WO2016063533A1 - 車載用物体判別装置 - Google Patents

車載用物体判別装置 Download PDF

Info

Publication number
WO2016063533A1
WO2016063533A1 PCT/JP2015/005304 JP2015005304W WO2016063533A1 WO 2016063533 A1 WO2016063533 A1 WO 2016063533A1 JP 2015005304 W JP2015005304 W JP 2015005304W WO 2016063533 A1 WO2016063533 A1 WO 2016063533A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
sensor
detected
ultrasonic sensor
Prior art date
Application number
PCT/JP2015/005304
Other languages
English (en)
French (fr)
Inventor
田中 秀典
明宏 貴田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2016063533A1 publication Critical patent/WO2016063533A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to an on-vehicle object discriminating apparatus (In-Vehicle Object Determining Apparatus) that discriminates whether a vehicle side object is a stationary object or a moving object.
  • an on-vehicle object discriminating apparatus In-Vehicle Object Determining Apparatus
  • Patent Document 1 discloses an in-vehicle object discriminating apparatus that discriminates whether a vehicle side object is a moving object or a stationary object using an ultrasonic sensor.
  • a waveform of distance measurement data of obstacles on the side of the vehicle obtained sequentially with the movement of the vehicle is obtained from the reference ultrasonic sensor arranged on the front side of the vehicle side surface.
  • a waveform of distance measurement data of obstacles on the side of the vehicle that is sequentially obtained as the vehicle moves is obtained from the target ultrasonic sensors arranged on the rear side of the vehicle side surface.
  • the waveform of the distance measurement data obtained from the reference ultrasonic sensor is moved by a predetermined time calculated based on the distance from the reference ultrasonic sensor to the target ultrasonic sensor and the vehicle speed, and The waveform of the distance measurement data obtained from the target ultrasonic sensor is collated.
  • the detected obstacle is determined as a moving object, and when there is no deviation, the detected obstacle is determined as a stationary object.
  • the vehicle-mounted object determination device disclosed in Patent Document 1 is likely to erroneously determine whether the obstacle detected using the ultrasonic sensor is a moving object or a stationary object.
  • the waveform of the distance measurement data obtained sequentially from the ultrasonic sensor is the same between the reference ultrasonic sensor and the target ultrasonic sensor.
  • the waveform of the distance measurement data obtained sequentially with the reference ultrasonic sensor and the distance measurement data obtained sequentially with the target ultrasonic sensor A different distortion occurs in the waveform. Therefore, even when the obstacle is stationary, there is a case where the collation result is deviated and the stationary obstacle is erroneously determined as a moving object.
  • An object of the present disclosure is to provide an in-vehicle object discriminating apparatus that can more accurately discriminate whether an obstacle detected by an obstacle sensor is a moving object or a stationary object.
  • an on-vehicle object determination device mounted on a vehicle is linked to a first obstacle sensor and a second obstacle sensor, and includes a first obstacle position specifying unit and a second obstacle position. It is provided so that a specific part, a vehicle position change specific part, and a discrimination
  • the detection ranges extending to the side of the vehicle are arranged in front and rear along the traveling direction of the vehicle, and the obstacles on the side of the vehicle are sequentially detected.
  • the first obstacle position specifying unit specifies a first obstacle position which is a position of the obstacle detected at the first time point by the first obstacle sensor with respect to the vehicle.
  • the second obstacle position specifying unit specifies a second obstacle position which is a position of the obstacle detected at the second time point by the second obstacle sensor with respect to the vehicle.
  • the vehicle position change specifying unit is a vehicle position change that is a change in the position of the vehicle from a first time point at which an obstacle is detected by the first obstacle sensor to a second time point at which the obstacle is detected by the second obstacle sensor. Is identified.
  • the determination unit determines whether the obstacle is a moving object or a stationary object.
  • the determination unit is configured such that an obstacle position shift, which is a shift from the second obstacle position specified by the second obstacle position specifying unit to the first obstacle position specified by the first obstacle position specifying unit, An obstacle is determined to be a stationary object when it matches the deviation due to the vehicle position change specified by the position change specifying unit, while an obstacle is determined to be a moving object if they do not match.
  • the position of the obstacle with respect to the vehicle is, if the obstacle is a stationary object, It should have moved only by the amount corresponding to the change in the position of the vehicle from when the obstacle is detected by the first obstacle sensor until the obstacle is detected by the second obstacle sensor.
  • the obstacle is a moving object, in addition to the amount corresponding to the change in the position of the vehicle from when the obstacle is detected by the first obstacle sensor until the obstacle is detected by the second obstacle sensor. The position of the obstacle with respect to the vehicle should have moved as much as the obstacle has moved.
  • the position of the obstacle detected by the first obstacle sensor relative to the vehicle and the position of the obstacle detected by the second obstacle sensor relative to the vehicle Even if the vehicle is turning, there is no deviation other than the amount corresponding to the change in the position of the vehicle from when the obstacle is detected by the first obstacle sensor until the obstacle is detected by the second obstacle sensor. Does not occur.
  • the deviation from the second obstacle position specified by the second obstacle position specifying unit to the first obstacle position specified by the first obstacle position specifying unit is the difference between the position of the vehicle specified by the vehicle position change specifying unit.
  • Block diagram showing schematic configuration of driving support system The schematic diagram explaining an example of the detection range of a 1st ultrasonic sensor and a 2nd ultrasonic sensor
  • the flowchart which shows an example of the flow of the object discrimination
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a driving support system 100 to which the present disclosure is applied.
  • the driving support system 100 is mounted on a vehicle, and as shown in FIG. 1, the object discrimination device 1, the first ultrasonic sensor 2 a, the second ultrasonic sensor 2 b, the wheel speed sensor 3, and the steering angle sensor 4. Is included.
  • a vehicle equipped with the driving support system 100 is also referred to as a host vehicle HV as necessary.
  • the first ultrasonic sensor 2a is mounted on the side surface of the front part of the vehicle and detects an obstacle present on the side of the front part of the vehicle.
  • the second ultrasonic sensor 2b is mounted on the side surface of the rear part of the vehicle and detects an obstacle present on the side of the rear part of the vehicle.
  • the first ultrasonic sensor 2a and the second ultrasonic sensor 2b are also referred to as obstacle sensors.
  • the first ultrasonic sensor 2a and the second ultrasonic sensor 2b are collectively referred to as an ultrasonic sensor unit. That is, in this embodiment, it can be said that the obstacle sensor unit includes a plurality of or at least one obstacle sensor.
  • the first ultrasonic sensor 2a and the second ultrasonic sensor 2b may be arranged on the left and right side surfaces of the vehicle, may be arranged on the left side surface of the vehicle, or may be arranged on the right side surface of the vehicle. Although it is good also as a structure arrange
  • the first ultrasonic sensor 2a and the second ultrasonic sensor 2b detect the distance to the obstacle by transmitting the exploration wave and receiving the reflected wave of the exploration wave reflected by the obstacle. Further, the first ultrasonic sensor 2a and the second ultrasonic sensor 2b are arranged so that the directivity center line is, for example, parallel to the vehicle axle direction.
  • the first ultrasonic sensor 2a is mounted on the right side of the front part of the vehicle (see HV in FIG. 2), and the second ultrasonic sensor 2b is on the right side of the rear part of the vehicle.
  • the detection range of the first ultrasonic sensor 2a (see SAa in FIG. 2) and the detection range of the second ultrasonic sensor 2b (see SAb in FIG. 2) are along the vehicle front-rear direction. Line up back and forth on the right side of the vehicle.
  • the wheel speed sensor 3 sequentially outputs a pulse signal corresponding to the rotation speed of each rolling wheel.
  • the steering angle sensor 4 is a sensor that detects the steering angle of the steering of the vehicle. The steering angle when the vehicle travels in a straight traveling state is a neutral position (0 degree), and the rotation angle from the neutral position is the steering angle. Output sequentially.
  • the object discrimination device 1 includes an electronic control unit (also referred to as a control circuit).
  • the electronic control unit includes a microcomputer, and each of the microcomputers includes a well-known CPU, a memory such as a ROM and a RAM, an I / O, and a bus connecting them.
  • the object discrimination device 1 includes a first ultrasonic sensor 2a, a second ultrasonic sensor 2b, a second ultrasonic sensor 2b, a wheel speed sensor 3, a steering angle sensor 4, and the like, based on various information input from the first ultrasonic sensor 2a, the second ultrasonic sensor 2, and the like.
  • Various processes such as an object determination process for determining whether the obstacle detected by the sensor 2b is a moving object or a stationary object are executed.
  • This object discrimination device is also referred to as an on-vehicle object discrimination device.
  • part or all of the functions executed by the object discrimination device 1 or the electronic control unit may be configured by hardware using one or a plurality of ICs.
  • “information” is used not only as a countable noun but also as a countable noun.
  • the object determination device 1 includes a first obstacle position specifying unit 11, a second obstacle position specifying unit 12, a vehicle position change specifying unit 13, and a determination unit 14. These parts are also referred to as devices or modules.
  • the first obstacle position specifying unit 11 determines the position of the obstacle with respect to the vehicle on the right side of the vehicle (hereinafter referred to as the first obstacle) from the transmission direction of the exploration wave of the first ultrasonic sensor 2a and the signal of the first ultrasonic sensor 2a. Identify the obstacle location. In more detail, the position with respect to the vehicle of the reflective point which reflected the search wave of the 1st ultrasonic sensor 2a among obstacles is specified.
  • the distance from the vehicle to the obstacle from the time it takes to detect the azimuth of the obstacle relative to the vehicle from the direction in which the survey wave from which the reflected wave was obtained is transmitted, and when the reflected wave is received after the survey wave is transmitted
  • the position of the obstacle with respect to the installation position of the first ultrasonic sensor 2a is specified.
  • the obstacle position in the XY coordinate system with the vehicle position as the origin is specified from the position of the obstacle with respect to the specified installation position of the first ultrasonic sensor 2a and the installation position of the first ultrasonic sensor 2a in the vehicle.
  • the X axis and the Y axis are in the horizontal plane, and for example, the vehicle position is the rear wheel axle center position.
  • the second obstacle position specifying unit 12 moves to the right side of the vehicle in the same manner as the first obstacle position specifying unit 11 from the transmission direction of the exploration wave of the second ultrasonic sensor 2b and the signal of the second ultrasonic sensor 2b.
  • the position of the existing obstacle with respect to the vehicle (hereinafter referred to as the second obstacle position) is specified.
  • the position with respect to the vehicle of the reflective point which reflected the search wave of the 2nd ultrasonic sensor 2b among obstacles is specified.
  • the vehicle position change specifying unit 13 specifies a change in the position of the vehicle from the travel distance of the vehicle obtained from the pulse signal of the wheel speed sensor 3 and the change in the steering angle of the vehicle that is sequentially detected by the steering angle sensor 4. .
  • the first obstacle position specifying unit 11 and the second obstacle position specifying unit 12 are adapted to the change in the vehicle position specified by the vehicle position change specifying unit 13.
  • the position of the obstacle position specified in the above may be configured to be sequentially updated in the aforementioned XY coordinate system.
  • the configuration may be such that the contour shape of the obstacle is identified from the point sequence indicating the obstacle position, and the point sequence forming a single contour shape is handled as the obstacle position for one obstacle. Note that the determination unit 14 will be described in detail when the object determination process is described later.
  • the flowchart of FIG. 3 may be configured to be started when, for example, the ignition power supply of the vehicle is turned on.
  • the case where the vehicle moves forward will be described as an example. Whether the vehicle moves forward or backward may be determined from the signal of the shift position sensor.
  • obstacles present on the side of the vehicle are detected in the order of the first ultrasonic sensor 2a and the second ultrasonic sensor 2b.
  • the described flowchart includes a plurality of sections (or referred to as steps), and each section is expressed as, for example, S1. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section can be referred to as a device, a module.
  • the section includes (i) not only a section of software combined with a hardware unit (eg, a computer) but also (ii) a section of hardware (eg, an integrated circuit, a wiring logic circuit) and related devices. It can be realized with or without the function.
  • the hardware section can be included inside the microcomputer.
  • the first obstacle position specifying unit 11 determines the position of the obstacle present on the right side of the vehicle with respect to the vehicle from the transmission direction of the search wave of the first ultrasonic sensor 2a and the signal of the first ultrasonic sensor 2a (that is, , The above-mentioned first obstacle position) is specified. More specifically, the relative position of the reflection point that reflects the exploration wave of the first ultrasonic sensor 2a among the obstacles is specified as the first obstacle position.
  • the first ultrasonic sensor 2a is also referred to as a first obstacle sensor.
  • the second obstacle position specifying unit 12 determines the position of the obstacle present on the right side of the vehicle from the transmission direction of the exploration wave of the second ultrasonic sensor 2b and the signal of the second ultrasonic sensor 2b (that is, the vehicle). ,
  • the above-mentioned second obstacle position) is specified. More specifically, the relative position of the reflection point that reflects the exploration wave of the second ultrasonic sensor 2b among the obstacles with respect to the vehicle position is specified as the second obstacle position.
  • the second ultrasonic sensor 2b is also referred to as a second obstacle sensor.
  • the vehicle position change specifying unit 13 calculates the first ultrasonic sensor from the vehicle travel distance obtained from the pulse signal of the wheel speed sensor 3 and the change in the vehicle steering angle sequentially detected by the steering angle sensor 4.
  • a change in vehicle position (also referred to as a change in vehicle position) in a target elapsed period from a first time point at which an obstacle is detected at 2a to a second time point at which an obstacle is detected by the second ultrasonic sensor 2b is specified.
  • the change in the vehicle position may be expressed as a change in coordinates in the XY coordinate system with the vehicle position as the origin.
  • the shift from the second obstacle position specified in S4 to the first obstacle position specified in S2 by the determination unit 14 is a change in the vehicle position specified in S5. It is determined whether or not it coincides with the minute displacement (in other words, it is determined whether or not the obstacle position displacement corresponds to the vehicle position change).
  • the term “match” as used herein is not limited to a configuration in which a match is determined when the match is complete, but may be determined as a match with an allowable range of an error level.
  • the determination unit 14 has the position where the first obstacle position specified in S2 is moved by a change in the opposite direction of the change in the vehicle position specified in S5, and the second obstacle position specified in S4. It is good also as a structure which determines whether it corresponds. In addition, it is determined whether or not the position where the second obstacle position specified in S4 is moved by the change in the vehicle position specified in S5 matches the first obstacle position specified in S2. It is good also as a structure.
  • the obstacle detected by the first ultrasonic sensor 2a and the second ultrasonic sensor 2b is determined as a stationary object, and the process proceeds to S11.
  • the obstacle detected by the first ultrasonic sensor 2a and the second ultrasonic sensor 2b is determined as a moving object, and the process proceeds to S11.
  • the shift from the second obstacle position specified in S ⁇ b> 4 to the first obstacle position specified in S ⁇ b> 2 is a shift corresponding to the change in the vehicle position specified in the vehicle position change specifying unit 13.
  • HV indicates the vehicle
  • HVP indicates the vehicle position
  • Ob indicates the obstacle
  • ObPa indicates the first obstacle position
  • ObPb indicates the second obstacle position.
  • A indicates a shift from the second obstacle position to the first obstacle position
  • B indicates a shift corresponding to a change in the vehicle position.
  • the first obstacle position ObPa and the second obstacle position ObPb are specified for the obstacle Ob.
  • the first obstacle position ObPa is a relative position of the obstacle Ob with respect to the vehicle position when the obstacle Ob is detected by the first ultrasonic sensor 2a
  • the second obstacle position ObPb is the second ultrasonic sensor 2b. This is the relative position of the obstacle Ob with respect to the vehicle position when the obstacle Ob is detected. Accordingly, the relative position of the obstacle Ob with respect to the vehicle is that if the obstacle Ob is a stationary object, the obstacle Ob is detected by the second ultrasonic sensor 2b after the obstacle Ob is detected by the first ultrasonic sensor 2a. It should have moved only by the amount corresponding to the change in the vehicle position until.
  • the deviation A from the second obstacle position ObPb to the first obstacle position ObPa is determined so that the second ultrasonic wave is detected after the obstacle Ob is detected by the first ultrasonic sensor 2a if the obstacle Ob is a stationary object.
  • the obstacle Ob is a moving object
  • the amount corresponding to the change in the vehicle position from the detection of the obstacle Ob by the first ultrasonic sensor 2a to the detection of the obstacle Ob by the second ultrasonic sensor 2b should have moved as much as the obstacle Ob has moved.
  • the deviation A from the second obstacle position ObPb to the first obstacle position ObPa is determined so that the second ultrasonic wave is detected after the obstacle Ob is detected by the first ultrasonic sensor 2a if the obstacle Ob is a moving object. It should not coincide with the deviation B corresponding to the change in the vehicle position until the obstacle Ob is detected by the sensor 2b.
  • the case where the vehicle moves forward has been described as an example. However, when the vehicle moves backward, an obstacle present on the side of the vehicle is detected by the second ultrasonic sensor 2b, Since detection is performed in the order of the first ultrasonic sensor 2a, the first ultrasonic sensor 2a and the first obstacle position specifying unit 11, and the second ultrasonic sensor 2b and the second obstacle position specifying unit 12 are replaced. The processing may be performed.
  • the first ultrasonic sensor 2a is referred to as a second obstacle sensor
  • the second ultrasonic sensor 2b is referred to as a first obstacle sensor.
  • the first obstacle position specifying unit 11 is referred to as a second obstacle position specifying unit
  • the second obstacle position specifying unit 12 is referred to as a first obstacle position specifying unit.
  • the relative position of the obstacle detected by the first ultrasonic sensor 2a to the vehicle position (that is, the first obstacle position) and the obstacle vehicle detected by the second ultrasonic sensor 2b is the second superposition after the obstacle is detected by the first ultrasonic sensor 2a even when the vehicle is accelerating / decelerating or turning. No deviation other than the amount corresponding to the change in the vehicle position until the obstacle is detected by the acoustic wave sensor 2b.
  • the shift from the first obstacle position specified by the first obstacle position specifying unit 11 to the second obstacle position specified by the second obstacle position specifying unit 12 is the vehicle position. If the obstacle is determined to be a stationary object when it matches the deviation of the change in the vehicle position specified by the change specifying unit 13, it can be more accurately determined that the obstacle is a stationary object. On the other hand, it is possible to more accurately determine that the obstacle is a moving object by determining that the obstacle is a moving object when they do not match. As a result, it is possible to more accurately determine whether the obstacle detected by the first ultrasonic sensor 2a or the second ultrasonic sensor 2b is a moving object or a stationary object.
  • the mounting position is not limited to the vehicle side surface.
  • Modification 2 In 1st Embodiment, although the structure which uses ultrasonic sensors, such as the 1st ultrasonic sensor 2a and the 2nd ultrasonic sensor 2b, was shown as an obstruction sensor which detects an obstruction, it does not necessarily restrict to this.
  • an obstacle sensor other than the ultrasonic sensor may be used as long as it is a sensor that can specify the position of the obstacle.
  • an obstacle sensor such as a laser radar, a millimeter wave radar, a stereo camera, or the like in which the detection range extending to the side of the vehicle is arranged in the front-rear direction along the traveling direction of the vehicle may be used.
  • Modification 3 In the first embodiment, the configuration in which the change in the position of the vehicle and the predicted trajectory are specified from the steering angle and the vehicle speed of the vehicle is shown, but the present invention is not necessarily limited thereto. For example, a configuration in which a change in the position of the vehicle or a predicted trajectory is specified based on the yaw rate of the vehicle may be used.

Abstract

 車載用物体判別装置(In-Vehicle Object Determining Apparatus)は、第1超音波センサ(2a)で第1の時点に検出した障害物の車両に対する第1障害物位置を特定する第1障害物位置特定部(11)と、第2超音波センサ(2b)で第の2時点に検出した障害物の車両に対する第2障害物位置を特定する第2障害物位置特定部(12)と、第1超音波センサで障害物を検出する第の1時点から第2超音波センサで障害物を検出する第2の時点までの経過期間における車両の位置の変化を特定する車両位置変化特定部(13)と、第1障害物位置から第2障害物位置への障害物位置ずれと、車両位置変化特定部で特定した車両位置変化によるずれとが一致する場合に障害物を静止物体と判別する一方、一致しない場合には障害物を移動物体と判別する判別部(14)とを備える。

Description

車載用物体判別装置 関連出願の相互参照
 本出願は、2014年10月22日に出願された日本出願番号2014-215714号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両側方の物体が静止物体か移動物体かを判別する車載用物体判別装置(In-Vehicle Object Determining Apparatus)に関するものである。
 従来、レーザレーダや超音波センサ等の障害物センサを用いて検出した障害物が静止物体か移動物体かを判別する技術が知られている。例えば、特許文献1には、超音波センサを用いて車両側方の物体が移動物体か静止物体かを判別する車載用物体判別装置が開示されている。
 特許文献1に開示の車載用物体判別装置では、車両側面の前側に配列された基準超音波センサから、車両の移動に伴って逐次得られる車両側方の障害物の測距データの波形を得る。また、車両側面の後側に配列された対象超音波センサから、車両の移動に伴って逐次得られる車両側方の障害物の測距データの波形も得る。続いて、基準超音波センサから得られた測距データの波形を、基準超音波センサから対象超音波センサまでの距離と車両の車速とに基づき算出される所定時間分だけ移動させたものと、対象超音波センサから得られた測距データの波形とを照合する。そして、照合結果におけるずれがある場合には、検出した障害物を移動物体と判別し、ずれのない場合には、検出した障害物を静止物体と判別する。
JP 2013-20458 A
 しかしながら、特許文献1に開示の車載用物体判別装置は、車両が加減速や旋回を行った場合、超音波センサを用いて検出した障害物が移動物体か静止物体かを誤判別しやすい。
 車両が定速で直進しており、障害物が静止している場合には、超音波センサから逐次得られる測距データの波形は、基準超音波センサと対象超音波センサとで一致する。しかしながら、車両が加減速や旋回を行っており、障害物が静止している場合には、基準超音波センサで逐次得られる測距データの波形と、対象超音波センサで逐次得られる測距データの波形とに異なるゆがみが生じる。よって、障害物が静止している場合であっても、照合結果にずれが生じ、静止した障害物を移動物体と誤判別してしまう場合がある。
 本開示の目的は、障害物センサで検出した障害物が移動物体か静止物体かをより正確に判別することを可能にする車載用物体判別装置を提供することにある。
 本開示の一つの例によれば、車両に搭載された車載用物体判別装置は、第1障害物センサおよび第2障害物センサと連係し、第1障害物位置特定部、第2障害物位置特定部、車両位置変化特定部、判別部とを含むように提供される。第1障害物センサおよび第2障害物センサは、車両の側方に広がる検出範囲が車両の進行方向に沿って前後に並び、車両の側方の障害物を逐次検出する。第1障害物位置特定部は、第1障害物センサで第1の時点に検出した障害物の車両に対する位置である第1障害物位置を特定する。第2障害物位置特定部は、第2障害物センサで第2の時点に検出した障害物の車両に対する位置である第2障害物位置を特定する。車両位置変化特定部は、第1障害物センサで障害物を検出する第1の時点から第2障害物センサで障害物を検出する第2の時点までの車両の位置の変化である車両位置変化を特定する。判別部は、障害物が移動物体か静止物体かを判別する。ここで、判別部は、第2障害物位置特定部で特定した第2障害物位置から第1障害物位置特定部で特定した第1障害物位置へのずれである障害物位置ずれが、車両位置変化特定部で特定した車両位置変化によるずれに一致する場合に障害物を静止物体と判別する一方、一致しない場合には障害物を移動物体と判別する。
 進行方向前側の第1障害物センサで検出した障害物を、進行方向後側の第2障害物センサでも検出する場合、その障害物の車両に対する位置は、その障害物が静止物体であるなら、第1障害物センサで障害物を検出してから第2障害物センサで障害物を検出するまでの車両の位置の変化に応じた分だけしか移動していない筈である。一方、その障害物が移動物体であるなら、第1障害物センサで障害物を検出してから第2障害物センサで障害物を検出するまでの車両の位置の変化に応じた分に加えて、その障害物が移動した分も、その障害物の車両に対する位置が移動している筈である。
 また、障害物が静止している場合、第1障害物センサで検出した障害物の車両に対する位置と、第2障害物センサで検出した障害物の車両に対する位置とには、車両が加減速や旋回を行っていた場合であっても、第1障害物センサで障害物を検出してから第2障害物センサで障害物を検出するまでの車両の位置の変化に応じた分以外のずれは生じない。
 よって、第2障害物位置特定部で特定した第2障害物位置から第1障害物位置特定部で特定した第1障害物位置へのずれが、車両位置変化特定部で特定した車両の位置の変化分のずれに一致する場合に障害物を静止物体と判別することで、障害物が静止物体であることをより正確に判別することが可能になる。一方、一致しない場合に障害物を移動物体と判別することで、障害物が移動物体であることも、より正確に判別することが可能になる。その結果、障害物センサで検出した障害物が移動物体か静止物体かをより正確に判別することが可能になる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
運転支援システムの概略的な構成を示すブロック図 第1超音波センサと第2超音波センサとの検出範囲の一例を説明する模式図 物体判別装置1での物体判別処理の流れの一例を示すフローチャート 障害物が静止物体か移動物体かの判別について説明するための模式図
 以下、本開示の実施形態について図面を用いて説明する。
 (第1実施形態)
 <運転支援システム100の概略構成>
 図1は、本開示が適用された運転支援システム100の概略的な構成の一例を示す図である。運転支援システム100は、車両に搭載されるものであり、図1に示すように物体判別装置1、第1超音波センサ2a、第2超音波センサ2b、車輪速センサ3、及び舵角センサ4を含んでいる。運転支援システム100を搭載している車両は、必要に応じて、ホスト車両HVとも言及される。
 第1超音波センサ2aは、車両前部の側面に搭載され、車両前部の側方に存在する障害物を検出する。第2超音波センサ2bは、車両後部の側面に搭載され、車両後部の側方に存在する障害物を検出する。この第1超音波センサ2a及び第2超音波センサ2bは障害物センサとも言及される。尚、第1超音波センサ2aと第2超音波センサ2bを総称して、超音波センサユニットとも言及される。即ち、本実施形態では、障害物センサユニットは、複数のあるいは少なくとも一つの障害物センサを含むとも言える。
 なお、第1超音波センサ2a及び第2超音波センサ2bは、車両の左右側面に配置される構成としてもよいし、車両の左側面に配置される構成としてもよいし、車両の右側面に配置される構成としてもよいが、本実施形態では、車両の右側面に配置されるものとして以降の説明を続ける。
 第1超音波センサ2a及び第2超音波センサ2bは、探査波を送信し、障害物で反射されるその探査波の反射波を受信することで障害物までの距離を検出する。また、第1超音波センサ2a及び第2超音波センサ2bは、指向性の中心線が車両の車軸方向と例えば平行になるように配置される。
 本実施形態の例では、図2に示すように第1超音波センサ2aは、車両(図2のHV参照)前部の右側面に搭載され、第2超音波センサ2bは、車両後部の右側面に搭載されるので、第1超音波センサ2aの検出範囲(図2のSAa参照)と第2超音波センサ2bの検出範囲(図2のSAb参照)とは、車両の前後方向に沿って、車両の右側方に前後に並ぶ。
 車輪速センサ3は、各転動輪の回転速度に応じたパルス信号を逐次出力する。舵角センサ4は、車両のステアリングの操舵角を検出するセンサであり、車両が直進状態で走行するときの操舵角を中立位置(0度)とし、その中立位置からの回転角度を操舵角として逐次出力する。
 物体判別装置1は、電子制御ユニット(制御回路とも言及される)を含む。電子制御ユニットは、マイクロコンピュータを含み、マイクロコンピュータは、いずれも周知のCPU、ROMやRAM等のメモリ、I/O、及びこれらを接続するバスによって構成される。物体判別装置1は、第1超音波センサ2a、第2超音波センサ2b、車輪速センサ3、舵角センサ4などから入力された各種情報に基づき、第1超音波センサ2a及び第2超音波センサ2bで検出した障害物が移動物体か静止物体かを判別する物体判別処理等の各種処理を実行する。この物体判別装置は車載用物体判別装置とも言及される。なお、物体判別装置1あるいは電子制御ユニットが実行する機能の一部又は全部を、一つ或いは複数のIC等によりハードウェア的に構成してもよい。なお、「情報」は、不可算名詞としてのみでなく、可算名詞としても使用される。
 <物体判別装置1の詳細構成>
 図1に示すように、物体判別装置1は、第1障害物位置特定部11、第2障害物位置特定部12、車両位置変化特定部13、及び判別部14を備える。これらの部は、デバイスあるいはモジュールとも言及される。
 第1障害物位置特定部11は、第1超音波センサ2aの探査波の送信方向及び第1超音波センサ2aの信号から、車両右側方に存在する障害物の車両に対する位置(以下、第1障害物位置)を特定する。より詳しくは、障害物のうちの第1超音波センサ2aの探査波を反射した反射点の車両に対する位置を特定する。
 一例として、反射波の得られた探査波を送信した方向から、車両に対する障害物の方位を検出し、探査波を送信してから反射波を受信するまでの時間から車両から障害物までの距離を検出することで、第1超音波センサ2aの設置位置に対する障害物の位置を特定する。そして、特定した第1超音波センサ2aの設置位置に対する障害物の位置と、車両における第1超音波センサ2aの設置位置とから、車両位置を原点としたXY座標系での障害物位置を特定する。このXY座標系は、X軸とY軸とを水平面内にとっているものとし、例えば車両位置は後輪車軸中心位置とする。
 第2障害物位置特定部12は、第2超音波センサ2bの探査波の送信方向及び第2超音波センサ2bの信号から、第1障害物位置特定部11と同様にして、車両右側方に存在する障害物の車両に対する位置(以下、第2障害物位置)を特定する。より詳しくは、障害物のうちの第2超音波センサ2bの探査波を反射した反射点の車両に対する位置を特定する。
 車両位置変化特定部13は、車輪速センサ3のパルス信号から求められる車両の走行距離と、舵角センサ4で逐次検出される車両の操舵角の変化とから、車両の位置の変化を特定する。
 また、第1障害物位置特定部11及び第2障害物位置特定部12は、新たに障害物位置を特定するごとに、車両位置変化特定部13で特定される車両位置の変化に合わせ、過去に特定した障害物位置の前述のXY座標系での位置を逐次更新する構成とすればよい。この場合、障害物位置を示す点列から障害物の輪郭形状を特定し、1まとまりの輪郭形状をなす点列を1つの障害物についての障害物位置として扱う構成とすればよい。なお、判別部14については、後の物体判別処理の説明時に詳述する。
 <物体判別処理>
 ここで、図3のフローチャートを用いて、物体判別装置1(すなわち、電子制御ユニット)での物体判別処理の一例について説明を行う。図3のフローチャートは、例えば車両のイグニッション電源がオンになったときに開始される構成とすればよい。ここでは、車両が前進する場合を例に挙げて説明を行う。車両が前進するか後退するかは、シフトポジションセンサの信号から特定すればよい。なお、車両が前進する場合には、車両の側方に存在する障害物を、第1超音波センサ2a、第2超音波センサ2bの順に検出することになる。
 記載されるフローチャートは、複数のセクション(あるいはステップと言及される)を含み、各セクションは、たとえば、S1と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、各セクションは、デバイス、モジュールとして言及されることができる。また、セクションは、(i)ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウエアのセクションのみならず、(ii)ハードウエア(例えば、集積回路、配線論理回路)のセクションとして、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウエアのセクションは、マイクロコンピュータの内部に含まれることもできる。
 まず、S1では、第1超音波センサ2aで障害物を第1の時点で検出し、第1超音波センサ2aからの信号を第1障害物位置特定部11が受けた場合(S1:YES)には、S2に移る。一方、第1超音波センサ2aで障害物を検出しておらず、第1超音波センサ2aからの信号を第1障害物位置特定部11が受けていない場合(S1:NO)には、S11に移る。
 S2では、第1障害物位置特定部11が、第1超音波センサ2aの探査波の送信方向及び第1超音波センサ2aの信号から、車両右側方に存在する障害物の車両に対する位置(つまり、前述の第1障害物位置)を特定する。より詳しくは、障害物のうちの第1超音波センサ2aの探査波を反射した反射点の車両位置に対する相対位置を第1障害物位置として特定する。この第1超音波センサ2aは第1障害物センサとも言及される。
 S3では、第2超音波センサ2bで障害物を第2の時点で検出し、第2超音波センサ2bからの信号を第2障害物位置特定部12が受けた場合(S3:YES)には、S4に移る。一方、第2超音波センサ2bで障害物を検出しておらず、第2超音波センサ2bからの信号を第2障害物位置特定部12が受けていない場合(S3:NO)には、S10に移る。
 S4では、第2障害物位置特定部12が、第2超音波センサ2bの探査波の送信方向及び第2超音波センサ2bの信号から、車両右側方に存在する障害物の車両に対する位置(つまり、前述の第2障害物位置)を特定する。より詳しくは、障害物のうちの第2超音波センサ2bの探査波を反射した反射点の車両位置に対する相対位置を第2障害物位置として特定する。この第2超音波センサ2bは第2障害物センサとも言及される。
 S5では、車両位置変化特定部13が、車輪速センサ3のパルス信号から求められる車両の走行距離と、舵角センサ4で逐次検出される車両の操舵角の変化とから、第1超音波センサ2aで障害物を検出する第1の時点から第2超音波センサ2bで障害物を検出する第2の時点までの対象経過期間における車両位置の変化(車両位置変化とも言及される)を特定する。例えば、車両位置の変化は、車両位置を原点としたXY座標系での座標の変化量として表せばよい。
 S6では、判別部14が、S4で特定した第2障害物位置からS2で特定した第1障害物位置へのずれ(障害物位置ずれとも言及される)が、S5で特定した車両位置の変化分のずれと一致するか否かを判定する(言い換えれば、障害物位置ずれが車両位置変化に対応するか否かを判定する)。ここで言うところの一致とは、完全に一致する場合に一致と判定する構成に限らず、誤差程度の許容範囲をもって一致と判定する構成としてもよい。
 なお、判別部14は、S2で特定した第1障害物位置を、S5で特定した車両位置の変化の逆方向の変化分だけ移動させた位置と、S4で特定した第2障害物位置とが一致するか否かを判定する構成としてもよい。他にも、S4で特定した第2障害物位置を、S5で特定した車両位置の変化分だけ移動させた位置と、S2で特定した第1障害物位置とが一致するか否かを判定する構成としてもよい。
 そして、S7では、S6での判定の結果、一致すると判定した場合(S7:YES)には、S8に移る。一方、一致しないと判定した場合(S7:NO)には、S9に移る。
 S8では、第1超音波センサ2a及び第2超音波センサ2bで検出した障害物を静止物体と判別し、S11に移る。一方、S9では、第1超音波センサ2a及び第2超音波センサ2bで検出した障害物を移動物体と判別し、S11に移る。
 ここで、図4を用いて、S4で特定した第2障害物位置からS2で特定した第1障害物位置へのずれが、車両位置変化特定部13で特定した車両位置の変化分のずれと一致するか否かによって、障害物が静止物体か移動物体かを判別できることについて説明を行う。図4のHVが車両、HVPが車両位置、Obが障害物、ObPaが第1障害物位置、ObPbが第2障害物位置を示している。また、Aが第2障害物位置から第1障害物位置へのずれを示しており、Bが車両位置の変化分のずれを示している。
 車両HV側面の進行方向前側に配置された第1超音波センサ2aで検出した障害物Obを、車両HV側面の進行方向後側に配置された第2超音波センサ2bでも検出する場合、単一の障害物Obに対して、第1障害物位置ObPaと第2障害物位置ObPbとが特定されることになる。
 第1障害物位置ObPaは、第1超音波センサ2aで障害物Obを検出したときの車両位置に対する障害物Obの相対位置であり、第2障害物位置ObPbは、第2超音波センサ2bで障害物Obを検出したときの車両位置に対する障害物Obの相対位置である。よって、車両に対する障害物Obの相対位置は、障害物Obが静止物体であるなら、第1超音波センサ2aで障害物Obを検出してから第2超音波センサ2bで障害物Obを検出するまでの車両位置の変化に応じた分だけしか移動していない筈である。
 従って、第2障害物位置ObPbから第1障害物位置ObPaへのずれAは、障害物Obが静止物体であるなら、第1超音波センサ2aで障害物Obを検出してから第2超音波センサ2bで障害物Obを検出するまでの車両位置の変化に応じた分のずれBに一致する筈である。
 一方、障害物Obが移動物体であるなら、第1超音波センサ2aで障害物Obを検出してから第2超音波センサ2bで障害物Obを検出するまでの車両位置の変化に応じた分に加えて、障害物Obが移動した分も、車両に対する障害物Obの相対位置が移動している筈である。
 従って、第2障害物位置ObPbから第1障害物位置ObPaへのずれAは、障害物Obが移動物体であるなら、第1超音波センサ2aで障害物Obを検出してから第2超音波センサ2bで障害物Obを検出するまでの車両位置の変化に応じた分のずれBに一致しない筈である。
 以上から、S2で特定した第1障害物位置からS4で特定した第2障害物位置へのずれが、車両位置変化特定部13で特定した車両位置の変化分のずれと一致するか否かによって、障害物が静止物体か移動物体かを判別できる。
 図3に戻って、第2超音波センサ2bで障害物を検出していない場合のS10では、第2超音波センサ2bで障害物を検出できない非検出が確定した場合(S10:YES)には、障害物が移動により車両周辺からいなくなったものとして扱い、S11に移る。一例として、S2で特定した第1障害物位置を、車両位置変化特定部13で特定した車両位置の変化の逆方向の変化分だけ移動させた位置が、第2超音波センサ2bの検出範囲に入ったにも関わらず、障害物を検出できなかった場合に、非検出を確定すればよい。一方、非検出が確定していない場合(S10:NO)には、S3に戻って繰り返す。
 S11では、物体判別処理の終了タイミングであった場合(S11:YES)には、物体判別処理を終了する。一方、物体判別処理の終了タイミングでなかった場合(S11:NO)には、S1に戻って繰り返す。物体判別処理の終了タイミングとしては、例えば車両のイグニッション電源がオフになったときなどがある。
 なお、図3のフローチャートでは、車両が前進する場合を例に挙げて説明を行ったが、車両が後退する場合には、車両の側方に存在する障害物を、第2超音波センサ2b、第1超音波センサ2aの順に検出することになるので、第1超音波センサ2a及び第1障害物位置特定部11と、第2超音波センサ2b及び第2障害物位置特定部12とを入れ替えて処理を行う構成とすればよい。この場合には、第1超音波センサ2aは第2障害物センサ、第2超音波センサ2bは第1障害物センサと言及される。第1障害物位置特定部11は第2障害物位置特定部、第2障害物位置特定部12は第1障害物位置特定部と言及される。
 <第1実施形態のまとめ>
 障害物が静止している場合、第1超音波センサ2aで検出した障害物の車両位置に対する相対位置(つまり、第1障害物位置)と、第2超音波センサ2bで検出した障害物の車両位置に対する相対位置(つまり、第2障害物位置)とには、車両が加減速や旋回を行っていた場合であっても、第1超音波センサ2aで障害物を検出してから第2超音波センサ2bで障害物を検出するまでの車両位置の変化に応じた分以外のずれは生じない。
 よって、第1実施形態のように、第1障害物位置特定部11で特定した第1障害物位置から第2障害物位置特定部12で特定した第2障害物位置へのずれが、車両位置変化特定部13で特定した車両位置の変化分のずれに一致する場合に障害物を静止物体と判別することで、障害物が静止物体であることをより正確に判別することが可能になる。一方、一致しない場合に障害物を移動物体と判別することで、障害物が移動物体であることも、より正確に判別することが可能になる。その結果、第1超音波センサ2aや第2超音波センサ2bで検出した障害物が移動物体か静止物体かをより正確に判別することが可能になる。
 (変形例1)
 第1超音波センサ2a、第2超音波センサ2bは、略同じ向きで車両前後方向に配列されていれば、取り付け位置は車両側面に限らない。
 (変形例2)
 第1実施形態では、障害物を検出する障害物センサとして第1超音波センサ2aや第2超音波センサ2bといった超音波センサを用いる構成を示したが、必ずしもこれに限らない。例えば、障害物の位置を特定することを可能にするセンサであれば超音波センサ以外の障害物センサを用いる構成としてもよい。例えば、車両の側方に広がる検出範囲が車両の進行方向に沿って前後に並ぶレーザレーダ、ミリ波レーダ、ステレオカメラなどといった障害物センサを用いる構成としてもよい。
 (変形例3)
 第1実施形態では、車両の位置の変化や予測軌跡を車両の操舵角及び車速から特定する構成を示したが、必ずしもこれに限らない。例えば、車両のヨーレートなどをもとに、車両の位置の変化や予測軌跡を特定する構成としてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (3)

  1.  車両に搭載されて、
     前記車両の側方に広がる検出範囲が前記車両の進行方向に沿って前後に並び、前記車両の側方の障害物を逐次検出する第1障害物センサ(2a)および第2障害物センサ(2b)と連係する車載要物体判別装置であって、
     前記第1障害物センサで第1の時点に検出した前記障害物の前記車両に対する位置である第1障害物位置を特定する第1障害物位置特定部(11)と、
     前記第2障害物センサで第2の時点に検出した前記障害物の前記車両に対する位置である第2障害物位置を特定する第2障害物位置特定部(12)と、
     前記第1障害物センサで前記障害物を検出する前記第1の時点から前記第2障害物センサで前記障害物を検出する前記第の2時点までの前記車両の位置の変化である車両位置変化を特定する車両位置変化特定部(13)と、
     障害物が移動物体か静止物体かを判別する判別部(14)と、を備え、
     前記判別部は、前記第2障害物位置特定部で特定した前記第2障害物位置から前記第1障害物位置特定部で特定した前記第1障害物位置へのずれである障害物位置ずれが、前記車両位置変化特定部で特定した前記車両位置変化によるずれに一致する場合に前記障害物を静止物体と判別する一方、一致しない場合には前記障害物を移動物体と判別する
     車載用物体判別装置。
  2.  請求項1において、
     前記車両位置変化特定部は、前記第1障害物センサで前記障害物を検出する前記第1の時点から前記第2障害物センサで前記障害物を検出する第2の時点までの前記車両の走行距離と操舵角の変化とから、前記車両位置変化を特定する
     車載用物体判別装置。
  3.  請求項1又は2において、
     前記第1障害物センサ及び前記第2障害物センサは超音波センサである
     車載用物体判別装置。

     
PCT/JP2015/005304 2014-10-22 2015-10-21 車載用物体判別装置 WO2016063533A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215714A JP2016085484A (ja) 2014-10-22 2014-10-22 車載用物体判別装置
JP2014-215714 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063533A1 true WO2016063533A1 (ja) 2016-04-28

Family

ID=55760592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005304 WO2016063533A1 (ja) 2014-10-22 2015-10-21 車載用物体判別装置

Country Status (2)

Country Link
JP (1) JP2016085484A (ja)
WO (1) WO2016063533A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244398B2 (ja) * 2019-10-14 2023-03-22 株式会社デンソー 移動物体判定装置
JP2023167136A (ja) * 2022-05-11 2023-11-24 日立Astemo株式会社 運転支援装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238968A (ja) * 2007-03-27 2008-10-09 Toyota Motor Corp 衝突回避装置
JP2010211504A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 物体検出装置
JP2013020458A (ja) * 2011-07-12 2013-01-31 Daihatsu Motor Co Ltd 車載用物体判別装置
WO2014091858A1 (ja) * 2012-12-12 2014-06-19 本田技研工業株式会社 駐車スペース検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238968A (ja) * 2007-03-27 2008-10-09 Toyota Motor Corp 衝突回避装置
JP2010211504A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 物体検出装置
JP2013020458A (ja) * 2011-07-12 2013-01-31 Daihatsu Motor Co Ltd 車載用物体判別装置
WO2014091858A1 (ja) * 2012-12-12 2014-06-19 本田技研工業株式会社 駐車スペース検出装置

Also Published As

Publication number Publication date
JP2016085484A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
WO2016063532A1 (ja) 車載用物体判別装置
JP6344275B2 (ja) 車両制御装置
JP6555067B2 (ja) 車線変更支援装置
US9707959B2 (en) Driving assistance apparatus
US9896098B2 (en) Vehicle travel control device
JP2019137392A (ja) 単車用アダプティブクルーズコントロール標的追跡
US9953532B2 (en) Obstacle warning apparatus
US20160114795A1 (en) Parking assist system and parking assist method
JP6558214B2 (ja) 自動運転装置
JP6424467B2 (ja) 物標検出装置
US11548441B2 (en) Out-of-vehicle notification device
US20190061748A1 (en) Collision prediction apparatus
JP2016124398A (ja) 駐車支援装置
JP2019002691A (ja) 物標情報取得装置
JP2015210191A (ja) 物体検出装置
JP6375867B2 (ja) 車載用物体判別装置
WO2016063533A1 (ja) 車載用物体判別装置
JP6451619B2 (ja) 物体検出装置
WO2019203160A1 (ja) 運転支援システムおよび方法
JP2021043164A (ja) 物体検知装置および物体検知方法
JP6699568B2 (ja) 車両制御装置
US10053092B2 (en) Road environment recognition device, vehicle control device, and vehicle control method
US10843692B2 (en) Vehicle control system
US20220297685A1 (en) Vehicle control system and method
JP6834920B2 (ja) 物標判別装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852377

Country of ref document: EP

Kind code of ref document: A1