした場合、好ましくは1~25質量部である。さらに好ましくは2~15質量部、特に好ましくは3~12質量部である。無機あるいは有機フィラーの配合量が1質量部未満では印刷性が低下する傾向にあり、25質量部を超えると、塗膜の屈曲性などの機械特性、透明性が低下する傾向にある。 使用 The amount of the filler (C) used in the present invention is preferably 1 to 25 parts by mass when the component (A) is 100 parts by mass. It is more preferably 2 to 15 parts by mass, particularly preferably 3 to 12 parts by mass. If the amount of the inorganic or organic filler is less than 1 part by mass, printability tends to decrease, and if it exceeds 25 parts by mass, mechanical properties such as flexibility of the coating film and transparency tend to decrease.
<硬化促進剤>
 本発明のポリカーボネートイミド樹脂ペーストには、密着性、耐薬品性、耐熱性等の特性をよりいっそう向上するために、硬化促進剤を添加することができる。本発明で用いられる硬化促進剤は、上記のポリカーボネートイミド樹脂(A)、エポキシ樹脂(B)の硬化反応を促進できるものであればよく、特に制限はない。
<Curing accelerator>
In order to further improve properties such as adhesion, chemical resistance, and heat resistance, a curing accelerator can be added to the polycarbonate imide resin paste of the present invention. The curing accelerator used in the present invention is not particularly limited as long as it can promote the curing reaction of the above-mentioned polycarbonate imide resin (A) and epoxy resin (B).
 このような硬化促進剤の具体例としては、例えば、四国化成工業(株)製、2MZ、2E4MZ、C11Z、C17Z、2PZ、1B2MZ、2MZ-CN、2E4MZ-CN、C11Z-CN、2PZ-CN、2PHZ-CN、2MZ-CNS、2E4MZ-CNS、2PZ-CNS、2MZ-AZINE、2E4MZ-AZINE、C11Z -AZINE、2MA-OK、2P4MHZ、2PHZ、2P4BHZ等のイミダゾール誘導体、アセトグアナミン、ベンゾグアナミン等のグアナミン類、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類、これらの有機酸塩および/またはエポキシアダクト、三フッ化ホウ素のアミン錯体、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4,3,0]-5-ノネン)等の三級アミン類、これらの有機酸塩である、U-CAT(登録商標)SA1(DBU-フェノール塩)、U-CAT(登録商標)SA 102(DBU-オクチル酸塩)、U-CAT(登録商標)SA 831(DBU-フェノールノボラック樹脂塩)、U-CAT(登録商標)5002(DBU系テトラフェニルボレート塩)(いずれもサンアプロ(株)製)及び/又はテトラフェニルボロエート、ポリビニルフェノール、ポリビニルフェノール臭素化物、トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボロエート等の四級ホスホニウム塩類、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の四級アンモニウム塩類、前記ポリカルボン酸無水物、ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート、イルガキュア(登録商標)261(チバ・スペシャルティ・ケミカルズ(株)製)、オプトマ-SP-170(ADEKA(株)製)等の光カチオン重合触媒、スチレン-無水マレイン酸樹脂、フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物等が挙げられる。これらを単独で又は2種類以上組み合わせて用いても構わない。好ましくは潜在硬化性を有する硬化促進剤であり、DBU、DBNの有機酸塩及び/又はテトラフェニルボロエートや、光カチオン重合触媒等が挙げられる。 Specific examples of such a curing accelerator include, for example, 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ-CN, manufactured by Shikoku Chemical Industry Co., Ltd. Guanamines such as imidazole derivatives such as 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z -AZINE, 2MA-OK, 2P4MHZ, 2PHZ, 2P4BHZ, acetoguanamine and benzoguanamine , Diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polyamines such as polybasic hydrazide, and their organic acid salts and / or epoxy adducts G, boron trifluoride amine complex, triazine derivatives such as ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-xylyl-S-triazine, trimethylamine, triethanol Amine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa (N-methyl) melamine, 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, DBU ( Tertiary amines such as 1,8-diazabicyclo [5,4,0] -7-undecene) and DBN (1,5-diazabicyclo [4,3,0] -5-nonene), and their organic acid salts U-CAT® SA1 (DBU-phenol salt), U-CAT® SA # 102 (DBU-O U-CAT (registered trademark) SA # 831 (DBU-phenol novolak resin salt), U-CAT (registered trademark) 5002 (DBU-based tetraphenylborate salt) (all manufactured by San Apro Corporation) and / or Or organic phosphines such as tetraphenylboroate, polyvinylphenol, polyvinylphenol bromide, tributylphosphine, triphenylphosphine, tris-2-cyanoethylphosphine, tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide, hexa Quaternary phosphonium salts such as decyltributylphosphonium chloride and tetraphenylphosphonium tetraphenylboroate, and quaternary ammonium salts such as benzyltrimethylammonium chloride and phenyltributylammonium chloride Salts, the aforementioned polycarboxylic anhydrides, diphenyliodonium tetrafluoroboronate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate, Irgacure® 261 (Ciba Specialty) A cationic photopolymerization catalyst such as Chemicals Co., Ltd., Optoma-SP-170 (ADEKA Co., Ltd.), styrene-maleic anhydride resin, equimolar reaction product of phenyl isocyanate and dimethylamine, tolylene diisocyanate, An equimolar reaction product of an organic polyisocyanate such as isophorone diisocyanate and dimethylamine is exemplified. These may be used alone or in combination of two or more. Preferred is a curing accelerator having latent curing properties, and examples thereof include organic salts of DBU and DBN and / or tetraphenylboroate, and a cationic photopolymerization catalyst.
 硬化促進剤の使用量は、(A)成分を100質量部とした場合、0~20質量部が好ましい。20質量部を超えると、ポリカーボネートイミド樹脂組成物の保存安定性や塗膜の耐熱性が低下することがある。 使用 The amount of the curing accelerator used is preferably 0 to 20 parts by mass when the component (A) is 100 parts by mass. If the amount exceeds 20 parts by mass, the storage stability of the polycarbonate imide resin composition and the heat resistance of the coating film may decrease.
<ポリカーボネートイミド樹脂ペースト>
 本発明のポリカーボネートイミド樹脂ペーストは、前述したポリカーボネートイミド樹脂(A)成分、エポキシ樹脂(B)成分、およびフィラー(C)成分を含有する組成物である。さらに必要に応じて、硬化促進剤やその他の配合成分を好ましくは前記の割合で配合することができる。これら各成分をロールミル、ミキサー、3本ロール等で均一に混合することにより得られるものが好ましい。混合方法は、十分な分散が得られる方法であれば特に制限はない。3本ロールによる複数回の混練が好ましい。
<Polycarbonate imide resin paste>
The polycarbonate imide resin paste of the present invention is a composition containing the above-described polycarbonate imide resin (A) component, epoxy resin (B) component, and filler (C) component. Further, if necessary, a curing accelerator and other compounding components can be preferably added in the above ratio. What is obtained by uniformly mixing these components with a roll mill, a mixer, a three-roll mill or the like is preferable. The mixing method is not particularly limited as long as a sufficient dispersion can be obtained. Plural kneading with three rolls is preferred.
 本発明のポリカーボネートイミド樹脂ペーストは、ブルックフィールド粘度計(以下、B型粘度計ともいう。)での粘度が25℃で50dPa・s~1000dPa・sの範囲が好ましく、100dPa・s~800dPa・sの範囲がさらに好ましい。粘度が50dPa・s未満であると、印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。粘度が1000dPa・sを超えると印刷の際、ペーストの基材への転写性が低下しカスレが発生するとともに印刷膜中のボイド及びピンホールが増加する傾向がある。 The polycarbonate imide resin paste of the present invention preferably has a Brookfield viscometer (hereinafter also referred to as a B-type viscometer) having a viscosity at 25 ° C. of 50 dPa · s to 1000 dPa · s, and 100 dPa · s to 800 dPa · s. Is more preferable. If the viscosity is less than 50 dPa · s, the flow of the paste after printing tends to be large and the film thickness tends to be thin. If the viscosity exceeds 1000 dPa · s, during printing, the transferability of the paste to the substrate tends to decrease, causing blurring and increasing the number of voids and pinholes in the printed film.
 揺変度(チキソトロピー性)も重要である。ポリカーボネートイミド樹脂ペーストの揺変度は、後述する測定方法において1.1以上が好ましく、1.2以上が更に好ましい。上限は7.0以下が好ましく、6.0以下が更に好ましい。揺変度が1.1未満では印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。7.0を超えるとペーストがフローしなくなる傾向にある。揺変度は、揺変度付与剤としての(c)成分の配合量で調整することができる。 The degree of thixotropic (thixotropic) is also important. The thixotropic degree of the polycarbonate imide resin paste is preferably 1.1 or more, more preferably 1.2 or more, in a measuring method described later. The upper limit is preferably equal to or less than 7.0, and more preferably equal to or less than 6.0. If the degree of fluctuation is less than 1.1, the flow of the paste after printing tends to be large and the film thickness tends to be thin. If it exceeds 7.0, the paste tends not to flow. The thixotropic degree can be adjusted by the amount of the component (c) as the thixotropic agent.
 本発明のポリカーボネートイミド樹脂及びペーストには、必要に応じてフタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の重合禁止剤、オルベン、ベントン、モンモリロナイト等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系、有機アルミニウム化合物、有機チタン化合物、有機シラン化合物などのカップリング剤/密着性付与剤、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシレニルフォスフェート、トリエチルフォスフェート、クレジルジフェニルフォスフェート、キシレニルジフェニルフォスフェート、クレジルビス(2,6-キシレニル)フォスフェート、2-エチルヘキシルフォスフェート、ジメチルメチルフォスフェート、レゾルシノールビス(ジフェノールAビス(ジクレジル)フォスフェート、ジエチル-N,N-ビス(2-ヒドロキシエチル)アミノメチルフォスフェート、リン酸アミド、有機ホスフィンオキサイド、赤燐等のリン系難燃剤、ポリリン酸アンモニウム、トリアジン、メラミンシアヌレート、サクシノグアナミン、エチレンジメラミン、トリグアナミン、シアヌル酸トリアジニル塩、メレム、メラム、トリス(β-シアノエチル)イソシアヌレート、アセトグアナミン、硫酸グアニルメラミン、硫酸メレム、硫酸メラム等の窒素系難燃剤、ジフェニルスルホン-3-スルホン酸カリウム、芳香族スルフォンイミド金属塩、ポリスチレンスルフォン酸アルカリ金属塩等の金属塩系難燃剤、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニウム、酸化スズ等の水和金属系難燃剤、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化アンチモン、酸化ニッケル、酸化銅、酸化タングステン、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、スズ酸亜鉛等無機系難燃剤、シリコーンパウダー等の等の難燃剤/難燃助剤、熱安定剤、酸化防止剤、滑剤のような公知慣用の添加剤類を用いることができる。 The polycarbonate imide resin and the paste of the present invention may contain, if necessary, known and commonly used coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black, and hydroquinone. , Hydroquinone monomethyl ether, tert-butyl catechol, pyrogallol, phenothiazine, etc., known and commonly used thickeners such as orben, benton, montmorillonite, etc., silicone-based, fluorine-based, polymer-based antifoaming agents , Leveling agents, coupling agents / adhesion-imparting agents such as imidazole-based, thiazole-based, triazole-based, organoaluminum compounds, organotitanium compounds, and organosilane compounds, triphenyl phosphate, and triphenyl phosphate Cresyl phosphate, trixylenyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, cresyl bis (2,6-xylenyl) phosphate, 2-ethylhexyl phosphate, dimethyl methyl phosphate, Resorcinol bis (diphenol A bis (dicresyl) phosphate, diethyl-N, N-bis (2-hydroxyethyl) aminomethylphosphate, phosphoric amide, organic phosphine oxide, phosphorus-based flame retardant such as red phosphorus, polyphosphoric acid Ammonium, triazine, melamine cyanurate, succinoguanamine, ethylenedimelamine, triguanamine, triazinyl cyanurate, melem, melam, tris (β-cyanoethyl) isocyanurate Nitrogen flame retardants such as acetoguanamine, guanylmelamine sulfate, melem sulfate, and melam sulfate; metal salt flame retardants such as potassium diphenylsulfon-3-sulfonate; metal salts of aromatic sulfonimides; alkali metal salts of polystyrene sulfonate; water Aluminum oxide, magnesium hydroxide, dolomite, hydrotalcite, barium hydroxide, basic magnesium carbonate, zirconium hydroxide, hydrated metal flame retardants such as tin oxide, silica, aluminum oxide, iron oxide, titanium oxide, manganese oxide , Magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, tin oxide, antimony oxide, nickel oxide, copper oxide, tungsten oxide, zinc borate, zinc metaborate, barium metaborate, carbonic acid Zinc, carbonated Inorganic flame retardants such as gnesium, calcium carbonate, barium carbonate, and zinc stannate; flame retardants such as silicone powder; flame retardant aids; heat stabilizers; antioxidants; Can be used.
<硬化塗膜>
 本発明のポリカーボネートイミド樹脂ペーストは、例えば、ソルダーレジストとしては次のようにして硬化し、硬化物を得ることができる。即ち、ポリイミドフィルム等の樹脂基材に銅をめっきすることによって形成されたCOF (Chip On Film)基板に、スクリーン印刷法、スプレー法、ロールコート法、静電塗装法、カーテンコート法等の方法により5~80μmの膜厚で本発明のポリカーボネートイミド樹脂ペーストを塗布し、塗膜を60~120℃で予備乾燥させた後、120~200℃で本乾燥させる。乾燥は空気中でも不活性雰囲気中でもよい。ここで、樹脂基材に銅をめっきする方法としては、無電解めっきでも良いし、樹脂基材に銅をスパッタリングする方法でも良い。
<Curing coating>
The polycarbonate imide resin paste of the present invention can be cured as follows, for example, as a solder resist, to obtain a cured product. That is, on a COF (Chip On Film) substrate formed by plating copper on a resin substrate such as a polyimide film, a screen printing method, a spray method, a roll coating method, an electrostatic coating method, a curtain coating method, or the like. Then, the polycarbonate imide resin paste of the present invention is applied to a thickness of 5 to 80 μm, and the coating film is preliminarily dried at 60 to 120 ° C., and then dried at 120 to 200 ° C. Drying may be in air or in an inert atmosphere. Here, as a method of plating copper on the resin substrate, electroless plating may be used, or a method of sputtering copper on the resin substrate may be used.
 このようにして得られたCOF基板のポリカーボネートイミド樹脂ペーストの硬化物の層は、COF基板のソルダーレジスト層、表面保護層または接着層となる。このように本発明のポリカーボネートイミド樹脂ペーストは、被膜形成材料として、半導体素子や各種電子部品用オーバーコートインキ、ソルダーレジストインキに有用である他、塗料、コーティング剤、接着剤等としても使用できる。ここで、ソルダーレジスト層とは、回路導体のはんだ付けする部分を除いた全面に皮膜形成されるもので、プリント配線板に電子部品を配線する際、はんだが不必要な部分に付着するのを防ぐとともに、回路が直接空気に暴露されるのを防止する保護皮膜として使用されるものである。表面保護層とは、回路部材の表面に貼り付けて加工工程や使用環境から電子部材を機械的、化学的に保護するために使用されるものである。接着層とは、主に金属層とフィルム層を接着し、貼り合わせ加工を行う場合に使用されるものである。 (4) The layer of the cured product of the polycarbonate imide resin paste of the COF substrate obtained as described above becomes a solder resist layer, a surface protection layer, or an adhesive layer of the COF substrate. As described above, the polycarbonate imide resin paste of the present invention is useful as an overcoat ink for semiconductor elements and various electronic components and a solder resist ink as a film forming material, and can also be used as a paint, a coating agent, an adhesive and the like. Here, the solder resist layer is a film that is formed on the entire surface of the circuit conductor except for the part to be soldered.When wiring electronic components on a printed wiring board, it is necessary to prevent solder from adhering to unnecessary parts. It is used as a protective film to prevent and prevent the circuit from being directly exposed to air. The surface protective layer is used to be attached to the surface of the circuit member to mechanically and chemically protect the electronic member from a processing step and a use environment. The adhesive layer is mainly used for bonding a metal layer and a film layer and performing a bonding process.
 本発明をさらに具体的に説明するために、以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定されたものである。 実 施 Examples will be given below to describe the present invention more specifically, but the present invention is not limited to the examples. The measured values described in the examples are measured by the following method.
<対数粘度>
 ポリカーボネートイミド樹脂(A)を、ポリマー濃度が0.5g/dlとなるようにN-メチル-2-ピロリドンに溶解した。その溶液の溶液粘度及び溶媒粘度を30℃で、ウベローデ型粘度管により測定して、下記の式で計算した。
 対数粘度(dl/g)=[ln(V1/V2)]/V3
 上記式中、V1はウベローデ型粘度管により測定した溶媒粘度を示すが、V1及びV2はポリマー溶液及び溶媒(N-メチル-2-ピロリドン)が粘度管のキャピラリーを通過する時間から求めた。また、V3はポリマー濃度(g/dl)である。
<Logarithmic viscosity>
The polycarbonate imide resin (A) was dissolved in N-methyl-2-pyrrolidone so that the polymer concentration became 0.5 g / dl. The solution viscosity and the solvent viscosity of the solution were measured at 30 ° C. using an Ubbelohde type viscosity tube and calculated by the following formula.
Logarithmic viscosity (dl / g) = [ln (V1 / V2)] / V3
In the above formula, V1 represents the solvent viscosity measured by an Ubbelohde type viscosity tube, and V1 and V2 were determined from the time when the polymer solution and the solvent (N-methyl-2-pyrrolidone) passed through the capillary of the viscosity tube. V3 is the polymer concentration (g / dl).
<非窒素系溶媒溶解性>
 ポリカーボネートイミド樹脂(A)重合時、反応容器内に(a)成分、(b)成分、(c)成分およびγ-ブチロラクトンを加えて昇温し、内温が100℃に達した時点で原料((a)成分、(b)成分、(c)成分)が溶解したかどうかで評価した。
(評価) ○:完全に溶解
     △:わずかに溶け残りあり
     ×:ほとんど不溶
<Non-nitrogen solvent solubility>
During the polymerization of the polycarbonate imide resin (A), the components (a), (b), (c) and γ-butyrolactone are added to the reaction vessel and the temperature is increased. When the internal temperature reaches 100 ° C., the raw material ( Evaluation was made based on whether or not the components (a), (b), and (c) were dissolved.
(Evaluation) ○: Completely dissolved △: Slightly undissolved ×: Almost insoluble
<ポリカーボネートイミド樹脂ペーストの作製>
 ポリカーボネートイミド樹脂(A)にフィラー(C)を加え、γ-ブチロラクトンで希釈してポリカーボネートイミド樹脂組成物を得た。この溶液に、消泡剤、レベリング剤を加えた。この溶液を粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散したペーストを得た。このペーストにエポキシ樹脂(B)を混合し、ポリカーボネートイミド樹脂ペーストを得た。
<Preparation of polycarbonate imide resin paste>
Filler (C) was added to polycarbonate imide resin (A), and the mixture was diluted with γ-butyrolactone to obtain a polycarbonate imide resin composition. An antifoaming agent and a leveling agent were added to this solution. This solution was roughly kneaded and then kneaded three times using a high-speed three-roll mill to obtain a paste in which the filler was uniformly dispersed. The epoxy resin (B) was mixed with this paste to obtain a polycarbonate imide resin paste.
<積層フィルムの作製>
 積層フィルムには、市販のポリイミド製ベースフィルムとして、商品名バイロフレックス(登録商標)(東洋紡製)を使用した。
 東洋紡製2層CCL(商品名バイロフレックス(登録商標)、銅箔18μm、基材20μm)上にポリカーボネートイミド樹脂ペーストをSUSメッシュ版(株式会社NBCメッシュテック製150メッシュ、乳剤厚21μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中、80℃で6分間乾燥した(スクリーン印刷)。その後、150℃にて2時間加熱硬化することで、ポリカーボネートイミド樹脂ペーストからなるカバーレイ(被膜)を施した積層フィルムを得た。被膜の厚みは10μmであった。このサンプルは、印刷特性、低反り性、半田耐熱性、密着性、鉛筆硬度の評価に用いた。
 さらに、東洋紡製2層CCL(商品名バイロフレックス(登録商標)、銅箔18μm、基材20μm)からサブトラクティブ法で得られた銅回路(L/S=50/50)上にポリカーボネートイミド樹脂ペーストをSUSメッシュ版(株式会社NBCメッシュテック製150メッシュ、乳剤厚21μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中、80℃で6分間乾燥した(スクリーン印刷)。その後、150℃にて2時間加熱硬化することで、銅回路上にポリカーボネートイミド樹脂ペーストからなるカバーレイ(被膜)を施した積層フィルムを得た。被膜の厚みは10μmであった。このサンプルは、耐屈曲性の評価に用いた。
<Preparation of laminated film>
As the laminated film, Viroflex (registered trademark) (manufactured by Toyobo) was used as a commercially available polyimide base film.
A polycarbonate imide resin paste is printed on a two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 μm, base material 20 μm) manufactured by Toyobo using a SUS mesh plate (150 mesh manufactured by NBC Meshtech, emulsion thickness 21 μm). A predetermined pattern was printed at a speed of 5 cm / sec, and dried at 80 ° C. for 6 minutes in an air atmosphere (screen printing). Thereafter, by heating and curing at 150 ° C. for 2 hours, a laminated film provided with a coverlay (coating) made of a polycarbonate imide resin paste was obtained. The thickness of the coating was 10 μm. This sample was used for evaluation of printing characteristics, low warpage, solder heat resistance, adhesion, and pencil hardness.
Furthermore, a polycarbonate imide resin paste was applied onto a copper circuit (L / S = 50/50) obtained by a subtractive method from Toyobo's two-layer CCL (trade name Viroflex (registered trademark), copper foil 18 μm, substrate 20 μm). Was printed with a SUS mesh plate (150 mesh manufactured by NBC Meshtech Co., Ltd., emulsion thickness 21 μm) at a printing speed of 5 cm / sec, and dried at 80 ° C. for 6 minutes in an air atmosphere (screen printing). Thereafter, by heating and curing at 150 ° C. for 2 hours, a laminated film having a coverlay (coating) made of a polycarbonate imide resin paste on a copper circuit was obtained. The thickness of the coating was 10 μm. This sample was used for evaluating flex resistance.
<低温乾燥/硬化性>
 ポリカーボネートイミド系樹脂ペーストを厚さ100μmのポリプロピレンフィルムに、乾燥後の厚みが20μmになるようにアプリケーターで塗布した。次いで、120℃の温度で90分乾燥後、ポリプロピレンフィルムから剥離した。剥離したフィルム0.125gをN-メチル-2-ピロリドン25ml中、100℃で2時間溶解した後、ガラスフィルターで溶剤を濾別した。残ったゲル分を150℃で10時間以上真空乾燥し、下記式にてゲル分率を算出し、評価した。
 ゲル分率(%)=溶剤溶解後の質量/初期の質量×100
(評価)  ○:ゲル分率≧85%
      ×:ゲル分率85%未満
<Low temperature drying / curability>
The polycarbonate imide-based resin paste was applied to a 100 μm-thick polypropylene film with an applicator so that the thickness after drying became 20 μm. Then, after drying at a temperature of 120 ° C. for 90 minutes, it was peeled off from the polypropylene film. 0.125 g of the peeled film was dissolved in 25 ml of N-methyl-2-pyrrolidone at 100 ° C. for 2 hours, and the solvent was filtered off with a glass filter. The remaining gel component was vacuum dried at 150 ° C. for 10 hours or more, and the gel fraction was calculated and evaluated by the following formula.
Gel fraction (%) = mass after dissolution of solvent / initial mass × 100
(Evaluation) :: Gel fraction ≧ 85%
×: less than 85% gel fraction
<揺変度(チキソ比)>
 ブルックフィールドBH型回転粘度計を用いて、次の手順で測定した。広口型遮光瓶(100ml)にポリカーボネートイミド樹脂ペーストを90ml入れ、恒温水槽を用いて液温を25℃±0.5℃に調整した。次いで、ガラス棒を用いて12~15秒かけて40回撹拌した後、所定のローターを設置して、5分静置した後、10rpmで3分回転させた時の目盛りを読み取り、粘度を算出した。同じく、25℃、1rpmで測定した粘度の値から次式で計算した。
 揺変度=粘度(1rpm)/粘度(10rpm)
<Thickness (thixotropic ratio)>
Using a Brookfield BH rotational viscometer, the measurement was performed according to the following procedure. 90 ml of the polycarbonate imide resin paste was placed in a wide-mouthed light-shielding bottle (100 ml), and the liquid temperature was adjusted to 25 ° C. ± 0.5 ° C. using a thermostatic water bath. Next, after stirring 40 times for 12 to 15 seconds using a glass rod, a predetermined rotor is set, the mixture is allowed to stand for 5 minutes, and then read at a scale when rotated at 10 rpm for 3 minutes to calculate the viscosity. did. Similarly, it was calculated from the value of the viscosity measured at 25 ° C. and 1 rpm by the following equation.
Thixotropic degree = viscosity (1 rpm) / viscosity (10 rpm)
<印刷特性>
 ポリカーボネートイミド樹脂ペーストを、前記<積層フィルムの作製>の欄に記載の方法でスクリーン印刷した際の印刷性を評価した。
(評価) ○:版離れ性が良好であり、印刷表面が平坦である
     △:版離れ性が悪い、もしくは、印刷表面に凹凸が見られる
     ×:版離れ性が悪く、印刷表面に凹凸が見られる
<Printing characteristics>
The printability when the polycarbonate imide resin paste was screen-printed by the method described in the section <Preparation of Laminated Film> was evaluated.
(Evaluation) :: Good plate releasability and flat printing surface △: Poor plate releasability or unevenness on printing surface ×: Poor plate releasability and unevenness on printing surface Be
<低反り性(反り量の評価)>
 得られた積層フィルムを10cm×10cmに切り出した。25℃、65%RHで24時間調湿したサンプルを下に凸な状態で水平なガラス板に載せ、四隅の高さの平均を評価した。
(判定) ○:高さ2mm未満
     △:高さ2mm以上10mm未満
     ×:高さ10mm以上
<Low warpage (evaluation of warpage)>
The obtained laminated film was cut out to 10 cm × 10 cm. A sample conditioned at 25 ° C. and 65% RH for 24 hours was placed on a horizontal glass plate in a downwardly convex state, and the average of the heights of the four corners was evaluated.
(Judgment) ○: height less than 2 mm △: height 2 mm or more and less than 10 mm ×: height 10 mm or more
<耐屈曲性(MIT試験)>
 得られた積層フィルムに、JIS-C-6471(1995)に準じて評価を行った。荷重300g、心棒の直径は0.38mmとしクラック発生の有無を確認し、クラックが発生した時の折り曲げ回数を記録した。
(判定) ◎:250回以上の折り曲げでクラック発生なし
     ○:200回以上の折り曲げでクラック発生なし
     ×:200回未満でクラック発生
<Flex resistance (MIT test)>
The obtained laminated film was evaluated according to JIS-C-6471 (1995). The load was 300 g, the diameter of the mandrel was 0.38 mm, the presence or absence of cracks was confirmed, and the number of bendings when cracks occurred was recorded.
(Judgment) :: No crack occurred after bending 250 times or more ○: No crack occurred after bending 200 times or more ×: Crack occurred less than 200 times
<半田耐熱性>
 得られた積層フィルムを、JIS-C-6481(1996)に準じて260℃の半田浴に30秒間浸漬し、剥がれや膨れ等の外観異常の有無を観察した。
(判定) ○:外観異常なし
     △:わずかに外観異常あり
     ×:全面外観異常あり
<Solder heat resistance>
The obtained laminated film was immersed in a solder bath at 260 ° C. for 30 seconds in accordance with JIS-C-6481 (1996), and observed for appearance abnormality such as peeling or swelling.
(Judgment) ○: No appearance abnormality △: Slight appearance abnormality ×: Overall appearance abnormality
<密着性>
 得られた積層フィルムに、JIS-K-5600-5-6(1999)に準じて、1mmの碁盤目を100ヶ所作り、セロテープ(登録商標)による剥離試験を行い、碁盤目の剥離状態を評価した。
(判定) ○:100/100で剥離なし(剥離0個)
     △:70~99/100剥離なし(剥離1~30個)
     ×:0~69/100剥離なし(剥離31~100個)
<Adhesion>
According to JIS-K-5600-5-6 (1999), 100 laminated grids of 1 mm were formed on the obtained laminated film, and a peeling test was performed with Cellotape (registered trademark) to evaluate the peeled state of the grid. did.
(Judgment) ○: No peeling at 100/100 (no peeling)
Δ: 70 to 99/100 no peeling (1 to 30 peeling)
×: No peeling from 0 to 69/100 (31 to 100 peels)
<鉛筆硬度>
 得られた積層フィルムについて、JIS-K-5600-5-4(1999)に準じて評価を行った。鉛筆硬度は2H以上が好ましく、3H以上がさらに好ましい。
<Pencil hardness>
The obtained laminated film was evaluated according to JIS-K-5600-5-4 (1999). The pencil hardness is preferably 2H or more, more preferably 3H or more.
<引張試験>
 引張弾性率、破断伸びは引張試験機(商品名「引張圧縮試験機 TG-2kN」、ミネベア(株)製)を用いて、JIS-K-7161(2014)に準じて評価を行った。ポリカーボネートイミド樹脂ペーストを150℃×30分硬化させて得られたフィルム状試料を以下の条件で測定した。
サンプルサイズ:幅10mm×長さ40mm
引張速度:20mm/min
<Tensile test>
The tensile modulus and elongation at break were evaluated according to JIS-K-7161 (2014) using a tensile tester (trade name “Tensile Compression Tester TG-2kN”, manufactured by Minebea Co., Ltd.). A film sample obtained by curing the polycarbonate imide resin paste at 150 ° C. for 30 minutes was measured under the following conditions.
Sample size: width 10mm x length 40mm
Tensile speed: 20 mm / min
<耐高温高湿性>
 ポリカーボネートイミド樹脂ペーストを厚さ25μmのカプトン(登録商標)ENフィルム(東レ・デュポン社製ポリイミドフィルム)に、乾燥後の厚みが10μmになるようにアプリケーターで塗布した。次いで、150℃の温度で2時間乾燥後し、サンプルを作製した。
 得られたサンプルについて、飽和加圧水蒸気試験(PCT: Pressure Cooker Test)121℃、2atm、100%RH条件に投入し、265hr経過後、サンプルを取り出し表面状態を評価した。
(判定) ○:外観異常なし
     △:わずかに外観異常あり
     ×:塗膜に膨潤脱落がある、または溶解している
<High temperature and high humidity resistance>
The polycarbonate imide resin paste was applied to a 25 μm-thick Kapton (registered trademark) EN film (a polyimide film manufactured by Du Pont-Toray Co., Ltd.) using an applicator so that the thickness after drying became 10 μm. Then, after drying at a temperature of 150 ° C. for 2 hours, a sample was prepared.
The obtained sample was put into a saturated pressure steam test (PCT: Pressure Cooker Test) at 121 ° C., 2 atm and 100% RH. After 265 hours, the sample was taken out and the surface condition was evaluated.
(Judgment) :: No abnormality in appearance △: Slight abnormality in appearance ×: Swelling and falling off or dissolved in coating film
(製造例1)(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物の合成(b-1)
 反応容器にトリメリット酸無水物(TMA)167g(0.87モル)と塩化チオニルとを仕込み、反応させてトリメリット酸無水物の塩化物を合成した。次いでトリメリット酸無水物の塩化物183g(0.87モル)とジオール化合物としてデュラノールT5651(旭化成ケミカルズ(製)、分子量1000)434g(0.43モル)とをトルエン中で、30℃でエステル化させることでポリカーボネート骨格含有テトラカルボン酸二無水物を合成した。
(Production Example 1) (b) Synthesis of acid dianhydride having a polycarbonate skeleton represented by general formula (5) (b-1)
In a reaction vessel, 167 g (0.87 mol) of trimellitic anhydride (TMA) and thionyl chloride were charged and reacted to synthesize chloride of trimellitic anhydride. Next, 183 g (0.87 mol) of chloride of trimellitic anhydride and 434 g (0.43 mol) of Duranol T5651 (Asahi Kasei Chemicals, Inc., molecular weight 1000) as a diol compound were esterified in toluene at 30 ° C. Thus, a tetracarboxylic dianhydride containing a polycarbonate skeleton was synthesized.
(製造例2)
 製造例1で合成した、(b-1)成分30.0g(0.02モル)、トリメリット酸無水物(TMA)9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)20.7g(0.03モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン308.2gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン96.3g加えて希釈し、室温まで冷却することにより、不揮発分16質量%の褐色で粘調なポリカーボネートイミド樹脂溶液A-1を得た。
(Production Example 2)
30.0 g (0.02 mol) of the component (b-1), 9.61 g (0.05 mol) of trimellitic anhydride (TMA), an acid dianhydride containing a fluorene structure (formula (1)) synthesized in Production Example 1. (8) Compound) 20.7 g (0.03 mol), o-tolidine diisocyanate (TODI) 25.1 g (0.095 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0]-as polymerization catalyst 0.07 g of 7-undecene (DBU) was added and dissolved in 308.2 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 96.3 g of γ-butyrolactone, and cooled to room temperature to give a brownish brown matter having a nonvolatile content of 16% by mass. A good polycarbonate imide resin solution A-1 was obtained.
(製造例3)
 製造例1で合成した、(b-1)成分30.0g(0.02モル)、トリメリット酸無水物(TMA)9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)20.7g(0.03モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)23.5g(0.09モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン227.9gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン12.7g加えて希釈し、室温まで冷却することにより、不揮発分24質量%の褐色で粘調なポリカーボネートイミド樹脂溶液A-2を得た。
(Production Example 3)
30.0 g (0.02 mol) of the component (b-1), 9.61 g (0.05 mol) of trimellitic anhydride (TMA), an acid dianhydride containing a fluorene structure (formula (1)) synthesized in Production Example 1. (8) Compound) 20.7 g (0.03 mol), o-tolidine diisocyanate (TODI) 23.5 g (0.09 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0]-as polymerization catalyst 0.07 g of 7-undecene (DBU) was added and dissolved in 227.9 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 12.7 g of γ-butyrolactone, and cooled to room temperature to obtain a brownish brown matter having a nonvolatile content of 24% by mass. A good polycarbonate imide resin solution A-2 was obtained.
(製造例4)
 製造例1で合成した、(b-1)成分30.0g(0.02モル)、トリメリット酸無水物(TMA)9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)20.7g(0.03モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)20.1g(0.08モル)、2,4-トリレンジイソシアネート(TDI)3.31g(0.02モル),重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン301.4gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン41.9g加えて希釈し、室温まで冷却することにより、不揮発分18質量%の褐色で粘調なポリカーボネートイミド樹脂溶液A-3を得た。
(Production Example 4)
30.0 g (0.02 mol) of the component (b-1), 9.61 g (0.05 mol) of trimellitic anhydride (TMA), an acid dianhydride containing a fluorene structure (formula (1)) synthesized in Production Example 1. (8) Compound) 20.7 g (0.03 mol), 20.1 g (0.08 mol) of o-tolidine diisocyanate (TODI) as a diisocyanate, 3.31 g (0.3%) of 2,4-tolylene diisocyanate (TDI). 02 mol) and 0.07 g of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) as a polymerization catalyst were dissolved in 301.4 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 41.9 g of γ-butyrolactone, and cooled to room temperature to obtain a brownish solid with a nonvolatile content of 18% by mass. A good polycarbonate imide resin solution A-3 was obtained.
(製造例5)
 製造例1で合成した、(b-1)成分45.0g(0.03モル)、トリメリット酸無水物9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)13.8g(0.02モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.9g(0.098モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン390.3gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン28.0g加えて希釈し、室温まで冷却することにより、不揮発分17質量%の褐色で粘調なポリカーボネートイミド樹脂溶液A-4を得た。
(Production Example 5)
45.0 g (0.03 mol) of the component (b-1), 9.61 g (0.05 mol) of trimellitic anhydride, an acid dianhydride containing a fluorene structure (formula (8)) synthesized in Production Example 1. Compound) 13.8 g (0.02 mol), o-tolidine diisocyanate (TODI) 25.9 g (0.098 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene as polymerization catalyst 0.07 g of (DBU) was added and dissolved in 390.3 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 28.0 g of γ-butyrolactone, and cooled to room temperature to obtain a brownish brown matter having a nonvolatile content of 17% by mass. A good polycarbonate imide resin solution A-4 was obtained.
(製造例6)
 製造例1で合成した、(b-1)成分15.0g(0.01モル)、トリメリット酸無水物9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)27.6g(0.04モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン275.8gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン38.3g加えて希釈し、室温まで冷却することにより、不揮発分18質量%の褐色で粘調なポリカーボネートイミド樹脂溶液A-5を得た。
(Production Example 6)
15.0 g (0.01 mol) of the component (b-1), 9.61 g (0.05 mol) of trimellitic anhydride, an acid dianhydride containing a fluorene structure (formula (8)) synthesized in Production Example 1 Compound) 27.6 g (0.04 mol), o-tolidine diisocyanate (TODI) 25.1 g (0.095 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene as polymerization catalyst 0.07 g of (DBU) was added and dissolved in 275.8 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 38.3 g of γ-butyrolactone, and cooled to room temperature to give a brownish solid with a nonvolatile content of 18% by mass. A good polycarbonate imide resin solution A-5 was obtained.
(実施例1)
 製造例2で得られたポリカーボネートイミド樹脂溶液A-1の不揮発分100質量部に対して、フィラーとしてアエロジル300(日本アエロジル(株)製)を4.5質量部、消泡剤としてBYK(登録商標)-054(ビックケミー(株)製)を1.3質量部、レベリング剤としてBYK-354(ビックケミー(株)製)を2.7質量部加えポリカーボネートイミド樹脂組成物を得た。該組成物を、まず粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散しチキソトロピー性を有するペーストを得た。ポリカーボネートイミド樹脂溶液A-1 100質量部に対して、HP-7200(DIC(株)製ジシクロペンタジエン型エポキシ樹脂の商品名、エポキシ等量約278g/eq)のγ-ブチロラクトン溶液(固形分75%)を10質量部加えることにより本発明のポリカーボネートイミド樹脂ペースト(1)を得た。γ-ブチロラクトンで粘度を調整したところ、溶液粘度が200ポイズ、揺変度は1.22であった。東洋紡製2層CCL(商品名バイロフレックス(登録商標)、銅箔18μm、基材20μm)からサブトラクティブ法で得られた銅回路(L/S=50/50)上に、本発明のポリカーボネートイミド樹脂ペースト(1)をSUSメッシュ版(株式会社NBCメッシュテック製150メッシュ、乳剤厚21μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中で80℃で6分間乾燥した。その後、150℃にて2時間加熱硬化することで、ポリカーボネートイミド樹脂ペーストからなるカバーレイ(被膜)を施したCOF基板(評価サンプル1)を得た。被膜の厚みは10μmであった。評価結果を表1に示す。
(Example 1)
With respect to 100 parts by mass of the nonvolatile content of the polycarbonate imide resin solution A-1 obtained in Production Example 2, 4.5 parts by mass of Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.) as a filler and BYK (registered) as an antifoaming agent (Trademark) -054 (manufactured by Big Chemie) and 2.7 parts by mass of BYK-354 (manufactured by Big Chemie) as a leveling agent to obtain a polycarbonate imide resin composition. The composition was first roughly kneaded, and then kneaded three times using a high-speed three-roll mill, whereby a paste having uniform filler dispersion and thixotropic properties was obtained. A solution of HP-7200 (trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation, epoxy equivalent: about 278 g / eq) in γ-butyrolactone solution (solid content: 75 %) Was added to obtain a polycarbonate imide resin paste (1) of the present invention. When the viscosity was adjusted with γ-butyrolactone, the solution viscosity was 200 poise and the thixotropic degree was 1.22. The polycarbonateimide of the present invention was placed on a copper circuit (L / S = 50/50) obtained by a subtractive method from Toyobo 2-layer CCL (trade name Viroflex (registered trademark), copper foil 18 μm, base material 20 μm). A predetermined pattern was printed on the resin paste (1) with a SUS mesh plate (150 mesh, NBC Meshtec Co., Ltd., emulsion thickness 21 μm) at a printing speed of 5 cm / sec, and dried in an air atmosphere at 80 ° C. for 6 minutes. Thereafter, by heating and curing at 150 ° C. for 2 hours, a COF substrate (evaluation sample 1) provided with a coverlay (coating) made of a polycarbonate imide resin paste was obtained. The thickness of the coating was 10 μm. Table 1 shows the evaluation results.
(実施例2~5)
 ポリカーボネートイミド樹脂(A)溶液、および(B)~(C)成分を表1記載のものを用いた他は、実施例1と同様にしてペーストを調製した後、評価サンプル2~5を作製した。評価結果を表1に示す。
(Examples 2 to 5)
Except that the polycarbonate imide resin (A) solution and the components (B) to (C) shown in Table 1 were used, pastes were prepared in the same manner as in Example 1, and evaluation samples 2 to 5 were produced. . Table 1 shows the evaluation results.
(比較例1)
 トリメリット酸無水物9.61g(0.05モル)、フルオレン構造含有酸二無水物(式(8)化合物)34.5g(0.05モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.1モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン156.5gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン26.1g加えて希釈し、室温まで冷却することにより、不揮発分25質量%の褐色で粘調なポリカーボネートイミド樹脂溶液B-1を得た。実施例1と同様にしてペーストを調製した後、評価サンプル6を作製した。評価結果を表1に示す。この場合は可とう性成分である(b-1)成分を共重合量していないために反りが大きくなった。
(Comparative Example 1)
9.61 g (0.05 mol) of trimellitic anhydride, 34.5 g (0.05 mol) of an acid dianhydride having a fluorene structure (compound of formula (8)), and o-tolidine diisocyanate (TODI) as a diisocyanate. 1 g (0.1 mol) and 0.07 g of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) as a polymerization catalyst were added and dissolved in 156.5 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours while stirring under a nitrogen stream, diluted with 26.1 g of γ-butyrolactone, and cooled to room temperature to obtain a brownish brown matter having a nonvolatile content of 25% by mass. A good polycarbonate imide resin solution B-1 was obtained. After preparing a paste in the same manner as in Example 1, Evaluation Sample 6 was produced. Table 1 shows the evaluation results. In this case, the warpage increased because the amount of the flexible component (b-1) was not copolymerized.
(比較例2)
 製造例1で合成した、(b-1)成分30.0g(0.02モル)、トリメリット酸無水物11.5g(0.06モル)、フルオレン構造含有酸二無水物(式(8)化合物)13.8g(0.02モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン288.3gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で重合したが、その過程で不溶化した(ほとんど不溶)ため評価ができなかった。
(Comparative Example 2)
30.0 g (0.02 mol) of the component (b-1), 11.5 g (0.06 mol) of trimellitic anhydride, an acid dianhydride containing a fluorene structure (formula (8)) synthesized in Production Example 1 Compound) 13.8 g (0.02 mol), o-tolidine diisocyanate (TODI) 25.1 g (0.095 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene as polymerization catalyst 0.07 g of (DBU) was added and dissolved in 288.3 g of γ-butyrolactone. Thereafter, the mixture was polymerized at 80 ° C. to 190 ° C. while stirring under a nitrogen stream, but could not be evaluated due to insolubilization (almost insoluble) in the process.
(比較例3)
 製造例1で合成した、(b-1)成分15.0g(0.01モル)、トリメリット酸無水物13.5g(0.07モル)、フルオレン構造含有酸二無水物(式(8)化合物)13.8g(0.02モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン235.9gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で重合したが、その過程で不溶化した(ほとんど不溶)ため評価ができなかった。
(Comparative Example 3)
15.0 g (0.01 mol) of the component (b-1), 13.5 g (0.07 mol) of trimellitic anhydride, an acid dianhydride containing a fluorene structure (formula (8)) synthesized in Production Example 1 Compound) 13.8 g (0.02 mol), o-tolidine diisocyanate (TODI) 25.1 g (0.095 mol) as diisocyanate, 1,8-diazabicyclo [5,4,0] -7-undecene as polymerization catalyst 0.07 g of (DBU) was added and dissolved in 235.9 g of γ-butyrolactone. Thereafter, the mixture was polymerized at 80 ° C. to 190 ° C. while stirring under a nitrogen stream, but could not be evaluated due to insolubilization (almost insoluble) in the process.
(比較例4)
 トリメリット酸無水物13.5g(0.07モル)、フルオレン構造含有酸二無水物(式(8)化合物)20.7g(0.03モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン0.07gを入れ、γ-ブチロラクトン203.6gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で重合したが、その過程で不溶化した(ほとんど不溶)ため評価ができなかった。
(Comparative Example 4)
13.5 g (0.07 mol) of trimellitic anhydride, 20.7 g (0.03 mol) of a fluorene structure-containing dianhydride (compound of formula (8)), and o-tolidine diisocyanate (TODI) as a diisocyanate. 1 g (0.095 mol) and 0.07 g of 1,8-diazabicyclo [5,4,0] -7-undecene as a polymerization catalyst were added and dissolved in 203.6 g of γ-butyrolactone. Thereafter, the mixture was polymerized at 80 ° C. to 190 ° C. while stirring under a nitrogen stream, but could not be evaluated due to insolubilization (almost insoluble) in the process.
(比較例5)
 製造例1で合成した、(b-1)成分75.0g(0.05モル)、トリメリット酸無水物9.61g(0.05モル)、ジイソシアネートとしてo-トリジンジイソシアネート(TODI)25.1g(0.095モル)、重合触媒として1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)0.07gを入れ、γ-ブチロラクトン405.4gに溶解した。その後、窒素気流下、撹拌しながら、80℃~190℃で6時間反応させた後、γ-ブチロラクトン56.3g加えて希釈し、室温まで冷却することにより、不揮発分18質量%の褐色で粘調なポリカーボネートイミド樹脂溶液B-5を得た。実施例1と同様にしてペーストを調製した後、評価サンプル7を作製した。評価結果を表1に示す。この場合は剛直成分であるフルオレン構造含有酸無水物を共重合量していないために塗膜が柔軟で伸びが大きく耐屈曲性効果は見られなかった。さらに、耐熱性が低く、半田耐熱性、高温高湿性が低下した。
(Comparative Example 5)
75.0 g (0.05 mol) of the component (b-1) synthesized in Production Example 1, 9.61 g (0.05 mol) of trimellitic anhydride, and 25.1 g of o-tolidine diisocyanate (TODI) as a diisocyanate. (0.095 mol), 0.07 g of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) was added as a polymerization catalyst, and dissolved in 405.4 g of γ-butyrolactone. Thereafter, the mixture was reacted at 80 ° C. to 190 ° C. for 6 hours with stirring under a nitrogen stream, diluted with 56.3 g of γ-butyrolactone, and cooled to room temperature to obtain a brownish brown matter having a nonvolatile content of 18% by mass. A good polycarbonate imide resin solution B-5 was obtained. After preparing a paste in the same manner as in Example 1, Evaluation Sample 7 was produced. Table 1 shows the evaluation results. In this case, since the fluorene structure-containing acid anhydride, which is a rigid component, was not copolymerized, the coating film was flexible and elongated, and the bending resistance effect was not observed. Furthermore, heat resistance was low, and solder heat resistance and high-temperature high-humidity were reduced.
(参考例1)
 製造例3で得られたポリカーボネートイミド樹脂溶液A-2を用いたこと、およびHP-7200H(DIC(株)製ジシクロペンタジエン型エポキシ樹脂の商品名)を配合しなかったこと以外は実施例1と同様にペーストを調製した(評価サンプル8)。エポキシ樹脂を配合しなかったため、ペーストの硬化が不十分であり、半田耐熱性が低下した。評価結果を表1に示す。
(Reference Example 1)
Example 1 was repeated except that the polycarbonate imide resin solution A-2 obtained in Production Example 3 was used and that HP-7200H (trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation) was not blended. A paste was prepared in the same manner as described above (evaluation sample 8). Since the epoxy resin was not blended, the curing of the paste was insufficient and the solder heat resistance was reduced. Table 1 shows the evaluation results.
(参考例2)
 製造例3で得られたポリカーボネートイミド系樹脂溶液A-2を用いたこと、およびフィラーを配合しなかったこと以外は、実施例1と同様にペーストを調製した(評価サンプル9)。フィラーを配合しなかったため、チキソトロピー性が不十分であり、スクリーン印刷が不可能であった。そのため、評価用の積層フィルムサンプルを作製することができなかった。
(Reference Example 2)
A paste was prepared in the same manner as in Example 1 except that the polycarbonate imide-based resin solution A-2 obtained in Production Example 3 was used and no filler was blended (evaluation sample 9). Since no filler was added, thixotropic properties were insufficient, and screen printing was impossible. Therefore, a laminated film sample for evaluation could not be produced.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 本発明により得られたポリカーボネートイミド樹脂およびこれを用いてなるペーストは、被膜形成材料として優れた非窒素系溶媒溶解性、低反り性、耐屈曲性、さらに耐高温高湿性を併せ持つ。このため、COF基板などの各種電子部品用オーバーコートインキ、ソルダーレジストインキに有用である他、塗料、コーティング剤、接着剤等として電子機器の幅広い分野で使用できるため、産業界に大きく寄与することが期待される。 ポ リ カ ー ボ ネ ー ト The polycarbonate imide resin obtained by the present invention and the paste using the same have excellent non-nitrogen-based solvent solubility, low warpage, bending resistance, and high-temperature and high-humidity resistance as a film-forming material. It is useful for overcoat inks and solder resist inks for various electronic components such as COF substrates, and can be used in a wide range of electronic equipment as paints, coatings, adhesives, etc. There is expected.

Claims (14)

  1.  一般式(1)で示される構成成分および一般式(2)で示される構成成分を含有し、全構成成分を200モル%としたとき、一般式(1)で示される構成成分と一般式(2)で示される構成成分の合計が45モル%以上であることを特徴とするポリカーボネートイミド樹脂(A)。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、qはそれぞれ独立に1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (一般式(2)において、複数個のRはそれぞれ独立に、炭素数1以上の2価の有機基を示し、nは1以上の整数である。)
    When the composition contains the components represented by the general formula (1) and the components represented by the general formula (2), and all the components are 200 mol%, the components represented by the general formula (1) and the general formula ( The polycarbonate imide resin (A), wherein the total of the components represented by 2) is 45 mol% or more.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), a plurality of R 1 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and q independently represents an integer of 1 to 4.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), a plurality of R 2 each independently represent a divalent organic group having 1 or more carbon atoms, and n is an integer of 1 or more.)
  2.  さらに、一般式(3)で示される構成成分を含有する請求項1に記載のポリカーボネートイミド樹脂(A)。
    Figure JPOXMLDOC01-appb-C000003
     (一般式(3)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、rはそれぞれ独立に1~4の整数を示し、pは0または1である。)
    The polycarbonate imide resin (A) according to claim 1, further comprising a component represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), a plurality of R 3 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, r each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
  3.  一般式(1)で示される構成成分が5~45モル%であり、一般式(2)で示される構成成分が5~45モル%である請求項1または2に記載のポリカーボネートイミド樹脂(A)。 3. The polycarbonate imide resin (A) according to claim 1, wherein the component represented by the general formula (1) is 5 to 45 mol%, and the component represented by the general formula (2) is 5 to 45 mol%. ).
  4.  一般式(3)で示される構成成分が50モル%以上である請求項2または3に記載のポリカーボネートイミド樹脂(A)。 (4) The polycarbonate imide resin (A) according to claim 2 or 3, wherein the component represented by the general formula (3) is 50 mol% or more.
  5.  請求項1~4のいずれかに記載のポリカーボネートイミド樹脂(A)、エポキシ樹脂(B)、およびフィラー(C)を含有するポリカーボネートイミド樹脂ペースト。 A polycarbonate imide resin paste containing the polycarbonate imide resin (A), the epoxy resin (B), and the filler (C) according to any one of claims 1 to 4.
  6.  (a)一般式(4)で示されるフルオレン構造含有酸二無水物、(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物および(c)イソシアネート成分を必須の共重合成分とし、全酸成分を100モル%としたとき、(a)一般式(4)で示されるフルオレン構造含有酸二無水物と(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物の合計が45モル%以上であることを特徴とするポリカーボネートイミド樹脂(A)。
    Figure JPOXMLDOC01-appb-C000004
     (一般式(4)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、sはそれぞれ独立に1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005
     (一般式(5)において、複数個のRはそれぞれ独立に炭素数1以上の2価の有機基を示し、mは1以上の整数である。)
    (A) an acid dianhydride having a fluorene structure represented by the general formula (4); (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5); Assuming that the total acid component is 100 mol%, (a) an acid dianhydride having a fluorene structure represented by the general formula (4) and (b) an acid dianhydride having a polycarbonate skeleton represented by the general formula (5) The polycarbonate imide resin (A), wherein the total amount of the components is 45 mol% or more.
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (4), a plurality of R 4 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms, and s independently represents an integer of 1 to 4.)
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (5), a plurality of R 5 each independently represent a divalent organic group having 1 or more carbon atoms, and m is an integer of 1 or more.)
  7.  (c)イソシアネート成分が、一般式(6)で示されるジイソシアネートである請求項6に記載のポリカーボネートイミド樹脂(A)。
    Figure JPOXMLDOC01-appb-C000006
     (一般式(6)において、複数個のRはそれぞれ独立に、水素または炭素数1~3のアルキル基を示し、tはそれぞれ独立に1~4の整数を示し、pは0または1である。)
    The polycarbonate imide resin (A) according to claim 6, wherein (c) the isocyanate component is a diisocyanate represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (In the general formula (6), a plurality of R 6 each independently represent hydrogen or an alkyl group having 1 to 3 carbons, t each independently represents an integer of 1 to 4, and p is 0 or 1. is there.)
  8.  (a)一般式(4)で示されるフルオレン構造含有酸二無水物が5~45モル%であり、(b)一般式(5)で示されるポリカーボネート骨格を有する酸二無水物が5~45モル%である請求項6または7に記載のポリカーボネートイミド樹脂(A)。 (A) The fluorene structure-containing acid dianhydride represented by the general formula (4) is 5 to 45 mol%, and (b) the acid dianhydride having a polycarbonate skeleton represented by the general formula (5) is 5 to 45 mol%. The polycarbonate imide resin (A) according to claim 6 or 7, which is mol%.
  9.  全イソシアネート成分を100モル%としたとき、一般式(6)で示されるジイソシアネートが50モル%以上である請求項6~8のいずれかに記載のポリカーボネートイミド樹脂(A)。 (10) The polycarbonate imide resin (A) according to any one of claims 6 to 8, wherein the diisocyanate represented by the general formula (6) is at least 50 mol%, when the total isocyanate component is 100 mol%.
  10.  請求項6~9のいずれかに記載のポリカーボネートイミド樹脂(A)、エポキシ樹脂(B)、およびフィラー(C)を含有するポリカーボネートイミド樹脂ペースト。 A polycarbonate imide resin paste containing the polycarbonate imide resin (A) according to any one of claims 6 to 9, an epoxy resin (B), and a filler (C).
  11.  揺変度が1.1以上である請求項5または10に記載のポリカーボネートイミド樹脂ペースト。 The polycarbonate imide resin paste according to claim 5 or 10, wherein the degree of thixotropic is 1.1 or more.
  12.  COF用である請求項5、10または11に記載のポリカーボネートイミド樹脂ペースト。 The polycarbonate imide resin paste according to claim 5, 10 or 11, which is used for COF.
  13.  請求項5、10~12のいずれかに記載のポリカーボネートイミド樹脂ペーストの硬化物。 A cured product of the polycarbonate imide resin paste according to any one of claims 5, 10 to 12.
  14.  請求項13に記載の硬化物を構成成分として含むソルダーレジスト層、表面保護層、層間絶縁層または接着層を有する電子部品。
     
    An electronic component having a solder resist layer, a surface protective layer, an interlayer insulating layer, or an adhesive layer containing the cured product according to claim 13 as a component.
PCT/JP2019/021726 2018-06-22 2019-05-31 Polycarbonate-imide resin and paste including same WO2019244600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525437A JP7310808B2 (en) 2018-06-22 2019-05-31 Polycarbonate imide resin and paste using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018119036 2018-06-22
JP2018119037 2018-06-22
JP2018-119037 2018-06-22
JP2018-119036 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019244600A1 true WO2019244600A1 (en) 2019-12-26

Family

ID=68983872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021726 WO2019244600A1 (en) 2018-06-22 2019-05-31 Polycarbonate-imide resin and paste including same

Country Status (2)

Country Link
JP (1) JP7310808B2 (en)
WO (1) WO2019244600A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP5773090B1 (en) * 2013-09-27 2015-09-02 東レ株式会社 Polyimide precursor, polyimide resin film obtained therefrom, and display element, optical element, light receiving element, touch panel, circuit board, organic EL display, organic EL element, and color filter manufacturing method including the same
US20150344626A1 (en) * 2014-05-28 2015-12-03 Industrial Technology Research Institute Dianhydride and polyimide
WO2016067925A1 (en) * 2014-10-28 2016-05-06 東洋紡株式会社 Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP5773090B1 (en) * 2013-09-27 2015-09-02 東レ株式会社 Polyimide precursor, polyimide resin film obtained therefrom, and display element, optical element, light receiving element, touch panel, circuit board, organic EL display, organic EL element, and color filter manufacturing method including the same
US20150344626A1 (en) * 2014-05-28 2015-12-03 Industrial Technology Research Institute Dianhydride and polyimide
WO2016067925A1 (en) * 2014-10-28 2016-05-06 東洋紡株式会社 Polycarbonate-imide-based resin paste, and electronic component having solder resist layer, surface protective layer, interlayer dielectric layer, or adhesive layer each obtained by curing said paste

Also Published As

Publication number Publication date
JP7310808B2 (en) 2023-07-19
JPWO2019244600A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6699546B2 (en) Polycarbonate imide resin paste and electronic component having solder resist layer, surface protection layer, interlayer insulating layer or adhesive layer obtained by curing the paste
JP5224205B1 (en) Flexible metal-clad laminate, flexible printed circuit board, and electronic device
KR102171631B1 (en) Adhesive composition using polyamideimide resin
JP2010006905A (en) Polyester resin, photocurable-heat curable resin composition, photocurable-heat curable layer, ink, adhesive and printed circuit board
JP5223458B2 (en) Urethane-modified polyimide resin composition, paste comprising the composition, and electronic component obtained from the paste
JP2008297388A (en) Modified polyimide resin composition, paste containing the composition and electronic part manufactured by using the paste
JP2008101123A (en) Modified polyimide resin composition, paste composed thereof and electronic device produced therefrom
JP5610301B2 (en) Thermosetting resin composition
JP7028182B2 (en) Polycarbonate imide resin and resin composition containing it
JP2010006909A (en) Polyester resin, photocurable-heat curable resin composition, photocurable-heat curable layer, ink, adhesive and printed circuit board
TW202028399A (en) Adhesive composition using imide bond-containing resin and phosphorous compound
JPWO2019244452A1 (en) Adhesive composition containing acrylonitrile butadiene rubber copolymerized polyamideimide resin
KR102233604B1 (en) Polycarbonate imide resin and paste using the same
JP7310808B2 (en) Polycarbonate imide resin and paste using the same
KR102587386B1 (en) Adhesive composition comprising acrylonitrile butadiene rubber copolymerized polyamide imide resin
JP6098776B1 (en) Polycarbonate imide resin and paste using the same
JP5510780B2 (en) Urethane-modified polyimide resin
JP2010013527A (en) Polyester resin, photo curable-thermosetting resin composition, photo curable-thermosetting layer, ink, adhesive and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822770

Country of ref document: EP

Kind code of ref document: A1