WO2016067378A1 - 漏電遮断器 - Google Patents

漏電遮断器 Download PDF

Info

Publication number
WO2016067378A1
WO2016067378A1 PCT/JP2014/078720 JP2014078720W WO2016067378A1 WO 2016067378 A1 WO2016067378 A1 WO 2016067378A1 JP 2014078720 W JP2014078720 W JP 2014078720W WO 2016067378 A1 WO2016067378 A1 WO 2016067378A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
resistor
leakage
gate
Prior art date
Application number
PCT/JP2014/078720
Other languages
English (en)
French (fr)
Inventor
聖崇 近井
龍幸 塚本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480081157.XA priority Critical patent/CN106663573B/zh
Priority to JP2016556092A priority patent/JP6319456B2/ja
Priority to KR1020167035093A priority patent/KR20170004001A/ko
Priority to EP14904741.7A priority patent/EP3214634B1/en
Priority to PCT/JP2014/078720 priority patent/WO2016067378A1/ja
Priority to TW103142556A priority patent/TWI552471B/zh
Publication of WO2016067378A1 publication Critical patent/WO2016067378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/123Automatic release mechanisms with or without manual release using a solid-state trip unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • H02H3/165Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems for three-phase systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • H02H3/347Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system using summation current transformers

Definitions

  • This invention relates to an earth leakage circuit breaker that opens the electric circuit when the leakage current of the circuit becomes a predetermined value or more, and more particularly to an operation power source of the earth leakage circuit breaker.
  • a power supply circuit built in this type of earth leakage circuit breaker converts an AC voltage (for example, AC100V) supplied from an AC circuit into a DC voltage by a rectifier circuit, and then converts the rectified DC voltage to a lower voltage by a step-down circuit. (For example, DC24V) is converted, and drive power is supplied to the leakage detection circuit and the tripping device.
  • a leakage detection circuit is detected from an instantaneous or intermittent surge voltage (for example, several kilovolts) such as a surge voltage caused by a lightning strike or arc grounding in an AC circuit or an open / close surge generated by opening / closing of a magnetic contactor or relay. And the tripping device needs to be protected.
  • the protection means includes a voltage detection circuit that detects a surge voltage from the output voltage of the rectifier circuit, a booster circuit that boosts the output voltage of the step-down circuit when the voltage detection circuit detects a surge voltage, and an output side of the step-down circuit
  • a power supply circuit provided with a current absorption circuit that absorbs a surge current when the output voltage of the step-down circuit reaches a predetermined value (see, for example, Patent Document 1).
  • an overvoltage absorption means is provided between the rectifier circuit and the step-down circuit.
  • an overvoltage detection circuit that detects a surge voltage that has entered the AC circuit using a Zener diode, and a series body of a thyristor and a capacitor are connected in parallel at both ends of the input part of the step-down circuit, and the overvoltage detection circuit detects the surge voltage.
  • a thyristor is turned on and a surge voltage is absorbed by a capacitor when detected (for example, see Patent Document 2).
  • the booster circuit boosts the output voltage of the step-down circuit and absorbs the surge current when the output voltage of the step-down circuit reaches a predetermined value.
  • the components constituting the leakage detection circuit are prevented from being damaged by an overvoltage.
  • the surge is bypassed by the MOS-FET constituting the step-down circuit, there is a problem that a large MOS-FET having a large allowable loss is required. It is also conceivable to provide the protection means described in Patent Document 2 between the rectifier circuit and the step-down circuit in Patent Document 1.
  • the thyristor bypasses the surge, so that most of the surge voltage is borne by the input resistance provided on the AC circuit side from the rectifier circuit. Accordingly, the output voltage of the rectifier circuit, which is the voltage between the anode and cathode of the thyristor, is equal to the on-voltage (eg, 2V) of the thyristor, and the voltage between the gate and source of the MOS-FET is the gate threshold voltage of the MOS-FET. (For example, 4V) or less. Then, the output voltage of the step-down circuit drops to 0 V, for example, and the tripping device cannot be driven, and there is a problem that the function as a leakage breaker may be lost.
  • the on-voltage eg, 2V
  • the voltage between the gate and source of the MOS-FET is the gate threshold voltage of the MOS-FET. (For example, 4V) or less.
  • the present invention has been made to solve the above-described problems, and is intended to enable the use of a MOS-FET having a small maximum permissible loss and to reduce the size of a leakage breaker.
  • the present invention provides an open / close contact that opens and closes an electric circuit, a leakage current detector that detects a leakage current of the electric circuit, a power supply circuit that steps down electric power supplied from the electric circuit to low-voltage electric power, and is supplied with power from the power supply circuit.
  • a leakage detection circuit that detects leakage based on the detection signal of the leakage current detector, a tripping device that is driven by the leakage detection circuit to open the switching contact, and a line on the input side of the power supply circuit.
  • a switching element that conducts when the input voltage of the circuit reaches a predetermined value, and a first Zener diode that is provided with a cathode facing the positive side of the power supply circuit and forms a series body with the switching element.
  • the surge voltage superimposed on the electric circuit is bypassed by the series body of the switching element and the first Zener diode provided on the input side of the step-down circuit, the maximum allowable loss is small in the step-down circuit. Therefore, it is possible to use a small component and reduce the size of the earth leakage breaker.
  • FIG. 1 is a circuit diagram showing a configuration of an earth leakage circuit breaker using a power supply circuit according to Embodiment 1 of the present invention.
  • an earth leakage breaker 100 is connected to an open / close contact 2 that opens and closes an AC circuit 1 and a zero-phase current transformer 3 inserted in the AC circuit 1, and detects an earth leakage based on a detection signal thereof.
  • a power supply circuit 5 that supplies power to both the leakage detection circuit 6 and the tripping device 4.
  • the power supply circuit 5 converts the AC voltage input from the AC circuit 1 into a predetermined DC voltage, supplies an excitation current to the tripping coil 4a, and supplies a predetermined current lower than the output voltage of the power supply circuit 5 by the constant voltage circuit 7. The voltage is converted and supplied to the leakage detection circuit 6.
  • the power supply circuit 5 is connected to the AC circuit 1 and is connected to a resistor for limiting the current from the AC circuit 1, that is, a current limiting circuit 51, and a subsequent stage of the current limiting circuit 51, and converts an AC voltage from the diode bridge into a DC voltage.
  • a surge absorption circuit 54 that absorbs a surge voltage from the electric circuit 1.
  • the step-down circuit 53 has a field effect transistor 53a (hereinafter referred to as FET) whose drain is connected to the positive electrode of the output of the rectifier circuit 52, a cathode connected to the gate of the FET 53a, and an anode as a negative electrode of the output of the rectifier circuit 52.
  • FET field effect transistor
  • a second Zener diode 53b connected to the first resistor 53c, a first resistor 53c having one end connected to the drain of the FET 53a, one end connected to the other end of the first resistor 53c, and the other end connected to the second Zener.
  • a second resistor 53d connected to the cathode of the diode 53b.
  • the surge absorption circuit 54 has a thyristor 54a whose anode is connected to the connection point between the positive electrode of the output of the rectifier circuit 52 and the drain of the FET 53a, that is, a switching element, and a cathode connected to the cathode of the thyristor 54a.
  • One end of the first Zener diode 54b connected to the negative electrode of the output of the circuit 52, the gate of the thyristor 54a, and the other end connected to the connection point of the first resistor 53c and the second resistor 53d.
  • the third resistor 54c includes a fourth resistor 54d having one end connected to the gate of the thyristor 54a and the other end connected to the anode of the first Zener diode 54b.
  • the thyristor 54a is provided on the positive side of the output of the rectifier circuit 52 and the first Zener diode 54b is provided on the negative side of the output of the rectifier circuit 52, the first Zener diode 54b is provided on the positive side of the output of the rectifier circuit 52.
  • the thyristor 54a may be provided on the negative side of the output of the rectifier circuit.
  • the means for detecting the surge voltage is only the thyristor 54a.
  • the thyristor 54a is not limited to this, and can be configured by a switching element such as a MOSFET, IGBT, or bipolar transistor.
  • the trip coil 4a and the transistor 8 are shown as being connected to the output of the step-down circuit 53, but may be connected to the output of the rectifier circuit 52.
  • the gate application voltage Vb applied to the gate of the thyristor 54a becomes the voltage across the fourth resistor 54d obtained by further dividing the voltage Vc by the third resistor 54c and the fourth resistor 54d.
  • the value of the gate application voltage Vb that satisfies the equation (1) can be obtained from the following equation (2).
  • Rf is a resistance value of the fourth resistor 54d
  • Ie is a current flowing through the third resistor 54c and the resistor 54d.
  • Vb Rf ⁇ Ie (2)
  • the current Ie to be substituted into the equation (2) can be obtained by solving a ternary simultaneous equation consisting of the following equations (3) to (5).
  • Ic Id + Ie (3)
  • Va ⁇ Vz Rc ⁇ Ic + Rd ⁇ Id (4)
  • Va (Re + Rf) ⁇ Ie + Rc ⁇ Ic (5)
  • Ic is a current flowing through the first resistor 53c
  • Id is a current flowing through the second resistor 53d
  • Vz is a Zener voltage of the second Zener diode 53b.
  • the gate trigger voltage of the thyristor 54a is 2V
  • the gate application voltage Vb (17.5V) is smaller than 22V.
  • the voltage Vb does not reach the turn-on potential and the thyristor 54a does not conduct between the anode and the cathode.
  • the current Id flows to the second Zener diode 53b through the first resistor 53c and the second resistor 53d by the DC voltage Va.
  • the gate voltage of the FET 53a becomes the Zener voltage of the second Zener diode 53b
  • the output voltage Vd of the step-down circuit 53 is Vd ⁇ (Zener voltage of the second Zener diode 53b) ⁇ (Gate threshold voltage of the FET 53a) It becomes.
  • the Zener voltage of the second Zener diode 53b is 20V and the gate threshold voltage of the FET 53a is 5V
  • the output voltage Vd of the power supply circuit 5 is supplied with power (for example, 15V) to the tripping coil 4a and the constant voltage circuit 7, and the constant voltage circuit 7 steps down the output voltage of the power supply circuit 5 and supplies the leakage detection circuit 6 with a predetermined voltage.
  • a constant voltage for example, DC5V is supplied.
  • a surge voltage for example, several kV
  • a surge voltage for example, several kV
  • the DC voltage Va of the rectifier circuit 52 is divided by the first resistor 53c, the second resistor 53d, and the second Zener diode 53b that are connected in series.
  • a voltage across the series body of the second resistor 53d and the second Zener diode 53b is defined as a voltage Vc.
  • the gate application voltage Vb applied to the gate of the thyristor 54a is a voltage across 54d obtained by further dividing the voltage Vc by the third resistor 54c and the fourth resistor 54d.
  • the gate trigger voltage of the thyristor 54a is 2V
  • the gate applied voltage Vb (23.7V) is higher than 22V.
  • the applied voltage Vb reaches a potential for turning on, and the anode and cathode of the thyristor 54a are conducted.
  • the direct current voltage Va causes the current Id to flow to the second Zener diode 53b via the first resistor 53c and the second resistor 53d.
  • the gate voltage of the FET 53a becomes the Zener voltage of the second Zener diode 53b, and considering the ON voltage of the FET 53a, the output voltage Vd of the step-down circuit 53 is Vd ⁇ (Zener voltage of the second Zener diode 53b) ⁇ (Gate threshold voltage of the FET 53a) It becomes.
  • the Zener voltage of the second Zener diode 53b is 20V and the gate threshold voltage of the FET 53a is 5V
  • the voltage Vd output from the step-down circuit 53 is supplied with power from the tripping coil 4a and the constant voltage circuit 7 (for example, 15V).
  • a predetermined constant voltage for example, DC 5V
  • DC 5V can be supplied to the leakage detection circuit 6 by reducing the output voltage.
  • the leakage detection circuit 6 When the generated signal is determined by the leakage detection circuit 6 and exceeds a predetermined reference value, the leakage detection circuit 6 outputs a leakage trip signal to the transistor 8. Then, the transistor 8 is turned on by this output, and an exciting current flows from the power supply circuit 5 to the trip coil 4a via the transistor 8, so that the trip mechanism 4b operates, so that the switching contact 2 can be opened.
  • the thyristor 54a is turned on and the surge absorbing circuit 54 absorbs the surge voltage
  • the first voltage when the DC voltage Va output from the rectifier circuit 52 becomes equal to or lower than the Zener voltage (for example, 20V) of the first Zener diode 54b. Since the current Ib flowing through the zener diode 54b becomes less than or equal to the turn-off current of the thyristor 54a (for example, several ⁇ A), the thyristor 54a is turned off and becomes non-conductive.
  • power is supplied from the step-down circuit 53 and the leakage detection circuit 6 detects the leakage based on the detection signal of the zero-phase current transformer 3.
  • the power supply is supplied from the step-down circuit 53 and the leakage detection circuit 6.
  • a thyristor 54a that is provided between the input device of the step-down circuit 53 and that is turned on when the input voltage of the step-down circuit 53 reaches a predetermined value.
  • 53 is provided with a first Zener diode 54b in series with the thyristor 54a, with the cathode facing the positive electrode side, and the surge voltage superimposed on the AC circuit 1 is in series with the thyristor 54a and the first Zener diode 54b. Since the FET constituting the step-down circuit 53 has a maximum allowable loss and a small outer shape, it can be used, and the leakage breaker can be miniaturized.
  • the surge voltage When the surge voltage is superimposed on the AC circuit 1, the surge voltage is bypassed by the series body of the thyristor 54a and the first Zener diode 54b, and the output voltage of the step-down circuit 53 is maintained even when the thyristor 54a is turned on. Therefore, the leakage detection circuit 6 and the tripping device 4 can be operated.
  • the circuit breaker can be miniaturized.
  • FIG. FIG. 2 is a circuit diagram showing a configuration of an earth leakage circuit breaker using a power supply circuit according to Embodiment 2 of the present invention.
  • the earth leakage circuit breaker 101 of the present embodiment is obtained by omitting the first Zener diode 54b in the first embodiment and sharing it with the second Zener diode 53b. The effect of this is achieved.
  • the first Zener diode 54b used in the first embodiment is deleted, and therefore the cathode of the thyristor 54a is connected to the second resistor 53d and the second Zener. It is connected to a connection point with the diode 53b. Since other configurations are the same as those in the first embodiment, detailed description thereof is omitted.
  • the gate application voltage Vb applied to the gate of the thyristor 54a becomes the voltage across the fourth resistor 54d obtained by further dividing the voltage Vc by the third resistor 54c and the fourth resistor 54d.
  • the cathode of the thyristor 54a is connected to the connection point between the second resistor 53d and the second Zener diode 53b, and therefore it is necessary to satisfy the following equation (6). is there.
  • the value of the gate application voltage Vb satisfying the equation (6) is obtained by solving the ternary simultaneous equation consisting of the equations (3) to (5) as in the first embodiment, and obtaining the current Ie.
  • the resistance value Rc of the first resistor 53c is 1.8 M ⁇
  • the resistance value Rd of the second resistor 53d is 83 k ⁇
  • the resistance value Re of the third resistor 54c is 5.6 k ⁇
  • the resistance value Rf of the resistor 54d is 51 k ⁇
  • the Zener voltage of the second Zener diode 53b is 20V.
  • the gate trigger voltage of the thyristor 54a is 2V
  • the gate applied voltage Vb (17.5V) is lower than 22V. Since the applied voltage Vb does not reach the turn-on potential, the thyristor 54a does not conduct between the anode and the cathode.
  • the gate trigger voltage of the thyristor 54a is 2V
  • the gate applied voltage Vb (23.7V) is higher than 23.7V, so the thyristor 54a
  • the gate applied voltage Vb reaches a turn-on potential, and the anode and cathode of the thyristor 54a become conductive.
  • the thyristor 54a is turned on and the surge absorption circuit 54 absorbs the surge voltage
  • the DC voltage Va output from the rectifier circuit 52 becomes equal to or lower than the Zener voltage (for example, 20V) of the second Zener diode 53b
  • power is supplied from the step-down circuit 53 and the leakage detection circuit 6 detects the leakage based on the detection signal of the zero-phase current transformer 3.
  • the power supply is supplied from the step-down circuit 53 and the leakage detection circuit 6.
  • a thyristor 54a that is provided between the input device of the step-down circuit 53 and that is turned on when the input voltage of the step-down circuit 53 reaches a predetermined value.
  • 53 is provided with a second Zener diode 53b in series with the thyristor 54a, with the cathode facing the positive electrode side, and the surge voltage superimposed on the AC circuit 1 is in series with the thyristor 54a and the second Zener diode 53b. Since the FET constituting the step-down circuit 53 has a maximum allowable loss and a small outer shape, it can be used, and the leakage breaker can be miniaturized.
  • the second Zener diode 53b forms a series body with the thyristor 54a, so that the number of parts used can be reduced and the size of the earth leakage breaker can be reduced. Can be planned.
  • FIG. 3 is a circuit diagram showing a configuration of a DC leakage breaker using a power supply circuit according to Embodiment 3 of the present invention.
  • the leakage breaker 102 according to the present embodiment is obtained by applying the surge absorbing circuit 54 according to the first embodiment to a DC leakage breaker.
  • a zero-phase current transformer is used as a leakage current detector.
  • a flux gate sensor 31 capable of detecting a DC leakage current is used as a leakage current detector, and a thyristor 54a is used. Is changed to a gate turn-off thyristor 54e.
  • the present embodiment also exhibits various effects similar to those of the first embodiment described above.
  • the fluxgate sensor 31 is saturated while reversing the direction of the magnetic flux density of the annular core 31a through which the DC circuit 11 is inserted, the coil 31b wound around the core 31a, and the coil 31b.
  • the rectifier circuit 52 provided in the first embodiment may be provided to prevent a failure when the positive electrode and the negative electrode are reversely connected.
  • the step-down circuit 53 and the surge absorption circuit 54 are directly connected.
  • the anode of the thyristor 54a and the drain of the FET 53a are connected to the positive side of the voltage supplied from the DC circuit 11, and the anode of the first Zener diode 54b and the negative side of the voltage supplied from the DC circuit 11 are connected.
  • the anode of the second Zener diode 53b is connected.
  • the gate turn-off thyristor 54e is not limited to this, and may be any self-extinguishing type switching element, and may be configured by, for example, a MOSFET, an IGBT, or a bipolar transistor. Since the operation of the power supply circuit 5 in the present embodiment is the same as that after the rectification circuit 52 converts the DC voltage into the first embodiment, the description thereof is omitted.
  • the flux gate sensor 31 detects the leakage of the DC circuit 11, and power is supplied from the step-down circuit 53 and is driven by the flux gate sensor 31 to open the switching contact.
  • the thyristor 54a is provided between the tripping device 4 to be separated and the input side line of the step-down circuit 53, and is turned on when the input voltage of the step-down circuit 53 reaches a predetermined value.
  • the cathode is directed to the positive side of the step-down circuit 53.
  • the FET which comprises 53 can use the thing with a small maximum permissible loss and a small external shape, and can aim at size reduction of an earth-leakage circuit breaker. Kill.
  • FIG. 4 is a circuit diagram showing a configuration of a DC leakage breaker using a power supply circuit according to Embodiment 4 of the present invention.
  • the earth leakage breaker 103 according to the present embodiment is obtained by applying the surge absorbing circuit 54 according to the second embodiment to a DC earth leakage breaker.
  • a zero-phase current transformer is used as the leakage current detector.
  • the flux gate sensor 31 capable of detecting a DC leakage current is used as the leakage current detector, and the thyristor 54a. Is changed to a gate turn-off thyristor 54e.
  • the rectifier circuit 52 that was not provided in the third embodiment is provided to prevent failure when the positive and negative electrodes are reversely connected.
  • the fluxgate sensor 31 is saturated while reversing the direction of the magnetic flux density of the annular core 31a through which the DC circuit 11 is inserted, the coil 31b wound around the core 31a, and the coil 31b.
  • power is supplied from the step-down circuit 53 and the flux gate sensor 31 detects the leakage of the DC circuit 11, and power is supplied from the step-down circuit 53 and is driven by the flux gate sensor 31 to open the switching contact.
  • a thyristor 54a that is provided between the tripping device 4 to be separated and the input side line of the step-down circuit 53, and that conducts when the input voltage of the step-down circuit 53 reaches a predetermined value, and a cathode on the positive side of the input of the step-down circuit 53
  • the second Zener diode 53b in series with the thyristor 54a, and the surge voltage superimposed on the AC circuit 1 is bypassed by the series body of the thyristor 54a and the first Zener diode 54b.
  • the FET constituting the step-down circuit 53 one having a small maximum allowable loss and a small outer shape can be used, so that the leakage breaker can be miniaturized. Door can be.
  • the second Zener diode 53b forms a series body with the thyristor 54a, so that the number of parts used can be reduced and the size of the earth leakage breaker can be reduced. Can be planned.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Electronic Switches (AREA)

Abstract

 交流電路(1)を開閉する開閉接点(2)と、交流電路(1)の漏洩電流を検出する零相電流器(3)と、交流電路(1)から供給された電力を定電圧の電力に降圧する降圧回路(53)と、降圧回路(53)より電源供給され、零相変流器(3)の検出信号に基づいて漏電を検出する漏電検出回路(6)と、降圧回路(53)より電源供給され、漏電検出回路(6)に駆動されて開閉接点(2)を開離させる引き外し装置(4)と、降圧回路(53)の入力側の線間に設けられ、降圧回路(53)の入力電圧が所定値に達したとき導通するサイリスタ(54a)と、降圧回路(53)の正極側にカソードを向けて設けられ、サイリスタ(54a)と直列体をなす第1のツェナーダイオード(54b)とを備えた。

Description

漏電遮断器
 この発明は、電路の漏洩電流が所定値以上になったとき、この電路を開放する漏電遮断器に関し、特に漏電遮断器の動作電源に関するものである。
 この種の漏電遮断器に内蔵される電源回路は、交流電路から供給された交流電圧(例えばAC100V)を整流回路により直流電圧に変換した後、整流された直流電圧を降圧回路により、より低い電圧(例えば、DC24V)に変換し、漏電検出回路や引き外し装置に駆動電源を供給するものである。
 このような電源回路では、交流電路に落雷やアーク接地等により生じるサージ電圧や電磁接触器やリレーの開閉により生じる開閉サージなどの瞬時的又は断続的なサージ電圧(例えば数キロボルト)から漏電検出回路や引き外し装置を保護する必要がある。
 その保護手段としては、整流回路の出力電圧からサージ電圧を検出する電圧検出回路と、この電圧検出回路がサージ電圧を検出したとき降圧回路の出力電圧を昇圧させる昇圧回路と、降圧回路の出力側に設けられ、降圧回路の出力電圧が所定の値に達したときサージ電流を吸収する電流吸収回路を設けた電源回路が知られている(例えば、特許文献1参照)。
 また、別のサージ電圧の保護手段としては、整流回路と降圧回路の間に過電圧吸収手段を設けたものがある。より詳細には、ツェナーダイオードを用い交流回路に侵入したサージ電圧を検出する過電圧検出回路と、降圧回路の入力部の両端にサイリスタとコンデンサの直列体を並列接続し、過電圧検出回路がサージ電圧を検出した場合に、サイリスタをオンさせてサージ電圧をコンデンサに吸収させるものがある(例えば、特許文献2参照)。
特開2009-95125号公報(図1) 特開2009-195033号公報(図5)
 従来の漏電遮断器の電源回路では、サージ電圧が誘起された場合、昇圧回路により降圧回路の出力電圧を昇圧させ、降圧回路の出力電圧が所定の値に達したときサージ電流を吸収する電流吸収回路に電流を通過させることで一定の電圧にクランプされ、漏電検出回路を構成する部品が過電圧により故障することを防止している。この場合、降圧回路を構成するMOS-FETでサージをバイパスするため、許容損失の大きい大形のMOS-FETが必要となるという問題があった。
 また、特許文献1における整流回路と降圧回路の間に特許文献2に記載の保護手段を設けることも考えられる。しかしながら、サージ電圧が印加されたとき、サイリスタはサージをバイパスするため、サージ電圧のほとんどは整流回路より交流電路側に設けられた入力抵抗が負担することとなる。従って、サイリスタのアノードとカソード間の電圧である整流回路の出力電圧はサイリスタのオン電圧(例えば、2V)と等しくなり、MOS-FETのゲートとソース間の電圧はMOS-FETのゲート・スレッショルド電圧(例えば、4V)以下となる。そうすると、降圧回路の出力電圧は、例えば、0Vまで低下してしまい引き外し装置を駆動できなくなり、漏電遮断器としての機能を喪失する恐れがあるという問題が生じる。
 この発明は、上述のような課題を解決するためになされたもので、最大許容損失が小さいMOS-FETの使用を可能とし、漏電遮断器の小形化を図ることを目的とするものである。
 この発明は、電路を開閉する開閉接点と、電路の漏洩電流を検出する漏洩電流検出器と、電路から供給された電力を低電圧の電力に降圧する電源回路と、電源回路より電源供給され、漏洩電流検出器の検出信号に基づいて漏電を検出する漏電検出回路と、漏電検出回路に駆動されて開閉接点を開離させる引き外し装置と、電源回路の入力側の線間に設けられ、電源回路の入力電圧が所定値に達したとき導通するスイッチング素子と、電源回路の正極側にカソードを向け設けられ、スイッチング素子と直列体をなす第1のツェナーダイオードとを備えたものである。
 この発明によれば、電路に重畳されたサージ電圧が、降圧回路の入力側に設けられたスイッチング素子と第1のツェナーダイオードの直列体でバイパスされるので、降圧回路に最大許容損失が小さく外形が小さい部品を使用でき、漏電遮断器の小形化を図ることができる。
この発明の実施の形態1における電源回路を用いた漏電遮断器の構成を示す回路図である。 この発明の実施の形態2における電源回路を用いた漏電遮断器の構成を示す回路図である。 この発明の実施の形態3における電源回路を用いた直流用の漏電遮断器の構成を示す回路図である。 この発明の実施の形態4における電源回路を用いた直流用の漏電遮断器の構成を示す回路図である。
実施の形態1.
 図1は本発明の実施の形態1における電源回路を用いた漏電遮断器の構成を示す回路図である。
 図1において、漏電遮断器100は、交流電路1を開閉する開閉接点2と、交流電路1中に挿入された零相変流器3に接続され、その検出信号に基づいて漏電を検出する漏電検出回路6と、この漏電検出回路6の出力信号によりトランジスタ8を介して付勢される引き外しコイル4aとこの引き外しコイル4aの付勢時に開閉接点2を開離駆動する引き外し機構4bとを有する引き外し装置4と、漏電検出回路6と引き外し装置4の両方に給電する電源回路5とを有している。
 電源回路5は、交流電路1から入力される交流電圧を所定の直流電圧に変換して引き外しコイル4aに励磁電流を供給するとともに、定電圧回路7により電源回路5の出力電圧より低い所定の電圧に変換し漏電検出回路6へ供給する。
 以下、電源回路5の詳細について説明する。
 電源回路5は、交流電路1に接続され、交流電路1から電流を制限する抵抗すなわち電流制限回路51と、この電流制限回路51の後段に接続され、ダイオードブリッジによる交流電圧を直流電圧に変換する整流回路52と、この整流回路52の出力側に設けられ、整流回路52からの直流電圧をより低い直流電圧に降圧する降圧回路53と、整流回路52および降圧回路53の間に設けられ、交流電路1からのサージ電圧を吸収するサージ吸収回路54と、を有している。
 降圧回路53は、整流回路52の出力の正極にドレインが接続された電界効果トランジスタ53a(以下、FETと記す)と、このFET53aのゲートにカソードが接続され、アノードが整流回路52の出力の負極に接続された第2のツェナーダイオード53bと、FET53aのドレインに一端が接続された第1の抵抗53cと、この第1の抵抗53cの他端に一端が接続され、他端が第2のツェナーダイオード53bのカソードに接続された第2の抵抗53dと、から構成されている。
 サージ吸収回路54は、整流回路52の出力の正極とFET53aのドレインとの接続点にアノードが接続されたサイリスタ54a、すなわち、スイッチング素子と、このサイリスタ54aのカソードにカソードが接続され、アノードが整流回路52の出力の負極に接続された第1のツェナーダイオード54bと、サイリスタ54aのゲートに一端が接続され、他端が第1の抵抗53cと第2の抵抗53dとの接続点に接続された第3の抵抗54cと、サイリスタ54aのゲートに一端が接続され、他端が第1のツェナーダイオード54bのアノードに接続された第4の抵抗54dと、から構成されている。
 なお、サイリスタ54aが整流回路52の出力の正極側、第1のツェナーダイオード54bが整流回路52の出力の負極側に設けられているが、第1のツェナーダイオード54bを整流回路52の出力の正極側、サイリスタ54aを整流回路の出力の負極側に設けてもよい。この場合、サージ電圧を検出する手段はサイリスタ54aのみとなる。
 また、サイリスタ54aは、これに限らず、例えば、MOSFET、IGBTやバイポーラトランジスタなどのスイッチング素子で構成することが可能である。
 また、引き外しコイル4aおよびトランジスタ8は降圧回路53の出力に接続された例で示したが、整流回路52の出力に接続してもよい。
 次に動作について説明する。
 まず、サージ電圧の印加がない通常状態の場合について説明する。
 交流電路1から交流電圧(例えば、AC100V~440V程度)が供給されると交流電流Iaが電流制限回路51に流れ、整流回路52によって直流電圧Vaに変換される。
 この直流電圧Vaは、整流回路52からの出力の直流電圧Vaが直列接続された第1の抵抗53c、第2の抵抗53d、および第2のツェナーダイオード53bによって分圧される。そして、第2の抵抗53dおよび第2のツェナーダイオード53bの直列体の両端電圧を電圧Vcとする。
 そうすると、サイリスタ54aのゲートに印加されるゲート印加電圧Vbは、電圧Vcをさらに第3の抵抗54cと第4の抵抗54dとによって分圧された第4の抵抗54dの両端電圧となる。
 サイリスタ54aがターンオンするには、
  Vb>(第1のツェナーダイオード54bのツェナー電圧)+(サイリスタ54aのゲートトリガ電圧)   (1)
を満足する必要がある。
 ここで、式(1)を満足するゲート印加電圧Vbの値は、次の式(2)より求めることができる。なお、Rfは第4の抵抗54dの抵抗値、Ieは第3の抵抗54cおよび抵抗54dを流れる電流である。
   Vb=Rf×Ie              (2)
 さらに、式(2)に代入する電流Ieについては、以下に示す式(3)~式(5)からなる3元連立方程式を解いて求めることができる。
   Ic=Id+Ie              (3)
   Va-Vz=Rc×Ic+Rd×Id     (4)
   Va=(Re+Rf)×Ie+Rc×Ic   (5)
 ここで、Icは第1の抵抗53cを流れる電流、Idは第2の抵抗53dを流れる電流、Vzは第2のツェナーダイオード53bのツェナー電圧である。
 今、例えば、交流電路1の出圧がAC440Vのとき整流回路52の出力の直流電圧Vaは最大値がおよそ622Vとなり、第2のツェナーダイオード53bのツェナー電圧Vzを20V、第1の抵抗53cの抵抗値Rcを1.8MΩ、第2の抵抗53dの抵抗値Rdを83kΩ、第3の抵抗54cの抵抗値Reを5.6kΩ、第4の抵抗54dの抵抗値Rfを51kΩとし、これらを式(3)から式(5)に代入すると、
 Ic=Id+Ie   (3’)
 622-20=1.8×10×Ic+83×10×Ie   (4’)
 622=(5.6×10+51×10)×Ie+1.8×10×Ic  (5’)
となる。この(3’)から(5’)に示す3元連立方程式をIeについて解くと、Ie=0.34mAとなる。さらに、このIeの値を、式(2)に代入すれば、
   Vb=51×10×0.34×10-3=17.5V
となる。
 この時、サイリスタ54aのゲートトリガ電圧を2Vとすれば、サイリスタ54aがターンオンする電圧=2V+20V=22Vであり、ゲート印加電圧Vb(17.5V)は22Vより小さい電圧のため、サイリスタ54aのゲート印加電圧Vbはターンオンする電位に達せずサイリスタ54aのアノードとカソード間は導通しない。
 一方、直流電圧Vaによって第1の抵抗53c、第2の抵抗53dを介し、第2のツェナーダイオード53bへ電流Idが流れる。これによってFET53aのゲート電圧は第2のツェナーダイオード53bのツェナー電圧となり、FET53aのゲート・スレッショルド電圧を考慮すると、降圧回路53の出力の電圧Vdは、
Vd≒(第2のツェナーダイオード53bのツェナー電圧)-(FET53aのゲート・スレッショルド電圧)
となる。
 ここで第2のツェナーダイオード53bのツェナー電圧を20Vとし、FET53aのゲート・スレッショルド電圧を5Vとしたとき、電源回路の出力の電圧Vcは、Vc≒20-5=15Vとなる。
 電源回路5の出力の電圧Vdは引き外しコイル4a及び定電圧回路7に電源が給電(例えば15V)され、定電圧回路7は電源回路5の出力電圧を降圧して漏電検出回路6に所定の一定電圧(例えばDC5V)を給電する。
 このような給電状態において、交流電路1に漏電が発生した場合は、零相変流器3の出力に信号が発生し、漏電検出回路6により零相変流器3の出力信号レベルが所定の基準値を超えたことを判別し、漏電トリップ信号をトランジスタ8に出力する。トランジスタ8はその出力によりオンとなり電源回路5からトランジスタ8を介して引き外しコイル4aに励磁電流が流れ、引き外し機構4bが動作することにより、開閉接点2が開路する。
 次に、交流電路1にサージ電圧が重畳された場合について説明する。
 交流電圧にサージ電圧(例えば、数kV)が重畳されると、整流回路52により直流電圧Vaに整流されたサージ電圧が現れる。整流回路52の直流電圧Vaは、直列接続された第1の抵抗53c、第2の抵抗53d、および第2のツェナーダイオード53bによって分圧される。そして、第2の抵抗53dおよび第2のツェナーダイオード53bの直列体の両端電圧を電圧Vcとする。サイリスタ54aのゲートに印加されるゲート印加電圧Vbは、電圧Vcをさらに第3の抵抗54cと第4の抵抗54dによって分圧した54dの両端の電圧となる。
 交流電路1にサージ電圧1kVが印加されたとき、整流回路52の出力の直流電圧Vaの最大値はおよそ1kVとなる。これらを式(3)から式(5)に代入すると、
 Ic=Id+Ie   (3’’)
 1000-20=1.8×10×Ic+83×10×Ie      (4’’)
 1000=(5.6×10+51×10)×Ie+1.8×10×Ic   (5’’)
となり、この(3’’)から(5’’)に示す3元連立方程式をIeについて解くと、Ie=0.46mAとなる。このIeの値を、式(2)に代入すれば、
   Vb=51×10×0.46×10-3=23.7V
となる。
 この時、サイリスタ54aのゲートトリガ電圧を2Vとすれば、サイリスタ54aがターンオンする電圧=2V+20V=22Vであり、ゲート印加電圧Vb(23.7V)は22Vより高い電圧となるため、サイリスタ54aのゲート印加電圧Vbはターンオンする電位に達しサイリスタ54aのアノードとカソード間は導通する。
 サイリスタ54aがターンオンした状態における整流回路52の出力の直流電圧Vaは、
 Va=サイリスタ54aのゲート・スレッショルド電圧+第1のツェナーダイオード54bのツェナー電圧
で一定に保たれる。
 サイリスタ54aのオン電圧は2V、第1のツェナーダイオード54bのツェナー電圧は20Vであるので、Va=2+20=22Vとなる。この直流電圧Vaによって第1の抵抗53c、第2の抵抗53dを介して第2のツェナーダイオード53bへ電流Idが流れる。これによってFET53aのゲート電圧は、第2のツェナーダイオード53bのツェナー電圧となり、FET53aのON電圧を考慮すると、降圧回路53の出力の電圧Vdは、
 Vd≒(第2のツェナーダイオード53bのツェナー電圧)-(FET53aのゲート・スレッショルド電圧)
となる。
 ここで第2のツェナーダイオード53bのツェナー電圧は20V、FET53aのゲート・スレッショルド電圧は5Vであるので、降圧回路53の出力の電圧Vcは、Vc≒20-5=15Vとなる。
 このように、サイリスタ54aがターンオンした状態でも降圧回路53の出力の電圧Vdは、引き外しコイル4a及び定電圧回路7に電源が給電(例えば、15V)され、定電圧回路7は電源回路5の出力電圧を降圧して漏電検出回路6に所定の一定電圧(例えば、DC5V)を給電することができる。
 よって、交流電路1にサージ電圧が重畳され、サージ吸収回路54のサイリスタ54aが導通しサージ電圧を吸収している時に交流電路1に漏電が発生したとしても、零相変流器3の出力に発生した信号を漏電検出回路6で判定し、所定の基準値を超えた場合には、漏電検出回路6が漏電トリップ信号をトランジスタ8に出力する。そして、この出力によりトランジスタ8はオンとなり電源回路5からトランジスタ8を介して引き外しコイル4aに励磁電流が流れ、引き外し機構4bが動作するので、開閉接点2を開路させることができる。
 また、サイリスタ54aが導通しサージ電圧をサージ吸収回路54が吸収した後、整流回路52の出力の直流電圧Vaが、第1のツェナーダイオード54bのツェナー電圧(例えば、20V)以下となると、第1のツェナーダイオード54bを流れる電流Ibが、サイリスタ54aのターンオフ電流以下になるため(例えば、数μA)サイリスタ54aはターンオフし、非導通となる。
 本実施の形態によれば、降圧回路53より電源供給され、零相変流器3の検出信号に基づいて漏電を検出する漏電検出回路6と、降圧回路53より電源供給され、漏電検出回路6に駆動されて開閉接点を開離させる引き外し装置4と、降圧回路53の入力側の線間に設けられ、降圧回路53の入力電圧が所定値に達したとき導通するサイリスタ54aと、降圧回路53の正極側にカソードを向け設けられ、サイリスタ54aと直列体をなす第1のツェナーダイオード54bとを備え、交流電路1に重畳されたサージ電圧はサイリスタ54aと第1のツェナーダイオード54bの直列体でバイパスされるので、降圧回路53を構成するFETは最大許容損失が小さく外形が小さいものが使用可能となり漏電遮断器の小形化を図ることができる。
 また、サージ電圧が交流電路1に重畳されたとき、サージ電圧はサイリスタ54aと第1のツェナーダイオード54bの直列体でバイパスされ、サイリスタ54aがターンオンしたときも降圧回路53の出力電圧は維持されるので、漏電検出回路6および引き外し装置4を動作させることができる。
 また、サージ電圧検出のための第1のツェナーダイオード54bはツェナー電圧が低電圧のもので回路を構成できるので、漏電遮断器の小形化を図ることができる。
実施の形態2.
 図2は本発明の実施の形態2における電源回路を用いた漏電遮断器の構成を示す回路図である。
 本実施の形態の漏電遮断器101は、実施の形態1における第1のツェナーダイオード54bを省略し、第2のツェナーダイオード53bで兼用させたものであり、上述した実施の形態1と同様な種々の効果を奏するものである。
 図2において、漏電遮断器101における電源回路5では、実施の形態1で使用していた第1のツェナーダイオード54bを削除したので、サイリスタ54aのカソードは、第2の抵抗53dと第2のツェナーダイオード53bとの接続点に接続されている。その他の構成については、実施の形態1と同様であるので、詳細説明は省略する。
 次に動作について説明する。
 まず、サージ電圧の印加がない通常状態の場合について説明する。
 交流電路1から交流電圧(例えば、AC100V~440V程度)が供給されると交流電流Iaが電流制限回路51に流れ、整流回路52によって直流電圧Vaに変換される。
 この直流電圧Vaは、整流回路52からの直流電圧Vaが直列接続された第1の抵抗53c、第2の抵抗53d、および第2のツェナーダイオード53bによって分圧される。そして、第2の抵抗53dおよび第2のツェナーダイオード53bの直列体の両端電圧を電圧Vcとする。
 そうすると、サイリスタ54aのゲートに印加されるゲート印加電圧Vbは、電圧Vcをさらに第3の抵抗54cと第4の抵抗54dとによって分圧された第4の抵抗54dの両端電圧となる。
 一方、サイリスタ54aがターンオンするには、サイリスタ54aのカソードが、第2の抵抗53dと第2のツェナーダイオード53bとの接続点に接続されているので、以下の式(6)を満足する必要がある。
  Vb>(第2のツェナーダイオード53bのツェナー電圧)+(サイリスタ54aのゲートトリガ電圧)   (6)
 ここで、式(6)を満足するゲート印加電圧Vbの値は、実施の形態1と同じく式(3)~式(5)からなる3元連立方程式を解いて電流Ie求め、このIeの値を式(2)に代入することに求めることができる。
 実施の形態1と同じく、第1の抵抗53cの抵抗値Rcを1.8MΩ、第2の抵抗53dの抵抗値Rdを83kΩ、第3の抵抗54cの抵抗値Reを5.6kΩ、第4の抵抗54dの抵抗値Rfを51kΩ、第2のツェナーダイオード53bのツェナー電圧を20Vとする。
 実施の形態1と同じく、電流Ieは、Ie=0.34mAとなる。このIeの値を、式(2)に代入すれば、
   Vb=51×10×0.34×10-3=17.5V
となる。
 この時、サイリスタ54aのゲートトリガ電圧を2Vとすれば、サイリスタ54aがターンオンする電圧=2V+20V=22Vであり、ゲート印加電圧Vb(17.5V)は22Vより低い電圧となるため、サイリスタ54aのゲート印加電圧Vbはターンオンする電位に達しないためにサイリスタ54aのアノードとカソード間は導通しない。
 次に、交流電路1にサージ電圧が重畳された場合について説明する。
 交流電圧にサージ電圧(例えば、1kV)が重畳されると、実施の形態1と同じく、Ie=0.46mAとなる。求めたIeの値を、式(2)に代入すれば、
   Vb=51×10×0.46×10-3=23.7V
となる。
 この時、サイリスタ54aのゲートトリガ電圧を2Vとすれば、サイリスタ54aがターンオンする電圧=2V+20V=22Vであり、ゲート印加電圧Vb(23.7V)は23.7Vより高い電圧となるため、サイリスタ54aのゲート印加電圧Vbはターンオンする電位に達しサイリスタ54aのアノードとカソード間は導通する。
 また、サイリスタ54aが導通しサージ電圧をサージ吸収回路54が吸収した後、整流回路52の出力の直流電圧Vaが、第2のツェナーダイオード53bのツェナー電圧(例えば、20V)以下となると、第2のツェナーダイオード53bを流れる電流Ibが、サイリスタ54aのターンオフ電流以下になるため(例えば、数μA)サイリスタ54aはターンオフし、非導通となる。
 その他の動作については、実施の形態1と同様なので、説明は省略する。
 本実施の形態によれば、降圧回路53より電源供給され、零相変流器3の検出信号に基づいて漏電を検出する漏電検出回路6と、降圧回路53より電源供給され、漏電検出回路6に駆動されて開閉接点を開離させる引き外し装置4と、降圧回路53の入力側の線間に設けられ、降圧回路53の入力電圧が所定値に達したとき導通するサイリスタ54aと、降圧回路53の正極側にカソードを向け設けられ、サイリスタ54aと直列体をなす第2のツェナーダイオード53bとを備え、交流電路1に重畳されたサージ電圧はサイリスタ54aと第2のツェナーダイオード53bの直列体でバイパスされるので、降圧回路53を構成するFETは最大許容損失が小さく外形が小さいものが使用可能となり漏電遮断器の小形化を図ることができる。
 また、第2のツェナーダイオード53bのカソードとサイリスタ54aのカソードを接続したので、第2のツェナーダイオード53bがサイリスタ54aとの直列体を構成したので、使用部品を削減でき漏電遮断器の小形化を図ることができる。
実施の形態3.
 図3は本発明の実施の形態3における電源回路を用いた直流用の漏電遮断器の構成を示す回路図である。
 図3において、本実施の形態の漏電遮断器102は、実施の形態1におけるサージ吸収回路54を直流用の漏電遮断器に適用したものである。実施の形態1では漏洩電流検出器として零相変流器を使用したが、本実施の形態では、漏洩電流検出器として、直流の漏洩電流が検出可能なフラックスゲートセンサ31を使用し、サイリスタ54aをゲートターンオフサイリスタ54eに変更したものである。そして、本実施の形態も上述した実施の形態1と同様な種々の効果を奏するものである。
 フラックスゲートセンサ31は、図3に示すように、直流電路11が挿通される環状のコア31aと、コア31aに巻回されたコイル31bと、コイル31bの磁束密度を、方向を反転させながら飽和させるようにコイル31bに正負対称の矩形波にて電圧を印加する駆動回路31cと、コイル31bを流れるコイル電流に対応して変化する測定電圧から漏洩電流を検出する検出回路31dすなわち漏電検出回路とを備える。
 また、実施の形態1で設けていた整流回路52は、正極と負極の逆接続時の故障防止のため、設けてもよいが、直流電路用では、必須ではないので削除し、電流制限回路51に降圧回路53、およびサージ吸収回路54を直接接続している。詳細には、直流電路11から供給される電圧の正極側に、サイリスタ54aのアノードとFET53aのドレインが接続され、直流電路11から供給される電圧の負極側に第1のツェナーダイオード54bのアノードおよび第2のツェナーダイオード53bのアノードが接続されている。
 なお、ゲートターンオフサイリスタ54eは、これに限らず、自己消弧型スイッチング素子であればよく、例えばMOSFET、IGBTやバイポーラトランジスタなどで構成することが可能である。
 本実施の形態における電源回路5の動作については、実施の形態1において整流回路52により直流電圧化された後と同じであるので、説明は省略する。
 本実施の形態によれば、降圧回路53より電源供給され、直流電路11の漏電を検出するフラックスゲートセンサ31と、降圧回路53より電源供給され、フラックスゲートセンサ31に駆動されて開閉接点を開離させる引き外し装置4と、降圧回路53の入力側の線間に設けられ、降圧回路53の入力電圧が所定値に達したとき導通するサイリスタ54aと、降圧回路53の正極側にカソードを向け設けられ、サイリスタ54aと直列体をなす第1のツェナーダイオード54bとを備え、交流電路1に重畳されたサージ電圧はサイリスタ54aと第1のツェナーダイオード54bの直列体でバイパスされるので、降圧回路53を構成するFETは最大許容損失が小さく外形が小さいものが使用可能となり漏電遮断器の小形化を図ることができる。
実施の形態4.
 図4は本発明の実施の形態4における電源回路を用いた直流用の漏電遮断器の構成を示す回路図である。
 図4において、本実施の形態の漏電遮断器103は、実施の形態2におけるサージ吸収回路54を直流用の漏電遮断器に適用したものである。実施の形態2では漏洩電流検出器として零相変流器を使用したが、本実施の形態では、漏洩電流検出器として、直流の漏洩電流が検出可能なフラックスゲートセンサ31を使用し、サイリスタ54aをゲートターンオフサイリスタ54eに変更したものである。そして、上述した実施の形態2と同様な種々の効果を奏するものである。
 なお、本実施の形態では、実施の形態3では設けていなかった整流回路52を正極と負極の逆接続時の故障防止のため設けている。
 フラックスゲートセンサ31は、図4に示すように、直流電路11が挿通される環状のコア31aと、コア31aに巻回されたコイル31bと、コイル31bの磁束密度を、方向を反転させながら飽和させるようにコイル31bに正負対称の矩形波にて電圧を印加する駆動回路31cと、コイル31bを流れるコイル電流に対応して変化する測定電圧から漏洩電流を検出する検出回路31dすなわち漏電検出回路とを備える。
 その他の構成は、実施の形態2と同様であるので、説明は省略する。
 本実施の形態によれば、降圧回路53より電源供給され、直流電路11の漏電を検出するフラックスゲートセンサ31と、降圧回路53より電源供給され、フラックスゲートセンサ31に駆動されて開閉接点を開離させる引き外し装置4と、降圧回路53の入力側の線間に設けられ、降圧回路53の入力電圧が所定値に達したとき導通するサイリスタ54aと、降圧回路53の入力の正極側にカソードを向け設けられ、サイリスタ54aと直列体をなす第2のツェナーダイオード53bとを備え、交流電路1に重畳されたサージ電圧はサイリスタ54aと第1のツェナーダイオード54bの直列体でバイパスされるので、降圧回路53を構成するFETは最大許容損失が小さく外形が小さいものが使用可能となり漏電遮断器の小形化を図ることができる。
 また、第2のツェナーダイオード53bのカソードとサイリスタ54aのカソードを接続したので、第2のツェナーダイオード53bがサイリスタ54aとの直列体を構成したので、使用部品を削減でき漏電遮断器の小形化を図ることができる。
   1 交流電路、2 開閉接点、3 零相変流器、
   4 引き外し装置、4a 引き外しコイル、4b 引き外し機構、
   5 電源回路、  51 電流制限回路、52 整流回路、
  53 降圧回路、53a 電界効果トランジスタ(FET)、
  53b 第2のツェナーダイオード、
  54 サージ吸収回路、54a サイリスタ、
  54b 第1のツェナーダイオード、
   6 漏電検出回路、7 定電圧回路、8 トランジスタ、
 100 漏電遮断器。

Claims (5)

  1. 電路を開閉する開閉接点と、前記電路の漏洩電流を検出する漏洩電流検出器と、前記電路から供給された電力を低電圧の電力に降圧する降圧回路と、前記降圧回路より電源供給され、前記漏洩電流検出器の検出信号に基づいて漏電を検出する漏電検出回路と、前記漏電検出回路に駆動されて前記開閉接点を開離させる引き外し装置と、前記降圧回路の入力側の線間に設けられ、前記降圧回路の入力電圧が所定値に達したとき導通するスイッチング素子と、前記降圧回路の正極側にカソードを向け設けられ、前記スイッチング素子と直列体をなす第1のツェナーダイオードと、を備えた漏電遮断器。
  2. 前記電路は直流電路であり、スイッチング素子は自己消弧型スイッチング素子であることを特徴とする請求項1に記載の漏電遮断器。
  3. 前記電路は交流電路であり、スイッチング素子はサイリスタであることを特徴とする請求項1に記載の漏電遮断器。
  4. 前記降圧回路は、前記電路から供給される電圧の正側にドレインが接続された電界効果トランジスタと、この電界効果トランジスタのドレインとゲートとの間に接続された第1の抵抗及び第2の抵抗の直列体と、前記電界効果トランジスタのゲートにカソードが接続され、前記電路の負極側にアノードが接続された第2のツェナーダイオードと、前記第1の抵抗及び前記第2の抵抗の接続点に一端が接続され、他端がスイッチング素子のゲートに接続された第3の抵抗と、前記ゲートに一端が接続され、他端が前記電路の負極側に接続された第4の抵抗と、を備えたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の漏電遮断器。
  5. 前記降圧回路は、前記電路から供給される電圧の正側にドレインが接続された電界効果トランジスタと、この電界効果トランジスタのドレインとゲートとの間に接続された第1の抵抗及び第2の抵抗の直列体と、前記電界効果トランジスタのゲートおよび前記スイッチング素子にカソードが接続され、前記電路の負極側にアノードが接続された前記第1のツェナーダイオードと、前記第1の抵抗及び前記第2の抵抗の接続点に一端が接続され、他端がスイッチング素子のゲートに接続された第3の抵抗と、前記ゲートに一端が接続され、他端が前記電路の負極側に接続された第4の抵抗と、備えたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の漏電遮断器。
PCT/JP2014/078720 2014-10-29 2014-10-29 漏電遮断器 WO2016067378A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480081157.XA CN106663573B (zh) 2014-10-29 2014-10-29 漏电断路器
JP2016556092A JP6319456B2 (ja) 2014-10-29 2014-10-29 漏電遮断器
KR1020167035093A KR20170004001A (ko) 2014-10-29 2014-10-29 누전 차단기
EP14904741.7A EP3214634B1 (en) 2014-10-29 2014-10-29 Earth leakage circuit breaker
PCT/JP2014/078720 WO2016067378A1 (ja) 2014-10-29 2014-10-29 漏電遮断器
TW103142556A TWI552471B (zh) 2014-10-29 2014-12-08 漏電斷路器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078720 WO2016067378A1 (ja) 2014-10-29 2014-10-29 漏電遮断器

Publications (1)

Publication Number Publication Date
WO2016067378A1 true WO2016067378A1 (ja) 2016-05-06

Family

ID=55856765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078720 WO2016067378A1 (ja) 2014-10-29 2014-10-29 漏電遮断器

Country Status (6)

Country Link
EP (1) EP3214634B1 (ja)
JP (1) JP6319456B2 (ja)
KR (1) KR20170004001A (ja)
CN (1) CN106663573B (ja)
TW (1) TWI552471B (ja)
WO (1) WO2016067378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006820A (zh) * 2018-10-05 2020-04-14 三菱电机大楼技术服务株式会社 漏液检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979216B1 (ko) * 2018-08-08 2019-05-17 주식회사 써니아이씨 누설전류 검출장치 및 이 장치를 갖는 누전차단기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863242A (ja) * 1994-08-24 1996-03-08 Nitto Kogyo Kk 配線保護遮断器用電源回路
JP2009095125A (ja) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp 電源回路及びこの電源回路を用いた漏電遮断器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326278A (ja) * 1994-06-02 1995-12-12 Mitsubishi Electric Corp 電路異常警報装置および電路異常警報機能付き配線用遮断器
FR2745432B1 (fr) * 1996-02-22 1998-08-07 Schneider Electric Sa Declencheur electronique comportant un dispositif d'alimentation
JPH09322384A (ja) * 1996-05-29 1997-12-12 Toshiba Corp 漏電遮断器
US6163444A (en) * 1999-01-25 2000-12-19 Lam; Sheir Chun Circuit breaker
US7269038B2 (en) * 2005-09-12 2007-09-11 Fairchild Semiconductor Corporation Vrms and rectified current sense full-bridge synchronous-rectification integrated with PFC
TW200838088A (en) * 2007-03-07 2008-09-16 Sinbon Elect Co Ltd Power source protection circuit
JP2009195033A (ja) * 2008-02-14 2009-08-27 Toshiba Lighting & Technology Corp 電源装置及び照明器具
JP4845910B2 (ja) * 2008-03-17 2011-12-28 三菱電機株式会社 漏電遮断器
JP5768741B2 (ja) * 2012-02-29 2015-08-26 三菱電機株式会社 漏電遮断器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863242A (ja) * 1994-08-24 1996-03-08 Nitto Kogyo Kk 配線保護遮断器用電源回路
JP2009095125A (ja) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp 電源回路及びこの電源回路を用いた漏電遮断器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006820A (zh) * 2018-10-05 2020-04-14 三菱电机大楼技术服务株式会社 漏液检测装置
CN111006820B (zh) * 2018-10-05 2023-08-04 三菱电机大楼技术服务株式会社 漏液检测装置
CN111006820B8 (zh) * 2018-10-05 2023-09-15 三菱电机楼宇解决方案株式会社 漏液检测装置

Also Published As

Publication number Publication date
EP3214634A1 (en) 2017-09-06
TW201616760A (zh) 2016-05-01
CN106663573B (zh) 2019-04-12
EP3214634B1 (en) 2019-03-20
JPWO2016067378A1 (ja) 2017-04-27
KR20170004001A (ko) 2017-01-10
JP6319456B2 (ja) 2018-05-09
CN106663573A (zh) 2017-05-10
TWI552471B (zh) 2016-10-01
EP3214634A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
KR101710776B1 (ko) 누전 차단기
TWI622240B (zh) 固態故障電流限制裝置、用於限制故障電流的方法和系統
JP4983523B2 (ja) 電源回路及びこの電源回路を用いた漏電遮断器
US7852639B2 (en) Low-loss rectifier with optically coupled gate shunting
EP2804278B1 (en) Self-power circuit for protecting relay
TW201320517A (zh) 保護開路和/或短路狀況下電源變換系統的系統和方法
US10177649B1 (en) Power conversion apparatus and synchronous rectification circuit thereof
JP6268485B2 (ja) 漏電遮断器
US20170367154A1 (en) Led driver and led driving method
AU2014203666B2 (en) Differential protection device for a disconnecting apparatus, and electric disconnecting apparatus comprising one such device
JP6319456B2 (ja) 漏電遮断器
AU2015201523B2 (en) Residual current protection device
KR101681696B1 (ko) 누전차단기의 전원 중첩 제어장치
KR102225851B1 (ko) 전자식 회로 차단기
KR101214868B1 (ko) 누전감지 ic의 전원공급을 반도체방식으로 제어하여 누전 비발생시 소비전력과 대기전력을 차단한 누전차단기
JP6610173B2 (ja) 漏電遮断器
KR101659088B1 (ko) Led 전원 장치
JP2010177067A (ja) 漏電遮断器
JP2013207874A (ja) 電源回路
JP2005218217A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556092

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035093

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014904741

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE