WO2016063541A1 - 熱伝導性樹脂と金属との複合部材 - Google Patents

熱伝導性樹脂と金属との複合部材 Download PDF

Info

Publication number
WO2016063541A1
WO2016063541A1 PCT/JP2015/005326 JP2015005326W WO2016063541A1 WO 2016063541 A1 WO2016063541 A1 WO 2016063541A1 JP 2015005326 W JP2015005326 W JP 2015005326W WO 2016063541 A1 WO2016063541 A1 WO 2016063541A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin composition
conductive resin
resin
heat
Prior art date
Application number
PCT/JP2015/005326
Other languages
English (en)
French (fr)
Inventor
一昭 松本
俊朗 江▲崎▼
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016555089A priority Critical patent/JPWO2016063541A1/ja
Publication of WO2016063541A1 publication Critical patent/WO2016063541A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a composite member having good heat dissipation, in which a first member made of a heat conductive resin composition and a second member made of metal are integrated.
  • the thermal resistance can be reduced to some extent by using a thermal interface material such as a heat-dissipating sheet, thermal conductive grease, or thermal conductive adhesive at the interface between the two members.
  • the thermal conductivity is lower than that of a metal or a thermally conductive resin composition, and the number of steps for applying a sheet or an adhesive increases, so that there is a problem that productivity is lowered.
  • Patent Document 1 exemplifies a heat sink for LED formed by joining a metal member to the surface of a heat conductive resin member by insert molding.
  • Patent Document 2 discloses a technique for improving the adhesion at the interface between a metal member and a resin member by providing fine irregularities on the surface of the metal member to be inserted in advance.
  • the metal member to be integrated is a heat conductive resin.
  • a large injection molding machine is required to increase the size of the mold used for insert molding, which increases the cost of the mold and is economically disadvantageous.
  • the injection capacity of the resin is large in a large-sized injection molding machine, if such a molding machine is used, the heat conductive resin composition will stay in the screw of the molding machine for a long time, causing deterioration of the resin There is also.
  • the present inventors have conducted heat or ultrasonic treatment on the surface of the heat conductive resin member without using an adhesive material or an insert molding method. It has been found that a member and a metal member can be welded, and a composite member of a metal and a heat conductive resin can be easily obtained, and the present invention has been completed. That is, the present invention includes the following 1) to 7).
  • the thermal conductivity in the surface direction of the thermally conductive resin composition is 1.0 W / mK or more
  • the first member and the second member are molded bodies formed separately in advance, After the surface of the first member is treated with heat or ultrasonic waves without using an adhesion-imparting agent at the interface between the first member and the second member, the surface is treated with the second member.
  • the composite member, wherein the first member and the second member are welded by being directly joined to a surface.
  • the heat conductive resin composition contains at least (A) 30 to 90% by mass of a thermoplastic resin and (B) 70 to 10% by mass of flake graphite, and has a specific gravity of 1.4 to 2.1.
  • thermoplastic resin (A) is a polyester resin.
  • polyester resin is one or more of a polybutylene terephthalate resin, a polyethylene terephthalate resin, and a polyester-polyether copolymer.
  • a method for producing a composite member in which a first member made of a heat conductive resin composition and a second member made of metal are integrated,
  • the thermal conductivity in the surface direction of the thermally conductive resin composition is 1.0 W / mK or more
  • the first member and the second member are molded bodies formed separately in advance, After the surface of the first member is treated with heat or ultrasonic waves without using an adhesion-imparting agent at the interface between the first member and the second member, the surface is treated with the second member.
  • a method for producing a composite member wherein the first member and the second member are welded by directly joining to a surface.
  • the composite member of the heat conductive resin and metal according to the present invention has a remarkably low thermal resistance at the interface between the heat conductive resin member and the metal member, and also has good adhesion between the heat conductive resin member and the metal member. . Further, it can be easily mass-produced with a small-sized general-purpose injection molding machine, and it is possible to industrially produce a heat radiating member excellent in economy.
  • the 1st member consisting of a heat conductive resin composition is a molded object of the heat conductive resin composition whose thermal conductivity of a surface direction is 1.0 W / mK or more.
  • the “surface direction thermal conductivity” refers to the thermal conductivity with respect to the surface through which the molten resin flows in the mold when a molded body is produced.
  • the thermal conductivity in the direction perpendicular to the surface through which the resin flows is referred to as “thickness direction thermal conductivity”.
  • the thermal conductivity in the surface direction of the thermally conductive resin composition of the present invention is 1 W / (m ⁇ K) or more, preferably 3 W / (m ⁇ K) or more, more preferably 5 W / (m. K) or more, more preferably 7 W / (m ⁇ K) or more, and most preferably 10 W / (m ⁇ K) or more.
  • the upper limit is not particularly limited and is preferably as high as possible, but is generally 100 W / (m ⁇ K) or less.
  • the thermal conductivity in the surface direction may differ between the direction in which the resin flows and the direction orthogonal to the flow direction. In this case, the average value in each direction is defined as the thermal conductivity in the surface direction.
  • the thermal conductivity in the thickness direction of the thermally conductive resin composition of the present invention is not particularly limited, and the higher the better, but generally it is 0.5 W / (m ⁇ K) or more, more preferably 0.8. It is 8 W / (m ⁇ K) or more, more preferably 1 W / (m ⁇ K) or more.
  • the thermal conductivity in the plane direction referred to in the present invention can be measured, for example, as follows.
  • the heat conductive resin composition is made of a thermoplastic resin (A). And the content thereof is preferably 30 to 90% by mass, more preferably 30 to 80% by mass, even more preferably 35 to 75% by mass, when the content is 100% by mass of the heat conductive resin composition. is there.
  • the thermoplastic resin (A) is less than 30% by mass, molding processability is remarkably deteriorated, so that molding may be difficult.
  • it exceeds 90% by mass excellent thermal conductivity may not be exhibited.
  • the heat conductive resin composition is made of scaly graphite (B). It is preferable to contain.
  • the flaky graphite (B) is a graphite particle having a thin flaky appearance.
  • the volume average particle diameter of the flaky graphite (B) contained in the compact is preferably 40 to 700 ⁇ m, more preferably 50 to 500 ⁇ m, and still more preferably 50 to 300 ⁇ m.
  • the volume average particle diameter is less than 40 ⁇ m, the thermal conductivity of the resin composition may be lowered. Further, the larger the particle diameter, the higher the thermal conductivity tends to be. However, when the volume average particle diameter exceeds 700 ⁇ m, the strength of the resin composition may decrease.
  • the volume average particle diameter can be measured by a laser diffraction method, a light scattering method, or the like.
  • the fixed carbon content of the flake graphite (B) is preferably 98% by mass or more, more preferably 98.5% by mass, and still more preferably 99% by mass or more.
  • the amount of fixed carbon can be measured according to JIS M8511.
  • the aspect ratio of the flaky graphite (B) is 21 or more in the molded body.
  • the upper limit of the aspect ratio is preferably as high as possible, and is not particularly limited. However, the preferred range is 10,000 or less, the more preferred range is 5,000 or less, and even more preferred is 3,000 or less.
  • the aspect ratio can be calculated by measuring lengths and lengths with an electron microscope or the like.
  • the particle size distribution of the flaky graphite (B) is not particularly limited, but the ratio D 80 / of the particle diameters D 20 and D 80 when the cumulative volume obtained by measuring the particle size distribution is 20% or 80%, respectively.
  • the ratio of D 20 is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5.
  • the content of the flake graphite (B) of the present invention is
  • the conductive resin composition is 100% by mass, it is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and further preferably 20 to 60% by mass.
  • the heat conductive resin composition of the present invention is produced by melt-kneading the thermoplastic resin (A), the flaky graphite (B), and other components as required.
  • the volume average particle diameter is preferably 201 to 700 ⁇ m, more preferably 230 to 650 ⁇ m, and further preferably 250 to 400 ⁇ m.
  • the aspect ratio of the scaly graphite (B) before melt kneading is preferably 21 or more.
  • the upper limit of the aspect ratio is preferably as high as possible, and is not particularly limited.
  • the preferred range is 3,000 or less, the more preferred range is 1,000 or less, and even more preferred is 500 or less.
  • the amount of fixed carbon is not changed before and after melt kneading or molding. In general, graphite tends to be crushed during melt-kneading or molding. Therefore, the larger the volume average particle diameter of the scale-like graphite (B) before melt-kneading, the larger the scale-like shape after melt-kneading or molding. The volume average particle diameter of graphite (B) is kept large, and the thermal conductivity and moldability are improved.
  • the specific gravity of the heat conductive resin composition of the present invention is preferably 1.4 to 2.1, more preferably 1.4 to 2.0, and still more preferably 1.5 to 1.9.
  • thermoplastic resin (A) used in the present invention examples include aromatic vinyl resins such as polystyrene, vinyl cyanide resins such as polyacrylonitrile, chlorine resins such as polyvinyl chloride, and polymethacrylic acid such as polymethyl methacrylate.
  • Ester resins polyacrylate resins, polyolefin resins such as polyethylene, polypropylene and cyclic polyolefin resins, polyvinyl ester resins such as polyvinyl acetate, polyvinyl alcohol resins and their derivative resins, polymethacrylate resins, Polyacrylic acid resins and their metal salt resins, polyconjugated diene resins, polymers obtained by polymerizing maleic acid and fumaric acid and their derivatives, polymers obtained by polymerizing maleimide compounds, amorphous Semi-aromatic polyester and amorphous Non-crystalline polyester resins such as aromatic polyesters, crystalline polyester resins such as crystalline semi-aromatic polyesters and crystalline wholly aromatic polyesters, aliphatic polyamides, aliphatic-aromatic polyamides, wholly aromatic polyamides, etc.
  • thermoplastic resin Polyamide resin, polycarbonate resin, polyurethane resin, polysulfone resin, polyalkylene oxide resin, cellulose resin, polyphenylene ether resin, polyphenylene sulfide resin, polyketone resin, polyimide resin, polyamideimide resin, poly Etherimide resins, polyetherketone resins, polyetheretherketone resins, polyvinyl ether resins, phenoxy resins, fluorine resins, silicone resins, liquid crystal polymers, and polymers of these exemplified polymers Dam, block or graft copolymer, and the like.
  • These thermoplastic resins can be used alone or in combination of two or more. When two or more kinds of resins are used in combination, a compatibilizing agent or the like can be added as necessary.
  • These thermoplastic resins (A) may be properly used depending on the purpose.
  • thermoplastic resins include amorphous or crystalline polyester resins, polycarbonate resins, liquid crystalline polyester resins, polyamide resins, polyphenylene sulfide resins, and polyolefin resins.
  • thermoplastic resins part or all of the resin is a thermoplastic resin having crystallinity or liquid crystallinity, and the thermal conductivity of the obtained resin composition tends to be high. It is preferable from the viewpoint of easy inclusion of graphite in the resin.
  • thermoplastic resins having crystallinity or liquid crystallinity are part of the resin such that only a specific block in the molecule of the block or graft copolymer resin is crystalline or liquid crystalline even if the entire resin is crystalline. Only may be crystalline or liquid crystalline. There is no particular limitation on the crystallinity of the resin.
  • the thermoplastic resin a polymer alloy of an amorphous resin and a crystalline or liquid crystalline resin can be used. There is no particular limitation on the crystallinity of the resin.
  • thermoplastic resins which are part or all of crystalline or liquid crystalline, can be crystallized, but can be used alone or molded under specific molding conditions. Some resins exhibit amorphous properties. When such a resin is used, there is a case where a part or the whole of the resin can be crystallized by devising a molding method such as stretching or post-crystallization.
  • thermoplastic resins having crystallinity or liquid crystallinity preferred resins include crystalline polyester resin, crystalline polyamide resin, polyphenylene sulfide resin, liquid crystal polymer, crystalline polyolefin resin, polyolefin block copolymer, etc.
  • preferred resins include crystalline polyester resin, crystalline polyamide resin, polyphenylene sulfide resin, liquid crystal polymer, crystalline polyolefin resin, polyolefin block copolymer, etc.
  • the present invention is not limited to these, and various crystalline resins and liquid crystalline resins can be used.
  • crystalline polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly 1,4-cyclohexylenedimethylene terephthalate and polyethylene-1,2-
  • polyester-polyether copolymer The polyester / polyether (hereinafter referred to as polyester-polyether copolymer) is represented by 50 to 80% by weight of an aromatic polyester unit and the following general formula (1) from the viewpoint of moldability and heat resistance, and will be described later. It is preferably a block comprising 20 to 50% by weight of a modified polyether unit or a random polymer, more preferably 60 to 80% by weight of an aromatic polyester unit, and a block comprising 20 to 40% by weight of the modified polyether unit. Or it is a random polymer.
  • a polyester-polyether copolymer is produced by using a catalyst containing an antimony compound, and optionally a germanium compound, and (1) a three-way direct esterification method of an aromatic dicarboxylic acid, a diol, and a modified polyether, (2 ) Three-way transesterification of dialkyl aromatic dicarboxylates, diols, modified polyethers and / or esters of modified polyethers, (3) Dialkyl aromatic dicarboxylates, during or after transesterification of diols Examples include, but are not limited to, a method of polycondensation by adding a modified polyether, (4) a method of transesterifying under a melt and reduced pressure after mixing with a modified polyether using a polymeric aromatic polyester, and the like. However, from the viewpoint of composition controllability, the production method (4) is preferred.
  • antimony compound used as the catalyst examples include antimony trioxide, antimony pentoxide, antimony acetate, antimony glycoxide, and the like. These may be used alone or in combination of two or more. Of these antimony compounds, antimony trioxide is particularly preferred.
  • the amount of the antimony compound catalyst to be added at the time of polymerization is preferably 50 to 2000 ppm by weight, more preferably 100 to 1000 ppm by weight, from the viewpoint of reaction rate and economical viewpoint.
  • germanium compounds used as the catalyst include germanium oxide such as germanium dioxide, germanium alkoxide such as germanium tetraethoxide and germanium tetraisopropoxide, germanium hydroxide and its alkali metal salts, germanium glycolate, germanium chloride, acetic acid. Germanium etc. are mentioned, These are used individually or in combination of 2 or more types. Of these germanium compounds, germanium dioxide is particularly preferred.
  • the amount of germanium dioxide catalyst to be added at the time of polymerization is preferably 50 to 2000 ppm by weight, more preferably 100 to 1000 ppm by weight, from the viewpoint of reaction rate and economical viewpoint.
  • the aromatic dicarboxylic acid is particularly preferably terephthalic acid, and other examples include isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid and the like. Along with these aromatic dicarboxylic acids, a small proportion (15% or less) of aromatic oxycarboxylic acids such as oxybenzoic acid, or aliphatic or alicyclic such as adipic acid, sebacic acid, cyclohexane 1,4-dicarboxylic acid, etc. A dicarboxylic acid may be used in combination.
  • the diol is a low molecular weight glycol component that forms an ester unit, and a low molecular weight glycol having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, decanediol, and cyclohexanedimethanol. Can be mentioned. In particular, ethylene glycol, trimethylene glycol, and tetramethylene glycol are preferable from the viewpoint of availability.
  • alkyl group of the dialkyl aromatic dicarboxylate a methyl group is preferable from the viewpoint of transesterification.
  • a logarithmic viscosity (IV) at a concentration of 0.5 g / dl at a temperature of 0.3 to 2.0, more preferably 0.5 to 1.5 is preferable.
  • the aromatic polyester unit is a polymer or copolymer obtained from an aromatic dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, and is usually an alternating polycondensate, preferably , One or more selected from the group consisting of polyethylene terephthalate units, polybutylene terephthalate units, and polypropylene terephthalate units.
  • the aromatic polyester unit include a polyethylene terephthalate unit, a polyethylene terephthalate copolymer unit, a polybutylene terephthalate unit, a polybutylene terephthalate copolymer unit, a polypropylene terephthalate unit, or a polypropylene terephthalate copolymer unit. More preferably, it is at least one selected from the group consisting of a polyethylene terephthalate unit, a polybutylene terephthalate unit, and a polypropylene terephthalate unit.
  • the modified polyether unit is a unit represented by the general formula (1), and the number of repeating units m and n of the oxyalkylene unit in the general formula (1) are each independently an integer of 1 or more. is there.
  • the number average of (m + n) is preferably 2 to 50, more preferably 10 to 50, and still more preferably 18 to 50.
  • —A— is —O—, —S—, —SO—, —SO 2 —, —CO—, an alkylene group having 1 to 20 carbon atoms, or an alkylidene group having 6 to 20 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently a hydrogen atom, a halogen atom, or a monovalent hydrocarbon having 1 to 5 carbon atoms
  • R 9 and R 10 is independently a divalent hydrocarbon group having 1 to 5 carbon atoms
  • m and n each independently represent the number of repeating units of an oxyalkylene unit.
  • the modified polyether unit is preferably a unit obtained by removing two terminal hydrogens from the compound represented by the following general formula (2), and (m + n) is 2.
  • the formula weight of the unit is 314, and the formula weight of the unit when (m + n) is 50 is 2426.
  • the preferred molecular weight of the compound represented by the general formula (2) is 316 to 2430, more preferably 670 to 2430, still more preferably 1020 to 2430, and further preferably 1330 to 2000.
  • polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly 1,4-cyclohexene are used from the viewpoints of moldability and mechanical properties.
  • Silylene methylene terephthalate, polyester-polyether copolymer, and the like are preferably used, and polybutylene terephthalate, polyethylene terephthalate, and polyester-polyether copolymer are more preferable from the viewpoint of being inexpensive and easily available.
  • the number average molecular weight of the thermoplastic resin (A) of the present invention is prepared by dissolving polystyrene in a mixed solvent of p-chlorophenol and toluene in a volume ratio of 3: 8 to a concentration of 2.5% by weight with polystyrene as a standard.
  • the measured solution was measured using a high temperature GPC (Viscotek: 350 HT-GPC System) with a column temperature of 80 ° C. and a detector as a differential refractometer (RI).
  • the number average molecular weight of the polybutylene terephthalate, polyethylene terephthalate, and polyester-polyether copolymer is preferably 12,000 to 70,000, more preferably 15,000 to 60,000, and 20,000. Particularly preferred is ⁇ 50,000. If it is less than 12,000, the mechanical strength may be low, and if it is greater than 50,000, molding may be difficult.
  • the crystalline polyamide resin include, for example, ring-opening polymer of cyclic lactam, polycondensate of aminocarboxylic acid, polycondensate of dicarboxylic acid and diamine, and specifically nylon 6, nylon. 4, 6, Nylon 6, 6, Nylon 6, 10, Nylon 6, 12, Nylon 11, Nylon 12, and other aliphatic polyamides, poly (metaxylene adipamide), poly (hexamethylene terephthalamide), poly (hexa Methylene isophthalamide), polynonane methylene terephthalamide, poly (tetramethylene isophthalamide), poly (methylpentamethylene terephthalamide) and other aliphatic-aromatic polyamides, and copolymers thereof.
  • copolymers examples include nylon 6 / poly (hexamethylene terephthalamide), nylon 6/6 / poly (hexamethylene terephthalamide), nylon 6 / nylon 6/6 / poly (hexamethylene isophthalamide), and poly (hexamethylene isophthalamide).
  • the form of copolymerization may be either random or block, but is preferably a random copolymer from the viewpoint of moldability.
  • the number average molecular weight of the crystalline polyamide resin is not particularly limited, but is preferably 12,000 or more from the viewpoint of strength.
  • the scaly graphite used in the present invention may be either natural graphite or artificial graphite, and may be used in combination, but natural graphite is preferred from the viewpoint that it can be obtained at a low cost. Further, either ⁇ -graphite or ⁇ -graphite may be used, or these may be combined.
  • graphite having other particle diameters, shapes, and characteristics may be blended together with the scaly graphite (B) as long as the physical properties of the present invention are not significantly impaired.
  • Specific shapes include fibrous, massive, earthy, spherical graphite and the like.
  • the composite member of the present invention is suitable for a heat radiating case and a heat radiating chassis because it has excellent thermal conductivity, molding processability and low specific gravity.
  • the heat dissipating housing is used with a heating element contained therein.
  • the heating element may be a thing that is exothermic per se or a substance that generates heat when heated from the outside.
  • Typical heating elements are exothermic parts or equipment (devices), for example, electronic parts such as LD (laser diode) and IC (integrated circuit), electronic equipment using computers such as personal computers, word processors and video games.
  • ECU Engine control unit
  • ECU Engine control unit which is a computer that determines fuel injection amount and ignition timing based on information such as air intake amount and throttle opening to automobile engine, LED lamp lighting, inverter, automotive lamp housing ,
  • a heat radiating casing for various uses such as a coil, a bobbin, a connector, a bus bar, and a power steering.
  • the heat dissipation chassis is used as a key chassis or sub-chassis to release heat from the heating element.
  • a typical example of the heating element is a heat-generating component that itself is a heating element, and specific examples thereof include electronic components such as LDs and ICs in electronic and electrical products such as mobile phones and TVs. . These are used by being mounted (fixed) on the heat-dissipating chassis, and are not fixed to the heat-dissipating chassis, but are arranged in contact or close to each other.
  • the heat dissipating chassis is also suitably used as an LED (light emitting diode) lighting package.
  • the composite member of the present invention is also suitable for an LED lamp heat sink for automobiles, and can be designed in a free shape as compared with a metal heat sink, and it can lead to an improvement in fuel consumption by reducing the weight. it can.
  • the LED lamp heat sink for automobiles refers to a heat sink for cooling the LED module.
  • Automotive LED lamps include interior lamps and exterior lamps. For example, room lamps, map lamps, head lamps, fog lamps, front turn signal lamps, front positioning lamps, side turn signal lamps, day lamps, fog lamps, tail lamps, stop lamps. , Rear turn signal lamps, high-mount stop lamps, back lamps, license plate lamps and the like.
  • the material of the second member made of metal is not particularly limited as long as it is metal.
  • the second member made of metal is a metal having a thermal conductivity of 90 W / mK or more at room temperature.
  • Metals having a thermal conductivity of 90 W / mK or more at room temperature include metals such as aluminum, zinc, iridium, brass, gold, silver, copper, chromium, cobalt, nickel, tungsten, magnesium, molybdenum, and these metals And various alloys.
  • aluminum and an alloy containing the same aluminum and an alloy containing the same (aluminum alloy), copper and an alloy containing the same (brass, bronze, aluminum brass, etc.), nickel, chromium, cobalt, zinc, silver, magnesium and an alloy containing the same ( Magnesium alloy) and the like.
  • the shape of the second member made of the metal is not particularly limited, but may be a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, a lump shape, or the like, and may be a structure formed by a combination thereof. Moreover, you may have a through-hole, a bending part, etc.
  • the surface shape of the second member made of the metal is not particularly limited, and examples thereof include a plane, a curved surface, an uneven surface, and a surface having a pointed portion.
  • the surface of the second member made of the above metal may be subjected to a surface treatment from the viewpoint of adhesion strength and adhesion between the member and the first member.
  • the surface treatment method is not particularly limited, and examples thereof include fine chemical roughening by special chemicals and physical polishing, anodization, and formation of a film by an organic compound.
  • the volume of the second member made of metal is larger than that of the first member made of the heat conductive resin composition, there is an advantage of using the present invention. Even if the volume of the second member made of metal is smaller, it is possible to use the present invention, but in that case, the insert molding method generally used is also high. A composite member can be produced efficiently.
  • the molding method of the first member comprising the thermally conductive resin composition of the present invention is not particularly limited, and is injection molding, extrusion molding (sheet extrusion, profile extrusion), two-color molding, hollow molding, compression molding, vacuum molding.
  • injection molding, extrusion molding, and transfer molding are preferred from the viewpoint of easy moldability.
  • the first member and the second member are molded bodies that are separately molded in advance.
  • the method of joining the two members after treating the surface of the first member with heat is not particularly limited.
  • a method in which the first member is heated to a temperature equal to or higher than the melting point or softening point of the heat conductive resin composition constituting the first member, and then bonded to the second member, pasted, and then cooled. Can be illustrated.
  • a method of heating the metal constituting the second member to a temperature equal to or higher than the melting point or softening point of the heat conductive resin composition, bonding the first member, attaching, and then cooling is exemplified. I can do it.
  • the method of joining the two members after treating the surface of the first member with ultrasonic waves is not particularly limited.
  • An apparatus such as an ultrasonic welder or an ultrasonic welder can be used as an apparatus for irradiating ultrasonic waves.
  • the ultrasonic irradiation time, ultrasonic frequency, ultrasonic output and the like are preferably changed after selecting optimum conditions each time depending on the size of the member and the width of the joint surface.
  • the irradiation time of ultrasonic waves can be exemplified by a time of about 0.1 seconds to 10 minutes.
  • the frequency of the ultrasonic wave can be exemplified as 10 kHz to 1 GHz.
  • the frequency is preferably 12 kHz to 1 MHz, more preferably 13 kHz to 100 kHz.
  • the output of the ultrasonic wave can be exemplified by 1 W to 100 kW.
  • the ultrasonic irradiation time is too long, the frequency is too large, or the output is too large, the first member may be melted or the first member may be damaged. If the ultrasonic irradiation time is too short, the frequency is too small, or the output is too small, the welding between the first member and the second member may be insufficient.
  • the heat conductive resin composition of the present invention is excellent in electromagnetic wave shielding properties, and the electromagnetic wave shielding effect at a frequency of 100 MHz is preferably 5 dB or more, more preferably 10 dB or more, and further preferably 15 to 60 dB. It is.
  • a heat conductive filler other than graphite may be blended together with the scaly graphite (B).
  • the shape of the heat conductive filler is not particularly limited, and for example, a scale shape, a fiber shape, a flake shape, a plate shape, a spherical shape, a particle shape, a fine particle shape, a nanoparticle, an aggregated particle shape, a tube shape, a nanotube shape, and a wire shape , Rod shape, irregular shape, rugby ball shape, hexahedron shape, composite particle shape in which large particles and fine particles are combined, and various shapes such as liquid.
  • a metal filler such as aluminum or nickel, a low melting point alloy having a liquidus temperature of 300 ° C. or more and a solidus temperature of 150 ° C. or more and 250 ° C. or less, aluminum oxalate, magnesium oxide, silicon oxide, beryllium oxide, oxidation Metal oxides such as copper and cuprous oxide, metal nitrides such as aluminum nitride and silicon nitride, metal carbides such as silicon carbide, metal carbonates such as magnesium carbonate, insulating carbon materials such as diamond, aluminum hydroxide, water Examples thereof include metal hydroxides such as magnesium oxide, alumina, boron nitride, glass fiber, carbon fiber, potassium titanate whisker, silicon nitride fiber, carbon nanotube, talc, and wollastonite.
  • the inorganic filler may be a natural product or a synthesized one. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate.
  • the heat conductive resin composition of the present invention may contain a known filler in addition to the heat conductive filler, depending on the purpose.
  • fillers other than the thermally conductive filler include diatomaceous earth powder, basic magnesium silicate, calcined clay, fine powder silica, quartz powder, crystalline silica, kaolin, antimony trioxide, fine powder mica, molybdenum disulfide, rock Examples thereof include inorganic fibers such as wool, ceramic fibers, and asbestos, and glass fillers such as glass fibers, glass powder, glass cloth, and fused silica.
  • organic fillers such as paper, pulp, wood, polyamide fiber, aramid fiber, boron fiber and other synthetic fibers, polyolefin powder and the like can be used in combination.
  • the filler used in the present invention is surface-treated with various surface treatment agents such as a silane treatment agent, stearic acid, and an acrylic monomer in order to increase the adhesiveness at the interface between the resin and the filler or to facilitate workability.
  • a surface treating agent For example, conventionally well-known things, such as a silane coupling agent and a titanate coupling agent, can be used.
  • an epoxy group-containing silane coupling agent such as epoxy silane
  • an amino group-containing silane coupling agent such as aminosilane, polyoxyethylene silane, and the like are preferable because they hardly reduce the physical properties of the resin.
  • the surface treatment method for the filler is not particularly limited, and a normal treatment method can be used.
  • the thermally conductive resin composition of the present invention includes epoxy resin, polyolefin resin, bismaleimide resin, polyimide resin, polyether resin, phenol resin, silicone resin, polycarbonate resin, polyamide resin, polyester resin, fluorine resin, acrylic resin, It may be alloyed with any known resin such as melamine resin, urea resin, urethane resin.
  • any other components depending on the purpose for example, reinforcing agent, heat stabilizer, antioxidant, ultraviolet absorber, aging
  • An inhibitor thickener, a release agent, a plasticizer, a coupling agent, a flame retardant, a flame retardant, an antibacterial agent, a colorant, other auxiliary agents, and the like can be added as long as the effects of the present invention are not lost.
  • the amount of these additives used is preferably in the range of 0 to 20 parts by weight in total with respect to 100 parts by weight of the thermoplastic resin (A).
  • heat stabilizer examples include phosphites, hindered phenols, thioethers and the like. These can be used alone or in combination of two or more.
  • antioxidants examples include phosphites, hindered amines, hydroquinones, hindered phenols, sulfur-containing compounds and the like. These can be used alone or in combination of two or more.
  • ultraviolet absorber examples include benzophenones, benzotriazoles, salicylic acid esters, metal complex salts and the like. These can be used alone or in combination of two or more.
  • flame retardant examples include organic flame retardants, inorganic flame retardants, and reactive flame retardants. These can be used alone or in combination of two or more.
  • Organic flame retardants include brominated epoxy compounds, brominated alkyltriazine compounds, brominated bisphenol epoxy resins, brominated bisphenol phenoxy resins, brominated bisphenol polycarbonate resins, brominated polystyrene resins, brominated crosslinked polystyrene resins Halogenated flame retardants such as brominated bisphenol cyanurate resin, brominated polyphenylene ether, brominated bismaleimide, decabromodiphenyl oxide, tetrabromobisphenol A and oligomers thereof; trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, Tripentyl phosphate, toxyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate Phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, dicresyl
  • inorganic flame retardant examples include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium series, molybdenum series, zinc stannate, guanidine salt, silicone series, and phosphazene series. These can be used alone or in combination of two or more.
  • Reactive flame retardants include tetrabromobisphenol A, dibromophenol glycidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol, poly (pentabromobenzyl polyacrylate) , Chlorendic acid (hett acid), chlorendic anhydride (hett acid anhydride), brominated phenol glycidyl ether, dibromocresyl glycidyl ether, the following general formula (3) (wherein n is an integer of 2 to 20) And organic phosphorus flame retardants represented. These can be used alone or in combination of two or more.
  • composition of this invention when making the composition of this invention contain a flame retardant, it is preferable to mix
  • a flame retardant adjuvant antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate, antimony tartrate and other antimony compounds, zinc borate, barium metaborate, hydrated alumina, zirconium oxide, Examples thereof include ammonium polyphosphate, tin oxide, and iron oxide. These can be used alone or in combination of two or more.
  • a silicone oil can be mix
  • anti-aging agent examples include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds.
  • plasticizer examples include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di- (2-ethylhexyl) phthalate, diisooctyl phthalate, and diisodecyl phthalate; dimethyl adipate , Diisobutyl adipate, di- (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyl decyl adipate, di- (2-ethylhexyl) azelate, diisooctyl azelate, diisobutyl azelate, dibutyl sebacate, di- Fatty acid esters such as (2-ethylhexyl) se,
  • antibacterial agent examples include zeolite antibacterial agents such as silver zeolite and silver-zinc zeolite, silica gel antibacterial agents such as complexed silver-silica gel, glass antibacterial agents, calcium phosphate antibacterial agents, and zirconium phosphate antibacterial agents.
  • Silicate antibacterial agents such as silver-magnesium aluminate, titanium oxide antibacterial agents, ceramic antibacterial agents, whisker antibacterial agents, and other inorganic antibacterial agents; formaldehyde release agents, halogenated aromatic compounds, road Organic antibacterial agents such as propargyl derivatives, thiocyanato compounds, isothiazolinone derivatives, trihalomethylthio compounds, quaternary ammonium salts, biguanide compounds, aldehydes, phenols, pyridine oxide, carbanilide, diphenyl ether, carboxylic acid, organometallic compounds; inorganic and organic Hybrid antibacterial agent; natural Bacteria, and the like. These can be used alone or in combination of two or more.
  • colorant examples include organic dyes, inorganic pigments, and organic pigments. These can be used alone or in combination of two or more.
  • the method for producing the thermoplastic resin composition of the present invention is not particularly limited. For example, it can be produced by drying the above-described components, additives and the like and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder.
  • the kneading temperature is selected for the type of thermoplastic resin.
  • a compounding component is a liquid, it can also manufacture by adding to a melt-kneader on the way using a liquid supply pump etc.
  • PET polyethylene terephthalate
  • PET polyether
  • Irganox 1010 manufactured by Ciba Specialty Chemicals
  • 30 parts by weight of polyether which is bisol 18EN described below After holding at 270 ° C. for 2 hours, the pressure was reduced with a vacuum pump, and after 1 torr and holding for 3 hours, the polyester-polyether copolymer was obtained.
  • the number average molecular weight of the obtained polyester-polyether copolymer was 25,400.
  • the bisol 18EN has a number average (m + n) of 18 in the structure of the general formula (2).
  • Thermoplastic polyamide resin (A-4) Nylon 6, A1020BRL (trade name) manufactured by Unitika Graphite (B): Scale-like graphite (B-1): CPB-80 (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd., volume average particle diameter 300 ⁇ m, fixed carbon amount 99.9% by mass, aspect ratio 100 Scale-like graphite (B-2): BF-40AK (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd., volume average particle diameter 50 ⁇ m, fixed carbon amount 99.9% by mass, aspect ratio 30
  • Graphite volume average particle diameter Using a Microtrac particle size distribution measuring device (MICROTRAC MT3300EXII, manufactured by Nikkiso Co., Ltd.), graphite particles were introduced into an aqueous solvent and then subjected to ultrasonic vibration for 60 seconds, followed by measurement. The volume average particle diameter of the graphite particles after molding was measured after firing a molded body having a diameter of 26 mm ⁇ 1 mm at 620 ° C. for 1 hour, and then extracting only the graphite particles contained in the molded body.
  • MICROTRAC MT3300EXII Microtrac particle size distribution measuring device
  • Graphite aspect ratio Using a scanning electron microscope (SEM) (manufactured by JEOL Ltd., JSM-6060LA), the average value of the longest diameter and shortest diameter of 100 graphite particles was calculated. About the aspect-ratio of the graphite particle after shaping
  • Thermal conductivity Using the obtained pellets of the thermal conductive resin composition, a molded body of ⁇ 26 mm ⁇ 1 mm thickness was produced with an injection molding machine [Si-15IV, manufactured by Toyo Machine Metal Co., Ltd.], and ASTM Based on the E1461 standard, the thermal conductivity in the plane direction and the thickness direction in the air at room temperature was measured with a laser flash method thermal conductivity measuring device (LFA447 manufactured by NETZSCH).
  • Specific gravity was measured by an underwater substitution method in accordance with ISO 1183 standard using a molded body having a diameter of ⁇ 26 mm ⁇ 1 mm.
  • Heat resistance HDT (high load) A test piece of 80 mm ⁇ 40 mm ⁇ 4 mm size was produced with an injection molding machine [Toyo Machine Metal Co., Ltd., Si-30IV] and measured in accordance with ISO75 standard.
  • Ultrasonic welding property A plate made of a heat conductive resin composition of 100 mm ⁇ 45 mm ⁇ 1 mm was molded by an injection molding machine [Toyo Machine Metal Co., Ltd., Si-30IV], and 120 ⁇ 120 ⁇ 1 mm separately prepared. Installed in the center of the bottom of the aluminum plate of size. Using ultrasonic welding machine (2000Xdt manufactured by Emerson), 20 locations of ultrasonic vibrations with amplitude setting value of 80%, 9 locations where flat plate made of heat conductive resin composition is installed near the center of aluminum plate Then, each was irradiated for 3 seconds to weld both. The sample was stored at room temperature for 24 hours, and then the ultrasonic weldability was determined as follows. ⁇ : It is very difficult to peel aluminum and resin by hand. ⁇ : Aluminum and resin cannot be easily removed by hand, but can be removed by applying force. X: Aluminum and resin can be easily peeled by hand.
  • Thermal welding property A 120 mm x 120 mm x 1 mm size prepared separately by molding a 100 mm x 45 mm x 1 mm heat conductive resin composition plate using an injection molding machine [Toyo Machine Metal Co., Ltd., Si-30IV].
  • a plate made of a heat conductive resin composition was installed near the center of the aluminum plate.
  • the aluminum plate was placed on a commercially available hot plate heated to 280 ° C. with the plate made of the heat conductive resin composition placed thereon, and left for 300 seconds. Every 10 seconds, a metal block having a size of 100 mm ⁇ 100 mm ⁇ 100 mm was pressed from the top of the heat conductive resin composition flat plate for 1 second, and the operation of pressure bonding was repeated for 300 seconds.
  • test piece was removed from the hot plate and stored at room temperature for 24 hours, and then the thermal weldability was determined as follows.
  • It is difficult to peel aluminum and resin by hand.
  • Aluminum and resin cannot be easily removed by hand, but can be removed by applying force.
  • X Aluminum and resin can be easily peeled by hand.
  • thermoplastic resins (A-1) to (A-4) are dried at 140 ° C. for 4 hours using a hot air dryer, and the components shown in Table 1 are mixed so that the weight ratios shown in Table 1 are obtained.
  • 0.3 parts by weight of a phenol-based stabilizer (AO-60 manufactured by ADEKA Corporation) and a phosphorus-based antioxidant (ADEKA STAB PEP-36 manufactured by ADEKA Corporation) were added, respectively.
  • This mixture was set at a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, and an extrusion barrel temperature of 280 ° C. using a 25 mm co-rotating fully meshed twin screw extruder MFU25TW-60HG-NH-1300 manufactured by Technobel Co., Ltd.
  • the resin composition pellets were obtained by melt-kneading.
  • the obtained resin composition pellets were produced by injection molding, and various evaluations were made.
  • Table 1 shows the volume average particle diameter and aspect ratio of graphite particles contained in the molded body, and various physical property values.
  • Example 1 was repeated except that the formulation was changed to the formulation shown in Table 1. Various physical property values are shown in Table 1.
  • the adhesion with the metal is good, but the thermal conductivity is low. Further, from comparison between Examples 1 to 3 and Example 4, it can be seen that when the heat conductive resin composition contains a polyester resin, it is excellent in heat weldability and ultrasonic weldability with a metal.
  • the composite member of the heat conductive resin and metal of the present invention exhibits excellent heat conductivity and adhesiveness, and has good productivity. Accordingly, the weight of the member can be reduced, the degree of freedom in shape is high, and a molded body can be obtained easily and inexpensively.
  • the composite member of the present invention is excellent in electromagnetic shielding properties, and is suitable for applications requiring electromagnetic shielding properties, such as a heat radiating housing, a heat radiating chassis, lighting, and an LED lamp heat sink for automobiles. Suitable for use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる複合部材であって、前記熱伝導性樹脂組成物の面方向の熱伝導率は1.0W/mK以上であり、前記第1の部材と前記第2の部材とは予め別々に成形された成形体であり、前記第1の部材と前記第2の部材の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより前記第1の部材と前記第2の部材が溶着されていることを特徴とする、複合部材。

Description

熱伝導性樹脂と金属との複合部材
 本発明は、熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる、放熱性良好な複合部材に関する。
 近年、電気・電子機器部品、OA機器、通信機器などの分野では、電気・電子機器の小型化、高集積化に伴い、実装部品の発熱や使用環境の高温化が顕著となり、構成部材の放熱性向上に対する要求が高くなっている。
 例えば自動車産業においては、LEDランプやキャビン、ハイブリッド車における電池、モーター、またはインバーター、燃料電池におけるセパレーターなど各種部材で放熱性能を高めるため、部材を高熱伝導化したいとの要求が強い。一方で燃費性能向上のために各種部材を軽量化することが望まれており、金属部品やセラミック部品を低比重の樹脂に代替することで、部材を軽量化することが可能である。また家電製品や電気・電子機器においても、軽量化のため金属を樹脂に変更したいとの要望が増えている。
 さらに放熱部材からの放熱性を高めるためには、放熱部材と空気や水などの冷媒とを高効率で接触させる必要がある事から、表面積が広い複雑な形状に放熱部材を成形する必要がある。ところが金属部品やセラミック部品では、複雑な形状を効率よく大量に生産することが困難であることから、射出成形で容易に成形加工が可能な熱可塑性樹脂へ代替すれば、生産性を画期的に高めることが可能である。
 このような用途で金属部品やセラミック部品を樹脂部品に変更する際に、一般的な樹脂は熱伝導率が0.1~0.3W/mK程度しかなく、金属やセラミックに比べて著しく熱伝導率が低いことから、熱可塑性樹脂と高熱伝導性フィラーとを複合化させた高熱伝導性樹脂組成物を用いる動きが高まっている。しかしながら、高熱伝導性樹脂組成物であっても、その熱伝導率はせいぜい汎用樹脂の10~100倍程度が限界であり、金属やセラミックと比べ、熱伝導率では劣っているのが現状である。
 このような課題を解決するため、金属と熱伝導性樹脂組成物とを複合化し、単純な形状の金属部材と、複雑な形状の熱伝導性樹脂部材とからなる複合部材を作成しようとする取り組みが行われている。これにより、より高い熱伝導率を示す金属の長所と、複雑な形状を高効率で生産可能な熱伝導性樹脂組成物の長所とを併せ持った複合部材を安価かつ容易に得ることが出来る。しかしながら、このような複合部材を生産する際には、金属部材と樹脂部材との界面における熱抵抗を如何に低減するかが大きな課題となっている。
 金属部材の表面や樹脂部材の表面には微細な凹凸があるため、両部材を単純に接触させただけでは、界面に空気層が生じて大きな熱抵抗が生じるため、放熱効果が無くなってしまう。両部材の界面に、放熱シート、熱伝導性グリース、熱伝導性接着剤などのサーマルインターフェースマテリアルを用いることで、ある程度熱抵抗を低減することは可能であるが、一般的なサーマルインターフェースマテリアルは、金属や熱伝導性樹脂組成物と比べて熱伝導率は低いうえ、シートや接着剤を塗工する工程が増えてしまうため、生産性が低下するという課題もある。
 サーマルインターフェースマテリアルを用いずに金属と熱伝導性樹脂組成物とを複合化する技術としては、予め金属部材を射出成形金型の中に設置したうえで熱伝導性樹脂組成物の射出成形を行うインサート成形法を用いられることが多い。例えば特許文献1では、インサート成形により、金属部材を熱伝導性樹脂部材表面に接合してなるLED用ヒートシンクが例示されている。また特許文献2では、インサートする金属部材の表面に予め微細な凹凸を設けることで、金属部材と樹脂部材との界面の接着性を高める技術が示されている。
特開2011-061157号公報 国際公開第2012-070654号公報
 このようにインサート成形を用いることで、金属部材と熱伝導性樹脂部材とを一体化させた複合部材を成形することが可能であるが、一方で、一体化させたい金属部材が熱伝導性樹脂部材より大きい場合などにおいては、インサート成形に用いる金型が大型化するために大型射出成形機が必要となってしまうため、金型のコストがかさみ、経済的に不利となってしまう。さらに大型射出成形機では樹脂の射出容量が大きいため、このような成形機を用いると熱伝導性樹脂組成物が成形機のスクリュー内に長時間滞留することとなり、樹脂が劣化する原因となる場合もある。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、接着材料やインサート成形法を用いることなく、熱伝導性樹脂部材の表面を熱または超音波処理することにより熱伝導性樹脂部材と金属部材とを溶着することができ、金属と熱伝導性樹脂との複合部材が容易に得られることを見出し、本発明を完成するに至った。即ち、本発明は、下記1)~7)である。
 1)熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる複合部材であって、
前記熱伝導性樹脂組成物の面方向の熱伝導率は1.0W/mK以上であり、
前記第1の部材と前記第2の部材とは予め別々に成形された成形体であり、
前記第1の部材と前記第2の部材の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより前記第1の部材と前記第2の部材が溶着されていることを特徴とする、複合部材。
 2)熱伝導性樹脂組成物よりなる第1の部材よりも、金属よりなる第2の部材の方が、体積が大きいことを特徴とする、1)に記載の複合部材。
 3)熱伝導性樹脂組成物が、(A)熱可塑性樹脂30~90質量%、(B)鱗片状黒鉛70~10質量%、を少なくとも含有し、比重1.4~2.1であることを特徴とする、1)、又は2)に記載の複合部材。
 4)前記熱可塑性樹脂(A)が、ポリエステル樹脂であることを特徴とする、3)に記載の複合部材。
 5)前記ポリエステル系樹脂が、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂、及びポリエステル-ポリエーテル共重合体、の何れか1種以上であることを特徴とする、4)に記載の複合部材。
 6)前記金属の室温における熱伝導率が90W/mK以上であることを特徴とする、1)~5)の何れかに記載の複合部材。
 7)熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる複合部材の製造方法であって、
前記熱伝導性樹脂組成物の面方向の熱伝導率は1.0W/mK以上であり、
前記第1の部材と前記第2の部材とは予め別々に成形された成形体であり、
前記第1の部材と前記第2の部材の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより前記第1の部材と前記第2の部材を溶着させることを特徴とする、複合部材の製造方法。
 本発明の熱伝導性樹脂と金属との複合部材は、熱伝導性樹脂部材と金属部材との界面における熱抵抗が著しく小さく、かつ熱伝導性樹脂部材と金属部材との接着性も良好である。また小型汎用射出成形機で容易に大量生産可能であり、経済性に優れた放熱部材を工業的に生産することが可能である。
 〔第1の部材〕
 本発明において、熱伝導性樹脂組成物よりなる第1の部材は、面方向の熱伝導率が1.0W/mK以上の熱伝導性樹脂組成物の成形体である。
 本発明でいう「面方向の熱伝導率」とは、成形体を作製する際に溶融樹脂が金型内を流動する面に対する熱伝導率のことを示す。また、樹脂が流動する面に対して垂直方向の熱伝導率を「厚み方向の熱伝導率」という。本発明の熱伝導性樹脂組成物の面方向の熱伝導率は、1W/(m・K)以上であり、好ましくは、3W/(m・K)以上であり、より好ましくは5W/(m・K)以上であり、さらに好ましくは、7W/(m・K)以上であり、最も好ましくは10W/(m・K)以上である。上限値は特に限定されず、高ければ高い程よいが、一般的には100W/(m・K)以下である。面方向の熱伝導率は、樹脂の流動する方向と、流動方向に直行する方向とで異なる場合もあるが、その場合は各方向における平均の値を面方向の熱伝導率とする。
 本発明の熱伝導性樹脂組成物の厚み方向の熱伝導率は特に限定されず、高ければ高い程よいが、一般的には0.5W/(m・K)以上であり、より好ましくは0.8W/(m・K)以上であり、さらに好ましくは1W/(m・K)以上である。
 本発明でいう面方向の熱伝導率は、例えば以下のようにして測定することができる。
 サンプルの作成:射出成形機[東洋機械金属(株)製、Si-15IV]を用いて、熱伝導性樹脂組成物のペレットから、φ26mm×1mm厚の成形体を作成する。
 サンプルの測定:レーザーフラッシュ法熱伝導率測定装置(NETZSCH社製 LFA447)を用いて、ASTM E1461規格に準拠して、室温大気中におけるサンプルの面方向の熱伝導率を測定する。
 熱伝導性樹脂組成物よりなる第1の部材と金属よりなる第2の部材との接着性を高め界面熱抵抗を低減するためには、熱伝導性樹脂組成物は、熱可塑性樹脂(A)を含み、その含量が、熱伝導性樹脂組成物100質量%とした場合に、好ましくは30~90質量%で、より好ましくは30~80質量%であり、さらに好ましくは35~75質量%である。熱可塑性樹脂(A)が30質量%未満の場合、成形加工性が著しく低下するため成形が困難になる場合があり、90質量%を超える場合、優れた熱伝導性を発現できない場合がある。
 熱伝導性樹脂組成物よりなる第1の部材と金属よりなる第2の部材との接着性を高め界面熱抵抗を低減するためには、熱伝導性樹脂組成物は、鱗片状黒鉛(B)を含むことが好ましい。鱗片状黒鉛(B)は、外観が薄い鱗片状を有した黒鉛粒子である。成形体中に含まれる鱗片状黒鉛(B)の体積平均粒子径は、好ましくは40~700μm、より好ましくは50~500μm、さらに好ましくは50~300μmである。体積平均粒子径が40μm未満である場合、樹脂組成物の熱伝導性が低下する場合がある。また、粒子径は大きい程、熱伝導率は向上する傾向にあるが、体積平均粒子径が700μmを超える場合、樹脂組成物の強度が低下する場合がある。
 体積平均粒子径は、レーザー回折法、光散乱法等により測定することができる。
 鱗片状黒鉛(B)の固定炭素量は98質量%以上が好ましく、より好ましくは98.5質量%、さらに好ましくは99質量%以上である。固定炭素量が98質量%未満の場合、熱伝導率が低下する場合がある。上記固定炭素量は、JIS M8511に準じて測定することができる。
 鱗片状黒鉛(B)のアスペクト比は、成形体中において21以上である。アスペクト比の上限については、高ければ高い程よく、特に限定されないが、好ましい範囲は10,000以下であり、より好ましい範囲は5,000以下であり、さらに好ましくは3,000以下である。上記アスペクト比は、電子顕微鏡等により縦横の各長さを測定し、算出することができる。
 鱗片状黒鉛(B)の粒度分布については特に限定されないが、粒度分布を測定して得られた累積体積がそれぞれ20%または80%であるときの粒子径D20及びD80の比D80/D20の比が好ましくは1~20であり、より好ましくは1~10であり、さらに好ましくは1~5である。
 本発明の鱗片状黒鉛(B)の含量は、熱伝導性樹脂組成物よりなる第1の部材と金属よりなる第2の部材との接着性を高め界面熱抵抗を低減するためには、熱伝導性樹脂組成物100質量%とした場合に、好ましくは10~70質量%で、より好ましくは15~65質量%であり、さらに好ましくは20~60質量%である。
 本発明の熱伝導性樹脂組成物は、熱可塑性樹脂(A)、鱗片状黒鉛(B)、および必要に応じてその他成分を溶融混練することで製造される。溶融混練前の鱗片状黒鉛(B)の体積平均粒子径は、大きければ大きい程よく、好ましくは201~700μmであり、より好ましくは230~650μmであり、さらに好ましくは250~400μmである。また、溶融混練前の鱗片状黒鉛(B)のアスペクト比は、好ましくは21以上である。アスペクト比の上限については、高ければ高い程よく、特に限定されないが、好ましい範囲は3,000以下であり、より好ましい範囲は1,000以下であり、さらに好ましくは500以下である。固定炭素量については、溶融混練または成形加工前後で変化しないものとする。一般的に、溶融混練や成形加工の際に黒鉛は破砕される傾向にあるため、溶融混練前の鱗片状黒鉛(B)の体積平均粒子径が大きい程、溶融混練や成形加工後の鱗片状黒鉛(B)の体積平均粒子径は大きく保持され、熱伝導率や成形加工性が向上する。
 本発明の熱伝導性樹脂組成物の比重は好ましくは1.4~2.1であり、より好ましくは1.4~2.0であり、さらに好ましくは1.5~1.9である。
 本発明で用いる熱可塑性樹脂(A)としては、ポリスチレンなどの芳香族ビニル系樹脂、ポリアクリロニトリルなどのシアン化ビニル系樹脂、ポリ塩化ビニルなどの塩素系樹脂、ポリメチルメタクリレート等のポリメタアクリル酸エステル系樹脂やポリアクリル酸エステル系樹脂、ポリエチレンやポリプロピレンや環状ポリオレフィン樹脂等のポリオレフィン系樹脂、ポリ酢酸ビニルなどのポリビニルエステル系樹脂、ポリビニルアルコール系樹脂及びこれらの誘導体樹脂、ポリメタクリル酸系樹脂やポリアクリル酸系樹脂及びこれらの金属塩系樹脂、ポリ共役ジエン系樹脂、マレイン酸やフマル酸及びこれらの誘導体を重合して得られるポリマー、マレイミド系化合物を重合して得られるポリマー、非晶性半芳香族ポリエステルや非晶性全芳香族ポリエステルなどの非晶性ポリエステル系樹脂、結晶性半芳香族ポリエステルや結晶性全芳香族ポリエステルなどの結晶性ポリエステル系樹脂、脂肪族ポリアミドや脂肪族-芳香族ポリアミドや全芳香族ポリアミドなどのポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリアルキレンオキシド系樹脂、セルロース系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリケトン系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルイミド系樹脂、ポリエーテルケトン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリビニルエーテル系樹脂、フェノキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、液晶ポリマー、及びこれら例示されたポリマーのランダム、ブロック、またはグラフト共重合体、などが挙げられる。これら熱可塑性樹脂は、それぞれ単独で、あるいは2種以上の複数を組み合わせて用いることができる。2種以上の樹脂を組み合わせて用いる場合には、必要に応じて相溶化剤などを添加して用いることもできる。これら熱可塑性樹脂(A)は、目的に応じて適宜使い分ければよい。
 これら熱可塑性樹脂の中でも好ましい熱可塑性樹脂として、非晶性または結晶性ポリエステル系樹脂、ポリカーボネート系樹脂、液晶性ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンスルフィド系樹脂、ポリオレフィン系樹脂が挙げられる。
 さらに熱可塑性樹脂の中でも、樹脂の一部あるいは全部が結晶性あるいは液晶性を有する熱可塑性樹脂であることが、得られた樹脂組成物の熱伝導率が高くなる傾向がある点や、鱗片状黒鉛を樹脂中に含有させることが容易である点から好ましい。これら結晶性あるいは液晶性を有する熱可塑性樹脂は、樹脂全体が結晶性であっても、ブロックあるいはグラフト共重合体樹脂の分子中における特定ブロックのみが結晶性や液晶性であるなど樹脂の一部のみが結晶性あるいは液晶性であってもよい。樹脂の結晶化度には特に制限はない。また熱可塑性樹脂として、非晶性樹脂と結晶性あるいは液晶性樹脂とのポリマーアロイを用いることもできる。樹脂の結晶化度には特に制限はない。
 樹脂の一部あるいは全部が結晶性あるいは液晶性を有する熱可塑性樹脂の中には、結晶化させることが可能であっても、単独で用いたり特性の成形加工条件で成形したりすることにより場合によっては非晶性を示す樹脂もある。このような樹脂を用いる場合には、延伸処理や後結晶化処理をするなど成形加工方法を工夫したりすることにより、樹脂の一部あるいは全体を結晶化させることができる場合もある。
 結晶性あるいは液晶性を有する熱可塑性樹脂の中でも好ましい樹脂として、結晶性ポリエステル系樹脂、結晶性ポリアミド系樹脂、ポリフェニレンスルフィド系樹脂、液晶ポリマー、結晶性ポリオレフィン系樹脂、ポリオレフィン系ブロック共重合体、等を例示することができるが、これらに限らず各種の結晶性樹脂や液晶性樹脂を用いることができる。結晶性ポリエステル系樹脂の具体例としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレートおよびポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレートなどのほか、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート/デカンジカルボキシレートおよびポリシクロヘキサンジメチレンテレフタレート/イソフタレート、ポリエステル/ポリエーテルなどの結晶性共重合ポリエステル等が挙げられる。
 〔ポリエステル/ポリエーテル〕
 前記ポリエステル/ポリエーテル(以降ポリエステル-ポリエーテル共重合体という)は、成形性、及び耐熱性の観点から、芳香族ポリエステル単位50~80重量%、及び下記一般式(1)で表され、後述する変性ポリエーテル単位20~50重量%からなるブロックまたはランダム重合体であることが好ましく、より好ましくは芳香族ポリエステル単位60~80重量%、及び前記変性ポリエーテル単位20~40重量%からなるブロックまたはランダム重合体である。
Figure JPOXMLDOC01-appb-C000001
 
 ポリエステル-ポリエーテル共重合体の製造方法は、アンチモン化合物、場合によってゲルマニウム化合物を含む触媒を用いて、(1)芳香族ジカルボン酸、ジオール、変性ポリエーテルの三者の直接エステル化法、(2)芳香族ジカルボン酸ジアルキル、ジオール、変性ポリエーテル、及び/又は、変性ポリエーテルのエステルの三者のエステル交換法、(3)芳香族ジカルボン酸ジアルキル、ジオールのエステル交換中、又は、エステル交換後に変性ポリエーテルを加えて、重縮合する方法、(4)高分子の芳香族ポリエステルを用い、変性ポリエーテルと混合後、溶融減圧下でエステル交換する方法等が挙げられ、これらに限定されるものではないが、組成コントロール性の観点から、前記(4)の製造法が好ましい。
 前記触媒として用いられるアンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイド等が挙げられ、これらは単独又は2種以上組み合わせて用いられる。これらのアンチモン化合物の中では、三酸化アンチモンが特に好ましい。重合時に投入するアンチモン化合物触媒量は、反応速度の観点、及び経済的観点から、樹脂量の50~2000重量ppmとするのが好ましく、より好ましくは100~1000重量ppmとすることである。
 前記触媒として用いられるゲルマニウム化合物としては、二酸化ゲルマニウム等のゲルマニウム酸化物、ゲルマニウムテトラエトキシド、ゲルマニウムテトライソプロポキシド等のゲルマニウムアルコキシド、水酸化ゲルマニウム及びそのアルカリ金属塩、ゲルマニウムグリコレート、塩化ゲルマニウム、酢酸ゲルマニウム等が挙げられ、これらは単独又は2種以上組み合わせて用いられる。これらのゲルマニウム化合物の中では、二酸化ゲルマニウムが特に好ましい。重合時に投入する二酸化ゲルマニウム触媒量は、反応速度の観点、及び経済的観点から、樹脂量の50~2000重量ppmとするのが好ましく、より好ましくは100~1000重量ppmとすることである。
 前記芳香族ジカルボン酸は、特にテレフタル酸が好ましく、その他イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等が例示される。これら芳香族ジカルボン酸と共に、少ない割合(15%以下)のオキシ安息香酸等の芳香族オキシカルボン酸、あるいは、アジピン酸、セバチン酸、シクロヘキサン1,4-ジカルボン酸等の脂肪族、又は肪環族ジカルボン酸を併用してもよい。
 前記ジオールは、エステル単位を形成する低分子量グリコール成分であり、炭素数2~10の低分子量グリコール、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、デカンジオール、シクロヘキサンジメタノール等が挙げられる。特にエチレングリコール、トリメチレングリコール、テトラメチレングリコールが、入手のし易さの点から好ましい。
 前記芳香族ジカルボン酸ジアルキルのアルキル基としては、メチル基がエステル交換反応性の観点から好ましい。
 前記高分子の芳香族ポリエステルの溶液粘度としては、得られる成形品の耐衝撃性、耐薬品性や成形加工性の観点から、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃で濃度0.5g/dlにおける対数粘度(IV)が0.3~2.0、さらには0.5~1.5の範囲のものが好ましい。
 (芳香族ポリエステル単位)
 前記芳香族ポリエステル単位は、芳香族ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから得られる重合体ないし共重合体であって、通常、交互重縮合体であり、好ましくは、ポリエチレンテレフタレート単位、ポリブチレンテレフタレート単位、及びポリプロピレンテレフタレート単位からなる群から選ばれる1種以上である。
 前記芳香族ポリエステル単位の好ましい具体例としては、ポリエチレンテレフタレート単位、ポリエチレンテレフタレート共重合体単位、ポリブチレンテレフタレート単位、ポリブチレンテレフタレート共重合体単位、ポリプロピレンテレフタレート単位、あるいはポリプロピレンテレフタレート共重合体単位が挙げられ、より好ましくは、ポリエチレンテレフタレート単位、ポリブチレンテレフタレート単位、及びポリプロピレンテレフタレート単位よりなる群から選ばれる1種以上である。
 (変性ポリエーテル単位)
 前記変性ポリエーテル単位は、前記一般式(1)で表される単位であり、一般式(1)中のオキシアルキレン単位の繰り返し単位数m、nは、それぞれ独立して、1以上の整数である。(m+n)の数平均は、好ましくは2~50であり、より好ましくは10~50であり、さらに好ましくは18~50である。
Figure JPOXMLDOC01-appb-C000002
 
(式中、-A-は、-O-、-S-、-SO-、-SO-、-CO-、炭素数1~20のアルキレン基、または炭素数6~20のアルキリデン基であり、R、R、R、R、R、R、R、およびRは、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~5の1価の炭化水素基であり、R、およびR10は、それぞれ独立して、炭素数1~5の2価の炭化水素基である。mおよびnはオキシアルキレン単位の繰り返し単位数を示し、それぞれ独立して、1以上の整数である。m+nの数平均は2~50である。)
 前記変性ポリエーテル単位は、入手のし易さの観点から、好ましくは下記一般式(2)で表される化合物から2個の末端水素を除いた単位であり、(m+n)が2の場合の当該単位の式量は314、(m+n)が50の場合の当該単位の式量は2426である。従って、一般式(2)で表される化合物の好ましい分子量は316~2430であり、より好ましくは670~2430であり、さらに好ましくは1020~2430であり、さらに好ましくは、1330~2000である。
Figure JPOXMLDOC01-appb-C000003
 
 これら結晶性ポリエステル系樹脂の中でも、成形加工性や機械的特性などの観点から、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート、ポリエステル-ポリエーテル共重合体等を用いることが好ましく、安価且つ容易に入手できるという観点より、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエステル-ポリエーテル共重合体がより好ましい。
 本発明の熱可塑性樹脂(A)の数平均分子量とは、ポリスチレンを標準とし、p-クロロフェノールとトルエンの体積比3:8混合溶媒に2.5重量%濃度となるように溶解して調製した溶液を用いて、高温GPC(Viscotek:350 HT-GPC System)にてカラム温度80℃、検出器を示差屈折計(RI)として測定した値である。
 前記ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエステル-ポリエーテル共重合体の数平均分子量は12,000~70,000であることが好ましく、15,000~60,000であることがさらに好ましく、20,000~50,000であることが特に好ましい。12,000未満の場合、機械強度が低くなる場合があり、50,000より大きい場合は成形が困難となる場合がある。
 結晶性ポリアミド系樹脂の具体例としては、例えば環状ラクタムの開環重合物、アミノカルボン酸の重縮合物、ジカルボン酸とジアミンとの重縮合物などが挙げられ、具体的にはナイロン6、ナイロン4・6、ナイロン6・6、ナイロン6・10、ナイロン6・12、ナイロン11、ナイロン12などの脂肪族ポリアミド、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)、ポリノナンメチレンテレフタルアミド、ポリ(テトラメチレンイソフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)などの脂肪族-芳香族ポリアミド、およびこれらの共重合体が挙げられる。共重合体として例えばナイロン6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6・6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン12/ポリ(ヘキサメチレンテレフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)などを挙げることができる。なお、共重合の形態としてはランダム、ブロックいずれでもよいが、成形加工性の点からランダム共重合体であることが好ましい。
 結晶性ポリアミド系樹脂の中でも、成形加工性や機械的特性などの観点から、ナイロン6、ナイロン6・6、ナイロン12、ナイロン4・6、ナイロン6T、ナイロン9T、ポリノナンメチレンテレフタルアミド、ナイロン6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン66/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン12/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)などのポリアミド、等を用いることが好ましく、より好ましくは、ナイロン6、ナイロン6・6、ナイロン4・6、ナイロン12である。
 前記結晶性ポリアミド系樹脂の数平均分子量は、特に限定されるものではないが、強度の観点より12,000以上が好ましい。
 〔鱗片状黒鉛(B)〕
 本発明に用いられる鱗片状黒鉛としては、天然黒鉛及び人造黒鉛のいずれでもよく、これらを組み合わせて併用してもよいが、安価に入手できるという観点で天然黒鉛が好ましい。さらに、α-黒鉛及びβ-黒鉛のいずれでもよく、これらを組み合わせてもよい。
 本発明の熱伝導性樹脂組成物には、本発明の物性を著しく損なわない範囲で、鱗片状黒鉛(B)とともに、その他の粒子径、形状、特性を有する黒鉛を配合してもよい。具体的な形状としては、繊維状、塊状、土状、球状黒鉛等が挙げられる。
 本発明の複合部材は、優れた熱伝導性、成形加工性、低比重を有することから放熱筐体や放熱シャーシに適している。
 放熱筐体は、その内部に発熱体が収容されて用いられる。発熱体としては、それ自体が発熱性である物であっても外部から加熱されて発熱する物であってもよい。代表的な発熱体は発熱性の部品ないしは機器(装置)であり、例えば、LD(レーザーダイオード)、IC(集積回路)等の電子部品、パソコン、ワープロ、テレビゲーム等のコンピューターを利用した電子機器、自動車のエンジンへの空気吸入量やスロットル開度などの情報を元にして燃料噴射量や点火タイミングを決定するコンピューターであるエンジンコントロールユニット(ECU)、LEDランプ照明、インバーター、自動車用ランプのハウジング、コイル、ボビン、コネクタ、バスバー、パワーステアリング等、放熱性が求められる各種用途の放熱筐体が挙げられる。
 放熱シャーシは、キーシャーシ又はサブシャーシとして、発熱体から熱を逃がすために用いられる。発熱体としては、代表的にはそれ自体が発熱体である発熱性部品が挙げられ、その具体例としては、携帯電話、TV等の電子・電気製品におけるLD、IC等の電子部品が挙げられる。これらは、放熱性シャーシに搭載(固定)して用いられる他、放熱性シャーシに固定せず、接触または近接して配置される。また、放熱性シャーシは、LED(発光ダイオード)照明パッケージとしても好適に用いられる。
 本発明の複合部材は、自動車用LEDランプヒートシンクにも適しており、金属製のヒートシンクに比べて、自由な形状に設計することができ、また軽量化を図ることで燃費の向上につなげることができる。自動車用LEDランプヒートシンクとは、LEDモジュールを冷却するためのヒートシンクのことをいう。自動車用LEDランプは内装用ランプ、外装用ランプがあり、例えば、ルームランプ、マップランプ、ヘッドランプ、フォグランプ、フロントターンシグナルランプ、フロントポジショニングランプ、サイドターンシグナルランプ、デイランプ、フォグランプ、テールランプ、ストップランプ、リヤターンシグナルランプ、ハイマウントストップランプ、バックランプ、ナンバープレートランプ等が挙げられる。
 〔第2の部材〕
 本発明において、金属よりなる第2の部材の材質は、金属であれば特に制限されない。但し複合部材の放熱性を高めるためには、金属よりなる第2の部材の材質として、室温における熱伝導率が90W/mK以上の金属であることが好ましい。室温における熱伝導率が90W/mK以上の金属としては、アルミニウム、亜鉛、イリジウム、黄銅、金、銀、銅、クロム、コバルト、ニッケル、タングステン、マグネシウム、モリブデンなどの金属、及びこれらの金属を含有する各種合金が挙げられる。これらの中でも好ましくは、アルミニウム及びそれを含む合金(アルミニウム合金)、銅及びそれを含む合金(黄銅、青銅、アルミ黄銅等)、ニッケル、クロム、コバルト、亜鉛、銀、マグネシウム及びそれを含む合金(マグネシウム合金)等が挙げられる。
 上記金属よりなる第2の部材の形状は、特に限定されないが、平板状、曲板状、棒状、筒状、塊状等が挙げられ、これらの組み合わせからなる構造体であってもよい。また、貫通穴、折り曲げ部等を有してもよい。
 上記金属よりなる第2の部材の表面形状は、特に限定されないが、平面、曲面、凹凸面、尖状部を有する面等が挙げられる。
 上記金属よりなる第2の部材の表面は、当該部材と第1の部材との接着強度、密着性の観点から、表面処理がなされたものであってもよい。表面処理方法は、特に限定されないが、例えば、特殊薬液や物理的研磨による微細粗化、陽極酸化や有機化合物による皮膜の形成等が挙げられる。
 熱伝導性樹脂組成物よりなる第1の部材よりも、金属よりなる第2の部材の方が、体積が大きい場合に、本発明を用いるメリットが生じる。金属よりなる第2の部材の方が、体積が小さい場合であっても、本発明を用いることは可能であるが、その場合には、一般的に用いられているようなインサート成形法でも高効率で複合部材を生産することができる。
 〔第1の部材の成形〕
 本発明の熱伝導性樹脂組成物よりなる第1の部材の成形方法は、特に限定されず、射出成形、押出成形(シート押出、異形押出)、2色成形、中空成形、圧縮成形、真空成形、発泡成形、ブロー成形、トランスファー成形等の公知の成形法を用いることができるが、成形性の簡便な観点において、射出成形、押出成形、トランスファー成形が好ましい。但し第1の部材と第2の部材とは予め別々に成形された成形体である。
 〔第1の部材と第2の部材の接着〕
 本発明の第1の部材と第2の部材とを接着する際には、両者の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより、第1の部材と第2の部材とを溶着させる。
 第1の部材の表面を熱で処理した後両部材を接合させる方法は、特に制限されない。例えば、第1の部材を構成している熱伝導性樹脂組成物の融点または軟化点以上の温度に第1の部材を加熱した後、第2の部材と接合させ、貼り付け、次いで冷却する方法を例示することが出来る。あるいは、第2の部材を構成している金属を、熱伝導性樹脂組成物の融点または軟化点以上の温度に加熱した後、第1の部材と接合させ、貼り付け、次いで冷却する方法を例示することが出来る。
 第1の部材の表面を超音波で処理した後両部材を接合させる方法は、特に制限されない。例えば、第1の部材に超音波を照射しながら、これを第2の部材に押し付けることで接合させる方法を例示することが出来る。あるいは、第2の部材に超音波を照射しながら、これに第1の部材を密着接合させ、貼り付け、冷却する方法を例示することが出来る。超音波を照射する装置としては、超音波溶着機、超音波ウェルダなどの装置を利用可能である。超音波の照射時間、超音波の周波数、超音波の出力等は部材の大きさや接合面の広さにより、都度最適条件を選定の上変更することが好ましい。超音波の照射時間は、0.1秒~10分程度の時間を例示することが出来る。超音波の周波数は、10kHz~1GHzを例示することが出来る。周波数は好ましくは12kHz~1MHz、より好ましくは13kHz~100kHzである。超音波の出力は、1W~100kWを例示することが出来る。超音波の照射時間が長すぎたり、周波数が大きすぎたり、出力が大きすぎたりすると、第1の部材が溶融したり、第1の部材を破損させたりする場合がある。超音波の照射時間が短すぎたり、周波数が小さすぎたり、出力が小さすぎたりすると、第1の部材と第2の部材との溶着が不十分となる場合がある。
 本発明の熱伝導性樹脂組成物は、電磁波シールド性にも優れており、100MHzの周波数における電磁波シールド効果は、好ましくは5dB以上であり、より好ましくは10dB以上であり、さらに好ましくは15~60dBである。
 本発明の熱伝導性樹脂組成物には、鱗片状黒鉛(B)とともに、黒鉛以外の熱伝導性フィラーを配合してもよい。熱伝導性フィラーの形状については、特に限定されず、例えば鱗片状、繊維状、フレーク状、板状、球状、粒子状、微粒子状、ナノ粒子、凝集粒子状、チューブ状、ナノチューブ状、ワイヤ状、ロッド状、不定形、ラグビーボール状、六面体状、大粒子と微小粒子とが複合化した複合粒子状、液体等種々の形状が挙げられる。具体的には、アルミニウム、ニッケル等の金属フィラー、液相線温度300℃以上、かつ固相線温度150℃以上250℃以下の低融点合金、 酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化ベリリウム、酸化銅、亜酸化銅等の金属酸化物、窒化アルミニウム、窒化ケイ素等の金属窒化物、炭化ケイ素等の金属炭化物、炭酸マグネシウムなどの金属炭酸塩、ダイヤモンド等の絶縁性炭素材料、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、アルミナ、窒化ホウ素、ガラス繊維、炭素繊維、チタン酸カリウムウイスカー、窒化珪素繊維、カーボンナノチューブ、タルク、ウォラストナイト等が挙げられる。添加量としては特に限定されないが、添加量が増加するにつれて、熱伝導性を向上させることができる。上記無機フィラーは天然物であってもよいし、合成されたものであってもよい。天然物の場合、産地等には特に限定はなく、適宜選択することができる。
 本発明の熱伝導性樹脂組成物には、前記の熱伝導性フィラー以外にも、その目的に応じて公知の充填剤を配合することができる。熱伝導性フィラー以外の充填剤としては、例えばケイソウ土粉、塩基性ケイ酸マグネシウム、焼成クレイ、微粉末シリカ、石英粉末、結晶シリカ、カオリン、三酸化アンチモン、微粉末マイカ、二硫化モリブデン、ロックウール、セラミック繊維、アスベスト等の無機質繊維、及び、ガラス繊維、ガラスパウダー、ガラスクロス、溶融シリカ等のガラス製充填剤が挙げられる。これら充填剤を用いることで、例えば熱伝導性、機械強度、または耐摩耗性など樹脂組成物を応用する上で好ましい特性を向上させることが可能となる。さらに必要に応じて紙、パルプ、木材、ポリアミド繊維、アラミド繊維、ボロン繊維等の合成繊維、ポリオレフィン粉末等の樹脂粉末、等の有機充填剤を併用して配合することができる。
 本発明に用いるフィラーは、樹脂とフィラーとの界面の接着性を高めたり、作業性を容易にしたりするため、シラン処理剤やステアリン酸やアクリル系モノマー等の各種表面処理剤で表面処理がなされたものであってもよい。表面処理剤としては特に限定されず、例えばシランカップリング剤、チタネートカップリング剤等従来公知のものを使用することができる。中でも、エポキシシラン等のエポキシ基含有シランカップリング剤、及び、アミノシラン等のアミノ基含有シランカップリング剤、ポリオキシエチレンシラン等が樹脂の物性を低下させることが少ないため好ましい。フィラーの表面処理方法としては特に限定されず、通常の処理方法を利用できる。
 本発明の熱伝導性樹脂組成物には、エポキシ樹脂、ポリオレフィン樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリエーテル樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂等いかなる公知の樹脂とアロイ化させてもよい。本発明の熱伝導性樹脂組成物には、上記樹脂やフィラー以外の添加剤として、さらに目的に応じて他のいかなる成分、例えば、補強剤、熱安定剤、酸化防止剤、紫外線吸収剤、老化防止剤増粘剤、離型剤、可塑剤、カップリング剤、難燃剤、耐炎剤、抗菌剤、着色剤、その他の助剤等を本発明の効果を失わない範囲で、添加することができる。これらの添加剤の使用量は、熱可塑性樹脂(A)100重量部に対し、合計で0~20重量部の範囲であることが好ましい。
 上記熱安定剤としては、ホスファイト類、ヒンダードフェノール類、チオエーテル類等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記酸化防止剤としては、ホスファイト類、ヒンダードアミン類、ハイドロキノン類、ヒンダードフェノール類、硫黄含有化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、サリチル酸エステル類、金属錯塩類等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記難燃剤としては、有機系難燃剤、無機系難燃剤、反応系難燃剤等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 有機系難燃剤としては、臭素化エポキシ系化合物、臭素化アルキルトリアジン化合物、臭素化ビスフェノール系エポキシ樹脂、臭素化ビスフェノール系フェノキシ樹脂、臭素化ビスフェノール系ポリカーボネート樹脂、臭素化ポリスチレン樹脂、臭素化架橋ポリスチレン樹脂、臭素化ビスフェノールシアヌレート樹脂、臭素化ポリフェニレンエーテル、臭素化ビスマレイミド、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA及びそのオリゴマー等のハロゲン系難燃剤;トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トキヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート等のリン酸エステルやこれらを各種置換基で変性した化合物、各種の縮合型のリン酸エステル化合物、リン元素及び窒素元素を含むホスファゼン誘導体等のリン系難燃剤;ポリテトラフルオロエチレン等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 無機系難燃剤としては、水酸化アルミニウム、酸化アンチモン、水酸化マグネシウム、ホウ酸亜鉛、ジルコニウム系、モリブデン系、スズ酸亜鉛、グアニジン塩、シリコーン系、ホスファゼン系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 反応系難燃剤としては、テトラブロモビスフェノールA、ジブロモフェノールグリシジルエーテル、臭素化芳香族トリアジン、トリブロモフェノール、テトラブロモフタレート、テトラクロロ無水フタル酸、ジブロモネオペンチルグリコール、ポリ(ペンタブロモベンジルポリアクリレート)、クロレンド酸(ヘット酸)、無水クロレンド酸(無水ヘット酸)、臭素化フェノールグリシジルエーテル、ジブロモクレジルグリシジルエーテル、下記一般式(3)(式中、nは2~20の整数である)で表される有機りん系難燃剤等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000004
 
 尚、本発明の組成物に難燃剤を含有させる場合には、難燃助剤を配合することが好ましい。この難燃助剤としては、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、酒石酸アンチモン等のアンチモン化合物や、ホウ酸亜鉛、メタホウ酸バリウム、水和アルミナ、酸化ジルコニウム、ポリリン酸アンモニウム、酸化スズ、酸化鉄等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、難燃性を改良するために、シリコーンオイルを配合することができる。
 上記老化防止剤としては、例えば、ナフチルアミン系化合物、ジフェニルアミン系化合物、p-フェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフェノール系化合物、ビスフェノール系化合物、トリスフェノール系化合物、ポリフェノール系化合物、チオビスフェノール系化合物、ヒンダードフェノール系化合物、亜リン酸エステル系化合物、イミダゾール系化合物、ジチオカルバミン酸ニッケル塩系化合物、リン酸系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記可塑剤としては、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジオクチルフタレート、ブチルオクチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジイソオクチルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ジメチルアジペート、ジイソブチルアジペート、ジ-(2-エチルヘキシル)アジペート、ジイソオクチルアジペート、ジイソデシルアジペート、オクチルデシルアジペート、ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジイソブチルアゼレート、ジブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソオクチルセバケート等の脂肪酸エステル類;トリメリット酸イソデシルエステル、トリメリット酸オクチルエステル、トリメリット酸n-オクチルエステル、トリメリット酸系イソノニルエステル等のトリメリット酸エステル類;ジ-(2-エチルヘキシル)フマレート、ジエチレングリコールモノオレート、グリセリルモノリシノレート、トリラウリルホスフェート、トリステアリルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、エポキシ化大豆油、ポリエーテルエステル等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記抗菌剤としては、銀系ゼオライト、銀-亜鉛系ゼオライト等のゼオライト系抗菌剤、錯体化銀-シリカゲル等のシリカゲル系抗菌剤、ガラス系抗菌剤、リン酸カルシウム系抗菌剤、リン酸ジルコニウム系抗菌剤、銀-ケイ酸アルミン酸マグネシウム等のケイ酸塩系抗菌剤、酸化チタン系抗菌剤、セラミック系抗菌剤、ウィスカー系抗菌剤等の無機系抗菌剤;ホルムアルデヒド放出剤、ハロゲン化芳香族化合物、ロードプロパルギル誘導体、チオシアナト化合物、イソチアゾリノン誘導体、トリハロメチルチオ化合物、第四アンモニウム塩、ビグアニド化合物、アルデヒド類、フェノール類、ピリジンオキシド、カルバニリド、ジフェニルエーテル、カルボン酸、有機金属化合物等の有機系抗菌剤;無機・有機ハイブリッド抗菌剤;天然抗菌剤等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記着色剤としては、有機染料、無機顔料、有機顔料等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 本発明の熱可塑性樹脂組成物の製造方法としては特に限定されるものではない。例えば、上述した成分や添加剤等を乾燥させた後、単軸、2軸等の押出機のような溶融混練機にて溶融混練することにより製造することができる。混練温度は、熱可塑性樹脂の種類に選択される。また、配合成分が液体である場合は、液体供給ポンプ等を用いて溶融混練機に途中添加して製造することもできる。
 次に、本発明について、製造例、実施例及び比較例を挙げさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。
 樹脂組成物の調製に用いる原料成分を以下に示す。
熱可塑性樹脂(A):
ポリエチレンテレフタレート(A-1):三菱化学社製 ノバペックス PBKII(商品名)、数平均分子量28,000
ポリエチレンテレフタレート(A-2):三菱化学社製 GS-100(商品名)、数平均分子量22,500
ポリエステル-ポリエーテル共重合体(A-3): 
 ポリエステル-ポリエーテル共重合体としては、以下の方法で製造したものを使用した。即ち、攪拌機、ガス排出出口を備えた反応器に、アンチモン系触媒で製造されたアンチモン金属濃度200重量ppmのポリエチレンテレフタレート(PET)(IV=0.65のもの)70重量部、PET及びポリエーテルに対して160ppmとなる三酸化アンチモン、及び酸化防止剤(チバ・スペシャリティーケミカルズ製のイルガノックス1010)0.2重量部、以下で説明するビスオール18ENであるポリエーテル30重量部を仕込んだ後、270℃で2時間保持した後、真空ポンプで減圧し、1torr、3時間保持後とりだし、ポリエステル-ポリエーテル共重合体を得た。得られたポリエステル-ポリエーテル共重合体の数平均分子量は、25,400であった。
 前記ビスオール18ENは、前記一般式(2)の構造における(m+n)の数平均が18のものである。
熱可塑性ポリアミド樹脂(A-4):ナイロン6、ユニチカ社製 A1020BRL(商品名)
黒鉛(B):
鱗片状黒鉛(B-1):中越黒鉛工業所社製 CPB-80(商品名)、体積平均粒子径300μm、固定炭素量99.9質量%、アスペクト比100
鱗片状黒鉛(B-2):中越黒鉛工業所社製 BF-40AK(商品名)、体積平均粒子径50μm、固定炭素量99.9質量%、アスペクト比30
フィラー(C):
ガラス繊維:日本電気硝子株式会社製T187H/PL(商品名)、単体での熱伝導率1.0W/(m・K)、繊維直径13μm、数平均繊維長3.0mm
 [評価方法]
 成形加工条件:評価するために使用する成形体の成形加工温度は、射出成形機のノズル部設定温度を280℃にして実施した。また、射出速度150mm/s、射出圧力150MPaに固定して成形を行った。
 黒鉛の体積平均粒子径:マイクロトラック粒度分布測定装置(日機装社製 MICROTRAC MT3300EXII)を用いて、水溶媒中に黒鉛粒子を投入した後、60秒間超音波振動させた後、測定を行った。成形加工後の黒鉛粒子の体積平均粒子径については、φ26mm×1mm厚の成形体を620℃で1時間焼成させた後、成形体中に含まれる黒鉛粒子のみを取り出し、測定を行った。
 黒鉛のアスペクト比:走査型電子顕微鏡(SEM)(日本電子社製 JSM-6060LA)を用いて、黒鉛粒子100個の最長径及び最短径の各平均値を用いて算出した。成形加工後の黒鉛粒子のアスペクト比については、φ26mm×1mm厚の成形体を用いて同様の方法で算出した。
 熱伝導率:得られた熱伝導性樹脂組成物のペレットを用いて、射出成形機[東洋機械金属(株)製、Si-15IV]にて、φ26mm×1mm厚の成形体を作製し、ASTM E1461規格に準拠して、レーザーフラッシュ法熱伝導率測定装置(NETZSCH社製 LFA447)により、室温大気中における面方向と厚み方向の熱伝導率を測定した。
 比重:φ26mm×1mm厚の成形体を用いて、ISO1183規格に準拠して、水中置換法にて比重を測定した。
 耐熱性:HDT(高荷重)
 射出成形機[東洋機械金属(株)製、Si-30IV]にて、80mm×40mm×4mmサイズの試験片を作製し、ISO75規格に準拠して測定した。
 超音波溶着性:射出成形機[東洋機械金属(株)製、Si-30IV]にて、100mm×45mm×1mmの熱伝導性樹脂組成物製平板を成形し、別途準備した120×120×1mmサイズのアルミ板の下面中央部に設置した。超音波溶着機(エマソン社製 2000Xdt)を用いて、20kHzの超音波振動を振幅設定値80%で、アルミ板中央部付近の熱伝導性樹脂組成物製平板の設置されている位置9か所に、各3秒間照射し両者を溶着させた。サンプルは室温にて24時間保管したのち、超音波溶着性を次のようにして判定した。
○:アルミと樹脂とを手で剥がすのは非常に困難である。
△:アルミと樹脂とが手で容易には剥がせないが、力をかけると剥がすことが出来る。
×:アルミと樹脂とが手で容易に剥がせる。
 熱溶着性:射出成形機[東洋機械金属(株)製、Si-30IV]にて、100mm×45mm×1mmの熱伝導性樹脂組成物製平板を成形し、別途準備した120×120×1mmサイズのアルミ板の中央付近に熱伝導性樹脂組成物製平板を設置した。熱伝導性樹脂組成物製平板をのせたまま、アルミ板を280℃まで加熱した市販のホットプレート上に設置し、300秒間放置させた。10秒ごとに、100mm×100mm×100mmサイズの金属製ブロックを熱伝導性樹脂組成物製平板の上から1秒間押し当て、圧着させる作業を300秒間繰り返した。300秒後にホットプレートから試験片を取り除き、室温にて24時間保管したのち、熱溶着性を次のようにして判定した。
○:アルミと樹脂とを手で剥がすのは困難である。
△:アルミと樹脂とが手で容易には剥がせないが、力をかけると剥がすことが出来る。
×:アルミと樹脂とが手で容易に剥がせる。
 [実施例1~4]
 熱可塑性樹脂(A-1)~(A-4)を、熱風乾燥機を用いて140℃で4時間乾燥し、表1に示された重量比率となるように表1記載の各成分を混合したものを準備した。これに、フェノール系安定剤(株式会社ADEKA製AO-60)およびリン系酸化防止剤(株式会社ADEKA製アデカスタブPEP-36)を樹脂100重量部に対してそれぞれ0.3重量部加えた。この混合物を、株式会社テクノベル製25mm同方向回転完全噛合型二軸押出機MFU25TW-60HG-NH-1300を用いて、吐出量20kg/h、スクリュー回転数150rpm、押出バレル温度を280℃に設定して溶融混練することで、樹脂組成物のペレットを得た。
 得られた樹脂組成物のペレットを射出成形によって、成形体を作製し、各種評価した。成形体中に含まれる黒鉛粒子の体積平均粒子径とアスペクト比、及び各種物性値を表1に示す。
 [比較例1]
 表1に示す配合処方に変更した以外は、実施例1と同様にした。各種物性値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 比較例では金属との接着性が良好であるが、熱伝導性が低い。また、実施例1~3と実施例4の比較より、熱伝導性樹脂組成物がポリエステル系樹脂を含む場合、金属との熱溶着性や超音波溶着性に優れることがわかる。
 本発明の熱伝導性樹脂と金属との複合部材は、優れた熱伝導性、および接着性を示し、かつ生産性が良好である。従い、部材の軽量化を実現可能であり、形状の自由度が高く、容易、且つ安価に成形体を得ることができる。また、本発明の複合部材は、電磁波シールド性にも優れており、電磁遮蔽性が要求される用途にも好適であり、放熱筐体、放熱シャーシ、照明や自動車用LEDランプヒートシンク等、様々な用途に好適である。
 

Claims (7)

  1. 熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる複合部材であって、
    前記熱伝導性樹脂組成物の面方向の熱伝導率は1.0W/mK以上であり、
    前記第1の部材と前記第2の部材とは予め別々に成形された成形体であり、
    前記第1の部材と前記第2の部材の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより前記第1の部材と前記第2の部材が溶着されていることを特徴とする、複合部材。
  2. 熱伝導性樹脂組成物よりなる第1の部材よりも、金属よりなる第2の部材の方が、体積が大きいことを特徴とする、請求項1に記載の複合部材。
  3. 熱伝導性樹脂組成物が、(A)熱可塑性樹脂30~90質量%、(B)鱗片状黒鉛70~10質量%、を少なくとも含有し、比重1.4~2.1であることを特徴とする、請求項1、又は2に記載の複合部材。
  4. 前記熱可塑性樹脂(A)が、ポリエステル系樹脂であることを特徴とする、請求項3に記載の複合部材。
  5. 前記ポリエステル系樹脂が、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂、及びポリエステル-ポリエーテル共重合体、の何れか1種以上であることを特徴とする、請求項4に記載の複合部材。
  6. 前記金属の室温における熱伝導率が90W/mK以上であることを特徴とする、請求項1~5の何れかに記載の複合部材。
  7. 熱伝導性樹脂組成物よりなる第1の部材と、金属よりなる第2の部材が一体化されてなる複合部材の製造方法であって、
    前記熱伝導性樹脂組成物の面方向の熱伝導率は1.0W/mK以上であり、
    前記第1の部材と前記第2の部材とは予め別々に成形された成形体であり、
    前記第1の部材と前記第2の部材の界面に接着性付与剤を用いることなく、前記第1の部材の表面を熱あるいは超音波で処理した後、当該表面を、前記第2の部材の表面と直接接合させることにより前記第1の部材と前記第2の部材を溶着させることを特徴とする、複合部材の製造方法。
     
     
PCT/JP2015/005326 2014-10-23 2015-10-23 熱伝導性樹脂と金属との複合部材 WO2016063541A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555089A JPWO2016063541A1 (ja) 2014-10-23 2015-10-23 熱伝導性樹脂と金属との複合部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216405 2014-10-23
JP2014-216405 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063541A1 true WO2016063541A1 (ja) 2016-04-28

Family

ID=55760600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005326 WO2016063541A1 (ja) 2014-10-23 2015-10-23 熱伝導性樹脂と金属との複合部材

Country Status (2)

Country Link
JP (1) JPWO2016063541A1 (ja)
WO (1) WO2016063541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019982A1 (ja) * 2019-07-31 2021-02-04 阿波製紙株式会社 熱伝導シート及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134111B2 (ja) * 2019-02-08 2022-09-09 三菱電機株式会社 半導体モジュールおよび半導体モジュールの評価方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224974A (ja) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd 金属樹脂複合体の製造方法
JP2013089718A (ja) * 2011-10-17 2013-05-13 Kaneka Corp 高熱伝導性樹脂を用いたヒートシンク及びled光源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720149B2 (ja) * 2003-12-02 2011-07-13 東レ株式会社 レーザ溶着用着色樹脂組成物およびそれを用いた複合成形体
JP4610238B2 (ja) * 2004-06-21 2011-01-12 ダイセルポリマー株式会社 樹脂成形体の接合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224974A (ja) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd 金属樹脂複合体の製造方法
JP2013089718A (ja) * 2011-10-17 2013-05-13 Kaneka Corp 高熱伝導性樹脂を用いたヒートシンク及びled光源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019982A1 (ja) * 2019-07-31 2021-02-04 阿波製紙株式会社 熱伝導シート及びその製造方法
JP7470946B2 (ja) 2019-07-31 2024-04-19 阿波製紙株式会社 熱伝導シート及びその製造方法

Also Published As

Publication number Publication date
JPWO2016063541A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6600314B2 (ja) Ledランプヒートシンク
WO2016035680A1 (ja) 自動車用ledランプヒートシンク
EP3305519B1 (en) Metal resin composite
CN108026375B (zh) 导热性树脂组合物
WO2016084397A1 (ja) 金属樹脂複合体
JP6229796B2 (ja) 熱伝導性樹脂組成物
JP5256716B2 (ja) 樹脂組成物およびそれから得られる成形品
WO2013069365A1 (ja) 熱可塑性樹脂組成物およびそれからなる成形体
KR20160028452A (ko) 사출 성형성이 우수한 고열전도성 열가소성 수지 조성물
JP6531414B2 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形品
WO2016063541A1 (ja) 熱伝導性樹脂と金属との複合部材
JP6902841B2 (ja) 金属樹脂複合体及びその製造方法
CN116568489A (zh) 树脂金属复合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852861

Country of ref document: EP

Kind code of ref document: A1