WO2016065738A1 - 同源流体控制系统 - Google Patents

同源流体控制系统 Download PDF

Info

Publication number
WO2016065738A1
WO2016065738A1 PCT/CN2015/000752 CN2015000752W WO2016065738A1 WO 2016065738 A1 WO2016065738 A1 WO 2016065738A1 CN 2015000752 W CN2015000752 W CN 2015000752W WO 2016065738 A1 WO2016065738 A1 WO 2016065738A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
control system
cylinder piston
homogenous
fluid control
Prior art date
Application number
PCT/CN2015/000752
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
熵零股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 熵零股份有限公司 filed Critical 熵零股份有限公司
Publication of WO2016065738A1 publication Critical patent/WO2016065738A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • This invention relates to the field of thermal energy and power, and more particularly to a homogenous fluid control system.
  • the control of the inflow and outflow of fluid in the pressurized fluid chamber determines the efficiency of the fluid mechanism and the engine.
  • various control mechanisms are used to control the opening and closing of the valve body of the pressurized fluid chamber, the conventional control mechanism is either flexible. Larger body, low natural frequency of the elastomer, or the need to additionally set up a complex hydraulic system or pneumatic system. Therefore, there is a need to invent a new control system that more compactly and effectively controls a pressurized fluid chamber body.
  • a homogenous fluid control system includes a pressurized fluid chamber, a cylinder piston mechanism, a valve body, and a valve body control mechanism, and a valve body seat is provided on a wall of the pressurized fluid chamber, the valve body and The valve body seat is cooperatively disposed, the cylinder of the cylinder piston mechanism is in communication with the pressurized fluid chamber via a communication passage, the valve body is operated by the cylinder piston mechanism, and the valve body is controlled by the valve body Institutional control.
  • Solution 2 On the basis of the solution 1, the valve body rod of the valve body is further selectively connected to the piston of the cylinder piston mechanism.
  • Item 3 On the basis of the first aspect, further selectively, a part of the valve body rod of the valve body is set as a piston of the cylinder piston mechanism; or a piston of the cylinder piston mechanism is set as a plunger. A part of the valve body rod of the valve body is set as the plunger.
  • valve body control mechanism is further selectively provided as a control mechanism including a cam, and a control mechanism including a cam and a rocker arm is set as A control mechanism including a cam and a spring, a control mechanism including a cam, a rocker arm, and a gear, a control mechanism including a cam, a rocker arm, and a spring, an electromagnetic mechanism, or a hydraulic mechanism.
  • the volume of the communication passage is set to be larger than the displacement of the cylinder piston mechanism.
  • Scheme 8 On the basis of Scheme 7, further selectively, the combustion chamber is set to a non-regular combustion chamber.
  • the force of the cylinder piston mechanism is further selectively caused to cause the valve body to be in an open or closed state.
  • Item 10 Based on any one of the first to eighth aspects, further selectively causing a force of the cylinder piston mechanism to cause the valve body to be in a closed state, and a piston pair of the cylinder piston mechanism The force of the valve body is greater than the fluid in the pressurized fluid chamber forcing the opening force of the valve body.
  • Scheme 11 Based on any of the schemes 1 to 10, further selectively cooling the communication channel.
  • the pressurized fluid chamber may be selectively selected to be a combustion chamber or a pressurized gas region.
  • cooling the communication passage means a structure in which all of the fluid in the communication passage is cooled, for example, a structure in which a fluid having a lower temperature flows through the outer wall of the communication passage. Forms and structures that cool the fluid within the communication passage by natural heat dissipation.
  • non-timing combustion chamber means a combustion chamber in which the combustion time exceeds the length of time required for the working medium to pass through one working cycle of the engine.
  • a continuous combustion chamber for example, a continuous combustion chamber.
  • a nozzle is placed in a box suspended in the air, and is sprayed from east to west.
  • the working fluid sprayed from the nozzle hits the inner wall of the west side of the box.
  • An impeller on the top when the impeller will rotate, and the whole box will move eastward.
  • the outside does not have any effect on it.
  • angular momentum non-conservation is that when a person walks from a telecentric point of a rotating disk to a close center, the rotational kinetic energy of the system is increased, but when the person is close to the rotating disk When jumping to the telecentricity of the rotating disk, the rotational speed of the rotating disk will decrease, but due to the large rotational kinetic energy in the system, the rotational speed of the rotating disk will not be reduced to the original state, but should be at the original rotational speed (ie, this person) At a certain speed between the rotational speed of the rotating disk and the rotational speed of the rotating disk when the person reaches the close center, the angular momentum of the system is increased.
  • thermodynamics Based on the basic principles of thermodynamics and observations of cosmic phenomena, the inventors believe that heat cannot be converted into any other form of energy or matter 100% without the influence of external factors.
  • the second law of traditional thermodynamics only states that under the premise of no external factors, heat cannot be 100% successful. This law is correct, but it is one-sided. Heat can be defined in the popular language as the lowest form of energy, or simply as the garbage of the universe.
  • the inventors Upon analysis, the inventors also believe that the growth process of any organism (animal, plant, microorganism, virus and bacteria) is exothermic.
  • any process or any cycle (not limited to thermodynamic processes, For example, the chemical reaction process, the biochemical reaction process, the photochemical reaction process, the biological growth process, and the plant growth process are all included.
  • the maximum functional capacity is conserved, and the inventors believe that the plant growth process without photosynthesis cannot improve its function. Force, that is to say, the function of bean sprouts cannot be higher than the sum of the functional power of beans and the nutrients absorbed by them; the reason why a tree is more functional than the seedlings Force is because sunlight participates in the growth process from saplings to trees in the form of photosynthesis.
  • the so-called convergence is the process of increasing the density of the working medium. For example, condensation and compression are both convergence processes. Under the same pressure, the working medium with low temperature converges greatly; the so-called heat is the endothermic process of the working medium; the so-called divergence refers to the work.
  • gaseous air is much lower than that of liquid air; methanol plus water plus moderate temperature generates carbon monoxide and hydrogen, although the carbon monoxide produced
  • the combustion heat of hydrogen and hydrogen is about 20% higher than the combustion heat of methanol, but the ratio of the functional force greater than that of methanol is minimal, because the process absorbs about 20% of the heat, but the product carbon monoxide and The divergence of hydrogen is much greater than that of methanol. Therefore, the use of heat with a low temperature to participate in the chemical reaction is not effective in improving the functionality of the product.
  • the homologous fluid control system disclosed in the invention has the advantages of simple structure, high efficiency, small volume and light weight. High frequency, suitable for the control of heavy-duty high-pressure fluid valves.
  • Figure 1 is a schematic view showing the structure of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 3 Schematic diagram of the valve body control mechanism set as a cam
  • Embodiment 4 is a schematic structural view of Embodiment 4 of the present invention.
  • FIG. 5 Schematic diagram of the valve body control mechanism set as an electromagnetic mechanism
  • a homogenous fluid control system as shown in FIG. 1, includes a pressurized fluid chamber 1, a cylinder piston mechanism 2, a valve body 3, and a valve body control mechanism 4, and a valve body is disposed on a wall of the pressurized fluid chamber 1 a seat port 5, the valve body 3 is cooperatively disposed with the valve body seat opening 5, and a cylinder of the cylinder piston mechanism 2 communicates with the pressurized fluid chamber 1 via a communication passage 6, the valve body 3 being subjected to the The cylinder piston mechanism 2 acts, and the valve body 3 is controlled by the valve body control mechanism 4.
  • a homogenous fluid control system as shown in FIG. 2, further encloses the valve body rod 31 of the valve body 3 and the piston of the cylinder piston mechanism 2 on the basis of the first embodiment.
  • a homogenous fluid control system further includes a part of the valve body rod 31 of the valve body 3 as a piston of the cylinder piston mechanism 2 in addition to the first embodiment.
  • the first embodiment can also selectively make the piston of the cylinder piston mechanism 2 a plunger, and a part of the valve body rod 31 of the valve body 3 is the plunger.
  • a homogenous fluid control system as shown in FIG. 4, further includes the valve body control mechanism 4 as a control mechanism including a cam 401 and a rocker arm 402, in addition to the first embodiment.
  • Embodiments 1 to 3 and their transformable embodiments may be Further selectively selecting the valve body control mechanism 4 to be a control mechanism including a cam 401 (shown in FIG. 3), a control mechanism including a cam and a rocker arm (as shown in FIG. 4), and including a cam and spring control mechanism (not shown), a control mechanism (not shown) including a cam, a rocker arm, and a gear, and a control mechanism including a cam, a rocker arm, and a spring (not shown)
  • the electromagnetic mechanism 41 shown in FIG. 5) or the hydraulic mechanism (not shown) is used.
  • a homogenous fluid control system based on the first embodiment, further sets the volume of the communication passage 6 to be larger than the displacement of the cylinder piston mechanism 2.
  • Embodiments 1 to 4 and their interchangeable embodiments can further make the volume of the communication passage 6 larger than the displacement of the cylinder piston mechanism 2.
  • a homogenous fluid control system further comprises, in addition to the first embodiment, the pressurized fluid chamber 1 as a combustion chamber.
  • Embodiments 1 to 5 and their interchangeable embodiments may further enable the pressurized fluid chamber 1 to be a combustion chamber or a pressurized gas zone, and further to the combustion chamber Set to non-positive combustion chamber.
  • all embodiments of the present invention and its interchangeable embodiments can be further selectively selected such that the force of the cylinder piston mechanism 2 causes the valve body 3 to tend to close (as in FIG. 1). Show) or turn on (as shown in Figure 2).
  • a homogenous fluid control system based on the embodiment 1, further causing the force of the cylinder piston mechanism 2 to cause the valve body 3 to be in a closed state, the piston of the cylinder piston mechanism 2 facing the valve
  • the force of the body 3 is greater than the fluid in the pressurized fluid chamber 1 forcing the opening force of the valve body 3.
  • all embodiments of the present invention and its interchangeable embodiments can be further selectively selected such that the force of the cylinder piston mechanism 2 causes the valve body 3 to be in a closed state, the cylinder The force of the piston of the piston mechanism 2 against the valve body 3 is greater than the force of the fluid in the pressurized fluid chamber 1 forcing the opening force of the valve body 3.
  • a homogenous fluid control system based on the first embodiment, further cools the communication passage 6.
  • all of the embodiments of the present invention can further cool the communication passage 6; and the cooling of the communication passage 6 by a heat exchange device or a fan or the like can be selectively selected.
  • all embodiments of the invention may be further selectively selected to cause the fluid in the pressurized fluid chamber 1 to be a liquid or a gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

一种同源流体控制系统,包括有压流体腔(1),气缸活塞机构(2),阀体(3)和阀体控制机构(4)。有压流体腔(1)的壁上设有阀体座口(5),阀体(3)与阀体座口(5)配合设置;气缸活塞机构(2)的气缸经连通通道(6)与有压流体腔(1)连通;阀体(3)受气缸活塞机构(2)的作用;阀体(3)受阀体控制机构(4)的控制。该同源流体控制系统结构简单,效率高。

Description

同源流体控制系统 技术领域
本发明涉及热能与动力领域,尤其是一种同源流体控制系统。
背景技术
对有压流体腔内的流体的流入和流出的控制决定着流体机构和发动机的效率,虽然有多种控制机构用于控制有压流体腔的阀体的开启和关闭,但是传统控制机构要么弹性体较大、弹性体固有频率低、要么需要另外设置复杂的液压系统或气压系统。因此,需要发明一种更为简洁有效地控制有压流体腔阀体的新的控制系统。
发明内容
为了解决上述问题,本发明提出的技术方案如下:
方案1:一种同源流体控制系统,包括有压流体腔、气缸活塞机构、阀体和阀体控制机构,在所述有压流体腔的壁上设阀体座口,所述阀体与所述阀体座口配合设置,所述气缸活塞机构的气缸经连通通道与所述有压流体腔连通,所述阀体受所述气缸活塞机构作用,所述阀体受所述阀体控制机构控制。
方案2:在方案1的基础上,进一步选择性地,使所述阀体的阀体杆与所述气缸活塞机构的活塞固连。
方案3:在方案1的基础上,进一步选择性地,使所述阀体的阀体杆的一部分设为所述气缸活塞机构的活塞;或所述气缸活塞机构的活塞设为柱塞,所述阀体的阀体杆的一部分设为所述柱塞。
方案4:在方案1至方案3中任一方案的基础上,进一步选择性地,使所述阀体控制机构设为包括凸轮的控制机构、设为包括凸轮和摇臂的控制机构、设为包括凸轮和弹簧的控制机构、设为包括凸轮、摇臂和齿轮的控制机构、设为包括凸轮、摇臂和弹簧的控制机构、设为电磁机构或设为液压机构。
方案5:在方案1至方案4中任一方案的基础上,进一步选择性地,使所述连通通道的容积设为大于所述气缸活塞机构的排量。
方案6:在方案1至方案5中任一方案的基础上,进一步选择性地,使所 述有压流体腔内的流体设为液体或设为气体。
方案7:在方案1至方案6中任一方案的基础上,进一步选择性地,使所述有压流体腔设为燃烧室。
方案8:在方案7的基础上,进一步选择性地,使所述燃烧室设为非正时燃烧室。
方案9:在方案1至方案8中任一方案的基础上,进一步选择性地,使所述气缸活塞机构的作用力使所述阀体趋于开启或关闭状态。
方案10:在方案1至方案8中任一方案的基础上,进一步选择性地,使所述气缸活塞机构的作用力使所述阀体趋于关闭状态,所述气缸活塞机构的活塞对所述阀体的作用力大于所述有压流体腔内的流体迫使所述阀体的开启力。
方案11:在方案1至方案10中任一方案的基础上,进一步选择性地,对所述连通通道进行冷却。
本发明中,可选择性地选择,使所述有压流体腔设为燃烧室或设为有压气体区。
本发明中,所谓的“对所述连通通道进行冷却”是指一切对所述连通通道内的流体进行冷却的结构形式,例如,使温度较低的流体流经所述连通通道的外壁的结构形式以及通过自然散热形式对所述连通通道内的流体进行冷却的结构形式。
本发明中,所谓的“非正时燃烧室”是指燃烧时长超过工质经历发动机一个工作循环所需时长的燃烧室。例如,连续燃烧室。
本发明中,应根据热能与动力领域的公知技术,在必要的地方设置必要的部件、单元或系统等。
本发明人认为,动量守恒定律和角动量守恒定律不正确,例如在一个悬挂在空中的盒子内安上一个喷管,由东向西喷射,喷管喷出的工质打击到盒子西侧内壁上的一个叶轮,这时叶轮会旋转,而整个盒子会向东移动,对于盒子来讲,外部并没有对其实施任何作用,所有的事情都是发生在盒子内部的,因此动量守恒定律是不正确的;有两个质量相同、形状相同的圆盘悬挂在空中,两个圆盘相邻且可按照自己的轴心旋转,使两个圆盘向相反方向以同样的速度旋 转,一个圆盘的角动量是+A,另一个圆盘的角动量是-A,这样由两个圆盘所构成的系统的动量是零,外界几乎以零代价可以使其中一个圆盘翻转,这样两个圆盘构成的系统的角动量则要么是+2A,要么是-2A,由此可见角动量不守恒。
本发明人认为,Coriolis effect的本质是因为角动量不守恒构成的。
本发明人认为,角动量不守恒的另一个例子为:一个人从一个旋转盘的远心处向近心处行走时,会使系统的旋转动能增加,但是当此人从旋转盘的近心处跳跃到旋转盘的远心处时,旋转盘的转速会降低,但是由于系统内的旋转动能较大,旋转盘的转速不会降低到原有状态,而应该是在原有转速(即此人即将开始向近心处行走时,旋转盘的转速)和此人达到所述近心处时的旋转盘的转速之间的某个转速,这样系统的角动量就增加了。
本发明人认为,天体相互运动必然产生引力相互作用,引力相互作用必然产生物质流动和/或物体形变,由于物质流动和物体形变均为不可逆过程,即均为产生热量的过程,因此引力场作用下的物质流动和物体形变必然产生热量,这种形式产生的热量必然消耗天体的动能,随着时间的推移,经过漫长的过程,天体会逐渐丧失动能,最终天体会相互合并(或相互吞噬),最终宇宙形成一个质点,这个质点的温度和压力都会剧烈上升,从而形成剧烈的爆炸(由于温度和压力剧烈上升也会引起化学反应和核反应),爆炸重新形成天体运动状态,即使天体具有动能,天体之间再次形成相互相对运动和相互作用,进入下一个循环。因此可以认为宇宙的存在与发展其实是一个热力学循环过程。这种过程的本质可以简单、易懂地概括为“你惹我,我就一定吞噬你”,由此可见,存在交替作用的主体其最终结局就是相互吞噬、相互合并。
本发明人根据热力学的基本原理以及对宇宙现象的观察认为:在没有外部因素影响的前提下,热不可能百分之百的转换成其它任何形式的能量或物质。传统热力学第二定律中只阐述了在没有外部因素影响的前提下,热不能百分之百的转换成功,这一定律是正确的,但又是片面的。可以用通俗的语言将热定义为能量的最低形式,或者简称为这是宇宙的垃圾。经分析,本发明人还认为:任何生物(动物、植物、微生物、病毒和细菌)的生长过程都是放热的。经分析,本发明人还认为:任何一个过程或任何一个循环(不局限于热力学过程, 例如化学反应过程、生物化学反应过程、光化学反应过程、生物生长过程、植物生长过程都包括在内)其最大做功能力守恒,本发明人认为没有光合作用的植物生长过程是不能提高其做功能力的,也就是说,豆芽的做功能力是不可能高于豆子的做功能力加上其吸收的养分的做功能力之和;之所以一棵树木的做功能力要大于树苗的做功能力,是因为阳光以光合作用的形式参与了由树苗到树木的生长过程。
本发明人认为:热机工作的基本逻辑是收敛-受热-发散。所谓收敛是工质的密度的增加过程,例如冷凝、压缩均属收敛过程,在同样的压力下,温度低的工质收敛程度大;所谓受热就是工质的吸热过程;所谓发散是指工质的密度降低的过程,例如膨胀或喷射。任何一个发散过程都会形成做功能力的降低,例如,气态的空气的做功能力要远远低于液态空气的做功能力;甲醇加水加中等温度的热生成一氧化碳和氢气,虽然所生成的一氧化碳和氢气的燃烧热大于甲醇的燃烧热20%左右,但其做功能力大于甲醇的做功能力的比例则微乎其微,其原因在于这一过程虽然吸了20%左右的热,但是生成物一氧化碳和氢气的发散程度远远大于甲醇。因此,利用温度不高的热参加化学反应是没有办法有效提高生成物的做功能力的。
众所周知,在经济学中,对信息不对称和信息对称的研究都授予过诺贝尔奖,可见交易双方拥有信息的状态决定交易成败、交易的公平性和交易的利润。交易的本质其实是信息交易。为本发明人认为,专利具有信息零对称性,即交易双方对专利的真正价值都知之甚少。专利信息零对称属性,如不破解,运营很难实现。专利的信息零对称性决定了专利运营的科学性和复杂性。在普通商品交易中,信息不对称有利于促进交易,提高利润。而对专利而言,则完全不同,专利需要解决技术问题,专利的价值在专利运用中很快被知晓,所以专利必须货真价实,信息零对称和信息不对称必然都会严重阻碍专利运营,解决专利信息零对称问题,使交易双方在高水平上信息对称是专利运营企业的根本工作。
本发明的有益效果如下:
本发明中所公开的同源流体控制系统结构简单、效率高、体积小、重量轻、 频率高,可适用于重载高压流体阀的控制。
附图说明
图1:本发明实施例1的结构示意图;
图2:本发明实施例2的结构示意图;
图3:阀体控制机构设为凸轮的结构示意图;
图4:本发明实施例4的结构示意图;
图5:阀体控制机构设为电磁机构的结构示意图;
图中:1有压流体腔,2气缸活塞机构,3阀体,4阀体控制机构,401凸轮,402摇臂,41电磁机构,5阀体座口,6连通通道。
具体实施方式
实施例1
一种同源流体控制系统,如图1所示,包括有压流体腔1、气缸活塞机构2、阀体3和阀体控制机构4,在所述有压流体腔1的壁上设阀体座口5,所述阀体3与所述阀体座口5配合设置,所述气缸活塞机构2的气缸经连通通道6与所述有压流体腔1连通,所述阀体3受所述气缸活塞机构2作用,所述阀体3受所述阀体控制机构4控制。
实施例2
一种同源流体控制系统,如图2所示,在实施例1的基础上,进一步使所述阀体3的阀体杆31与所述气缸活塞机构2的活塞固连。
实施例3
一种同源流体控制系统,在实施例1的基础上,进一步使所述阀体3的阀体杆31的一部分设为所述气缸活塞机构2的活塞。
作为可变换的实施方式,实施例1还可选择性地使所述气缸活塞机构2的活塞设为柱塞,所述阀体3的阀体杆31的一部分设为所述柱塞。
实施例4
一种同源流体控制系统,如图4所示,在实施例1的基础上,进一步使所述阀体控制机构4设为包括凸轮401和摇臂402的控制机构。
作为可变换的实施方式,实施例1至实施例3及其可变换的实施方式均可 进一步选择性地选择使所述阀体控制机构4设为包括凸轮401的控制机构(如图3所示)、设为包括凸轮和摇臂的控制机构(如图4所示)、设为包括凸轮和弹簧的控制机构(图中未示)、设为包括凸轮、摇臂和齿轮的控制机构(图中未示)、设为包括凸轮、摇臂和弹簧的控制机构(图中未示)、设为电磁机构41(如图5所示)或设为液压机构(图中未示)。
实施例5
一种同源流体控制系统,在实施例1的基础上,进一步使所述连通通道6的容积设为大于所述气缸活塞机构2的排量。
作为可变换的实施方式,实施例1至4及其可变换的实施方式均可进一步使所述连通通道6的容积设为大于所述气缸活塞机构2的排量。
实施例6
一种同源流体控制系统,在实施例1的基础上,进一步使所述有压流体腔1设为燃烧室。
作为可变换的实施方式,实施例1至实施例5及其可变换的实施方式均可进一步使所述有压流体腔1设为燃烧室或有压气体区,并可进一步使所述燃烧室设为非正时燃烧室。
作为可变换的实施方式,本发明所有实施方式及其可变换的实施方式均可进一步选择性地选择使所述气缸活塞机构2的作用力使所述阀体3趋于关闭(如图1中所示)或开启(如图2所示)状态。
实施例7
一种同源流体控制系统,在实施例1的基础上,进一步使所述气缸活塞机构2的作用力使所述阀体3趋于关闭状态,所述气缸活塞机构2的活塞对所述阀体3的作用力大于所述有压流体腔1内的流体迫使所述阀体3的开启力。
作为可变换的实施方式,本发明所有实施方式及其可变换的实施方式均可进一步选择性地选择使所述气缸活塞机构2的作用力使所述阀体3趋于关闭状态,所述气缸活塞机构2的活塞对所述阀体3的作用力大于所述有压流体腔1内的流体迫使所述阀体3的开启力。
实施例8
一种同源流体控制系统,在实施例1的基础上,进一步对所述连通通道6进行冷却。
作为可变换的实施方式,本发明所有实施方式均可进一步对所述连通通道6进行冷却;并可一进步选择性地选择通过热交换装置或风扇等对所述连通通道6进行冷却。
作为可变化的实施方式,本发明所有实施方式均可进一步选择性地选择使所述有压流体腔1内的流体设为液体或设为气体。
显然,本发明不限于以上实施例,根据本领域的公知技术和本发明所公开的技术方案,可以推导出或联想出许多变型方案,所有这些变型方案,也应认为是本发明的保护范围。

Claims (11)

  1. 一种同源流体控制系统,包括有压流体腔(1)、气缸活塞机构(2)、阀体(3)和阀体控制机构(4),其特征在于:在所述有压流体腔(1)的壁上设阀体座口(5),所述阀体(3)与所述阀体座口(5)配合设置,所述气缸活塞机构(2)的气缸经连通通道(6)与所述有压流体腔(1)连通,所述阀体(3)受所述气缸活塞机构(2)作用,所述阀体(3)受所述阀体控制机构(4)控制。
  2. 如权利要求1所述同源流体控制系统,其特征在于:所述阀体(3)的阀体杆(31)与所述气缸活塞机构(2)的活塞固连。
  3. 如权利要求1所述同源流体控制系统,其特征在于:所述阀体(3)的阀体杆(31)的一部分设为所述气缸活塞机构(2)的活塞;或所述气缸活塞机构(2)的活塞设为柱塞,所述阀体(3)的阀体杆(31)的一部分设为所述柱塞。
  4. 如权利要求1至3中任一项所述同源流体控制系统,其特征在于:所述阀体控制机构(4)设为包括凸轮(401)的控制机构、设为包括凸轮(401)和摇臂(402)的控制机构、设为包括凸轮(401)和弹簧的控制机构、设为包括凸轮(401)、摇臂(402)和齿轮的控制机构、设为包括凸轮(401)、摇臂(402)和弹簧的控制机构、设为电磁机构(41)或设为液压机构。
  5. 如权利要求1至4中任一项所述同源流体控制系统,其特征在于:所述连通通道(6)的容积设为大于所述气缸活塞机构(2)的排量。
  6. 如权利要求1至5中任一项所述同源流体控制系统,其特征在于:所述有压流体腔(1)内的流体设为液体或设为气体。
  7. 如权利要求1至6中任一项所述同源流体控制系统,其特征在于:所述有压流体腔(1)设为燃烧室。
  8. 如权利要求7所述同源流体控制系统,其特征在于:所述燃烧室设为非正时燃烧室。
  9. 如权利要求1至8中任一项所述同源流体控制系统,其特征在于:所述气缸活塞机构(2)的作用力使所述阀体(3)趋于开启或关闭状态。
  10. 如权利要求1至8中任一项所述同源流体控制系统,其特征在于:所 述气缸活塞机构(2)的作用力使所述阀体(3)趋于关闭状态,所述气缸活塞机构(2)的活塞对所述阀体(3)的作用力大于所述有压流体腔(1)内的流体迫使所述阀体(3)的开启力。
  11. 如权利要求1至10中任一项所述同源流体控制系统,其特征在于:对所述连通通道(6)进行冷却。
PCT/CN2015/000752 2014-11-01 2015-11-02 同源流体控制系统 WO2016065738A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410602714 2014-11-01
CN201410602714.X 2014-11-01
CN201410614468.X 2014-11-04
CN201410614468 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016065738A1 true WO2016065738A1 (zh) 2016-05-06

Family

ID=55196273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000752 WO2016065738A1 (zh) 2014-11-01 2015-11-02 同源流体控制系统

Country Status (2)

Country Link
CN (1) CN105298544A (zh)
WO (1) WO2016065738A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217001B1 (en) * 1999-06-29 2001-04-17 Delphi Technologies, Inc. Pressure balanced gas valve
CN1594854A (zh) * 2003-09-09 2005-03-16 三菱扶桑卡客车株式会社 流体阀装置
CN101228336A (zh) * 2005-05-10 2008-07-23 通用汽车环球科技运作公司 电动液压的发动机气门促动
CN201436428U (zh) * 2009-07-10 2010-04-07 上海华通阀门有限公司 一种蝶式缓闭止回阀
CN105074142A (zh) * 2013-03-31 2015-11-18 雅各布斯车辆系统公司 对可移动部件运动的控制

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK170122B1 (da) * 1993-06-04 1995-05-29 Man B & W Diesel Gmbh Stor totakts forbrændingsmotor
JPH10274105A (ja) * 1997-03-28 1998-10-13 Nippon Soken Inc Egr制御弁およびそれを用いた排気ガス再循環装置
JP4126924B2 (ja) * 2002-02-21 2008-07-30 トヨタ自動車株式会社 内燃機関の動弁装置
CN100365292C (zh) * 2003-03-24 2008-01-30 横浜Tlo株式会社 内燃机的可动气门阀装置、其控制方法以及液压驱动器
US7040266B1 (en) * 2005-05-10 2006-05-09 Gm Global Technology Operations, Inc. Electro-hydraulic engine valve actuation
US7536984B2 (en) * 2007-04-16 2009-05-26 Lgd Technology, Llc Variable valve actuator with a pneumatic booster
CN102086790A (zh) * 2009-12-07 2011-06-08 谭波 一种液压气门机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217001B1 (en) * 1999-06-29 2001-04-17 Delphi Technologies, Inc. Pressure balanced gas valve
CN1594854A (zh) * 2003-09-09 2005-03-16 三菱扶桑卡客车株式会社 流体阀装置
CN101228336A (zh) * 2005-05-10 2008-07-23 通用汽车环球科技运作公司 电动液压的发动机气门促动
CN201436428U (zh) * 2009-07-10 2010-04-07 上海华通阀门有限公司 一种蝶式缓闭止回阀
CN105074142A (zh) * 2013-03-31 2015-11-18 雅各布斯车辆系统公司 对可移动部件运动的控制

Also Published As

Publication number Publication date
CN105298544A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Khosravi et al. An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system
Du et al. Thermodynamic design and Off-design investigation of nuclear power supercritical CO2 recompression cycle
CN104912691B (zh) 内燃闭合循环碳氢燃料热动力系统
WO2016065738A1 (zh) 同源流体控制系统
WO2015161678A1 (zh) 容积型流体机构
WO2016011791A1 (zh) 流体机构
CN106438051A (zh) 进气深冷发动机
CN105042920A (zh) 容积型变界流体机构制冷系统
WO2016011789A1 (zh) 端面密封系统
CN104963783B (zh) 三元同轴发动机
CN106256995A (zh) 一种蓄能系统
CN104963785B (zh) 容积型发动机
CN106224008A (zh) 发动机
CN105134379B (zh) 流体离心控制系统
CN106523035B (zh) 液轴气体叶轮机构、液轴气体轮机及其装置
CN104948339B (zh) 容积型分置发动机
CN105783335B (zh) 泵热方法及其泵热系统
WO2020215817A1 (zh) 单工质蒸汽联合循环
CN105134781A (zh) 流体定向悬浮系统
WO2021042649A1 (zh) 单工质蒸汽联合循环
CN105909313A (zh) 滑动径向补偿机构及其装置
CN106481371A (zh) 流体机构及其装置
CN106321399A (zh) 液体回送装置
CN106024075A (zh) 核动力系统
CN104963997B (zh) 界面平衡系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855628

Country of ref document: EP

Kind code of ref document: A1