WO2016062036A1 - 一种谐振器和腔体滤波器 - Google Patents

一种谐振器和腔体滤波器 Download PDF

Info

Publication number
WO2016062036A1
WO2016062036A1 PCT/CN2015/076649 CN2015076649W WO2016062036A1 WO 2016062036 A1 WO2016062036 A1 WO 2016062036A1 CN 2015076649 W CN2015076649 W CN 2015076649W WO 2016062036 A1 WO2016062036 A1 WO 2016062036A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
resonator
cavity
loading portion
outer diameter
Prior art date
Application number
PCT/CN2015/076649
Other languages
English (en)
French (fr)
Inventor
赵丽娟
周虹
沈楠
穆学禄
吴建军
白文德
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016062036A1 publication Critical patent/WO2016062036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies

Definitions

  • This paper deals with resonator resonator and filter techniques, especially a resonator and cavity filter.
  • the resonator is the main component of the filter.
  • the conventional form of the resonator is a coaxial cavity resonator and a hat resonator.
  • the coaxial cavity resonator is made of a conductive material, and the length is usually 1/4 of the wavelength of the resonant frequency. This type of resonator is large in size, resulting in a larger filter volume.
  • the resonator is usually formed in the form of a flange, that is, a hat-shaped resonator.
  • the hat resonator is an annular disk that is added to the open section of the coaxial cavity resonator.
  • the function of the disc is to increase the equivalent capacitance value with the cavity, thereby reducing the resonance frequency and achieving the purpose of reducing the size at the same frequency.
  • the power capacity and frequency tuning range of the filter will also decrease. Therefore, how to improve the power capacity and frequency adjustment range of the filter becomes the primary technical problem in the field of cavity filter when the filter volume is small.
  • the cavity filter is a single-chamber filter, and includes a cavity 11 with an open upper end, a cover 12, and a tuning screw 13
  • the resonator 14 is fixed on the bottom plate 16 of the cavity 11 and received in the cavity 11.
  • the cover 12 can be fixedly mounted on the opening of the cavity 11 by screwing or welding, and the cover 12 is provided with a nut.
  • the tuning screw 13 is engaged with the nut and one end passes through the cover plate 12 and protrudes into the cavity 11.
  • the resonator 14 is provided with a through hole 15 therebetween, and the tuning screw 13 extends into the through hole 15 and the outer wall of the resonator 14 It is fixedly connected to the bottom plate 16 of the cavity 11.
  • the technical problem to be solved by the present invention is to provide a resonator and a cavity filter capable of improving the power capacity of the cavity filter based on the frequency adjustment by the tuning screw.
  • a resonator having a loading portion (1) at an upper end, a through hole (2) at the middle, and a fixing hole (3) at a lower end;
  • the loading portion (1) is composed of a plurality of curved geometric structures
  • the geometric center position of the loading portion (1) is hollowed out, and the hollowing radius is the same as the radius of the through hole (2).
  • the through hole (2) and the fixing hole (3) have the same outer diameter.
  • the through hole (2) includes a through hole upper end (2-1) and a through hole lower end (2-2);
  • the outer diameter of the upper end (2-1) of the through hole is larger than the outer diameter of the lower end (2-2) of the through hole;
  • the inner diameter of the upper end (2-1) of the through hole is larger than the inner diameter of the lower end (2-2) of the through hole;
  • the outer diameter of the lower end of the through hole (2-2) is equal to the outer diameter of the fixing hole (3);
  • the inner diameter of the lower end (2-2) of the through hole is larger than the inner diameter of the fixing hole (3).
  • the outer diameter of the resonator is 1.5 to 3 times the radius of the fixing hole (3).
  • the curvilinear geometry is semi-circular.
  • the outer surface of the loading portion (1) is covered with a conductive material, and the covering thickness is greater than a skin depth of the conductive material corresponding to the resonant frequency;
  • the conductive material is attached to the inner material of the loading portion (1).
  • the resonator is of the same material as the outer surface of the loading portion (1).
  • the loading portion (1) has a thickness of 1 mm.
  • a cavity filter comprising:
  • a cavity (21) having an open upper end, a cover plate (22) mounted at an opening of the cavity (21), a tuning screw (23), and a resonator are fixed to the cavity through a fixing hole (3) (21)
  • the bottom plate is received in the cavity (21)
  • the cover plate (22) is provided with a nut (24)
  • the tuning screw (23) is engaged with the nut (24) and one end passes through the a cover plate (22) and extending into the cavity (21);
  • the tuning screw (23) extends into the through hole (2) of the resonator
  • the outer wall of the resonator is fixedly connected to the bottom plate of the cavity (21);
  • the resonator is any of the above resonators.
  • the technical solution provided by the present invention includes: a loading part at the upper end, a through hole 2 in the middle, and a fixing hole 3 at the lower end; the loading part 1 is composed of a plurality of curved geometric structures; the loading part 1 The geometric center position is hollowed out, and the hollowing radius is the same as the radius of the through hole 2.
  • the technical solution of the present invention increases the resonator and the cavity by providing a resonator including a loading portion 1 having a curved geometry, a through hole 2 and a fixing hole 3, and a cavity filter through the fixing hole 3.
  • the equivalent capacitance reduces the resonant frequency of the cavity and the maximum field strength of the link, increases the cavity energy storage of the cavity filter, and achieves the purpose of increasing the power capacity of the cavity.
  • FIG. 1 is a side view of a related art coaxial cavity resonator
  • FIG. 2a is a structural block diagram of a resonator according to an embodiment of the present invention.
  • 2b is a top plan view of a resonator according to an embodiment of the present invention.
  • 3a is a structural block diagram of another resonator according to an embodiment of the present invention.
  • 3b is a schematic perspective structural view of another resonator according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of another resonator according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a cavity filter according to an embodiment of the present invention.
  • FIG. 2a is a structural block diagram of a resonator according to an embodiment of the present invention
  • FIG. 2b is a top view of a resonator according to an embodiment of the present invention
  • the upper end of the resonator is provided with a loading portion 1.
  • a through hole 2 is arranged in the middle, and a fixing hole 3 is arranged at the lower end;
  • the loading portion 1 is composed of a plurality of curved geometric structures
  • the geometric center position of the loading portion 1 is hollowed out, and the hollowing radius is the same as the radius of the through hole 2.
  • FIG. 3 is a structural block diagram of another resonator according to an embodiment of the present invention.
  • the resonator includes a through hole 2 and a fixing hole 3, and the outer diameter of the through hole 2 and the fixing hole 3 are the same, and the through hole 2 is The inner diameter is larger than the inner diameter of the fixed hole 3, and the outer portion of the resonator is composed of a plurality of curved geometric structures (the number of curved geometric structures in the figure is 4).
  • FIG. 4 is a structural block diagram of another resonator according to an embodiment of the present invention. As shown in FIG. 4, the through hole 2 includes a through hole upper end 2-1 and a through hole lower end 2-2;
  • the outer diameter of the upper end 2-1 of the through hole is larger than the outer diameter of the lower end 2-2 of the through hole; the inner diameter of the upper end 2-1 of the through hole is larger than the inner diameter of the lower end 2-2 of the through hole;
  • the outer diameter of the lower end 2-2 of the through hole is equal to the outer diameter of the fixed hole 3; the inner diameter of the lower end 2-2 of the through hole is larger than the inner diameter of the fixed hole 3.
  • Fig. 4 The biggest change of Fig. 4 compared to Fig. 2a is that, since the inner wall of the upper end 2-1 of the through hole is enlarged, when the resonator of the embodiment of the invention is disposed in the cavity filter, the tuning screw 23 and the inner wall of the resonator are also equivalent.
  • the capacitance therefore, increases the equivalent capacitance between the tuning screw 23 and the resonant rod, increases the energy storage of the cavity, thereby achieving the purpose of increasing the power capacity of the cavity.
  • the outer diameter of the resonator is 1.5 to 3 times the radius of the fixed hole 3.
  • the upper limit is set because the outer diameter of the resonator is too large, which may adversely affect. These effects include a high capacitive coupling at the corners of the top and side walls, which reduces the resonant frequency and thus the Q of the resonator.
  • the lower limit is set because, when the diameter is too small, the equivalent resistance value is increased, the energy loss is increased, and the Q value is decreased because the protrusion cannot handle the desired current value.
  • the curvilinear geometry is a semi-circular geometry.
  • the semicircular geometry is a preferred embodiment of the present invention, for other
  • the structure can also be applied to the present invention, for example, a geometric shape such as a rectangle or a triangle, and the geometry of the petal can also be considered. From the design point of view, it is not necessary to select a sharp corner shape because it increases the difficulty of the process and The tip is easy to discharge.
  • the number of curved geometric structures is related to the resonant frequency.
  • the resonant frequency is lower, wherein the number of curved geometric structures is 4, the shape of the semicircle, and the geometric structure has chamfers.
  • the resonant frequency is approximately 1.8G.
  • the outer surface of the loading portion 1 is covered with a conductive material covering a skin thickness greater than the resonant frequency for the conductive material used; the conductive material is attached to the inner material of the loading portion 1.
  • the covering thickness is greater than the skin depth of the conductive material used for the resonant frequency pair; the conductive material needs to be well adhered to the internal material of the loading portion 1 to be electrically conductive according to the skin depth and adhesion requirements of those skilled in the art. Materials are well known to those skilled in the art.
  • the resonator is of the same material as the outer surface of the loading portion 1.
  • the loading portion 1 has a thickness of 1 mm.
  • 1 mm is only a preferred embodiment of the present invention, and can be adjusted for other thicknesses set according to actual conditions.
  • FIG. 5 is a structural block diagram of a cavity filter according to an embodiment of the present invention.
  • the method includes: a cavity 21 with an upper end opening, a cover plate 22 installed at an opening of the cavity 21, a tuning screw 23, and a resonance.
  • the device is fixed on the bottom plate of the cavity 21 in the fixing hole 3 and is received in the cavity 21.
  • the cover plate 22 is provided with a nut 24, and the tuning screw 23 is engaged with the nut 24 and one end passes through the cover plate 22 and extends into the cavity.
  • the tuning screw 23 extends into the through hole 2;
  • the outer wall of the resonator is fixedly connected to the bottom plate of the cavity 21.
  • the loading portion 1 can increase the capacitance between the resonator and the cavity, thereby reducing the height of the resonator and increasing the energy storage of the cavity, thereby achieving the purpose of increasing the power capacity of the cavity.
  • the resonator shown in FIG. 5 is the resonator shown in FIG. 2a, and for the resonator, FIG. 3a and FIG. 4 can replace the resonator portion in FIG. 5;
  • the inner diameter of the fixing hole 3 is larger than the diameter of the tuning screw 23.
  • the resonator is fixed to the bottom plate of the cavity 21 by screws at the fixing holes 3.
  • the cover plate 22 is fixedly mounted at the opening of the cavity 21 by screwing or welding matched with the nut 24.
  • the technical solution of the present invention increases the resonator and the cavity by providing a resonator including a loading portion 1 having a curved geometry, a through hole 2 and a fixing hole 3, and a cavity filter through the fixing hole 3.
  • the equivalent capacitance reduces the resonant frequency of the cavity and the maximum field strength of the link, increases the cavity energy storage of the cavity filter, and achieves the purpose of increasing the power capacity of the cavity. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种谐振器和腔体滤波器,包括:上端设有加载部分1、中间设有通孔2、下端设有固定孔3;加载部分1由若干曲线形几何结构组成;加载部分1的几何中心位置挖空,挖空半径与通孔2半径相同。本发明技术方案通过将包含有曲线形几何结构的加载部分1、设置通孔2和固定孔3的谐振器,通过固定孔3设置与腔体滤波器,增加了谐振器与腔体之间的等效电容,降低了腔体谐振频率和链路的最大场强,增大了腔体滤波器的腔体储能,实现了增加腔体功率容量的目的。

Description

一种谐振器和腔体滤波器 技术领域
本文涉及滤波器的谐振器和滤波器技术,尤指一种谐振器和腔体滤波器。
背景技术
谐振器是滤波器的主要组成部分。适用于通信基站的腔体滤波器中,谐振器的常规形式是同轴空腔谐振器和帽形谐振器。
同轴空腔谐振器采用的是导电材料,长度通常是谐振频率波长的1/4,这种形式的谐振器尺寸大,导致滤波器体积也跟着变大。为了减小腔体滤波器的体积,通常把谐振器做成翻边形式,即帽形谐振器。帽形谐振器是在同轴空腔谐振器的开路段添加一个圆环形的盘。该盘的作用是增大与空腔之间的等效电容值,从而降低谐振频率,达到在同样频率下减小尺寸的目的。但随着滤波器的腔体积做小,滤波器的功率容量和频率的调谐范围也会随之减小。因此,在滤波器体积做小的情况下,如何提高滤波器的功率容量和频率的调节范围便成了腔体滤波器领域首要解决的技术难题。
图1为相关技术的同轴空腔谐振器的二维侧视图,如图1所示,该腔体滤波器为单腔滤波器,包括上端开口的腔体11、盖板12、调谐螺杆13和谐振器14固定在腔体11的底板16上并容纳于腔体11内,盖板12可以通过螺丝连接或焊接的方式固定安装在腔体11的开口处,且盖板12上设有螺母,调谐螺杆13与螺母配合且一端穿过盖板12并伸入腔体11内,其中,谐振器14中间设有通孔15,调谐螺杆13伸入通孔15内,且谐振器14的外壁与腔体11的底板16固定连接。通过上述谐振器,利用调谐螺杆13,实现了频率的调节,但是腔体滤波器的功率容量依旧成为腔体滤波器应用的限制。
发明内容
本发明要解决的技术问题是提供一种谐振器及腔体滤波器,能够在利用调谐螺杆进行频率调节的基础上,提高腔体滤波器的功率容量。
为了达到本发明的目的,采用如下技术方案:
一种谐振器,该谐振器上端设有加载部分(1)、中间设有通孔(2)、下端设有固定孔(3);
所述加载部分(1)由多个曲线形几何结构组成;
所述加载部分(1)的几何中心位置挖空,挖空半径与所述通孔(2)的半径相同。
可选地,所述通孔(2)和所述固定孔(3)的外径相同。
可选地,所述通孔(2)包含有通孔上端(2-1)和通孔下端(2-2);
所述通孔上端(2-1)的外径大于所述通孔下端(2-2)的外径;
所述通孔上端(2-1)的内径大于所述通孔下端(2-2)的内径;
所述通孔下端(2-2)的外径等于所述固定孔(3)的外径;
所述通孔下端(2-2)的内径大于所述固定孔(3)的内径。
可选地,所述谐振器的外径为所述固定孔(3)半径的1.5~3倍。
可选地,所述曲线形几何结构为半圆形。
可选地,所述曲线形几何结构之间有倒角。
可选地,所述加载部分(1)的外表面采用导电材料覆盖,覆盖厚度为大于谐振频率对应的该导电材料的趋肤深度;
所述导电材料附着于所述加载部分(1)的内部材料。
可选地,所述谐振器与所述加载部分(1)的外表面材料相同。
可选地,所述加载部分(1)的厚度为1毫米。
一种腔体滤波器,包括:
上端开口的腔体(21)、安装在所述腔体(21)的开口处的盖板(22)、调谐螺杆(23)和谐振器通过固定孔(3)固定于所述腔体(21)的底板上并容纳于所述腔体(21)内,所述盖板(22)上设有螺母(24),调谐螺杆(23)与所述螺母(24)配合且一端穿过所述盖板(22)并伸入所述腔体(21)内;
所述调谐螺杆(23)伸入所述谐振器的通孔(2)内;
所述谐振器的外壁与所述腔体(21)的底板固定连接;
其中,所述谐振器为上述任意的谐振器。
与相关技术相比,本发明提供的技术方案,包括:上端设有加载部分1、中间设有通孔2、下端设有固定孔3;加载部分1由若干曲线形几何结构组成;加载部分1的几何中心位置挖空,挖空半径与通孔2半径相同。本发明技术方案通过将包含有曲线形几何结构的加载部分1、设置通孔2和固定孔3的谐振器,通过固定孔3设置与腔体滤波器,增加了谐振器与腔体之间的等效电容,降低了腔体谐振频率和链路的最大场强,增大了腔体滤波器的腔体储能,实现了增加腔体功率容量的目的。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为相关技术的同轴空腔谐振器的侧视图;
图2a为本发明实施例一种谐振器的结构框图;
图2b为本发明实施例一种谐振器的俯视图;
图3a为本发明实施例另一种谐振器的结构框图;
图3b为本发明实施例另一种谐振器的立体结构示意图;
图4为本发明实施例另一种谐振器的结构框图;
图5为本发明实施例一种腔体滤波器的结构框图。
本发明的较佳实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图2a为本发明实施例一种谐振器的结构框图;图2b为本发明实施例一种谐振器的俯视图;结合图2a和图2b所示,所述谐振器的上端设有加载部分1、中间设有通孔2、下端设有固定孔3;
加载部分1由多个曲线形几何结构组成;
加载部分1的几何中心位置挖空,挖空半径与通孔2半径相同。
图3为本发明实施例另一种谐振器的结构框图;如图3所示,谐振器包括有通孔2和固定孔3,通孔2和固定孔3的外径相同,通孔2的内径大于固定孔3的内径,谐振器的外部是由多个曲线形几何结构构成的(图中曲线形几何结构的个数为4)。
图4为本发明实施例另一种谐振器的结构框图;如图4所示,通孔2包含有通孔上端2-1和通孔下端2-2;
通孔上端2-1的外径大于通孔下端2-2的外径;通孔上端2-1的内径大于通孔下端2-2的内径;
通孔下端2-2的外径等于固定孔3的外径;通孔下端2-2的内径大于固定孔3的内径。
图4较图2a最大的变化在于,由于通孔上端2-1的内壁增大,将本发明实施例谐振器设置在腔体滤波器时,调谐螺杆23和谐振器内壁之间也有了等效电容,因此,增大了调谐螺杆23与谐振杆之间的等效电容,增加了腔体的储能,从而达到了增加腔体功率容量的目的。
对于上述本发明实施例三种谐振器,谐振器的外径为固定孔3半径的1.5~3倍。
需要说明的是,设定上限是因为谐振器的外径太大时,会产生不良影响。这些影响包括在顶壁和侧壁的角部产生较高的电容耦合,这将会降低谐振频率,进而减小谐振器的Q值。设定下限是因为,当直径太小时,会增加等效电阻值,增加能量的损耗,并会导致Q值减小,因为该凸起不能处理所期望的电流值。
曲线形几何结构为半圆形的几何结构。
需要说明的是,半圆形的几何结构是本发明的优选实施例,对于其他几 何结构也可以应用与本发明,例如,矩形、三角形等几何形状均可,类似于花瓣的几何形状也可以考虑,从设计上考虑,尽量不要选取有尖锐边角形状,因为会增加工艺难度以及尖端易放电。
可选地,曲线形几何结构之间有倒角。
需要说明的是,曲线形几何结构之间没有倒角并不影响本发明实施例谐振器的使用,倒角处理是本发明实施例的优选实施例而已。
另外,曲线形几何结构的个数与谐振频率有关,当曲线形几何结构个数越多时,谐振频率越低,其中曲线形几何结构个数为4,形状的半圆,几何结构之间有倒角时,谐振频率大约为1.8G。
加载部分1的外表面采用导电材料覆盖,覆盖厚度为大于谐振频率对用的该导电材料的趋肤深度;导电材料附着于加载部分1的内部材料。这里,覆盖厚度为大于谐振频率对用的该导电材料的趋肤深度;导电材料需能良好的附着于加载部分1的内部材料为本领域技术人员的根据趋肤深度和附着要求可以确定的导电材料,属于本领域技术人员的公知常识。
可选地,谐振器与加载部分1的外表面材料相同。
可选地,加载部分1的厚度为1毫米。1mm仅是本发明优选实施例,对于其他根据实际情况设定的厚度,可以进行调整。
图5为本发明实施例一种腔体滤波器的结构框图,如图5所示,包括:上端开口的腔体21、安装在腔体21的开口处的盖板22、调谐螺杆23和谐振器通过在固定孔3固定于腔体21的底板上并容纳于腔体21内,盖板22上设有螺母24,调谐螺杆23与螺母24配合且一端穿过盖板22并伸入腔体21内;
调谐螺杆23伸入通孔2内;
谐振器的外壁与腔体21的底板固定连接。
需要说明的是,通过加载部分1可以增加谐振器与腔体之间的电容,达到减小谐振器高度,增加腔体储能的作用,从而实现增加腔体功率容量的目的。
图5所示的谐振器为图2a所示的谐振器,对于谐振器,图3a和图4可以将图5中谐振器部分进行替换;
可选地,固定孔3的内径大于调谐螺杆23的直径。
谐振器通过在固定孔3采用螺钉固定于腔体21的底板。
盖板22通过与螺母24匹配的螺丝连接或焊接的方式固定安装在腔体21的开口处。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请,如本发明实施方式中的具体的实现方法。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明技术方案通过将包含有曲线形几何结构的加载部分1、设置通孔2和固定孔3的谐振器,通过固定孔3设置与腔体滤波器,增加了谐振器与腔体之间的等效电容,降低了腔体谐振频率和链路的最大场强,增大了腔体滤波器的腔体储能,实现了增加腔体功率容量的目的。因此本发明具有很强的工业实用性。

Claims (10)

  1. 一种谐振器,该谐振器上端设有加载部分(1)、中间设有通孔(2)、下端设有固定孔(3);
    所述加载部分(1)由多个曲线形几何结构组成;
    所述加载部分(1)的几何中心位置挖空,挖空半径与所述通孔(2)的半径相同。
  2. 根据权利要求1所述的谐振器,其中,所述通孔(2)和所述固定孔(3)的外径相同。
  3. 根据权利要求1所述的谐振器,其中,所述通孔(2)包含有通孔上端(2-1)和通孔下端(2-2);
    所述通孔上端(2-1)的外径大于所述通孔下端(2-2)的外径;
    所述通孔上端(2-1)的内径大于所述通孔下端(2-2)的内径;
    所述通孔下端(2-2)的外径等于所述固定孔(3)的外径;
    所述通孔下端(2-2)的内径大于所述固定孔(3)的内径。
  4. 根据权利要求1所述的谐振器,其中,所述谐振器的外径为所述固定孔(3)半径的1.5~3倍。
  5. 根据权利要求1~4中任一项所述的谐振器,其中,所述曲线形几何结构为半圆形。
  6. 根据权利要求1~3中任一项所述的谐振器,其中,所述曲线形几何结构之间有倒角。
  7. 根据权利要求1~4中任一项所述的谐振器,其中,所述加载部分(1)的外表面采用导电材料覆盖,覆盖厚度为大于谐振频率对应的该导电材料的趋肤深度;
    所述导电材料附着于所述加载部分(1)的内部材料。
  8. 根据权利要求1~4中任一项所述的谐振器,其中,所述谐振器与所述加载部分(1)的外表面材料相同。
  9. 根据权利要求6所述的谐振器,其中,所述加载部分(1)的厚度为1毫米。
  10. 一种腔体滤波器,包括:
    上端开口的腔体(21)、安装在所述腔体(21)的开口处的盖板(22)、调谐螺杆(23)和谐振器通过固定孔(3)固定于所述腔体(21)的底板上并容纳于所述腔体(21)内,所述盖板(22)上设有螺母(24),调谐螺杆(23)与所述螺母(24)配合且一端穿过所述盖板(22)并伸入所述腔体(21)内;
    所述调谐螺杆(23)伸入所述谐振器的通孔(2)内;
    所述谐振器的外壁与所述腔体(21)的底板固定连接;
    其中,所述谐振器为如权利要求1~9中任一项所述的谐振器。
PCT/CN2015/076649 2014-10-20 2015-04-15 一种谐振器和腔体滤波器 WO2016062036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410557677.5 2014-10-20
CN201410557677.5A CN105514551A (zh) 2014-10-20 2014-10-20 一种谐振器和腔体滤波器

Publications (1)

Publication Number Publication Date
WO2016062036A1 true WO2016062036A1 (zh) 2016-04-28

Family

ID=55722350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076649 WO2016062036A1 (zh) 2014-10-20 2015-04-15 一种谐振器和腔体滤波器

Country Status (2)

Country Link
CN (1) CN105514551A (zh)
WO (1) WO2016062036A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115169282A (zh) * 2022-08-03 2022-10-11 成都航空职业技术学院 一种多腔结构器件的功率容量预测方法及系统
CN115800924A (zh) * 2022-11-22 2023-03-14 无锡国弛强包装机械有限公司 一种高周波谐振发生装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808203B (zh) * 2018-07-23 2024-02-27 京信通信技术(广州)有限公司 同轴腔体谐振器及滤波器
CN209929461U (zh) * 2019-06-28 2020-01-10 瑞典爱立信有限公司 谐振器装置和滤波器装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645525A (zh) * 2009-08-07 2010-02-10 大富(深圳)科技有限公司 一种腔体滤波器
US20120092089A1 (en) * 2009-06-17 2012-04-19 Telefonaktiebolaget L M Ericsson (Publ) Dielectric Resonator Rod and Method in a Radio Frequency Filter
CN102623783A (zh) * 2012-04-28 2012-08-01 成都泰格微波技术股份有限公司 新型腔体滤波器谐振杆
CN202839916U (zh) * 2012-09-13 2013-03-27 深圳市大富科技股份有限公司 一种同轴腔体滤波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119466B (zh) * 2008-08-07 2015-02-04 Ace技术株式会社 用于扩大调谐范围的可调滤波器
CN102354778B (zh) * 2011-08-24 2014-03-26 京信通信系统(中国)有限公司 椭圆函数型低通滤波通路及采用它的通信腔体器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092089A1 (en) * 2009-06-17 2012-04-19 Telefonaktiebolaget L M Ericsson (Publ) Dielectric Resonator Rod and Method in a Radio Frequency Filter
CN101645525A (zh) * 2009-08-07 2010-02-10 大富(深圳)科技有限公司 一种腔体滤波器
CN102623783A (zh) * 2012-04-28 2012-08-01 成都泰格微波技术股份有限公司 新型腔体滤波器谐振杆
CN202839916U (zh) * 2012-09-13 2013-03-27 深圳市大富科技股份有限公司 一种同轴腔体滤波器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115169282A (zh) * 2022-08-03 2022-10-11 成都航空职业技术学院 一种多腔结构器件的功率容量预测方法及系统
CN115800924A (zh) * 2022-11-22 2023-03-14 无锡国弛强包装机械有限公司 一种高周波谐振发生装置
CN115800924B (zh) * 2022-11-22 2023-09-12 无锡国弛强包装机械有限公司 一种高周波谐振发生装置

Also Published As

Publication number Publication date
CN105514551A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016062036A1 (zh) 一种谐振器和腔体滤波器
US11444647B2 (en) Filter and transceiver comprising dielectric body resonators having frequency adjusting holes and a negative coupling hole
CN109309272A (zh) 一种用于介质滤波器的电容耦合结构
WO2014114265A1 (zh) 腔体滤波器
CN101252215A (zh) 带有螺旋刻槽结构内导体的微波谐振腔
WO2015070450A1 (zh) 谐振器、滤波器、双工器及多工器
EP3059799A1 (en) Dielectric resonator and dielectric filter
TW201535864A (zh) 錐形天線
JP2015506628A (ja) マルチモード帯域通過フィルタ
WO2018010610A1 (zh) 一种双层天线
CN103296343B (zh) 一种滤波器
CN102223142A (zh) 声波谐振器
WO2018010609A1 (zh) 一种微带双层天线
US20160164488A1 (en) Bulk acoustic wave resonator
CN204205010U (zh) 腔体滤波器
CN203260698U (zh) 一种腔体滤波器
WO2018010453A1 (zh) 双层天线
CN207994023U (zh) 腔体滤波器
JP2018011256A (ja) 誘電体導波管型共振部品およびその特性調整方法
WO2019153958A1 (zh) 一种应用于滤波器中的三模介质谐振腔结构
JP4796028B2 (ja) 誘電体共振器、及び誘電体共振器の制御方法
CN102623784A (zh) 一种谐振器及腔体滤波器
CN105280997A (zh) Te模介质谐振腔、滤波器及滤波方法
WO2021043099A1 (zh) 电容耦合结构、介质滤波器、通信天线和基站
CN104795615B (zh) 空腔滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852130

Country of ref document: EP

Kind code of ref document: A1