WO2016060318A1 - 갭 체적밀도값이 균일한 촉매컨버터 제조방법 - Google Patents

갭 체적밀도값이 균일한 촉매컨버터 제조방법 Download PDF

Info

Publication number
WO2016060318A1
WO2016060318A1 PCT/KR2014/010506 KR2014010506W WO2016060318A1 WO 2016060318 A1 WO2016060318 A1 WO 2016060318A1 KR 2014010506 W KR2014010506 W KR 2014010506W WO 2016060318 A1 WO2016060318 A1 WO 2016060318A1
Authority
WO
WIPO (PCT)
Prior art keywords
mat
pipe
catalyst
catalytic converter
measuring
Prior art date
Application number
PCT/KR2014/010506
Other languages
English (en)
French (fr)
Inventor
이철호
김석현
박재득
진상호
김병준
김민성
Original Assignee
세종공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종공업 주식회사 filed Critical 세종공업 주식회사
Publication of WO2016060318A1 publication Critical patent/WO2016060318A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the present invention relates to a catalytic converter, and more particularly, to a method for producing a catalytic converter comprising the step of pressurizing the can pipe so that the volume density value of the mat located in the gap between the catalyst and the can pipe is constant.
  • an exhaust system of a vehicle is a device that is disposed on the floor of the vehicle floor and removes noise and impurities of various exhaust gases generated in an engine and discharges them to the outside.
  • one or more silencers that reduce noise by imparting flow resistance to the exhaust gas discharged from the engine, and carbon dioxide and water that are harmless to the human body by oxidizing and reducing hydrocarbons, carbon monoxide and nitrogen oxides, which are harmful substances in the exhaust gas.
  • catalytic converters for converting to nitrogen, oxygen, and the like.
  • the catalytic converter includes a cylindrical catalyst, a mat wrapped on the outer circumferential surface of the catalyst, and a cylindrical can pipe containing the catalyst on which the mat is wrapped.
  • the mat is composed of a heat-resistant fiber material, interposed between the catalyst and the can pipe to secure the sealing property to prevent the unrefined exhaust gas from escaping between the catalyst and the housing, and the elasticity of the catalyst It serves as support, insulation between the catalyst and the housing. Therefore, the role of the mat is very important to maintain the performance of the catalytic converter for a long time.
  • the mat When manufacturing such a catalytic converter, first, the mat is wrapped on the outer circumferential surface of the catalyst and inserted into the can pipe, and then the can pipe is pressed down to downsize the can pipe, thereby integrally combining the catalyst, the mat and the can pipe. Combine.
  • the mat is made of a fiber material can be made uniform in size, but there may be a difficulty in producing a uniform density, the space between the catalyst and the can pipe by downsizing the can pipe equally regardless of the density difference of the mat
  • the volume density value of, ie, the gap bulk density value GBD, hereinafter referred to as GBD value
  • GBD value the gap bulk density value
  • various problems may occur. For example, if the GBD value is excessively high, there is a risk that the catalyst is excessively pressurized during the can pipe down sizing process, and if the GBD value is excessively low, pressure may leak through the mat.
  • the present invention has been proposed to solve the above problems, and an object of the present invention is to provide a method for producing a catalytic converter that can maintain a constant GBD value by appropriately adjusting the downsizing ratio of the can pipe even when the density of the mat is different. .
  • Catalytic converter manufacturing method for achieving the above object, the first step of measuring the outer diameter of the catalyst; A second step of measuring a mat weight of the sheet shape cut to a predetermined standard; A third step of wrapping the mat on the outer circumferential surface of the catalyst by placing the catalyst on the upper surface of the mat; After measuring the inner diameter of the can pipe, inserting a mat-wrapped catalyst into the can pipe; And calculating a gap volume between the catalyst and the can pipe and the density of the mat, and pressurizing the can pipe to downsize the GBD so as to fall within a reference range.
  • the GBD value is calculated by the following [formula 1].
  • the value obtained by dividing the difference between the canpipe inner diameter and the catalyst outer diameter by 2 is set smaller than the thickness of the initial mat.
  • the fifth step is configured to press the entire outer surface of the can pipe to downsize the can pipe.
  • the sixth step may further include measuring an outer diameter of the can pipe.
  • the downsizing ratio can be appropriately adjusted during the downsizing of the can pipe, even if the density of the supplied mat is different or an error occurs in the outer diameter of the catalyst and the inner diameter of the can pipe.
  • the GBD value of the catalytic converter can be kept constant at all times.
  • FIG. 1 is a flowchart of a method of manufacturing a catalytic converter according to the present invention
  • FIG. 2 is a schematic diagram illustrating a process of manufacturing a catalytic converter using the method of manufacturing a catalytic converter according to the present invention.
  • 3 is a cross-sectional view of the catalytic converter when the density of the supplied mat is low.
  • FIG. 4 is a cross-sectional view of the catalytic converter in the case where the density of the supplied mat is high.
  • FIG. 1 is a flowchart of a method of manufacturing a catalytic converter according to the present invention.
  • the present invention is composed of a cylindrical catalyst, a mat wrapped on the outer circumferential surface of the catalyst, a cylindrical can pipe containing the catalyst wrapped on the mat, and containing harmful substances such as hydrocarbons, carbon monoxide and
  • the present invention relates to a method for producing a catalytic converter that converts nitrogen oxides into carbon dioxide, water, nitrogen, and oxygen, which are harmless to the human body, by oxidation and reduction. It is characterized in that the volume density value of the space between the pipes, that is, the gap volume density value (GBD, hereinafter referred to as GBD value) can be maintained within the reference range.
  • GBD gap volume density value
  • the method for producing a catalytic converter according to the present invention includes a first step (S10) of measuring the outer diameter of the catalyst, a second step (S20) of measuring the mat weight of the sheet shape cut to a predetermined standard, and the mat A third step (S30) of wrapping the mat on the outer circumferential surface of the catalyst by seating the catalyst on the upper surface, a fourth step (S40) of inserting the mat-wrapped catalyst into the can pipe after measuring the inner diameter of the can pipe; After calculating the gap volume between the catalyst and the can pipe and the density of the mat, the fifth step (S50) for downsizing the can pipe by pressing the can pipe so that the GBD value is within the reference range.
  • the GBD value represents the density volume value between the catalyst and the can pipe, that is, the density per volume of the mat inserted between the catalyst and the can pipe, and is calculated by the following [Formula 1].
  • a high GBD value means that there is no risk of atmospheric leakage due to the high density of the mat, but there is a risk of catalyst breakdown during downsizing. It means there is concern. Therefore, when manufacturing the catalytic converter, the GBD value should be within the standard range. Even if the size of the catalyst, mat and can pipe are manufactured to the same size, if the density of the mat occurs, even if the can pipe is downsized equally, GBD The problem is that the values appear different.
  • the method for producing a catalytic converter according to the present invention is not configured to downsize the canpipe at a predetermined rate unconditionally, but is configured to appropriately adjust the downsizing ratio of the canpipe by measuring the density of the mat in advance. Even if the mat is provided, there is an advantage that the GBD value of the finally produced catalytic converter can be kept constant at all times.
  • the distance between the can pipe and the catalyst that is, the difference between the can pipe inner diameter and the catalyst outer diameter divided by 2
  • the mat is not compressed between the can pipe and the catalyst and an empty space is generated.
  • GBD values cannot be calculated normally. Therefore, the value obtained by dividing the difference between the inner diameter of the can pipe and the outer diameter of the catalyst by 2 should be set smaller than the thickness of the initial mat.
  • a sixth step S60 of laser marking the GBD value with a barcode may be added to the can pipe so that the GBD value of the finally produced catalytic converter may be visually confirmed.
  • a process of laser marking the GBD value with a barcode will be described in detail with reference to the accompanying drawings.
  • FIG. 2 is a schematic diagram showing a process of manufacturing a catalytic converter using the method of manufacturing a catalytic converter according to the present invention.
  • the cylindrical catalyst 10 is erected, and then the laser sensor 100 for catalyst measurement is irradiated to the outer surface of the catalyst 10 while rotating and lowering the catalyst outer diameter calculation unit.
  • 110 calculates the outer diameter of the catalyst 10 by calculating the distance measured by the laser sensor 100 for catalyst measurement while the catalyst 10 is rotated one time.
  • the cylindrical catalyst 10 is laid horizontally and aligned, and then the mat 20 is placed on the weighing apparatus 200 to measure the weight of the mat 20, and the mat
  • the controller 400 receiving the weight value of 20 calculates the density of the mat 20.
  • the density of the mat 20 can be calculated by measuring only the weight of the mat 20.
  • each corner of the mat 20 is supported by a separate stopper 210 is able to maintain a fixed state without shaking during weighing.
  • the catalyst 10 is placed on the top surface of the mat 20 and the mat 20 is wrapped on the outer surface of the catalyst 10. Since the process of lapping the mat 20 on the side is similarly applied to the conventional catalyst 10 converter manufacturing method, a detailed description of the lapping process of the mat 20 will be omitted.
  • the mat 20 wraps the wrapped catalyst 10 into the can pipe 30 and then presses the outer surface of the can pipe 30 using the pressurizing device 300.
  • the can pipe 30 is downsized by pressurization. At this time, if only a portion of the outer surface of the can pipe 30 is pressed, the shape of the can pipe 30 may be distorted, so when downsizing the can pipe 30 of the can pipe 30 It is preferable to pressurize the entire outer surface evenly.
  • the mat 20 positioned between the can pipe 30 and the catalyst 10 is compressed so that the catalyst 10 and the can pipe 30 mutually In this process, the mat 20 has a thinner thickness as the inner diameter of the can pipe 30 becomes smaller, thereby increasing the density.
  • the method of manufacturing the catalyst 10 converter according to the present invention does not always downsize the canpipe 30 at a predetermined ratio when the canpipe 30 is pressurized and downsized.
  • the operation of the pressurizing device 300 is controlled by the controller 400 so that the downsizing ratio of the can pipe 30 varies according to the density. That is, when the density of the mat 20 at the time of initial supply is high, the can pipe 30 is only slightly downsized, and when the density of the mat 20 at the time of initial supply is low, the canpipe 30 is slightly lowered.
  • the shape in which the catalyst 10 is broken in the process of downsizing the can pipe 30 can be prevented and the mat 20 can be prevented. Through this, the effect of preventing the leakage of pressure can be obtained.
  • the downsizing ratio of the can pipe 30 is set differently according to the density difference for each mat 20, the production is finally performed. A difference occurs in the size of the outer diameter of the completed can pipe 30. At this time, even if only a small change in the downsizing ratio of the can pipe 30, a large difference in the GBD value is generated, so that a large difference does not occur in the outer diameter of the can pipe 30 is finally completed.
  • the downsizing ratio of the can pipe 30 is also changed slightly, so that the size of the outer diameter of the finished can pipe 30 is finally allowed. The case may be out of.
  • a process of measuring the outer diameter of the finished can pipe 30 by using the can measuring laser sensor 500 and the can outer diameter calculation unit 510 is additionally added. It may be included as.
  • the method for measuring the outer diameter of the can pipe 30 using the can measuring laser sensor 500 and the can outer diameter calculator 510 is performed by using the catalyst measuring laser sensor 100 and the catalyst outer diameter calculator 110. It is substantially the same as the method of measuring the outer diameter of (10).
  • the process of measuring the outer diameter of the can pipe 30 is finally produced as described above, is configured to be made together in the process of laser marking the barcode on the can pipe 30 so as to shorten the length of the entire production line. This is preferred.
  • FIG. 3 is a cross-sectional view of the catalyst 10 converter when the density of the supplied mat 20 is low
  • FIG. 4 is a cross-sectional view of the catalyst 10 converter when the density of the supplied mat 20 is high.
  • the thickness of the mat 20 initially supplied as shown in FIGS. 3A and 4A is the same, when the density of the mat 20 is low as in the case of FIG.
  • the GBD value falls within the reference range.
  • the density of the mat 20 is high as in the case of FIG. 4, even if the mat 20 is slightly compressed, the GBD value falls within the reference range, and the downsizing ratio of the can pipe 30 is lowered.
  • the downsizing ratio of the can pipe 30 is lowered.
  • the can pipe 30 downsizing ratio can be adjusted appropriately to adjust the final GBD value within a predetermined range. Therefore, it is possible to obtain the effect that the product defects due to the density difference of the mat 20 can be prevented.
  • the density of the mat 20 initially supplied is different, as shown in (b) of FIG. 3 and (b) of FIG. 4, the thickness of the final mat 20 is different. There is no problem at all with the function of the converter.
  • the value obtained by dividing the difference between the inner diameter of the can pipe 30 and the outer diameter of the catalyst 10 by 2 between the can pipe 30 and the catalyst 10 is set smaller than the thickness of the first mat 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명에 의한 촉매컨버터 제조방법은, 촉매의 외경을 측정하는 제1 단계; 일정 규격으로 절단된 시트 형상의 매트 중량을 측정하는 제2 단계; 상기 매트의 상면에 촉매를 안착시켜 촉매 외주면에 매트를 랩핑하는 제3 단계; 캔파이프의 내경을 측정한 후, 매트가 랩핑된 촉매를 상기 캔파이프 내측으로 삽입시키는 제4 단계; 및 상기 촉매와 캔파이프 사이의 갭 체적과 매트의 밀도를 산출한 후, GBD값이 기준범위 이내에 속하도록 상기 캔파이프를 가압하여 다운사이징시키는 제5 단계;를 포함한다.

Description

갭 체적밀도값이 균일한 촉매컨버터 제조방법
본 발명은 촉매컨버터에 관한 것으로, 더 상세하게는 촉매와 캔파이프 사이의 갭에 위치되는 매트의 체적밀도값이 일정하도록 캔파이프를 가압하는 과정을 포함하는 촉매컨버터 제조방법에 관한 것이다.
널리 주지된 바와 같이, 차량의 배기시스템은 차량의 플로어 하부면에 배치되어 기관에서 발생하는 각종 배기가스의 소음 및 불순물 등을 제거하여 외부로 배출하는 장치로서, 엔진의 실린더헤드 등에 연결된 배기매니폴드와, 엔진으로부터 토출되는 배기가스에 유동저항을 부여하여 소음을 감소시키는 하나 이상의 소음기와, 배기가스 중의 유해물질인 탄화수소, 일산화탄소 및 질소산화물을 산화 및 환원작용에 의해 인체에 해가 없는 이산화탄소, 물, 질소 및 산소 등으로 전환시키는 촉매컨버터 등을 포함한다.
일반적으로, 촉매컨버터는 원기둥 형상의 촉매, 이 촉매의 외주면에 랩핑되는(wrapped) 매트, 매트가 랩핑된 촉매를 수용하는 원통형의 캔파이프를 포함한다. 특히, 매트는 내열 섬유재로 구성되며, 촉매와 캔파이프 사이에 개재되어 미정화된 배기가스가 촉매와 하우징 사이로 빠져나감을 방지하는 밀봉성을 확보하기 위한 역할을 함과 더불어, 촉매의 탄력적인 지지, 촉매와 하우징 사이의 단열 등의 역할을 수행한다. 이에 촉매컨버터의 성능을 장시간 유지하기 위해서는 매트의 역할이 매우 중요하다.
이와 같은 촉매컨버터를 제작할 때에는, 먼저 촉매의 외주면에 매트를 랩핑하여 캔파이프 내측에 삽입한 후, 상기 캔파이프 외측면을 가압하여 상기 캔파이프를 다운 사이징함으로써, 촉매와 매트와 캔파이프를 일체로 결합시킨다.
이때, 상기 매트는 섬유재로 구성되므로 크기는 균일하게 제작할 수 있으나 밀도를 균일하게 제작하는데 어려움이 있을 수 있는데, 매트의 밀도차에 상관없이 캔파이프를 동일하게 다운 사이징시키면 촉매와 캔파이프 사이 공간의 체적밀도값 즉, 갭 체적밀도값(GBD, Gap Bulk Density; 이하 GBD값이라 함)이 달라지므로, 여러 가지 문제점이 야기될 수 있다. 예를 들어 GBD값이 과도하게 높으면 캔파이프 다운 사이징 과정에서 촉매가 과도하게 가압되어 파손될 우려가 있고, GBD값이 과도하게 낮아지는 경우 매트를 통해 압력이 누설되는 경우가 발생된다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 매트의 밀도가 상이하더라도 캔파이프의 다운사이징 비율을 적절히 조정함으로써 GBD값을 일정하게 유지시킬 수 있는 촉매컨버터 제조방법을 제공하는데 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 촉매컨버터 제조방법은, 촉매의 외경을 측정하는 제1 단계; 일정 규격으로 절단된 시트 형상의 매트 중량을 측정하는 제2 단계; 상기 매트의 상면에 촉매를 안착시켜 촉매 외주면에 매트를 랩핑하는 제3 단계; 캔파이프의 내경을 측정한 후, 매트가 랩핑된 촉매를 상기 캔파이프 내측으로 삽입시키는 제4 단계; 및 상기 촉매와 캔파이프 사이의 갭 체적과 매트의 밀도를 산출한 후, GBD값이 기준범위 이내에 속하도록 상기 캔파이프를 가압하여 다운사이징시키는 제5 단계;를 포함한다.
상기 GBD값은, 하기 [식 1]에 의해 산출된다.
[식 1]
Figure PCTKR2014010506-appb-I000001
(Gm : 측정 매트 중량, Am : 측정 매트 넓이, Dp : 캔파이프 내경, Dc : 촉매 외경)
상기 캔파이프 내경과 상기 촉매 외경 차이를 2로 나눈 값은, 최초 매트의 두께보다 작게 설정된다.
상기 제5 단계는 상기 캔파이프의 외측면을 전체적으로 가압하여 상기 캔파이프를 다운사이징시키도록 구성된다.
상기 캔파이프에 GBD값을 바코드로 레이저 마킹하는 제6 단계를 더 포함한다.
상기 제6 단계는, 캔파이프의 외경을 측정하는 과정을 더 포함한다.
본 발명에 의한 촉매컨버터 제조방법을 이용하면, 공급된 매트의 밀도가 상이하거나, 촉매 외경과 캔파이프 내경에 오차가 발생되더라도, 캔파이프를 다운사이징하는 과정에서 다운사이징 비율을 적절히 조정할 수 있으므로, 촉매컨버터의 GBD값을 항상 일정하게 유지시킬 수 있다는 장점이 있다.
도 1은 본 발명에 의한 촉매컨버터 제조방법의 순서도이고, 도 2는 본 발명에 의한 촉매컨버터 제조방법을 이용하여 촉매컨버터를 제조하는 과정을 도시하는 개략도이다.
도 3은 공급된 매트의 밀도가 낮은 경우의 촉매컨버터 단면도이다.
도 4는 공급된 매트의 밀도가 높은 경우의 촉매컨버터 단면도이다.
이하 첨부된 도면을 참조하여 본 발명에 의한 촉매컨버터 제방법의 실시예를 상세히 설명한다.
도 1은 본 발명에 의한 촉매컨버터 제조방법의 순서도이다.
본 발명은, 원기둥 형상의 촉매, 이 촉매의 외주면에 랩핑되는(wrapped) 매트, 매트가 랩핑된 촉매를 수용하는 원통형의 캔파이프로 구성되어, 배기가스에 포함된 유해물질 즉, 탄화수소, 일산화탄소 및 질소산화물을 산화 및 환원작용에 의해 인체에 해가 없는 이산화탄소, 물, 질소 및 산소 등으로 전환시키는 촉매컨버터를 제조하는 방법에 관한 것으로서, 촉매와 매트와 캔파이프의 규격에 차이가 있더라도 촉매와 캔파이프 사이 공간의 체적밀도값 즉, 갭 체적밀도값(GBD, Gap Bulk Density; 이하 GBD값이라 함)을 기준 범위 이내로 유지시킬 수 있도록 구성된다는 점에 특징이 있다.
즉, 본 발명에 의한 촉매컨버터 제조방법은, 촉매의 외경을 측정하는 제1 단계(S10)와, 일정 규격으로 절단된 시트 형상의 매트 중량을 측정하는 제2 단계(S20)와, 상기 매트의 상면에 촉매를 안착시켜 촉매 외주면에 매트를 랩핑하는 제3 단계(S30)와, 캔파이프의 내경을 측정한 후, 매트가 랩핑된 촉매를 상기 캔파이프 내측으로 삽입시키는 제4 단계(S40)와, 상기 촉매와 캔파이프 사이의 갭 체적과 매트의 밀도를 산출한 후, GBD값이 기준범위 이내에 속하도록 상기 캔파이프를 가압하여 다운사이징시키는 제5 단계(S50)를 포함하여 구성된다.
이때, 상기 GBD값은 촉매와 캔파이프 사이의 밀도체적값 즉, 촉매와 캔파이프 사이에 삽입되는 매트의 체적당 밀도를 나타내는 것으로, 하기 [식 1]에 의해 산출된다.
[식 1]
Figure PCTKR2014010506-appb-I000002
(Gm : 측정 매트 중량, Am : 측정 매트 넓이, Dp : 캔파이프 내경, Dc : 촉매 외경)
즉, GBD값이 크다는 것은 매트의 밀도가 높아 대기압 누설 우려는 없지만 다운사이징 과정에서 촉매가 파손될 우려가 있다는 것을 뜻하고, GBD값이 작다는 것은 다운사이징 과정에서 촉매가 파손될 우려는 없지만 대기압 누설의 우려가 있다는 것을 뜻한다. 따라서 촉매컨버터를 제작할 때에는 GBD값이 기준 범위 이내에 속하도록 해야 하는데, 촉매와 매트, 캔파이프의 크기가 동일한 크기로 제작된다 하더라도 매트의 밀도에 오차가 발생하면 캔파이프를 동일하게 다운사이징시킨다 하더라도 GBD값이 다르게 나타난다는 문제점이 있다.
그러나 본 발명에 의한 촉매컨버터 제조방법은, 캔파이프를 무조건 사전에 설정된 비율로 다운사이징시키는 것이 아니라, 매트의 밀도를 사전에 측정하여 캔파이프의 다운사이징 비율을 적절히 조절하도록 구성되는바, 어떠한 밀도의 매트가 제공되더라도 최종적으로 생산되는 촉매컨버터의 GBD값은 항상 일정하게 유지될 수 있다는 장점이 있다.
이때, 캔파이프와 촉매 사이의 간격 즉, 상기 캔파이프 내경과 상기 촉매 외경 차이를 2로 나눈 값이 최초 매트의 두께보다 크면, 상기 매트는 캔파이프와 촉매 사이에서 압착되지 아니하고 빈 공간이 발생되므로, GBD값이 정상적으로 산출되지 못하게 된다. 따라서 상기 캔파이프 내경과 상기 촉매 외경 차이를 2로 나눈 값은, 최초 매트의 두께보다 작게 설정되어야 할 것이다.
한편, 최종적으로 생산된 촉매컨버터의 GBD값을 육안으로 확인할 수 있도록, 상기 캔파이프에 GBD값을 바코드로 레이저 마킹하는 제6 단계(S60)가 추가될 수 있다. 이와 같이 GBD값을 바코드로 레이저 마킹하는 과정에 대해서는 이하 별도의 도면을 참조하여 상세히 설명한다.
이하, 본 발명에 의한 촉매컨버터 제조방법에 의해 실제로 촉매컨버터가 제조되는 과정에 대하여 상세히 설명한다.
도 2는 본 발명에 의한 촉매컨버터 제조방법을 이용하여 촉매컨버터를 제조하는 과정을 도시하는 개략도이다.
촉매(10)컨버터를 제작하고자 하는 경우에는, 먼저 원통 형상의 촉매(10)를 세운 후 회전 및 하강시키면서 촉매(10)의 외측면에 촉매측정용 레이저센서(100)를 조사하고, 촉매외경연산부(110)는 상기 촉매(10)가 1회전 하는 동안 촉매측정용 레이저센서(100)에 의해 측정된 거리를 연산하여 촉매(10)의 외경을 산출한다.
촉매(10)의 외경 산출이 완료되면, 상기 원통형 촉매(10)를 수평으로 눕혀 정렬시킨 후, 매트(20)를 중량측정장치(200)에 올려 상기 매트(20)의 중량을 측정하고, 매트(20)의 중량값을 전달받은 제어부(400)는 매트(20)의 밀도를 산출하게 된다. 이때, 상기 매트(20)의 가로 및 세로 길이와 두께는 항상 일정하게 재단될 수 있으므로, 매트(20)의 중량만 측정하면 매트(20)의 밀도를 산출할 수 있게 된다. 한편, 상기 매트(20)의 각 모서리는 별도의 스토퍼(210)에 의해 지지되어 중량 측정 동안 흔들리지 아니하고 고정된 상태를 유지할 수 있게 된다.
매트(20)의 중량 측정이 완료되면, 상기 매트(20)의 상면에 촉매(10)를 올려두고 촉매(10)의 외측면에 매트(20)를 랩핑시키는데, 이와 같이 촉매(10)의 외측면에 매트(20)를 랩핑시키는 과정은 종래의 촉매(10)컨버터 제조공법에서도 동일하게 적용되고 있으므로, 매트(20)의 랩핑 과정에 대한 상세한 설명은 생략한다.
매트(20)의 랩핑이 완료되면, 매트(20)가 랩핑된 촉매(10)를 캔파이프(30) 내측에 삽입시킨 후, 가압장치(300)를 이용하여 캔파이프(30)의 외측면을 가압함으로써 상기 캔파이프(30)를 다운사이징시킨다. 이때, 상기 캔파이프(30)의 외측면 중 어느 일부만을 가압하면, 상기 캔파이프(30)의 형상이 비틀릴 수 있으므로, 상기 캔파이프(30)를 다운사이징시킬 때에는 상기 캔파이프(30)의 외측면 전체를 고르게 가압함이 바람직하다.
한편, 상기와 같이 캔파이프(30)가 다운사이징되는 동안 캔파이프(30)와 촉매(10) 사이에 위치되어 있던 매트(20)가 압착되어 상기 촉매(10)와 캔파이프(30)가 상호 일체로 결합되는데, 이 과정에서 상기 매트(20)는 캔파이프(30)의 내경이 작아지는 만큼 두께가 얇아지고, 이에 따라 밀도가 높아지게 된다.
이때, 본 발명에 의한 촉매(10)컨버터 제조방법은, 상기 캔파이프(30)를 가압하여 다운사이징시킬 때 항상 일정 비율로 캔파이프(30)를 다운사이징시키는 것이 아니라, 최초 공급될 당시의 매트(20) 밀도에 따라 캔파이프(30)의 다운사이징 비율이 가변되도록 가압장치(300)의 동작이 제어부(400)에 의해 제어된다는 점에 특징이 있다. 즉, 최초 공급될 당시의 매트(20) 밀도가 높은 경우에는 캔파이프(30)를 약간만 다운사이징시키고, 최초 공급될 당시의 매트(20) 밀도가 낮은 경우에는 캔파이프(30)를 다소 많이 다운사이징시킴으로써, 최종적으로 제작되는 촉매(10)컨버터의 GBD값을 일정하게 형성시킨다는 점에 특징이 있다.
이와 같이 최종적으로 제작되는 촉매(10)컨버터의 GBD값이 일정하게 형성되면, 캔파이프(30)를 다운사이징시키는 과정에서 촉매(10)가 파손되는 형상을 방지할 수 있고, 매트(20)를 통해 압력이 누설되는 현상을 방지할 수 있다는 효과를 얻을 수 있게 된다.
한편, 상기 언급한 바와 같이 최종적으로 제작되는 촉매(10)컨버터의 GBD값이 일정 범위 이내에 속하게 된다고 하더라도, 촉매(10)컨버터 별로 약간의 GBD값 차이(허용범위 이내의 오차)가 발생될 수 있으므로, 최종적으로 제작되는 촉매(10)컨버터의 외측면에는 마킹장치(600)를 이용하여 GBD값을 표시하는 레이저 마킹이 이루어질 수 있다.
또한, 본 발명에 의한 촉매(10)컨버터 제조방법으로 촉매(10)컨버터를 제작할 때에는, 매트(20) 별 밀도 차이에 따라 캔파이프(30)의 다운사이징 비율이 다르게 설정되므로, 최종적으로 제작이 완료된 캔파이프(30)의 외경 크기에 차이가 발생된다. 이때 캔파이프(30)의 다운사이징 비율을 약간만 변경하더라도 GBD값의 차이는 크게 발생되므로, 최종적으로 제작이 완료된 캔파이프(30)의 외경에는 큰 차이가 발생되지 아니한다. 그러나 최초 공급될 당시의 매트(20) 밀도가 기준치와 큰 차이를 갖게 되면, 캔파이프(30)의 다운사이징 비율도 다소 크게 변경되어 최종적으로 제작이 완료된 캔파이프(30)의 외경 크기가 허용 범위를 벗어나는 경우가 발생될 수 있다.
따라서 본 발명에 의한 촉매(10)컨버터 제조방법은, 캔측정용 레이저센서(500)와 캔외경연산부(510)를 이용하여 최종적으로 제작이 완료된 캔파이프(30)의 외경을 측정하는 과정이 추가로 포함될 수 있다. 캔측정용 레이저센서(500)와 캔외경연산부(510)를 이용하여 캔파이프(30)의 외경을 측정하는 방법은, 촉매측정용 레이저센서(100)와 촉매외경연산부(110)를 이용하여 촉매(10)의 외경을 측정하는 방법과 실질적으로 동일하다.
한편, 이와 같이 최종적으로 제작이 완료된 캔파이프(30)의 외경을 측정하는 공정은, 전체 생산라인의 길이를 단축시킬 수 있도록, 캔파이프(30)에 바코드를 레이저마킹 하는 공정에서 함께 이루어지도록 구성됨이 바람직하다.
도 3은 공급된 매트(20)의 밀도가 낮은 경우의 촉매(10)컨버터 단면도이고, 도 4는 공급된 매트(20)의 밀도가 높은 경우의 촉매(10)컨버터 단면도이다.
도 3의 (a)와 도 4의 (a)와 같이 최초 공급되는 매트(20)의 두께가 동일하다 하더라도, 도 3의 경우와 같이 매트(20)의 밀도가 낮은 경우에는 캔파이프(30)의 다운사이징 비율을 높여 도 3의 (b)에 도시된 바와 같이 매트(20)의 두께가 매우 얇아지도록(밀도가 많이 높아지도록) 상기 매트(20)를 압축시킴으로써, GBD값이 기준범위 이내에 속하도록 한다. 반대로 도 4의 경우와 같이 매트(20)의 밀도가 높은 경우에는 상기 매트(20)를 약간만 압축시키더라도 GBD값이 기준범위 이내에 속하게 되는바, 캔파이프(30)의 다운사이징 비율을 낮춰 도 4의 (b)에 도시된 바와 같이 매트(20)의 두께를 약간만 압축시킨다.
즉, 본 발명에 의한 촉매(10)컨버터 제조방법을 이용하면, 최초로 공급된 매트(20)의 밀도가 상이하더라도 캔파이프(30) 다운사이징 비율을 적절히 조정하여 최종 GBD값을 일정범위 이내에 맞출 수 있으므로, 매트(20)의 밀도 차이에 따른 제품 불량을 방지할 수 있다는 효과를 얻을 수 있다. 물론, 최초로 공급된 매트(20)의 밀도가 상이한 경우에는 도 3의 (b)와 도 4의 (b)에 도시된 바와 같이 최종 매트(20)의 두께가 달라지지만, 두 경우 모두 촉매(10)컨버터의 기능을 수해하는 데에는 전혀 문제가 발생되지 아니한다.
한편, 캔파이프(30)와 촉매(10) 사이의 간격이 상기 캔파이프(30) 내경과 상기 촉매(10) 외경 차이를 2로 나눈 값은, 최초 매트(20)의 두께보다 작게 설정된다.
이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.

Claims (6)

  1. 본 발명에 의한 촉매컨버터 제조방법은,
    촉매의 외경을 측정하는 제1 단계;
    일정 규격으로 절단된 시트 형상의 매트 중량을 측정하는 제2 단계;
    상기 매트의 상면에 촉매를 안착시켜 촉매 외주면에 매트를 랩핑하는 제3 단계;
    캔파이프의 내경을 측정한 후, 매트가 랩핑된 촉매를 상기 캔파이프 내측으로 삽입시키는 제4 단계; 및
    상기 촉매와 캔파이프 사이의 갭 체적과 매트의 밀도를 산출한 후, GBD값이 기준범위 이내에 속하도록 상기 캔파이프를 가압하여 다운사이징시키는 제5 단계;
    를 포함하는 촉매컨버터 제조방법.
  2. 청구항 1에 있어서,
    상기 GBD값은, 하기 [식 1]에 의해 산출되는 것을 특징으로 하는 촉매컨버터 제조방법.
    [식 1]
    Figure PCTKR2014010506-appb-I000003
    (Gm : 측정 매트 중량, Am : 측정 매트 넓이, Dp : 캔파이프 내경, Dc : 촉매 외경)
  3. 청구항 2에 있어서,
    상기 캔파이프 내경과 상기 촉매 외경 차이를 2로 나눈 값은, 최초 매트의 두께보다 작은 것을 특징으로 하는 촉매컨버터 제조방법.
  4. 청구항 1에 있어서,
    상기 제5 단계는 상기 캔파이프의 외측면을 전체적으로 가압하여 상기 캔파이프를 다운사이징시키도록 구성되는 것을 특징으로 하는 촉매컨버터 제조방법.
  5. 청구항 1에 있어서,
    상기 캔파이프에 GBD값을 바코드로 레이저 마킹하는 제6 단계를 더 포함하는 것을 특징으로 하는 촉매컨버터 제조방법.
  6. 청구항 5에 있어서,
    상기 제6 단계는, 캔파이프의 외경을 측정하는 과정을 더 포함하는 것을 특징으로 하는 촉매컨버터 제조방법.
PCT/KR2014/010506 2014-10-17 2014-11-04 갭 체적밀도값이 균일한 촉매컨버터 제조방법 WO2016060318A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0140551 2014-10-17
KR1020140140551A KR101656403B1 (ko) 2014-10-17 2014-10-17 갭 체적밀도값이 균일한 촉매컨버터 제조방법

Publications (1)

Publication Number Publication Date
WO2016060318A1 true WO2016060318A1 (ko) 2016-04-21

Family

ID=55746842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010506 WO2016060318A1 (ko) 2014-10-17 2014-11-04 갭 체적밀도값이 균일한 촉매컨버터 제조방법

Country Status (2)

Country Link
KR (1) KR101656403B1 (ko)
WO (1) WO2016060318A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180545A (ja) * 1993-12-24 1995-07-18 Toyota Motor Corp 触媒コンバータ
US20040234427A1 (en) * 2002-03-26 2004-11-25 Tursky John M. Automotive exhaust component and method of manufacture
US6899853B1 (en) * 2000-03-31 2005-05-31 Boysen Gmbh & Co. Kg Exhaust gas purification system
KR20110004647A (ko) * 2009-07-08 2011-01-14 세종공업 주식회사 촉매컨버터의 제조방법
KR20120139419A (ko) * 2011-06-17 2012-12-27 현대자동차주식회사 촉매유닛 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074336A (ja) * 2001-09-03 2003-03-12 Aisin Takaoka Ltd 排気ガス浄化装置及びその製造方法
JP2003269154A (ja) * 2002-03-14 2003-09-25 Honda Motor Co Ltd 触媒コンバータの製造方法
JP2004171352A (ja) * 2002-11-21 2004-06-17 Mazda Motor Corp リサイクル支援プログラム及びリサイクル方法
KR100885665B1 (ko) 2008-07-15 2009-02-25 세종공업 주식회사 촉매 컨버터의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180545A (ja) * 1993-12-24 1995-07-18 Toyota Motor Corp 触媒コンバータ
US6899853B1 (en) * 2000-03-31 2005-05-31 Boysen Gmbh & Co. Kg Exhaust gas purification system
US20040234427A1 (en) * 2002-03-26 2004-11-25 Tursky John M. Automotive exhaust component and method of manufacture
KR20110004647A (ko) * 2009-07-08 2011-01-14 세종공업 주식회사 촉매컨버터의 제조방법
KR20120139419A (ko) * 2011-06-17 2012-12-27 현대자동차주식회사 촉매유닛 및 이의 제조방법

Also Published As

Publication number Publication date
KR20160045964A (ko) 2016-04-28
KR101656403B1 (ko) 2016-09-22

Similar Documents

Publication Publication Date Title
CN1841057B (zh) 气体传感器元件及其制造方法、以及气体传感器
US6060148A (en) Ceramic honeycomb structural body
US10094750B2 (en) Isostatic breaking strength tester and isostatic breaking strength test method
ITMI982608A1 (it) Metodo di fabbricazione di un convertitore catalitico da utilizzarein un motore a combustione interna
WO2002088691A3 (de) Vorrichtung und verfahren zur quantitativen messung von stickoxiden in der ausatemluft und verwendung
KR100927871B1 (ko) 배기 가스 처리 장치의 제조 방법
EP1376118A3 (en) NOx sensor and method of measuring NOx
WO2016060318A1 (ko) 갭 체적밀도값이 균일한 촉매컨버터 제조방법
CN102343128B (zh) 用于密封性检测的方法、装置和呼吸保护器
ES2142632T3 (es) Procedimiento para la verificacion de la capacidad funcional de un catalizador con un sensor de oxigeno.
EP3978911A4 (en) GAS CONCENTRATION MONITORING DEVICE AND METHOD AND SENSOR
US7712375B2 (en) Strength measuring method of honeycomb structure having insertion hole
EP1020621B1 (en) Gas duct comprising ceramic honeycomb structure
CN110645070B (zh) 蜂窝结构体和排气净化过滤器
JP5608665B2 (ja) 排気ガスを処理する触媒ユニットの製造方法
WO2020002273A3 (en) System and method for providing enhanced pap metrics
CN210136022U (zh) 一种气体管路压力记录测漏装置
JP2003269154A (ja) 触媒コンバータの製造方法
CN207108548U (zh) 具备漏水检测功能的过滤管
CN209470833U (zh) 一种用于对电池箱的防护等级进行检测的装置
KR101198284B1 (ko) 촉매컨버터의 제조방법
KR100992103B1 (ko) 촉매담체의 직경측정장치
CN111380661A (zh) 一种用于对电池箱的防护等级进行检测的装置及方法
US8572846B2 (en) Hoop-stress controlled shrinking for exhaust component
CN210502438U (zh) 空气呼吸器检验车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904018

Country of ref document: EP

Kind code of ref document: A1