WO2020010984A1 - 一种容性交叉耦合结构及腔体滤波器 - Google Patents

一种容性交叉耦合结构及腔体滤波器 Download PDF

Info

Publication number
WO2020010984A1
WO2020010984A1 PCT/CN2019/090793 CN2019090793W WO2020010984A1 WO 2020010984 A1 WO2020010984 A1 WO 2020010984A1 CN 2019090793 W CN2019090793 W CN 2019090793W WO 2020010984 A1 WO2020010984 A1 WO 2020010984A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
resonator
support base
insulating support
coupling portion
Prior art date
Application number
PCT/CN2019/090793
Other languages
English (en)
French (fr)
Inventor
孟弼慧
祁军
夏金超
吴精强
Original Assignee
京信通信系统(中国)有限公司
京信通信技术(广州)有限公司
京信通信系统(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信技术(广州)有限公司, 京信通信系统(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Priority to EP19835085.2A priority Critical patent/EP3823090A4/en
Priority to BR112021000431-9A priority patent/BR112021000431A2/pt
Publication of WO2020010984A1 publication Critical patent/WO2020010984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a capacitive cross-coupling structure and a cavity filter.
  • the suppression of the filter is usually improved by adding a coupling structure in the cavity filter.
  • the coupling structure for the cavity filter is mostly a "U" wire structure, or a “flying rod with disk” structure.
  • the "U" wire structure is not suitable due to the limited space structure.
  • FIG. 1 is a cavity filter in the prior art.
  • Figure 1 takes a cavity filter including two resonant cavities as an example, and a resonator is set inside each resonant cavity.
  • the coupling structure 300 is a “flying rod 400 with a coupling plate 500 at both ends” structure.
  • the coupling structure 300 is installed in a cavity filter.
  • the coupling plate 500 needs to be very close to the resonator 200, which is difficult to assemble.
  • the coupling amount should be adjusted by adjusting the distance between the resonator 200 and the two ends of the coupling plate 500. Since the coupling plate 500 is very close to the resonator 200 and the debugging distance is limited, the coupling amount between the coupling structure 300 and the resonator 200 can be adjusted.
  • the tuning range is limited and cannot be adapted to more application scenarios.
  • Embodiments of the present invention provide a capacitive cross-coupling structure and a cavity filter, which can enhance the amount of coupling and increase the adjustable range of capacitive coupling.
  • an embodiment of the present invention provides a capacitive cross-coupling structure for coupling energy of a first resonator and a second resonator.
  • the coupling structure includes:
  • An insulating support base provided between the first resonator and the second resonator;
  • a coupling fly rod provided on the insulation support base including a first coupling portion provided between the first resonator and the insulation support base and provided on the insulation support base A second coupling portion between a second resonator and the insulating support base;
  • An end of the first coupling portion remote from the insulating support base is grounded, and an end of the second coupling portion remote from the insulating support base is suspended and maintained at a distance from the second resonator.
  • the first coupling portion is grounded, and a distance between the end of the second coupling portion far from the insulating support base and the second resonator is maintained to realize that the second coupling portion is far from the insulating support
  • the distance between one end of the base and the second resonator can be adjusted according to the required amount of coupling. Since the first coupling portion is grounded, even if the distance between the second coupling portion and the second resonator is short, the amount of coupling between the coupling fly rod and the resonator can be made larger.
  • the distance between the second coupling portion and the second resonator is adjusted to adjust the coupling structure, and the range of the coupling amount between the obtained coupling fly rod and the resonator is larger. It can be applied to many different application scenarios.
  • the coupling fly rod is detachably provided on the insulating support base.
  • the coupling fly rod is detachably provided on the insulating support seat, then the coupling fly rod can be applied to different coupling structures, and multiple coupling structures are obtained, and the application range is wider.
  • a distance between an end of the second coupling portion remote from the insulation support base and the second resonator is greater than 1 mm.
  • the distance between the end of the second coupling portion far from the insulating support base and the second resonator is greater than 1 mm, so as to ensure as far as possible the distance between the end of the second coupling portion far from the insulation support base and the second resonator.
  • the pitch is not too small to adjust the coupling amount, so as to ensure that the coupling structure of the mass-produced coupling structure is better when the coupling structure is mass-produced.
  • An end of the first coupling portion remote from the insulating support base is connected to the first resonator to be grounded;
  • An end of the first coupling portion remote from the insulating support base is connected to the bottom of the cavity between the first resonator and the insulating support base to be grounded;
  • An end of the first coupling portion remote from the insulating support base is connected to a cover plate on the first resonator to be grounded.
  • the first coupling part may be grounded in any one of the above three ways, which is more flexible.
  • a coupling disc is provided at an end of the second coupling portion remote from the insulating support base.
  • the distance between the coupling disc and the second resonator can be adjusted, or the diameter of the coupling disc can be adjusted so that the first coupling portion and the first
  • the coupling amount between the resonators and the coupling amount between the second coupling section and the second resonator is greater than a preset coupling amount, so as to achieve multi-directional adjustment of the coupling amount.
  • Optional also includes:
  • a support member is provided between the insulating support base and the first resonator, and an end of the first coupling portion remote from the insulating support base is provided on the insulating support base to be grounded.
  • the first coupling part may be connected to the ground of the first resonator through a middleware, that is, a support member, and the manner is more flexible.
  • the support and the first resonator are in an integrated structure
  • the support and the first resonator are in a separate structure.
  • the support member and the first resonator may be an integrated structure, which reduces debugging difficulty, ensures consistency in the production and assembly process, and improves production efficiency.
  • an end of the first coupling portion remote from the insulating support base is fixed on the support member by a threaded connection member.
  • the coupling fly rod is plated with a metal material.
  • the coupling fly rod may be plated with a metal material to ensure that it has good electrical conductivity as much as possible.
  • an embodiment of the present invention provides a cavity filter including a cavity, and the cavity is provided with the capacitive cross-coupling structure according to any one of the first aspect.
  • Optional also includes:
  • center lines of the third resonator and the fourth resonator are perpendicular to the center lines of the first resonator and the second resonator.
  • the coupling structure may also be applied to a filter having four resonant cavities to realize the double transmission zero point at the low end of the passband.
  • the coupling structure in the embodiment of the present invention can achieve a larger adjustment range of the coupling amount of the cavity filter, and can meet the requirement of the suppression degree that is difficult to achieve with the existing cavity filter.
  • the first coupling portion is grounded, and a distance between the end of the second coupling portion far from the insulating support base and the second resonator is maintained to realize that the second coupling portion is far from the insulating support
  • the distance between one end of the base and the second resonator can be adjusted according to the required amount of coupling. Since the first coupling portion is grounded, even if the distance between the second coupling portion and the second resonator is short, the amount of coupling between the coupling fly rod and the resonator can be made larger.
  • the distance between the second coupling portion and the second resonator is adjusted to adjust the coupling structure, and the range of the coupling amount between the obtained coupling fly rod and the resonator is larger. It can be applied to many different application scenarios.
  • FIG. 1 is a schematic structural diagram of a cavity filter provided in the prior art
  • FIG. 2 is a schematic structural diagram of a cavity filter according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a cavity filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a model of a conventional cavity filter
  • FIG. 5 is a schematic diagram of a cavity filter model according to an embodiment of the present invention.
  • FIG. 6 is a simulation diagram of a coupling amount range of a conventional cavity filter
  • FIG. 7 is a simulation diagram of a coupling amount range of a cavity filter according to an embodiment of the present invention.
  • the coupling structure 300 is configured as a “coupling plate 500 at both ends of the flying rod 400”.
  • the coupling amount is adjusted by adjusting the distance between the resonator 200 and the coupling plate 500 at both ends.
  • the disc 500 is very close to the resonator 200, and the debugging distance is limited, so that the adjustable range of the coupling amount between the coupling structure 300 and the resonator 200 is limited, and it cannot adapt to more application scenarios.
  • the embodiments of the present invention provide a capacitive cross-coupling structure and a cavity filter.
  • the two coupling parts of the coupling fly rod of the capacitive cross-coupling structure the two coupling parts of the coupling structure, the first A coupling part is grounded, and a distance between the end of the second coupling part far from the insulating support base and the second resonator is maintained, so as to achieve a distance between the end of the second coupling part far from the insulating support base and the second resonator.
  • the amount can be adjusted.
  • the coupling amount between the coupling fly rod and the resonator can be made larger, that is, the coupling amount of the cavity filter Larger.
  • the distance between the second coupling portion and the second resonator is adjusted to adjust the coupling structure, and the range of the coupling amount between the obtained coupling fly rod and the resonator is larger. That is, the coupling range of the cavity filter has a larger variation range, so that it can be applied to a variety of different application scenarios.
  • an embodiment of the present invention provides a capacitive cross-coupling structure, which is used to couple the energy of the first resonator 101 and the second resonator 201.
  • the first resonator 101 is located in the first resonant cavity 10
  • the second resonator 201 is located in the second resonant cavity 20.
  • the capacitive cross-coupling structure includes an insulating support base 30 and a coupling fly rod.
  • the insulating support base 30 is disposed between the first resonator 101 and the second resonator 201.
  • the coupling fly rod is provided on the insulating support base 30 and includes a first coupling portion 301 provided between the first resonator 201 and the insulating support base 30 and a second coupling portion 301 provided between the second resonator 201 and the insulating support base 30.
  • the first resonator 101 is provided with a first metal tuning screw 102
  • the second resonator 201 is provided with a second metal tuning screw 202.
  • the first coupling section 301 is used for coupling with the first resonator 101
  • the second coupling section 302 is used for coupling with the second resonator 201.
  • the first coupling portion 301 and the second coupling portion 302 are not limited, as long as any one of the coupling portions in the coupling structure is grounded, and the other coupling portion is within a certain distance of the resonator that is closer. Just fine.
  • the first coupling part 301 is grounded as an example.
  • the capacitive cross-coupling structure may be applied to the cavity filter.
  • the capacitive cross-coupling structure When the capacitive cross-coupling structure is installed in the cavity of the cavity filter, the first coupling portion 301 and the cavity filter
  • the middle ground connection that is, the end of the first coupling portion 301 away from the insulation support base 30 is grounded.
  • the distance between the end of the second coupling portion 302 far from the insulating support base 30 and the second resonator 201 is also maintained. It can also be understood as the distance between the end of the second coupling portion 302 far from the insulating support base 30 and the second resonator 201.
  • the distance is adjustable within a certain range to achieve at least two different coupling amounts.
  • the initial distance between the end of the second coupling portion 302 away from the insulating support base 30 and the second resonator 201 is greater than 1 mm.
  • the initial distance between the end of the second coupling portion 302 away from the insulating support base 30 and the second resonator 201 may be smaller. If the distance between the end of the second coupling portion 302 far from the insulating support 30 and the second resonator 201 is small, it is difficult to adjust other resonators by adjusting one or some resonators of the cavity filter. It is difficult to debug.
  • the initial distance between the end of the second coupling portion 302 far from the insulating support base 30 and the second resonator 201 is greater than 1 mm, and the distance between the end of the second coupling portion 302 far from the insulating support base and the second resonator can be ensured as much as possible. It is not too small to adjust the coupling amount, so as to ensure that the coupling structure of the mass-produced coupling structure is better when the coupling structure is mass-produced.
  • the traditional cavity filter is shown in Figure 1.
  • the coupling plate 500 needs to be very close to the resonator 200, which results in a limited debugging distance. Therefore, the adjustable range of the coupling amount between the coupling structure 300 and the resonator 200 is limited, and the range of the obtained coupling amount is also limited.
  • the first coupling portion 301 is grounded, if the same coupling amount as that in FIG. 1 is reached, the distance between the end of the second coupling portion 302 away from the insulating support base and the second resonator 201 is longer than that in FIG. 1. It will become larger, which makes it easier to assemble and improves the efficiency of assembly.
  • the distance between the end of the second coupling portion 302 far from the insulating support 30 and the second resonator 201 is the same as the distance between the coupling plate 500 and the resonator 200 shown in FIG. 1, compared with the coupling shown in FIG. 1
  • the amount of coupling between the second coupling portion 302 and the second resonator 201 is larger, so that the coupling structure provided by the embodiment of the present invention can be further Expand the scope of the coupling amount, applicable to more different application scenarios.
  • the second coupling portion 302 may be provided with a coupling disc 303, and a diameter of the coupling disc 303 may be within a certain range.
  • the distance between the coupling plate 303 and the second resonator 201 can be adjusted, or the diameter of the coupling plate 303 can be adjusted so that the coupling between the first coupling portion 301 and the first resonator 101 And the coupling amount between the second coupling section 302 and the second resonator 201 is greater than a preset coupling amount, so as to achieve multi-directional adjustment of the coupling amount.
  • the first coupling part 301 may be grounded in various ways.
  • an end of the first coupling portion 301 away from the insulating support base 30 may be connected to the first resonator 101 to be grounded.
  • an end of the first coupling portion 301 away from the insulating support base 30 may be connected to the bottom of the cavity between the first resonator 201 and the insulating support base 30 to be grounded.
  • the first coupling portion 301 may be connected to the cover plate of the first resonator 201 to be grounded. Because the cover plate and the first coupling portion 301 have a certain height difference, this makes it difficult to assemble the first coupling portion 301 when it is connected to the cover plate.
  • a support 103 may be further provided inside the first resonant cavity 10, and the support 103 and the first resonator 101 share a ground, so that the first coupling portion 301 is connected to the support 103 to achieve Ground.
  • the support 103 may be fixed on the first resonator 101. If the supporting member 103 is separated from the first resonator 101, the supporting member 103 may be adhered to the first resonator 101 by a possible fixing method, for example, by using a gel. Or in order to be more stable, the supporting member 103 and the first resonator 101 may be an integrated structure.
  • the integrated design reduces the difficulty of debugging, and solves the industry disadvantages of relying on the first resonator 101 to adjust the coupling amount during the debugging process due to assembly errors, ensuring the consistency of the production and assembly process and improving production efficiency , Suitable for mass production.
  • the supporting member 103 may be a columnar body adapted to the shape of the outer wall of the first resonator 101, or the supporting member 103 may be a convex structure or other possible supporting structures.
  • the first coupling portion 301 may be fixed on the support member 103 by a screw connection member 104. If the screw connection member 104 is made of a metal material, the screw connection member 104 needs to be plated with a certain thickness of metal material to ensure good electrical conductivity.
  • the inside of the first resonant cavity 10 and the second resonant cavity 20, the coupling fly rod and the like may be plated with a metal material of a certain thickness, for example, gold or silver or copper, so as to maintain good conductivity.
  • the capacitive cross-coupling structure provided by the embodiment of the present invention can be applied to a cavity filter having four resonant cavities.
  • the third resonant cavity 40 includes a third resonator 401
  • the fourth resonant cavity 50 includes a fourth resonator 501.
  • the center lines of the third resonant cavity 40 and the fourth resonant cavity 50 are in resonance with the first
  • the center line of the cavity 10 and the second resonant cavity 20 is perpendicular, and the coupling structure can be placed in the middle of the four resonators to achieve the double transmission zero point at the low end of the passband.
  • the coupling structure in the embodiment of the present invention can achieve a larger adjustment range of the coupling amount of the cavity filter, and can meet the requirement of the suppression degree that is difficult to achieve with the existing cavity filter.
  • the following describes the coupling structure provided by the embodiment of the present invention in combination with experimental data to make the adjustment range of the coupling amount of the cavity filter larger.
  • the cavity filter provided by the embodiment of the present invention is simulated as shown in FIG. 4, and the simulation result is shown in FIG. 5.
  • the traditional cavity filter is simulated as shown in FIG. 6, and the simulation result is shown in FIG. 7.
  • the distance between the end of the second coupling portion 302 away from the insulating support base 30 and the second resonator 201 is adjusted, and the coupling amount between the cavity filter provided by the embodiment of the present invention and the conventional cavity filter is shown in Table 1. .
  • the coupling amount of the embodiment of the present invention is at least increased compared to the conventional coupling amount. 2 times, for example, when the distance between the second coupling portion 302 and the second resonator 201 is 1 mm, the coupling amount of the embodiment of the present invention is 0.05799, and the conventional coupling amount is 0.01933, that is, the coupling amount of the embodiment of the present invention is conventional 3 times the amount of coupling.
  • the first coupling portion is grounded, and the distance between the end of the second coupling portion away from the insulation support and the second resonator is maintained to achieve the second
  • the distance between the end of the coupling portion away from the insulating support base and the second resonator can be adjusted according to the required coupling amount. Since the first coupling portion is grounded, even if the distance between the second coupling portion and the second resonator is short, the amount of coupling between the coupling fly rod and the resonator can be made larger.
  • the distance between the second coupling portion and the second resonator is adjusted to adjust the coupling structure, and the range of the coupling amount between the obtained coupling fly rod and the resonator is larger.
  • the distance between the second coupling portion and the second resonator is adjusted to adjust the coupling structure, and the range of the coupling amount between the obtained coupling fly rod and the resonator is larger.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种容性交叉耦合结构及腔体滤波器,能够增强耦合量,加大容性耦合可调节范围。其中的容性交叉耦合结构,用于耦合第一谐振器和第二谐振器能量,包括:绝缘支承座,所述绝缘支承座设于所述第一谐振器与所述第二谐振器之间;耦合飞杆,所述耦合飞杆设于所述绝缘支承座上,所述耦合飞杆包括设于所述第一谐振器与所述绝缘支承座之间的第一耦合部和设于所述第二谐振器与所述绝缘支承座之间的第二耦合部;其中,所述第一耦合部远离所述绝缘支承座的一端接地,所述第二耦合部远离所述绝缘支承座的一端悬空设置并与所述第二谐振器之间保持间距。

Description

一种容性交叉耦合结构及腔体滤波器 技术领域
本发明涉及通信技术领域,特别涉及一种容性交叉耦合结构及腔体滤波器。
背景技术
通常通过在腔体滤波器内增加耦合结构来实现提高滤波器的抑制度。目前针对腔体滤波器的耦合结构多为“U”型线结构,或“飞杆两端带盘”结构。然而在带有法兰盘的谐振器的腔体中,由于空间结构受限,“U”型线结构并不适用。
请参见图1,图1是现有技术中的腔体滤波器。图1以腔体滤波器包括两个谐振腔为例,每个谐振腔内部设置了一个谐振器。如图1所示,耦合结构300为“飞杆400两端带耦合盘500”结构,耦合结构300安装到腔体滤波器中,要实现较强的容性交叉偶合,针对任意一个谐振器200来说,就需要耦合盘500距离谐振器200非常近,较难装配。另外,要通过调整谐振器200与耦合盘500两端的距离来调试耦合量,由于耦合盘500距离谐振器200非常近,调试距离有限,从而使得耦合结构300和谐振器200之间的耦合量可调范围有限,不能适应较多的应用场景。
可见,目前的耦合结构使得腔体滤波器不能适应较多的应用场景。
发明内容
本发明实施例提供一种容性交叉耦合结构及腔体滤波器,能够增强耦合量,加大容性耦合可调节范围。
第一方面,本发明实施例提供了一种容性交叉耦合结构,用于耦合第一谐振器和第二谐振器能量,该耦合结构包括:
绝缘支承座,所述绝缘支承座设于所述第一谐振器与所述第二谐振器之间;
耦合飞杆,所述耦合飞杆设于所述绝缘支承座上,所述耦合飞杆包括设于所述第一谐振器与所述绝缘支承座之间的第一耦合部和设于所述第二谐振器 与所述绝缘支承座之间的第二耦合部;
其中,所述第一耦合部远离所述绝缘支承座的一端接地,所述第二耦合部远离所述绝缘支承座的一端悬空设置并与所述第二谐振器之间保持间距。
本发明实施例中,耦合结构的两个耦合部中,第一耦合部接地,第二耦合部远离绝缘支承座的一端与第二谐振器之间保持间距,以实现第二耦合部远离绝缘支承座的一端与第二谐振器之间的距离根据需要的耦合量可以调节。由于第一耦合部接地,这样即使第二耦合部与第二谐振器之间的距离较近,还是可以使得耦合飞杆与谐振器之间的耦合量较大。相对于现有技术,本发明实施例中,调节第二耦合部与第二谐振器之间距离来调整耦合结构,所得到的耦合飞杆与谐振器之间的耦合量的变化范围更大,从而能够适用多种不同的应用场景。
可选的,所述耦合飞杆可拆卸地设于所述绝缘支承座上。
在本发明实施例中,耦合飞杆可拆卸地设于绝缘支承座上,那么该耦合飞杆可以应用在不同的耦合结构中,获得多种耦合结构,应用范围更广。
可选的,所述第二耦合部远离所述绝缘支承座的一端与所述第二谐振器之间的间距大于1mm。
在本发明实施例中,第二耦合部远离绝缘支承座的一端与第二谐振器之间的间距大于1mm,以尽量保证第二耦合部远离绝缘支承座的一端与第二谐振器之间的间距不至于过小而难以调节耦合量,从而尽量保证批量生产耦合结构时,能够保证所批量生产的耦合结构的耦合一致性较好。
可选的,
所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器连接以接地;
或者,
所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器和所述绝缘支承座之间的腔体底部连接以接地;
或者,
所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器上的盖板 连接以接地。
在本发明实施例中,第一耦合部可以通过上述三种方式中的任意一种方式实现接地,较为灵活。
可选的,所述第二耦合部远离所述绝缘支承座的一端设置有耦合盘。
在本发明实施例中,在使用具有耦合结构的腔体滤波器时,可以调节耦合盘距离第二谐振器之间的距离,或者,调节耦合盘的直径,以使得第一耦合部与第一谐振器之间的耦合量,以及第二耦合部与第二谐振器之间的耦合量大于预设耦合量,以实现多方位调节耦合量。
可选的,还包括:
支撑件,所述支撑件设于所述绝缘支承座与所述第一谐振器之间,所述第一耦合部远离所述绝缘支承座的一端设于所述绝缘支承座上以接地。
在本发明实施例中,第一耦合部可以通过中间件,即支撑件实现与第一谐振器的地连接,方式较为灵活。
可选的,
所述支撑件与所述第一谐振器为一体式结构;
或者,
所述支撑件与所述第一谐振器为分离结构。
在本发明实施例中,支撑件与第一谐振器可以是一体式结构,降低了调试难度,保证了生产装配过程的一致性,提高了生产效率。
可选的,所述第一耦合部远离所述绝缘支承座的一端通过螺纹连接件固定在所述支撑件上。
可选的,所述耦合飞杆镀有金属材料。
在本发明实施例中,耦合飞杆可以镀有金属材料,以尽量保证其具有良好的导电性。
第二方面,本发明实施例提供了一种腔体滤波器,包括腔体,所述腔体内设有如第一方面中任一项所述的容性交叉耦合结构。
可选的,还包括:
第三谐振器;
第四谐振器;
其中,所述第三谐振器和所述第四谐振器的中心线与所述第一谐振器和所述第二谐振器的中心线垂直。
在本发明实施例中,耦合结构还可以适用于具有四个谐振腔的滤波器,来实现通带低端的双传输零点。与现有的腔体滤波器相比,本发明实施例中的耦合结构可以实现腔体滤波器的耦合量的调节范围更大,可以满足现有的腔体滤波器难于实现的抑制度要求。
本发明实施例中,耦合结构的两个耦合部中,第一耦合部接地,第二耦合部远离绝缘支承座的一端与第二谐振器之间保持间距,以实现第二耦合部远离绝缘支承座的一端与第二谐振器之间的距离根据需要的耦合量可以调节。由于第一耦合部接地,这样即使第二耦合部与第二谐振器之间的距离较近,还是可以使得耦合飞杆与谐振器之间的耦合量较大。相对于现有技术,本发明实施例中,调节第二耦合部与第二谐振器之间距离来调整耦合结构,所得到的耦合飞杆与谐振器之间的耦合量的变化范围更大,从而能够适用多种不同的应用场景。
附图说明
图1是现有技术提供的腔体滤波器的结构示意图;
图2为本发明实施例提供的腔体滤波器的一种结构示意图;
图3为本发明实施例提供的腔体滤波器的一种结构示意图;
图4为传统的腔体滤波器的模型示意图;
图5为本发明实施例提供的腔体滤波器的模型示意图;
图6为传统的腔体滤波器的耦合量范围的仿真图;
图7为本发明实施例提供的腔体滤波器的耦合量范围的仿真图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
目前,如图1所示的腔体滤波器,耦合结构300结构为“飞杆400两端带耦合盘500”结构,通过调整谐振器200与耦合盘500两端的距离来调试耦合量,由于耦合盘500距离谐振器200非常近,调试距离有限,从而使得耦合结构300和谐振器200之间的耦合量可调范围有限,不能适应较多的应用场景。
鉴于此,本发明实施例提供了一种容性交叉耦合结构及腔体滤波器,其中,容性交叉耦合结构的耦合飞杆的两个耦合部中,耦合结构的两个耦合部中,第一耦合部接地,第二耦合部远离绝缘支承座的一端与第二谐振器之间保持间距,以实现第二耦合部远离绝缘支承座的一端与第二谐振器之间的距离根据需要的耦合量可以调节。由于第一耦合部接地,这样即使第二耦合部与第二谐振器之间的距离较近,还是可以使得耦合飞杆与谐振器之间的耦合量较大,即腔体滤波器的耦合量较大。相对于现有技术,本发明实施例中,调节第二耦合部与第二谐振器之间距离来调整耦合结构,所得到的耦合飞杆与谐振器之间的耦合量的变化范围更大,即腔体滤波器的耦合量的变化范围更大,从而能够适用多种不同的应用场景。
请参见图2,本发明实施例提供了一种容性交叉耦合结构,该容性交叉耦合结构用于耦合第一谐振器101和第二谐振器201的能量。其中,第一谐振器101位于第一谐振腔10内,第二谐振器201位于第二谐振腔20内。该容性交叉耦合结构包括绝缘支承座30和耦合飞杆。其中,绝缘支承座30设置于第一谐振器101和第二谐振器201之间。耦合飞杆设于绝缘支承座30上,包括设于第一谐振器201与绝缘支承座30之间的第一耦合部301和设于第二谐振器201与绝缘支承座30之间的第二耦合部302。其中,第一谐振器101设置了第一金属调谐螺杆102,第二谐振器201设置了第二金属调谐螺杆202。第一耦合部301用于与第一谐振器101耦合,第二耦合部302用于与第二谐振器201耦合。
需要说明的是,本发明实施例,对第一耦合部301和第二耦合部302不限定,只要耦合结构中的任意一个耦合部接地,另一个耦合部距离较近的谐振器一定距离范围内即可。在下文中,以第一耦合部301接地为例。
在本发明实施例中,容性交叉耦合结构可以应用在腔体滤波器中,当容性交叉耦合结构安装在腔体滤波器中的腔体中时,第一耦合部301与腔体滤波器中的地连接,即第一耦合部301远离绝缘支承座30的一端接地。而第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间保持间距设置,也可以理解为第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间的距离在一定范围内可调,以实现至少两种不同的耦合量。
在本发明实施例中,生产腔体滤波器时,第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间初始的间距大于1mm。在生产时由于加工误差、组装误差等可能会导致第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间初始的间距更小。而如果第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间的间距很小,那么就较难通过调整腔体滤波器的某个或某些谐振器去调整其他谐振器,调试难度较大。因此,第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间初始的间距大于1mm,可以尽量保证第二耦合部远离绝缘支承座的一端与第二谐振器之间的间距不至于过小而难以调节耦合量,从而尽量保证批量生产耦合结构时,能够保证所批量生产的耦合结构的耦合一致性较好。
传统的腔体滤波器如图1所示,要实现较强的容性交叉偶合,针对任意一个谐振器200来说,就需要耦合盘500距离谐振器200非常近,这样就导致调试距离有限,从而使得耦合结构300和谐振器200之间的耦合量可调范围有限,那么得到的耦合量的范围也有限。而本发明实施例中,由于第一耦合部301接地,如果达到同图1同样的耦合量,那么第二耦合部302远离绝缘支承座的一端与第二谐振器201之间的距离较图1来说就会变大,从而较为容易装配,提高了装配效率。而如果第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间距离,同如图1所示的耦合盘500距离谐振器200的距离相同,相较图1所示的耦合盘500与谐振器200之间的耦合量来说,本发明实施例中,第二耦合部302与第二谐振器201之间的耦合量更大,从而本发明实施例提供的耦合结构可以进一步扩大耦合量的范围,适用更多种不同的应用场景。
在本发明实施例中,第二耦合部302可以设置耦合盘303,耦合盘303的直径可以位于一定范围内。在使用腔体滤波器时,可以调节耦合盘303距离第二谐振器201之间的距离,或者,调节耦合盘303的直径,以使得第一耦合部301与第一谐振器101之间的耦合量,以及第二耦合部302与第二谐振器201之间的耦合量大于预设耦合量,以实现多方位调节耦合量。
在本发明实施例中,第一耦合部301可以通过多种方式实现接地。可能的实施方式中,第一耦合部301远离绝缘支承座30的一端可以与第一谐振器101连接以接地。或者,第一耦合部301远离绝缘支承座30的一端可以与第一谐振器201和绝缘支承座30之间的腔体底部连接以接地。由于第一谐振器101或第一谐振器201和绝缘支承座30之间的腔体底部与第一耦合部301具有一定的高度差,这就使得第一耦合部301与第一谐振器101或者第一谐振器201和绝缘支承座30之间的腔体底部连接时,不易装配。可能的实施方式中,第一耦合部301可以与第一谐振器201的盖板连接以接地。由于盖板与第一耦合部301具有一定的高度差,这就使得第一耦合部301与盖板连接时,也存在不易装配的问题。
鉴于此,在本发明实施例中,第一谐振腔10内部还可以设置支撑件103,该支撑件103与第一谐振器101共地,这样第一耦合部301连接在支撑件103就可以实现接地。为了节约空间,也为了腔体滤波器内的结构部件更加稳固。支撑件103可以固定在第一谐振器101上。如果支撑件103与第一谐振器101是分离结构,可以通过可能的固定方式,例如通过胶体将支撑件103黏在第一谐振器101上。或者为了更加稳固,支撑件103与第一谐振器101可以是一体式结构。采用一体化设计降低了调试难度,并解决了由于装配误差而导致的调试过程中依靠扳动第一谐振器101来调节耦合量的行业弊病,保证了生产装配过程的一致性,提高了生产效率,适于批量生产。
在本发明实施例中,支撑件103可以是与第一谐振器101外壁形状相适配的柱状体,或者,支撑件103可以是凸起结构,或者其他可能的支撑结构。第一耦合部301可以通过螺纹连接件104固定在支撑件103上。如果螺纹连接件 104是由金属材质制成,那么螺纹连接件104上需要镀有一定厚度的金属材料,以保证具有良好的导电性。在本发明实施例中,第一谐振腔10、第二谐振腔20的内部,耦合飞杆等都可以镀有一定厚度的金属材料,例如,金或银或铜,尽量保持良好的导电性。
请参见图3,本发明实施例提供的容性交叉耦合结构可以应用于具有四个谐振腔的腔体滤波器。如图3所示,第三谐振腔40内包括第三谐振器401,第四谐振腔50内包括第四谐振器501,第三谐振腔40和第四谐振腔50的中心线与第一谐振腔10和第二谐振腔20的中心线垂直,耦合结构可以置于四个谐振器的中部,来实现通带低端的双传输零点。与现有的腔体滤波器相比,本发明实施例中的耦合结构可以实现腔体滤波器的耦合量的调节范围更大,可以满足现有的腔体滤波器难于实现的抑制度要求。
为了便于理解,以下结合实验数据说明本发明实施例提供的耦合结构使得腔体滤波器的耦合量的调节范围更大。在保持腔体滤波器的腔体尺寸及通信中心频点相同情况下,对本发明实施例提供的腔体滤波器,如图4所示进行仿真,仿真结果如图5所示。对传统的腔体滤波器,如图6所示进行仿真,仿真结果如图7所示。调整第二耦合部302远离绝缘支承座30的一端与第二谐振器201之间的距离,所得本发明实施例提供的腔体滤波器与传统的腔体滤波器的耦合量如表1所示。
表1传统耦合量与本发明实施例耦合量的数据表
Figure PCTCN2019090793-appb-000001
从表1中可以看出,当第二耦合部302远离绝缘支承座30的一端与第二谐振器201的距离相同的情况下,本发明实施例的耦合量比传统的耦合量至少 增大了2倍,例如,第二耦合部302与第二谐振器201的距离为1mm时,本发明实施例的耦合量是0.05799,传统的耦合量是0.01933,即本发明实施例的耦合量是传统的耦合量的3倍。
综上所述,本发明实施例中,耦合结构的两个耦合部中,第一耦合部接地,第二耦合部远离绝缘支承座的一端与第二谐振器之间保持间距,以实现第二耦合部远离绝缘支承座的一端与第二谐振器之间的距离根据需要的耦合量可以调节。由于第一耦合部接地,这样即使第二耦合部与第二谐振器之间的距离较近,还是可以使得耦合飞杆与谐振器之间的耦合量较大。相对于现有技术,本发明实施例中,调节第二耦合部与第二谐振器之间距离来调整耦合结构,所得到的耦合飞杆与谐振器之间的耦合量的变化范围更大,从而满足同轴腔体对耦合量的要求,实现不同的频带和性能质保要求,能够适用多种不同的应用场景,降低成本。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种容性交叉耦合结构,用于耦合第一谐振器和第二谐振器能量,其特征在于,包括:
    绝缘支承座,所述绝缘支承座设于所述第一谐振器与所述第二谐振器之间;
    耦合飞杆,所述耦合飞杆设于所述绝缘支承座上,所述耦合飞杆包括设于所述第一谐振器与所述绝缘支承座之间的第一耦合部和设于所述第二谐振器与所述绝缘支承座之间的第二耦合部;
    其中,所述第一耦合部远离所述绝缘支承座的一端接地,所述第二耦合部远离所述绝缘支承座的一端悬空设置并与所述第二谐振器之间保持间距。
  2. 如权利要求1所述的容性交叉耦合结构,其特征在于,所述耦合飞杆可拆卸地设于所述绝缘支承座上。
  3. 如权利要求1所述的容性交叉耦合结构,其特征在于,所述第二耦合部远离所述绝缘支承座的一端与所述第二谐振器之间的间距大于1mm。
  4. 如权利要求1所述的容性交叉耦合结构,其特征在于,
    所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器连接以接地;
    或者,
    所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器和所述绝缘支承座之间的腔体底部连接以接地;
    或者,
    所述第一耦合部远离所述绝缘支承座的一端与所述第一谐振器上的盖板连接以接地。
  5. 如权利要求1所述的容性交叉耦合结构,其特征在于,所述第二耦合部远离所述绝缘支承座的一端设置有耦合盘。
  6. 如权利要求1所述的容性交叉耦合结构,其特征在于,还包括:
    支撑件,所述支撑件设于所述绝缘支承座与所述第一谐振器之间,所述第 一耦合部远离所述绝缘支承座的一端设于所述绝缘支承座上以接地。
  7. 如权利要求6所述的容性交叉耦合结构,其特征在于,所述第一耦合部远离所述绝缘支承座的一端通过螺纹连接件固定在所述支撑件上。
  8. 如权利要求1所述的容性交叉耦合结构,其特征在于,所述耦合飞杆镀有金属材料。
  9. 一种腔体滤波器,包括腔体,其特征在于,所述腔体内设有如权利要求1至8中任一项所述的容性交叉耦合结构。
  10. 如权利要求9所述的腔体滤波器,其特征在于,还包括:
    第三谐振器;
    第四谐振器;
    其中,所述第三谐振器和所述第四谐振器的中心线与所述第一谐振器和所述第二谐振器的中心线垂直。
PCT/CN2019/090793 2018-07-13 2019-06-11 一种容性交叉耦合结构及腔体滤波器 WO2020010984A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19835085.2A EP3823090A4 (en) 2018-07-13 2019-06-11 CAPACITIVE CROSS-COUPLING STRUCTURE AND CAVITY FILTER
BR112021000431-9A BR112021000431A2 (pt) 2018-07-13 2019-06-11 Estrutura de acoplamento cruzado capacitivo e filtro de cavidade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810768244.2A CN108649303A (zh) 2018-07-13 2018-07-13 一种容性交叉耦合结构及腔体滤波器
CN201810768244.2 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020010984A1 true WO2020010984A1 (zh) 2020-01-16

Family

ID=63751614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090793 WO2020010984A1 (zh) 2018-07-13 2019-06-11 一种容性交叉耦合结构及腔体滤波器

Country Status (4)

Country Link
EP (1) EP3823090A4 (zh)
CN (1) CN108649303A (zh)
BR (1) BR112021000431A2 (zh)
WO (1) WO2020010984A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851803A (zh) * 2020-06-28 2021-12-28 大富科技(安徽)股份有限公司 一种滤波器及通信设备
CN113964463A (zh) * 2020-07-21 2022-01-21 大富科技(安徽)股份有限公司 一种滤波器、飞杆卡座及通信设备
CN114024112A (zh) * 2021-12-08 2022-02-08 江苏贝孚德通讯科技股份有限公司 一种直排腔电容耦合结构及耦合方法
CN115298899A (zh) * 2020-02-20 2022-11-04 株式会社Kmw 空腔滤波器及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649303A (zh) * 2018-07-13 2018-10-12 京信通信系统(中国)有限公司 一种容性交叉耦合结构及腔体滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321997A2 (en) * 2001-12-21 2003-06-25 Radio Frequency Systems, Inc. Adjustable capacitive coupling structure
CN101527380A (zh) * 2009-04-22 2009-09-09 京信通信系统(中国)有限公司 具有容性交叉耦合装置的腔体射频器件
CN201417813Y (zh) * 2009-05-06 2010-03-03 摩比天线技术(深圳)有限公司 同轴腔体谐振器容性交叉耦合结构
CN201877546U (zh) * 2010-11-26 2011-06-22 武汉凡谷电子技术股份有限公司 一种腔体滤波器交叉耦合装置
CN108649303A (zh) * 2018-07-13 2018-10-12 京信通信系统(中国)有限公司 一种容性交叉耦合结构及腔体滤波器
CN208298985U (zh) * 2018-07-13 2018-12-28 京信通信系统(中国)有限公司 一种容性交叉耦合结构及腔体滤波器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924718B2 (en) * 2002-12-04 2005-08-02 Rs Microwave Company Coupling probe having an adjustable tuning conductor
EP1895615A1 (en) * 2006-08-31 2008-03-05 Matsushita Electric Industrial Co., Ltd. Adjustable coupling
CN101009396B (zh) * 2007-01-18 2010-11-10 华为技术有限公司 定向耦合器及具有该定向耦合器的装置
KR101756124B1 (ko) * 2015-11-30 2017-07-11 주식회사 케이엠더블유 크로스 커플링 노치 구조를 구비한 캐비티 타입의 무선 주파수 필터
CN206116568U (zh) * 2016-08-29 2017-04-19 广东通宇通讯股份有限公司 一种滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321997A2 (en) * 2001-12-21 2003-06-25 Radio Frequency Systems, Inc. Adjustable capacitive coupling structure
CN101527380A (zh) * 2009-04-22 2009-09-09 京信通信系统(中国)有限公司 具有容性交叉耦合装置的腔体射频器件
CN201417813Y (zh) * 2009-05-06 2010-03-03 摩比天线技术(深圳)有限公司 同轴腔体谐振器容性交叉耦合结构
CN201877546U (zh) * 2010-11-26 2011-06-22 武汉凡谷电子技术股份有限公司 一种腔体滤波器交叉耦合装置
CN108649303A (zh) * 2018-07-13 2018-10-12 京信通信系统(中国)有限公司 一种容性交叉耦合结构及腔体滤波器
CN208298985U (zh) * 2018-07-13 2018-12-28 京信通信系统(中国)有限公司 一种容性交叉耦合结构及腔体滤波器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298899A (zh) * 2020-02-20 2022-11-04 株式会社Kmw 空腔滤波器及其制造方法
CN115298899B (zh) * 2020-02-20 2024-04-02 株式会社Kmw 空腔滤波器及其制造方法
JP7470197B2 (ja) 2020-02-20 2024-04-17 ケーエムダブリュ・インコーポレーテッド キャビティフィルタおよびその製造方法
CN113851803A (zh) * 2020-06-28 2021-12-28 大富科技(安徽)股份有限公司 一种滤波器及通信设备
CN113964463A (zh) * 2020-07-21 2022-01-21 大富科技(安徽)股份有限公司 一种滤波器、飞杆卡座及通信设备
CN114024112A (zh) * 2021-12-08 2022-02-08 江苏贝孚德通讯科技股份有限公司 一种直排腔电容耦合结构及耦合方法

Also Published As

Publication number Publication date
EP3823090A1 (en) 2021-05-19
CN108649303A (zh) 2018-10-12
BR112021000431A2 (pt) 2021-04-06
EP3823090A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
WO2020010984A1 (zh) 一种容性交叉耦合结构及腔体滤波器
RU2531570C1 (ru) Диэлектрический резонатор поперечной магнитной волны, диэлектрический фильтр поперечной магнитной волны и базовая станция
US4142164A (en) Dielectric resonator of improved type
JP2016521092A (ja) 誘電体共振器、誘電体共振器を用いた誘電体フィルタ、送受信機、および基地局
CN209929461U (zh) 谐振器装置和滤波器装置
JPS61121502A (ja) 誘電体共振装置
KR20130080821A (ko) 다중 모드 대역 통과 필터
WO2015168883A1 (zh) 一种横磁(tm)模介质滤波器
TWI708425B (zh) 共振器、濾波器及通信裝置
CN108352592B (zh) 具有介电谐振器的微波射频滤波器
JP5831805B2 (ja) 同軸共振器装置及びその製造方法
US20170309982A1 (en) Resonator, filter, and communication device
JP2018011256A (ja) 誘電体導波管型共振部品およびその特性調整方法
CN207426092U (zh) 一种超薄滤波器
CN103855455B (zh) 一种谐振子、谐振腔、滤波器件及电磁波设备
CN208298985U (zh) 一种容性交叉耦合结构及腔体滤波器
CN112542667B (zh) 一种滤波器
US2569036A (en) Transformer
TWM622574U (zh) 腔體濾波器
CN208539071U (zh) 低频段腔体滤波器宽带端口与滤波器
CN213752992U (zh) 用于滤波器的耦合结构、滤波器及射频器件
CN109841934B (zh) 滤波器的增强型容性耦合结构及滤波器
CN207852876U (zh) 耦合飞杆及射频器件
CN109037866A (zh) 低频段腔体滤波器宽带端口及其宽度调节方法与滤波器
JPS6314522B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000431

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019835085

Country of ref document: EP

Effective date: 20210215

ENP Entry into the national phase

Ref document number: 112021000431

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210111