WO2016067809A1 - 電動作業機 - Google Patents

電動作業機 Download PDF

Info

Publication number
WO2016067809A1
WO2016067809A1 PCT/JP2015/077480 JP2015077480W WO2016067809A1 WO 2016067809 A1 WO2016067809 A1 WO 2016067809A1 JP 2015077480 W JP2015077480 W JP 2015077480W WO 2016067809 A1 WO2016067809 A1 WO 2016067809A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control
control unit
duty
rotation speed
Prior art date
Application number
PCT/JP2015/077480
Other languages
English (en)
French (fr)
Inventor
拓家 吉成
弘識 益子
俊彰 小泉
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Priority to JP2016556449A priority Critical patent/JP6299995B2/ja
Publication of WO2016067809A1 publication Critical patent/WO2016067809A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to an electric working machine driven by a motor.
  • an electric tool as an electric working machine driven by electric power supplied from an external AC power source such as a commercial power source to a commutator motor, for example, an impact tool such as an impact driver or an impact wrench has been known.
  • an electric working machine that uses a brushless motor as a motor, and that allows the number of rotations of the brushless motor to be finely controlled by a microcomputer mounted on a control board.
  • the electric tool disclosed in Patent Document 1 uses a brushless motor as a drive source, and stops the inverter circuit when the input voltage is outside the usable range, thereby preventing the inverter circuit from being broken.
  • the electric working machine has a problem that the performance is lowered when the input voltage is lowered.
  • the actual input voltage becomes lower than the expected input voltage (for example, AC 100V) to the electric work machine due to the voltage drop at the extension cord, and the performance is reduced.
  • the expected input voltage for example, AC 100V
  • the same problem occurs due to a decrease in battery voltage.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an electric working machine capable of suppressing performance degradation due to a decrease in input voltage.
  • the electric working machine includes a motor, a drive mechanism driven by the motor, and a control unit that controls the rotation of the motor.
  • the control unit pulsates the rotation speed of the motor and generates the pulsation. When the state where the peak is lower than a predetermined value continues for a predetermined number of times, control is performed to increase the rotation speed of the motor.
  • the control unit may control the rotation of the motor by duty control, and perform control to increase the duty ratio when a state where the peak of pulsation is lower than a predetermined value continues a predetermined number of times.
  • the control unit may perform control such that the duty ratio is constant when the peak value of the pulsation is lower than a predetermined value once, and the duty ratio is increased when the peak value continues for a predetermined number of times.
  • the electric working machine includes a motor, a rotary striking mechanism driven by the motor, and a control unit that performs duty control on the rotation of the motor, and the control unit is configured to perform rotation of the motor by striking the rotary striking mechanism.
  • control is performed to increase the duty ratio.
  • the control unit may perform control such that the duty ratio is constant when the peak value of the pulsation is lower than a predetermined value once, and the duty ratio is increased when the peak value continues for a predetermined number of times.
  • the electric working machine includes a motor, a drive mechanism driven by the motor, and a control unit that controls rotation of the motor.
  • the control unit pulsates a current flowing through the motor, and When the state where the peak is lower than a predetermined value continues for a predetermined number of times, control is performed to increase the rotation speed of the motor.
  • the control unit may control the rotation of the motor by duty control, and perform control to increase the duty ratio when a state where the peak of pulsation is lower than a predetermined value continues a predetermined number of times.
  • the electric working machine includes a motor, a rotation striking mechanism driven by the motor, and a control unit that controls the rotation of the motor, and the control unit has a rotation speed of the motor lower than a target. Is detected, control is performed to increase the rotational speed of the motor.
  • the control unit may sample the number of rotations of the motor a plurality of times, and detect whether or not the number of rotations of the motor is lower than the target based on a sampling result.
  • the control unit When the controller does not detect that the rotational speed of the motor is lower than the target, the control unit performs control independent of the rotational speed of the motor, and detects that the rotational speed of the motor is lower than the target. Then, the control may be shifted to a control for bringing the rotation speed of the motor closer to the target.
  • the control unit may control rotation of the motor by duty control.
  • the control unit may perform soft start control when starting the motor, and detect whether or not the number of rotations of the motor is lower than the target after completion of the soft start control.
  • the motor may be a brushless motor or an induction motor.
  • the electric working machine may operate with power supplied from an external AC power source.
  • the electrically-driven working machine which can suppress the performance fall by input voltage fall can be provided.
  • the sectional side view of the impact tool which is an example of the electric working machine which concerns on embodiment of this invention.
  • the control block diagram of the impact tool shown in FIG. The control flowchart of the impact tool shown in FIG. Explanatory drawing of the time change and rotation speed sampling of the rotation speed of the motor 10 in the impact
  • FIG. 1 is a side sectional view of an impact tool which is an example of an electric working machine according to an embodiment of the present invention.
  • the impact tool of the present embodiment is an impact driver
  • the housing 1 includes a body 10 that houses a part of the motor 10, the striking mechanism 20, and the output 30, and one end connected to the body 2.
  • the motor 10 is a brushless motor, and includes an output shaft 11 that extends in the front-rear direction, a rotor 12 that is fixed to the output shaft 11 and includes a plurality of permanent magnets, and a stator 14 that is disposed so as to surround the rotor 12 and includes a plurality of stator coils 13. And a cooling fan 15 fixed to the output shaft 11. Both sides of the output shaft 11 are axially supported (supported by bearings), and the stator 14 is fixed to the body portion 2 of the housing 1. The rotation of the output shaft 11 is decelerated via the planetary gear mechanism 16 and applied to the hammer 21 of the striking mechanism unit 20.
  • the motor 10 may be an induction motor having no permanent magnet in the rotor.
  • the striking mechanism 20 includes a hammer 21 disposed in the hammer case 25 and a spring 23 that biases the hammer 21 forward.
  • the hammer 21 has a collision portion 22 at the front end, and is rotated by the output shaft of the planetary gear mechanism 16.
  • the anvil 31 constituting the output unit 30 has a collided portion 32 at the rear end.
  • the spring 23 urges the hammer 21 forward so that when the hammer 21 rotates, the collision part 22 collides with the collided part 32 in the rotation direction. With such a configuration, when the hammer 21 rotates, a rotating impact force is applied to the anvil 31 of the output unit 30.
  • the hammer 21 is also configured to move backward against the biasing force of the spring 23, and the hammer 21 resists the biasing force of the spring 23 after the collision between the collision part 22 and the collision target part 32. Then move backward while rotating. And when the collision part 22 gets over the collision part 32, the elastic energy stored in the spring 23 is released, the hammer 21 moves forward, and the collision part 22 and the collision part 32 collide again.
  • the anvil 31 constituting the output unit 30 is rotatably supported at the front end portion of the body portion 2, that is, the front end side of the hammer case 25, and a front end tool can be detachably attached to the anvil 31.
  • the handle portion 3 is provided with a trigger 5, and the trigger 5 is connected to a switch mechanism 6 accommodated in the handle portion 3.
  • the user can switch between supply and interruption of electric power to the motor 10 by the trigger 5.
  • a power cord 40 for connecting to an external AC power source such as a commercial power source is pulled out from a lower outlet 48 of the storage unit 4.
  • a power supply box 50 stored in the storage unit 4 is connected to the base end side of the power cord 40.
  • a rectifier circuit board on which a rectifier circuit that converts AC power input from the power cord 40 into DC power is mounted is provided in the power supply box 50.
  • In the storage section 4 is further stored a control circuit board 60 on which a control circuit 81 shown in FIG.
  • a film capacitor 42 (an example of a nonpolar capacitor) for removing noise generated from the inverter circuit 85 shown in FIG. 2 is housed in the handle portion 3. *
  • the inverter circuit controlled by the control circuit is mounted on an inverter circuit board (switching element board) 70 that is fixed to the body portion 2 and located behind the motor 10.
  • the inverter circuit includes, for example, six FETs 71 as switching elements that turn on and off the energization of the motor 10, and each FET 71 is cooled by an air flow by a fan 15 that rotates together with the motor 10.
  • the control circuit includes a drive circuit (gate driver) that outputs a drive signal (PWM signal) for turning on and off each FET 71 and a microcomputer, and electrical connection between the control circuit board 60 and the inverter circuit board 70 is performed by a cable 72. Done.
  • the switching element may be an IGBT.
  • FIG. 2 is a control block diagram of the impact tool shown in FIG.
  • the impact tool of the present embodiment is connected to an AC power source 46 such as a commercial power source by a power cord 40.
  • Commercial AC power supplied from the power cord 40 is full-wave rectified by a diode bridge (rectifier circuit) 45.
  • a film capacitor 42 is provided between the output terminals of the diode bridge 45.
  • the output voltage of the diode bridge 45 is input to the inverter circuit 85.
  • the inverter circuit 85 includes FETs Q1 to Q6 connected in a three-phase bridge.
  • the FETs Q1 to Q6 correspond to the FET 71 in FIG.
  • the inverter circuit 85 energizes each stator coil 13 of the motor 10 under the control of the control circuit 81 and drives the motor 10.
  • the control circuit 81 as a control unit includes a control signal output circuit (gate driver IC) 82 that outputs a drive signal for turning on and off the FETs Q1 to Q6 of the inverter circuit 85, and an arithmetic unit (microcomputer) 83 that controls the control signal output circuit.
  • a control signal output circuit gate driver IC
  • microcomputer microcomputer
  • the control signal output circuit 82 drives the gates of the FETs Q1 to Q6.
  • the Hall IC 91 is an example of a rotational position detection element that detects the rotational position of the rotor 12 of the motor 10, and for example, three Hall ICs 91 are arranged with an interval of 60 °.
  • the rotor position detection circuit 84 detects the rotation position of the rotor 12 based on the rotation position detection output of each Hall IC 91 and feeds it back to the calculation unit 83.
  • the calculation unit 83 controls the control signal output circuit 82 based on the rotational position of the rotor 12, performs on / off control (PWM control) of the FETs Q1 to Q6 of the inverter circuit 85, and rotates the rotor 12 in a predetermined direction at a predetermined rotational speed. Control to rotate with.
  • the current detection circuit 86 detects the motor drive current from the terminal voltage of the detection resistor Rs provided on the motor drive current path, and feeds it back to the calculation unit 83.
  • the calculation unit 83 controls the motor 10 while monitoring the motor drive current.
  • FIG. 3 is a control flowchart of the impact tool shown in FIG. This flowchart starts when the user pulls the trigger 5 in FIG.
  • the control circuit 81 executes soft start control of the motor 10 (S1).
  • the soft start control is a control for gradually increasing the duty of the PWM signal applied to the FETs Q1 to Q6 of the inverter circuit 85 to a target duty (for example, 88%).
  • the control circuit 81 sets the value of the counter variable i to 0 (S2), and performs the fixed duty control of the motor 10 based on the duty at the completion of the soft start control (the aforementioned target duty) ( S3).
  • the control circuit 81 samples the rotation speed of the motor 10 while performing fixed duty control (S4). If the rotational speed N of the motor 10 is in the range of, for example, 10,000 to 12,000 rpm (S5, Yes), the control circuit 81 increments the counter variable i (S6). If the variable i is less than 60, for example (S7, No), the control circuit 81 waits for 1 msec, for example (S8), and samples the rotation speed of the motor 10 again (S4). If the variable i is 60 or more (S7, Yes), the control circuit 81 sets the target rotational speed to 11,000 rpm, for example, and starts feedback control of the motor 10.
  • S4 fixed duty control
  • the control circuit 81 controls the duty of the PWM signal applied to the FETs Q1 to Q6 of the inverter circuit 85 so that the rotational speed of the motor 10 matches the target rotational speed while monitoring the rotational speed of the motor 10.
  • the duty of the PWM signal should not be less than the duty of the fixed duty control in step S3.
  • the variable i is 60 or more in step S7
  • the rotation speed of the motor 10 is smaller than the target rotation speed as an average. Therefore, in the feedback control in step S9, the duty of the PWM signal is compared with the fixed duty control in step S3. (The control is performed to increase the rotation speed of the motor 10).
  • the control circuit 81 continues the feedback control of the motor 10 as long as there is a load (S10, No).
  • the control circuit 81 detects a no-load state (S10, Yes)
  • the control circuit 81 returns to step S2, initializes the variable i, and performs fixed duty control of the motor 10 (S3).
  • the no-load state can be detected by the drive current of the motor 10.
  • the control circuit 81 determines that the variable i is greater than 12,000 rpm (S11, Yes).
  • control circuit 81 may initialize the variable i to 0 in step S12. If the rotational speed N is 12,000 rpm or less in step S11 (S11, No), the control circuit 81 does not change the variable i, for example, waits for 1 msec (S13), and samples the rotational speed of the motor 10 again (S4). ). If the rotation speed N exceeds 12,000 rpm by the processing in steps S11 and S12, the variable i is subtracted. Therefore, if the rotation speed N exceeds 12,000 rpm at a certain frequency or more, the variable i is set in step S7. It does not exceed 60 and does not occur after the feedback control in step S9.
  • FIG. 4 is an explanatory diagram of the change over time in the rotational speed of the motor 10 and the rotational speed sampling during the impact with the fixed duty control when AC 100 V is input to the impact tool shown in FIG.
  • FIG. 5 is an explanatory diagram of the time variation of the rotational speed of the motor 10 and the rotational speed sampling during the impact with the fixed duty control when AC90V is input to the impact tool shown in FIG.
  • FIG. 4 corresponds to the case where the voltage drop hardly occurs in the power cord 40 because the power cord 40 connected to AC100V is short.
  • FIG. 5 corresponds to the case where a voltage drop of about 10 V occurs in the power cord 40 because the power cord 40 connected to AC 100 V is long.
  • step S3 in FIG. 3 when the input is AC100V, the rotational speed of the motor 10 may exceed 12,000 rpm at the stage of fixed duty control (step S3 in FIG. 3). In step S7 in FIG. i never exceeds 60.
  • step S7 in FIG. 5 when the input drops to, for example, AC 90V, the rotational speed of the motor 10 does not exceed 12,000 rpm at the stage of fixed duty control (step S3 in FIG. 3).
  • step S7 the counter variable i becomes 60 or more.
  • the control circuit 81 shifts to the feedback control in step S9 in FIG. 3, and increases the duty of the PWM signal applied to the FETs Q1 to Q6 of the inverter circuit 85 as compared with the case of the fixed duty control, thereby Offset the impact of falling.
  • the duty of the PWM signal reaches 88% at time t1
  • the duty of the PWM signal is maintained constant by the fixed duty control of the control circuit 81, and the rotation speed of the motor 10 is also constant. Since the period from time t1 to t2 is a no-load region before the screw is seated (before the start of hitting), even when the input is AC90V, there is no transition to the feedback control in step S9 in FIG.
  • the region may be controlled so that the rotation speed of the motor 10 is not sampled. However, since the rotation speed is high even if sampling is performed, the value of the counter variable i does not exceed 60 in step S7 of FIG. When the screw is seated at time t2, the hitting is started, and the rotation speed of the motor 10 decreases.
  • the control circuit 81 determines that the rotation speed of the motor 10 is low and applies it to the FETs Q1 to Q6 of the inverter circuit 85.
  • the duty of the PWM signal to be increased is increased from 88% in the fixed duty control, and the rotation speed of the motor 10 is increased.
  • the control circuit 81 sets the duty of the PWM signal applied to the FETs Q1 to Q6 of the inverter circuit 85 to 0, and the rotational speed of the motor 10 also decreases to 0.
  • the rotational speed of the motor 10 when pulsation (for example, pulsation due to impact) occurs in the rotational speed of the motor 10, the rotational speed of the motor 10, that is, when the peak value of the pulsation is lower than a predetermined value (12,000 rpm).
  • the duty of the PWM signal is controlled to be higher than before.
  • the duty of the PWM signal is not controlled (increase / decrease) every time the pulsation, that is, the peak value of the pulsation is lower than the predetermined value, but the state where the peak value of the pulsation is lower than the predetermined value is predetermined. Control is performed so that the rotation speed of the motor 10 is increased when the number of times continues, that is, the duty of the PWM signal is increased.
  • the motor rotation speed (duty) instead of changing the motor rotation speed (duty) every time the motor rotation speed pulsates, the motor rotation speed (duty) is changed when the pulsation continuously decreases a plurality of times. ing. Thereby, the motor rotation speed can be increased at a necessary timing, and the output can be maintained. Further, the rotational speed is increased when the pulsation peak of the rotational speed is continuously smaller than the predetermined value, but the same control may be performed when the pulsation peak value is within the predetermined range.
  • the rotation speed of the motor 10 is controlled by the duty of the PWM signal. For this reason, in the conventional ignition angle control (phase control), the rotation speed of the motor can be controlled only at the timing of the zero cross, but in the present invention, the rotation speed of the motor 10 is controlled at an arbitrary timing regardless of the zero cross. can do.
  • the duty control (detection (estimation) of a decrease in input voltage) is performed based on the rotation speed of the motor 10, but based on the current flowing through the motor 10 (inverter circuit 85). Duty control may be performed.
  • a configuration in which a motor is normally driven by an inverter circuit in order to protect the motor and inverter circuit (FET) from overload, the current flowing through them is detected and the motor is stopped when the current becomes overcurrent. ing.
  • FET inverter circuit
  • the same control as in the case of detecting the rotational speed can be performed by detecting a decrease in the input voltage by the current.
  • the upper peak of the motor rotational speed is the timing when the rotational speed is increased because the hammer 21 is accelerated toward the anvil 31, and the lower peak is the biasing force of the spring 23 by the hammer 21. It is the timing at which the number of revolutions is low because the collision part 22 rides on the collided part 32 by moving to the opposite side to the anvil 31.
  • the relationship is opposite to the pulsation of the rotational speed. That is, the current is low when the rotational speed is high, and the current is high when the rotational speed is low.
  • the decrease in the motor rotation speed is not only caused by a decrease in the input voltage, but also a case where the load applied to the motor 10 is increased.
  • the rotational speed (duty) of the motor 10 may be increased when the peak value of the pulsation is continuously lower than a predetermined value.
  • the load applied to the FET of the inverter circuit 85 becomes large and heat is likely to be generated, it is effective if both the rotation speed and current of the motor 10 are detected and the rotation speed (duty) of the motor 10 is controlled. Is.
  • the device performs intermittent operation such as an impact tool, it is possible to suppress the heat generation of the FET because there is no continuous high load.
  • the kite control circuit 81 increases the duty of the PWM signal applied to the FETs Q1 to Q6 of the inverter circuit 85, and controls to increase the rotational speed of the motor 10. Therefore, even when the voltage drop at the power cord 40 is large and the input voltage becomes lower than expected, it is possible to suppress a decrease in performance as an electric working machine. From the user's point of view, the same hit feeling (use feeling) can be obtained regardless of the length of the power cord 40, which is convenient.
  • the kite control circuit 81 samples the number of rotations of the motor 10 a plurality of times, and detects whether the number of rotations of the motor 10 is lower than the target based on the sampling result. Therefore, the variation in the number of rotations of the motor 10 is large. The number of rotations of the motor 10 can be appropriately determined at the time of impact.
  • the circuit configuration is simple and preferable because the performance degradation due to the decrease in the input voltage can be suppressed without monitoring the input voltage.
  • the saddle control circuit 81 performs control so as to increase the rotational speed of the motor 10 when the rotational speed (current) of the motor 10 pulsates and the state where the peak of the pulsation is lower than a predetermined value continues for a plurality of times. Even if the input voltage decreases, it is possible to suppress the performance deterioration as an electric working machine.
  • the impact tool is not limited to AC drive, and may be a cordless type that is mounted with a battery pack and operates with power supplied from the battery pack. In this case, it is possible to suppress a decrease in performance due to a decrease in battery voltage.
  • the impact tool is not limited to the impact driver exemplified in the embodiment, and may be another type of impact tool such as an impact wrench, a hammer, a hammer drill, or the like. Also, it is not limited to impact tools, such as fastening tools such as driver drills, reciprocating tools such as jigsaws and savers, cutting tools such as circular saws and grinders that perform continuous work, or electric devices such as washing machines and generators.
  • the present invention may be applied to an electric working machine that uses a motor and whose input voltage can vary.
  • each parameter such as the duty in the fixed duty control shown in the embodiment, the rotation speed range of the motor 10 that increments the variable i, the rotation sampling interval, and the value of the variable i when shifting to feedback control are examples. However, it can be set arbitrarily according to the specifications.
  • SYMBOLS 1 Housing, 2 ... Body part, 3 ... Handle part, 4 ... Storage part, 5 ... Trigger, 6 ... Switch mechanism, 10 ... Motor, 11 ... Output shaft, 12 ... Rotor, 13 ... Stator coil, 14 ... Stator, DESCRIPTION OF SYMBOLS 15 ... Cooling fan, 16 ... Planetary gear mechanism, 20 ... Blow mechanism part, 21 ... Hammer, 22 ... Colliding part, 23 ... Spring, 25 ... Hammer case, 30 ... Output part, 31 ... Anvil, 32 ... Collision part, DESCRIPTION OF SYMBOLS 40 ... Power cord, 42 ... Film capacitor, 45 ... Diode bridge (rectifier circuit), 46 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Portable Power Tools In General (AREA)

Abstract

入力電圧低下による性能低下を抑制することの可能な電動作業機の提供するため、制御回路81は、モータ10のソフトスタート制御の後、モータ10の固定デューティ制御を行う。制御回路81は、固定デューティ制御を行いながら、モータ10の回転数をサンプリングし、複数回のサンプリング結果に基づいて回転数が目標より低いか否かを検出し、目標より低い場合は、固定デューティ制御と比較して、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを高め、モータ10の回転数を高める。

Description

電動作業機
本発明は、モータによって駆動する電動作業機に関する。
商用電源等の外部交流電源から整流子モータに供給された電力により駆動される電動作業機としての電動工具、例えばインパクトドライバやインパクトレンチ等のインパクト工具が従来から知られている。また、モータとしてブラシレスモータを使用し、ブラシレスモータの回転数を制御基板に搭載したマイクロコンピュータによって細かく制御可能とする電動作業機も知られている。下記特許文献1の電動工具は、ブラシレスモータを駆動源とし、入力電圧が使用可能範囲外である場合にインバータ回路を停止することで、インバータ回路の故障を防止している。
特開2012-196724号公報
電動作業機は、入力電圧が低くなると性能が落ちてしまうという問題があった。例えば、長い延長コードで外部交流電源に接続すると、延長コードでの電圧降下により、電動作業機への想定入力電圧(例えばAC100V)に対して実際の入力電圧が低くなり、性能が落ちてしまうという問題があった。また、電池駆動タイプ(コードレスタイプ)の場合には、電池電圧の低下により同様の問題が発生する。
本発明はこうした状況を認識してなされたものであり、その目的は、入力電圧低下による性能低下を抑制することの可能な電動作業機を提供することにある。
本発明のある態様は、電動作業機である。この電動作業機は、モータと、前記モータによって駆動される駆動機構と、前記モータの回転を制御する制御部と、を備え、前記制御部は、前記モータの回転数が脈動して前記脈動のピークが所定値よりも低い状態が所定回数連続した際に前記モータの回転数を高める制御を行う。
前記制御部は、デューティ制御により前記モータの回転を制御し、前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行ってもよい。
前記制御部は、前記脈動のピーク値が所定値よりも低い状態が1回の場合にはデューティ比を一定とし、所定回数連続した場合にデューティ比を高める制御を行ってもよい。
本発明のもう1つの態様は、電動作業機である。この電動作業機は、 モータと、前記モータによって駆動される回転打撃機構と、前記モータの回転をデューティ制御する制御部と、を備え、前記制御部は、前記回転打撃機構の打撃により前記モータの回転数が脈動し前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行う。
前記制御部は、前記脈動のピーク値が所定値よりも低い状態が1回の場合にはデューティ比を一定とし、所定回数連続した場合にデューティ比を高める制御を行ってもよい。
本発明のもう1つの態様は、電動作業機である。この電動作業機は、モータと、前記モータによって駆動される駆動機構と、前記モータの回転を制御する制御部と、を備え、前記制御部は、前記モータに流れる電流が脈動して前記脈動のピークが所定値よりも低い状態が所定回数連続した際に前記モータの回転数を高める制御を行う。
前記制御部は、デューティ制御により前記モータの回転を制御し、前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行ってもよい。
本発明のもう1つの態様は、電動作業機である。この電動作業機は、モータと、前記モータによって駆動される回転打撃機構と、前記モータの回転を制御する制御部と、を備え、前記制御部は、前記モータの回転数が目標よりも低いことを検出すると、前記モータの回転数を高める制御を行う。
前記制御部は、前記モータの回転数を複数回サンプリングし、サンプリング結果に基づいて前記モータの回転数が前記目標よりも低いか否かを検出してもよい。
前記制御部は、前記モータの回転数が前記目標よりも低いことを検出しない場合は、前記モータの回転数によらない制御を行い、前記モータの回転数が前記目標よりも低いことを検出すると、前記モータの回転数を前記目標に近づける制御に移行してもよい。
前記制御部は、デューティ制御により前記モータの回転を制御してもよい。
前記制御部は、前記モータの起動時にソフトスタート制御を行い、前記ソフトスタート制御の完了後に前記モータの回転数が前記目標よりも低いか否かを検出してもよい。
前記モータがブラシレスモータ又は誘導モータであってもよい。
前記電動作業機は、外部交流電源からの供給電力で動作してもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、入力電圧低下による性能低下を抑制することの可能な電動作業機を提供することができる。
本発明の実施の形態に係る電動作業機の一例であるインパクト工具の側断面図。 図1に示すインパクト工具の制御ブロック図。 図1に示すインパクト工具の制御フローチャート。 図1に示すインパクト工具にAC100Vが入力された場合の、固定デューティ制御での打撃中におけるモータ10の回転数の時間変化と回転数サンプリングの説明図。 図1に示すインパクト工具にAC90Vが入力された場合の、固定デューティ制御での打撃中におけるモータ10の回転数の時間変化と回転数サンプリングの説明図。 図1に示すインパクト工具にAC100V及びAC90Vが入力された場合の各々におけるネジ締めの開始から終了までの、モータ10の回転数、及びインバータ回路85のFETQ1~Q6に印加するPWM信号のデューティの時間変化説明図。
以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。
図1は、本発明の実施の形態に係る電動作業機の一例であるインパクト工具の側断面図である。図1において前後及び上下方向を定義する。本実施の形態のインパクト工具は、インパクトドライバであり、ハウジング1は、モータ10、打撃機構部20、及び出力部30の一部を収納する胴体部2と、一端が胴体部2に接続しているハンドル部3と、ハンドル部3の他端に形成された収納部4と、を有する。 
モータ10はブラシレスモータであり、前後方向に延びる出力軸11と、出力軸11に固定され複数の永久磁石を有するロータ12と、ロータ12を囲むように配置され複数のステータコイル13を備えるステータ14と、出力軸11に固定された冷却ファン15と、を有する。出力軸11の両側は軸支(軸受で支持)され、ステータ14はハウジング1の胴体部2に固定されている。出力軸11の回転は、遊星歯車機構16を介して減速されて打撃機構部20のハンマ21に与えられる。なお、モータ10はロータに永久磁石を持たない誘導モータでもよい。
打撃機構部20は、ハンマケース25内に配されたハンマ21と、ハンマ21を前方に付勢するバネ23と、を有する。ハンマ21は、前端に衝突部22を有し、遊星歯車機構16の出力軸で回転駆動される。出力部30を構成するアンビル31は、後端に被衝突部32を有する。バネ23は、ハンマ21が回転した際に衝突部22が被衝突部32と回転方向において衝突するように、ハンマ21を前方に付勢する。このような構成により、ハンマ21が回転した際に、出力部30のアンビル31に回転打撃力が与えられる。また、ハンマ21は、バネ23の付勢力に反して後方に移動することも可能に構成されており、衝突部22と被衝突部32との衝突後、ハンマ21はバネ23の付勢力に抗して回転しながら後退する。そして、衝突部22が被衝突部32を乗り越えると、バネ23に蓄えられた弾性エネルギーが解放されてハンマ21は前方に移動し、再び、衝突部22と被衝突部32とが衝突する。出力部30を構成するアンビル31は、胴体部2の先端部、つまりハンマケース25の前端側で回転自在に軸支されており、アンビル31には、先端工具を着脱自在に装着できる。
ハンドル部3にはトリガ5が設けられ、トリガ5はハンドル部3内に収容されたスイッチ機構6と接続される。使用者はトリガ5によって、モータ10への電力の供給と遮断を切替え可能である。収納部4の下部の引出口48からは、商用電源等の外部交流電源に接続するための電源コード40が引き出される。収納部4内に収納された電源ボックス50が、電源コード40の基端側に接続される。電源ボックス50内には、電源コード40から入力された交流電力を直流電力に変換する整流回路を搭載した整流回路基板が設けられる。収納部4内には更に、モータ10の回転等を制御する図2に示す制御回路81を搭載した制御回路基板60が収納される。図2に示すインバータ回路85から発生するノイズを除去するためのフィルムコンデンサ42(無極性コンデンサの例示)は、ハンドル部3内に収納される。 
前記制御回路で制御されるインバータ回路は、胴体部2に固定されモータ10の背後に位置するインバータ回路基板(スイッチング素子基板)70に搭載される。インバータ回路は、モータ10への通電をオン、オフする例えば6個のスイッチング素子としてのFET71を有し、各FET71はモータ10と共に回転するファン15による空気流で冷却されるようになっている。前記制御回路は、各FET71をオン、オフする駆動信号(PWM信号)を出力するドライブ回路(ゲートドライバ)及びマイクロコンピュータを含み、制御回路基板60とインバータ回路基板70との電気接続はケーブル72で行われる。なおスイッチング素子はIGBTであってもよい。
図2は、図1に示すインパクト工具の制御ブロック図である。本実施の形態のインパクト工具は、電源コード40によって商用電源等の交流電源46に接続される。電源コード40から供給される商用交流電源は、ダイオードブリッジ(整流回路)45によって全波整流される。ダイオードブリッジ45の出力端子間には、フィルムコンデンサ42が設けられる。ダイオードブリッジ45の出力電圧は、インバータ回路85に入力される。インバータ回路85は、三相ブリッジ接続されたFETQ1~Q6を有する。FETQ1~Q6は、図1のFET71に対応する。インバータ回路85は、制御回路81の制御に従ってモータ10の各ステータコイル13に通電し、モータ10を駆動する。
制御部としての制御回路81は、インバータ回路85のFETQ1~Q6をオン、オフする駆動信号を出力する制御信号出力回路(ゲートドライバIC)82、及びそれを制御する演算部(マイクロコンピュータ)83を有する。演算部83の制御に従って、制御信号出力回路82はFETQ1~Q6のゲートを駆動する。ホールIC91は、モータ10のロータ12の回転位置を検出する回転位置検出素子の例示であり、例えば60°の間隔を隔てて3個配設される。回転子位置検出回路84は、各ホールIC91の回転位置検出出力に基づいてロータ12の回転位置を検出し、演算部83にフィードバックする。演算部83は、ロータ12の回転位置に基づいて制御信号出力回路82を制御し、インバータ回路85のFETQ1~Q6のオン、オフ制御(PWM制御)を行い、ロータ12を所定方向に所定回転速度で回転させる制御を行う。電流検出回路86は、モータ駆動電流の経路上に設けられた検出抵抗Rsの端子電圧によりモータ駆動電流を検出し、演算部83にフィードバックする。演算部83は、モータ駆動電流を監視しながらモータ10の制御を行う。
図3は、図1に示すインパクト工具の制御フローチャートである。このフローチャートは、使用者が図1のトリガ5を引くことによってスタートする。制御回路81は、まず、モータ10のソフトスタート制御を実行する(S1)。ここで、ソフトスタート制御は、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを緩やかに目標デューティ(例えば88%)まで高めていく制御である。制御回路81は、ソフトスタート制御の後、カウンタ用の変数iの値を0にセットし(S2)、ソフトスタート制御完了時のデューティ(前述の目標デューティ)によるモータ10の固定デューティ制御を行う(S3)。
制御回路81は、固定デューティ制御を行いながら、モータ10の回転数をサンプリングする(S4)。制御回路81は、モータ10の回転数Nが例えば10,000~12,000rpmの範囲であれば(S5,Yes)、カウンタ用の変数iをインクリメントする(S6)。制御回路81は、変数iが例えば60未満であれば(S7,No)、例えば1msec待機し(S8)、再度モータ10の回転数をサンプリングする(S4)。制御回路81は、変数iが60以上であれば(S7,Yes)、目標回転数を例えば11,000rpmとして、モータ10のフィードバック制御を開始する。すなわち、制御回路81は、モータ10の回転数を監視しながら、モータ10の回転数が目標回転数に一致するように、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを制御する。このフィードバック制御において、PWM信号のデューティは、ステップS3における固定デューティ制御のデューティ未満にならないようにする。ステップS7において変数iが60以上になるときは、モータ10の回転数が平均として目標回転数より小さいため、ステップS9におけるフィードバック制御では、ステップS3における固定デューティ制御と比較して、PWM信号のデューティを高めていく(モータ10の回転数を高めるように制御する)ことになる。
制御回路81は、有負荷である限りモータ10のフィードバック制御を継続する(S10,No)。制御回路81は、無負荷状態を検出すると(S10,Yes)、ステップS2に戻って変数iを初期化し、モータ10の固定デューティ制御を行う(S3)。無負荷状態は、モータ10の駆動電流によって検出できる。制御回路81は、ステップS4で検出したモータ10の回転数Nが10,000~12,000rpmの範囲でない場合(S5,No)、回転数Nが12,000rpmを超えていれば(S11,Yes)、変数iから例えば5を減算し(S12)、例えば1msec待機し(S13)、再度モータ10の回転数をサンプリングする(S4)。なお、制御回路81は、ステップS12において、変数iを0に初期化してもよい。制御回路81は、ステップS11において回転数Nが12,000rpm以下であれば(S11,No)、変数iは変化させず、例えば1msec待機し(S13)、再度モータ10の回転数をサンプリングする(S4)。ステップS11,S12の処理により、回転数Nが12,000rpmを超えている場合は変数iが減算されるため、一定頻度以上で回転数Nが12,000rpmを超えていれば、ステップS7において変数iは60以上にならず、ステップS9のフィードバック制御への以降は起こらない。
図4は、図1に示すインパクト工具にAC100Vが入力された場合の、固定デューティ制御での打撃中におけるモータ10の回転数の時間変化と回転数サンプリングの説明図である。図5は、図1に示すインパクト工具にAC90Vが入力された場合の、固定デューティ制御での打撃中におけるモータ10の回転数の時間変化と回転数サンプリングの説明図である。図4は、AC100Vに接続する電源コード40が短いために電源コード40においてほとんど電圧降下が起こらなかった場合に相当する。一方、図5は、AC100Vに接続する電源コード40が長いために電源コード40において約10Vの電圧降下が発生した場合に相当する。
図4に示すように、入力がAC100Vの場合、固定デューティ制御(図3のステップS3)の段階でモータ10の回転数が12,000rpmを超えることがあり、図3のステップS7においてカウンタ用の変数iが60以上になることはない。一方、図5に示すように、入力が例えばAC90Vまで降下していると、固定デューティ制御(図3のステップS3)の段階ではモータ10の回転数が12,000rpmを超えることはなく、いずれ図3のステップS7においてカウンタ用の変数iが60以上になる。このため、制御回路81は、図3のステップS9のフィードバック制御に移行し、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを固定デューティ制御の場合と比較して高めることで、入力電圧が降下していることによる影響を相殺する。
図6は、図1に示すインパクト工具にAC100V及びAC90Vが入力された場合の各々におけるネジ締めの開始から終了までの、モータ10の回転数、及びインバータ回路85のFETQ1~Q6に印加するPWM信号のデューティの時間変化説明図である。時刻t0において使用者がトリガ5を引くと、制御回路81のソフトスタート制御により、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティは目標値である88%に向けて緩やかに上昇していき、これによりモータ10の回転数も緩やかに上昇する。時刻t1においてPWM信号のデューティが88%に到達すると、制御回路81の固定デューティ制御によりPWM信号のデューティは一定に維持され、モータ10の回転数も一定となる。時刻t1~t2の期間は、ネジが着座する前(打撃開始前)の無負荷領域であるため、入力がAC90Vの場合も、図3のステップS9のフィードバック制御に移行することはない(無負荷領域はモータ10の回転数をサンプリングしない制御としてもよいが、サンプリングするとしても回転数が高いため図3のステップS7においてカウンタ用の変数iの値が60以上になることはない)。時刻t2においてネジが着座すると、打撃が開始され、モータ10の回転数は低下する。入力がAC90Vの場合、その後の時刻t3において、図3のステップS7で変数iが60以上になり、制御回路81はモータ10の回転数が低いと判断し、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを固定デューティ制御における88%から高め、モータ10の回転数を高める。一方、入力がAC100Vの場合、回転数が高いため図3のステップS7において変数iが60以上になることはなく、時刻t3以降も固定デューティ制御が継続される。時刻t4において使用者がトリガ5を引くのを止めると、制御回路81はインバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを0にし、モータ10の回転数も0に低下していく。
本実施の形態では、モータ10の回転数に脈動(例えば打撃による脈動)が生じた場合、その脈動のピーク値が所定の値(12,000rpm)より低くなった場合にモータ10の回転数すなわちPWM信号のデューティをそれまでよりも高くなるように制御している。このとき、1回の脈動すなわち脈動のピーク値が所定の値より低くなる度にPWM信号のデューティを制御(増減)するのではなく、脈動のピーク値が所定の値より低くなった状態が所定回数連続した場合にモータ10の回転数を高くするように、すなわちPWM信号のデューティを高くなるように制御している。これは、定速度制御のように常に一定速度に維持しようとすると、本実施の形態のようなインパクト工具や往復動工具等のようにモータ回転数が脈動する場合に、脈動の度にモータ回転数(デューティ)を調整することが必要となってしまい、モータ回転数の検出とデューティ制御との間でタイミングのずれが生じる可能性がある。或いは、モータ回転数が高い方がトルクが得られる場合であっても回転数を下げてしまう場合や、高い回転数になるように定速度制御するとFETの発熱や消費電力の増加につながってしまう可能性がある。そこで本実施の形態では、モータ回転数の脈動の度にモータ回転数(デューティ)を変更するのではなく、脈動が複数回連続して低下した場合にモータ回転数(デューティ)を変更するようにしている。これにより必要なタイミングでモータ回転数を高めることができ出力を維持することができる。また、回転数の脈動ピークが連続して所定の値より小さい場合に回転数を高くするようにしたが、脈動ピーク値が所定の範囲内にある場合に同様の制御を行ってもよい。
また、本実施の形態では、モータ10の回転数をPWM信号のデューティで制御している。そのため、従来の点弧角制御(位相制御)ではゼロクロスのタイミングでしかモータの回転数を制御できなかったのに対し、本発明ではゼロクロスとは関係なく任意のタイミングでモータ10の回転数を制御することができる。
また、本実施の形態では、モータ10の回転数に基づいてデューティ制御(入力電圧の低下を検出(推定)する)を行うようにしたが、モータ10(インバータ回路85)に流れる電流に基づいてデューティ制御を行ってもよい。通常インバータ回路にてモータを駆動する構成では、モータやインバータ回路(FET)の過負荷保護のため、それらに流れる電流を検出し、電流が過電流になった際にモータを停止する構成を採っている。その電流によって入力電圧の低下を検出することでも回転数を検出する場合と同様の制御が可能である。図4において、モータ回転数の上側のピークはハンマ21がアンビル31側に向かって加速しているため回転数が高くなったタイミングであり、下側のピークはハンマ21がバネ23の付勢力に抗してアンビル31と反対側に移動して衝突部22が被衝突部32を乗り上げているため回転数が低くなったタイミングである。一方、電流を考えると回転数の脈動とは逆の関係となる。すなわち回転数が高いときに電流は低くなり、回転数が低いときに電流は高くなる。従い、電流も回転数と同様に脈動するため、この脈動のピーク値を検出し、脈動ピークが連続して所定の電流値を下回った場合(或いは所定の範囲内になった場合)にモータ10の回転数(デューティ)を高くするように制御すればよい。
なお、モータ回転数の低下は入力電圧の低下が原因となるだけでなく、モータ10に加わる負荷が大きくなった場合も考えられる。この場合にも脈動のピーク値が連続して所定の値より低くなった場合にモータ10の回転数(デューティ)を高くするようにしてもよい。但し、インバータ回路85のFETに加わる負荷が大きくなり発熱し易くなってしまうため、モータ10の回転数と電流の両方を検出してモータ10の回転数(デューティ)を制御するようにすれば効果的である。また、インパクト工具のように間欠的な動作を行う機器であれば、連続的に高負荷となることがないのでFETの発熱を抑えることができる。
本実施の形態によれば、下記の効果を奏することができる。
(1) 制御回路81は、モータ10の回転数が目標より低いことを検出すると、インバータ回路85のFETQ1~Q6に印加するPWM信号のデューティを高め、モータ10の回転数を高めるように制御するため、電源コード40での電圧降下が大きくて入力電圧が想定を超えて低くなった場合でも、電動作業機としての性能低下を抑制することができる。使用者からすると、電源コード40の長さによらず同等の打撃感(使用感)が得られるため使い勝手がよい。
(2) 制御回路81は、モータ10の回転数を複数回サンプリングし、サンプリング結果に基づいてモータ10の回転数が目標より低いか否かを検出するため、モータ10の回転数の変動が大きい打撃時にモータ10の回転数を適切に判定することができる。
(3) 入力電圧の低下による性能低下を、入力電圧を監視せずに抑制できるため、回路構成がシンプルで好ましい。
(4) 制御回路81は、モータ10の回転数(電流)が脈動して脈動のピークが所定値よりも低い状態が複数回連続した際にモータ10の回転数を高めるように制御するため、入力電圧が低下しても電動作業機としての性能低下を抑制することができる。 
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。
インパクト工具は、AC駆動に限定されず、電池パックを装着して当該電池パックからの供給電力で動作するコードレスタイプであってもよい。この場合、電池電圧の低下による性能低下を抑制することができる。インパクト工具は、実施の形態で例示したインパクトドライバに限定されず、インパクトレンチ、ハンマやハンマドリル等の他の種類のインパクト工具であってもよい。また、インパクト工具に限定されず、ドライバドリル等の締結工具、ジグソやセーバソー等の往復動工具、連続作業を行う丸のこやグラインダ等の切断工具、或いは洗浄機や発電機等の電動機器であってもよく、モータを利用し入力電圧が変動し得る電動作業機に適用できる。
実施の形態で示した固定デューティ制御におけるデューティ、変数iをインクリメントするモータ10の回転数レンジ、回転数サンプリングの間隔、フィードバック制御に移行するときの変数iの値などの各パラメータの具体値は一例に過ぎず、仕様に合わせて任意に設定できる。
1…ハウジング、2…胴体部、3…ハンドル部、4…収納部、5…トリガ、6…スイッチ機構、10…モータ、11…出力軸、12…ロータ、13…ステータコイル、14…ステータ、15…冷却ファン、16…遊星歯車機構、20…打撃機構部、21…ハンマ、22…衝突部、23…バネ、25…ハンマケース、30…出力部、31…アンビル、32…被衝突部、40…電源コード、42…フィルムコンデンサ、45…ダイオードブリッジ(整流回路)、46…交流電源、48…引出口、50…電源ボックス、60…制御回路基板、70…インバータ回路基板(スイッチング素子基板)、71…FET、72…ケーブル、81…制御回路、82…制御信号出力回路(ゲートドライバIC)、83…演算部(マイクロコンピュータ)、84…回転子位置検出回路、85…インバータ回路、86…電流検出回路、91…ホールIC、Q1~Q6 FET

Claims (14)

  1. モータと、
    前記モータによって駆動される駆動機構と、
    前記モータの回転を制御する制御部と、を備え、
    前記制御部は、前記モータの回転数が脈動して前記脈動のピークが所定値よりも低い状態が所定回数連続した際に前記モータの回転数を高める制御を行う、電動作業機。
  2. 前記制御部は、デューティ制御により前記モータの回転を制御し、前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行う、請求項1に記載の電動作業機。
  3. 前記制御部は、前記脈動のピーク値が所定値よりも低い状態が1回の場合にはデューティ比を一定とし、所定回数連続した場合にデューティ比を高める制御を行う、請求項2に記載の電動作業機。
  4. モータと、
    前記モータによって駆動される回転打撃機構と、
    前記モータの回転をデューティ制御する制御部と、を備え、
    前記制御部は、前記回転打撃機構の打撃により前記モータの回転数が脈動し前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行う、電動作業機。
  5. 前記制御部は、前記脈動のピーク値が所定値よりも低い状態が1回の場合にはデューティ比を一定とし、所定回数連続した場合にデューティ比を高める制御を行う、請求項4に記載の電動作業機。
  6. モータと、
    前記モータによって駆動される駆動機構と、
    前記モータの回転を制御する制御部と、を備え、
    前記制御部は、前記モータに流れる電流が脈動して前記脈動のピークが所定値よりも低い状態が所定回数連続した際に前記モータの回転数を高める制御を行う、電動作業機。
  7. 前記制御部は、デューティ制御により前記モータの回転を制御し、前記脈動のピークが所定値よりも低い状態が所定回数連続した際にデューティ比を高める制御を行う、請求項6に記載の電動作業機。
  8. モータと、
    前記モータによって駆動される回転打撃機構と、
    前記モータの回転を制御する制御部と、を備え、
    前記制御部は、前記モータの回転数が目標よりも低いことを検出すると、前記モータの回転数を高める制御を行う、電動作業機。
  9. 前記制御部は、前記モータの回転数を複数回サンプリングし、サンプリング結果に基づいて前記モータの回転数が前記目標よりも低いか否かを検出する、請求項8に記載の電動作業機。
  10. 前記制御部は、前記モータの回転数が前記目標よりも低いことを検出しない場合は、前記モータの回転数によらない制御を行い、前記モータの回転数が前記目標よりも低いことを検出すると、前記モータの回転数を前記目標に近づける制御に移行する、請求項8又は9に記載の電動作業機。
  11. 前記制御部は、デューティ制御により前記モータの回転を制御する、請求項8から10のいずれか一項に記載の電動作業機。
  12. 前記制御部は、前記モータの起動時にソフトスタート制御を行い、前記ソフトスタート制御の完了後に前記モータの回転数が前記目標よりも低いか否かを検出する、請求項8から11のいずれか一項に記載の電動作業機。
  13. 前記モータがブラシレスモータ又は誘導モータである、請求項8から12のいずれか一項に記載の電動作業機。
  14. 外部交流電源からの供給電力で動作する、請求項8から13のいずれか一項に記載の電動作業機。
PCT/JP2015/077480 2014-10-31 2015-09-29 電動作業機 WO2016067809A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016556449A JP6299995B2 (ja) 2014-10-31 2015-09-29 電動作業機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223209 2014-10-31
JP2014-223209 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067809A1 true WO2016067809A1 (ja) 2016-05-06

Family

ID=55857155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077480 WO2016067809A1 (ja) 2014-10-31 2015-09-29 電動作業機

Country Status (2)

Country Link
JP (1) JP6299995B2 (ja)
WO (1) WO2016067809A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193935A (ja) * 2015-08-21 2019-11-07 アイリスオーヤマ株式会社 精米機
JP2020192682A (ja) * 2020-08-26 2020-12-03 株式会社マキタ 電動工具
JP2021076093A (ja) * 2019-11-12 2021-05-20 マックス株式会社 ブロワー
JP2022542895A (ja) * 2019-07-30 2022-10-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 手動工作機械を作動させる方法、及び、手動工作機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858884A (ja) * 1981-09-30 1983-04-07 Toshiba Corp 電動機制御方法
JP2004523200A (ja) * 2001-07-09 2004-07-29 タイコ・エレクトロニクス・コーポレイション 電動工具内のモータシャフトの速度及び周波数を制御するマイクロプロセッサ
JP2005059177A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Works Ltd インパクト回転工具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066382A (ja) * 1996-08-09 1998-03-06 Omron Corp モータ制御装置
FR2807890B1 (fr) * 2000-04-18 2002-06-07 Seb Sa Moteur a angle d'avance de phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858884A (ja) * 1981-09-30 1983-04-07 Toshiba Corp 電動機制御方法
JP2004523200A (ja) * 2001-07-09 2004-07-29 タイコ・エレクトロニクス・コーポレイション 電動工具内のモータシャフトの速度及び周波数を制御するマイクロプロセッサ
JP2005059177A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Works Ltd インパクト回転工具

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193935A (ja) * 2015-08-21 2019-11-07 アイリスオーヤマ株式会社 精米機
JP2022542895A (ja) * 2019-07-30 2022-10-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 手動工作機械を作動させる方法、及び、手動工作機械
JP7350978B2 (ja) 2019-07-30 2023-09-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 手動工作機械を作動させる方法、及び、手動工作機械
JP2021076093A (ja) * 2019-11-12 2021-05-20 マックス株式会社 ブロワー
JP7360600B2 (ja) 2019-11-12 2023-10-13 マックス株式会社 ブロワー
JP2020192682A (ja) * 2020-08-26 2020-12-03 株式会社マキタ 電動工具
JP7149994B2 (ja) 2020-08-26 2022-10-07 株式会社マキタ インパクト工具

Also Published As

Publication number Publication date
JP6299995B2 (ja) 2018-03-28
JPWO2016067809A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6128037B2 (ja) 電動工具
JP5743085B2 (ja) 電動工具
JP6032289B2 (ja) インパクト工具
EP2830832B1 (en) Electric tool and fastening method using the same
US20160111984A1 (en) Power tool
JP6090581B2 (ja) 電動工具
JP5327514B2 (ja) 電動工具
US20150047866A1 (en) Electric tool and fastening method using the same
US20120292065A1 (en) Impact Tool
JP6299995B2 (ja) 電動作業機
JP6061116B2 (ja) 電動工具
EP2826141A2 (en) Electric tool
JP2013111734A (ja) 電動工具
JP2011005588A (ja) 電動工具
JP2019033649A (ja) 電動工具
WO2016031715A1 (ja) モータ駆動回路及び電動工具
JP6337728B2 (ja) 作業機
JP6421835B2 (ja) 電動工具
JP2015009289A (ja) 電動工具
JP5954386B2 (ja) 電動工具
JP2016221632A (ja) 電動工具
JP2015208784A (ja) 電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854449

Country of ref document: EP

Kind code of ref document: A1