WO2016065559A1 - 一种高精度平面定位系统 - Google Patents

一种高精度平面定位系统 Download PDF

Info

Publication number
WO2016065559A1
WO2016065559A1 PCT/CN2014/089808 CN2014089808W WO2016065559A1 WO 2016065559 A1 WO2016065559 A1 WO 2016065559A1 CN 2014089808 W CN2014089808 W CN 2014089808W WO 2016065559 A1 WO2016065559 A1 WO 2016065559A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis linear
linear motor
mounting plate
slide rail
rail mounting
Prior art date
Application number
PCT/CN2014/089808
Other languages
English (en)
French (fr)
Inventor
萨斯塔.布迪曼
吴玟宏
刘宇
廖永平
魏潇春
Original Assignee
雅科贝思精密机电(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅科贝思精密机电(上海)有限公司 filed Critical 雅科贝思精密机电(上海)有限公司
Priority to PCT/CN2014/089808 priority Critical patent/WO2016065559A1/zh
Priority to CN201480033774.2A priority patent/CN105765663B/zh
Publication of WO2016065559A1 publication Critical patent/WO2016065559A1/zh

Links

Classifications

    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus

Definitions

  • the present invention relates to the field of machinery, and in particular to a high precision planar positioning system.
  • Chinese patent (CN103272739A) discloses a three-dimensional positioning device based on visual guidance, including an X-axis motion system; a Y-axis motion system, an X-axis motion system is actively supported on a Y-axis motion system, and a Y-axis motion system drives an X-axis motion system.
  • the X-axis motion system includes an X-axis screw mechanism and an X-axis stepping motor for driving the X-axis screw mechanism;
  • the Y-axis motion system includes a Y-axis screw mechanism and a Y-axis for driving the Y-axis screw mechanism Stepper motor.
  • the three-dimensional positioning device adopts the plane center position information (ie, the position of the XY plane), thereby improving the positioning effect of the system, and preventing the system from being shaken during operation and the overall offset of the positioning position.
  • the existing planar positioning device has the following structure, including two Y-axes, and an X-axis disposed on two Y-axes, which are driven by a belt or a screw and driven by a servo motor;
  • the X-axis is driven by a screw and driven by a servo motor, and the X-axis moves in the axial direction of the two Y-axes.
  • the X-axis stroke is required to be long.
  • the X-axis is susceptible to bending and deformation due to its own gravity, which affects the final positioning accuracy. If the bending deformation is reduced, the strength of the X-axis is increased, so that the weight of the X-axis is increased, which affects and reduces the efficiency and sensitivity of the X-axis moving axially along the Y-axis;
  • the two ends of the X-axis are directly fixed on the Y-axis on both sides.
  • the X-axis is stuck due to the inconsistency of the output compensation of the Y-axis motors on both sides;
  • the grating scale and the encoder read head as the position feedback of the X axis moving axially along the Y axis, at this time, the grating scale is attached to the side of the motor mover (the encoder corresponds to the motor mover) Position feedback), the X-axis itself has a certain degree of toughness, which will cause the encoder feedback position and actual position deviation.
  • the present invention provides a high precision planar positioning system.
  • a high-precision planar positioning system includes a base, two X-axis linear motor modules, a Y-axis linear motor module and a carrier base, and the two X-axis linear motor modules are symmetrically disposed on the base, and the Y-axis linear motor The module is disposed through the carrier base, and the first end and the second end of the Y-axis linear motor module are respectively connected to the two X-axis linear motor modules;
  • the Y-axis linear motor module includes a slide rail mounting plate, a first slide rail, a magnet, a first motor mover and a second motor mover, and the slide rail mounting plate is connected to the carrier base through the first slide rail
  • the first motor mover and the second motor mover are disposed in the carrier base, and the first motor mover and the seat are respectively clamped on the two sides of the slide rail mounting plate by the magnet Said second motor mover.
  • the X-axis linear motor module includes a second slide rail, a magnetic rail, a motor mover, a bracket and a magnetic rail bracket, and the magnetic rail bracket and the second slide rail are disposed on the base, a magnetic track is disposed on the magnetic track bracket, the motor mover is clamped in the magnetic track, and the Y-axis linear motor module is connected through the bracket, and the second sliding rail is provided with a slider support.
  • the first end of the rail mounting plate is connected to the slider bracket through a ball joint, and the second end of the rail mounting plate passes through the shaft joint and the slider bracket of the other X-axis linear motor module Connected.
  • the slide rail mounting plate is provided with a first grating scale
  • the carrier housing is provided with a first encoder read head that cooperates with the first grating scale.
  • the first end of the slide rail mounting plate and the bottom of the second end are respectively provided with a second encoder read head, and the base is provided with a second grating scale matched with the second encoder read head.
  • a flexible joint is disposed between the first sliding rail and the carrier base.
  • the first slide rails are two.
  • the base is a marble countertop.
  • the present invention has the following advantages and benefits:
  • the Y-axis linear motor module adopts a dual motor (including the first motor mover and the second motor mover) and the slide rail mounting plate is integrally designed to make the deformation uniform and improve the flatness of the carrier seat.
  • the first end of the sliding rail mounting plate is connected to the X-axis linear motor module through a spherical joint, and the second end of the sliding rail mounting plate is connected to the X-axis linear motor through the shaft joint
  • the module effectively avoids the sliding rail mounting plate moving along the second sliding rail direction, because the force of the motor mover output is inconsistent, causing the sliding rail mounting plate to be stuck;
  • the feedback sliding rail mounting plate is along the second sliding rail
  • the second scale in the direction offset is mounted on the base, and the second encoder read head is mounted on the bottom of the slide mounting plate, so the second encoder read head directly reads the slide mounting plate along the first
  • the offset position in the direction of the two slide rails avoids the error caused by the elasticity of the joint between the first end and the second end of the slide rail mounting plate and the X-axis linear motor module.
  • FIG. 1 is a front elevational view of a high precision planar positioning system according to the present invention.
  • Figure 2 is a bottom plan view of the high precision planar positioning system shown in Figure 1;
  • Figure 3 is a perspective view of a high precision planar positioning system shown in Figure 1;
  • Figure 4 is a partial enlarged view of A of Figure 2;
  • Figure 5 is a schematic enlarged cross-sectional view taken along line B-B of Figure 1.
  • 1 is the carrier holder
  • 2 is the Y-axis linear motor module
  • 3 is the slide rail mounting plate
  • 4 is the first slide rail
  • 5 is the X-axis linear motor module
  • 6 is the base
  • 7 is the first grating scale
  • 8 is a bracket
  • 9 is a magnetic rail
  • 10 is a magnetic rail bracket
  • 11 is a second sliding rail
  • 12 is a shaft joint
  • 13 is a second grating scale
  • 14 is a motor mover
  • 15 is a spherical joint
  • 16 is a second code.
  • the read head, 17 is a slider holder
  • 18 is a first slide rail
  • 19 is a magnet
  • 20 is a second motor mover
  • 21 is a spherical joint.
  • a high-precision planar positioning system includes a base 6, two X-axis linear motor modules 5, a Y-axis linear motor module 2, and a carrier base 1; two X-axis linear motor modules 5 are symmetrically arranged.
  • the Y-axis linear motor module 2 is disposed through the carrier base 1, and the first end and the second end of the Y-axis linear motor module 5 are respectively connected to the two X-axis linear motor modules 5.
  • the first key technology of the present invention is that the Y-axis linear motor module 5 includes a slide rail mounting plate 3, a first slide rail 4, a magnet 19, a first motor mover 18 and a second motor mover 20, and the slide rail mounting plate 3
  • the first motor mover 18 and the second motor mover 20 are disposed in the carrier base 1 through the first slide rail 4, and the two sides of the slide rail mounting plate 3 are respectively firstly locked by the magnet 19 Motor mover 18 and second motor mover 20.
  • the rail mounting plate 3 is connected to the tray holder 1 via the two first rails 4.
  • the sliding of the carrier base 1 along the direction of the first sliding rail 4 is more stable.
  • the two sides of the sliding rail mounting plate 3 are respectively coupled with the first motor mover 18 and the second motor mover 20 by the magnet 19, and the slide rails
  • the bending caused by the gravity of the mounting plate 3 is also symmetrical, and the deformation due to the suction of the magnet 19 is also symmetrical.
  • the cross-sectional surface of the rail mounting plate 3 is of a working type, and the first motor mover 18 and the second motor mover 20 are respectively clamped by magnets on both sides of the slide rail mounting plate 3, and the magnet 19 is disposed on the slide rail mounting plate 3.
  • the base 6 is a marble countertop, and the surface of the marble countertop is highly smooth.
  • the tray seat 1 and the marble countertop slide relative to each other, and the sliding friction between the bottom of the tray holder 1 and the marble countertop is small, and the rail mounting plate 3 is prevented.
  • the length is long and the radial bending is deformed, which affects the sliding between the carrier seat 1 and the rail mounting plate 3.
  • the second key technology is
  • the X-axis linear motor module 5 includes a second slide rail 11, a magnetic rail 9, a motor mover 14, a bracket 8 and a magnetic rail bracket 10, and the magnetic rail bracket 10 and the second slide rail 11 are disposed on the base 6, and the magnetic rail 9 is disposed On the magnetic track bracket 10, the motor mover 14 is clamped in the magnetic track 9, and the Y-axis linear motor module 2 is connected through the bracket 8.
  • the second slide rail 11 is provided with a slider bracket 17, and the slider bracket 17 The Y-axis linear motor module 2 is connected.
  • the second slide rail 11 is located below the magnetic track 9, and the slider bracket 17 disposed on the second slide rail 11 is connected to the first end or the second end of the slide rail mounting plate 3.
  • the first end and the second end of the rail mounting plate 3 are respectively connected to the base 6 through the second sliding rail 11, so that the sliding rail mounting plate 3 slides along the direction of the second sliding rail 11, and then connected by the motor mover 14 respectively.
  • the first end and the second end of the rail mounting plate 3, the motor mover 14 is clamped in the magnetic track 9, effectively preventing the slide rail mounting plate 3 from being axially bent and deformed due to the long length.
  • the first slide rail 4 and the second slide rail 11 are vertically disposed to drive the tray holder 1 to move along the plane XY axis direction.
  • the third key technology is that the first end of the Y-axis linear motor module 2 is connected to one of the X-axis linear motor modules 5 through the spherical joint 15; The second end of the Y-axis linear motor module 2 is connected to the other X-axis linear motor module 5 via the shaft joint 12.
  • first end of the rail mounting plate 3 is connected to one of the X-axis linear motor modules 5 via the ball joint 15; the second end of the rail mounting plate 3 is connected to the other X-axis linear motor module 5 via the shaft joint 12.
  • the spherical joint 15 limits the movement of the Y-axis linear motor module 2 in the XYZ-axis direction, and does not limit the inversion; the shaft joint 12 limits the movement of the Y-axis linear motor module 2 in the YZ-axis direction, and is not limited in the X-axis direction.
  • the movement and the flipping are effective to prevent the Y-axis linear motor die 2 from slipping along the direction of the second slide rail 11 when the motor mover 14 moves synchronously.
  • a further technical solution is that the slide rail mounting plate 3 is provided with a first grating scale 7 on which the first encoder read head 21 mated with the first grating scale 7 is disposed.
  • first end of the slide rail mounting plate 3 and the bottom of the second end are respectively provided with a second encoder read head 16, and the base 6 is provided with a second scale 13 matched with the second encoder read head 16.
  • the first encoder read head 21 feeds back the position where the carrier base 1 slides along the direction of the first slide rail 4, and the second encoder read head 16 feeds back the position where the Y-axis linear motor module 2 slides along the direction of the second slide rail 11.
  • the error caused by the elasticity of the joint at both ends of the Y-axis linear motor module 2 is effectively avoided.
  • a flexible joint (not shown) is disposed between the first slide rail 4 and the tray holder 1.
  • the carrier holder 1 is not subjected to bending deformation of the first motor mover 18 and the second motor mover 20 due to gravity and magnet attraction of the magnet (the magnet is a magnet disposed on the magnetic track 9).
  • the interference of the flatness, the carrier holder 1 is always kept parallel to the base 6.
  • the workpiece can be first mounted on the carrier base 1, and the first motor mover 18 and the second motor mover 20 drive the carrier base 1 to move along the direction of the first slide rail 4 (along the plane X-axis direction) Moving) and passing the first encoder read head 21 and the first scale 7 for position feedback; the motor mover 14 drives the carrier base 1 to move along the second slide 11 (moving along the plane Y-axis direction) And through the second encoder read head 16 and the second scale 13 for position feedback.

Landscapes

  • Linear Motors (AREA)

Abstract

本发明提出了一种高精度平面定位系统,包括底座、两X轴直线电机模块、Y轴直线电机模块和载盘座,两X轴直线电机模块对称设置在底座上, Y轴直线电机模块穿设载盘座, Y轴直线电机模块的第一端和第二端分别连接两X轴直线电机模块; Y轴直线电机模块包括滑轨安装板、第一滑轨、磁铁、第一电机动子和第二电机动子,滑轨安装板通过第一滑轨与载盘座连接,第一电机动子和第二电机动子设置在载盘座内,滑轨安装板的两侧分别通过磁铁卡设第一电机动子和第二电机动子。Y轴直线电机模块采用双电机与滑轨安装板一体式设计,使变形匀称,提高载盘座的平面度,防止滑轨安装板因不对称变形而出现卡死现象。

Description

一种高精度平面定位系统 技术领域
本发明涉及机械领域,特别是涉及一种高精度平面定位系统。
背景技术
中国专利(CN103272739A)公开了一种基于视觉引导的三维定位装置,包括X轴运动系统;Y轴运动系统,X轴运动系统活动支撑在Y轴运动系统上,Y轴运动系统驱动X轴运动系统沿Y轴运动系统的轴向运动。其中,X轴运动系统包括X轴丝杆机构和用于驱动X轴丝杆机构的X轴步进电机;Y轴运动系统包括Y轴丝杆机构和用于驱动Y轴丝杆机构的Y轴步进电机。该三维定位装置采用了平面中心位置信息(即XY平面的位置),提高了系统的定位效果,可防止系统在运行时发生抖动及定位位置整体偏移的问题。
除此之外,现有的平面定位装置还有以下结构,包括两个Y轴,及设置在两个Y轴上的X轴,Y轴通过皮带或丝杆传动,并通过伺服电机驱动运行;X轴通过丝杆传动,并通过伺服电机驱动运行,X轴沿两个Y轴的轴向运动。
然而该现有技术存在如下缺陷:
第一,通过增加X轴的长度,已满足X轴行程较长的要求,此时,X轴易受到本身重力影响而弯曲变形,影响最终的定位精度。若为减少弯曲变形,而增加X轴的强度,使得X轴的重量增加,影响并降低了X轴沿着Y轴轴向运动的效率和灵敏度;
第二,X轴的两端直接固定在两侧的Y轴上,在高速运行时,易受到两边Y轴电机出力补偿不一致性而导致X轴卡住;
第三,通过光栅尺和编码器读头作为X轴沿着Y轴轴向运动的位置反馈,此时,光栅尺都是贴在电机动子的边上(编码器对应的是电机动子的位置反馈),X轴本身存在一定的韧性,这会导致编码器反馈的位置和实际位置存在偏差。
技术问题
为了解决上述问题,本发明提供了一种高精度平面定位系统。
技术解决方案
本发明采用的技术方案如下:
一种高精度平面定位系统,包括底座、两X轴直线电机模块、Y轴直线电机模块和载盘座,两所述X轴直线电机模块对称设置在所述底座上,所述Y轴直线电机模块穿设所述载盘座,所述Y轴直线电机模块的第一端和第二端分别连接两所述X轴直线电机模块;
所述 Y轴直线电机模块包括滑轨安装板、第一滑轨、磁铁、第一电机动子和第二电机动子,所述滑轨安装板通过所述第一滑轨与所述载盘座连接,所述第一电机动子和所述第二电机动子设置在所述载盘座内,所述滑轨安装板的两侧分别通过所述磁铁卡设所述第一电机动子和所述第二电机动子。
优选地,所述X轴直线电机模块包括第二滑轨、磁轨、电机动子、支架和磁轨支架,所述磁轨支架和所述第二滑轨设置在所述底座上,所述磁轨设置在所述磁轨支架上,所述电机动子卡设在所述磁轨内,并通过所述支架连接所述Y轴直线电机模块,所述第二滑轨上设置有滑块支架。
优选地,所述滑轨安装板的第一端通过球状关节与滑块支架相连接,所述滑轨安装板的第二端通过轴关节与另一所述X轴直线电机模块的滑块支架相连接。
优选地,所述滑轨安装板上设置有第一光栅尺,所述载盘座上设置有与所述第一光栅尺配合的第一编码器读头。
优选地,所述滑轨安装板的第一端和第二端底部分别设置有第二编码器读头,所述底座上设置有与所述第二编码器读头配合的第二光栅尺。
优选地,所述第一滑轨与所述载盘座之间设置有柔性关节。
优选地,所述第一滑轨为两条。
优选地,所述底座为大理石台面。
有益效果
本发明同现有技术相比,具有以下优点和有益效果:
本发明高精度平面定位系统,Y轴直线电机模块采用双电机(包括第一电机动子和第二电机动子)与滑轨安装板一体式设计,使变形匀称,提高载盘座的平面度,防止滑轨安装板因不对称变形而出现卡死现象;滑轨安装板的第一端通过球状关节连接X轴直线电机模块,滑轨安装板的第二端通过轴关节连接X轴直线电机模块,有效避免了滑轨安装板沿着第二滑轨方向移动过程中,因为电机动子输出的力不一致性而导致滑轨安装板卡死现象;反馈滑轨安装板沿着第二滑轨方向上的位置偏移的第二光栅尺是安装在底座上,第二编码器读头是安装在滑轨安装板底部,因此,第二编码器读头直接读取滑轨安装板沿着第二滑轨方向上的偏移位置,避免了因滑轨安装板第一端和第二端分别与X轴直线电机模块连接处因弹性带来的误差。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所述一种高精度平面定位系统的主视图;
图2是图1所示一种高精度平面定位系统的仰视图;
图3是图1所示一种高精度平面定位系统的立体图;
图4是图2中A的局部放大示意图;
图5是沿图1中B-B线的剖视放大结构示意图。
图中:1为载盘座、2为Y轴直线电机模块、3为滑轨安装板、4为第一滑轨、5为X轴直线电机模块、6为底座、7为第一光栅尺、8为支架、9为磁轨、10为磁轨支架、11为第二滑轨、12为轴关节、13为第二光栅尺、14为电机动子、15为球状关节、16为第二编码器读头、17为滑块支架、18为第一滑轨、19为磁铁、20为第二电机动子、21为球状关节。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1至图5所示,一种高精度平面定位系统,包括底座6、两X轴直线电机模块5、Y轴直线电机模块2和载盘座1;两X轴直线电机模块5对称设置在底座6上, Y轴直线电机模块2穿设载盘座1, Y轴直线电机模块5的第一端和第二端分别连接两X轴直线电机模块5。
本发明第一个关键技术是,Y轴直线电机模块5包括滑轨安装板3、第一滑轨4、磁铁19、第一电机动子18和第二电机动子20,滑轨安装板3通过第一滑轨4与载盘座1连接,第一电机动子18和第二电机动子20设置在载盘座1内,滑轨安装板3的两侧分别通过磁铁19卡设第一电机动子18和第二电机动子20。
优选地,滑轨安装板3通过两第一滑轨4与载盘座1连接。
使得载盘座1沿着第一滑轨4方向滑行更加稳定,此时,滑轨安装板3的两侧分别通过磁铁19卡设第一电机动子18和第二电机动子20,滑轨安装板3受到重力而引起的弯曲也是对称,并且,因磁铁19吸力而变形也是对称的。
滑轨安装板3的横截面呈工型,滑轨安装板3的两侧分别通过磁铁卡设第一电机动子18和第二电机动子20,磁铁19设置在滑轨安装板3上。
其中,底座6为大理石台面,大理石台面表面光滑度高,优选地,载盘座1与大理石台面相对滑动,载盘座1的底部与大理石台面滑动摩擦力较小,防止滑轨安装板3因长度较长而径向弯曲变形,影响载盘座1与滑轨安装板3之间的滑行。
第二个关键技术是, X轴直线电机模块5包括第二滑轨11、磁轨9、电机动子14、支架8和磁轨支架10,磁轨支架10和第二滑轨11设置在底座6上,磁轨9设置在磁轨支架10上,电机动子14卡设在磁轨9内,并通过支架8连接Y轴直线电机模块2,第二滑轨11上设置有滑块支架17,滑块支架17 连接所述Y轴直线电机模块2。
第二滑轨11位于磁轨9的下方,设置在第二滑轨11上的滑块支架17连接滑轨安装板3的第一端或第二端。
滑轨安装板3的第一端和第二端分别通过第二滑轨11与底座6连接,使滑轨安装板3沿着第二滑轨11方向滑行,再通过电机动子14分别连接滑轨安装板3的第一端和第二端,该电机动子14卡设在磁轨9内,有效防止滑轨安装板3因长度较长而轴向弯曲变形。
其中,第一滑轨4与第二滑轨11垂直设置,可带动载盘座1沿平面XY轴方向上移动。
第三个关键技术是, Y轴直线电机模块2的第一端通过球状关节15连接其中一X轴直线电机模块5; Y轴直线电机模块2的第二端通过轴关节12连接另一X轴直线电机模块5。
进一步地,滑轨安装板3的第一端通过球状关节15连接其中一X轴直线电机模块5;滑轨安装板3的第二端通过轴关节12连接另一X轴直线电机模块5。
该球状关节15限制了Y轴直线电机模块2沿XYZ轴方向上的移动,不限制翻转;该轴关节12限制Y轴直线电机模块2沿YZ轴方向上的移动,不限制沿X轴方向上的移动和翻转,有效防止电机动子14同步运动时造成Y轴直线电机模2沿着第二滑轨11方向滑行出现卡住现象。
进一步地的技术方案是,滑轨安装板3上设置有第一光栅尺7,载盘座1上设置有与第一光栅尺7配合的第一编码器读头21。
更进一步地,滑轨安装板3的第一端和第二端底部分别设置有第二编码器读头16,底座6上设置有与第二编码器读头16配合的第二光栅尺13。
第一编码器读头21反馈载盘座1沿着第一滑轨4方向滑行的位置,第二编码器读头16反馈Y轴直线电机模块2沿着第二滑轨11方向滑行的位置,有效避免了因Y轴直线电机模块2两端连接处的弹性带来的误差。
进一步地,第一滑轨4与载盘座1之间设置有柔性关节(未示出)。
通过设置柔性关节,载盘座1不会受到第一电机动子18和第二电机动子20因重力和磁铁(该磁铁为设置在磁轨9上的磁铁)吸力而弯曲变形所带来的平面度上的干扰,载盘座1始终和底座6保持平行。
工作时,可将工件先安装在载盘座1上,由第一电机动子18和第二电机动子20带动载盘座1沿着第一滑轨4方向上移动(沿平面X轴方向移动),并通过第一编码器读头21和第一光栅尺7作位置反馈;由电机动子14带动载盘座1沿着第二滑轨11方向上移动(沿平面Y轴方向移动),并通过第二编码器读头16和第二光栅尺13作位置反馈。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1、一种高精度平面定位系统,包括底座(6)、两X轴直线电机模块(5)、Y轴直线电机模块(2)和载盘座(1),两所述X轴直线电机模块(5)对称设置在所述底座(6)上,所述Y轴直线电机模块(2)穿设所述载盘座(1),所述Y轴直线电机模块(5)的第一端和第二端分别连接两所述X轴直线电机模块(5);其特征在于,所述Y轴直线电机模块(5)包括滑轨安装板(3)、第一滑轨(4)、磁铁(19)、第一电机动子(18)和第二电机动子(20),所述滑轨安装板(3)通过所述第一滑轨(4)与所述载盘座(1)连接,所述第一电机动子(18)和所述第二电机动子(20)设置在所述载盘座(1)内,所述滑轨安装板(3)的两侧分别通过所述磁铁(19)卡设所述第一电机动子(18)和所述第二电机动子(20)。
2、根据权利要求1所述的高精度平面定位系统,其特征在于,所述X轴直线电机模块(5)包括第二滑轨(11)、磁轨(9)、电机动子(14)、支架(8)和磁轨支架(10),所述磁轨支架(10)和所述第二滑轨(11)设置在所述底座(6)上,所述磁轨(9)设置在所述磁轨支架(10)上,所述电机动子(14)卡设在所述磁轨(9)内,并通过所述支架(8)连接所述Y轴直线电机模块(2),所述第二滑轨(11)上设置有滑块支架(17)。
3 、根据权利要求2所述的高精度平面定位系统,其特征在于,所述滑轨安装板(3)的第一端通过球状关节(15)与滑块支架(17)相连接,所述滑轨安装板(3)的第二端通过轴关节(12)与另一所述X轴直线电机模块(5)的滑块支架(17)相连接。
4、根据权利要求1所述的高精度平面定位系统,其特征在于,所述第一滑轨(4)为两条。
5、根据权利要求1所述的高精度平面定位系统,其特征在于,所述滑轨安装板(3)上设置有第一光栅尺(7),所述载盘座(1)上设置有与所述第一光栅尺(7)配合的第一编码器读头(21)。
6、根据权利要求1所述的高精度平面定位系统,其特征在于,所述滑轨安装板(3)的第一端和第二端底部分别设置有第二编码器读头(16),所述底座(6)上设置有与所述第二编码器读头(16)配合的第二光栅尺(13)。
7、根据权利要求1所述的高精度平面定位系统,其特征在于,所述第一滑轨(4)与所述载盘座(1)之间设置有柔性关节。
8、根据权利要求1所述的高精度平面定位系统,其特征在于,所述底座(6)为大理石台面。
PCT/CN2014/089808 2014-10-29 2014-10-29 一种高精度平面定位系统 WO2016065559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/089808 WO2016065559A1 (zh) 2014-10-29 2014-10-29 一种高精度平面定位系统
CN201480033774.2A CN105765663B (zh) 2014-10-29 2014-10-29 一种高精度平面定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089808 WO2016065559A1 (zh) 2014-10-29 2014-10-29 一种高精度平面定位系统

Publications (1)

Publication Number Publication Date
WO2016065559A1 true WO2016065559A1 (zh) 2016-05-06

Family

ID=55856379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089808 WO2016065559A1 (zh) 2014-10-29 2014-10-29 一种高精度平面定位系统

Country Status (2)

Country Link
CN (1) CN105765663B (zh)
WO (1) WO2016065559A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448745A (zh) * 2016-08-31 2017-02-22 无锡信欧光电科技有限公司 一种智能化全自动精密位移台
CN111380488A (zh) * 2020-04-09 2020-07-07 洛阳豫安金属结构有限公司 一种电子级浮法玻璃熔窑锡槽综合测量系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664642B (zh) * 2018-08-20 2019-07-01 全研科技有限公司 高精度線性馬達一次對位平台
CN111146917B (zh) * 2018-11-03 2021-01-01 全研科技有限公司 高精度线性马达一次对位平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344730A (zh) * 2008-08-15 2009-01-14 上海微电子装备有限公司 一种基于h型结构双边驱动系统的定位控制方法及装置
CN102110631A (zh) * 2009-12-29 2011-06-29 上海微电子装备有限公司 精密工件台及其管线设施驱动装置
CN102723296A (zh) * 2012-05-11 2012-10-10 哈尔滨工业大学 一种双层直线电机驱动的xy运动平台
EP2687307A2 (en) * 2012-07-20 2014-01-22 Fu Ding Electronical Technology (Jiashan) Co., Ltd. Method for machining curved surface using lathe
CN103683800A (zh) * 2014-01-06 2014-03-26 苏州大学 一种气隙可调式无铁芯直线电机
CN204229843U (zh) * 2014-10-29 2015-03-25 雅科贝思精密机电(上海)有限公司 一种高精度平面定位系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326670C (zh) * 2005-07-22 2007-07-18 北京航空航天大学 带双边直线电机同步驱动的h型气浮工作台
CN201134045Y (zh) * 2007-11-30 2008-10-15 深圳市大族精密机电有限公司 双轴运动平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344730A (zh) * 2008-08-15 2009-01-14 上海微电子装备有限公司 一种基于h型结构双边驱动系统的定位控制方法及装置
CN102110631A (zh) * 2009-12-29 2011-06-29 上海微电子装备有限公司 精密工件台及其管线设施驱动装置
CN102723296A (zh) * 2012-05-11 2012-10-10 哈尔滨工业大学 一种双层直线电机驱动的xy运动平台
EP2687307A2 (en) * 2012-07-20 2014-01-22 Fu Ding Electronical Technology (Jiashan) Co., Ltd. Method for machining curved surface using lathe
CN103683800A (zh) * 2014-01-06 2014-03-26 苏州大学 一种气隙可调式无铁芯直线电机
CN204229843U (zh) * 2014-10-29 2015-03-25 雅科贝思精密机电(上海)有限公司 一种高精度平面定位系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448745A (zh) * 2016-08-31 2017-02-22 无锡信欧光电科技有限公司 一种智能化全自动精密位移台
CN111380488A (zh) * 2020-04-09 2020-07-07 洛阳豫安金属结构有限公司 一种电子级浮法玻璃熔窑锡槽综合测量系统
CN111380488B (zh) * 2020-04-09 2021-05-07 洛阳豫安金属结构有限公司 一种电子级浮法玻璃熔窑锡槽综合测量系统

Also Published As

Publication number Publication date
CN105765663A (zh) 2016-07-13
CN105765663B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
JP4104810B2 (ja) 可動マグネット型リニアモータを内蔵したスライド装置
WO2016065559A1 (zh) 一种高精度平面定位系统
CN102528472B (zh) 垂直轴宏微复合直线运动平台装置
JP4094769B2 (ja) 可動コイル型リニアモータを内蔵したスライド装置
CN101118377B (zh) 气压半悬浮二自由度共基面运动工作台
CN103021473B (zh) 一种直驱式运动解耦的高精度伺服平台
US6552449B2 (en) Stage system with onboard linear motor
ATE378625T1 (de) Geraet zur genauen hochgeschwindigkeits- positionierung
JP2001025229A (ja) 可動コイル型リニアモータを内蔵したスライド装置
JP2002136097A (ja) リニアモータ駆動ユニット
CN101409112B (zh) 三轴运动平台
JP4684679B2 (ja) リニアモータを内蔵したスライド装置
CN101567223A (zh) 高速大行程的气压半悬浮二自由度共基面运动工作台
JP3673169B2 (ja) X−yステージ装置
KR100570445B1 (ko) 엑스-와이 스테이지 장치
JP4335704B2 (ja) X−yステージ装置
CN215316991U (zh) Xyz轴高速运转平台
CN212413024U (zh) 一种直线电机驱动平台以及加工装置
JPH1052022A (ja) 無ブラシ線型駆動制御システム
CN114473538A (zh) 龙门双驱装置
JP2017013210A (ja) 二軸位置決めステージ装置
JPS60127932A (ja) Xyステ−ジ
CN218487741U (zh) 一种三轴直线电机运动平台
CN218829568U (zh) 可抵消磁吸力的直线电机及包括其的用电设备
CN219314574U (zh) 一种大行程纳米级宏微复合运动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14904997

Country of ref document: EP

Kind code of ref document: A1