WO2016063441A1 - エジェクタ式冷凍サイクル装置 - Google Patents

エジェクタ式冷凍サイクル装置 Download PDF

Info

Publication number
WO2016063441A1
WO2016063441A1 PCT/JP2015/004093 JP2015004093W WO2016063441A1 WO 2016063441 A1 WO2016063441 A1 WO 2016063441A1 JP 2015004093 W JP2015004093 W JP 2015004093W WO 2016063441 A1 WO2016063441 A1 WO 2016063441A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
liquid
separation space
liquid separation
Prior art date
Application number
PCT/JP2015/004093
Other languages
English (en)
French (fr)
Inventor
山田 雅啓
粂 真
田代 敏幸
嘉徳 荒木
西嶋 春幸
陽平 長野
佳之 横山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016063441A1 publication Critical patent/WO2016063441A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present disclosure relates to an ejector-type refrigeration cycle apparatus including an ejector as a refrigerant decompression unit.
  • an ejector refrigeration cycle apparatus which is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression unit, is known.
  • the pressure of the intake refrigerant is higher than that of a normal refrigeration cycle apparatus in which the refrigerant evaporating pressure in the evaporator and the pressure of the intake refrigerant sucked into the compressor are substantially equal due to the boosting action of the ejector. Can be raised.
  • the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
  • Patent Document 1 discloses a gas-liquid separator integrated ejector (hereinafter referred to as an ejector module) in which a gas-liquid separator is integrally formed.
  • the suction port side of the compressor is connected to the gas-phase refrigerant outlet through which the gas-phase refrigerant separated by the gas-liquid separator flows out, and is separated by the gas-liquid separator.
  • a rotary body-shaped gas-liquid separation space is formed inside a body part that forms the outer shell of the ejector module, and a centrifugal gas-liquid separator (gas-liquid separation) is formed by this space. Space). Furthermore, the body is provided with a liquid discharge port through which the liquid-phase refrigerant separated in the gas-liquid separation space flows out to the evaporator side.
  • an ejector-type refrigeration cycle apparatus including an ejector in which a gas-liquid separation space is integrally configured
  • the liquid-phase refrigerant separated in the gas-liquid separation space is appropriately discharged to the evaporator side. The purpose is to let you.
  • An ejector-type refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates the refrigerant discharged from the compressor, and a nozzle that depressurizes the refrigerant flowing out of the radiator
  • a refrigerant suction port that sucks the refrigerant by a suction action of the high-speed jet refrigerant that is jetted from the nozzle unit, a boosting unit that boosts the pressure by mixing the jetted refrigerant and the suction refrigerant sucked from the refrigerant suction port, and
  • An ejector module having a body part in which a gas-liquid separation space for separating the gas and liquid of the refrigerant flowing out from the pressurizing part is formed, and an evaporator for evaporating the liquid-phase refrigerant separated in the gas-liquid separation space.
  • the gas-liquid separation space is formed in the shape of a rotating body (a three-dimensional shape symmetric with respect to the central axis), and the liquid phase refrigerant separated in the gas-liquid separation space flows into the evaporator in the body part.
  • a liquid discharge port is provided. Furthermore, the central axis of the gas-liquid separation space is inclined with respect to the vertical direction, and the central point of the liquid discharge port is positioned below the intersection of the extension line of the bottom of the gas-liquid separation space and the central axis. It has been.
  • the center point of the liquid discharge port is arranged below the intersection of the extension line of the bottom surface of the gas-liquid separation space and the central axis. Therefore, the liquid-phase refrigerant stored on the lower side of the gas-liquid separation space by the action of gravity can be preferentially and stably discharged from the liquid discharge port.
  • the center point OP of the liquid discharge port may be adopted when the liquid discharge port is formed in a circular shape, and the center of gravity when the liquid discharge port is formed in a shape other than the circular shape. Points may be adopted.
  • extension line of the bottom of the gas-liquid separation space is defined as a horizontal line passing through the lowest part of the gas-liquid separation space when the central axis of the gas-liquid separation space is made coincident with the vertical direction. be able to.
  • the ejector refrigeration cycle apparatus 10 of the present embodiment shown in the overall configuration diagram of FIG. 1 is applied to a vehicle air conditioner, and cools blown air that is blown into a vehicle interior (indoor space) that is an air conditioning target space. Fulfills the function. Accordingly, the ejector refrigeration cycle apparatus 10 is mounted on the vehicle V, and the cooling target fluid of the ejector refrigeration cycle apparatus 10 is blown air.
  • the ejector refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • an HFO refrigerant specifically, R1234yf
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is configured to increase the pressure until the refrigerant is sucked into the high-pressure refrigerant and discharged.
  • the compressor 11 is disposed in an engine room together with an internal combustion engine (engine) (not shown) that outputs a driving force for traveling the vehicle.
  • the compressor 11 is driven by a rotational driving force output from the engine via a pulley, a belt, and the like.
  • a variable displacement compressor configured to adjust the refrigerant discharge capacity by changing the discharge capacity is adopted as the compressor 11.
  • the discharge capacity (refrigerant discharge capacity) of the compressor 11 is controlled by a control current output to a discharge capacity control valve of the compressor 11 from a control device described later.
  • the engine room in the present embodiment is an outdoor space in which the engine is accommodated, and is a space surrounded by a vehicle body, a firewall 50 described later, and the like.
  • the engine room is sometimes called the engine compartment.
  • a refrigerant inlet of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (outside air) blown by the cooling fan 12d. .
  • the radiator 12 is arranged on the front side of the vehicle V in the engine room.
  • the radiator 12 of the present embodiment causes heat exchange between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the condensing unit 12a, the receiver 12b that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant, and the liquid-phase refrigerant that flows out from the receiver unit 12b and the outside air blown from the cooling fan 12d. It is configured as a so-called subcool type condenser having a supercooling section 12c that performs heat exchange and supercools the liquid phase refrigerant.
  • the cooling fan 12d is an electric blower whose rotation speed (amount of blown air) is controlled by a control voltage output from the control device.
  • the refrigerant inlet 31a of the ejector module 13 is connected to the refrigerant outlet of the supercooling portion 12c of the radiator 12.
  • the ejector module 13 functions as a refrigerant pressure reducing unit that depressurizes the supercooled high-pressure liquid-phase refrigerant that has flowed out of the radiator 12, and from an evaporator 14 that will be described later by the suction action of the refrigerant flow injected at a high speed. It functions as a refrigerant circulation section (refrigerant transport section) that sucks (transports) the circulated refrigerant and circulates it.
  • the ejector module 13 of the present embodiment also has a function as a gas-liquid separator that separates the gas-liquid of the decompressed refrigerant.
  • the ejector module 13 of the present embodiment is configured as a “gas-liquid separator integrated ejector” or “ejector with a gas-liquid separation function”.
  • a configuration in which the ejector and the gas-liquid separator are integrated is expressed using the term ejector module.
  • the ejector module 13 is disposed in the engine room together with the compressor 11 and the radiator 12. More specifically, as shown in FIG. 1, the ejector module 13 of the present embodiment includes a body portion 30 configured by combining a plurality of constituent members. In FIG. 1, an axial sectional view of the ejector module 13 is shown.
  • the body part 30 is formed of a cylindrical metal member.
  • the body portion 30 is formed with a plurality of refrigerant inlets, a plurality of internal spaces, and the like.
  • the plurality of refrigerant inflow / outflow ports formed in the body part 30 include a refrigerant inflow port 31a that causes the refrigerant that has flowed out from the radiator 12 to flow into the inside, and a refrigerant suction port 31b that draws in the refrigerant that has flowed out from the evaporator 14
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f formed in the body part 30 is separated in the liquid-phase refrigerant outlet 31c for flowing out to the refrigerant inlet side of the evaporator 14 and the gas-liquid separation space 30f.
  • a gas-phase refrigerant outlet 31 d for allowing the vapor-phase refrigerant thus discharged to flow out to the suction side of the compressor 11 is formed.
  • the internal space formed in the body 30 includes a swirl space 30a for swirling the refrigerant flowing in from the refrigerant inlet 31a, a decompression space 30b for depressurizing the refrigerant flowing out of the swirl space 30a, and a decompression space 30b.
  • a pressurizing space 30e for allowing the refrigerant that has flowed out of the air to flow in, a gas-liquid separation space 30f for separating the gas and liquid of the refrigerant that has flowed out of the pressurizing space 30e, and the like are formed.
  • the swirl space 30a and the gas-liquid separation space 30f are formed in a substantially cylindrical rotating body shape (three-dimensional shape).
  • the decompression space 30b and the pressure increase space 30e are formed in a substantially truncated cone-shaped rotating body shape (three-dimensional shape) that gradually expands from the swirl space 30a side toward the gas-liquid separation space 30f side.
  • the central axes CL of these spaces 30a, 30f, 30b, 30e are all arranged coaxially.
  • the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (center axis CL) on the same plane.
  • the body portion 30 is formed with a suction passage 13b that guides the refrigerant sucked from the refrigerant suction port 31b to the downstream side of the refrigerant flow in the decompression space 30b and to the upstream side of the refrigerant flow in the pressurization space 30e. Yes.
  • the refrigerant inflow passage 31e that connects the refrigerant inlet 31a and the swirl space 30a extends in the tangential direction of the inner wall surface of the swirl space 30a when viewed from the central axis direction of the swirl space 30a. Thereby, the refrigerant that has flowed into the swirl space 30a from the refrigerant inflow passage 31e flows along the inner wall surface of the swirl space 30a and swirls around the central axis of the swirl space 30a.
  • the refrigerant pressure on the central axis side is lower than the refrigerant pressure on the outer peripheral side in the swirling space 30a. Therefore, in the present embodiment, during normal operation of the ejector-type refrigeration cycle apparatus 10, the refrigerant pressure on the central axis side in the swirling space 30a is set to a pressure that becomes a saturated liquid phase refrigerant, or the refrigerant boils under reduced pressure (cavitating cavitation). ) Reduce to pressure.
  • Such adjustment of the refrigerant pressure on the central axis side in the swirling space 30a can be realized by adjusting the swirling flow velocity of the refrigerant swirling in the swirling space 30a.
  • the swirl flow rate can be adjusted by adjusting the area ratio between the passage sectional area of the refrigerant inflow passage 31e and the vertical sectional area in the axial direction of the swirling space 30a, for example.
  • the swirling flow velocity in the present embodiment means the flow velocity in the swirling direction of the refrigerant in the vicinity of the outermost peripheral portion of the swirling space 30a.
  • a passage forming member 35 is disposed inside the pressure reducing space 30b and the pressure increasing space 30e.
  • the passage forming member 35 is formed in a substantially conical shape that spreads toward the outer peripheral side as it is separated from the decompression space 30b, and the central axis of the passage forming member 35 is also arranged coaxially with the central axis CL of the decompression space 30b or the like.
  • the central axis of the nozzle portion (13a) is also arranged coaxially with the central axis CL.
  • the shape of the vertical cross section in the axial direction is annular (circular) between the inner peripheral surface of the portion forming the decompression space 30b and the pressurization space 30e of the body portion 30 and the conical side surface of the passage forming member 35.
  • a doughnut-shaped refrigerant passage excluding a small-diameter circular shape arranged coaxially.
  • the refrigerant passage formed between the portion forming the decompression space 30b of the body portion 30 and the portion on the top side of the conical side surface of the passage forming member 35 is directed toward the downstream side of the refrigerant flow. It is formed in a shape that narrows the cross-sectional area of the passage. Due to this shape, this refrigerant passage constitutes a nozzle passage functioning as a nozzle portion (13a) for ejecting the refrigerant by isentropically reducing the pressure.
  • the passage cross-sectional area is gradually reduced from the inlet side of the nozzle passage 13a toward the minimum passage area portion, and from the minimum passage area portion toward the outlet side of the nozzle passage 13a.
  • the passage sectional area is gradually enlarged. That is, in the nozzle passage 13a of the present embodiment, the refrigerant passage cross-sectional area changes in the same manner as a so-called Laval nozzle.
  • the refrigerant passage formed between the portion of the body portion 30 forming the pressurizing space 30e and the downstream portion of the conical side surface of the passage forming member 35 has a passage sectional area toward the downstream side of the refrigerant flow. It is formed into a shape that gradually expands. Due to this shape, this refrigerant passage constitutes a diffuser passage 13c that functions as a diffuser portion (pressure increase portion) for mixing and increasing the pressure of the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked from the refrigerant suction port 31b. is doing.
  • an element 37 as a driving device is disposed inside the body portion 30 to change the passage cross-sectional area of the minimum passage area portion of the nozzle passage 13a by displacing the passage forming member 35.
  • the element 37 has a diaphragm that is displaced according to the temperature and pressure of the refrigerant flowing through the suction passage 13b (that is, the refrigerant flowing out of the evaporator 14). Then, the passage forming member 35 is displaced by transmitting the displacement of the diaphragm to the passage forming member 35 via the operating rod 37a.
  • the element 37 displaces the passage forming member 35 in a direction in which the passage cross-sectional area of the minimum passage area portion is expanded as the temperature (superheat degree) of the refrigerant flowing out of the evaporator 14 increases.
  • the element 37 displaces the passage forming member 35 in a direction to reduce the passage cross-sectional area of the minimum passage area portion as the temperature (superheat degree) of the refrigerant flowing out of the evaporator 14 decreases.
  • the element 37 displaces the passage forming member 35 in accordance with the superheat degree of the refrigerant flowing out of the evaporator 14, so that the superheat degree of the refrigerant on the outlet side of the evaporator 14 approaches a predetermined reference superheat degree.
  • the passage sectional area of the minimum passage area portion of the nozzle passage 13a is adjusted.
  • the gas-liquid separation space 30 f is disposed below the passage forming member 35.
  • the gas-liquid separation space 30f constitutes a centrifugal gas-liquid separator that turns the refrigerant flowing out of the diffuser passage 13c around the central axis CL and separates the gas-liquid of the refrigerant by the action of centrifugal force.
  • the internal volume of the gas-liquid separation space 30f is set to a volume that can store only a very small amount of surplus refrigerant even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates.
  • the size of the ejector module 13 as a whole is reduced.
  • the refrigerating machine oil in the separated liquid-phase refrigerant is connected to the gas-liquid separation space 30f and the gas-phase refrigerant outlet 31d.
  • An oil return passage 31f for returning to the phase refrigerant passage side is formed.
  • a suction port of the compressor 11 is connected to the gas-phase refrigerant outlet 31d.
  • an orifice 31i as a pressure reducing unit for reducing the pressure of the refrigerant flowing into the evaporator 14 is disposed in the liquid phase refrigerant passage connecting the gas-liquid separation space 30f and the liquid phase refrigerant outlet 31c.
  • the liquid-phase refrigerant passage extends in the tangential direction of the outer peripheral side wall surface of the gas-liquid separation space 30f.
  • the refrigerant inlet of the evaporator 14 is connected to the liquid phase refrigerant outlet 31c via the inlet pipe 15a.
  • the refrigerant inlet portion of the orifice 31i opens in a portion of the body portion 30 that forms the outer peripheral side wall surface of the gas-liquid separation space 30f. Therefore, the refrigerant inlet portion of the orifice 31i of the present embodiment constitutes a liquid discharge port 31j through which the liquid phase refrigerant separated in the gas-liquid separation space 30f flows out to the evaporator 14 side.
  • FIG. 2 the arrangement
  • the ejector module 13 of the present embodiment is from the side of the vehicle V and when viewed from the horizontal direction, the turning space 30a, the decompression space 30b, the pressure increase
  • the central axis CL of the work space 30e and the gas-liquid separation space 30f are arranged to be inclined with respect to the vertical direction.
  • FIG. 3 is a schematic diagram for explaining an arrangement mode when the ejector module 13 is mounted on the vehicle V.
  • FIG. 3 is a schematic diagram for explaining an arrangement mode when the ejector module 13 is mounted on the vehicle V.
  • FIG. 4 Therefore, the scale ratio between the size of the vehicle V and the size of the ejector module 13 in FIG. 3 is different from the actual scale ratio. The same applies to FIG. 4 described later.
  • a cross section including a line segment extending upward in the vertical direction from the intersection CP of the extension line BL of the bottom surface of the gas-liquid separation space 30 f and the central axis CL and the central point OP of the liquid discharge port 31 j.
  • the angle formed acutely between the line segment extending vertically upward from the intersection point CP and the line segment extending upward from the intersection point CP along the central axis CL is defined as an inclination angle ⁇ .
  • the module 13 is arranged so that the inclination angle ⁇ satisfies the following formula F1.
  • the center point OP of the liquid discharge port 31j of the orifice 31i is more than the intersection point CP because the central axis CL is inclined with respect to the vertical direction as described above. Located on the lower side. If the center point OP is located below the intersection CP, the inclination angle ⁇ may be, for example, 10 ° or more and 85 ° or less. Further, when the inclination angle ⁇ is 20 ° or more and 80 ° or less, the central axis CL is easily inclined with respect to the vertical direction.
  • the center point OP of the liquid discharge port 31j of the orifice 31i may be the center point when the opening shape of the liquid discharge port 31j is formed in a circle, or may have a shape other than a circle. If formed, the center of gravity may be adopted. Further, as shown by the one-dot chain line in FIG. 2, the extension line BL is a horizontal direction that passes through the lowest portion of the gas-liquid separation space 30f when the center axis CL coincides with the vertical direction when viewed from the horizontal direction. Can be defined as
  • the center point OP is arranged on the rearmost side of the vehicle on the outer peripheral side wall surface of the gas-liquid separation space 30f.
  • the ejector module 13 may be directly fixed to the vehicle body, the firewall 50, or the like, or indirectly fixed via a bracket, a damping material, or the like. May be.
  • the evaporator 14 heat-exchanges the low-pressure refrigerant decompressed in the nozzle passage 13a of the ejector module 13 and the blown air blown from the blower 42 into the vehicle interior, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. This is an endothermic heat exchanger. Furthermore, the evaporator 14 is arrange
  • the vehicle V of the present embodiment is provided with a firewall 50 as a partition plate that partitions the vehicle interior from the engine room outside the vehicle interior.
  • the firewall 50 also has a function of reducing heat, sound, etc. transmitted from the engine room to the vehicle interior, and is sometimes referred to as a dash panel.
  • the indoor air-conditioning unit 40 is arrange
  • the evaporator 14 is arrange
  • a refrigerant suction port 31b of the ejector module 13 is connected to the refrigerant outlet of the evaporator 14 via an outlet pipe 15b.
  • the inlet pipe 15a and the outlet pipe 15b are arranged so as to penetrate the firewall 50.
  • the firewall 50 is provided with a circular or rectangular through hole 50a penetrating the engine room side and the vehicle interior side.
  • the inlet pipe 15a and the outlet pipe 15b are integrated by being connected to a connector 51 that is a metal member for connection.
  • the inlet pipe 15a and the outlet pipe 15b are arranged so as to penetrate the through hole 50a in a state where they are integrated by the connector 51.
  • the connector 51 is positioned on the inner peripheral side or in the vicinity of the through hole 50a.
  • a packing 52 formed of an elastic member is disposed in the gap between the outer peripheral side of the connector 51 and the opening edge of the through hole 50a.
  • the packing 52 is formed of ethylene propylene diene copolymer rubber (EPDM), which is a rubber material having excellent heat resistance.
  • the indoor air conditioning unit 40 is for blowing out the blown air whose temperature has been adjusted by the ejector refrigeration cycle apparatus 10 into the vehicle interior, and is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. Furthermore, the indoor air conditioning unit 40 is configured by housing a blower 42, an evaporator 14, a heater core 44, an air mix door 46, and the like in a casing 41 that forms an outer shell thereof.
  • the casing 41 forms an air passage for the blown air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 43 serving as an inside / outside air switching unit for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 41 is disposed on the most upstream side of the blast air flow in the casing 41. ing.
  • the inside / outside air switching device 43 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 41 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door.
  • the air volume ratio is continuously changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the control device.
  • a blower 42 that blows air sucked through the inside / outside air switching device 43 toward the passenger compartment is disposed on the downstream side of the blowing air flow of the inside / outside air switching device 43.
  • the blower 42 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage output from the control device.
  • the evaporator 14 and the heater core 44 are arranged in this order with respect to the flow of the blown air on the downstream side of the blower air flow of the blower 42.
  • the evaporator 14 is disposed upstream of the blower air flow with respect to the heater core 44.
  • the heater core 44 is a heat exchanger for heating that heats the blown air by exchanging heat between the engine coolant and the blown air that has passed through the evaporator 14.
  • a cold air bypass passage 45 is formed in which the blown air that has passed through the evaporator 14 bypasses the heater core 44 and flows downstream.
  • An air mix door 46 is disposed on the downstream side of the blowing air flow of the evaporator 14 and on the upstream side of the blowing air flow of the heater core 44.
  • the air mix door 46 is an air volume ratio adjusting unit that adjusts an air volume ratio between air passing through the heater core 34 and air passing through the cold air bypass passage 45 in the air after passing through the evaporator 14.
  • the air mix door 46 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the control device.
  • the air mix door 46 adjusts the air volume ratio, thereby adjusting the temperature of the blown air (air conditioned air) mixed in the mixing space.
  • an opening hole (not shown) for blowing the conditioned air mixed in the mixing space into the passenger compartment, which is the air-conditioning target space, is disposed in the most downstream portion of the blast air flow of the casing 41.
  • the opening hole includes a face opening hole that blows air-conditioned air toward the upper body of the passenger in the passenger compartment, a foot opening hole that blows air-conditioned air toward the feet of the passenger, and an inner surface of the front window glass of the vehicle.
  • the defroster opening hole which blows off air-conditioning wind toward is provided.
  • the air flow downstream of these face opening holes, foot opening holes, and defroster opening holes is connected to the face air outlet, foot air outlet, and defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. Neither is shown).
  • a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
  • a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching unit that switches the opening hole mode, and are linked to an electric actuator for driving the outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the control device.
  • the blowout mode is the face mode in which the face opening hole is fully open and blows air to the upper body of the occupant, and both the face opening hole and the foot opening hole are opened and the air is blown toward the occupant's upper body and feet.
  • Front mode that opens the defroster opening hole and opens the defroster opening hole only by a small opening, and blows out the blowing air mainly toward the feet of the passengers in the passenger compartment, with the defroster opening hole fully open.
  • a control device includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on the control program stored in the ROM, and controls the operation of the various electric actuators described above.
  • control device includes an internal air temperature sensor for detecting the vehicle interior temperature (internal air temperature) Tr, an external air temperature sensor for detecting the external air temperature Tam, a solar radiation sensor for detecting the solar radiation amount As in the vehicle interior, and the air blown from the evaporator 14
  • An evaporator temperature sensor that detects the temperature (evaporator temperature) Tefin, a coolant temperature sensor that detects the coolant temperature Tw of the engine coolant flowing into the heater core 44, and a pressure Pd of the high-pressure refrigerant discharged from the compressor 11
  • a sensor group for air conditioning control such as a discharge pressure sensor is connected, and detection values of these sensor groups are input.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior preset temperature Tset, and the like.
  • control device of the present embodiment is configured integrally with a control unit that controls the operation of various control target devices connected to the output side of the control device.
  • a configuration (hardware and software) for controlling the operation constitutes a control unit of various control target devices.
  • capacitance control valve of the compressor 11 comprises the discharge capacity control part.
  • the control device executes the air conditioning control program stored in the storage circuit in advance.
  • the detection signal of the above-mentioned sensor group for air conditioning control and the operation signal of the operation panel are read. Then, based on the read detection signal and operation signal, a target blowing temperature TAO that is a target temperature of the air blown into the vehicle interior is calculated.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F2)
  • Tset is the vehicle interior set temperature set by the temperature setting switch
  • Tr is the inside air temperature detected by the inside air temperature sensor
  • Tam is the outside air temperature detected by the outside air temperature sensor
  • As is the amount of solar radiation detected by the solar radiation sensor.
  • Kset, Kr, Kam, and Ks are control gains
  • C is a correction constant.
  • the operating states of various control target devices connected to the output side of the control device are determined based on the calculated target blowing temperature TAO and the detection signal of the sensor group.
  • the rotational speed of the blower 42 that is, the control voltage output to the blower 42 is determined based on the target blowing temperature TAO with reference to a control map stored in advance in the storage circuit. Specifically, the control voltage output to the electric motor is maximized in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target blowing temperature TAO, and the blown air amount is controlled near the maximum amount. As the blowout temperature TAO approaches the intermediate temperature range, the amount of blown air is reduced.
  • the control signal output to the opening of the air mix door 46 is based on the evaporator temperature Tefin and the cooling water temperature Tw.
  • the temperature is determined so as to approach the target blowing temperature TAO.
  • the refrigerant discharge capacity of the compressor 11, that is, the control current output to the discharge capacity control valve of the compressor 11, is determined as follows. First, based on the target blowing temperature TAO, the target evaporator blowing temperature TEO of the blown air blown out from the evaporator 14 is determined with reference to a control map stored in advance in the storage circuit.
  • the evaporator temperature Tefin approaches the target evaporator blowing temperature TEO.
  • a control current output to the discharge capacity control valve of the compressor 11 is determined.
  • control device outputs the control signal determined as described above to various devices to be controlled. After that, until the operation of the vehicle air conditioner is requested, reading of the detection signal and operation signal described above at every predetermined control cycle ⁇ calculation of the target blowing temperature TAO ⁇ determination of operating states of various control target devices ⁇ control signal The control routine such as output is repeated.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the condensing part 12 a of the radiator 12.
  • the refrigerant flowing into the condensing part 12a exchanges heat with the outside air blown from the cooling fan 12d, and dissipates heat to condense.
  • the refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b.
  • the liquid-phase refrigerant separated from the gas and liquid in the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d in the supercooling unit 12c, and further dissipates heat to become a supercooled liquid-phase refrigerant.
  • the supercooled liquid-phase refrigerant that has flowed out of the supercooling portion 12 c of the radiator 12 passes through the nozzle passage 13 a formed between the inner peripheral surface of the decompression space 30 b of the ejector module 13 and the outer peripheral surface of the passage forming member 35.
  • the isentropic pressure is reduced and injected.
  • the refrigerant passage area in the minimum passage area portion 30m of the decompression space 30b is adjusted so that the superheat degree of the evaporator 14 outlet side refrigerant approaches the reference superheat degree.
  • the refrigerant flowing out of the evaporator 14 is sucked into the ejector module 13 from the refrigerant suction port 31b by the suction action of the jetted refrigerant jetted from the nozzle passage 13a.
  • the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked through the suction passage 13b flow into the diffuser passage 13c and join together.
  • the kinetic energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant rises while the injected refrigerant and the suction refrigerant are mixed.
  • the refrigerant flowing out of the diffuser passage 13c is gas-liquid separated in the gas-liquid separation space 30f.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f is decompressed by the orifice 30i and flows into the evaporator 14.
  • the refrigerant that has flowed into the evaporator 14 absorbs heat from the blown air blown by the blower 42 and evaporates. Thereby, blowing air is cooled.
  • the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out from the gas-phase refrigerant outlet 31d, is sucked into the compressor 11, and is compressed again.
  • the blown air cooled by the evaporator 14 flows into the ventilation passage and the cold air bypass passage 45 on the heater core 44 side according to the opening degree of the air mix door 46.
  • the cold air that has flowed into the ventilation path on the heater core 44 side is reheated when passing through the heater core 44 and mixed with the cold air that has passed through the cold air bypass passage 45 in the mixing space. Then, the conditioned air whose temperature is adjusted in the mixing space is blown out from the mixing space into the vehicle compartment via each outlet.
  • the blown air cooled by the evaporator 14 flows into the ventilation path and the cold air bypass passage 45 on the heater core 44 side according to the opening degree of the air mix door 46.
  • the cold air that has flowed into the ventilation path on the heater core 44 side is reheated when passing through the heater core 44 and mixed with the cold air that has passed through the cold air bypass passage 45 in the mixing space.
  • the conditioned air that has been mixed and temperature-adjusted in the mixing space is blown out into the vehicle compartment via each outlet.
  • the vehicle air conditioner 1 can perform air conditioning of the vehicle interior by blowing the blown air cooled by the evaporator 14 of the ejector refrigeration cycle apparatus 10 into the vehicle interior. Furthermore, in the ejector type refrigeration cycle apparatus 10 of the present embodiment, the refrigerant that has been pressurized in the diffuser passage 13c is sucked into the compressor 11, so that the driving power of the compressor 11 is reduced and cycle efficiency (COP) is improved. Can be made.
  • COP cycle efficiency
  • the refrigerant pressure in the swirl space 30a is changed to the pressure at which the swirl center side in the swirl space 30a becomes the saturated liquid phase refrigerant or the refrigerant is boiled under reduced pressure by swirling the refrigerant in the swirl space 30a.
  • the pressure is reduced to the pressure (which causes cavitation).
  • coolant exists in the turning center side is made to flow in into the nozzle channel
  • the boiling of the refrigerant in the nozzle passage 13a can be promoted by the boiling of the wall due to the friction between the refrigerant and the wall of the nozzle passage 13a, and the interfacial boiling caused by the boiling nuclei generated by the cavitation of the refrigerant on the swivel center side.
  • the ejector module 13 may be inclined due to the inclination of the vehicle V or the like. Furthermore, the coolant level in the gas-liquid separation space 30f of the ejector module 13 may be tilted due to vibration, acceleration, etc. of the vehicle V.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f is moved away from the liquid discharge port 31j. There is a possibility that the liquid phase refrigerant may not be properly flown out from the liquid discharge port 31j due to uneven distribution.
  • the center point OP of the liquid discharge port 31j is below the intersection CP when viewed from the horizontal direction. Is arranged. Therefore, the liquid-phase refrigerant stored on the lower side of the gas-liquid separation space 30f by the action of gravity can be preferentially and stably discharged from the liquid discharge port 31j to the evaporator 14 side.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f can be appropriately discharged to the evaporator 14 side.
  • gas-liquid separation space 30f of this embodiment constitutes a centrifugal gas-liquid separator, when the refrigerant flows out to the evaporator 14, the velocity energy in the swirling direction of the refrigerant is utilized. Can do.
  • the gas-phase refrigerant is not mixed with the liquid-phase refrigerant that flows out to the evaporator 14 side, the velocity energy of the high-density liquid-phase refrigerant can be effectively used. Therefore, even if the liquid-phase refrigerant outlet 31c of the ejector module 13 is disposed at a position lower than the refrigerant inlet of the evaporator 14 and a head difference occurs, the liquid-phase refrigerant can flow into the evaporator 14. .
  • the ejector-type refrigeration cycle apparatus 10 of the present embodiment it is possible to reliably cool the blown air with the evaporator 14 and realize appropriate air conditioning in the passenger compartment.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f is appropriately disposed on the evaporator 14 side by arranging the inclination angle ⁇ so as to satisfy the above formula F1. It is confirmed that it can be released to
  • the central axis CL of the ejector module 13 when viewed from the side of the vehicle V, the central axis CL of the ejector module 13 is inclined with respect to the vertical direction so that the center point OP is disposed on the rearmost side of the vehicle. Therefore, especially during sudden braking, even if the liquid refrigerant in the gas-liquid separation space 30f is unevenly distributed on the front side of the vehicle, the liquid refrigerant is likely to flow out to the evaporator 14 side.
  • the central axis CL of the ejector module 13 when viewed from the side of the vehicle V, the central axis CL of the ejector module 13 is inclined with respect to the vertical direction so that the center point OP is disposed on the rearmost side of the vehicle.
  • the inclination direction of the ejector module 13 is not limited to this.
  • the central axis CL when viewed from the front of the vehicle V and viewed from the horizontal direction, the central axis CL may be arranged to be inclined with respect to the vertical direction.
  • the center point OP is arranged on the center side of the vehicle. It is desirable to incline. According to this, even when the liquid phase refrigerant in the gas-liquid separation space 30f is unevenly distributed on the left side during a sharp curve, the liquid phase refrigerant is likely to flow out to the evaporator 14 side.
  • the central axis CL of the ejector module 13 may be arranged to be inclined with respect to the vertical direction when viewed from the front of the vehicle V or from the side of the vehicle V.
  • the inclination angle ⁇ is set so as to satisfy the formula F1 when viewed from the front of the vehicle V and when viewed from the side of the vehicle V.
  • Each component device constituting the ejector refrigeration cycle apparatus 10 is not limited to that disclosed in the above-described embodiment.
  • the compressor 11 is not limited thereto.
  • the compressor 11 may be a fixed capacity compressor driven by a rotational driving force output from the engine via an electromagnetic clutch, a belt, or the like.
  • the refrigerant discharge capacity may be adjusted by changing the operating rate of the compressor by the on / off of the electromagnetic clutch.
  • radiator 12 For example, in the above-described embodiment, an example in which a subcool type heat exchanger is employed as the radiator 12 has been described. However, a normal radiator including only the condensing unit 12a may be employed. Furthermore, you may employ
  • liquid receiver receiver
  • each constituent member constituting the ejector module 13 is not limited to those disclosed in the above-described embodiment.
  • constituent members such as the body portion 30 and the passage forming member 35 of the ejector module 13 are not limited to those formed of metal, and may be formed of resin.
  • liquid discharge port 31j is configured by the refrigerant inlet portion of the orifice 31i.
  • the orifice 31i is eliminated and the pressure reducing portion is disposed in the inlet pipe 15a, gas-liquid separation is performed. What is necessary is just to comprise a liquid discharge port by the refrigerant
  • the example in which the liquid discharge port 31j is provided in the portion of the body portion 30 that forms the outer peripheral side wall surface of the gas-liquid separation space 30f has been described. It is not limited. That is, if the center point OP can be positioned below the intersection point CP by inclining the central axis CL with respect to the vertical direction, the liquid discharge port 31j is formed at a site forming the bottom surface of the gas-liquid separation space 30f. It may be provided.
  • the ejector module 13 may be disposed on the vehicle interior side of the firewall 50.
  • the ejector module 13 may be arranged on the inner peripheral side of the through hole 50a of the firewall 50. In this case, a part of the ejector module 13 is disposed on the engine room side, and another part is disposed on the vehicle interior side. Therefore, it is desirable to arrange packing that performs the same function as in the first embodiment in the gap between the outer periphery of the ejector module 13 and the opening edge of the through hole 50a.

Abstract

 遠心力の作用によって冷媒の気液を分離する気液分離空間(30f)の中心軸CLを、鉛直方向に対して傾斜させることによって、分離された液相冷媒を蒸発器(14)へ流出させる液排出口(31j)を構成するオリフィス(31i)の冷媒入口部の中心点OPを、気液分離空間(30f)の底面の延長線BLと中心軸CLとの交点CPよりも下方側に配置する。これにより、気液分離空間(30f)にて分離された液相冷媒が、優先的かつ安定的に液排出口(31j)から蒸発器(14)へ流出させる。

Description

エジェクタ式冷凍サイクル装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年10月24日に出願された日本特許出願2014-217456号を基にしている。
 本開示は、冷媒減圧部としてエジェクタを備えるエジェクタ式冷凍サイクル装置に関する。
 従来、冷媒減圧部としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル装置が知られている。
 この種のエジェクタ式冷凍サイクル装置では、エジェクタの昇圧作用によって、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。これにより、エジェクタ式冷凍サイクル装置では、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。
 さらに、特許文献1には、気液分離器が一体的に構成された気液分離器一体型エジェクタ(以下、エジェクタモジュールと記載する。)が開示されている。
 この特許文献1のエジェクタモジュールによれば、気液分離器にて分離された気相冷媒を流出させる気相冷媒流出口に圧縮機の吸入口側を接続し、気液分離器にて分離された液相冷媒を流出させる液相冷媒流出口に蒸発器の冷媒入口側を接続し、さらに、冷媒吸引口に蒸発器の冷媒出口側を接続すること等によって、極めて容易にエジェクタ式冷凍サイクル装置を構成することができる。
特開2013-177879号公報
 ところで、特許文献1のエジェクタモジュールでは、エジェクタモジュールの外殻を形成するボデー部の内部に回転体形状の気液分離空間を形成し、この空間によって遠心分離方式の気液分離器(気液分離空間)を構成している。さらに、ボデーに、気液分離空間にて分離された液相冷媒を蒸発器側へ流出させる液排出口を形成している。
 このため、例えば、特許文献1のエジェクタモジュールを車両に搭載した際に、車両とともにエジェクタモジュールが傾斜してしまうと、気液分離空間にて分離された液相冷媒が液排出口から離れた側に偏在して、液排出口から液相冷媒を適切に流出させることができなくなってしまうおそれがある。
 そして、気液分離空間にて分離された液相冷媒を蒸発器へ流入させることができなくなってしまうと、エジェクタ式冷凍サイクル装置の冷凍能力が著しく低下してしまう。
 本開示は、上記点に鑑み、気液分離空間が一体的に構成されたエジェクタを備えるエジェクタ式冷凍サイクル装置において、気液分離空間にて分離された液相冷媒を適切に蒸発器側へ流出させることを目的とする。
 本開示の一つの特徴例によるエジェクタ式冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒を減圧させるノズル部、並びに、ノズル部から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口、噴射冷媒と冷媒吸引口から吸引された吸引冷媒とを混合させて昇圧させる昇圧部、および昇圧部から流出した冷媒の気液を分離する気液分離空間が形成されたボデー部を有するエジェクタモジュールと、気液分離空間にて分離された液相冷媒を蒸発させる蒸発器と、を備える。
 気液分離空間は、回転体形状(中心軸に対して、対称する立体形状)に形成されており、ボデー部には、気液分離空間にて分離された液相冷媒を、蒸発器へ流出させる液排出口が設けられる。
さらに、気液分離空間の中心軸は、鉛直方向に対して傾斜しており、液排出口の中心点は、気液分離空間の底面の延長線と中心軸との交点よりも下方側に位置付けられている。
 これによれば、液排出口の中心点が、気液分離空間の底面の延長線と中心軸との交点よりも下方側に配置されている。従って、重力の作用によって気液分離空間の下方側に貯留された液相冷媒を、優先的かつ安定的に液排出口から流出させることができる。
 その結果、エジェクタ式冷凍サイクル装置の配置状態がある程度変化して、エジェクタモジュールが傾斜したとしても、気液分離空間にて分離された液相冷媒を適切に蒸発器へ流出させることができる。
 本開示で、「液排出口の中心点OP」としては、液排出口が円形に形成されている場合には中心点を採用すればよいし、円形以外の形状に形成されている場合は重心点を採用してもよい。
 また、「気液分離空間の底面の延長線」は、気液分離空間の中心軸を鉛直方向と一致させた際に、気液分離空間の最低位部を通過する水平方向の線と定義することができる。
一実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。 一実施形態のエジェクタモジュールの配置態様を説明するための軸方向断面図である。 一実施形態のエジェクタモジュールを車両に搭載した際の配置態様を説明するための説明図である。 他の実施形態のエジェクタモジュールを車両に搭載した際の配置態様を説明するための説明図である。
 以下、図面を用いて、本開示の一実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル装置10は、車両用空調装置に適用されており、空調対象空間である車室内(室内空間)へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル装置10は、車両Vに搭載されており、エジェクタ式冷凍サイクル装置10の冷却対象流体は、送風空気である。
 また、エジェクタ式冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 エジェクタ式冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力する図示しない内燃機関(エンジン)とともにエンジンルーム内に配置されている。そして、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される。
 より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用している。この圧縮機11の吐出容量(冷媒吐出能力)は、後述する制御装置から圧縮機11の吐出容量制御弁に出力される制御電流によって制御される。
 また、本実施形態におけるエンジンルームとは、エンジンが収容される室外空間であって、車両ボデーや後述するファイアウォール50等によって囲まれた空間である。エンジンルームは、エンジンコンパートメントと呼ばれることもある。圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒流入口が接続されている。
 放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両Vの前方側に配置されている。
 より具体的には、本実施形態の放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器として構成されている。
 冷却ファン12dは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒流出口には、エジェクタモジュール13の冷媒流入口31aが接続されている。
 エジェクタモジュール13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させる冷媒減圧部としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環部(冷媒輸送部)としての機能を果たすものである。
 さらに、本実施形態のエジェクタモジュール13は、減圧させた冷媒の気液を分離する気液分離器としての機能も有している。
 つまり、本実施形態のエジェクタモジュール13は、「気液分離器一体型エジェクタ」あるいは「気液分離機能付きエジェクタ」として構成されている。本実施形態では、気液分離器(気液分離空間)を有していないエジェクタとの相違を明確化するために、エジェクタと気液分離器とを一体化(モジュール化)させた構成を、エジェクタモジュールという用語を用いて表す。
 エジェクタモジュール13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。より具体的には、本実施形態のエジェクタモジュール13は、図1に示すように、複数の構成部材を組み合わせることによって構成されたボデー部30を備えている。なお、図1では、エジェクタモジュール13の軸方向断面図を図示している。ボデー部30は、円柱状の金属部材にて形成されている。このボデー部30には、複数の冷媒流入口や複数の内部空間等が形成されている。
 ボデー部30に形成された複数の冷媒流入出口としては、具体的に、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー部30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口31dが形成されている。
 また、ボデー部30の内部に形成された内部空間としては、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30a、旋回空間30aから流出した冷媒を減圧させる減圧用空間30b、減圧用空間30bから流出した冷媒を流入させる昇圧用空間30e、昇圧用空間30eから流出した冷媒の気液を分離する気液分離空間30f等が形成されている。
 旋回空間30aおよび気液分離空間30fは、略円柱状の回転体形状(立体形状)に形成されている。減圧用空間30bおよび昇圧用空間30eは、旋回空間30a側から気液分離空間30f側へ向かって徐々に拡大する略円錐台状の回転体形状(立体形状)に形成されている。これらの空間30a、30f、30b、30eの中心軸CLはいずれも同軸上に配置されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸CL)の周りに回転させた際に形成される立体形状である。
 さらに、ボデー部30には、冷媒吸引口31bから吸引された冷媒を、減圧用空間30bの冷媒流れ下流側であって昇圧用空間30eの冷媒流れ上流側へ導く吸引用通路13bが形成されている。
 冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。
 旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル装置10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。
 このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31eの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。
 また、減圧用空間30bおよび昇圧用空間30eの内部には、通路形成部材35が配置されている。通路形成部材35は、減圧用空間30bから離れるに伴って外周側に広がる略円錐形状に形成されており、通路形成部材35の中心軸も減圧用空間30b等の中心軸CLと同軸上に配置されている。そのため、ノズル部(13a)の中心軸も上記中心軸CLと同軸上に配置されている。
 そして、ボデー部30の減圧用空間30bおよび昇圧用空間30eを形成する部位の内周面と通路形成部材35の円錐状側面との間には、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)の冷媒通路が形成されている。
 この冷媒通路のうち、ボデー部30の減圧用空間30bを形成する部位と通路形成部材35の円錐状側面の頂部側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を小さく絞る形状に形成されている。この形状により、この冷媒通路は、冷媒を等エントロピ的に減圧させて噴射するノズル部(13a)として機能するノズル通路を構成している。
 より具体的には、本実施形態のノズル通路は、ノズル通路13aの入口側から最小通路面積部へ向かって通路断面積を徐々に縮小させ、最小通路面積部からノズル通路13aの出口側に向かって通路断面積を徐々に拡大させる形状に形成されている。つまり、本実施形態のノズル通路13aでは、いわゆるラバールノズルと同様に冷媒通路断面積が変化する。
 一方、ボデー部30の昇圧用空間30eを形成する部位と通路形成部材35の円錐状側面の下流側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。この形状により、この冷媒通路は、ノズル通路13aから噴射された噴射冷媒と冷媒吸引口31bから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部(昇圧部)として機能するディフューザ通路13cを構成している。
 また、ボデー部30の内部には、通路形成部材35を変位させてノズル通路13aの最小通路面積部の通路断面積を変化させる駆動装置としてのエレメント37が配置されている。
 エレメント37は、吸引用通路13bを流通する冷媒(すなわち、蒸発器14流出冷媒)の温度および圧力に応じて変位するダイヤフラムを有している。そして、このダイヤフラムの変位を作動棒37aを介して、通路形成部材35へ伝達することによって、通路形成部材35を変位させる。
 より詳細には、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が上昇するに伴って、最小通路面積部の通路断面積を拡大させる方向に通路形成部材35を変位させる。一方、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が低下するに伴って、最小通路面積部の通路断面積を縮小させる方向に通路形成部材35を変位させる。
 本実施形態では、エレメント37が蒸発器14流出冷媒の過熱度に応じて通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル通路13aの最小通路面積部の通路断面積が調整される。
 気液分離空間30fは、通路形成部材35の下方側に配置されている。気液分離空間30fは、ディフューザ通路13cから流出した冷媒を中心軸CL周りに旋回させて、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離器を構成している。
 さらに、本実施形態では、気液分離空間30fの内容積を、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても極少量の余剰冷媒しか貯めることのできない程度の容積として、エジェクタモジュール13全体としての小型化を図っている。
 また、ボデー部30のうち気液分離空間30fの底面を形成する部位には、分離された液相冷媒中の冷凍機油を、気液分離空間30fと気相冷媒流出口31dとを接続する気相冷媒通路側へ戻すためのオイル戻し通路31fが形成されている。気相冷媒流出口31dには、圧縮機11の吸入口が接続されている。
 一方、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路には、蒸発器14へ流入させる冷媒を減圧させる減圧部としてのオリフィス31iが配置されている。この液相冷媒通路は、気液分離空間30fの外周側壁面の接線方向に延びている。さらに、液相冷媒流出口31cには、入口配管15aを介して、蒸発器14の冷媒流入口が接続されている。
 また、本実施形態では、オリフィス31iの冷媒入口部が、ボデー部30のうち気液分離空間30fの外周側壁面を形成する部位に開口している。従って、本実施形態のオリフィス31iの冷媒入口部は、気液分離空間30fにて分離された液相冷媒を蒸発器14側へ流出させる液排出口31jを構成している。
 ここで、図2、図3を用いて、本実施形態の車両Vにおけるエジェクタモジュール13の配置態様を説明する。なお、図2、図3における上下前後の各矢印は、エジェクタモジュール13を車両Vに搭載した状態における上下前後の各方向を示したものである。
 図2、図3から明らかなように、本実施形態のエジェクタモジュール13は、車両Vの側方からであって、かつ、水平方向から見たときに、旋回空間30a、減圧用空間30b、昇圧用空間30e、および気液分離空間30fの中心軸CLが、鉛直方向に対して傾斜して配置されている。
 より詳細には、エジェクタモジュール13は、図3に示すように、中心軸CLが車両Vの前後方向に傾斜するように配置されている。なお、図3は、エジェクタモジュール13を車両Vに搭載した際の配置態様を説明するための模式的な図面である。このため、図3における車両Vの大きさとエジェクタモジュール13の大きさとの縮尺比は、実際の縮尺比とは異なる。このことは後述する図4においても同様である。
 また、図2に示すように、気液分離空間30fの底面の延長線BLと中心軸CLとの交点CPから鉛直方向上方側へ向かう線分、および液排出口31jの中心点OPを含む断面において、交点CPから鉛直方向上方側へ向かう線分と交点CPから中心軸CLに沿って上方側へ向かう線分との間に鋭角的に形成される角度を傾斜角θとしたときに、エジェクタモジュール13は、傾斜角θが以下数式F1を満足するように配置されている。
θ≦85°…(F1)
 さらに、本実施形態のエジェクタモジュール13では、このように中心軸CLが鉛直方向に対して傾斜して配置されていることによって、オリフィス31iの液排出口31jの中心点OPが、交点CPよりも下方側に位置付けられている。中心点OPが、交点CPよりも下方側に位置すれば、傾斜角θは、例えば10°以上で85°以下でもよい。さらに、傾斜角θが20°以上で80°以下の場合、中心軸CLが鉛直方向に対して容易に傾斜して配置される。
 なお、本実施形態におけるオリフィス31iの液排出口31jの中心点OPは、液排出口31jの開口形状が円形に形成されている場合には中心点を採用すればよいし、円形以外の形状に形成されている場合は重心点を採用してもよい。また、延長線BLは、図2の一点鎖線に示すように、水平方向から見て、中心軸CLを鉛直方向と一致させた際に、気液分離空間30fの最低位部を通過する水平方向の線と定義することができる。
 さらに、本実施形態では、図3に模式的に示すように、中心点OPが気液分離空間30fの外周側壁面のうち車両最後方側に配置されている。また、このような配置態様を実現するために、エジェクタモジュール13は、車両ボデー、ファイアウォール50等に、直接的に固定されていてもよいし、ブラケットや制振材等を介して間接的に固定されていてもよい。また、各種配管に接続されることによって、上述の配置態様を実現してもよい。
 蒸発器14は、エジェクタモジュール13のノズル通路13aにて減圧された低圧冷媒と送風機42から車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。さらに、蒸発器14は、後述する室内空調ユニット40のケーシング41内に配置されている。
 さらに、本実施形態の車両Vには、車室内と車室外のエンジンルームとを仕切る仕切り板としてのファイアウォール50が設けられている。ファイアウォール50は、エンジンルーム内から車室内へ伝達される熱、音等を低減する機能も有しており、ダッシュパネルと呼ばれることもある。
 そして、図1に示すように、室内空調ユニット40は、ファイアウォール50よりも車室内側に配置されている。このため、蒸発器14は車室内(室内空間)に配置されている。蒸発器14の冷媒流出口には、出口配管15bを介して、エジェクタモジュール13の冷媒吸引口31bが接続されている。
 また、前述の如くエジェクタモジュール13は、エンジンルーム内(室外空間)に配置されているので、入口配管15aおよび出口配管15bは、ファイアウォール50を貫通するように配置されている。
 より具体的には、ファイアウォール50には、エンジンルーム側と車室内側とを貫通する円形状あるいは矩形状の貫通穴50aが設けられている。また、入口配管15aおよび出口配管15bは、接続用の金属部材であるコネクタ51に接続されることによって一体化されている。そして、入口配管15aおよび出口配管15bは、コネクタ51によって一体化された状態で貫通穴50aを貫通するように配置されている。
 この際、コネクタ51は、貫通穴50aの内周側あるいは近傍に位置付けられる。そして、コネクタ51の外周側と貫通穴50aの開口縁部との隙間には、弾性部材で形成されたパッキン52が配置されている。本実施形態では、パッキン52として、耐熱性に優れるゴム材料であるエチレンプロピレンジエン共重合ゴム(EPDM)にて形成されたものを採用している。
 このようにコネクタ51と貫通穴50aとの隙間にパッキン52を介在させることによって、コネクタ51と貫通穴50aとの隙間を介して、エンジンルーム内から車室内へ水や騒音等が漏れてしまうことを抑制している。
 次に、室内空調ユニット40について説明する。室内空調ユニット40は、エジェクタ式冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット40は、その外殻を形成するケーシング41内に送風機42、蒸発器14、ヒータコア44、エアミックスドア46等を収容することによって構成されている。
 ケーシング41は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング41内の送風空気流れ最上流側には、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替部としての内外気切替装置43が配置されている。
 内外気切替装置43は、ケーシング41内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置から出力される制御信号によって、その作動が制御される。
 内外気切替装置43の送風空気流れ下流側には、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)42が配置されている。この送風機42は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される。
 送風機42の送風空気流れ下流側には、蒸発器14およびヒータコア44が、送風空気の流れに対して、この順に配置されている。換言すると、蒸発器14は、ヒータコア44よりも送風空気流れ上流側に配置されている。ヒータコア44は、エンジン冷却水と蒸発器14通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。
 また、ケーシング41内には、蒸発器14を通過した送風空気を、ヒータコア44を迂回させて下流側へ流す冷風バイパス通路45が形成されている。蒸発器14の送風空気流れ下流側であって、かつ、ヒータコア44の送風空気流れ上流側には、エアミックスドア46が配置されている。
 エアミックスドア46は、蒸発器14通過後の空気のうち、ヒータコア34を通過させる空気と冷風バイパス通路45を通過させる空気との風量割合を調整する風量割合調整部である。エアミックスドア46は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置から出力される制御信号によって、その作動が制御される。
 ヒータコア44の空気流れ下流側および冷風バイパス通路45の空気流れ下流側には、ヒータコア44を通過した空気と冷風バイパス通路45を通過した空気とを混合させる混合空間が設けられている。従って、エアミックスドア46が、風量割合を調整することによって、混合空間にて混合された送風空気(空調風)の温度が調整される。
 さらに、ケーシング41の送風空気流れ最下流部には、混合空間にて混合された空調風を、空調対象空間である車室内へ吹き出す図示しない開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴が設けられている。
 これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替部を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、制御装置から出力される制御信号によって、その作動が制御される。
 なお、吹出口モードとしては、フェイス開口穴を全開として乗員の上半身へ向けて送風空気を吹き出すフェイスモード、フェイス開口穴およびフット開口穴の両方を開口して乗員の上半身と足元へ向けて送風空気を吹き出すバイレベルモード、フット開口穴を全開するとともにデフロスタ開口穴を小開度だけ開口して主に車室内乗員の足元へ向けて送風空気を吹き出すフットモード、デフロスタ開口穴を全開として車両フロント窓ガラス内面に向けて送風空気を吹き出すデフロスタモード等がある。
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述した各種電気式のアクチュエータの作動を制御する。
 また、制御装置には、車室内温度(内気温)Trを検出する内気温センサ、外気温Tamを検出する外気温センサ、車室内の日射量Asを検出する日射センサ、蒸発器14の吹出空気温度(蒸発器温度)Tefinを検出する蒸発器温度センサ、ヒータコア44へ流入するエンジン冷却水の冷却水温度Twを検出する冷却水温度センサ、圧縮機11から吐出された高圧冷媒の圧力Pdを検出する吐出圧センサ、等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内設定温度Tsetを設定する車室内温度設定スイッチ等が設けられている。
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各種制御対象機器の制御部を構成している。例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御する構成が吐出能力制御部を構成している。
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置では、操作パネルの空調作動スイッチが投入(ON)されると、制御装置が予め記憶回路に記憶している空調制御プログラムを実行する。
 この空調制御プログラムでは、上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。
 目標吹出温度TAOは、以下数式F2に基づいて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F2)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気温センサによって検出された内気温、Tamは外気温センサによって検出された外気温、Asは日射センサによって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 さらに、空調制御プログラムでは、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置の出力側に接続された各種制御対象機器の作動状態を決定する。
 例えば、送風機42の回転数、すなわち送風機42へ出力される制御電圧については、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して決定される。具体的には、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で電動モータへ出力する制御電圧を最大として送風空気量を最大量付近に制御し、目標吹出温度TAOが中間温度域に近づくに伴って送風空気量を減少させる。
 また、エアミックスドア46の開度、すなわちエアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、蒸発器温度Tefinおよび冷却水温度Twに基づいて、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくように決定される。
 また、圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して、蒸発器14から吹き出される送風空気の目標蒸発器吹出温度TEOを決定する。
 そして、蒸発器温度センサによって検出された蒸発器温度Tefinと目標蒸発器吹出温度TEOとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の吐出容量制御弁に出力される制御電流が決定される。
 そして、制御装置は、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御信号等の出力といった制御ルーチンが繰り返される。
 これにより、エジェクタ式冷凍サイクル装置10では、図1の太実線矢印に示すように冷媒が流れる。
 すなわち、圧縮機11から吐出された高温高圧冷媒が放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる。
 放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタモジュール13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される。この際、減圧用空間30bの最小通路面積部30mにおける冷媒通路面積は、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように調整される。
 そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒が、冷媒吸引口31bからエジェクタモジュール13の内部へ吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する。
 ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される。気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて、蒸発器14へ流入する。
 蒸発器14へ流入した冷媒は、送風機42によって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される。
 蒸発器14にて冷却された送風空気は、エアミックスドア46の開度に応じて、ヒータコア44側の通風路および冷風バイパス通路45へ流入する。ヒータコア44側の通風路へ流入した冷風は、ヒータコア44を通過する際に再加熱され、混合空間にて冷風バイパス通路45を通過した冷風と混合される。そして、混合空間にて温度調整された空調風が、混合空間から各吹出口を介して車室内に吹き出される。
 この際、室内空調ユニット40では、蒸発器14にて冷却された送風空気が、エアミックスドア46の開度に応じて、ヒータコア44側の通風路および冷風バイパス通路45へ流入する。ヒータコア44側の通風路へ流入した冷風は、ヒータコア44を通過する際に再加熱され、混合空間にて冷風バイパス通路45を通過した冷風と混合される。混合空間にて混合されて温度調整された空調風は、各吹出口を介して車室内に吹き出される。
 従って、車両用空調装置1では、エジェクタ式冷凍サイクル装置10の蒸発器14にて冷却された送風空気を車室内へ吹き出すことで、車室内の空調を行うことができる。さらに、本実施形態のエジェクタ式冷凍サイクル装置10では、ディフューザ通路13cにて昇圧された冷媒を圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクル効率(COP)を向上させることができる。
 また、本実施形態のエジェクタモジュール13では、旋回空間30aにて冷媒を旋回させることで、旋回空間30a内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させている。そして、旋回中心側に気相冷媒が多く存在する気液二相冷媒をノズル通路13aへ流入させている。
 これにより、冷媒とノズル通路13aの壁面との摩擦による壁面沸騰、および旋回中心側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって、ノズル通路13aにおける冷媒の沸騰を促進することができる。その結果、ノズル通路13aにて冷媒の圧力エネルギを速度エネルギへ変換する際のエネルギ変換効率を向上させることができる。
 ところで、本実施形態のように、エジェクタモジュール13を備えるエジェクタ式冷凍サイクル装置10を、車両Vに搭載すると、車両Vの傾斜等によって、エジェクタモジュール13が傾斜してしまうことがある。さらに、車両Vの振動や加速度等によって、エジェクタモジュール13の気液分離空間30f内の冷媒液面が傾いてしまうこともある。
 このようなエジェクタモジュール13自体の傾斜や、気液分離空間30f内の冷媒液面の傾きが生じると、気液分離空間30fにて分離された液相冷媒が液排出口31jから離れた側に偏在してしまい、液排出口31jから液相冷媒を適切に流出させることができなくなってしまうおそれがある。
 さらに、気液分離空間30fにて分離された液相冷媒を蒸発器14へ流入させることができなくなってしまうと、エジェクタ式冷凍サイクル装置10の冷凍能力が著しく低下して、車室内の適切な空調を実現できなくなってしまうおそれがある。
 これに対して、本実施形態のエジェクタ式冷凍サイクル装置10によれば、図2に示すように、水平方向から見たときに、液排出口31jの中心点OPが、交点CPよりも下方側に配置されている。従って、重力の作用によって気液分離空間30fの下方側に貯留された液相冷媒を、優先的かつ安定的に、液排出口31jから蒸発器14側へ流出させることができる。
 その結果、エジェクタ式冷凍サイクル装置10の配置状態等がある程度変化しても、気液分離空間30fにて分離された液相冷媒を適切に蒸発器14側へ流出させることができる。
 さらに、本実施形態の気液分離空間30fでは、遠心分離方式の気液分離器を構成しているので、冷媒を蒸発器14へ流出させる際に、冷媒の旋回方向の速度エネルギを活用することができる。
 この際、本実施形態では、蒸発器14側へ流出させる液相冷媒に気相冷媒が混ざりこんでしまうことがないので、密度の高い液相冷媒の速度エネルギを有効に活用することができる。従って、エジェクタモジュール13の液相冷媒流出口31cが蒸発器14の冷媒流入口よりも低い位置に配置されて、ヘッド差が生じていても、液相冷媒を蒸発器14へ流入させることができる。
 その結果、本実施形態のエジェクタ式冷凍サイクル装置10によれば、蒸発器14にて送風空気を確実に冷却して、車室内の適切な空調を実現することができる。
 さらに、本開示者らの試験検討によれば、傾斜角θを上記数式F1を満足するように配置することで、気液分離空間30fにて分離された液相冷媒を適切に蒸発器14側へ流出可能であることが確認されている。
 また、本実施形態では、車両Vの側方から見たときに、中心点OPが車両最後方側に配置されるようにエジェクタモジュール13の中心軸CLを鉛直方向に対して傾斜させている。従って、特に、急ブレーキ時に、気液分離空間30f内の液相冷媒が車両前方側に偏在しても、蒸発器14側へ液相冷媒を流出させやすい。
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 (1)上述の実施形態では、車両Vの側方から見たときに、中心点OPが車両最後方側に配置されるようにエジェクタモジュール13の中心軸CLを鉛直方向に対して傾斜させた例を説明したが、エジェクタモジュール13の傾斜方向はこれに限定されない。例えば、図4に示すように、車両Vの前方からであって、かつ、水平方向から見たときに、中心軸CLが、鉛直方向に対して傾斜して配置されていてもよい。
 この場合は、例えば、図4に示すように、エジェクタモジュール13全体が、車両の中心によりも左側あるいは右側にずれて配置される場合は、中心点OPが車両の中心側に配置されるように傾斜させることが望ましい。これによれば、急カーブ時に、気液分離空間30f内の液相冷媒が左側に偏在しても、蒸発器14側へ液相冷媒を流出させやすい。
 もちろん、エジェクタモジュール13の中心軸CLが、車両Vの前方から見たときも、車両Vの側方からみたときも、鉛直方向に対して傾斜して配置されていてもよい。この場合は、車両Vの前方から見たときも、車両Vの側方からみたときも、傾斜角θが上記数式F1を満足するように設定されていることが望ましい。
 (2)エジェクタ式冷凍サイクル装置10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、圧縮機11として、可変容量型圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。例えば、圧縮機11として、電磁クラッチ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される固定容量型圧縮機を採用してもよい。
 固定容量型圧縮機では、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整すればよい。また、圧縮機11として、電動モータの回転数を変化させて冷媒吐出能力を調整する電動圧縮機を採用してもよい。
 例えば、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
 また、エジェクタモジュール13を構成する各構成部材は、上述の実施形態に開示されたものに限定されない。例えば、エジェクタモジュール13のボデー部30、通路形成部材35等の構成部材は金属で形成されたものに限定されず、樹脂にて形成されたものであってもよい。
 さらに、上述の実施形態では、オリフィス31iの冷媒入口部によって液排出口31jを構成した例を説明したが、オリフィス31iを廃止して、入口配管15aに減圧部を配置する場合は、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路の冷媒入口部によって液排出口を構成すればよい。
 さらに、上述の実施形態では、液排出口31jを、ボデー部30のうち気液分離空間30fの外周側壁面を形成する部位に設けた例を説明したが、液排出口31jの配置はこれに限定されない。すなわち、中心軸CLを鉛直方向に対して傾斜させることによって、中心点OPを交点CPよりも下方側に位置付けることができれば、気液分離空間30fの底面を形成する部位に、液排出口31jを設けてもよい。
 (3)上述の実施形態では、エジェクタモジュール13をエンジンルーム内に配置した例を説明したが、ファイアウォール50よりも車室内側に配置してもよい。
 さらに、エジェクタモジュール13を、ファイアウォール50の貫通穴50aの内周側に配置してもよい。この場合は、エジェクタモジュール13の一部がエンジンルーム側に配置され、別の一部が車室内側に配置される。従って、エジェクタモジュール13の外周側と貫通穴50aの開口縁部の隙間には、第1実施形態と同様の機能を果たすパッキンを配置することが望ましい。
 (4)上述の実施形態では、本開示に係るエジェクタ式冷凍サイクル装置10を、車両用空調装置に適用した例を説明したが、本開示に係るエジェクタ式冷凍サイクル装置10の適用はこれに限定されない。例えば、車両用の冷凍冷蔵装置に適用してもよい。

 

Claims (4)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および前記昇圧部(13c)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、
     前記気液分離空間(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、を備え、
     前記気液分離空間(30f)は、回転体形状に形成されており、
     前記ボデー部(30)には、前記気液分離空間(30f)にて分離された液相冷媒を、前記蒸発器(14)側へ流出させる液排出口(31j)が設けられており、
     前記気液分離空間(30f)の中心軸(CL)は、鉛直方向に対して傾斜しており、
     前記液排出口(31j)の中心点(OP)は、前記気液分離空間(30f)の底面の延長線(BL)と前記中心軸(CL)との交点(CP)よりも下方側に位置付けられているエジェクタ式冷凍サイクル装置。
  2.  前記交点(CP)から鉛直方向上方側へ向かう線分および前記中心点(OP)を含む断面において、前記交点(CP)から鉛直方向上方側へ向かう線分と、前記交点(CP)から前記中心軸(CL)に沿って上方側へ向かう線分との間に形成される角度を傾斜角θとしたときに、
     θ≦85°
    となっている請求項1に記載のエジェクタ式冷凍サイクル装置。
  3.  車両に搭載されるエジェクタ式冷凍サイクル装置であって、
     前記気液分離空間(30f)の中心軸(CL)は、車両の鉛直方向に対して車両の前後方向に傾斜している請求項1または2に記載のエジェクタ式冷凍サイクル装置。
  4.  前記ノズル部(13a)の中心軸は、前記気液分離空間(30f)の前記中心軸(CL)に一致している請求項1ないし3の何れか一つに記載のエジェクタ式冷凍サイクル装置。

     
PCT/JP2015/004093 2014-10-24 2015-08-18 エジェクタ式冷凍サイクル装置 WO2016063441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-217456 2014-10-24
JP2014217456A JP2016084966A (ja) 2014-10-24 2014-10-24 エジェクタ式冷凍サイクル

Publications (1)

Publication Number Publication Date
WO2016063441A1 true WO2016063441A1 (ja) 2016-04-28

Family

ID=55760505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004093 WO2016063441A1 (ja) 2014-10-24 2015-08-18 エジェクタ式冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2016084966A (ja)
WO (1) WO2016063441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442274B2 (en) 2014-10-24 2019-10-15 Denso Corporation Ejector refrigeration cycle device and low outside temperature operation thereof
US10495350B2 (en) 2014-10-24 2019-12-03 Denso Corporation Ejector-type refrigeration cycle
US11225125B2 (en) * 2017-07-31 2022-01-18 Denso Corporation Integrated valve device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320933A (ja) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp 気液分離器およびその製造方法
JP2005265223A (ja) * 2004-03-16 2005-09-29 Denso Corp 冷凍サイクル装置および冷凍サイクル
JP2009222277A (ja) * 2008-03-14 2009-10-01 Ntn Corp 空気サイクル冷凍装置
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ
JP2014142166A (ja) * 2012-12-27 2014-08-07 Denso Corp エジェクタ
JP2014167377A (ja) * 2013-02-28 2014-09-11 Hibiya Eng Ltd エジェクタ式冷凍機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320933A (ja) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp 気液分離器およびその製造方法
JP2005265223A (ja) * 2004-03-16 2005-09-29 Denso Corp 冷凍サイクル装置および冷凍サイクル
JP2009222277A (ja) * 2008-03-14 2009-10-01 Ntn Corp 空気サイクル冷凍装置
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ
JP2014142166A (ja) * 2012-12-27 2014-08-07 Denso Corp エジェクタ
JP2014167377A (ja) * 2013-02-28 2014-09-11 Hibiya Eng Ltd エジェクタ式冷凍機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442274B2 (en) 2014-10-24 2019-10-15 Denso Corporation Ejector refrigeration cycle device and low outside temperature operation thereof
US10495350B2 (en) 2014-10-24 2019-12-03 Denso Corporation Ejector-type refrigeration cycle
US11225125B2 (en) * 2017-07-31 2022-01-18 Denso Corporation Integrated valve device

Also Published As

Publication number Publication date
JP2016084966A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
JP5729359B2 (ja) 冷凍サイクル装置
WO2015111116A1 (ja) ヒートポンプサイクル装置
WO2014076903A1 (ja) エジェクタ
WO2016152048A1 (ja) エジェクタ式冷凍サイクル
WO2015040850A1 (ja) エジェクタ式冷凍サイクル
WO2014076905A1 (ja) 冷凍サイクル装置
WO2016063441A1 (ja) エジェクタ式冷凍サイクル装置
JP5999071B2 (ja) エジェクタ
WO2019026530A1 (ja) 冷凍サイクル装置
JP6459807B2 (ja) エジェクタ式冷凍サイクル
JP6720934B2 (ja) エジェクタモジュール
JP6511873B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6319041B2 (ja) エジェクタ式冷凍サイクル
JP6319043B2 (ja) エジェクタ式冷凍サイクル
WO2016031157A1 (ja) エジェクタ式冷凍サイクル
WO2016181639A1 (ja) 冷凍サイクル装置
JP6500737B2 (ja) エジェクタ式冷凍サイクル
WO2018159321A1 (ja) エジェクタモジュール
JP6319042B2 (ja) エジェクタ式冷凍サイクル
WO2016031155A1 (ja) エジェクタ式冷凍サイクル
JP2017015346A (ja) エジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851724

Country of ref document: EP

Kind code of ref document: A1