WO2015161678A1 - 容积型流体机构 - Google Patents

容积型流体机构 Download PDF

Info

Publication number
WO2015161678A1
WO2015161678A1 PCT/CN2015/000288 CN2015000288W WO2015161678A1 WO 2015161678 A1 WO2015161678 A1 WO 2015161678A1 CN 2015000288 W CN2015000288 W CN 2015000288W WO 2015161678 A1 WO2015161678 A1 WO 2015161678A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
cylinder
eccentric
shaft
rotor
Prior art date
Application number
PCT/CN2015/000288
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
摩尔动力(北京)技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩尔动力(北京)技术股份有限公司 filed Critical 摩尔动力(北京)技术股份有限公司
Publication of WO2015161678A1 publication Critical patent/WO2015161678A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the invention relates to the field of thermal energy and power, and in particular to a volumetric fluid mechanism.
  • the volumetric fluid mechanism is a very important mechanism and is an important mechanism for liquid pumps, liquid motors, gas compressors, gas expansion mechanisms and engines.
  • the compensation problem of the reciprocating piston fluid mechanism due to the invention of the piston ring the compensation problem of the rotary fluid mechanism has not been solved, resulting in short life, serious leakage and low efficiency of the existing fluid mechanism. And so on, so it is necessary to invent a new type of fluid mechanism.
  • a volumetric fluid mechanism comprising an eccentric shaft and a working fluid moving member, the eccentric shaft comprising a drive shaft and a deflection non-casing, the deflection non-casing being disposed on the drive shaft On the rotating shaft and/or the deflecting non-casing body is disposed on an eccentric portion of the driving shaft, and the working fluid moving member set is disposed outside the driving shaft and the deflecting non-casing body.
  • Solution 2 On the basis of the solution 1, the deflecting non-cassette is further disposed on the rotating shaft of the driving shaft via the hinge structure or on the eccentric portion of the driving shaft via the hinge structure.
  • the deflection non-casing body is further set as an eccentric deflection non-sleeve or as a non-eccentric deflection non-sleeve.
  • the deflection non-casing body is further set as an eccentric deflection non-sleeve or as a non-eccentric deflection non-sleeve.
  • Item 5 Based on any one of the aspects 1 to 4, further eccentric between the deflecting non-casing body and the rotating shaft of the driving shaft and/or in the deflecting non-casing body and the driving shaft A corner control device is provided between the sections.
  • a positive displacement fluid mechanism comprising an eccentric shaft and a working fluid moving member, the eccentric shaft comprising a drive shaft and a deflection eccentric sleeve, wherein the deflection eccentric sleeve set is disposed on the drive On the shaft; the working mass kit is disposed outside the deflection eccentric sleeve, between the deflection eccentric sleeve and the shaft of the drive shaft, and/or between the deflection eccentric sleeve and the drive shaft a corner control device is disposed between the eccentric portions, or the working fluid moving member set is disposed in the deflection eccentric sleeve between the deflection eccentric sleeve and the shaft of the drive shaft and/or in the deflection A corner control device is disposed between the eccentric sleeve and the eccentric portion of the drive shaft.
  • a positive displacement fluid mechanism comprising an eccentric shaft, a working fluid moving member and a sliding body, a chord slide is provided on an eccentric portion of the eccentric shaft, the sliding body and the sliding body The chord slide is cooperatively disposed, and the working fluid moving set is disposed outside the eccentric portion and the sliding body.
  • Solution 8 On the basis of the solution 7, a rotation angle control device is further provided between the sliding body and the rotating shaft of the eccentric shaft and/or between the sliding body and the eccentric portion.
  • Item 9 A volumetric fluid mechanism comprising an eccentric shaft, a working fluid moving member and a deflecting eccentric sleeve, the material of the deflecting eccentric sleeve being set as a lightweight material, or the deflection eccentric sleeve
  • the material of the body is set as a heavy material, or a recessed area is disposed in the deflection eccentric sleeve, the deflection eccentric sleeve set is disposed on an eccentric portion of the eccentric shaft, and the working fluid moving set is disposed in the Deflection eccentric sleeve outside the body.
  • Scenario 10 On the basis of the solution 9, further between the deflection eccentric sleeve and the rotating shaft of the eccentric shaft and / Or a corner control device is disposed between the deflection eccentric sleeve and the eccentric portion.
  • the working fluid moving member is a triangular rotor fluid mechanism, a triangular rotor engine, a two-corner rotor fluid mechanism, and two An angular angle engine, a multi-angle rotor fluid mechanism, a polygonal rotor engine, a rolling rotor fluid mechanism, a rolling piston fluid mechanism, a oscillating rotor fluid mechanism, a rotating fluid mechanism, or a piston of a rotary cylinder rolling piston fluid mechanism, or a scroll fluid mechanism Scroll.
  • the working fluid moving member is further configured as a triangular rotor fluid mechanism, a triangular rotor engine, a two-corner rotor fluid mechanism, a two-corner rotor engine, a polygonal rotor fluid mechanism, a polygonal rotor engine, and a rolling
  • a volumetric fluid mechanism comprising an eccentric shaft, a working fluid moving member and a deflecting eccentric sleeve, the deflecting eccentric sleeve set being disposed on an eccentric portion of the eccentric shaft,
  • the working moving member is configured as a scroll of a scroll volume type fluid mechanism, and the shaft hole set of the scroll is disposed outside the deflection eccentric sleeve, and the rotating eccentric sleeve and the rotating shaft of the eccentric shaft
  • a corner control device is disposed between and/or between the deflection eccentric sleeve and the eccentric portion.
  • Item 14 On the basis of any one of the aspects 1 to 4, any one of 6 to 10, 12 or 13, further in the structure in which the volumetric fluid mechanism comprises a separator, the separator and the body are The working medium moving parts are arranged, and the matching setting comprises a slide sliding matching setting, a sliding hinge matching setting, a curved surface sliding matching setting, a hinge setting or a fixing connection setting.
  • the volumetric fluid mechanism includes a separator
  • the separator is disposed in cooperation with the moving member of the working fluid
  • the matching arrangement includes a slide sliding fit setting , sliding hinged setting, curved sliding fit setting, hinged setting or fixed connection setting.
  • Item 16 On the basis of the solution 11, further, in the structure in which the volumetric fluid mechanism includes a separator, the separator is disposed in cooperation with the moving member of the working fluid, and the fitting arrangement includes a slide sliding fit setting , sliding hinged setting, curved sliding fit setting, hinged setting or fixed connection setting.
  • a positive displacement fluid mechanism including a cam and a cylinder, the cam being disposed in cooperation with the cylinder, the cam including a cam body and a drive shaft, the cam body being disposed at A compensation body is disposed between the cam body and the drive shaft on the drive shaft.
  • Item 18 A positive displacement fluid mechanism including a cam and a cylinder, the cam being disposed in cooperation with the cylinder, the cam including a cam body and an eccentric shaft, the cam body being disposed at Said on the eccentric part of the eccentric shaft.
  • Solution 19 On the basis of the solution 18, a corner control device is further disposed between the cam body and the eccentric shaft.
  • Item 20 On the basis of any one of the schemes 17 to 19, the spacer of the volumetric fluid mechanism is further slidably engaged with the cam body.
  • a volumetric fluid mechanism comprising an eccentric shaft and a working fluid moving member, the eccentric shaft comprising a drive shaft and a structure, the structural body being disposed on the drive shaft, A working fluid moving member is disposed in cooperation with the structural body, and a fluid pressure compensating structure is disposed between the structural body and the driving shaft and/or between the structural body and the working fluid moving member.
  • a volumetric fluid mechanism comprising a cylinder, a rotor, an eccentric shaft, and a separator, wherein the rotor is disposed in the cylinder, and a shaft hole is disposed on the rotor, and the eccentric shaft is disposed in the In the shaft hole, the spacer is disposed in cooperation with the rotor and the cylinder, and a compensation body is disposed at a telecentric point of the eccentric shaft, and the compensation direction of the compensation body is to increase the eccentricity of the rotor.
  • Direction thereby achieving compensation between the rotor and the inner side of the cylinder to increase its tightness.
  • a spacer chute is further disposed on the rotor, the spacer is disposed in the spacer chute and one end is hingedly disposed with the cylinder, or the rotor and the rotor are The spacer is fixedly connected, the spacer is disposed in a sliding hinge with the cylinder, or the spacer is hingedly disposed with the rotor, and the spacer is slidably disposed with the cylinder.
  • the compensation body is further configured to be an elastic body, a mass, a hydraulic compensation structure, or a pneumatic compensation structure.
  • a volumetric fluid mechanism comprising a cylinder, an eccentric shaft and a rotor compensation structure, wherein an eccentric portion of the eccentric shaft is disposed in the cylinder, and the rotor compensation structure is disposed on the eccentric portion with a deflection fit
  • a rotation angle control device is disposed between the rotor compensation structure and the eccentric portion and/or a deflection elastic body is disposed between the rotor compensation structure and the eccentric portion.
  • the volumetric fluid mechanism further includes a package structure, and the package structure is disposed on the combination of the eccentric portion and the rotor compensation structure and the cylinder between.
  • Item 27 On the basis of the solution 26, the package structure is further provided in a rotationally cooperative manner with the combination of the eccentric portion and the rotor compensation structure.
  • Item 28 A volumetric fluid mechanism comprising a cylinder, an eccentric shaft and a set eccentric structure, an eccentric portion of the eccentric shaft being disposed in the cylinder, the set eccentric structure set being disposed at the eccentric portion and Between the cylinders, a corner control device is disposed between the set eccentric structure and the eccentric portion and/or a deflecting elastic body is disposed between the set eccentric structure and the eccentric portion.
  • the volumetric fluid mechanism further includes a set structure, and the set structure set is disposed between the set eccentric structure and the cylinder.
  • Solution 30 On the basis of the solution 29, the set structure and the set eccentric structure are further rotationally arranged.
  • a positive displacement fluid mechanism comprising an eccentric shaft positive displacement fluid mechanism, the eccentric shaft positive displacement fluid mechanism comprising an eccentric shaft, a cylinder and a rotating body, the eccentric portion of the eccentric shaft being disposed in the cylinder, A shaft hole set of the rotating body is disposed on an eccentric portion of the eccentric shaft, and a radial compensation body is disposed between the eccentric portion and the shaft hole.
  • Item 32 On the basis of the item 31, the radial compensation body is further made into an elastic body.
  • the elastic body is further set as a spring or as a combination including a spring and a structure.
  • the eccentric shaft volumetric fluid mechanism is further configured to be a triangular rotor fluid mechanism, a triangular rotor engine, a two-corner rotor fluid mechanism, a two-corner rotor engine, and a polygonal rotor.
  • a positive displacement fluid mechanism comprising a cylinder, an eccentric shaft, a separator and an eccentric piston, wherein a spacer seat is provided on the cylinder, the eccentric shaft is disposed in the cylinder, and the eccentric piston is disposed Inside the cylinder and set in The eccentric shaft, the rotation axis of the eccentric shaft is collinear with the center line of the cylinder, the spacer is disposed in the spacer seat, and the spacer is hingedly disposed with the eccentric piston; Providing at least one of a fluid inlet and a fluid outlet on the cylinder, or at least one of a fluid inlet and a fluid outlet on an end cap of the cylinder; a maximum radius of gyration of the eccentric shaft and a diameter of the eccentric piston The sum of the maximum thicknesses is greater than the radius of the cylinder, and a corner control device is provided between the eccentric piston and the eccentric shaft.
  • Item 36 A volumetric fluid mechanism comprising a cylinder, an eccentric shaft A, an eccentric shaft B, a separator and a piston, wherein a spacer seat is provided on the cylinder, and a set of chambers is arranged in the cylinder from the inside to the outside.
  • the eccentric shaft B, the eccentric shaft A and the piston, the rotation axis of the eccentric shaft B is collinear with the center line of the cylinder, and the spacer is disposed in the spacer seat, a separator is hingedly disposed with the piston; at least one of a fluid inlet and a fluid outlet is disposed on the cylinder, or at least one of a fluid inlet and a fluid outlet is disposed on an end cap of the cylinder; the eccentric shaft B a sum of a maximum radius of gyration, a radial maximum thickness of the eccentric shaft A, and a radial thickness of the piston being greater than a radius of the cylinder, and a rotation angle between the eccentric shaft A and the eccentric shaft B Control device.
  • a positive displacement fluid mechanism comprising a cylinder, a circumferential piston and a separator, the circumferential piston being disposed in the cylinder; a spacer chute disposed on the cylinder, the spacer being disposed at the chamber In the spacer chute, one end of the spacer is disposed in cooperation with the circumferential piston, or a spacer chute is disposed on the circumferential piston, and the spacer is disposed in the spacer chute One end of the spacer cooperates with the cylinder; a shaft hole is disposed on the circumferential piston, and a center line of the shaft hole is non-collinearly disposed with a center line of the circumferential piston, An eccentric shaft is disposed in the hole, the rotation axis of the eccentric shaft is collinear with a center line of the cylinder, and a sum of a maximum radius of gyration of the eccentric shaft and a maximum radial thickness of the circumferential piston is greater than a radius of the cylinder A corner control structure is disposed between the circumferential
  • a positive displacement fluid mechanism comprising a cylinder, a circumferential piston and a separator, wherein the circumferential piston is disposed in the cylinder; a rotating shaft is disposed on the cylinder, and a spacer chute is disposed on the rotating shaft, The spacer is disposed in the spacer chute, one end of the spacer is fixedly connected to the circumferential piston, or a spacer chute is disposed on the circumferential piston, and the spacer is disposed at the In the spacer chute, one end of the spacer cooperates with the cylinder; a shaft hole is disposed on the circumferential piston, and a center line of the shaft hole is non-collinear with a center line of the circumferential piston Provided that an eccentric shaft is disposed in the shaft hole, an axis of rotation of the eccentric shaft is collinear with a center line of the cylinder, a sum of a maximum radius of gyration of the eccentric shaft and a maximum radial thickness of the circumferential piston A radius control structure
  • a positive displacement fluid mechanism comprising a cylinder, a circumferential piston and a separator, the circumferential piston being disposed in the cylinder, the circumferential piston being a non-circular piston; setting on the cylinder a spacer chute, the spacer is disposed in the spacer chute, one end of the spacer is disposed in cooperation with the circumferential piston, or a spacer chute is disposed on the circumferential piston The spacer is disposed in the spacer chute, one end of the spacer cooperates with the cylinder; a shaft hole is disposed on the circumferential piston, and an eccentric shaft is disposed in the shaft hole, the eccentricity An axis of rotation of the shaft is collinear with a centerline of the cylinder, a sum of a maximum radius of gyration of the eccentric shaft and a maximum radial thickness of the circumferential piston being greater than a radius of the cylinder, the circumferential piston and the A corner control structure is provided between the eccentric shafts.
  • a positive displacement fluid mechanism comprising a cylinder, a circumferential piston and a separator, the circumferential piston being disposed in the cylinder; a spacer chute disposed on the cylinder, the spacer being disposed at the chamber In the spacer chute, one end of the spacer is disposed in cooperation with the circumferential piston, or a spacer chute is disposed on the circumferential piston, and the spacer is disposed in the spacer chute One end of the spacer cooperates with the cylinder; and is disposed on the circumferential piston a circular hole, a center line of the circular hole is disposed in line with a center line of the circumferential piston, a rotating body is disposed in the circular hole, and a shaft hole is disposed on the rotating body, and a center line of the shaft hole Arranging non-collinearly with a center line of the rotating body, an eccentric shaft is disposed in the shaft hole, an axis of rotation of the eccentric shaft is collinear with a center line of the cylinder, and
  • a positive displacement fluid mechanism comprising a cylinder, a circumferential piston and a separator, wherein the circumferential piston is disposed in the cylinder; a rotating shaft is disposed on the cylinder, and a spacer chute is disposed on the rotating shaft, The spacer is disposed in the spacer chute, one end of the spacer is fixedly connected to the circumferential piston, or a spacer chute is disposed on the circumferential piston, and the spacer is disposed at the In the spacer chute, one end of the spacer cooperates with the cylinder; a circular hole is disposed on the circumferential piston, and a center line of the circular hole is collinear with a center line of the circumferential piston a rotating body is disposed in the circular hole, and a shaft hole is disposed on the rotating body, a center line of the shaft hole is non-collinearly disposed with a center line of the rotating body, and an eccentric shaft is disposed in the shaft hole a rotation axis of the eccentric shaft colline
  • Item 42 A volumetric fluid mechanism comprising a cylinder, an eccentric shaft, a separator and a rotor compensation structure, the eccentric shaft being disposed in the cylinder, the rotor compensation structure being disposed at an eccentric portion of the eccentric shaft
  • the rotor compensation structure is slidably engaged with the eccentric portion, the rotor compensation structure is unequal in thickness in a direction perpendicular to an axis of the eccentric portion, and the eccentric portion and the rotor compensation structure
  • the body and the cylinder are disposed in cooperation, and the eccentric portion and the rotor compensation structure constitute a part of an in-cylinder rotating body, and an outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder, a cylinder is disposed on the cylinder of the cylinder, the spacer is disposed in the sliding slot, and the spacer is disposed in cooperation with the in-cylinder rotating body between the rotor compensation structure and the eccentric portion
  • An elastic body is disposed, or an elastic body is disposed between the rotor compensation structure and
  • the rotor compensation structure is set on the eccentric portion, or the rotor compensation structure is disposed on the eccentric portion via a hinge shaft, or the rotor compensation a structure is disposed on the eccentric portion via a fixing member, an elastic body is disposed between the rotor compensation structure body and the eccentric portion, or an elastic body is disposed between the rotor compensation structure body and the eccentric shaft, The elastomer forms a torque between the rotor compensation structure and the eccentric portion.
  • Scenario 44 Based on the solution 42 or 43, further, the torque formed by the elastic body is such that the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure form a central angle of less than 180 degrees. It tends to increase or tend to decrease.
  • Item 45 A volumetric fluid mechanism comprising a cylinder block, a rotating shaft, a separator and a cylinder liner, wherein the cylinder liner is disposed in a cylinder bore of the cylinder block, and the cylinder liner and the cylinder block are arranged in a sliding fit.
  • the wall thickness of the cylinder liner is not equal, the rotating shaft is disposed in the cylinder liner, and a sliding slot is disposed on the rotating shaft, wherein the spacer is disposed in the sliding slot, and at least one end of the spacer is
  • the inner side of the cylinder liner is cooperatively disposed, an elastic body is disposed between the cylinder liner and the cylinder block, or an elastic body is disposed between the cylinder liner and the cylinder block, and the elastic body is in the A torque is formed between the cylinder liner and the cylinder.
  • Scenario 46 On the basis of the solution 45, the torque formed by the elastic body is further caused to make the region where the thickness of the cylinder liner is larger tends to match the cooperation between the rotating shaft and the cylinder liner.
  • a positive displacement fluid mechanism comprising a cylinder, an eccentric shaft, a separator and a rotor compensation structure, the eccentric shaft being disposed in the cylinder, the rotor compensation structure being disposed at an eccentric portion of the eccentric shaft
  • the rotor compensation structure is slidably engaged with the eccentric portion, and the thickness of the rotor compensation structure in a direction perpendicular to an axis of the eccentric portion is not equal, and a sliding is disposed on the cylinder of the cylinder.
  • the separator is disposed in the chute, the eccentric portion and the rotor compensation structure constitute a part of an in-cylinder rotating body, and an outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder;
  • the in-cylinder rotating body is disposed in cooperation with the cylinder and the spacer, or an annular structure is disposed between the in-cylinder rotating body and the cylinder, the annular structure and the cylinder and the cylinder.
  • the separator is provided in cooperation, or a two-bladed rotor is disposed between the in-cylinder rotating body and the cylinder, and the two-blade rotor is disposed in cooperation with the cylinder and the separator.
  • a volumetric fluid mechanism comprising a cylinder, an eccentric shaft, a separator and a rotor compensation structure, the eccentric shaft being disposed in the cylinder, the rotor compensation structure being disposed at an eccentric portion of the eccentric shaft Upper, the rotor compensation structure is slidably disposed with the eccentric portion, the rotor compensation structure is unequal in thickness in a direction perpendicular to an axis of the eccentric portion, and the eccentric portion and the rotor compensation structure
  • the body constitutes a part of the in-cylinder rotating body, and an outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder, and an annular structure is disposed between the in-cylinder rotating body and the cylinder, the annular structure Provided with the cylinder and the spacer; a cylinder of a cylinder is disposed on a cylinder of the cylinder, the spacer is disposed in a sliding slot of the cylinder, and an inner cylinder end of the separator Arranging with the annular structure, or providing a rotating shaft on the
  • Scenario 49 further, based on the solution 47 or 48, further setting the rotor compensation structure set on the eccentric portion, or the rotor compensation structure is disposed on the eccentric portion via a hinge shaft, or The rotor compensation structure is disposed on the eccentric portion via a fixing member.
  • Item 50 On the basis of the solution 47 or 48, further providing an elastic body between the rotor compensation structure and the eccentric portion, or providing an elastic body between the rotor compensation structure and the eccentric shaft, The elastomer forms a torque between the rotor compensation structure and the eccentric portion.
  • Item 51 On the basis of the solution 49, further providing an elastic body between the rotor compensation structure and the eccentric portion, or providing an elastic body between the rotor compensation structure and the eccentric shaft, The elastomer forms a torque between the rotor compensation structure and the eccentric portion.
  • Scenario 52 On the basis of the solution 50, the torque formed by the elastic body is further increased to a central angle of less than 180 degrees formed by the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure. Increase or decrease.
  • Scenario 53 Based on the solution 51, the torque formed by the elastic body is further increased to a central angle of less than 180 degrees formed by the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure. Increase or decrease.
  • a positive displacement fluid mechanism comprising a cylinder, an eccentric shaft, a separator and a rotor compensation structure, the eccentric shaft being disposed in the cylinder, the rotor compensation structure being disposed at an eccentric portion of the eccentric shaft
  • the rotor compensation structure is slidably engaged with the eccentric portion, and the thickness of the rotor compensation structure in a direction perpendicular to an axis of the eccentric portion is unequal;
  • the spacer and the rotor compensation structure Body sliding fit setting, the spacer body, the The rotor compensation structure and the cylinder cooperate to form a space for volume change, or an annular structure is disposed between the rotor compensation structure and the cylinder, and the spacer slides with the annular structure
  • Cooperating with the arrangement, the spacer body, the annular structure body and the cylinder cooperate with each other to form a space of variable volume, or a ring structure is arranged between the rotor compensation structure body and the cylinder, the isolation
  • the body is fixedly disposed with the annular structure,
  • Scenario 55 On the basis of the solution 54, further setting the rotor compensation structure set on the eccentric portion, or the rotor compensation structure is disposed on the eccentric portion via a hinge shaft, or the rotor compensation The structure is disposed on the eccentric portion via a fixing member.
  • Item 56 On the basis of the scheme 54 or 55, further providing an elastic body between the rotor compensation structure and the eccentric portion, or providing an elastic body between the rotor compensation structure and the eccentric shaft, The elastomer forms a torque between the rotor compensation structure and the eccentric portion.
  • Scenario 57 Based on the solution 56, the torque formed by the elastic body is further increased to a central angle of less than 180 degrees formed by the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure. Increase or decrease.
  • the so-called “work moving member” refers to a moving member that is driven by a driving member to perform a function on a working medium and can receive a working medium and transmit a working fluid action to a power output member, such as a rolling piston volume type.
  • a power output member such as a rolling piston volume type.
  • the moving member refers to a member that is in a moving state with the body of the volumetric fluid mechanism as a reference.
  • the so-called “deflection non-casing” means a non-sleeve structure which can be deflected, for example, a structure having a wall thickness equal to or different from a central angle of less than 360°.
  • the so-called “eccentric deflection non-casing” means an eccentric non-sleeve structure which can be deflected, for example, an eccentric sleeve having a central angle of less than 360° and a different wall thickness.
  • non-eccentric deflection non-casing means any non-eccentrically deflectable non-sleeve structure, such as a structure having a different wall thickness of less than 360°.
  • corner control device means a component, unit or system, such as an elastomer or the like, which can adjust, control or limit the change in orientation during deflection or displacement.
  • the so-called “deflection eccentric sleeve” refers to an eccentric sleeve that can be deflected.
  • the so-called “sliding body” means a structure which can be slidably displaced.
  • chord-direction slide means a slide that does not pass through the drive shaft or the center of the eccentric shaft.
  • fluid compensation structure refers to a structure that can form a compensating action under the action of a fluid, such as a fluid chamber or a structure that can push the displacement of the structure under the action of a fluid.
  • the term "compensation body” means any structure capable of forming a compensating action, such as an elastic body, a displaceable structure, a deflectable structure, a displaceable structure including an elastomer, and an elastomer.
  • the so-called “fit setting” can selectively select the fixing arrangement.
  • the term "inner mating structure” means having at least one seal in the direction of the bus bar of the inner side wall of the cylinder.
  • a structure of the wire having a rolling and/or sliding fit relationship with the cylinder.
  • the "outer mating structure” means a structure in which at least one seal line is formed with a circumferential piston.
  • the so-called "compensation direction of the compensating body” means a direction in which the size of the compensating body is increased or the boundary size is increased, and when the working environment is changed, the compensating body is required to have a smaller size or a smaller boundary size. The direction is reversed.
  • the term "mass” refers to a solid or liquid having a certain mass, which acts to generate centrifugal force when the eccentric shaft rotates to push the rotor to move in a direction in which the eccentricity increases, and the mass should be based on The rotational speed and the pressure difference across the rotor determine that the centrifugal force should still provide a hermetic relationship between the rotor and the cylinder in the presence of differential pressure on both sides.
  • the term "separator” means a structure that can be disposed in cooperation with the moving member of the working medium in which the working chamber of the volumetric fluid mechanism is divided into two or more regions.
  • the so-called “corner control device” can be selectively selected as a means for controlling the positional relationship between the two sets of components in the circumferential direction.
  • the so-called “deflection fit arrangement” refers to a mutually configurable arrangement that can be deflected.
  • telecentric point refers to all regions other than the concentric surface.
  • the concentric surface refers to a plane formed by a line formed by a point on the outer side surface of the eccentric portion of the eccentric shaft closest to the rotation axis of the eccentric shaft and the rotation axis.
  • eccentric piston means an eccentric piston
  • non-spherical piston means a piston having a non-circular shape.
  • circumferential piston means a structure having a rolling and/or sliding fit relationship with the cylinder in the direction of the cylinder bus bar having at least one seal line with the inner wall of the cylinder.
  • the "inner mating structure” means a structure having a rolling and/or sliding fit relationship with the cylinder having at least one seal line in the direction of the bus bar of the inner side wall of the cylinder.
  • the "outer mating structure” means a structure in which at least one seal line is formed with a circumferential piston.
  • in-cylinder rotating body means a rotatable structure that is in a cylinder.
  • an intake valve may be selectively provided at the fluid inlet of the volumetric fluid mechanism.
  • an exhaust valve may be selectively provided at the fluid outlet of the volumetric fluid mechanism.
  • the volumetric fluid mechanism may be selectively selected as a liquid pump, a liquid motor, a gas compression mechanism, or a gas expansion mechanism.
  • thermodynamics Based on the basic principles of thermodynamics and observations of cosmic phenomena, the inventors believe that heat cannot be converted into any other form of energy or matter 100% without the influence of external factors.
  • the second law of traditional thermodynamics only states that under the premise of no external factors, heat cannot be 100% successful. This law is correct, but it is one-sided. Heat can be defined in the popular language as the lowest form of energy, or simply as the garbage of the universe.
  • the inventors Upon analysis, the inventors also believe that the growth process of any organism (animal, plant, microorganism, virus and bacteria) is exothermic.
  • any process or any cycle (not limited to thermodynamic processes, such as chemical reaction processes, biochemical reaction processes, photochemical reaction processes, biological growth processes, plant growth processes are included)
  • thermodynamic processes such as chemical reaction processes, biochemical reaction processes, photochemical reaction processes, biological growth processes, plant growth processes are included
  • the maximum functional power conservation the inventor believes that the plant growth process without photosynthesis can not improve its functional ability, that is, the function of bean sprouts is impossible to be higher than the function of the beans plus their absorption.
  • the sum of the functional power of nutrients; the reason why the function of a tree is greater than the function of the sapling is because of yang Light participates in the growth process from saplings to trees in the form of photosynthesis.
  • the so-called convergence is the process of increasing the density of the working medium. For example, condensation and compression are both convergence processes. Under the same pressure, the working medium with low temperature converges greatly; the so-called heat is the endothermic process of the working medium; the so-called divergence refers to the work.
  • gaseous air is much lower than that of liquid air; methanol plus water plus moderate temperature generates carbon monoxide and hydrogen, although the carbon monoxide produced
  • the combustion heat of hydrogen and hydrogen is about 20% higher than the combustion heat of methanol, but the ratio of the functional force greater than that of methanol is minimal, because the process absorbs about 20% of the heat, but the product carbon monoxide and The divergence of hydrogen is much greater than that of methanol. Therefore, the use of heat with a low temperature to participate in the chemical reaction is not effective in improving the functionality of the product.
  • the beneficial effects of the present invention are as follows:
  • the volumetric fluid mechanism of the present invention can effectively solve the compensation problem of the mechanism, prolong the life of the fluid mechanism, and effectively improve the sealing performance of the fluid mechanism and improve the efficiency.
  • Figure 1 Schematic diagram of the structure of Embodiment 1;
  • Figure 2 is a schematic view showing the structure of Embodiment 2;
  • Figure 3 is a schematic view showing the structure of Embodiment 3;
  • Figure 4.1 Schematic diagram of the structure of Embodiment 4.
  • Figure 4.2 Schematic diagram of the structure of Embodiment 5;
  • Figure 5 is a schematic view showing the structure of Embodiment 6;
  • Figure 6 is a schematic view showing the structure of Embodiment 7;
  • Figure 7 is a schematic view showing the structure of Embodiment 10.
  • Figure 8 is a schematic view showing the structure of Embodiment 11;
  • Figure 9 is a schematic view showing the structure of Embodiment 12.
  • Figure 10 is a schematic view showing the structure of Embodiment 13;
  • Figure 11 is a schematic view showing the structure of Embodiment 14.
  • Figure 12 is a schematic view showing the structure of Embodiment 15;
  • FIG. 13.1 Schematic diagram of the structure of Embodiment 16;
  • FIG.2 Schematic diagram of the structure of Embodiment 17;
  • FIG.3 Schematic diagram of the structure of Embodiment 18;
  • Figure 14 is a schematic view showing the structure of Embodiment 19;
  • Figure 15 is a schematic view showing the structure of Embodiment 20;
  • Figure 16 Schematic diagram of the structure of Embodiment 21;
  • Figure 17 is a schematic view showing the structure of Embodiment 22;
  • Figure 18 is a schematic view showing the structure of Embodiment 23;
  • Figure 19 is a schematic view showing the structure of Embodiment 24;
  • Figure 20 is a schematic view showing the structure of Embodiment 25;
  • FIG. 1 Schematic diagram of the structure of Embodiment 26;
  • FIG. 21.2 Schematic diagram of the structure of Embodiment 27;
  • FIG. 1 Schematic diagram of the structure of Embodiment 28;
  • Figure 22.2 Schematic diagram of the structure of Embodiment 29
  • FIG. 33.1 Schematic diagram of the structure of Embodiment 30;
  • FIG. 3 Schematic diagram of the structure of Embodiment 31;
  • FIG. 14.1 Schematic diagram of the structure of Embodiment 32;
  • Figure 24.2 Schematic diagram of the structure of Embodiment 33;
  • FIG. 15.1 Schematic diagram of the structure of Embodiment 34;
  • Figure 25.2 Schematic diagram of the structure of Embodiment 35;
  • Figure 26 is a schematic view showing the structure of Embodiment 36
  • FIG. 17.1 Schematic diagram 1 of the structure of Embodiment 37;
  • Figure 27.2 Schematic diagram 2 of the embodiment 37
  • Figure 28 is a schematic view showing the structure of Embodiment 38.
  • Figure 29.1 is a schematic view showing the structure of Embodiment 39;
  • FIG.2 Schematic diagram of the structure of Embodiment 40
  • Figure 29.3 is a schematic view showing the structure of Embodiment 41;
  • Figure 30.1 Schematic diagram of the structure of Embodiment 42;
  • Figure 30.2 Schematic diagram of the structure of Embodiment 43;
  • Figure 31.1 Schematic diagram 1 of Embodiment 43;
  • Figure 31.2 Schematic diagram 2 of the structure of Embodiment 43;
  • FIG.1.3 Schematic diagram 3 of Embodiment 43;
  • FIG 32 Schematic diagram 4 of the embodiment 43;
  • FIG.3.1 Schematic diagram of the structure of Embodiment 44;
  • FIG. 33.2 Schematic diagram of the structure of Embodiment 45;
  • Figure 33.3 is a schematic view showing the structure of Embodiment 46;
  • FIG. 4 Schematic diagram of the structure of Embodiment 47;
  • Figure 34 is a schematic view showing the structure of Embodiment 48.
  • Figure 35 is a schematic view showing the structure of Embodiment 49.
  • Figure 36 is a schematic view showing the structure of Embodiment 52;
  • the volumetric fluid mechanism comprises an eccentric shaft 1 and a working fluid moving member 2, the eccentric shaft 1 comprising a driving shaft 3 and a deflection non-casing body 4, the deflection is not
  • the sleeve 4 is disposed on the rotating shaft of the drive shaft 3 and/or the deflecting non-casing body 4 is disposed on an eccentric portion of the drive shaft 3, and the working fluid moving member 2 is set on the drive shaft 3 And the deflection is not outside the sleeve 4.
  • the working fluid moving member 2, the driving shaft 3 and the deflecting non-casing body 4 may be combined with a cylinder or the like to form a volumetric fluid mechanism.
  • a volumetric fluid mechanism as shown in FIG. 2, further, based on the embodiment 1, the deflecting non-casing body 4 is further selectively disposed on the rotating shaft of the driving shaft 3 via an articulated structure or hinged The structure is disposed on an eccentric portion of the drive shaft 3.
  • the deflection non-casing 4 can be further set as an eccentric deflection non-sleeve or as a non-eccentric deflection non-sleeve. body.
  • a volumetric fluid mechanism as shown in FIG. 3, further based on Embodiment 1, further selectively between the deflection non-casing body 4 and the shaft of the drive shaft 3 and/or in the A rotation angle control device 5 is provided between the deflection non-casing body 4 and the eccentric portion of the drive shaft 3.
  • Embodiment 1 and Embodiment 2 and its convertible embodiment it is further possible to selectively further between the deflection non-casing body 4 and the rotation shaft of the drive shaft 3 and Or a corner control device 5 is provided between the deflecting non-casing body 4 and the eccentric portion of the drive shaft 3.
  • the volumetric fluid mechanism comprises an eccentric shaft 1 and a working fluid moving member 2, the eccentric shaft 1 comprising a driving shaft 3 and a deflection eccentric sleeve 6, the deflection eccentricity a sleeve 6 is disposed on the drive shaft 3; the working movable member 2 is disposed outside the deflection eccentric sleeve 6 between the deflection eccentric sleeve 6 and the rotation shaft of the drive shaft 3 And/or a corner control device 5 is provided between the deflection eccentric sleeve 6 and the eccentric portion of the drive shaft 3.
  • the volumetric fluid mechanism comprises an eccentric shaft 1 and a working fluid moving member 2, the eccentric shaft 1 comprising a driving shaft 3 and a deflection eccentric sleeve 6, the deflection eccentricity a sleeve 6 is disposed on the drive shaft 3; the working moving member 2 is disposed in the deflection eccentric sleeve 6 between the deflection eccentric sleeve 6 and the rotation shaft of the drive shaft 3 And/or a corner control device 5 is provided between the deflection eccentric sleeve 6 and the eccentric portion of the drive shaft 3.
  • the volumetric fluid mechanism includes an eccentric shaft 1, a working fluid moving member 2, and a sliding body 7, and a chord slide 72 is provided on an eccentric portion of the eccentric shaft 1.
  • the sliding body 7 is disposed in cooperation with the chord slide 72, and the working fluid moving member 2 is disposed outside the eccentric portion and the sliding body 7.
  • a volumetric fluid mechanism as shown in FIG. 6, on the basis of Embodiment 6, further selectively between the sliding body 7 and the rotating shaft of the eccentric shaft 1 and/or in the sliding body
  • a corner control device 5 is provided between the eccentric portion 7 and the eccentric portion.
  • a positive displacement fluid mechanism comprising an eccentric shaft 1, a working fluid moving member 2 and a deflection eccentric sleeve 6, the material of the deflection eccentric sleeve 6 being made of a lightweight material, or the deflection eccentricity
  • the material of the sleeve 6 is set as a heavy material, or a recessed area is provided in the deflection eccentric sleeve 6 , and the deflection eccentric sleeve 6 is set on the eccentric portion of the eccentric shaft 1 .
  • the 2 sets are disposed outside the deflection eccentric sleeve 6.
  • a volumetric fluid mechanism based on the embodiment 8, can be further selectively between the deflection eccentric sleeve 6 and the rotating shaft of the eccentric shaft 1 and/or in the deflection eccentric sleeve 6 and A corner control device 5 is disposed between the eccentric portions.
  • the working fluid moving member 2 can be further selectively set as a triangular rotor fluid mechanism, a triangular rotor engine, Two-corner rotor fluid mechanism, two-corner rotor engine, multi-angle rotor fluid mechanism, polygonal rotor engine, rolling rotor fluid mechanism, rolling piston fluid mechanism, oscillating rotor fluid mechanism, rotating fluid mechanism, or piston of a rotary cylinder rolling piston fluid mechanism, or It is a scroll of a scroll fluid mechanism.
  • the spacer body and the spacer may be further selectively selected in the structure in which the volumetric fluid mechanism includes a separator.
  • the working medium moving parts are arranged, and the matching setting comprises a slide sliding matching setting, a sliding hinge matching setting, a curved surface sliding matching setting, a hinge setting or a fixing connection setting.
  • a volumetric fluid mechanism as shown in FIG. 7, the volumetric fluid mechanism includes an eccentric shaft 1, a working fluid moving member 2, and a deflection eccentric sleeve 6, and the deflection eccentric sleeve 6 is set on the eccentric shaft
  • the eccentric moving part 2 is a scroll of a scroll fluid mechanism, and a shaft hole set of the scroll is disposed outside the deflection eccentric sleeve 6 at the deflection eccentric sleeve
  • a corner control device 5 is provided between the body 6 and the axis of rotation of the eccentric shaft 1 and/or between the deflection eccentric sleeve 6 and the eccentric portion.
  • a volumetric fluid mechanism as shown in FIG. 8, the volumetric fluid mechanism includes a cam 10 and a cylinder 9,
  • the cam 10 is provided in cooperation with the cylinder block 9, and the cam 10 includes a cam body 11 and a drive shaft 131, and the cam body 11 is disposed on the drive shaft 131 at the cam body 11 and the drive shaft 131. Set the compensation body between.
  • a volumetric fluid mechanism as shown in FIG. 9, the volumetric fluid mechanism includes a cam 10 and a cylinder 9, the cam 10 being disposed in cooperation with the cylinder 9, the cam 10 including a cam body 11 and an eccentric
  • the shaft 101 is disposed on an eccentric portion of the eccentric shaft 101.
  • a volumetric fluid mechanism as shown in Fig. 10, is further provided with a rotation angle control device 5 between the cam body 11 and the eccentric shaft 101 in addition to the twelfth embodiment.
  • the embodiment 11 to the embodiment 13 can further provide a sliding body of the volumetric fluid mechanism with the cam body 11 in a sliding fit.
  • the volumetric fluid mechanism includes an eccentric shaft 1 and a working fluid moving member 2, the eccentric shaft 1 including a driving shaft 3 and a structural body 12, the structural body 12 being disposed On the drive shaft 3, the working fluid moving member 2 is disposed in cooperation with the structural body 12, between the structural body 12 and the drive shaft 3 and/or in the structural body 12 and the A fluid pressure compensating structure 13 is disposed between the working fluid moving members 2.
  • the fluid pressure compensating structure 13 can be set as a pneumatic or hydraulic compensation structure.
  • a positive displacement fluid mechanism includes a cylinder 201, a rotor 202, an eccentric shaft 203, and a separator 204.
  • the rotor 202 is disposed in the cylinder 201, and a shaft hole 205 is disposed on the rotor 202, and the eccentricity A shaft 203 is disposed in the shaft hole 205.
  • the spacer 204 is disposed in cooperation with the rotor 202 and the cylinder 201.
  • a compensation body 207 is disposed at a telecentric point of the eccentric shaft 203.
  • the compensation body 207 The compensation direction is a direction in which the eccentricity of the rotor 202 is increased, thereby compensating between the rotor 202 and the inner side surface of the cylinder 201 to increase the sealing property thereof.
  • the spacer 204 is slidably engaged with the rotor 202, and the spacer 204 is slidably disposed with the cylinder 201.
  • a volumetric fluid mechanism differs from the embodiment of the embodiment 15 in that a spacer chute 206 is provided on the rotor 202, and the separator 204 is disposed on the separator. One end of the chute 206 and one end thereof are hingedly disposed with the cylinder 201.
  • a volumetric fluid mechanism differs from the embodiment of the embodiment 15 in that the rotor 202 is fixedly coupled to the separator 204, the separator 204 and the cylinder 201 Set with sliding hinges.
  • a volumetric fluid mechanism differs from the embodiment of the embodiment 15 in that the spacer 204 is hingedly disposed with the rotor 202, and the spacer 204 and the cylinder 201 Slide settings.
  • the compensation body 207 may be further selectively made into an elastic body, a mass, a hydraulic compensation structure, or a pneumatic compensation structure.
  • a volumetric fluid mechanism as shown in FIG. 14, includes a cylinder 301, an eccentric shaft 302, and a rotor compensation structure 303, An eccentric portion of the eccentric shaft 302 is disposed in the cylinder 301, and the rotor compensation structure 303 is disposed on the eccentric portion with a deflection fit, and a corner is disposed between the rotor compensation structure 303 and the eccentric portion Control device 306.
  • Embodiment 19 may further provide a deflection elastic body 307 between the rotor compensation structure 303 and the eccentric portion, or the rotor compensation structure 303 and the eccentric portion.
  • a corner control device 306 is provided and a deflection elastic body 307 is provided.
  • a volumetric fluid mechanism as shown in FIG. 15, includes a cylinder 301, an eccentric shaft 302, and a rotor compensation structure 303.
  • An eccentric portion of the eccentric shaft 302 is disposed in the cylinder 301, and the rotor compensation structure 303 a deflection fit is disposed on the eccentric portion, the volumetric fluid mechanism further includes a package structure 304, and the set structure 304 is set in a combination of the eccentric portion and the rotor compensation structure 303 and the Between the cylinders 301, a deflection elastic body 307 is provided between the rotor compensation structure 303 and the eccentric portion.
  • the embodiment 20 can also selectively provide a corner control device 306 between the rotor compensation structure 303 and the eccentric portion, or the rotor compensation structure 303 and the eccentric portion.
  • a corner control device 306 is provided and a deflection elastic body 307 is provided.
  • the embodiment 20 and its transformable embodiment can further provide a rotational fit of the set structure 304 and the combination of the eccentric portion and the rotor compensation structure 303.
  • a volumetric fluid mechanism as shown in FIG. 16, includes a cylinder 301, an eccentric shaft 302, and a set eccentric structure 31.
  • An eccentric portion of the eccentric shaft 302 is disposed in the cylinder 301, and the set eccentric structure 31 is provided.
  • a set is disposed between the eccentric portion and the cylinder 301, and a corner control device 306 is disposed between the set eccentric structure 31 and the eccentric portion.
  • Embodiment 21 may selectively provide a deflection elastic body 307 between the set eccentric structure 31 and the eccentric portion, or in the set eccentric structure 31 and the eccentric portion
  • the corner control device 306 and the deflection elastic body 307 are provided at the same time.
  • a volumetric fluid mechanism as shown in FIG. 17, includes a cylinder 301, an eccentric shaft 302, and a set eccentric structure 31.
  • An eccentric portion of the eccentric shaft 302 is disposed in the cylinder 301, and the set eccentric structure 31 is provided.
  • a set is disposed between the eccentric portion and the cylinder 301, and a deflection elastic body 307 is disposed between the set eccentric structure 31 and the eccentric portion.
  • the positive displacement fluid mechanism further includes a package structure 304 that is disposed between the set eccentric structure 31 and the cylinder 301.
  • Embodiment 22 may selectively provide a corner control device 306 between the set eccentric structure 31 and the eccentric portion, or in the set eccentric structure 31 and the eccentric portion
  • the corner control device 306 and the deflection elastic body 307 are provided at the same time.
  • the embodiment 22 and its transformable embodiment can further provide the set structure 304 and the set eccentric structure 31 in a rotational fit.
  • a volumetric fluid mechanism as shown in FIG. 18, includes an eccentric shaft volumetric fluid mechanism including an eccentric shaft 401, a cylinder 402, and a rotating body 403, and an eccentric portion of the eccentric shaft 401 is disposed In the cylinder 402, a shaft hole set of the rotating body 403 is disposed on an eccentric portion of the eccentric shaft 401 at the eccentric portion A radial compensation body 404 is disposed between the shaft hole and the shaft hole.
  • the radial compensation body 404 is an elastic body.
  • the elastic body may be further selectively made into a spring or a combination including a spring and a structure.
  • Embodiment 23 and its transformable embodiment can further selectively make the eccentric shaft positive displacement fluid mechanism a triangular rotor fluid mechanism, a triangular rotor engine, a two-corner rotor fluid mechanism, and two Angular rotor engine, multi-angle rotor fluid mechanism, polygonal rotor engine, rolling rotor fluid mechanism, rolling piston fluid mechanism, oscillating rotor fluid mechanism, rotating fluid mechanism, rotary cylinder rolling piston fluid mechanism, cam rotor fluid mechanism or vortex fluid mechanism .
  • the eccentric shaft positive displacement fluid mechanism a triangular rotor fluid mechanism, a triangular rotor engine, a two-corner rotor fluid mechanism, and two Angular rotor engine, multi-angle rotor fluid mechanism, polygonal rotor engine, rolling rotor fluid mechanism, rolling piston fluid mechanism, oscillating rotor fluid mechanism, rotating fluid mechanism, rotary cylinder rolling piston fluid mechanism, cam rotor fluid mechanism or vortex fluid mechanism .
  • a volumetric fluid mechanism as shown in FIG. 19, includes a cylinder 501, an eccentric shaft 502, a spacer 503, and an eccentric piston 504.
  • a spacer seat 110 is disposed on the cylinder 501, and the eccentric shaft 502 is disposed at the In the cylinder 501, the eccentric piston 504 is disposed in the cylinder 501 and is fitted on the eccentric shaft 502.
  • the rotation axis of the eccentric shaft 502 is collinear with the center line of the cylinder 501, and the isolation
  • the body 503 is disposed in the spacer seat 110, the spacer 503 is hingedly disposed with the eccentric piston 504; at least one of a fluid inlet and a fluid outlet is disposed on the cylinder 501, or in the cylinder 501 At least one of a fluid inlet and a fluid outlet is disposed on the end cap; a sum of a maximum radius of gyration of the eccentric shaft 502 and a radial maximum thickness of the eccentric piston 504 is greater than a radius of the cylinder 501 at the eccentric piston 504
  • a rotation angle control device 508 is provided between the eccentric shaft 502 and the eccentric shaft 502.
  • the corner control device 508 may not be provided in the twenty-fourth embodiment.
  • a volumetric fluid mechanism as shown in FIG. 20, includes a cylinder 501, an eccentric shaft A506, an eccentric shaft B507, a separator 503, and a piston 505, and a spacer seat 110 is disposed on the cylinder 501 at the cylinder 501.
  • the eccentric shaft B 507, the eccentric shaft A 506 and the piston 505 are set in turn from the inside to the outside, and the rotation axis line of the eccentric shaft B 507 is collinear with the center line of the cylinder 501.
  • the spacer 503 is disposed in the spacer seat 110, the spacer 503 is hingedly disposed with the piston 505; at least one of a fluid inlet and a fluid outlet is disposed on the cylinder 501, or in the cylinder At least one of a fluid inlet and a fluid outlet is provided on the end cap of 501; a maximum radius of gyration of the eccentric shaft B 507, a radial maximum thickness of the eccentric shaft A 506, and a radial thickness of the piston 505 And a radius larger than the radius of the cylinder 501, a corner control device 508 is provided between the eccentric shaft A 506 and the eccentric shaft B 507.
  • a volumetric fluid mechanism comprising a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602 being disposed in the cylinder 601; a spacer chute 604 disposed on the cylinder 601, the isolation
  • the body 603 is disposed in the spacer chute 604.
  • One end of the spacer 603 is disposed in cooperation with the circumferential piston 602, and a shaft hole 605 is disposed on the circumferential piston 60.
  • the center line is non-collinearly disposed with the center line of the circumferential piston 602, and an eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606 is collinear with a center line of the cylinder 601,
  • the sum of the maximum radius of gyration of the eccentric shaft 606 and the maximum radial thickness of the circumferential piston 602 is greater than the radius of the cylinder 601, and a corner control structure is provided between the circumferential piston 602 and the eccentric shaft 606.
  • the circumferential piston 602 and the spacer 603 are slidably disposed.
  • a positive displacement fluid mechanism comprising a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602 Provided in the cylinder 601; a spacer chute 604 is disposed on the circumferential piston 602, the spacer 603 is disposed in the spacer chute 604, one end of the spacer 603 and the cylinder 601 is matched; a shaft hole 605 is disposed on the circumferential piston 602, and a center line of the shaft hole 605 is non-collinearly disposed with a center line of the circumferential piston 602, and an eccentric shaft is disposed in the shaft hole 605 606.
  • the rotation axis of the eccentric shaft 606 is collinear with the center line of the cylinder 601, and a rotation angle control structure is disposed between the circumferential piston 602 and the eccentric shaft 606.
  • one end of the spacer 603 is hingedly disposed with the cylinder 601.
  • embodiment 27 may further cause the sum of the maximum radius of gyration of the eccentric shaft 606 and the maximum radial thickness of the circumferential piston 602 to be greater than the radius of the cylinder 601.
  • a volumetric fluid mechanism as shown in Fig. 22.1, includes a cylinder 601, a circumferential piston 602 and a spacer 603.
  • the circumferential piston 602 is disposed in the cylinder 601; a rotating shaft 613 is disposed on the cylinder 601.
  • a spacer chute 604 is disposed on the rotating shaft 613.
  • the spacer 603 is disposed in the spacer sliding slot 604. One end of the spacer 603 is fixedly connected to the circumferential piston 602 in the circumferential direction.
  • a shaft hole 605 is disposed on the piston 602.
  • a center line of the shaft hole 605 is non-collinearly disposed with a center line of the circumferential piston 602.
  • An eccentric shaft 606 is disposed in the shaft hole 605, and the eccentric shaft 606 rotates.
  • An axis is collinear with a centerline of the cylinder 601, and a corner control structure is provided between the circumferential piston 602 and the eccentric shaft 606.
  • a positive displacement fluid mechanism includes a cylinder 601, a circumferential piston 602 and a separator 603, wherein the circumferential piston 602 is disposed in the cylinder 601; and a spacer chute 604 is disposed on the circumferential piston 602.
  • the spacer 603 is disposed in the spacer sliding groove 604. One end of the spacer 603 is matched with the cylinder 601.
  • a shaft hole 605 is disposed on the circumferential piston 602, and the center of the shaft hole 605 a line is disposed non-collinearly with a centerline of the circumferential piston 602, and an eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606 is collinear with a center line of the cylinder 601,
  • a rotation angle control structure is provided between the circumferential piston 602 and the eccentric shaft 606.
  • one end of the spacer 603 can be hingedly disposed with the cylinder 601.
  • the sum of the maximum radius of gyration of the eccentric shaft 606 and the maximum radial thickness of the circumferential piston 602 may be further greater than The radius of the cylinder 601.
  • a positive displacement fluid mechanism comprising a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602 being disposed within the cylinder 601, the circumferential piston 602 being a non-spherical piston;
  • a spacer chute 604 is disposed on the cylinder 601.
  • the spacer 603 is disposed in the spacer chute 604.
  • One end of the spacer 603 is disposed in cooperation with the circumferential piston 602, and the circumferential piston is disposed.
  • a shaft hole 605 is disposed in the shaft 605, and an eccentric shaft 606 is disposed in the shaft hole 605.
  • the rotation axis of the eccentric shaft 606 is collinear with the center line of the cylinder 601, the maximum radius of gyration of the eccentric shaft 606 and the The sum of the maximum radial thicknesses of the circumferential pistons 602 is greater than the radius of the cylinder 601, and a rotational angle control structure is provided between the circumferential piston 602 and the eccentric shaft 606.
  • one end of the spacer 603 is slidably disposed with the circumferential piston 602.
  • a positive displacement fluid mechanism comprising a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602
  • the circumferential piston 602 is disposed in the cylinder 601, and the circumferential piston 602 is provided with a spacer sliding groove 604.
  • the spacer 603 is disposed on the spacer sliding groove 604.
  • One end of the spacer 603 is matched with the cylinder 601; a shaft hole 605 is disposed on the circumferential piston 602, and an eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606
  • a line control structure is provided between the circumferential piston 602 and the eccentric shaft 606, in line with the center line of the cylinder 601.
  • one end of the spacer 603 is hingedly disposed with the cylinder 601.
  • embodiment 31 may further cause the sum of the maximum radius of gyration of the eccentric shaft 606 and the maximum radial thickness of the circumferential piston 602 to be greater than the radius of the cylinder 601.
  • a volumetric fluid mechanism including a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602 is disposed in the cylinder 601; a spacer chute 604 is disposed on the cylinder 601, The spacer 603 is disposed in the spacer sliding slot 604. One end of the spacer 603 is disposed in cooperation with the circumferential piston 602, and a circular hole 607 is disposed on the circumferential piston 602.
  • a center line of the hole 607 is disposed in line with a center line of the circumferential piston 602, and a rotating body 608 is disposed in the circular hole 607, and a shaft hole 605 is disposed on the rotating body 608, and the center of the shaft hole 605 a line is disposed non-collinearly with a center line of the rotating body 608, and an eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606 is collinear with a center line of the cylinder 601, and the eccentric shaft
  • the sum of the maximum radius of gyration of 606, the maximum radial thickness of the rotating body 608, and the radial thickness of the circumferential piston 602 is greater than the radius of the cylinder 601 at the eccentric shaft 606 and the rotating body
  • a corner control structure is provided between 608 and/or between the circumferential piston 602 and the rotating body 608 Set the corner control structure.
  • one end of the spacer 603 is hingedly disposed with the circumferential piston 602.
  • a volumetric fluid mechanism as shown in Figure 24.2, includes a cylinder 601, a circumferential piston 602 and a spacer 603, the circumferential piston 602 being disposed within the cylinder 601; and an isolation on the circumferential piston 602 a body sliding groove 604, the spacer 603 is disposed in the spacer sliding groove 604, one end of the spacer 603 is matched with the cylinder 601; and a circular hole 607 is disposed on the circumferential piston 602.
  • a center line of the circular hole 607 is disposed in line with a center line of the circumferential piston 602.
  • a rotating body 608 is disposed in the circular hole 607, and a shaft hole 605 is disposed on the rotating body 608.
  • the shaft hole 605 is disposed.
  • a center line is disposed non-collinearly with a center line of the rotating body 608, and an eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606 is collinear with a center line of the cylinder 601,
  • the sum of the maximum radius of gyration of the eccentric shaft 606, the maximum radial thickness of the rotating body 608, and the radial thickness of the circumferential piston 602 is greater than the radius of the cylinder 601 at the eccentric shaft 606 and the A rotation angle control structure is provided between the rotating bodies 608 and/or in the circumferential piston 602 and the rotating body 608 A control structure disposed between the corner.
  • one end of the spacer 603 is hingedly disposed with the cylinder 601.
  • a volumetric fluid mechanism as shown in Fig. 25.1, includes a cylinder 601, a circumferential piston 602 and a spacer 603.
  • the circumferential piston 602 is disposed in the cylinder 601; a rotating shaft 613 is disposed on the cylinder 601.
  • a spacer chute 604 is disposed on the rotating shaft 613.
  • the spacer 603 is disposed in the spacer sliding slot 604.
  • One end of the spacer 603 is fixedly connected to the circumferential piston 602 in the circumferential direction.
  • a circular hole 607 is disposed in the piston 602, and a center line of the circular hole 607 is disposed in line with a center line of the circumferential piston 602, and a rotating body 608 is disposed in the circular hole 607.
  • a shaft hole 605 is disposed on the 608, and a center line of the shaft hole 605 is non-collinearly disposed with a center line of the rotating body 608.
  • An eccentric shaft 606 is disposed in the shaft hole 605, and an axis of rotation of the eccentric shaft 606 is
  • the center line of the cylinder 601 is collinear, and the sum of the maximum radius of gyration of the eccentric shaft 606, the maximum radial thickness of the rotating body 608, and the radial thickness of the circumferential piston 602 is greater than the cylinder 601.
  • the radius is such that a corner control structure is provided between the eccentric shaft 606 and the rotating body 608 and/or a corner control structure is provided between the circumferential piston 602 and the rotating body 608.
  • a positive displacement fluid mechanism includes a cylinder 601, a circumferential piston 602 and a separator 603, wherein the circumferential piston 602 is disposed in the cylinder 601; and a spacer chute 604 is disposed on the circumferential piston 602.
  • the spacer 603 is disposed in the spacer chute 604, one end of the spacer 603 is matched with the cylinder 601; a circular hole 607 is disposed on the circumferential piston 602, and the center of the circular hole 607 a line is disposed in line with a center line of the circumferential piston 602, a rotating body 608 is disposed in the circular hole 607, and a shaft hole 605 is disposed on the rotating body 608, and a center line of the shaft hole 605 is The center line of the rotating body 608 is non-collinearly disposed, and an eccentric shaft 606 is disposed in the shaft hole 605.
  • the rotation axis of the eccentric shaft 606 is collinear with the center line of the cylinder 601, and the maximum rotation of the eccentric shaft 606
  • the sum of the radius, the maximum radial thickness of the rotating body 608, and the radial thickness of the circumferential piston 602 is greater than the radius of the cylinder 601, and is disposed between the eccentric shaft 606 and the rotating body 608.
  • a corner control structure and/or a corner control between the circumferential piston 602 and the rotating body 608 structure are examples of the circumferential piston 602 and the rotating body 608 structure.
  • one end of the spacer 603 can be hingedly engaged with the cylinder 601 as shown in FIG. 25.2.
  • a volumetric fluid mechanism as shown in FIG. 26, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • the eccentric portion, the rotor compensation structure 704, and the cylinder 701 are cooperatively disposed, and the eccentric portion and the rotor compensation structure 704 constitute a part of an in-cylinder rotating body.
  • An outer contour of the rotating body has an eccentric relationship with the cylinder 701, and a cylinder 705 is disposed on the cylinder of the cylinder 701, the spacer 703 is disposed in the sliding slot 705, and the spacer 703 is An in-cylinder rotating body is slidably disposed, an elastic body 706 is disposed between the rotor compensation structure 704 and the eccentric portion, or an elastic body 706 is disposed between the rotor compensation structure 704 and the eccentric shaft 702.
  • the elastomer 706 is at Torque compensation structure is formed between said body portion 704 and the eccentric rotor.
  • a volumetric fluid mechanism may further selectively set the rotor compensation structure 704 on the eccentric portion (as shown in Figure 27.1), or the rotor compensation
  • the structure 704 is disposed on the eccentric portion via a hinge shaft (as shown in FIG. 27.2), or the rotor compensation structure 704 is disposed on the eccentric portion via a fixing member, and the rotor compensation structure 704 and the An elastic body 706 is disposed between the eccentric portions, or an elastic body 706 is disposed between the rotor compensation structure 704 and the eccentric shaft 702, and the elastic body 706 is at the rotor compensation structure 704 and the eccentric portion Torque is formed between.
  • Embodiments 36 to 37 and their interchangeable embodiments may further selectively cause the torque formed by the elastomer 706 to cause the maximum eccentricity of the eccentric portion and the rotor
  • the central angle of less than 180 degrees formed at the maximum thickness of the compensation structure 704 tends to increase or tend to decrease.
  • a volumetric fluid mechanism includes a cylinder block 708, a rotating shaft 709, a separator 703, and a cylinder liner 710.
  • the cylinder liner 710 is disposed in a cylinder bore of the cylinder block 708, and the cylinder liner 710 and the cylinder block 708 are slidably disposed, the wall thickness of the cylinder liner 710 is not equal, the rotating shaft 709 is disposed in the cylinder liner 710, and a sliding groove 705 is disposed on the rotating shaft 709, the separating body 703 is disposed in the sliding slot 705, one end of the spacer 703 is slidably disposed with the inner side surface of the cylinder liner 710, and an elastic body 706 is disposed between the cylinder liner 710 and the cylinder block 708, or An elastomer 706 is disposed between the cylinder liner 710 and the cylinder 708, and the elastomer 706 forms a torque between the cylinder liner 710 and the
  • the cylinder liner 710 is rotationally set about a center of rotation in accordance with a desired amount of compensation.
  • the torque formed by the elastic body 706 further causes the area of the cylinder liner 710 to have a larger thickness toward the rotating shaft 709 and the cylinder liner. 710 matching mating.
  • a volumetric fluid mechanism as shown in Fig. 29.1, includes a cylinder 701, an eccentric shaft 702, a spacer 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion Not equal (ie, the thickness A in the figure is not equal to the thickness B), a chute 705 is disposed on the cylinder of the cylinder 701, the spacer 703 is disposed in the chute 705, the eccentric portion and the
  • the rotor compensation structure 704 constitutes a part of the in-cylinder rotating body, and the outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder 701; the in-cylinder rotating body is disposed in cooperation with the cylinder 701 and the spacer 703 .
  • a volumetric fluid mechanism as shown in Figure 29.2, includes a cylinder 701, an eccentric shaft 702, a spacer 703, and a rotor compensation structure 704, the eccentric shaft 702 being disposed within the cylinder 701, the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion Unequal, a chute 705 is disposed on the cylinder of the cylinder 701, the spacer 703 is disposed in the chute 705, and the eccentric portion and the rotor compensation structure 704 constitute a part of the in-cylinder rotating body
  • the outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder 701; an annular structure body 711 is disposed between the in-cylinder rotating body and the cylinder 701, and the annular structural body 711 and the cylinder 701 and the spacer 703 are provided in cooperation.
  • a volumetric fluid mechanism as shown in Fig. 29.3, includes a cylinder 701, an eccentric shaft 702, a spacer 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • a chute 705 is disposed on the cylinder of the cylinder 701, the spacer 703 is disposed in the chute 705, and the eccentric portion and the rotor compensation structure 704 constitute a part of the in-cylinder rotating body
  • An outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder 701; a double-blade rotor 712 is disposed between the in-cylinder rotating body and the cylinder 701, the double-blade rotor 712 and the cylinder 701 and the spacer 70
  • a volumetric fluid mechanism as shown in FIG. 30.1, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • the eccentric portion and the rotor compensation structure 704 constitute a part of an in-cylinder rotating body, and an outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder 701, and the rotating body and the cylinder are
  • An annular structure 711 is disposed between the cylinders 701, and the annular structure 711 is disposed in cooperation with the cylinder 701 and the spacer 703; a cylinder 705 is disposed on the cylinder of the cylinder 701.
  • the spacer 703 is disposed in
  • a volumetric fluid mechanism as shown in FIG. 30.2, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • the eccentric portion and the rotor compensation structure 704 constitute a part of an in-cylinder rotating body, and an outer contour of the in-cylinder rotating body has an eccentric relationship with the cylinder 701, and the rotating body and the cylinder are
  • An annular structure 711 is disposed between the cylinders 701, and the annular structure 711 is disposed in cooperation with the cylinder 701 and the spacer 703.
  • a rotating shaft 709 is disposed on the cylinder of the cylinder 701, and the rotating shaft 709 is disposed on the rotating shaft 709.
  • a rotating shaft chute 713 is disposed on the rotating shaft chute 713.
  • the inner end of the spacer 703 is fixedly connected to the annular structure 711.
  • Embodiment 39 to Embodiment 43 and their convertible embodiments may further selectively provide the rotor compensation structure 704 on the eccentric portion (as shown in Figure 31.1), or The rotor compensation structure 704 is disposed on the eccentric portion via a hinge shaft (as shown in FIG. 31.2), or the rotor compensation structure 704 is slidably disposed on the eccentric portion via a fixing member (as shown in FIG. 31.3).
  • Embodiment 39 to Embodiment 43 and their convertible embodiments may further provide an elastic body 706 between the rotor compensation structure 704 and the eccentric portion, or compensate the rotor
  • An elastic body 706 (shown in FIG. 32) is disposed between the structural body 704 and the eccentric shaft 702, and the elastic body 706 forms a torque between the rotor compensation structure 704 and the eccentric portion, and may further Selectively causing the torque formed by the elastomer 706 to increase or tend to increase or decrease the central angle of less than 180 degrees formed at the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure 704 Reduced.
  • a volumetric fluid mechanism as shown in FIG. 33.1, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • the spacer 703 is slidably disposed with the rotor compensation structure 704, and the spacer 703, the rotor compensation structure 704, and the cylinder 701 cooperate with each other to form a space in which the volume changes.
  • a volumetric fluid mechanism as shown in Figure 33.2, comprising a cylinder 701, an eccentric shaft 702, a separator 703 and a rotor a compensation structure 704, the eccentric shaft 702 is disposed in the cylinder 701, the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, and the rotor compensation structure 704 is slid with the eccentric portion With the cooperation, the thickness of the rotor compensation structure 704 in the direction perpendicular to the axis of the eccentric portion is not equal; a ring structure 711 is disposed between the rotor compensation structure 704 and the cylinder 701.
  • the separator 703 is slidably fitted to the annular structure 711, and the separator 703, the annular structure 711, and the cylinder 701 cooperate with each other to form a space in which the volume changes.
  • a volumetric fluid mechanism as shown in FIG. 33.3, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • An annular structure 711 is disposed between the rotor compensation structure 704 and the cylinder 701, and the spacer 703 is fixedly disposed with the annular structure 711.
  • the spacer 703 and the ring The structure 711 and the cylinder 701 cooperate with each other to form a space in which the volume changes.
  • a volumetric fluid mechanism as shown in FIG. 33.4, includes a cylinder 701, an eccentric shaft 702, a separator 703, and a rotor compensation structure 704.
  • the eccentric shaft 702 is disposed in the cylinder 701, and the rotor compensation structure 704 is disposed on an eccentric portion of the eccentric shaft 702, the rotor compensation structure 704 is slidably disposed with the eccentric portion, and the thickness of the rotor compensation structure 704 is perpendicular to an axis of the eccentric portion
  • An annular structure 711 is disposed between the rotor compensation structure 704 and the cylinder 701, and the spacer 703 is hingedly disposed with the annular structure 711, the spacer 703, the ring
  • the structure 711 and the cylinder 701 cooperate with each other to form a space in which the volume changes.
  • Embodiments 44 to 47 may further selectively provide the rotor compensation structure 704 on the eccentric portion, or the rotor compensation structure 704 is disposed on the hinge shaft.
  • the eccentric portion or the rotor compensation structure 704 is disposed on the eccentric portion via a fixing member.
  • Embodiments 44 to 47 and their transformable embodiments may further selectively provide an elastic body 706 between the rotor compensation structure 704 and the eccentric portion, or An elastic body 706 is disposed between the rotor compensation structure 704 and the eccentric shaft 702, and the elastic body 706 forms a torque between the rotor compensation structure 704 and the eccentric portion, and can further selectively The torque formed by the elastomer 706 tends to increase or tend to decrease the central angle of less than 180 degrees formed at the maximum eccentricity of the eccentric portion and the maximum thickness of the rotor compensation structure 704.
  • a volumetric fluid mechanism as shown in FIG. 34, includes a cylinder 601, a circumferential piston 602, and a separator 603, the circumferential piston 602 being disposed in the cylinder 601; and a spacer sliding on the cylinder 601 a groove 604, the spacer 603 is disposed in the spacer sliding groove 604, and a circumferential hole 605 is disposed in the circumferential piston 602, and an eccentric shaft 606 is disposed in the shaft hole 605, and the circumferential piston is disposed in the circumferential piston
  • a hinge hole 621 is defined in the 602, and one end of the spacer 603 is disposed to cooperate with the circumferential piston 602 via the hinge hole 621.
  • a volumetric fluid mechanism as shown in FIG. 35, includes a cylinder 601, a circumferential piston 602, and a separator 603.
  • a circumferential piston 602 is disposed in the cylinder 601; a spacer sliding groove 604 is disposed on the cylinder 601, and the separator 603 is disposed in the spacer sliding groove 604 at the circumferential piston 602.
  • a shaft hole 605 is disposed therein, and an eccentric shaft 606 is disposed in the shaft hole 605, and an outer mating structure 610 hingedly disposed at one end of the spacer body 603 is disposed to cooperate with the circumferential piston 602.
  • a positive displacement fluid mechanism includes a cylinder 601, a circumferential piston 602 and a separator 603, wherein the circumferential piston 602 is disposed in the cylinder 601; and a spacer chute 604 is disposed on the circumferential piston 602.
  • the spacer 603 is disposed in the spacer sliding slot 604.
  • the circumferential piston 602 is provided with a shaft hole 605, and an eccentric shaft 606 is disposed in the shaft hole 605.
  • One end of the spacer 603 is The cylinder 601 is hingedly disposed.
  • a positive displacement fluid mechanism includes a cylinder 601, a circumferential piston 602 and a separator 603, wherein the circumferential piston 602 is disposed in the cylinder 601; and a spacer chute 604 is disposed on the circumferential piston 602.
  • the spacer 603 is disposed in the spacer sliding groove 604.
  • the circumferential piston 602 is provided with a shaft hole 605.
  • the shaft hole 605 is provided with an eccentric shaft 606, and the cylinder 601 is provided with a hinge hole. 621.
  • One end of the spacer 603 is disposed to cooperate with the cylinder 601 via the hinge hole 621.
  • a positive displacement fluid mechanism as shown in FIG. 36, includes a cylinder 601, a circumferential piston 602 and a separator 603, the circumferential piston 602 being disposed in the cylinder 601; and an isolation on the circumferential piston 602
  • the body sliding groove 604 is disposed in the spacer sliding groove 604.
  • the circumferential piston 602 is provided with a shaft hole 605, and an eccentric shaft 606 is disposed in the shaft hole 605.
  • One end of the body 603 is disposed in cooperation with the cylinder 601 via an inner mating structural body 611 hingedly disposed.

Abstract

一种容积型流体机构,包括偏心轴(1)和工质运动件(2),偏心轴(1)包括驱动轴(3)和偏转非套体(4),偏转非套体(4)设置在驱动轴(3)的转轴上和/或偏转非套体(4)设置在驱动轴(3)的偏心部上,工质运动件(2)套装设置在驱动轴(3)和偏转非套体(4)外。该容积型流体机构可以有效地解决机构的补偿问题,延长了容积型流体机构的寿命,有效改善容积型流体机构的密封性能,提高效率。

Description

容积型流体机构 技术领域
本发明涉及热能与动力领域,具体涉及容积型流体机构。
背景技术
容积型流体机构是一种非常重要的机构,它是液体泵、液体马达、气体压缩机、气体膨胀机构和发动机的重要机构。然而,由于结构原因,除往复活塞式流体机构因活塞环的发明而补偿问题得以解决外,回转流体机构的补偿问题均尚未得到解决,造成现有的流体机构存在寿命短、泄露严重、效率低等问题,因此需要发明一种新型的流体机构。
发明内容
为了解决上述问题,本发明提出的技术方案如下:
方案1:一种容积型流体机构,所述容积型流体机构包括偏心轴和工质运动件,所述偏心轴包括驱动轴和偏转非套体,所述偏转非套体设置在所述驱动轴的转轴上和/或所述偏转非套体设置在所述驱动轴的偏心部上,所述工质运动件套装设置在所述驱动轴和所述偏转非套体外。
方案2:在方案1的基础上,进一步使所述偏转非套体经铰接结构设置在所述驱动轴的转轴上或经铰接结构设置在所述驱动轴的偏心部上。
方案3:在方案1的基础上,进一步使所述偏转非套体设为偏心偏转非套体或设为非偏心偏转非套体。
方案4:在方案2的基础上,进一步使所述偏转非套体设为偏心偏转非套体或设为非偏心偏转非套体。
方案5:在方案1至4中任一方案的基础上,进一步在所述偏转非套体和所述驱动轴的转轴之间和/或在所述偏转非套体和所述驱动轴的偏心部之间设置转角控制装置。
方案6:一种容积型流体机构,所述容积型流体机构包括偏心轴和工质运动件,所述偏心轴包括驱动轴和偏转偏心套体,所述偏转偏心套体套装设置在所述驱动轴上;所述工质运动件套装设置在所述偏转偏心套体外,在所述偏转偏心套体和所述驱动轴的转轴之间和/或在所述偏转偏心套体和所述驱动轴的偏心部之间设置转角控制装置,或所述工质运动件套装设置在所述偏转偏心套体内,在所述偏转偏心套体和所述驱动轴的转轴之间和/或在所述偏转偏心套体和所述驱动轴的偏心部之间设置转角控制装置。
方案7:一种容积型流体机构,所述容积型流体机构包括偏心轴、工质运动件和滑动体,在所述偏心轴的偏心部上设置弦向滑道,所述滑动体与所述弦向滑道配合设置,所述工质运动件套装设置在所述偏心部和所述滑动体外。
方案8:在方案7的基础上,进一步在所述滑动体和所述偏心轴的转轴之间和/或在所述滑动体和所述偏心部之间设置转角控制装置。
方案9:一种容积型流体机构,所述容积型流体机构包括偏心轴、工质运动件和偏转偏心套体,所述偏转偏心套体的材料设为轻质材料、或所述偏转偏心套体的材料设为重质材料、或在所述偏转偏心套体设置凹陷区,所述偏转偏心套体套装设置在所述偏心轴的偏心部上,所述工质运动件套装设置在所述偏转偏心套体外。
方案10:在方案9的基础上,进一步在所述偏转偏心套体和所述偏心轴的转轴之间和/ 或在所述偏转偏心套体和所述偏心部之间设置转角控制装置。
方案11:在方案1至4中任一方案或6至10中任一方案的基础上,进一步使所述工质运动件设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、或转缸滚动活塞流体机构的活塞,或设为涡旋流体机构的涡旋盘。
方案12:在方案5的基础上,进一步使所述工质运动件设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、或转缸滚动活塞流体机构的活塞,或设为涡旋流体机构的涡旋盘。
方案13:一种容积型流体机构,所述容积型流体机构包括偏心轴、工质运动件和偏转偏心套体,所述偏转偏心套体套装设置在所述偏心轴的偏心部上,所述工质运动件设为涡旋容积型流体机构的涡旋盘,所述涡旋盘的轴孔套装设置在所述偏转偏心套体外,在所述偏转偏心套体和所述偏心轴的转轴之间和/或在所述偏转偏心套体和所述偏心部之间设置转角控制装置。
方案14:在方案1至4中任一方案、6至10中任一方案、12或13的基础上,进一步在所述容积型流体机构包含隔离体的结构中,使所述隔离体与所述工质运动件配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
方案15:在方案5的基础上,进一步在所述容积型流体机构包含隔离体的结构中,使所述隔离体与所述工质运动件配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
方案16:在方案11的基础上,进一步在所述容积型流体机构包含隔离体的结构中,使所述隔离体与所述工质运动件配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
方案17:一种容积型流体机构,所述容积型流体机构包括凸轮和缸体,所述凸轮与所述缸体配合设置,所述凸轮包括凸轮体和驱动轴,所述凸轮体设置在所述驱动轴上,在所述凸轮体和所述驱动轴之间设置补偿体。
方案18:一种容积型流体机构,所述容积型流体机构包括凸轮和缸体,所述凸轮与所述缸体配合设置,所述凸轮包括凸轮体和偏心轴,所述凸轮体设置在所述偏心轴的偏心部上。
方案19:在方案18的基础上,进一步在所述凸轮体和所述偏心轴之间设置转角控制装置。
方案20:在方案17至19中任一方案的基础上,进一步使所述容积型流体机构的隔离体与所述凸轮体滑动配合设置。
方案21:一种容积型流体机构,所述容积型流体机构包括偏心轴和工质运动件,所述偏心轴包括驱动轴和结构体,所述结构体设置在所述驱动轴上,所述工质运动件与所述结构体配合设置,在所述结构体和所述驱动轴之间和/或在所述结构体和所述工质运动件之间设置流体压力补偿结构。
方案22:一种容积型流体机构,包括缸体、转子、偏心轴和隔离体,所述转子设置在所述缸体内,在所述转子上设轴孔,所述偏心轴设置在所述轴孔内,所述隔离体与所述转子和所述缸体配合设置,在所述偏心轴的远心处设补偿体,所述补偿体的补偿方向为使所述转子偏心距增大的方向,从而实现所述转子与所述缸体内侧面之间的补偿,以增加其密封性。
方案23:在方案22的基础上,进一步在所述转子上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内且一端与所述缸体铰接设置,或所述转子与所述隔离体固连,所述隔离体与所述缸体以滑动铰接设置,或所述隔离体与所述转子铰接设置,所述隔离体与所述缸体滑动设置。
方案24:在方案22或23的基础上,进一步使所述补偿体设为弹性体、质量块、液压补偿结构或设为气压补偿结构。
方案25:一种容积型流体机构,包括气缸、偏心轴和转子补偿结构体,所述偏心轴的偏心部设置在所述气缸内,所述转子补偿结构体偏转配合设置在所述偏心部上,在所述转子补偿结构体和所述偏心部之间设置转角控制装置和/或在所述转子补偿结构体和所述偏心部之间设置偏转弹性体。
方案26:在方案25的基础上,进一步使所述容积型流体机构还包括套装结构体,所述套装结构体套装设置在所述偏心部和所述转子补偿结构体的组合体与所述气缸之间。
方案27:在方案26的基础上,进一步使所述套装结构体与所述偏心部和所述转子补偿结构体的组合体转动配合设置。
方案28:一种容积型流体机构,包括气缸、偏心轴和套装偏心结构体,所述偏心轴的偏心部设置在所述气缸内,所述套装偏心结构体套装设置在所述偏心部和所述气缸之间,在所述套装偏心结构体和所述偏心部之间设置转角控制装置和/或在所述套装偏心结构体和所述偏心部之间设置偏转弹性体。
方案29:在方案28的基础上,进一步使所述容积型流体机构还包括套装结构体,所述套装结构体套装设置在所述套装偏心结构体与所述气缸之间。
方案30:在方案29的基础上,进一步使所述套装结构体和所述套装偏心结构体转动配合设置。
方案31:一种容积型流体机构,包括偏心轴容积型流体机构,所述偏心轴容积型流体机构包括偏心轴、气缸和旋转体,所述偏心轴的偏心部设置在所述气缸内,所述旋转体的轴孔套装设置在所述偏心轴的偏心部上,在所述偏心部和所述轴孔之间设置径向补偿体。
方案32:在方案31的基础上,进一步使所述径向补偿体设为弹性体。
方案33:在方案32的基础上,进一步使所述弹性体设为弹簧或设为包括弹簧和结构体的组合体。
方案34:在方案31至33中任一方案的基础上,进一步使所述偏心轴容积型流体机构设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、转缸滚动活塞流体机构、凸轮转子流体机构或设为涡旋流体机构。
方案35:一种容积型流体机构,包括气缸、偏心轴、隔离体和偏心活塞,在所述气缸上设隔离体座口,所述偏心轴设置在所述气缸内,所述偏心活塞设置所述气缸内且套装在 所述偏心轴上,所述偏心轴的旋转轴心线与所述气缸的中心线共线,所述隔离体设置在所述隔离体座口内,所述隔离体与所述偏心活塞铰接设置;在所述气缸上至少设置流体入口和流体出口中的一个,或在所述气缸的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴最大回转半径和所述偏心活塞的径向最大厚度之和大于所述气缸的半径,在所述偏心活塞和所述偏心轴之间设转角控制装置。
方案36:一种容积型流体机构,包括气缸、偏心轴A、偏心轴B、隔离体和活塞,在所述气缸上设隔离体座口,在所述气缸内由内到外依次套装设置所述偏心轴B、所述偏心轴A和所述活塞,所述偏心轴B的旋转轴心线与所述气缸的中心线共线,所述隔离体设置在所述隔离体座口内,所述隔离体与所述活塞铰接设置;在所述气缸上至少设置流体入口和流体出口中的一个,或在所述气缸的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴B的最大回转半径、所述偏心轴A的径向最大厚度和所述活塞的径向厚度三者之和大于所述气缸的半径,在所述偏心轴A和所述偏心轴B之间设转角控制装置。
方案37:一种容积型流体机构,包括气缸、周向活塞和隔离体,所述周向活塞设置在所述气缸内;在所述气缸上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述周向活塞相配合设置,或在所述周向活塞上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述气缸相配合;在所述周向活塞上设置轴孔,所述轴孔的中心线与所述周向活塞的中心线非共线设置,在所述轴孔内设偏心轴,所述偏心轴的旋转轴线与所述气缸的中心线共线,所述偏心轴的最大回转半径和所述周向活塞的最大径向厚度之和大于所述气缸的半径,在所述周向活塞和所述偏心轴之间设转角控制结构。
方案38:一种容积型流体机构,包括气缸、周向活塞和隔离体,所述周向活塞设置在所述气缸内;在所述气缸上设转轴,所述转轴上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述周向活塞固定连接,或在所述周向活塞上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述气缸相配合;在所述周向活塞上设置轴孔,所述轴孔的中心线与所述周向活塞的中心线非共线设置,在所述轴孔内设偏心轴,所述偏心轴的旋转轴线与所述气缸的中心线共线,所述偏心轴的最大回转半径和所述周向活塞的最大径向厚度之和大于所述气缸的半径,在所述周向活塞和所述偏心轴之间设转角控制结构。
方案39:一种容积型流体机构,包括气缸、周向活塞和隔离体,所述周向活塞设置在所述气缸内,所述周向活塞为非正圆形活塞;在所述气缸上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述周向活塞相配合设置,或在所述周向活塞上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述气缸相配合;在所述周向活塞上设置轴孔,在所述轴孔内设偏心轴,所述偏心轴的旋转轴线与所述气缸的中心线共线,所述偏心轴的最大回转半径和所述周向活塞的最大径向厚度之和大于所述气缸的半径,在所述周向活塞和所述偏心轴之间设转角控制结构。
方案40:一种容积型流体机构,包括气缸、周向活塞和隔离体,所述周向活塞设置在所述气缸内;在所述气缸上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述周向活塞相配合设置,或在所述周向活塞上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述气缸相配合;在所述周向活塞上设置 圆孔,所述圆孔的中心线与所述周向活塞的中心线共线设置,在所述圆孔内设置旋转体,在所述旋转体上设置轴孔,所述轴孔的中心线与所述旋转体的中心线非共线设置,在所述轴孔内设偏心轴,所述偏心轴的旋转轴线与所述气缸的中心线共线,所述偏心轴的最大回转半径、所述旋转体的最大径向厚度和所述周向活塞的径向厚度三者之和大于所述气缸的半径,在所述偏心轴和所述旋转体之间设转角控制结构和/或在所述周向活塞和所述旋转体之间设转角控制结构。
方案41:一种容积型流体机构,包括气缸、周向活塞和隔离体,所述周向活塞设置在所述气缸内;在所述气缸上设转轴,所述转轴上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述周向活塞固定连接,或在所述周向活塞上设隔离体滑槽,所述隔离体设置在所述隔离体滑槽内,所述隔离体的一端与所述气缸相配合;在所述周向活塞上设置圆孔,所述圆孔的中心线与所述周向活塞的中心线共线设置,在所述圆孔内设置旋转体,在所述旋转体上设置轴孔,所述轴孔的中心线与所述旋转体的中心线非共线设置,在所述轴孔内设偏心轴,所述偏心轴的旋转轴线与所述气缸的中心线共线,所述偏心轴的最大回转半径、所述旋转体的最大径向厚度和所述周向活塞的径向厚度三者之和大于所述气缸的半径,在所述偏心轴和所述旋转体之间设转角控制结构和/或在所述周向活塞和所述旋转体之间设转角控制结构。
方案42:一种容积型流体机构,包括气缸、偏心轴、隔离体和转子补偿结构体,所述偏心轴设置在所述气缸内,所述转子补偿结构体设置在所述偏心轴的偏心部上,所述转子补偿结构体与所述偏心部滑动配合设置,所述转子补偿结构体在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部、所述转子补偿结构体和所述气缸三者相配合设置,所述偏心部和所述转子补偿结构体构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸具有偏心关系,在所述气缸的缸体上设置滑槽,所述隔离体设置在所述滑槽内,所述隔离体与所述缸内旋转体相配合设置,在所述转子补偿结构体和所述偏心部之间设置弹性体,或在所述转子补偿结构体和所述偏心轴之间设置弹性体,所述弹性体在所述转子补偿结构体和所述偏心部之间形成转矩。
方案43:在方案42的基础上,进一步使所述转子补偿结构体套装设置在所述偏心部上,或所述转子补偿结构体经铰轴设置在所述偏心部上,或所述转子补偿结构体经固定件设置在所述偏心部上,在所述转子补偿结构体和所述偏心部之间设置弹性体,或在所述转子补偿结构体和所述偏心轴之间设置弹性体,所述弹性体在所述转子补偿结构体和所述偏心部之间形成转矩。
方案44:在方案42或43的基础上,进一步使所述弹性体所形成的扭矩使所述偏心部的最大偏心处和所述转子补偿结构体的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
方案45:一种容积型流体机构,包括缸体、转轴、隔离体和气缸套,所述气缸套设置在所述缸体的气缸孔内,所述气缸套和所述缸体滑动配合设置,所述气缸套的壁厚不等,所述转轴设置在所述气缸套内,在所述转轴上设置滑槽,所述隔离体设置在所述滑槽内,所述隔离体的至少一端与所述气缸套的内侧面配合设置,在所述气缸套和所述缸体之间设置弹性体,或在所述气缸套和所述缸体之间设置弹性体,所述弹性体在所述气缸套和所述缸体之间形成转矩。
方案46:在方案45的基础上,进一步使所述弹性体所形成的转矩使所述气缸套的厚度较大的区域趋向于所述转轴和所述气缸套相配合的配合处。
方案47:一种容积型流体机构,包括气缸、偏心轴、隔离体和转子补偿结构体,所述偏心轴设置在所述气缸内,所述转子补偿结构体设置在所述偏心轴的偏心部上,所述转子补偿结构体与所述偏心部滑动配合设置,所述转子补偿结构体在与所述偏心部的轴线相垂直方向上的厚度不等,在所述气缸的缸体上设置滑槽,所述隔离体设置在所述滑槽内,所述偏心部和所述转子补偿结构体构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸具有偏心关系;所述缸内旋转体与所述气缸及所述隔离体配合设置,或在所述缸内旋转体和所述气缸之间套装设置环形结构体,所述环形结构体与所述气缸及所述隔离体配合设置,或在所述缸内旋转体和所述气缸之间套装设置双叶转子,所述双叶转子与所述气缸及所述隔离体配合设置。
方案48:一种容积型流体机构,包括气缸、偏心轴、隔离体和转子补偿结构体,所述偏心轴设置在所述气缸内,所述转子补偿结构体设置在所述偏心轴的偏心部上,所述转子补偿结构体与所述偏心部滑动配合设置,所述转子补偿结构体在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部和所述转子补偿结构体构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸具有偏心关系,在所述缸内旋转体和所述气缸之间套装设置环形结构体,所述环形结构体与所述气缸及所述隔离体配合设置;在所述气缸的缸体上设置缸体的滑槽,所述隔离体设置在所述缸体的滑槽内,所述隔离体的缸内端与所述环形结构体铰接设置,或在所述气缸的缸体上设置转轴,在所述转轴上设置转轴滑槽,所述隔离体设置在所述转轴滑槽内,所述隔离体的缸内端与所述环形结构体固连设置。
方案49:在方案47或48的基础上,进一步使所述转子补偿结构体套装设置在所述偏心部上,或所述转子补偿结构体经铰轴设置在所述偏心部上,或所述转子补偿结构体经固定件设置在所述偏心部上。
方案50:在方案47或48的基础上,进一步在所述转子补偿结构体和所述偏心部之间设置弹性体,或在所述转子补偿结构体和所述偏心轴之间设置弹性体,所述弹性体在所述转子补偿结构体和所述偏心部之间形成转矩。
方案51:在方案49的基础上,进一步在所述转子补偿结构体和所述偏心部之间设置弹性体,或在所述转子补偿结构体和所述偏心轴之间设置弹性体,所述弹性体在所述转子补偿结构体和所述偏心部之间形成转矩。
方案52:在方案50的基础上,进一步使所述弹性体所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
方案53:在方案51的基础上,进一步使所述弹性体所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
方案54:一种容积型流体机构,包括气缸、偏心轴、隔离体和转子补偿结构体,所述偏心轴设置在所述气缸内,所述转子补偿结构体设置在所述偏心轴的偏心部上,所述转子补偿结构体与所述偏心部滑动配合设置,所述转子补偿结构体在与所述偏心部的轴线相垂直方向上的厚度不等;所述隔离体与所述转子补偿结构体滑动配合设置,所述隔离体、所 述转子补偿结构体和所述气缸三者相互配合形成容积变化的空间,或在所述转子补偿结构体和所述气缸之间套装设置环形结构体,所述隔离体与所述环形结构体滑动配合设置,所述隔离体、所述环形结构体和所述气缸三者相互配合形成容积变化的空间,或在所述转子补偿结构体和所述气缸之间套装设置环形结构体,所述隔离体与所述环形结构体固连设置,所述隔离体、所述环形结构体和所述气缸三者相互配合形成容积变化的空间,或在所述转子补偿结构体和所述气缸之间套装设置环形结构体,所述隔离体与所述环形结构体铰接配合设置,所述隔离体、所述环形结构体和所述气缸三者相互配合形成容积变化的空间。
方案55:在方案54的基础上,进一步使所述转子补偿结构体套装设置在所述偏心部上,或所述转子补偿结构体经铰轴设置在所述偏心部上,或所述转子补偿结构体经固定件设置在所述偏心部上。
方案56:在方案54或55的基础上,进一步在所述转子补偿结构体和所述偏心部之间设置弹性体,或在所述转子补偿结构体和所述偏心轴之间设置弹性体,所述弹性体在所述转子补偿结构体和所述偏心部之间形成转矩。
方案57:在方案56的基础上,进一步使所述弹性体所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
本发明中,所谓的“工质运动件”是指一切受驱动部件驱动能够对工质实施作用和能够接收工质作用并将工质作用传递给动力输出部件的运动部件,例如滚动活塞容积型流体机构的滚动活塞。
本发明中,所述运动部件是指以所述容积型流体机构的机体为参照物处于运动状态的部件。
本发明中,所谓的“偏转非套体”是指一切可以偏转的非套状结构体,例如壁厚相同或不同的圆心角小于360°的结构体。
本发明中,所谓的“偏心偏转非套体”是指一切可以偏转的偏心状的非套状结构体,例如圆心角小于360°、壁厚不同的偏心套。
本发明中,所谓的“非偏心偏转非套体”是指一切非偏心状的可以偏转的非套状结构体,例如壁厚不同的圆心角小于360°的结构体。
本发明中,所谓的“转角控制装置”是指一切可以调整、控制或限制偏转或位移过程中方位发生变化的部件的部件、单元或系统,例如弹性体等。
本发明中,所谓的“偏转偏心套体”是指一切可以偏转的偏心套。
本发明中,所谓的“滑动体”是指一切可以作滑动位移的结构体。
本发明中,所谓的“弦向滑道”是指不通过所述驱动轴或所述偏心轴圆心的滑道。
本发明中,所谓的“流体补偿结构”是指一切在流体的作用下,可以形成补偿作用的结构,例如流体腔或在流体作用下可以推动结构体位移的结构。
本发明中,所谓的“补偿体”是指一切能够形成补偿作用的结构体,例如弹性体、可以位移的结构体、可以偏转的结构体、包括弹性体的可以位移的结构体、包括弹性体的可以偏转的结构体、流体作用下的具有补偿作用的结构体或流体腔或离心块等。
本发明中,所谓的“配合设置”可以选择性地选择固连设置。
本发明中,所谓的“内侧配合结构体”是指在气缸内侧壁的母线方向上具有至少一条密封 线的与所述气缸具有滚动和/或滑动配合关系的结构体。
本发明中,所谓的“外侧配合结构体”是指与周向活塞形成至少一条密封线的结构体。
本发明中,所谓的“补偿体的补偿方向”是指所述补偿体的尺寸增加或边界尺寸增加的方向,当工作环境变化时需要所述补偿体尺寸变小或边界尺寸变小时所述补偿方向发生换向。
本发明中,所谓的“质量块”是指具有一定质量的固体或液体,其作用是在所述偏心轴旋转时产生离心力推动所述转子向偏心距增大的方向移动,其质量大小应根据旋转速度和所述转子两侧的压差决定,此离心力应在两侧压差存在的情况下仍然能够使所述转子与所述缸体之间形成密封配合关系。
本发明中,所谓的“隔离体”是指能够将所述容积型流体机构的工质腔分隔成两个以上区域的与所述工质运动件配合设置的结构体。
本发明中,所谓的“转角控制装置”可以选择性地选择为控制两个套装设置的部件之间的在圆周方向上的位置关系的装置。
本发明中,所谓的“偏转配合设置”是指可以偏转的相互配合的设置方式。
本发明中,所谓的“远心处”是指近心面以外的所有区域。
本发明中,所述近心面是指由离所述偏心轴旋转轴线最近的处于所述偏心轴的偏心部外侧面上的点所构成的线段与所述旋转轴线所形成的平面。
本发明中,所谓的“偏心活塞”是指偏心状的活塞。
本发明中,所谓的“非正圆形活塞”是指非正圆形状的活塞。
本发明中,所谓的“周向活塞”是指在气缸母线方向上与气缸内侧壁具有至少一条密封线的与所述气缸具有滚动和/或滑动配合关系的结构体。
本发明中,所谓的“内侧配合结构体”是指在气缸内侧壁的母线方向上具有至少一条密封线的与所述气缸具有滚动和/或滑动配合关系的结构体。
本发明中,所谓的“外侧配合结构体”是指与周向活塞形成至少一条密封线的结构体。
本发明中,所谓的“缸内旋转体”是指处于缸内的可以旋转的结构体。
本发明中,可选择性地选择在所述容积型流体机构的流体入口处设进气阀。
本发明中,可选择性地选择在所述容积型流体机构的流体出口处设排气阀。
本发明中,可选择性地选择使所述容积型流体机构设为液体泵,或设为液体马达,或设为气体压缩机构,或设为气体膨胀机构。
本发明人根据热力学的基本原理以及对宇宙现象的观察认为:在没有外部因素影响的前提下,热不可能百分之百的转换成其它任何形式的能量或物质。传统热力学第二定律中只阐述了在没有外部因素影响的前提下,热不能百分之百的转换成功,这一定律是正确的,但是是片面的。可以用通俗的语言将热定义为能量的最低形式,或者简称为这是宇宙的垃圾。经分析,本发明人还认为:任何生物(动物、植物、微生物、病毒和细菌)的生长过程都是放热的。经分析,本发明人还认为:任何一个过程或任何一个循环(不局限于热力学过程,例如化学反应过程、生物化学反应过程、光化学反应过程、生物生长过程、植物生长过程都包括在内)其最大做功能力守恒,本发明人认为没有光合作用的植物生长过程是不能提高其做功能力的,也就是说,豆芽的做功能力是不可能高于豆子的做功能力加上其吸收的养分的做功能力之和;之所以一棵树木的做功能力要大于树苗的做功能力,是因为阳 光以光合作用的形式参与了由树苗到树木的生长过程。
本发明人认为:热机工作的基本逻辑是收敛-受热-发散。所谓收敛是工质的密度的增加过程,例如冷凝、压缩均属收敛过程,在同样的压力下,温度低的工质收敛程度大;所谓受热就是工质的吸热过程;所谓发散是指工质的密度降低的过程,例如膨胀或喷射。任何一个发散过程都会形成做功能力的降低,例如,气态的空气的做功能力要远远低于液态空气的做功能力;甲醇加水加中等温度的热生成一氧化碳和氢气,虽然所生成的一氧化碳和氢气的燃烧热大于甲醇的燃烧热20%左右,但其做功能力大于甲醇的做功能力的比例则微乎其微,其原因在于这一过程虽然吸了20%左右的热,但是生成物一氧化碳和氢气的发散程度远远大于甲醇。因此,利用温度不高的热参加化学反应是没有办法有效提高生成物的做功能力的。
本发明人认为:距离增加是熵增加的过程,冷热源之间的距离也影响效率,距离小效率高,距离大效率低。
本发明中,应根据热能与动力领域的公知技术,在必要的地方设置必要的部件、单元或系统等。
众所周知,在经济学中,对信息不对称和信息对称的研究都授予过诺贝尔奖,可见交易双方拥有信息的状态决定交易成败、交易的公平性和交易的利润。交易的本质其实是信息交易。为本发明人认为,专利具有信息零对称性,即交易双方对专利的真正价值都知之甚少。专利信息零对称属性,如不破解,运营很难实现。专利的信息零对称性决定了专利运营的科学性和复杂性。在普通商品交易中,信息不对称有利于促进交易,提高利润。而对专利而言,则完全不同,专利需要解决技术问题,专利的价值在专利运用中很快被知晓,所以专利必须货真价实,信息零对称和信息不对称必然都会严重阻碍专利运营,解决专利信息零对称问题,使交易双方在高水平上信息对称是专利运营企业的根本工作。
本发明的有益效果如下:本发明所述的容积型流体机构可以有效地解决机构的补偿问题,延长了流体机构的寿命,并有效改善流体机构的密封性能,提高效率。
附图说明
图1:实施例1的结构示意图;
图2:实施例2的结构示意图;
图3:实施例3的结构示意图;
图4.1:实施例4的结构示意图;
图4.2:实施例5的结构示意图;
图5:实施例6的结构示意图;
图6:实施例7的结构示意图;
图7:实施例10的结构示意图;
图8:实施例11的结构示意图;
图9:实施例12的结构示意图;
图10:实施例13的结构示意图;
图11:实施例14的结构示意图;
图12:实施例15的结构示意图;
图13.1:实施例16的结构示意图;
图13.2:实施例17的结构示意图;
图13.3:实施例18的结构示意图;
图14:实施例19的结构示意图;
图15:实施例20的结构示意图;
图16:实施例21的结构示意图;
图17:实施例22的结构示意图;
图18:实施例23的结构示意图;
图19:实施例24的结构示意图;
图20:实施例25的结构示意图;
图21.1:实施例26的结构示意图;
图21.2:实施例27的结构示意图;
图22.1:实施例28的结构示意图;
图22.2:实施例29的结构示意图;
图23.1:实施例30的结构示意图;
图23.2:实施例31的结构示意图;
图24.1:实施例32的结构示意图;
图24.2:实施例33的结构示意图;
图25.1:实施例34的结构示意图;
图25.2:实施例35的结构示意图;
图26:实施例36的结构示意图;
图27.1:实施例37的结构示意图一;
图27.2:实施例37的结构示意图二;
图28:实施例38的结构示意图;
图29.1:实施例39的结构示意图;
图29.2:实施例40的结构示意图;
图29.3:实施例41的结构示意图;
图30.1:实施例42的结构示意图;
图30.2:实施例43的结构示意图;
图31.1:实施例43的结构示意图一;
图31.2:实施例43的结构示意图二;
图31.3:实施例43的结构示意图三;
图32:实施例43的结构示意图四;
图33.1:实施例44的结构示意图;
图33.2:实施例45的结构示意图;
图33.3:实施例46的结构示意图;
图33.4:实施例47的结构示意图;
图34:实施例48的结构示意图;
图35:实施例49的结构示意图;
图36:实施例52的结构示意图;
图中:1偏心轴,2工质运动件,3驱动轴,4偏转非套体,5转角控制装置,6偏转偏心套体,7滑动体,72弦向滑道,9缸体,10凸轮,11凸轮体,12结构体,13流体压力补偿结构,131驱动轴,101偏心轴,201缸体,202转子,203偏心轴,204隔离体,205轴孔,206隔离体滑槽,207补偿体,301气缸,302偏心轴,303转子补偿结构体,304套装结构体,306转角控制装置,307偏转弹性体,31套装偏心结构体,401偏心轴、402气缸,403旋转体,404径向补偿体,501气缸,502偏心轴,503隔离体,504偏心活塞,505活塞,506偏心轴A,507偏心轴B,508转角控制装置,110隔离体座口,601气缸,602周向活塞,603隔离体,604隔离滑槽,605轴孔,606偏心轴,外侧配合结构体610,内侧配合结构体611,铰轴孔621,613转轴,607圆孔,608旋转体,701气缸,702偏心轴,703隔离体,704转子补偿结构体,705滑槽,706弹性体,708缸体,709转轴,710气缸套,711环形结构体,712双叶转子,713转轴滑槽。
具体实施方式
实施例1
一种容积型流体机构,如图1所示,所述容积型流体机构包括偏心轴1和工质运动件2,所述偏心轴1包括驱动轴3和偏转非套体4,所述偏转非套体4设置在所述驱动轴3的转轴上和/或所述偏转非套体4设置在所述驱动轴3的偏心部上,所述工质运动件2套装设置在所述驱动轴3和所述偏转非套体4外。
在具体实施时,所述工质运动件2、驱动轴3和偏转非套体4可与缸体等结合形成容积型流体机构。
实施例2
一种容积型流体机构,如图2所示,在实施例1的基础上,进一步可选择性地使所述偏转非套体4经铰接结构设置在所述驱动轴3的转轴上或经铰接结构设置在所述驱动轴3的偏心部上。
作为可变换的实施方式,在实施例1和实施例2及其可变换的实施方式中,均可进一步使所述偏转非套体4设为偏心偏转非套体或设为非偏心偏转非套体。
实施例3
一种容积型流体机构,如图3所示,在实施例1的基础上,进一步可选择性地在所述偏转非套体4和所述驱动轴3的转轴之间和/或在所述偏转非套体4和所述驱动轴3的偏心部之间设置转角控制装置5。
作为可变换的实施方式,在实施例1和实施例2及其可变换的实施方式中,均可进一步可选择性地在所述偏转非套体4和所述驱动轴3的转轴之间和/或在所述偏转非套体4和所述驱动轴3的偏心部之间设置转角控制装置5。
实施例4
一种容积型流体机构,如图4.1所示,所述容积型流体机构包括偏心轴1和工质运动件2,所述偏心轴1包括驱动轴3和偏转偏心套体6,所述偏转偏心套体6套装设置在所述驱动轴3上;所述工质运动件2套装设置在所述偏转偏心套体6外,在所述偏转偏心套体6和所述驱动轴3的转轴之间和/或在所述偏转偏心套体6和所述驱动轴3的偏心部之间设置转角控制装置5。
实施例5
一种容积型流体机构,如图4.2所示,所述容积型流体机构包括偏心轴1和工质运动件2,所述偏心轴1包括驱动轴3和偏转偏心套体6,所述偏转偏心套体6套装设置在所述驱动轴3上;所述工质运动件2套装设置在所述偏转偏心套体6内,在所述偏转偏心套体6和所述驱动轴3的转轴之间和/或在所述偏转偏心套体6和所述驱动轴3的偏心部之间设置转角控制装置5。
实施例6
一种容积型流体机构,如图5所示,所述容积型流体机构包括偏心轴1、工质运动件2和滑动体7,在所述偏心轴1的偏心部上设置弦向滑道72,所述滑动体7与所述弦向滑道72配合设置,所述工质运动件2套装设置在所述偏心部和所述滑动体7外。
实施例7
一种容积型流体机构,如图6所示,在实施例6的基础上,进一步可选择性地在所述滑动体7和所述偏心轴1的转轴之间和/或在所述滑动体7和所述偏心部之间设置转角控制装置5。
实施例8
一种容积型流体机构,所述容积型流体机构包括偏心轴1、工质运动件2和偏转偏心套体6,所述偏转偏心套体6的材料设为轻质材料、或所述偏转偏心套体6的材料设为重质材料、或在所述偏转偏心套体6设置凹陷区,所述偏转偏心套体6套装设置在所述偏心轴1的偏心部上,所述工质运动件2套装设置在所述偏转偏心套体6外。
实施例9
一种容积型流体机构,在实施例8的基础上,可进一步选择性地在所述偏转偏心套体6和所述偏心轴1的转轴之间和/或在所述偏转偏心套体6和所述偏心部之间设置转角控制装置5。
作为可变换的实施方式,在实施例1至实施例9及其可变换的实施方式的基础上,可进一步选择性地使所述工质运动件2设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、或转缸滚动活塞流体机构的活塞,或设为涡旋流体机构的涡旋盘。
作为可变换的实施方式,实施例1至实施例9及其可变换的实施方式中,均可进一步选择性地在所述容积型流体机构包含隔离体的结构中,使所述隔离体与所述工质运动件配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
实施例10
一种容积型流体机构,如图7所示,所述容积型流体机构包括偏心轴1、工质运动件2和偏转偏心套体6,所述偏转偏心套体6套装设置在所述偏心轴1的偏心部上,所述工质运动件2设为涡旋流体机构的涡旋盘,所述涡旋盘的轴孔套装设置在所述偏转偏心套体6外,在所述偏转偏心套体6和所述偏心轴1的转轴之间和/或在所述偏转偏心套体6和所述偏心部之间设置转角控制装置5。
实施例11
一种容积型流体机构,如图8所示,所述容积型流体机构包括凸轮10和缸体9,所述 凸轮10与所述缸体9配合设置,所述凸轮10包括凸轮体11和驱动轴131,所述凸轮体11设置在所述驱动轴131上,在所述凸轮体11和所述驱动轴131之间设置补偿体。
实施例12
一种容积型流体机构,如图9所示,所述容积型流体机构包括凸轮10和缸体9,所述凸轮10与所述缸体9配合设置,所述凸轮10包括凸轮体11和偏心轴101,所述凸轮体11设置在所述偏心轴101的偏心部上。
实施例13
一种容积型流体机构,如图10所示,在实施例12的基础上,进一步在所述凸轮体11和所述偏心轴101之间设置转角控制装置5。
作为可变换的实施方式,实施例11至实施例13均可进一步使所述容积型流体机构的隔离体与所述凸轮体11滑动配合设置。
实施例14
一种容积型流体机构,如图11所示,所述容积型流体机构包括偏心轴1和工质运动件2,所述偏心轴1包括驱动轴3和结构体12,所述结构体12设置在所述驱动轴3上,所述工质运动件2与所述结构体12配合设置,在所述结构体12和所述驱动轴3之间和/或在所述结构体12和所述工质运动件2之间设置流体压力补偿结构13。其中流体压力补偿结构13可设为气压或液压补偿结构。
实施例15
一种容积型流体机构,包括缸体201、转子202、偏心轴203和隔离体204,所述转子202设置在所述缸体201内,在所述转子202上设轴孔205,所述偏心轴203设置在所述轴孔205内,所述隔离体204与所述转子202和所述缸体201配合设置,在所述偏心轴203的远心处设补偿体207,所述补偿体207的补偿方向为使所述转子202偏心距增大的方向,从而实现所述转子202与所述缸体201内侧面之间的补偿,以增加其密封性。
作为一种具体实施方式,如图12所示,所述隔离体204与所述转子202滑动配合,所述隔离体204与缸体201滑动配合设置。
实施例16
一种容积型流体机构,如图13.1所示,其与实施例15的具体实施方式的区别在于:在所述转子202上设隔离体滑槽206,所述隔离体204设置在所述隔离体滑槽206内且一端与所述缸体201铰接设置。
实施例17
一种容积型流体机构,如图13.2所示,其与实施例15的具体实施方式的区别在于:所述转子202与所述隔离体204固连,所述隔离体204与所述缸体201以滑动铰接设置。
实施例18
一种容积型流体机构,如图13.3所示,其与实施例15的具体实施方式的区别在于:所述隔离体204与所述转子202铰接设置,所述隔离体204与所述缸体201滑动设置。
作为可变换的实施方式,实施例15至实施例18,均可进一步选择性地使所述补偿体207设为弹性体、质量块、液压补偿结构或设为气压补偿结构。
实施例19
一种容积型流体机构,如图14所示,包括气缸301、偏心轴302和转子补偿结构体303, 所述偏心轴302的偏心部设置在所述气缸301内,所述转子补偿结构体303偏转配合设置在所述偏心部上,在所述转子补偿结构体303和所述偏心部之间设置转角控制装置306。
作为可变换的实施方式,实施例19还可以选择性地在所述转子补偿结构体303和所述偏心部之间设置偏转弹性体307,或在所述转子补偿结构体303和所述偏心部之间设置转角控制装置306和设置偏转弹性体307。
实施例20
一种容积型流体机构,如图15所示,包括气缸301、偏心轴302和转子补偿结构体303,所述偏心轴302的偏心部设置在所述气缸301内,所述转子补偿结构体303偏转配合设置在所述偏心部上,所述容积型流体机构还包括套装结构体304,所述套装结构体304套装设置在所述偏心部和所述转子补偿结构体303的组合体与所述气缸301之间,在所述转子补偿结构体303和所述偏心部之间设置偏转弹性体307。
作为可变换的实施方式,实施例20还可以选择性地在所述转子补偿结构体303和所述偏心部之间设置转角控制装置306,或在所述转子补偿结构体303和所述偏心部之间设置转角控制装置306和设置偏转弹性体307。
作为可变换的实施方式,实施例20及其可变换的实施方式均可进一步使所述套装结构体304与所述偏心部和所述转子补偿结构体303的组合体转动配合设置。
实施例21
一种容积型流体机构,如图16所示,包括气缸301、偏心轴302和套装偏心结构体31,所述偏心轴302的偏心部设置在所述气缸301内,所述套装偏心结构体31套装设置在所述偏心部和所述气缸301之间,在所述套装偏心结构体31和所述偏心部之间设置转角控制装置306。
作为可变换的实施方式,实施例21可选择性地在所述套装偏心结构体31和所述偏心部之间设置偏转弹性体307,或在所述套装偏心结构体31和所述偏心部之间同时设置转角控制装置306和偏转弹性体307。
实施例22
一种容积型流体机构,如图17所示,包括气缸301、偏心轴302和套装偏心结构体31,所述偏心轴302的偏心部设置在所述气缸301内,所述套装偏心结构体31套装设置在所述偏心部和所述气缸301之间,在所述套装偏心结构体31和所述偏心部之间设置偏转弹性体307。所述容积型流体机构还包括套装结构体304,所述套装结构体304套装设置在所述套装偏心结构体31与所述气缸301之间。
作为可变换的实施方式,实施例22可选择性地在所述套装偏心结构体31和所述偏心部之间设置转角控制装置306,或在所述套装偏心结构体31和所述偏心部之间同时设置转角控制装置306和偏转弹性体307。
作为可变换的实施方式,实施例22及其可变换的实施方式均可进一步使所述套装结构体304和所述套装偏心结构体31转动配合设置。
实施例23
一种容积型流体机构,如图18所示,包括偏心轴容积型流体机构,所述偏心轴容积型流体机构包括偏心轴401、气缸402和旋转体403,所述偏心轴401的偏心部设置在所述气缸402内,所述旋转体403的轴孔套装设置在所述偏心轴401的偏心部上,在所述偏心部 和所述轴孔之间设置径向补偿体404。所述径向补偿体404设为弹性体。
作为可变换的实施方式,在实施例23的基础上,可进一步选择性地使所述弹性体设为弹簧或设为包括弹簧和结构体的组合体。
作为可变换的实施方式,实施例23及其可变换的实施方式均可进一步选择性地使所述偏心轴容积型流体机构设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、转缸滚动活塞流体机构、凸轮转子流体机构或设为涡旋流体机构。
实施例24
一种容积型流体机构,如图19所示,包括气缸501、偏心轴502、隔离体503和偏心活塞504,在所述气缸501上设隔离体座口110,所述偏心轴502设置在所述气缸501内,所述偏心活塞504设置所述气缸501内且套装在所述偏心轴502上,所述偏心轴502的旋转轴心线与所述气缸501的中心线共线,所述隔离体503设置在所述隔离体座口110内,所述隔离体503与所述偏心活塞504铰接设置;在所述气缸501上至少设置流体入口和流体出口中的一个,或在所述气缸501的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴502最大回转半径和所述偏心活塞504的径向最大厚度之和大于所述气缸501的半径,在所述偏心活塞504和所述偏心轴502之间设转角控制装置508。
作为可变换的实施方式,实施例24中也可不设转角控制装置508。
实施例25
一种容积型流体机构,如图20所示,包括气缸501、偏心轴A506、偏心轴B507、隔离体503和活塞505,在所述气缸501上设隔离体座口110,在所述气缸501内由内到外依次套装设置所述偏心轴B 507、所述偏心轴A 506和所述活塞505,所述偏心轴B 507的旋转轴心线与所述气缸501的中心线共线,所述隔离体503设置在所述隔离体座口110内,所述隔离体503与所述活塞505铰接设置;在所述气缸501上至少设置流体入口和流体出口中的一个,或在所述气缸501的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴B 507的最大回转半径、所述偏心轴A 506的径向最大厚度和所述活塞505的径向厚度三者之和大于所述气缸501的半径,在所述偏心轴A 506和所述偏心轴B 507之间设转角控制装置508。
实施例26
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述气缸601上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述周向活塞602相配合设置,在所述周向活塞60上设置轴孔605,所述轴孔605的中心线与所述周向活塞602的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径和所述周向活塞602的最大径向厚度之和大于所述气缸601的半径,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
在具体实施时,如图21.1所示,所述周向活塞602和所述隔离体603滑动配合设置。
实施例27
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602 设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述气缸601相配合;在所述周向活塞602上设置轴孔605,所述轴孔605的中心线与所述周向活塞602的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
在具体实施时,如图21.2所示,所述隔离体603的一端与所述气缸601铰接设置。
作为可变换的实施方式,实施例27可进一步使所述偏心轴606的最大回转半径和所述周向活塞602的最大径向厚度之和大于所述气缸601的半径。
实施例28
一种容积型流体机构,如图22.1所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述气缸601上设转轴613,所述转轴613上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述周向活塞602固定连接,在所述周向活塞602上设置轴孔605,所述轴孔605的中心线与所述周向活塞602的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
实施例29
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述气缸601相配合;在所述周向活塞602上设置轴孔605,所述轴孔605的中心线与所述周向活塞602的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
在具体实施时,如图22.2所示,所述隔离体603的一端可与所述气缸601铰接设置。
作为可变换的实施方案,实施例28和实施例29及其可变换的实施方式中,可进一步使所述偏心轴606的最大回转半径和所述周向活塞602的最大径向厚度之和大于所述气缸601的半径。
实施例30
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内,所述周向活塞602为非正圆形活塞;在所述气缸601上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述周向活塞602相配合设置,在所述周向活塞602上设置轴孔605,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径和所述周向活塞602的最大径向厚度之和大于所述气缸601的半径,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
在具体实施时,可以如图23.1所示,所述隔离体603的一端与所述周向活塞602滑动配合设置。
实施例31
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602 设置在所述气缸601内,所述周向活塞602为非正圆形活塞;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述气缸601相配合;在所述周向活塞602上设置轴孔605,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,在所述周向活塞602和所述偏心轴606之间设转角控制结构。
在具体实施时,可如图23.2所示,所述隔离体603的一端与所述气缸601铰接设置。
作为可变换的实施方式,实施例31可进一步使所述偏心轴606的最大回转半径和所述周向活塞602的最大径向厚度之和大于所述气缸601的半径。
实施例32
一种容积型流体机构,所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述气缸601上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述周向活塞602相配合设置,在所述周向活塞602上设置圆孔607,所述圆孔607的中心线与所述周向活塞602的中心线共线设置,在所述圆孔607内设置旋转体608,在所述旋转体608上设置轴孔605,所述轴孔605的中心线与所述旋转体608的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径、所述旋转体608的最大径向厚度和所述周向活塞602的径向厚度三者之和大于所述气缸601的半径,在所述偏心轴606和所述旋转体608之间设转角控制结构和/或在所述周向活塞602和所述旋转体608之间设转角控制结构。
在具体实施时,可如图24.1所示,所述隔离体603的一端与所述周向活塞602铰接设置。
实施例33
一种容积型流体机构,如图24.2所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述气缸601相配合;在所述周向活塞602上设置圆孔607,所述圆孔607的中心线与所述周向活塞602的中心线共线设置,在所述圆孔607内设置旋转体608,在所述旋转体608上设置轴孔605,所述轴孔605的中心线与所述旋转体608的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径、所述旋转体608的最大径向厚度和所述周向活塞602的径向厚度三者之和大于所述气缸601的半径,在所述偏心轴606和所述旋转体608之间设转角控制结构和/或在所述周向活塞602和所述旋转体608之间设转角控制结构。
在具体实施时,可如图24.2所示,所述隔离体603的一端与所述气缸601铰接设置。
实施例34
一种容积型流体机构,如图25.1所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述气缸601上设转轴613,所述转轴613上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述周向活塞602固定连接,在所述周向活塞602上设置圆孔607,所述圆孔607的中心线与所述周向活塞602的中心线共线设置,在所述圆孔607内设置旋转体608,在所述旋转体 608上设置轴孔605,所述轴孔605的中心线与所述旋转体608的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径、所述旋转体608的最大径向厚度和所述周向活塞602的径向厚度三者之和大于所述气缸601的半径,在所述偏心轴606和所述旋转体608之间设转角控制结构和/或在所述周向活塞602和所述旋转体608之间设转角控制结构。
实施例35
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,所述隔离体603的一端与所述气缸601相配合;在所述周向活塞602上设置圆孔607,所述圆孔607的中心线与所述周向活塞602的中心线共线设置,在所述圆孔607内设置旋转体608,在所述旋转体608上设置轴孔605,所述轴孔605的中心线与所述旋转体608的中心线非共线设置,在所述轴孔605内设偏心轴606,所述偏心轴606的旋转轴线与所述气缸601的中心线共线,所述偏心轴606的最大回转半径、所述旋转体608的最大径向厚度和所述周向活塞602的径向厚度三者之和大于所述气缸601的半径,在所述偏心轴606和所述旋转体608之间设转角控制结构和/或在所述周向活塞602和所述旋转体608之间设转角控制结构。
在具体实施时,可如图25.2所示,使所述隔离体603的一端与所述气缸601铰接配合。
实施例36
一种容积型流体机构,如图26所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部、所述转子补偿结构体704和所述气缸701三者相配合设置,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系,在所述气缸701的缸体上设置滑槽705,所述隔离体703设置在所述滑槽705内,所述隔离体703与所述缸内旋转体滑动配合设置,在所述转子补偿结构体704和所述偏心部之间设置弹性体706,或在所述转子补偿结构体704和所述偏心轴702之间设置弹性体706,所述弹性体706在所述转子补偿结构体704和所述偏心部之间形成转矩。
实施例37
一种容积型流体机构,在实施例36的基础上,可进一步可选择性地使所述转子补偿结构体704套装设置在所述偏心部上(如图27.1所示),或所述转子补偿结构体704经铰轴设置在所述偏心部上(如图27.2所示),或所述转子补偿结构体704经固定件设置在所述偏心部上,在所述转子补偿结构体704和所述偏心部之间设置弹性体706,或在所述转子补偿结构体704和所述偏心轴702之间设置弹性体706,所述弹性体706在所述转子补偿结构体704和所述偏心部之间形成转矩。
作为可变换的实施方式,实施例36至实施例37及其可变换的实施方式均可进一步选择性地使所述弹性体706所形成的扭矩使所述偏心部的最大偏心处和所述转子补偿结构体704的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
实施例38
一种容积型流体机构,如图28所示,包括缸体708、转轴709、隔离体703和气缸套710,所述气缸套710设置在所述缸体708的气缸孔内,所述气缸套710和所述缸体708滑动配合设置,所述气缸套710的壁厚不等,所述转轴709设置在所述气缸套710内,在所述转轴709上设置滑槽705,所述隔离体703设置在所述滑槽705内,所述隔离体703的一端与所述气缸套710的内侧面滑动配合设置,在所述气缸套710和所述缸体708之间设置弹性体706,或在所述气缸套710和所述缸体708之间设置弹性体706,所述弹性体706在所述气缸套710和所述缸体708之间形成转矩。
作为可变换的实施方式,依据所需补偿量使所述气缸套710绕旋转中心进行可控旋转设置。
作为可变换的实施方式,在实施例38的基础上,进一步使所述弹性体706所形成的转矩使所述气缸套710的厚度较大的区域趋向于所述转轴709和所述气缸套710相配合的配合处。
实施例39
一种容积型流体机构,如图29.1所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等(即图示中厚度A不等于厚度B),在所述气缸701的缸体上设置滑槽705,所述隔离体703设置在所述滑槽705内,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系;所述缸内旋转体与所述气缸701及所述隔离体703配合设置。
实施例40
一种容积型流体机构,如图29.2所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等,在所述气缸701的缸体上设置滑槽705,所述隔离体703设置在所述滑槽705内,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系;在所述缸内旋转体和所述气缸701之间套装设置环形结构体711,所述环形结构体711与所述气缸701及所述隔离体703配合设置。
实施例41
一种容积型流体机构,如图29.3所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等,在所述气缸701的缸体上设置滑槽705,所述隔离体703设置在所述滑槽705内,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系;在所述缸内旋转体和所述气缸701之间套装设置双叶转子712,所述双叶转子712与所述气缸701及所述隔离体703配合设置。
实施例42
一种容积型流体机构,如图30.1所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系,在所述缸内旋转体和所述气缸701之间套装设置环形结构体711,所述环形结构体711与所述气缸701及所述隔离体703配合设置;在所述气缸701的缸体上设置缸体的滑槽705,所述隔离体703设置在所述缸体的滑槽705内,所述隔离体703的缸内端与所述环形结构体711铰接设置。
实施例43
一种容积型流体机构,如图30.2所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部和所述转子补偿结构体704构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸701具有偏心关系,在所述缸内旋转体和所述气缸701之间套装设置环形结构体711,所述环形结构体711与所述气缸701及所述隔离体703配合设置;在所述气缸701的缸体上设置转轴709,在所述转轴709上设置转轴滑槽713,所述隔离体703设置在所述转轴滑槽713内,所述隔离体703的缸内端与所述环形结构体711固连设置。
作为可变换的实施方式,实施例39至实施例43及其可变换的实施方式均可进一步选择性地使所述转子补偿结构体704套装设置在所述偏心部上(如图31.1),或所述转子补偿结构体704经铰轴设置在所述偏心部上(如图31.2),或所述转子补偿结构体704经固定件可滑动设置在所述偏心部上(如图31.3)。
作为可变换的实施方式,实施例39至实施例43及其可变换的实施方式均可进一步在所述转子补偿结构体704和所述偏心部之间设置弹性体706,或在所述转子补偿结构体704和所述偏心轴702之间设置弹性体706(如图32所示),所述弹性体706在所述转子补偿结构体704和所述偏心部之间形成转矩,并可进一步选择性地使所述弹性体706所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体704的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
实施例44
一种容积型流体机构,如图33.1所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等;所述隔离体703与所述转子补偿结构体704滑动配合设置,所述隔离体703、所述转子补偿结构体704和所述气缸701三者相互配合形成容积变化的空间。
实施例45
一种容积型流体机构,如图33.2所示,包括气缸701、偏心轴702、隔离体703和转子 补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等;在所述转子补偿结构体704和所述气缸701之间套装设置环形结构体711,所述隔离体703与所述环形结构体711滑动配合设置,所述隔离体703、所述环形结构体711和所述气缸701三者相互配合形成容积变化的空间。
实施例46
一种容积型流体机构,如图33.3所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等;在所述转子补偿结构体704和所述气缸701之间套装设置环形结构体711,所述隔离体703与所述环形结构体711固连设置,所述隔离体703、所述环形结构体711和所述气缸701三者相互配合形成容积变化的空间。
实施例47
一种容积型流体机构,如图33.4所示,包括气缸701、偏心轴702、隔离体703和转子补偿结构体704,所述偏心轴702设置在所述气缸701内,所述转子补偿结构体704设置在所述偏心轴702的偏心部上,所述转子补偿结构体704与所述偏心部滑动配合设置,所述转子补偿结构体704在与所述偏心部的轴线相垂直方向上的厚度不等;在所述转子补偿结构体704和所述气缸701之间套装设置环形结构体711,所述隔离体703与所述环形结构体711铰接配合设置,所述隔离体703、所述环形结构体711和所述气缸701三者相互配合形成容积变化的空间。
作为可变换的实施方式,实施例44至实施例47均可进一步选择性地使所述转子补偿结构体704套装设置在所述偏心部上,或所述转子补偿结构体704经铰轴设置在所述偏心部上,或所述转子补偿结构体704经固定件设置在所述偏心部上。
作为可变换的实施方式,实施例44至实施例47及其可变换的实施方式均可进一步选择性地在所述转子补偿结构体704和所述偏心部之间设置弹性体706,或在所述转子补偿结构体704和所述偏心轴702之间设置弹性体706,所述弹性体706在所述转子补偿结构体704和所述偏心部之间形成转矩,并可进一步选择性地使所述弹性体706所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体704的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
实施例48
一种容积型流体机构,如图34所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述气缸601上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,在所述周向活塞602上设轴孔605,在所述轴孔605内设偏心轴606,在所述周向活塞602上设铰轴孔621,所述隔离体603的一端经所述铰轴孔621与所述周向活塞602相配合设置。
实施例49
一种容积型流体机构,如图35所示,包括气缸601、周向活塞602和隔离体603,所 述周向活塞602设置在所述气缸601内;在所述气缸601上设设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,在所述周向活塞602上设轴孔605,在所述轴孔605内设偏心轴606,在所述隔离体603的一端经与其铰接设置的外侧配合结构体610与所述周向活塞602相配合设置。
实施例50
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,在所述周向活塞602上设轴孔605,在所述轴孔605内设偏心轴606,所述隔离体603的一端与所述气缸601铰接设置。
实施例51
一种容积型流体机构,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,在所述周向活塞602上设轴孔605,在所述轴孔605内设偏心轴606,在所述气缸601上设铰轴孔621,所述隔离体603的一端经所述铰轴孔621与所述气缸601相配合设置。
实施例52
一种容积型流体机构,如图36所示,包括气缸601、周向活塞602和隔离体603,所述周向活塞602设置在所述气缸601内;在所述周向活塞602上设隔离体滑槽604,所述隔离体603设置在所述隔离体滑槽604内,在所述周向活塞602上设轴孔605,在所述轴孔605内设偏心轴606,在所述隔离体603的一端经与其铰接设置的内侧配合结构体611与所述气缸601相配合设置。
显然,本发明不限于以上实施例,根据本领域的公知技术和本发明所公开的技术方案,可以推导出或联想出许多变型方案,所有这些变型方案,也应认为是本发明的保护范围。

Claims (57)

  1. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)和工质运动件(2),所述偏心轴(1)包括驱动轴(3)和偏转非套体(4),所述偏转非套体(4)设置在所述驱动轴(3)的转轴上和/或所述偏转非套体(4)设置在所述驱动轴(3)的偏心部上,所述工质运动件(2)套装设置在所述驱动轴(3)和所述偏转非套体(4)外。
  2. 如权利要求1所述容积型流体机构,其特征在于:所述偏转非套体(4)经铰接结构设置在所述驱动轴(3)的转轴上或经铰接结构设置在所述驱动轴(3)的偏心部上。
  3. 如权利要求1所述容积型流体机构,其特征在于:所述偏转非套体(4)设为偏心偏转非套体或设为非偏心偏转非套体。
  4. 如权利要求2所述容积型流体机构,其特征在于:所述偏转非套体(4)设为偏心偏转非套体或设为非偏心偏转非套体。
  5. 如权利要求1至4中任一项所述容积型流体机构,其特征在于:在所述偏转非套体(4)和所述驱动轴(3)的转轴之间和/或在所述偏转非套体(4)和所述驱动轴(3)的偏心部之间设置转角控制装置(5)。
  6. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)和工质运动件(2),所述偏心轴(1)包括驱动轴(3)和偏转偏心套体(6),所述偏转偏心套体(6)套装设置在所述驱动轴(3)上;所述工质运动件(2)套装设置在所述偏转偏心套体(6)外,在所述偏转偏心套体(6)和所述驱动轴(3)的转轴之间和/或在所述偏转偏心套体(6)和所述驱动轴(3)的偏心部之间设置转角控制装置(5),或所述工质运动件(2)套装设置在所述偏转偏心套体(6)内,在所述偏转偏心套体(6)和所述驱动轴(3)的转轴之间和/或在所述偏转偏心套体(6)和所述驱动轴(3)的偏心部之间设置转角控制装置(5)。
  7. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)、工质运动件(2)和滑动体(7),在所述偏心轴(1)的偏心部上设置弦向滑道(72),所述滑动体(7)与所述弦向滑道(72)配合设置,所述工质运动件(2)套装设置在所述偏心部和所述滑动体(7)外。
  8. 如权利要求7所述容积型流体机构,其特征在于:在所述滑动体(7)和所述偏心轴(1)的转轴之间和/或在所述滑动体(7)和所述偏心部之间设置转角控制装置(5)。
  9. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)、工质运动件(2)和偏转偏心套体(6),所述偏转偏心套体(6)的材料设为轻质材料、或所述偏转偏心套体(6)的材料设为重质材料、或在所述偏转偏心套体(6)设置凹陷区,所述偏转偏心套体(6)套装设置在所述偏心轴(1)的偏心部上,所述工质运动件(2)套装设置在所述偏转偏心套体(6)外。
  10. 如权利要求9所述容积型流体机构,其特征在于:在所述偏转偏心套体(6)和所述偏心轴(1)的转轴之间和/或在所述偏转偏心套体(6)和所述偏心部之间设置转角控制装置(5)。
  11. 如权利要求1至4或6至10中任一项所述容积型流体机构,其特征在于:所述工质运动件(2)设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、或转缸滚动活塞流体机构的活塞,或设为涡旋流体机构 的涡旋盘。
  12. 如权利要求5所述容积型流体机构,其特征在于:所述工质运动件(2)设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、或转缸滚动活塞流体机构的活塞,或设为涡旋流体机构的涡旋盘。
  13. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)、工质运动件(2)和偏转偏心套体(6),所述偏转偏心套体(6)套装设置在所述偏心轴(1)的偏心部上,所述工质运动件(2)设为涡旋流体机构的涡旋盘,所述涡旋盘的轴孔套装设置在所述偏转偏心套体(6)外,在所述偏转偏心套体(6)和所述偏心轴(1)的转轴之间和/或在所述偏转偏心套体(6)和所述偏心部之间设置转角控制装置(5)。
  14. 如权利要求1至4中任一项、6至10中任一项、12或13所述容积型流体机构,其特征在于:在所述容积型流体机构包含隔离体的结构中,所述隔离体与所述工质运动件(2)配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
  15. 如权利要求5所述容积型流体机构,其特征在于:在所述容积型流体机构包含隔离体的结构中,所述隔离体与所述工质运动件(2)配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
  16. 如权利要求11所述容积型流体机构,其特征在于:在所述容积型流体机构包含隔离体的结构中,所述隔离体与所述工质运动件(2)配合设置,所述配合设置包括滑道滑动配合设置、滑动铰接配合设置、弧面滑动配合设置、铰接设置或固连设置。
  17. 一种容积型流体机构,其特征在于:所述容积型流体机构包括凸轮(10)和缸体(9),所述凸轮(10)与所述缸体(9)配合设置,所述凸轮(10)包括凸轮体(11)和驱动轴(131),所述凸轮体(11)设置在所述驱动轴(131)上,在所述凸轮体(11)和所述驱动轴(131)之间设置补偿体。
  18. 一种容积型流体机构,其特征在于:所述容积型流体机构包括凸轮(10)和缸体(9),所述凸轮(10)与所述缸体(9)配合设置,所述凸轮(10)包括凸轮体(11)和偏心轴(101),所述凸轮体(11)设置在所述偏心轴(101)的偏心部上。
  19. 如权利要求18所述容积型流体机构,其特征在于:在所述凸轮体(11)和所述偏心轴(101)之间设置转角控制装置(5)。
  20. 如权利要求17至19中任一项所述容积型流体机构,其特征在于:所述容积型流体机构的隔离体与所述凸轮体(11)滑动配合设置。
  21. 一种容积型流体机构,其特征在于:所述容积型流体机构包括偏心轴(1)和工质运动件(2),所述偏心轴(1)包括驱动轴(3)和结构体(12),所述结构体(12)设置在所述驱动轴(3)上,所述工质运动件(2)与所述结构体(12)配合设置,在所述结构体(12)和所述驱动轴(3)之间和/或在所述结构体(12)和所述工质运动件(2)之间设置流体压力补偿结构(13)。
  22. 一种容积型流体机构,包括缸体(201)、转子(202)、偏心轴(203)和隔离体(204),其特征在于:所述转子(202)设置在所述缸体(201)内,在所述转子(202)上设轴孔(205),所述偏心轴(203)设置在所述轴孔(205)内,所述隔离体(204)与所述转子(202)和 所述缸体(201)配合设置,在所述偏心轴(203)的远心处设补偿体(207),所述补偿体(207)的补偿方向为使所述转子(202)偏心距增大的方向,从而实现所述转子(202)与所述缸体(201)内侧面之间的补偿,以增加其密封性。
  23. 如权利要求22所述容积型流体机构,其特征在于:在所述转子(202)上设隔离体滑槽(206),所述隔离体(204)设置在所述隔离体滑槽(206)内且一端与所述缸体(201)铰接设置,或所述转子(202)与所述隔离体(204)固连,所述隔离体(204)与所述缸体(201)以滑动铰接设置,或所述隔离体(204)与所述转子(202)铰接设置,所述隔离体(204)与所述缸体(201)滑动设置。
  24. 如权利要求22或23所述容积型流体机构,其特征在于:所述补偿体(207)设为弹性体、质量块、液压补偿结构或设为气压补偿结构。
  25. 一种容积型流体机构,包括气缸(301)、偏心轴(302)和转子补偿结构体(303),其特征在于:所述偏心轴(302)的偏心部设置在所述气缸(301)内,所述转子补偿结构体(303)偏转配合设置在所述偏心部上,在所述转子补偿结构体(303)和所述偏心部之间设置转角控制装置(306)和/或在所述转子补偿结构体(303)和所述偏心部之间设置偏转弹性体(307)。
  26. 如权利要求25所述容积型流体机构,其特征在于:所述容积型流体机构还包括套装结构体(304),所述套装结构体(304)套装设置在所述偏心部和所述转子补偿结构体(303)的组合体与所述气缸(301)之间。
  27. 如权利要求26所述容积型流体机构,其特征在于:所述套装结构体(304)与所述偏心部和所述转子补偿结构体(303)的组合体转动配合设置。
  28. 一种容积型流体机构,包括气缸(301)、偏心轴(302)和套装偏心结构体(31),其特征在于:所述偏心轴(302)的偏心部设置在所述气缸(301)内,所述套装偏心结构体(31)套装设置在所述偏心部和所述气缸(301)之间,在所述套装偏心结构体(31)和所述偏心部之间设置转角控制装置(306)和/或在所述套装偏心结构体(31)和所述偏心部之间设置偏转弹性体(307)。
  29. 如权利要求28所述容积型流体机构,其特征在于:所述容积型流体机构还包括套装结构体(304),所述套装结构体(304)套装设置在所述套装偏心结构体(31)与所述气缸(301)之间。
  30. 如权利要求29所述容积型流体机构,其特征在于:所述套装结构体(304)和所述套装偏心结构体(31)转动配合设置。
  31. 一种容积型流体机构,包括偏心轴容积型流体机构,其特征在于:所述偏心轴容积型流体机构包括偏心轴(401)、气缸(402)和旋转体(403),所述偏心轴(401)的偏心部设置在所述气缸(402)内,所述旋转体(403)的轴孔套装设置在所述偏心轴(401)的偏心部上,在所述偏心部和所述轴孔之间设置径向补偿体(404)。
  32. 如权利要求31所述容积型流体机构,其特征在于:所述径向补偿体(404)设为弹性体。
  33. 如权利要求32所述容积型流体机构,其特征在于:所述弹性体设为弹簧或设为包括弹簧和结构体的组合体。
  34. 如权利要求31至33中任一项所述容积型流体机构,其特征在于:所述偏心轴容 积型流体机构设为三角转子流体机构、三角转子发动机、两角转子流体机构、两角转子发动机、多角转子流体机构、多角转子发动机、滚动转子流体机构、滚动活塞流体机构、摆动转子流体机构、旋转流体机构、转缸滚动活塞流体机构、凸轮转子流体机构或设为涡旋流体机构。
  35. 一种容积型流体机构,包括气缸(501)、偏心轴(502)、隔离体(503)和偏心活塞(504),其特征在于:在所述气缸(501)上设隔离体座口(110),所述偏心轴(502)设置在所述气缸(501)内,所述偏心活塞(504)设置所述气缸(501)内且套装在所述偏心轴(502)上,所述偏心轴(502)的旋转轴心线与所述气缸(501)的中心线共线,所述隔离体(503)设置在所述隔离体座口(110)内,所述隔离体(503)与所述偏心活塞(504)铰接设置;在所述气缸(501)上至少设置流体入口和流体出口中的一个,或在所述气缸(501)的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴(502)最大回转半径和所述偏心活塞(504)的径向最大厚度之和大于所述气缸(501)的半径,在所述偏心活塞(504)和所述偏心轴(502)之间设转角控制装置(508)。
  36. 一种容积型流体机构,包括气缸(501)、偏心轴A(506)、偏心轴B(507)、隔离体(503)和活塞(505),其特征在于:在所述气缸(501)上设隔离体座口(110),在所述气缸(501)内由内到外依次套装设置所述偏心轴B(507)、所述偏心轴A(506)和所述活塞(505),所述偏心轴B(507)的旋转轴心线与所述气缸(501)的中心线共线,所述隔离体(503)设置在所述隔离体座口(110)内,所述隔离体(503)与所述活塞(505)铰接设置;在所述气缸(501)上至少设置流体入口和流体出口中的一个,或在所述气缸(501)的端盖上至少设置流体入口和流体出口中的一个;所述偏心轴B(507)的最大回转半径、所述偏心轴A(506)的径向最大厚度和所述活塞(505)的径向厚度三者之和大于所述气缸(501)的半径,在所述偏心轴A(506)和所述偏心轴B(507)之间设转角控制装置(508)。
  37. 一种容积型流体机构,包括气缸(601)、周向活塞(602)和隔离体(603),其特征在于:所述周向活塞(602)设置在所述气缸(601)内;在所述气缸(601)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述周向活塞(602)相配合设置,或在所述周向活塞(602)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述气缸(601)相配合;在所述周向活塞(602)上设置轴孔(605),所述轴孔(605)的中心线与所述周向活塞(602)的中心线非共线设置,在所述轴孔(605)内设偏心轴(606),所述偏心轴(606)的旋转轴线与所述气缸(601)的中心线共线,所述偏心轴(606)的最大回转半径和所述周向活塞(602)的最大径向厚度之和大于所述气缸(601)的半径,在所述周向活塞(602)和所述偏心轴(606)之间设转角控制结构。
  38. 一种容积型流体机构,包括气缸(601)、周向活塞(602)和隔离体(603),其特征在于:所述周向活塞(602)设置在所述气缸(601)内;在所述气缸(601)上设转轴(613),所述转轴(613)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述周向活塞(602)固定连接,或在所述周向活塞(602)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述气缸(601)相配合;在所述周向活塞(602)上设置轴孔(605),所述轴孔(605)的中心线与所述周向活塞(602)的中心线非共线设置,在所述轴孔(605) 内设偏心轴(606),所述偏心轴(606)的旋转轴线与所述气缸(601)的中心线共线,所述偏心轴(606)的最大回转半径和所述周向活塞(602)的最大径向厚度之和大于所述气缸(601)的半径,在所述周向活塞(602)和所述偏心轴(606)之间设转角控制结构。
  39. 一种容积型流体机构,包括气缸(601)、周向活塞(602)和隔离体(603),其特征在于:所述周向活塞(602)设置在所述气缸(601)内,所述周向活塞(602)为非正圆形活塞;在所述气缸(601)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述周向活塞(602)相配合设置,或在所述周向活塞(602)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述气缸(601)相配合;在所述周向活塞(602)上设置轴孔(605),在所述轴孔(605)内设偏心轴(606),所述偏心轴(606)的旋转轴线与所述气缸(601)的中心线共线,所述偏心轴(606)的最大回转半径和所述周向活塞(602)的最大径向厚度之和大于所述气缸(601)的半径,在所述周向活塞(602)和所述偏心轴(606)之间设转角控制结构。
  40. 一种容积型流体机构,包括气缸(601)、周向活塞(602)和隔离体(603),其特征在于:所述周向活塞(602)设置在所述气缸(601)内;在所述气缸(601)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述周向活塞(602)相配合设置,或在所述周向活塞(602)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述气缸(601)相配合;在所述周向活塞(602)上设置圆孔(607),所述圆孔(607)的中心线与所述周向活塞(602)的中心线共线设置,在所述圆孔(607)内设置旋转体(608),在所述旋转体(608)上设置轴孔(605),所述轴孔(605)的中心线与所述旋转体(608)的中心线非共线设置,在所述轴孔(605)内设偏心轴(606),所述偏心轴(606)的旋转轴线与所述气缸(601)的中心线共线,所述偏心轴(606)的最大回转半径、所述旋转体(608)的最大径向厚度和所述周向活塞(602)的径向厚度三者之和大于所述气缸(601)的半径,在所述偏心轴(606)和所述旋转体(608)之间设转角控制结构和/或在所述周向活塞(602)和所述旋转体(608)之间设转角控制结构。
  41. 一种容积型流体机构,包括气缸(601)、周向活塞(602)和隔离体(603),其特征在于:所述周向活塞(602)设置在所述气缸(601)内;在所述气缸(601)上设转轴(613),所述转轴(613)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述周向活塞(602)固定连接,或在所述周向活塞(602)上设隔离体滑槽(604),所述隔离体(603)设置在所述隔离体滑槽(604)内,所述隔离体(603)的一端与所述气缸(601)相配合;在所述周向活塞(602)上设置圆孔(607),所述圆孔(607)的中心线与所述周向活塞(602)的中心线共线设置,在所述圆孔(607)内设置旋转体(608),在所述旋转体(608)上设置轴孔(605),所述轴孔(605)的中心线与所述旋转体(608)的中心线非共线设置,在所述轴孔(605)内设偏心轴(606),所述偏心轴(606)的旋转轴线与所述气缸(601)的中心线共线,所述偏心轴(606)的最大回转半径、所述旋转体(608)的最大径向厚度和所述周向活塞(602)的径向厚度三者之和大于所述气缸(601)的半径,在所述偏心轴(606)和所述旋转体(608)之间设转角控制结构和/或在所述周向活塞(602)和所述旋转体(608)之间设转角控制结构。
  42. 一种容积型流体机构,包括气缸(701)、偏心轴(702)、隔离体(703)和转子补偿结构体(704),其特征在于:所述偏心轴(702)设置在所述气缸(701)内,所述转子补偿结构体(704)设置在所述偏心轴(702)的偏心部上,所述转子补偿结构体(704)与所述偏心部滑动配合设置,所述转子补偿结构体(704)在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部、所述转子补偿结构体(704)和所述气缸(701)三者相配合设置,所述偏心部和所述转子补偿结构体(704)构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸(701)具有偏心关系,在所述气缸(701)的缸体上设置滑槽(705),所述隔离体(703)设置在所述滑槽(705)内,所述隔离体(703)与所述缸内旋转体相配合设置,在所述转子补偿结构体(704)和所述偏心部之间设置弹性体(706),或在所述转子补偿结构体(704)和所述偏心轴(702)之间设置弹性体(706),所述弹性体(706)在所述转子补偿结构体(704)和所述偏心部之间形成转矩。
  43. 如权利要求42所述容积型流体机构,其特征在于:所述转子补偿结构体(704)套装设置在所述偏心部上,或所述转子补偿结构体(704)经铰轴设置在所述偏心部上,或所述转子补偿结构体(704)经固定件设置在所述偏心部上,在所述转子补偿结构体(704)和所述偏心部之间设置弹性体(706),或在所述转子补偿结构体(704)和所述偏心轴(702)之间设置弹性体(706),所述弹性体(706)在所述转子补偿结构体(704)和所述偏心部之间形成转矩。
  44. 如权利要求42或43所述容积型流体机构,其特征在于:所述弹性体(706)所形成的扭矩使所述偏心部的最大偏心处和所述转子补偿结构体(704)的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
  45. 一种容积型流体机构,包括缸体(708)、转轴(709)、隔离体(703)和气缸套(710),其特征在于:所述气缸套(710)设置在所述缸体(708)的气缸孔内,所述气缸套(710)和所述缸体(708)滑动配合设置,所述气缸套(710)的壁厚不等,所述转轴(709)设置在所述气缸套(710)内,在所述转轴(709)上设置滑槽(705),所述隔离体(703)设置在所述滑槽(705)内,所述隔离体(703)的至少一端与所述气缸套(710)的内侧面配合设置,在所述气缸套(710)和所述缸体(708)之间设置弹性体(706),或在所述气缸套(710)和所述缸体(708)之间设置弹性体(706),所述弹性体(706)在所述气缸套(710)和所述缸体(708)之间形成转矩。
  46. 如权利要求45所述容积型流体机构,其特征在于:所述弹性体(706)所形成的转矩使所述气缸套(710)的厚度较大的区域趋向于所述转轴(709)和所述气缸套(710)相配合的配合处。
  47. 一种容积型流体机构,包括气缸(701)、偏心轴(702)、隔离体(703)和转子补偿结构体(704),其特征在于:所述偏心轴(702)设置在所述气缸(701)内,所述转子补偿结构体(704)设置在所述偏心轴(702)的偏心部上,所述转子补偿结构体(704)与所述偏心部滑动配合设置,所述转子补偿结构体(704)在与所述偏心部的轴线相垂直方向上的厚度不等,在所述气缸(701)的缸体上设置滑槽(705),所述隔离体(703)设置在所述滑槽(705)内,所述偏心部和所述转子补偿结构体(704)构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸(701)具有偏心关系;所述缸内旋转体与所述气缸(701)及所述隔离体(703)配合设置,或在所述缸内旋转体和所述气缸(701)之间套装 设置环形结构体(711),所述环形结构体(711)与所述气缸(701)及所述隔离体(703)配合设置,或在所述缸内旋转体和所述气缸(701)之间套装设置双叶转子(712),所述双叶转子(712)与所述气缸(701)及所述隔离体(703)配合设置。
  48. 一种容积型流体机构,包括气缸(701)、偏心轴(702)、隔离体(703)和转子补偿结构体(704),其特征在于:所述偏心轴(702)设置在所述气缸(701)内,所述转子补偿结构体(704)设置在所述偏心轴(702)的偏心部上,所述转子补偿结构体(704)与所述偏心部滑动配合设置,所述转子补偿结构体(704)在与所述偏心部的轴线相垂直方向上的厚度不等,所述偏心部和所述转子补偿结构体(704)构成缸内旋转体的一部分,所述缸内旋转体的外轮廓与所述气缸(701)具有偏心关系,在所述缸内旋转体和所述气缸(701)之间套装设置环形结构体(711),所述环形结构体(711)与所述气缸(701)及所述隔离体(703)配合设置;在所述气缸(701)的缸体上设置缸体的滑槽(705),所述隔离体(703)设置在所述缸体的滑槽(705)内,所述隔离体(703)的缸内端与所述环形结构体(711)铰接设置,或在所述气缸(701)的缸体上设置转轴(709),在所述转轴(709)上设置转轴滑槽(713),所述隔离体(703)设置在所述转轴滑槽(713)内,所述隔离体(703)的缸内端与所述环形结构体(711)固连设置。
  49. 如权利要求47或48所述容积型流体机构,其特征在于:所述转子补偿结构体(704)套装设置在所述偏心部上,或所述转子补偿结构体(704)经铰轴设置在所述偏心部上,或所述转子补偿结构体(704)经固定件设置在所述偏心部上。
  50. 如权利要求47或48所述容积型流体机构,其特征在于:在所述转子补偿结构体(704)和所述偏心部之间设置弹性体(706),或在所述转子补偿结构体(704)和所述偏心轴(702)之间设置弹性体(706),所述弹性体(706)在所述转子补偿结构体(704)和所述偏心部之间形成转矩。
  51. 如权利要求49所述容积型流体机构,其特征在于:在所述转子补偿结构体(704)和所述偏心部之间设置弹性体(706),或在所述转子补偿结构体(704)和所述偏心轴(702)之间设置弹性体(706),所述弹性体(706)在所述转子补偿结构体(704)和所述偏心部之间形成转矩。
  52. 如权利要求50所述容积型流体机构,其特征在于:所述弹性体(706)所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体(704)的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
  53. 如权利要求51所述容积型流体机构,其特征在于:所述弹性体(706)所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体(704)的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
  54. 一种容积型流体机构,包括气缸(701)、偏心轴(702)、隔离体(703)和转子补偿结构体(704),其特征在于:所述偏心轴(702)设置在所述气缸(701)内,所述转子补偿结构体(704)设置在所述偏心轴(702)的偏心部上,所述转子补偿结构体(704)与所述偏心部滑动配合设置,所述转子补偿结构体(704)在与所述偏心部的轴线相垂直方向上的厚度不等;所述隔离体(703)与所述转子补偿结构体(704)滑动配合设置,所述隔离体(703)、所述转子补偿结构体(704)和所述气缸(701)三者相互配合形成容积变化的空间,或在所述转子补偿结构体(704)和所述气缸(701)之间套装设置环形结构体(711), 所述隔离体(703)与所述环形结构体(711)滑动配合设置,所述隔离体(703)、所述环形结构体(711)和所述气缸(701)三者相互配合形成容积变化的空间,或在所述转子补偿结构体(704)和所述气缸(701)之间套装设置环形结构体(711),所述隔离体(703)与所述环形结构体(711)固连设置,所述隔离体(703)、所述环形结构体(711)和所述气缸(701)三者相互配合形成容积变化的空间,或在所述转子补偿结构体(704)和所述气缸(701)之间套装设置环形结构体(711),所述隔离体(703)与所述环形结构体(711)铰接配合设置,所述隔离体(703)、所述环形结构体(711)和所述气缸(701)三者相互配合形成容积变化的空间。
  55. 如权利要求54所述容积型流体机构,其特征在于:所述转子补偿结构体(704)套装设置在所述偏心部上,或所述转子补偿结构体(704)经铰轴设置在所述偏心部上,或所述转子补偿结构体(704)经固定件设置在所述偏心部上。
  56. 如权利要求54或55所述容积型流体机构,其特征在于:在所述转子补偿结构体(704)和所述偏心部之间设置弹性体(706),或在所述转子补偿结构体(704)和所述偏心轴(702)之间设置弹性体(706),所述弹性体(706)在所述转子补偿结构体(704)和所述偏心部之间形成转矩。
  57. 如权利要求56所述容积型流体机构,其特征在于:所述弹性体(706)所形成的转矩使所述偏心部的最大偏心处和所述转子补偿结构体(704)的最大厚度处所形成的小于180度的圆心角趋于增大或趋于减小。
PCT/CN2015/000288 2014-04-26 2015-04-24 容积型流体机构 WO2015161678A1 (zh)

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
CN201410172430.1 2014-04-26
CN201410172430 2014-04-26
CN201410174101 2014-04-27
CN201410174101.0 2014-04-28
CN201410244849.3 2014-06-04
CN201410244849 2014-06-04
CN201410261580.X 2014-06-12
CN201410261580 2014-06-12
CN201410370395 2014-07-30
CN201410370395.4 2014-07-30
CN201410375288 2014-07-31
CN201410374748 2014-07-31
CN201410375255.6 2014-07-31
CN201410375288.0 2014-07-31
CN201410375255 2014-07-31
CN201410374748.8 2014-07-31
CN201410397802 2014-08-13
CN201410397802.0 2014-08-13
CN201510055905 2015-02-03
CN201510055905.3 2015-02-03
CN201510058838 2015-02-04
CN201510058838.0 2015-02-04
CN201510062493 2015-02-05
CN201510062493.6 2015-02-05
CN201510070522.3 2015-02-10
CN201510070522 2015-02-10
CN201510112714 2015-03-14
CN201510112714.6 2015-03-14
CN201510160977.4 2015-04-07
CN201510160977 2015-04-07
CN201510164071 2015-04-08
CN201510164071.X 2015-04-08

Publications (1)

Publication Number Publication Date
WO2015161678A1 true WO2015161678A1 (zh) 2015-10-29

Family

ID=53909932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000288 WO2015161678A1 (zh) 2014-04-26 2015-04-24 容积型流体机构

Country Status (2)

Country Link
CN (2) CN104863848A (zh)
WO (1) WO2015161678A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161678A1 (zh) * 2014-04-26 2015-10-29 摩尔动力(北京)技术股份有限公司 容积型流体机构
CN105179234B (zh) * 2015-09-29 2018-03-13 中国石油天然气股份有限公司 气液混输装置
CN107061218B (zh) * 2017-05-26 2019-12-10 珠海格力电器股份有限公司 一种压缩机主轴和压缩机
CN110296076B (zh) * 2019-07-12 2020-10-16 珠海格力节能环保制冷技术研究中心有限公司 滚子组件、泵体组件、压缩机、气体压缩系统和热泵系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737088A (en) * 1985-03-01 1988-04-12 Daikin Kogyo Co., Ltd. Rotary compressor with oil relief passage
CN1042565C (zh) * 1993-05-11 1999-03-17 大金工业株式会社 旋转压缩机
CN2361879Y (zh) * 1998-12-11 2000-02-02 合肥工业大学 低振动滑阀式真空泵
CN2398449Y (zh) * 1999-03-23 2000-09-27 曹乃承 多气室滚动转子式压缩机
CN100346074C (zh) * 2003-09-30 2007-10-31 三星电子株式会社 变容旋转压缩机
CN101245782B (zh) * 2007-02-14 2010-06-09 三星电子株式会社 旋转式压缩机
CN101749228A (zh) * 2008-12-15 2010-06-23 陈双利

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531271B1 (ko) * 2003-12-31 2005-11-28 엘지전자 주식회사 이중용량 로터리 압축기
CN100356065C (zh) * 2004-12-13 2007-12-19 周海云 制冷压缩机
CN201339578Y (zh) * 2008-12-31 2009-11-04 孙梓恩 一种气缸转动的旋转压缩机
CN103727032B (zh) * 2013-12-16 2017-02-15 西安交通大学 一种低背压、无润滑油的滚动活塞类制冷压缩机
WO2015161678A1 (zh) * 2014-04-26 2015-10-29 摩尔动力(北京)技术股份有限公司 容积型流体机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737088A (en) * 1985-03-01 1988-04-12 Daikin Kogyo Co., Ltd. Rotary compressor with oil relief passage
CN1042565C (zh) * 1993-05-11 1999-03-17 大金工业株式会社 旋转压缩机
CN2361879Y (zh) * 1998-12-11 2000-02-02 合肥工业大学 低振动滑阀式真空泵
CN2398449Y (zh) * 1999-03-23 2000-09-27 曹乃承 多气室滚动转子式压缩机
CN100346074C (zh) * 2003-09-30 2007-10-31 三星电子株式会社 变容旋转压缩机
CN101245782B (zh) * 2007-02-14 2010-06-09 三星电子株式会社 旋转式压缩机
CN101749228A (zh) * 2008-12-15 2010-06-23 陈双利

Also Published As

Publication number Publication date
CN104863848A (zh) 2015-08-26
CN204610273U (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2015161678A1 (zh) 容积型流体机构
US9945360B2 (en) Radial piston pump and wind power generator
CN1074816C (zh) 滑片式偏心平衡转子装置及其应用
RU2387844C2 (ru) Роторно-поршневой двигатель с внешним подводом тепла
CN103452836B (zh) 转子流体机械变容机构
US9435318B2 (en) Liquid ring system and applications thereof
WO2016011791A1 (zh) 流体机构
CN103821715A (zh) 平动旋转式压缩机械
WO2023280183A1 (zh) 分腔转子容积机构
CN112664428B (zh) 一种转缸活塞压缩机
CN202065059U (zh) 容积式机器的功率传输装置
CN111287972B (zh) 叶旋压缩机
CN208024514U (zh) 一种对称通轴式定量轴向柱塞泵
CN102182548A (zh) 容积式机器的功率传输装置
CN104314675A (zh) 一种摆线凸轮与摆盘机构组合的功率传输装置
CN102383923B (zh) 一种环形串联气缸活塞式发动机
CN205117492U (zh) 差速发动机
CN106194412B (zh) 偶式叶轮转子发动机
WO2019046951A1 (en) ENGINE WITH AT LEAST ONE NON-SINUSOIDAL MOTION AND INTEGRATED PISTONS
CN203835721U (zh) 平动旋转式压缩机械
CN208858566U (zh) 偏心多转子压缩泵
WO2016011789A1 (zh) 端面密封系统
CN109779869B (zh) 一种类似行星轮系结构的大功率轴向柱塞式液压泵
CN211500797U (zh) 一种转子发动机
US8567358B2 (en) Environmental friendly two stroke engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782783

Country of ref document: EP

Kind code of ref document: A1