WO2016060238A1 - Nonwoven fabric - Google Patents

Nonwoven fabric Download PDF

Info

Publication number
WO2016060238A1
WO2016060238A1 PCT/JP2015/079292 JP2015079292W WO2016060238A1 WO 2016060238 A1 WO2016060238 A1 WO 2016060238A1 JP 2015079292 W JP2015079292 W JP 2015079292W WO 2016060238 A1 WO2016060238 A1 WO 2016060238A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nonwoven fabric
less
fibers
fabric according
Prior art date
Application number
PCT/JP2015/079292
Other languages
French (fr)
Japanese (ja)
Inventor
小森 康浩
宏子 川口
石黒 健司
絵里香 渡邉
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014212400A external-priority patent/JP2016079529A/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to RU2016147533A priority Critical patent/RU2656084C1/en
Priority to CN201580021105.8A priority patent/CN106232888B/en
Priority to MYPI2016001878A priority patent/MY177779A/en
Publication of WO2016060238A1 publication Critical patent/WO2016060238A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres

Definitions

  • the present invention relates to a nonwoven fabric.
  • Patent Document 1 a technique relating to a non-woven fabric produced by stretching a fiber sheet formed by integrating these webs to stretch the low-elasticity non-elastic fiber, and then releasing the stretching of the fiber sheet.
  • Patent Document 1 In the method for producing a nonwoven fabric described in Patent Document 1, when a fiber sheet is stretched, a stretching apparatus including a pair of concavo-convex rolls that can be engaged with each other is used.
  • Patent Documents 2, 4, and 5 describe techniques for stretching using such a stretching apparatus including a pair of concave and convex rolls.
  • Patent Document 3 discloses a technique relating to a water-permeable nonwoven fabric provided with a water-permeability imparting agent for textiles.
  • the nonwoven fabric manufactured by the manufacturing method described in Patent Document 1 is formed to include elastic fibers and non-elastic fibers whose thickness along the longitudinal direction is not uniform. Thus, when the thickness of the non-elastic fiber is not uniform, the touch is good. However, there is no description regarding improvement of dry touch properties with little liquid remaining on the surface.
  • Patent Document 2 it is essential to use stretchable fibers, that is, elastic fibers. And although patent document 2 has description of making the fiber diameter of a fiber thin with an extending
  • Patent Document 3 since the water-permeable nonwoven fabric described in Patent Document 3 is provided with a water-permeability imparting agent, there is little liquid residue on the surface and dry touch properties are improved.
  • Patent Document 3 relates to changing the hydrophilicity by stretching the constituent fibers to form a portion having a small fiber diameter and a portion having a large fiber diameter, and stretching the fiber to which the oil agent is attached. I don't expect anything.
  • the nonwoven fabric manufactured by the manufacturing method described in Patent Document 1 is formed to include elastic fibers and non-elastic fibers whose thickness along the longitudinal direction is not uniform. Thus, when the thickness of the non-elastic fiber is not uniform, the touch is good. However, there was a need to improve the feel.
  • Patent Document 2 it is essential to use stretchable fibers, that is, elastic fibers. And in patent document 2, although there exists description of making the fiber diameter of a fiber thin with an extending
  • Patent Document 4 there is no description regarding the use of high elongation fibers. In addition, Patent Document 4 does not describe anything about reducing the fiber diameter of the fiber by a drawing device, and includes a portion having a small fiber diameter and a portion having a large fiber diameter in one fiber. No assumptions are made about the formation.
  • Patent Document 5 nothing is described regarding using a high elongation fiber. Further, Patent Document 5 describes that the core sheath is peeled off by a stretching device to reduce the fiber diameter, but in what position the boundary between the thin part and the thick part is arranged. Is not described at all.
  • an object of the present invention is to provide a non-woven fabric that can eliminate the above-mentioned drawbacks of the prior art.
  • the present invention (first invention) relates to a nonwoven fabric provided with a plurality of fusion parts formed by heat-sealing intersections of constituent fibers.
  • the constituent fiber includes a high elongation fiber, and pays attention to one constituent fiber, and the constituent fiber is sandwiched between two small-diameter portions having a small fiber diameter between the adjacent fused portions. And a large diameter portion having a large fiber diameter.
  • the hydrophilicity of the small diameter part is smaller than the hydrophilicity of the large diameter part.
  • the present invention (second invention) relates to a nonwoven fabric provided with a plurality of fused portions formed by heat-sealing the intersections of the constituent fibers.
  • the constituent fibers include high elongation fibers. Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. ing. The changing point from the small diameter portion adjacent to the fusion portion to the large diameter portion is arranged within a range of 1/3 of the interval between the fusion portions adjacent to the fusion portion.
  • FIG. 1 is a perspective view showing an embodiment of the nonwoven fabric of the present invention (first invention).
  • FIG. 2 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric shown in FIG.
  • FIG. 3 is a diagram illustrating a state in which the constituent fibers constituting the nonwoven fabric shown in FIG. 1 are fixed at the heat-sealing portion.
  • FIG. 4 is a schematic view showing a manufacturing apparatus suitably used for manufacturing the nonwoven fabric shown in FIG.
  • FIG. 5 is a schematic diagram illustrating an extending portion included in the manufacturing apparatus illustrated in FIG. 4.
  • 6 is a cross-sectional view taken along the line VI-VI shown in FIG.
  • FIG. 7A to FIG. 7C are explanatory views for explaining a state in which a plurality of small diameter portions and large diameter portions are formed in one constituent fiber between adjacent fused portions.
  • FIG. 8 is a perspective view showing an embodiment of the nonwoven fabric of the present invention (second invention).
  • FIG. 9 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric shown in FIG.
  • FIG. 10 is a diagram for explaining a state in which the constituent fibers constituting the nonwoven fabric shown in FIG. 8 are fixed at the heat fusion part.
  • FIG. 11 is a schematic diagram showing a manufacturing apparatus suitably used for manufacturing the nonwoven fabric shown in FIG.
  • FIG. 12 is a schematic diagram illustrating an extending portion included in the manufacturing apparatus illustrated in FIG. 11.
  • 13 is a cross-sectional view taken along line VI-VI shown in FIG. 14 (a) to 14 (c) are explanatory views for explaining a state in which a plurality of small diameter portions and large diameter portions are formed in one constituent fiber between adjacent fused portions.
  • FIG. 1 shows a perspective view of a nonwoven fabric 1A (hereinafter also referred to as “nonwoven fabric 1A”) which is an embodiment of the present invention (first invention).
  • FIG. 2 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric 1A shown in FIG.
  • FIG. 3 is an enlarged schematic view of the constituent fibers 11 of the nonwoven fabric 1A shown in FIG.
  • the nonwoven fabric 1 ⁇ / b> A is a nonwoven fabric provided with a plurality of fusion portions 12 formed by thermally fusing the intersections of the constituent fibers 11.
  • the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. is there.
  • the nonwoven fabric 1 ⁇ / b> A is adjacent to a plurality of ridges 13 in which the cross-sectional shapes of both the front and back surfaces a and b are convex upward in the thickness direction (Z direction).
  • the concave stripe part 14 has a concave shape in which the cross-sectional shapes of the front and back surfaces a and b are both upward in the thickness direction (Z direction) of the nonwoven fabric.
  • the cross-sectional shape of front and back both surfaces a and b has comprised the convex shape toward the downward direction of the thickness direction (Z direction) of a nonwoven fabric.
  • Each of the plurality of ridges 13 extends continuously in one direction (X direction) of the nonwoven fabric 1A, and each of the plurality of ridges 14 also extends in the one direction X of the nonwoven fabric 1A. I am doing.
  • the ridges 13 and the ridges 14 are parallel to each other and are alternately arranged in a direction (Y direction) orthogonal to the one direction (X direction).
  • the nonwoven fabric 1A has a top region 13a, a bottom region 13b, and a side region 13c located between these 13a and 13b in a cross-sectional view of the nonwoven fabric 1A as shown in FIG.
  • line part 13 is formed from the top part area
  • the bottom part of the grooved part 14 is formed from the bottom part area
  • the top region 13a, the bottom region 13b, and the side region 13c extend continuously in one direction (X direction) of the nonwoven fabric 1A. As shown in FIG.
  • the top region 13a, the bottom region 13b, and the side region 13c are cross-sectional views of the nonwoven fabric 1A, and divide the thickness of the nonwoven fabric 1A in the Z direction into three equal parts. Are divided into a top region 13a, a central region in the thickness direction (Z direction) as a side region 13c, and a lower region in the thickness direction (Z direction) as a bottom region 13b. The said division is measured by the following method.
  • the non-woven fabric 1A was cut in the Y direction using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the site measured with a scanning electron microscope (JCM-5100 (trade name) manufactured by JEOL Ltd.) Enlarged to a size (10 to 100 times) that can be fully measured and measured, and divides the thickness of the non-woven fabric 1A in the Z direction into three equal parts, and the upper region in the thickness direction (Z direction) is the top region 13a, the thickness direction The central region in the (Z direction) is distinguished as the side region 13c, and the lower region in the thickness direction (Z direction) is distinguished as the bottom region 13b.
  • a cold spray is sprayed on the target diaper or the like to cool the diaper or the like, thereby reducing the adhesive strength. Then, each material is carefully peeled off to obtain a target nonwoven fabric, which is cut and measured as described above.
  • the nonwoven fabric 1A is manufactured by subjecting the fiber sheet 1a to a concavo-convex process using a pair of concavo-convex rolls 401 and 402 meshing with each other.
  • the one direction (X direction) of the nonwoven fabric 1A described above is the same direction as the machine direction (MD, flow direction) when the nonwoven fabric 1A is manufactured by performing uneven processing on the fiber sheet 1a.
  • the direction (Y direction) orthogonal to the direction (X direction) is the same direction as the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
  • the constituent fibers 11 of the nonwoven fabric 1A include high elongation fibers.
  • the high elongation fiber included in the constituent fiber 11 means not only a fiber having a high elongation at the raw material fiber stage but also a fiber having a high elongation at the stage of the manufactured nonwoven fabric 1A.
  • melt spinning is performed at a low speed to form a composite
  • the heat-extensible fiber which is obtained by changing the crystal state of the resin by heating and / or crimping without stretching, or polypropylene or polyethylene Fibers manufactured using relatively low spinning speeds using a resin such as polyethylene, polypropylene-polypropylene copolymers with low crystallinity, or fibers manufactured by dry blending polyethylene into polypropylene and spinning, etc. Is mentioned.
  • the high elongation fiber is preferably a core-sheath type composite fiber having heat-fusibility.
  • the core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or a deformed type, but is preferably a concentric core-sheath type.
  • the fineness of the high elongation fiber may be 1.0 dtex or more at the raw material stage.
  • the touch is a characteristic obtained by sensory evaluation of a sense when touching the skin in a state that does not contain a liquid.
  • the dry touch property mentioned later is the characteristic obtained by sensory evaluation of the feeling at the time of touching skin in the state containing the liquid residue. Therefore, dry touch and touch are different characteristics.
  • the constituent fibers 11 of the nonwoven fabric 1A may be configured to include other fibers in addition to the high elongation fibers, but are preferably configured only from inelastic fibers, and have a small diameter near the fusion point. In order to increase the number of fibers with low hydrophilicity, it is preferable that all fusion points are formed of high-stretch fibers, and therefore, it is more preferable that the fibers are composed of high-stretch fibers only. .
  • fibers include, for example, a non-heat-extensible core-sheath-type heat-fusible composite fiber containing two components having different melting points, or a fiber that does not inherently have heat-fusibility ( Examples thereof include natural fibers such as cotton and pulp, rayon and acetate fibers).
  • the proportion of the high elongation fibers in the nonwoven fabric 1A0 is preferably 50% by mass or more, and more preferably 80% by mass or more. And particularly preferably 100% by weight.
  • the heat-extensible fiber which is an example of a high-stretch fiber, is a composite fiber that has been subjected to an unstretched or weakly stretched treatment at the raw material stage.
  • a first resin component that constitutes a core portion and a sheath portion
  • a second resin component containing a polyethylene resin the first resin component having a higher melting point than the second resin component.
  • a 1st resin component is a component which expresses the heat
  • a 2nd resin component is a component which expresses heat-fusibility.
  • the melting points of the first resin component and the second resin component were determined by thermal analysis of a finely cut fiber sample (sample weight 2 mg) using a differential scanning calorimeter (DSC6200 manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C./min.
  • the melting peak temperature of each resin is measured and defined by the melting peak temperature.
  • the resin is defined as “resin having no melting point”.
  • the temperature at which the second resin component is fused to such an extent that the strength of the fusion point of the fiber can be measured is used as the temperature at which the molecular flow of the second resin component begins, and this is used instead of the melting point.
  • the polyethylene resin is included as a 2nd resin component which comprises a sheath part.
  • the polyethylene resin include low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE).
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • a high density polyethylene having a density of 0.935 g / cm 3 or more and 0.965 g / cm 3 or less is preferable.
  • the second resin component constituting the sheath is preferably a polyethylene resin alone, but other resins can also be blended.
  • Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like.
  • the 2nd resin component which comprises a sheath part it is preferable that 50 mass% or more in the resin component of a sheath part is 70 to 100 mass% especially polyethylene resin.
  • the polyethylene resin preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
  • a resin component having a melting point higher than that of the polyethylene resin that is a constituent resin of the sheath portion can be used without any particular limitation.
  • the resin component constituting the core include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyamide-based polymers, copolymers having two or more resin components, and the like can also be used.
  • a plurality of types of resins can be blended and used.
  • the melting point of the core is the melting point of the resin having the highest melting point.
  • the difference between the melting point of the first resin component constituting the core part and the melting point of the second resin component constituting the sheath part is 20 ° C. or higher. It is preferable that it is 150 degrees C or less.
  • the preferred orientation index of the first resin component in the thermally stretchable fiber which is an example of a high elongation fiber, is naturally different depending on the resin used.
  • the orientation index is 60% or less. More preferably, it is 40% or less, More preferably, it is 25% or less.
  • the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more.
  • the orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber.
  • the orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A.
  • a method for achieving the orientation index as described above for each resin component in the heat-extensible fiber is described in paragraphs [0033] to [0036] of Japanese Patent Application Laid-Open No. 2010-168715.
  • the elongation of the high elongation fiber is 100% or more, preferably 200% or more, more preferably 250% or more, and preferably 800% or less at the raw material stage. More preferably, it is 500% or less, more preferably 400% or less, specifically, preferably 100% or more and 800% or less, more preferably 200% or more and 500% or less, and still more preferably 250%. More than 400%.
  • the elongation of the high elongation fiber is 60% or more, preferably 70% or more, more preferably 80% or more, preferably 200% or less, at the stage of the nonwoven fabric. More preferably, it is 150% or less, more preferably 120% or less, specifically 60% or more and 200% or less, more preferably 70% or more and 170% or less, and further preferably 80% or more and 150% or less. is there. In particular, it is preferable that the elongation of the nonwoven fabric produced with a high elongation fiber ratio of 100% is in the above range.
  • the elongation of the high elongation fiber conforms to JISL-1015, and the measurement is based on the measurement environment temperature and humidity of 20 ⁇ 2 °C, 65 ⁇ 2% RH, the tensile tester's gripping distance is 20mm, and the tensile speed is 20mm / min. And, when collecting fibers from an already manufactured non-woven fabric and measuring the elongation, when the gripping interval cannot be 20 mm, that is, when the length of the fiber to be measured is less than 20 mm, the gripping interval is set. Measure by setting to 10 mm or 5 mm.
  • the ratio of the first resin component to the second resin component (mass ratio, the former: latter) in the high elongation fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially in the raw material stage. It is preferably 50:50 to 70:30.
  • the fiber length of the high elongation fiber one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
  • the fiber diameter of the high elongation fiber is appropriately selected according to the specific use of the nonwoven fabric at the raw material stage.
  • a nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of an absorbent article, it is preferable to use one having a thickness of 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and one having a thickness of 35 ⁇ m or less. It is preferable to use a material having a thickness of 30 ⁇ m or less, and specifically, a material having a thickness of 10 ⁇ m to 35 ⁇ m, particularly 15 ⁇ m to 30 ⁇ m is preferable.
  • the fiber diameter is measured by the following method.
  • the fiber diameter As the fiber diameter, the fiber diameter ( ⁇ m) is measured by observing the cross section of the fiber at 200 to 800 times using a scanning electron microscope (JCM-5100 manufactured by JEOL Ltd.). The cross section of the fiber is obtained by cutting the fiber using a feather razor (product number FAS-10, manufactured by Feather Safety Razor Co., Ltd.). For each extracted fiber, the fiber diameter when approximated to a circle is measured at five locations, and the average value of the five measured values is taken as the fiber diameter.
  • a feather razor product number FAS-10, manufactured by Feather Safety Razor Co., Ltd.
  • Japanese Patent No. 4131852 Japanese Patent Application Laid-Open No. 2005-350836, Japanese Patent Application Laid-Open No. 2007-2007
  • JP-A-303035, JP-A 2007-204899, JP-A 2007-204901, JP-A 2007-204902, and the like can also be used.
  • the nonwoven fabric of the present invention pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 ⁇ / b> A, and the constituent fibers 11 are adjacent to the fused portion 12.
  • , 12 has a large-diameter portion 17 having a large fiber diameter sandwiched between two small-diameter portions 16, 16 having a small fiber diameter.
  • a fusion formed by heat-sealing the intersection with the other constituent fibers 11 A small diameter portion 16 having a small fiber diameter extends from the landing portion 12 with substantially the same fiber diameter.
  • the nonwoven fabric 1A pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, It has constituent fibers 11 arranged in the order of a small diameter portion 16 on the side of the attachment portion 12, one large diameter portion 17, and a small diameter portion 16 on the side of the other fusion portion 12. Further, as shown in FIG.
  • the nonwoven fabric 1 ⁇ / b> A pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 ⁇ / b> A, and has a large-diameter portion 17 between adjacent fusion portions 12, 12.
  • the constituent fiber 11 is provided with a plurality of (two in the nonwoven fabric 1A).
  • the nonwoven fabric 1A pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, Constituent fibers arranged in the order of the small-diameter portion 16 on the bonding portion 12 side, the first large-diameter portion 17, the small-diameter portion 16, the second large-diameter portion 17, and the small-diameter portion 16 on the other fused portion 12 side.
  • the low-rigidity small-diameter portion 16 is adjacent to the fused portion 12 where the stiffness of the nonwoven fabric 1A is increased, so that the flexibility of the nonwoven fabric 1A is improved and the touch is improved.
  • flexibility of the nonwoven fabric 1A improves further and the touch becomes further better, so that the small diameter part 16 with a low rigidity is provided in the constituent fiber 11 in multiple numbers.
  • one large-diameter portion 17 is provided between the adjacent fusion portions 12 and 12 from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. More, more preferably 1 or more, and preferably 5 or less, more preferably 3 or less, specifically preferably 1 or more and 5 or less, more preferably 1 or more and 3 Has less than one.
  • the ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter part 16 to the fiber diameter (diameter L 17 ) of the large diameter part 17 is preferably 0.5 or more, more preferably 0.55 or more. And preferably it is 0.8 or less, More preferably, it is 0.7 or less, Specifically, Preferably it is 0.5 or more and 0.8 or less, More preferably, it is 0.55 or more and 0.7 or less.
  • the fiber diameter (diameter L 16 ) of the small-diameter portion 16 is preferably 5 ⁇ m or more, more preferably 6.5 ⁇ m or more, particularly preferably 7.5 ⁇ m or more from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric.
  • the fiber diameter (diameter L 17 ) of the large diameter portion 17 is preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less, from the viewpoint of improving the touch.
  • the thickness is particularly preferably 20 ⁇ m or less, specifically, preferably 10 ⁇ m or more and 35 ⁇ m or less, more preferably 13 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 20 ⁇ m or less.
  • the fiber diameters (the diameters L 16 and L 17 ) of the small diameter part 16 and the large diameter part 17 are measured in the same manner as the fiber diameter measurement described above.
  • the nonwoven fabric of the present invention (first invention) is formed such that the hydrophilicity of the small-diameter portion 16 is smaller than the hydrophilicity of the large-diameter portion 17.
  • the nonwoven fabric 1A may be manufactured according to the manufacturing method described later.
  • hydrophilicity referred to in the present invention (first invention) is judged based on the contact angle of the fiber measured by the method described below. Specifically, a low hydrophilicity is synonymous with a large contact angle, and a high hydrophilicity is synonymous with a small contact angle.
  • a plurality of constituent fibers 11 of the nonwoven fabric 1A are randomly extracted, and the constituent fibers 11 including the small diameter portion 16 and the large diameter portion 17 are selected from the extracted constituent fibers 11, and the position of the small diameter portion 16 in the constituent fibers 11 and The contact angle of water at the position of the large diameter portion 17 is measured.
  • an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used. Distilled water is used to measure the contact angle.
  • the amount of liquid ejected from an ink jet type water droplet ejection part (manufactured by Cluster Technology, Inc., pulse injector CTC-25 with a pore diameter of 25 ⁇ m) is set to 15 picoliters, and the water droplets are positioned at the small diameter part 16 and the large diameter part. It is dripped just above the center of each of the 17 positions.
  • the state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera.
  • the recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later. In this measurement, an image is recorded every 17 msec.
  • the first image in which water droplets land on the selected constituent fibers 11 is attached to the attached software FAMAS (software version is 2.6.2, the analysis method is the droplet method, and the analysis method is ⁇ / 2. Method, image processing algorithm is non-reflective, image processing image mode is frame, threshold level is 200, and curvature correction is not performed).
  • FAMAS software version is 2.6.2
  • the analysis method is the droplet method
  • the analysis method is ⁇ / 2.
  • image processing algorithm non-reflective
  • image processing image mode is frame
  • threshold level is 200
  • curvature correction is not performed.
  • the difference between the contact angle of the small-diameter portion 16 and the contact angle of the large-diameter portion 17 is 1 degree or more, particularly 5 degrees or more from the viewpoint of improving the dry touch property with little liquid remaining on the surface of the nonwoven fabric 1A Further, it is preferably 10 degrees or more, preferably 25 degrees or less, particularly preferably 20 degrees or less, and further preferably 15 degrees or less.
  • the difference in contact angle is preferably 1 degree or more and 25 degrees or less, more preferably 5 degrees or more and 20 degrees or less, and still more preferably 10 degrees or more and 15 degrees or less.
  • the contact angle of the small diameter portion 16 is 60 degrees or more, particularly 70 degrees or more, more preferably 80 degrees or more, and is preferably 100 degrees or less, particularly 95 degrees or less, and more preferably 90 degrees or less.
  • the contact angle of the small diameter portion 16 is preferably 60 degrees or more and 100 degrees or less, more preferably 70 degrees or more and 95 degrees or less, and still more preferably 80 degrees or more and 90 degrees or less.
  • the contact angle of the large-diameter portion 17 is 55 degrees or more, particularly 60 degrees or more, more preferably 65 degrees or more, preferably 90 degrees or less, particularly 85 degrees or less, and more preferably 80 degrees or less.
  • the contact angle of the large-diameter portion 17 is preferably 55 degrees or greater and 90 degrees or less, more preferably 60 degrees or greater and 85 degrees or less, and even more preferably 65 degrees or greater and 80 degrees or less.
  • the nonwoven fabric of the present invention (first invention) focuses on one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 ⁇ / b> A, and has a small diameter portion 16 adjacent to the fused portion 12.
  • the change point 18 from the large diameter portion 17 to the large diameter portion 17 is arranged within a range of 3 of the interval T between the fusion portions 12 and 12 adjacent to the fusion portion 12.
  • the change point 18 of the nonwoven fabric of the present invention (first invention) is a large diameter portion 17 extending from a small diameter portion 16 extending with a small fiber diameter and a fiber diameter larger than the small diameter portion 16.
  • the change point 18 of the nonwoven fabric of the present invention is the first resin component constituting the core part and the sheath part. It does not include a state in which the fiber diameter is changed by peeling with the second resin component to be configured, and means a portion where the fiber diameter is changed by stretching.
  • the fact that the change point 18 is arranged within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the nonwoven fabric 1A are randomly extracted.
  • the constituent fibers 11 can be observed between adjacent fused portions 12 and 12 of the constituent fibers 11 using a JCM-5100 (trade name) manufactured by JEOL Ltd. as a scanning electron microscope. (100 times to 300 times).
  • the interval T between the centers of the adjacent fused portions 12 and 12 is divided into three equal parts, and the region AT on the side of one fused portion 12, the region BT on the side of the other fused portion 12, and the center region CT Break down.
  • the change point 18 is arranged in the area AT or the area BT.
  • the non-woven fabric 1A in which the change point 18 is disposed within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the non-woven fabric 1A are 20
  • the constituent fiber 11 in which the change point 18 is arranged in the region AT or the region BT means a nonwoven fabric in which at least one of the 20 constituent fibers 11 is present.
  • it is preferably 1 or more, more preferably 5 or more, and particularly preferably 10 or more.
  • the nonwoven fabric 1A of the present embodiment extends not only the side region 13c but also the top region 13a that is the top of the ridge 13 and the bottom region 13b that is the bottom of the concave 14 by stretching,
  • the fiber density of the whole nonwoven fabric is lower than the raw material nonwoven fabric before stretching.
  • the liquid permeability and air permeability of the nonwoven fabric 1A as a whole are improved.
  • the side region 13c is particularly easy to be stretched and the fiber density is likely to decrease.
  • liquid permeability and air permeability are particularly good. It has improved.
  • the fiber density is the mass of the fiber per unit volume of the nonwoven fabric 1A.
  • High fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1A is large and the distance between fibers is small.
  • Low fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1A is small and the distance between fibers is large.
  • part with a high fiber density has high capillary force
  • part with a low fiber density has low capillary force.
  • the nonwoven fabric 1 ⁇ / b> A is a cross-sectional view
  • the nonwoven fabric 1 ⁇ / b> A is a fiber in the side region 13 c between the top (top region 13 a) of the ridge 13 and the bottom (bottom region 13 b) of the recess 14.
  • the density is the smallest.
  • the amount of fibers present per unit volume of the nonwoven fabric 1A is the smallest and the inter-fiber distance is the largest.
  • the nonwoven fabric 1A has improved air permeability and liquid permeability. improves.
  • the nonwoven fabric 1A may be manufactured according to the manufacturing method described later.
  • the ratio (D 15 / D 13 , D 15 / D 14 ) of the fiber density (D 15 ) of the side region 13c to the fiber density (D 13 ) in the top region 13a or the fiber density (D 14 ) in the bottom region 13b. ) Is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less, and specifically preferably 0.15 or more. 0.9 or less, more preferably 0.2 or more and 0.8 or less.
  • the specific value of the fiber density of the nonwoven fabric 1A is such that the fiber density (D 13 ) in the top region 13a is preferably 80 / mm 2 or more, more preferably 90 / mm 2 or more, and Preferably it is 200 / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more. 180 pieces / mm 2 or less.
  • the fiber density (D 14) of the bottom area 13b preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more and 180 / mm 2 or less.
  • the fiber density of the side region 13c (D 15) is preferably 30 present / mm 2 or more, more preferably 40 present / mm 2 or more, and preferably 80 present / mm 2 or less, more preferably 70 / mm 2 or less, specifically, preferably 30 / mm 2 or more and 80 / mm 2 or less, more preferably 40 / mm 2 or more and 70 / mm 2 or less.
  • the fiber density of the top region 13 a is measured at a position near the top of the ridge 13.
  • the fiber density of the bottom region 13b is measured at a position near the bottom point of the concave strip portion 14.
  • the method for measuring the fiber density is as follows.
  • the nonwoven fabric is cut using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the fiber density in the top region 13a is obtained when the thickness of the cut surface of the nonwoven fabric is divided into three equal parts in the Z direction.
  • the vicinity of the apex of the ridge 13 that is the portion of the region is magnified using a scanning electron microscope (adjusted to a magnification capable of measuring 30 to 60 fiber cross-sections; 150 to 500 times), and per fixed area (0.5 mm 2). ) Of the cross section of the fiber cut by the cut surface.
  • the fiber density in the top region 13a converts into the number of cross sections of the fiber per 1 mm ⁇ 2 >, and makes this the fiber density in the top region 13a.
  • the measurement is performed at three locations, and the average is the fiber density of the sample.
  • the fiber density in the bottom region 13b is obtained by measuring the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction.
  • the fiber density of the side region 13c is determined by measuring the central part when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction.
  • JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
  • 1 A of nonwoven fabrics of this embodiment are the number of the fibers which have the change point 18 in the constituent fiber which the number of the fibers which have the change point 18 in the constituent fiber which comprises the side region 13c comprises the top region 13a and the bottom region 13b. More are formed. Thereby, the top region 13a can easily follow the movement of the wearer's skin, and good skin contact can be realized.
  • the ratio (N 15 / N 13 , N 15 / N 14 ) of the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting is preferably 2 or more, more preferably 5 or more, and preferably Is 20 or less, more preferably 20 or less. Specifically, it is preferably 2 or more and 20 or less, more preferably 5 or more and 20 or less.
  • the number of fibers having the change point 18 (N 13 ) in the constituent fibers constituting the top region 13a is preferably one or more, and more Preferably it is 5 or more, and preferably 15 or less, more preferably 15 or less, specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less.
  • the number (N 14 ) of fibers having the change point 18 in the constituent fibers constituting the bottom region 13b is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably Is 15 or less, and specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less.
  • the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting the side region 13c is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, The number is preferably 20 or less, specifically, preferably 5 or more and 20 or less, and more preferably 10 or more and 20 or less.
  • the method for measuring the number of fibers having the change point 18 is as follows.
  • the number of fibers having the change points 18 is set, and when there are a plurality of change points 18, the number is also set to one. This is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a.
  • the measurement is performed at three places, and the average is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a of the sample.
  • the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Determine by measuring.
  • the number of fibers having the change point 18 in the constituent fibers 11 constituting the side region 13c is obtained by measuring the central portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction.
  • JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
  • nonwoven fabrics of this embodiment are the disposable diapers which have the surface sheet arrange
  • the top sheet is formed from the nonwoven fabric 1A, or a liquid-permeable sublayer disposed between the top sheet and the absorbent body is formed from the nonwoven fabric 1A. Can be.
  • the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and therefore, the contact area ratio with the skin is lowered and it is further difficult to rub. Moreover, when the said surface sheet or the said sublayer is formed with the nonwoven fabric 1A, since the nonwoven fabric 1A is a nonwoven fabric of a concavo-convex structure, compression resistance improves, a feeling of cushion improves, and the return of body fluid can be prevented.
  • Sheet thickness T S is may be adjusted as appropriate depending on the application, when used as a topsheet or sublayer of the absorbent article is preferably at least 0.5 mm, more preferably at least 1 mm, and preferably 7mm or less, 5 mm or less More specifically, 0.5 mm or more and 7 mm or less are preferable, and 1 mm or more and 5 mm or less are more preferable. By setting it as this range, the bodily fluid absorption speed
  • the layer thickness T L may be different in each part in the nonwoven fabric 1A, and may be appropriately adjusted depending on the application.
  • the layer thickness T L1 of the top region 13a is preferably 0.1 mm or more, more preferably 0.2 mm or more, and 3.0 mm or less. Is preferably 2.0 mm or less, specifically 0.1 mm or more and 3.0 mm or less, more preferably 0.2 mm or more and 2.0 mm or less.
  • the layer thickness T L2 of the bottom region 13b is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less.
  • the layer thickness T L3 of the side region 13c is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Specifically, it is preferably from 0.1 mm to 3.0 mm, and more preferably from 0.2 mm to 2.0 mm.
  • the sheet thickness T S and the layer thickness T L are measured by the following methods.
  • Method of measuring the thickness of the sheet T S is in a state of applying a load of 0.05kPa nonwoven. 1A, measured by using a thickness gauge.
  • a laser displacement meter manufactured by OMRON Corporation is used for the thickness measuring instrument. Thickness is measured at 10 points, and the average value is calculated as the thickness.
  • Measurement of layer thickness T L by enlarging the cross section of the sheet by Keyence Corporation Ltd. digital microscope VHX-900 by about 20 times, to measure the thickness of each layer.
  • the pitch between the top regions 13a adjacent to each other in the Y direction may be appropriately adjusted depending on the application, and is preferably 1 mm or more when used as a surface sheet or sublayer of an absorbent article. 5 mm or more is more preferable, 15 mm or less is preferable, 10 mm or less is more preferable, specifically, 1 mm or more and 15 mm or less is preferable, and 1.5 mm or more and 10 mm or less is more preferable.
  • the basis weight of the nonwoven fabric 1A depends on the specific use of the nonwoven fabric 1A, but when used as a surface sheet or sublayer of an absorbent article, the average value of the entire sheet is preferably 15 g / m 2 or more, and 20 g / m m 2 or more is more preferable, and 50 g / m 2 or less is preferable, 40 g / m 2 or less is more preferable, specifically, 15 g / m 2 or more and 50 g / m 2 or less is preferable, and 20 g / m 2 or more and 40 g. / M 2 or less is more preferable.
  • a fiber treating agent is attached to the surface of the constituent fiber 11 of the nonwoven fabric 1A.
  • the fiber treatment agent is attached to the surface of the high elongation fiber in the constituent fibers 11 at the raw material stage.
  • the fiber treatment agent preferably includes a spreadable component, and more preferably includes a spreadable component and a hydrophilic component.
  • the spreadable component refers to a component that, when attached to the surface of the fiber, easily spreads on the surface of the fiber at a low temperature and has excellent fluidity at a low temperature. Examples of such a spreadable component include a silicone resin having a low glass transition point and a flexible molecular chain.
  • the silicone resin a polyorganosiloxane having a Si—O—Si chain as the main chain is preferable. Used.
  • the fiber treatment agent adhering to the fiber surface contains a spreadable component and a hydrophilic component, the spreadable component tends to spread when the fiber is stretched, and the hydrophilic component Is difficult to spread, and it is considered that the hydrophilicity of the stretched portion of the fiber changes.
  • the “fiber treatment agent” that is the standard for the content of the fiber treatment agent-containing component, such as a spreadable component is “fiber treatment agent attached to the nonwoven fabric”. It is not a fiber treatment agent before adhesion.
  • the fiber treatment agent is usually diluted with an appropriate solvent such as water, so the content of the fiber treatment agent-containing component, for example, a fiber treatment agent of a spreadable component is used. The content in it can be based on the total mass of the diluted fiber treatment agent.
  • the fiber treatment agent to be determined is applied to the surface of the high elongation fiber to which no other fiber treatment agent has been applied, and the hydrophilicity of the high elongation fiber to which the fiber treatment agent has been applied is described above. Measured based on [Measurement method of contact angle].
  • the high elongation fiber to which the fiber treatment agent is applied is stretched 2.0 times to form the small diameter portion 16 and the large diameter portion 17. And the hydrophilicity in the formed large diameter part 17 is measured based on the above-mentioned [Measuring method of a contact angle].
  • the component contained in the fiber treatment agent is ductile.
  • the constituent fiber 11 having the small diameter portion 16 and the large diameter portion 17 is selected from the constituent fibers of the nonwoven fabric 1A, and the water contacts at the position of the small diameter portion 16 and the position of the large diameter portion 17 in the constituent fiber 11.
  • the angle is measured based on the above-described [Measuring Method of Contact Angle].
  • a spreadable component is contained in the fiber treatment agent. to decide.
  • the target nonwoven fabric is peeled off from the product, and the treatment agent is extracted using ethanol or an ethanol / methanol mixed solvent. Perform component analysis.
  • the above-described measurement is performed on the identified component, and it is determined whether or not each component is a spreadable agent.
  • polyorganosiloxane either a linear one or a cross-linked two-dimensional or three-dimensional network structure can be used. Preferably it is substantially linear.
  • suitable polyorganosiloxanes are alkylalkoxysilanes, arylalkoxysilanes, alkylhalosiloxane polymers or cyclic siloxanes, and the alkoxy groups are typically methoxy groups.
  • alkyl group an alkyl group which may have a side chain having 1 to 18 carbon atoms, preferably 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms is suitable.
  • the aryl group include a phenyl group, an alkylphenyl group, and an alkoxyphenyl group.
  • a cyclic hydrocarbon group such as a cyclohexyl group or a cyclopentyl group, or an aralkyl group such as a benzyl group may be used.
  • Preferred examples of the most typical polyorganosiloxane include polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane and the like, with polydimethylsiloxane being particularly preferred.
  • the molecular weight of the polyorganosiloxane is preferably a high molecular weight.
  • the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000.
  • more preferably 800,000 or less still more preferably 600,000 or less.
  • Two or more types of polyorganosiloxanes having different molecular weights may be used as the polyorganosiloxane.
  • one of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and preferably Is not more than 1 million, more preferably not more than 800,000, still more preferably not more than 600,000.
  • the other one has a weight average molecular weight of preferably less than 100,000, more preferably not more than 50,000, more preferably 30,000. It is 5,000 or less, more preferably 20,000 or less, preferably 2000 or more, more preferably 3000 or more, and still more preferably 5000 or more.
  • a preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is a mass ratio, preferably 1:10 to 4: 1. More preferably, it is 1: 5 to 2: 1.
  • the weight average molecular weight of the polyorganosiloxane is measured using GPC.
  • the measurement conditions are as follows.
  • the calculated molecular weight is calculated with polystyrene. Separation column: GMHHR-H + GMHHR-H (cation)
  • Eluent L Farmin DM20 / CHCl 3
  • Solvent flow rate 1.0 ml / min Separation column temperature: 40 ° C
  • the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, and more preferably 30% by mass or less from the viewpoint of increasing the change in the hydrophilicity of the fiber. Is preferable, and 20 mass% or less is still more preferable. Specifically, the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
  • polyorganosiloxane Commercially available products can be used as the polyorganosiloxane.
  • “KF-96H-1 million Cs” manufactured by Shin-Etsu Chemical Co., Ltd., “SH200 Fluid 1000000 Cs” manufactured by Toray Dow Corning Co., Ltd., and Shin-Etsu Chemical Co., Ltd. “KM-903” manufactured by company or “BY22-060” manufactured by Toray Dow Corning Co., Ltd. can be used.
  • hydrophilic component a zwitterionic surfactant or a nonionic surfactant can be used.
  • zwitterionic surfactants include alkyl (C1-30) betaines, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) Betaine-type zwitterionic surfactants such as dihydroxyalkyl (1-30 carbon atoms) betaine, sulfobetaine-type amphoteric surfactants, alanine type [alkyl (1-30 carbon atoms) aminopropionic acid type, alkyl (carbon Formula 1 to 30) Iminodipropionic acid type and the like] Amphoteric surfactant, Glycine type such as alkylbetaine [Alkyl (C1 to C30) aminoacetic acid type and the like] Amino acid type amphoteric surfactant such as amphoteric surfactant, Examples thereof include aminosulfonic acid type amphoteric surfactants such as alkyl (having 1 to 30 carbon atoms) taurine type. Of these, betaine-type zwitterio
  • the fiber treatment agent preferably contains a hydrophobic component in addition to the spreadable component and the hydrophilic component.
  • hydrophobic component examples include alkyl phosphate esters, anionic surfactants represented by the following general formula (1) (hereinafter also simply referred to as “anionic surfactants”), and the like.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms, which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • X represents —SO 3 M, —OSO 3 M or —COOM
  • M represents H, Na, K, Mg, Ca or ammonium.
  • Alkyl phosphate esters are incorporated into fiber treatment agents for the purpose of improving the properties of raw cotton through the card machine and the uniformity of the web, thereby improving the productivity of the nonwoven fabric and preventing the quality from deteriorating.
  • Specific examples of the alkyl phosphate ester include those having a saturated carbon chain such as stearyl phosphate ester, myristyl phosphate ester, lauryl phosphate ester, palmityl phosphate ester, oleyl phosphate ester, palmitoleyl phosphate ester, etc. Examples include unsaturated carbon chains and those having side chains in these carbon chains.
  • alkyl phosphate ester having 16 to 18 carbon chains.
  • alkyl phosphate ester salt include alkali metals such as sodium and potassium, ammonia, and various amines.
  • Alkyl phosphate ester can be used individually by 1 type or in mixture of 2 or more types.
  • the blending ratio of the alkyl phosphate ester is preferably 5% by mass or more, more preferably 10% by mass or more from the viewpoint of card machine passability and web uniformity, etc., and also depends on the polyorganosiloxane resulting from the heat treatment. From the viewpoint of not hindering the hydrophobicity of the fiber, it is preferably 30% by mass or less, more preferably 25% by mass or less.
  • the content ratio (the former: latter) of the polyorganosiloxane and the alkyl phosphate ester in the fiber treatment agent is preferably 1: 5 to 10: 1, more preferably 1: 2 to 3: 1 in terms of mass ratio. It is.
  • the anionic surfactant represented by the above general formula (1) refers to a component that does not contain the alkyl phosphate ester. Moreover, the anionic surfactant represented by the above general formula (1) can be used singly or in combination of two or more.
  • anionic surfactant in which X in the general formula (1) is —SO 3 M, that is, the hydrophilic group is a sulfonic acid or a salt thereof include, for example, a dialkylsulfonic acid or a salt thereof.
  • dialkyl sulfonic acid examples include dioctadecyl sulfosuccinic acid, didecyl sulfosuccinic acid, ditridecyl sulfosuccinic acid, di-2-ethylhexyl sulfosuccinic acid, and the like, and dicarboxylic acids such as dialkyl sulfosuccinic acid and dialkyl sulfoglutaric acid.
  • Saturated fatty acids and unsaturated fatty acids such as compounds sulfonated at the alpha position, 2-sulfotetradecanoic acid 1-ethyl ester (or amide) sodium salt, 2-sulfohexadecanoic acid 1-ethyl ester (or amide) sodium salt
  • dialkyl alkenes obtained by sulfonating internal olefins of hydrocarbon chains and unsaturated fatty acids Such as sulfonic acid can be mentioned.
  • the number of carbon atoms in each of the two-chain alkyl groups of the dialkyl sulfonic acid is preferably 4 or more and 14 or less, particularly 6 or more and 10 or less.
  • anionic surfactant in which the hydrophilic group is sulfonic acid or a salt thereof include the following anionic surfactants.
  • anionic surfactant in which X in the general formula (1) is —OSO 3 M, that is, the hydrophilic group is sulfuric acid or a salt thereof include dialkyl sulfates, and specific examples thereof include 2-ethylhexyl.
  • anionic surfactant in which the hydrophilic group is sulfuric acid or a salt thereof include the following anionic surfactants.
  • X in the general formula (1) is —COOM
  • a dialkylcarboxylic acid can be mentioned, and specific examples thereof include 11-ethoxyhepta.
  • Hydroxy fatty acid chlorides such as compounds in which the hydroxy moiety of hydroxy fatty acids such as sodium decanecarboxylate and sodium 2-ethoxypentacarboxylate is alkoxylated and the fatty acid moiety is sodiumated, and the amino group of amino acids such as sarcosine and glycine are alkoxylated
  • compounds obtained by reacting carboxylic acid in the amino acid part with sodium and compounds obtained by reacting fatty acid chloride with the amino group of arginic acid.
  • anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
  • the blending ratio of the anionic surfactant represented by the general formula (1) is preferably 1% by mass or more, more preferably 5% by mass or more. If the hydrophilicity is too high, the liquid tends to be held. From the viewpoint of impairing dryness, it is preferably 20% by mass or less, more preferably 13% by mass or less.
  • the blending ratio of the anionic surfactant represented by the general formula (1) is preferably 1% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 13% by mass or less.
  • the content ratio (the former: the latter) of the polyorganosiloxane and the anionic surfactant represented by the general formula (1) in the fiber treatment agent is preferably 1: 3 to 4: 1 in terms of mass ratio.
  • the ratio is preferably 1: 2 to 3: 1.
  • the fiber treatment agent uses an anionic surfactant or a cationic surfactant in addition to a spreadable component, a hydrophilic component, an alkyl phosphate ester, and an anionic surfactant. Can do.
  • anionic surfactants include alkyl phosphate sodium salt, alkyl ether phosphate sodium salt, dialkyl phosphate sodium salt, dialkyl sulfosuccinate sodium salt, alkylbenzene sulfonate sodium salt, alkyl sulfonate sodium salt, alkyl sulfate sodium salt, secondary Examples include alkyl sulfate sodium salt (all alkyls preferably have 6 to 22 carbon atoms, particularly preferably 8 to 22 carbon atoms). These may use other alkali metal salts such as potassium salts in place of sodium salts.
  • Examples of the cationic surfactant include alkyl (or alkenyl) trimethyl ammonium halide, dialkyl (or alkenyl) dimethyl ammonium halide, alkyl (or alkenyl) pyridinium halide, and these compounds have 6 or more carbon atoms. Those having 18 or less alkyl groups or alkenyl groups are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
  • the fiber treatment agent may further contain a treatment agent such as an anti-sticking agent such as modified silicone, a fiber colorant, or a lubricant.
  • a treatment agent such as an anti-sticking agent such as modified silicone, a fiber colorant, or a lubricant.
  • various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform the treatment before the stretching treatment described later.
  • the fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
  • the non-woven fabric of the present invention includes a fusing step of heat-sealing intersections of constituent fibers of a fiber web including a high elongation fiber to which a fiber treating agent is applied, at the fusing portion, and the fusing
  • the nonwoven fabric is produced by a method for producing a nonwoven fabric comprising a drawing step of drawing the fused fiber web in one direction.
  • FIG. 4 schematically shows a preferable manufacturing apparatus 100 used in the method for manufacturing the nonwoven fabric 1A.
  • the manufacturing apparatus 100 is suitably used for manufacturing an air-through nonwoven fabric.
  • the manufacturing apparatus 100 includes a web forming unit 200, a hot air processing unit 300, and an extending unit 400 in this order from the upstream side to the downstream side of the manufacturing process.
  • the web forming unit 200 is provided with a web forming apparatus 201 as shown in FIG.
  • a card machine is used as the web forming apparatus 201.
  • a card machine the thing normally used in the technical field of an absorbent article can be used without a restriction
  • another web manufacturing apparatus such as an airlaid apparatus, may be used instead of the card machine.
  • the hot air processing unit 300 includes a hood 301 as shown in FIG. Inside the hood 301, hot air can be blown by an air-through method.
  • the hot air processing unit 300 includes an endless conveyor belt 302 made of a breathable net.
  • the conveyor belt 302 circulates in the hood 301.
  • the conveyor belt 302 is made of a resin such as polyethylene terephthalate or a metal.
  • the temperature of the hot air blown in the hood 301 and the heat treatment time are preferably adjusted so that the intersections of the high elongation fibers included in the constituent fibers 11 of the fiber web 10 are heat-sealed.
  • the temperature of the hot air is preferably adjusted to a temperature that is 0 ° C. to 30 ° C. higher than the melting point of the resin having the lowest melting point among the constituent fibers 11 of the fiber web 10.
  • the heat treatment time is preferably adjusted to 1 to 5 seconds depending on the temperature of the hot air.
  • the wind speed of the hot air is preferably about 0.3 m / sec to 1.5 m / sec.
  • the conveying speed is preferably about 5 m / min to 100 m / min.
  • the extending portion 400 includes a pair of concave and convex rolls 401 and 402 that can be engaged with each other.
  • the pair of concave and convex rolls 401 and 402 are formed so as to be heatable, and are formed by alternately arranging large-diameter convex portions 403 and 404 and small-diameter concave portions (not shown) in the roll axis direction.
  • the uneven rolls 401 and 402 may or may not be heated, but the heating temperature when heating the uneven rolls 401 and 402 makes it easy to stretch the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a described later.
  • the temperature is 10 ° C. higher than the glass transition point of the fiber and 10 ° C. lower than the melting point, more preferably 20 ° C. higher than the glass transition point of the fiber and 20 ° C. lower than the melting point. It is.
  • the temperature is preferably 67 ° C. or higher and 135 ° C. or lower, more preferably 77 ° C. or higher and 125 ° C. or lower, still more preferably 87 ° C. or higher and 115 ° C. or lower.
  • the interval (pitch) between the large-diameter convex portions 403, 403 adjacent to each other in the roll axis direction of the uneven roll 401 and the roll axis direction of the uneven roll 402 are adjacent to each other.
  • the spacing (pitch) between the large-diameter convex portions 404 and 404 is the same spacing (pitch) w, and the spacing (pitch) w is such that the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a are successfully used in the stretching apparatus.
  • it is preferably 1 mm or more, particularly preferably 1.5 mm or more. And, it is preferably 10 mm or less, particularly preferably 8 mm or less, specifically, preferably 1 mm or more and 10 mm or less, particularly preferably 1.5 mm or more and 8 mm or less. A. From the same viewpoint, as shown in FIG.
  • the pushing amount t of the pair of concavo-convex rolls 401 and 402 (the distance between the apex of the large-diameter convex portion 403 and the apex of the large-diameter convex portion 404 adjacent in the roll axis direction) is The thickness is preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, and specifically preferably 1 mm or more and 3 mm or less. Especially preferably, it is 1.2 mm or more and 2.5 mm or less.
  • the mechanical stretch ratio is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, particularly preferably 2.8. More specifically, it is preferably 1.5 times or more and 3.0 times or less, and particularly preferably 1.7 times or more and 2.8 times or less.
  • a web forming apparatus 201 which is a card machine, uses, as a raw material, short fiber-like constituent fibers 11 having high elongation fibers to which a fiber treating agent has already been applied.
  • the fiber web 10 manufactured by the web forming apparatus 201 is in a state where the constituent fibers 11 are loosely entangled with each other, and has not yet achieved shape retention as a sheet.
  • the fiber sheet 1a is formed by thermally fusing the intersections of the constituent fibers 11 of the fiber web 10 including the high elongation fibers at the fusion part 12 (fusing step). Specifically, the fiber web 10 is conveyed onto the conveyor belt 302, and hot air is blown in an air-through manner while passing through the hood 301 by the hot air processing unit 300. When hot air is thus blown by the air-through method, the constituent fibers 11 of the fiber web 10 are further entangled, and at the same time, the intersection of the entangled fibers is thermally fused (see FIG. 7 (a)) to form a sheet. A fiber sheet 1a having a shape-retaining property is manufactured.
  • the fused fiber web 1a is stretched in one direction (stretching step). Specifically, the fused fiber web 1a having a shape retaining property as a sheet is conveyed between a pair of concave and convex rolls 401 and 402, as shown in FIGS. 7 (a) to 7 (c). In addition, the fiber web 1a is stretched, and a large fiber diameter is sandwiched between two small-diameter portions 16 and 16 having a small fiber diameter in one constituent fiber 11 between adjacent fusion portions 12 and 12. The large diameter portion 17 is formed, and the change point 18 from the small diameter portion 16 to the large diameter portion 17 is set to 1/3 of the interval T between the fusion portions 12, 12 adjacent to the fusion portion 12. Form within the range.
  • the fiber sheet 1a in which the intersections of the constituent fibers 11 are thermally fused at the fusion part 12 is conveyed between a pair of concave and convex rolls 401 and 402. Then, the fiber web 1a is stretched in the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
  • CD orthogonal direction
  • MD machine direction
  • the adjacent fused portions 12, 12 fixing the constituent fibers 11 shown in FIG. Is actively stretched in the orthogonal direction (CD, roll axis direction).
  • CD orthogonal direction
  • MD machine direction
  • the spreadable component of the fiber treatment agent attached to the surface of the constituent fiber 11 is a low temperature. Is excellent in fluidity, so that it flows along with the elongation of the fiber and is maintained attached to the surface of the small diameter portion 16.
  • components other than the spreadable component are stretched when the region between the adjacent fused portions 12, 12 is actively stretched. As a result, it cannot flow, and the state of adhering to the surface of the small diameter portion 16 cannot be maintained.
  • the composition ratio of the attached fiber treatment agent varies between the surface of the small diameter portion 16 and the surface of the large diameter portion 17 formed by stretching the region between the adjacent fusion portions 12 and 12. To do. Specifically, only a spreadable component easily adheres to the surface of the small diameter portion 16, while a fiber treatment agent containing a spreadable component and a hydrophilic component is formed on the surface of the large diameter portion 17. It comes to adhere. Therefore, the hydrophilicity of the small diameter portion 16 tends to be smaller than the hydrophilicity of the large diameter portion 17.
  • the nonwoven fabric 1A including the constituent fibers 11 shown in FIG. 3 and having a smaller hydrophilicity of the small diameter portion 16 than that of the large diameter portion 17 is obtained. It can be manufactured continuously and efficiently. As shown in FIG. 4, the manufactured nonwoven fabric 1 ⁇ / b> A is once wound up and stored in the form of a roll, and then is unwound from the roll and used. Alternatively, processing is performed in the subsequent process line of the manufacturing apparatus 100 for the nonwoven fabric 1A, and the target product is continuously manufactured.
  • the nonwoven fabric 1 ⁇ / b> A manufactured as described above pays attention to one constituent fiber 11 among the constituent fibers 11, and the small diameter portion 16 adjacent to the fusion portion 12 to the large diameter portion 17. Since the change point 18 is arranged within a range of 3 of the interval T between the adjacent fused portions 12, 12 from the fused portion 12, it is soft and good in terms of touch. In particular, if a plurality of small-diameter portions 16 are formed between the adjacent fused portions 12 and 12 while paying attention to one constituent fiber 11, the touch is further improved. From the viewpoint of easily exhibiting such an effect, the constituent fibers 11 are preferably made of only high elongation fibers.
  • the nonwoven fabric is stretched while being contracted. Therefore, even if the manufacturing method of the nonwoven fabric 1A and the mechanical stretch ratio are the same, the fiber diameter hardly changes. Therefore, the change point 18 which is a part where the fiber diameter changes extremely is difficult when the elastic fiber is contained in the constituent fiber 11, and the part which changes gradually from the small diameter part 16 to the large diameter part 17 continuously. Is easily formed.
  • the continuously and gradually changing portion formed in this way is not necessarily stretched locally near the fusion point because it contains elastic fibers, and is observed randomly rather than near the fusion point. become so.
  • the constituent fibers 11 do not include elastic fibers from the viewpoint of further improving the touch.
  • the nonwoven fabric 1A includes the constituent fibers 11 in which the hydrophilicity of the small diameter portion 16 is smaller than the hydrophilicity of the large diameter portion 17. Accordingly, since the portion having a reduced hydrophilicity (small diameter portion 16) is dispersed on the surface of the nonwoven fabric 1A, the nonwoven fabric 1A has less liquid residue on the surface and improves the dry touch property, and the small diameter portion 16 reduces the interfiber distance. Spreads and liquid permeability improves.
  • the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and the fiber density of the side region 13c is smaller than the fiber density of the top region 13a and the fiber density of the bottom region 13b. Therefore, since the interfiber distance of the side region 13c is wider than the interfiber distance of the top region 13a and the bottom region 13b, the air permeability and liquid permeability are improved as the whole nonwoven fabric 1A. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized.
  • the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and the number of change points 18 of one constituent fiber 11 constituting the side region 13c is changed by the one constituent fiber 11 constituting the top region 13a. More than the number of the change points 18 which the number of the points 18 and the one component fiber 11 which comprises the bottom region 13b have are formed. For this reason, since the portion having a reduced hydrophilicity (small diameter portion 16) is dispersed in the side region 13c, the liquid residue on the surface is further reduced and the dry touch property is further improved. Spreading liquid permeability is improved.
  • FIG. 8 is a perspective view of a nonwoven fabric 1B (hereinafter also referred to as “nonwoven fabric 1B”) which is an embodiment of the present invention (second invention).
  • FIG. 9 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric 1B shown in FIG.
  • FIG. 10 is an enlarged schematic view of the constituent fibers 11 of the nonwoven fabric 1B shown in FIG.
  • the nonwoven fabric 1 ⁇ / b> B is a nonwoven fabric provided with a plurality of fusion portions 12 (see FIG. 10) formed by heat-sealing the intersections of the constituent fibers 11.
  • FIG. 10 is a nonwoven fabric provided with a plurality of fusion portions 12 (see FIG. 10) formed by heat-sealing the intersections of the constituent fibers 11.
  • the nonwoven fabric 1B is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. is there. Specifically, as shown in FIG. 9, the nonwoven fabric 1B is adjacent to a plurality of ridges 13 in which the cross-sectional shapes of the front and back surfaces a and b are both convex upward in the thickness direction (Z direction). It has the concave line part 14 located between the convex line parts 13 and 13 which fit.
  • the concave stripe part 14 has a concave shape in which the cross-sectional shapes of the front and back surfaces a and b are both upward in the thickness direction (Z direction) of the nonwoven fabric.
  • the cross-sectional shape of front and back both surfaces a and b has comprised the convex shape toward the downward direction of the thickness direction (Z direction) of a nonwoven fabric.
  • line part 13 is continuously extended in one direction (X direction) of the nonwoven fabric 1B, respectively, and the several groove part 14 is also groove shape extended continuously in the one direction X of the nonwoven fabric 1B. I am doing.
  • the ridges 13 and the ridges 14 are parallel to each other and are alternately arranged in a direction (Y direction) orthogonal to the one direction (X direction).
  • the nonwoven fabric 1B has the top part area
  • line part 13 is formed from the top part area
  • the bottom part of the grooved part 14 is formed from the bottom part area
  • the top region 13a, the bottom region 13b, and the side region 13c extend continuously in one direction (X direction) of the nonwoven fabric 1B. As shown in FIG.
  • the top region 13a, the bottom region 13b, and the side region 13c are cross-sectional views of the nonwoven fabric 1B, and the thickness in the Z direction of the nonwoven fabric 1B is equally divided into three, and the upper portion in the thickness direction (Z direction).
  • the said division is measured by the following method.
  • a cold spray is sprayed on the target diaper or the like to solidify the hot melt adhesive. Then, each material is carefully peeled off to obtain a target nonwoven fabric, which is cut and measured as described above.
  • the nonwoven fabric 1B is manufactured by performing uneven processing on the fiber sheet 1a using a pair of uneven rolls 401 and 402 meshing with each other.
  • the one direction (X direction) of the nonwoven fabric 1B described above is the same direction as the machine direction (MD, flow direction) when the nonwoven fabric 1B is manufactured by performing uneven processing on the fiber sheet 1a.
  • the direction (Y direction) orthogonal to the direction (X direction) is the same direction as the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
  • the constituent fibers 11 of the nonwoven fabric 1B include high elongation fibers.
  • the high elongation fiber included in the constituent fiber 11 means not only a fiber having a high elongation at the raw material fiber stage, but also a fiber having a high elongation at the stage of the manufactured nonwoven fabric 1B.
  • melt spinning is performed at a low speed to form a composite
  • the heat-extensible fiber which is obtained by changing the crystal state of the resin by heating and / or crimping without stretching, or polypropylene or polyethylene Fibers manufactured using relatively low spinning speeds using a resin such as polyethylene, polypropylene-polypropylene copolymers with low crystallinity, or fibers manufactured by dry blending polyethylene into polypropylene and spinning, etc. Is mentioned.
  • the high elongation fiber is preferably a core-sheath type composite fiber having heat-fusibility.
  • the core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or a deformed type, but is preferably a concentric core-sheath type.
  • the fineness of the high elongation fiber may be 1.0 dtex or more at the raw material stage.
  • it is 2.0 dtex or more, more preferably 10.0 dtex or less, more preferably 8.0 dtex or less, specifically, 1.0 dtex or more and 10.0 dtex or less. Preferably, it is 2.0 dtex or more and 8.0 dtex or less.
  • the constituent fiber 11 of the nonwoven fabric 1B may be configured to include other fibers in addition to the high elongation fiber, but is preferably composed only of inelastic fibers, and is composed only of high elongation fibers. More preferably.
  • Other fibers include, for example, a non-heat-extensible core-sheath-type heat-fusible composite fiber containing two components having different melting points, or a fiber that does not inherently have heat-fusibility ( Examples thereof include natural fibers such as cotton and pulp, rayon and acetate fibers).
  • the proportion of the high elongation fibers in the nonwoven fabric 1B0 is preferably 50% by mass or more, and more preferably 80% by mass or more. And preferably 100% by mass or less, more preferably 100% by mass or less, specifically preferably 50% by mass or more and 100% by mass or less, and more preferably 80% by mass. % Or more and 100% by mass or less is preferable.
  • the heat-extensible fiber which is an example of a high-stretch fiber, is a composite fiber that has been subjected to an unstretched or weakly stretched treatment at the raw material stage.
  • a first resin component that constitutes a core portion and a sheath portion
  • a second resin component containing a polyethylene resin the first resin component having a higher melting point than the second resin component.
  • a 1st resin component is a component which expresses the heat
  • a 2nd resin component is a component which expresses heat-fusibility.
  • the melting points of the first resin component and the second resin component were determined by thermal analysis of a finely cut fiber sample (sample weight 2 mg) using a differential scanning calorimeter (DSC6200 manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C./min.
  • the melting peak temperature of each resin is measured and defined by the melting peak temperature.
  • the resin is defined as “resin having no melting point”.
  • the temperature at which the second resin component is fused to such an extent that the strength of the fusion point of the fiber can be measured is used as the temperature at which the molecular flow of the second resin component begins, and this is used instead of the melting point.
  • the polyethylene resin is included as a 2nd resin component which comprises a sheath part.
  • the polyethylene resin include low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE).
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • a high density polyethylene having a density of 0.935 g / cm 3 or more and 0.965 g / cm 3 or less is preferable.
  • the second resin component constituting the sheath is preferably a polyethylene resin alone, but other resins can also be blended.
  • Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like.
  • the 2nd resin component which comprises a sheath part it is preferable that 50 mass% or more in the resin component of a sheath part is 70 to 100 mass% especially polyethylene resin.
  • the polyethylene resin preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
  • a resin component having a melting point higher than that of the polyethylene resin that is a constituent resin of the sheath portion can be used without any particular limitation.
  • the resin component constituting the core include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyamide-based polymers, copolymers having two or more resin components, and the like can also be used.
  • a plurality of types of resins can be blended and used.
  • the melting point of the core is the melting point of the resin having the highest melting point.
  • the difference between the melting point of the first resin component constituting the core part and the melting point of the second resin component constituting the sheath part is 20 ° C. or higher. It is preferable that it is 150 degrees C or less.
  • the preferred orientation index of the first resin component in the thermally stretchable fiber which is an example of a high elongation fiber, is naturally different depending on the resin used.
  • the orientation index is 60% or less. More preferably, it is 40% or less, More preferably, it is 25% or less.
  • the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more.
  • the orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber.
  • the orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A.
  • a method for achieving the orientation index as described above for each resin component in the heat-extensible fiber is described in paragraphs [0033] to [0036] of Japanese Patent Application Laid-Open No. 2010-168715.
  • the elongation of the high elongation fiber is preferably 100% or more at the raw material stage, more preferably 200% or more, still more preferably 250% or more, and 800% or less. It is preferably 500% or less, more preferably 400% or less, specifically preferably 100% or more and 800% or less, more preferably 200% or more and 500% or less, Preferably they are 250% or more and 400% or less.
  • the elongation of the high elongation fiber conforms to JISL-1015, and the measurement is based on the measurement environment temperature and humidity of 20 ⁇ 2 ° C, 65 ⁇ 2% RH, the tensile tester gripping distance of 20mm, and the tensile speed of 20mm / min.
  • the gripping interval is set. Measure by setting to 10 mm or 5 mm.
  • the ratio of the first resin component to the second resin component (mass ratio, the former: latter) in the high elongation fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially in the raw material stage. It is preferably 50:50 to 70:30.
  • the fiber length of the high elongation fiber one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
  • the fiber diameter of the high elongation fiber is appropriately selected according to the specific use of the nonwoven fabric at the raw material stage.
  • a nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of an absorbent article, it is preferable to use one having a thickness of 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and one having a thickness of 35 ⁇ m or less. It is preferable to use a material having a thickness of 30 ⁇ m or less, and specifically, a material having a thickness of 10 ⁇ m to 35 ⁇ m, particularly 15 ⁇ m to 30 ⁇ m is preferable.
  • the fiber diameter is measured by the following method.
  • the fiber diameter ( ⁇ m) is measured by using a scanning electron microscope (JCM-5100 manufactured by JEOL Ltd.) and observing the cross section of the fiber at 200 to 800 times.
  • the cross section of the fiber is obtained by cutting the fiber using a feather razor (product number FAS-10, manufactured by Feather Safety Razor Co., Ltd.). For each extracted fiber, the fiber diameter when approximated to a circle is measured at five locations, and the average value of the five measured values is taken as the fiber diameter.
  • Japanese Patent No. 4131852 Japanese Patent Application Laid-Open No. 2005-350836, Japanese Patent Application Laid-Open No. 2007-2007
  • JP-A-303035, JP-A 2007-204899, JP-A 2007-204901, JP-A 2007-204902, and the like can also be used.
  • the nonwoven fabric of the present invention pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1B, and the constituent fibers 11 are adjacent to the fused portion 12.
  • , 12 has a large-diameter portion 17 having a large fiber diameter sandwiched between two small-diameter portions 16, 16 having a small fiber diameter.
  • a fusion formed by heat-sealing the intersection with the other constituent fibers 11 is performed.
  • a small diameter portion 16 having a small fiber diameter extends from the landing portion 12 with substantially the same fiber diameter.
  • the nonwoven fabric 1B pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, It has constituent fibers 11 arranged in the order of a small diameter portion 16 on the side of the attachment portion 12, one large diameter portion 17, and a small diameter portion 16 on the side of the other fusion portion 12. Further, as shown in FIG.
  • the nonwoven fabric 1 ⁇ / b> B focuses on one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 ⁇ / b> B, and has a large diameter portion 17 between the adjacent fusion portions 12, 12.
  • the constituent fiber 11 is provided with a plurality (two in the nonwoven fabric 1B). More specifically, the nonwoven fabric 1B pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, Constituent fibers arranged in the order of the small-diameter portion 16 on the bonding portion 12 side, the first large-diameter portion 17, the small-diameter portion 16, the second large-diameter portion 17, and the small-diameter portion 16 on the other fused portion 12 side. 11.
  • the low-rigidity small-diameter portion 16 is adjacent to the fused portion 12 where the stiffness of the nonwoven fabric 1B is increased, thereby improving the flexibility of the nonwoven fabric 1B and improving the touch. Moreover, the softness
  • the nonwoven fabric 1B pays attention to one constituent fiber 11, and preferably has one large-diameter portion 17 between the adjacent fused portions 12, 12, from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. More, more preferably 1 or more, and preferably 5 or less, more preferably 3 or less, specifically preferably 1 or more and 5 or less, more preferably 1 or more and 3 Has less than one.
  • the ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter part 16 to the fiber diameter (diameter L 17 ) of the large diameter part 17 is preferably 0.5 or more, more preferably 0.55 or more. And preferably it is 0.8 or less, More preferably, it is 0.7 or less, Specifically, Preferably it is 0.5 or more and 0.8 or less, More preferably, it is 0.55 or more and 0.7 or less.
  • the fiber diameter (diameter L 16 ) of the small-diameter portion 16 is preferably 5 ⁇ m or more, more preferably 6.5 ⁇ m or more, particularly preferably 7.5 ⁇ m or more from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric.
  • the fiber diameter (diameter L 17 ) of the large diameter portion 17 is preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less, from the viewpoint of improving the touch.
  • the thickness is particularly preferably 20 ⁇ m or less, specifically, preferably 10 ⁇ m or more and 35 ⁇ m or less, more preferably 13 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 20 ⁇ m or less.
  • the fiber diameters (the diameters L 16 and L 17 ) of the small diameter part 16 and the large diameter part 17 are measured in the same manner as the fiber diameter measurement described above.
  • the nonwoven fabric of the present invention pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 ⁇ / b> B, and a small-diameter portion 16 adjacent to the fused portion 12.
  • the change point 18 from the large diameter portion 17 to the large diameter portion 17 is arranged within a range of 3 of the interval T between the fusion portions 12 and 12 adjacent to the fusion portion 12.
  • the change point 18 of the nonwoven fabric of the present invention (second invention) is a large diameter portion 17 extending from a small diameter portion 16 extending with a small fiber diameter and a fiber diameter larger than that of the small diameter portion 16.
  • the change point 18 of the nonwoven fabric of the present invention is the first resin component constituting the core part and the sheath part. It does not include a state in which the fiber diameter is changed by peeling with the second resin component to be configured, and means a portion where the fiber diameter is changed by stretching.
  • the fact that the change point 18 is arranged within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the nonwoven fabric 1B are randomly extracted.
  • the constituent fibers 11 are bonded between adjacent fusion portions 12 and 12. Enlarge it so that it can be observed (100 to 300 times).
  • the interval T between the centers of the adjacent fused portions 12 and 12 is divided into three equal parts, and the region AT on the side of one fused portion 12, the region BT on the side of the other fused portion 12, and the center region CT Break down.
  • the change point 18 is arranged in the area AT or the area BT.
  • the non-woven fabric 1B in which the change point 18 is disposed within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the non-woven fabric 1B are 20
  • the constituent fiber 11 in which the change point 18 is arranged in the region AT or the region BT means a nonwoven fabric in which at least one of the 20 constituent fibers 11 is present.
  • it is preferably 1 or more, more preferably 5 or more, and particularly preferably 10 or more.
  • the nonwoven fabric 1B of the present embodiment extends not only the side region 13c but also the top region 13a that is the top of the ridge 13 and the bottom region 13b that is the bottom of the concave 14 by stretching,
  • the fiber density of the whole nonwoven fabric is lower than the raw material nonwoven fabric before stretching.
  • the liquid permeability and air permeability of the whole nonwoven fabric 1B are improving.
  • the side region 13c is particularly easy to be stretched and the fiber density is likely to decrease.
  • liquid permeability and air permeability are particularly good. It has improved.
  • the nonwoven fabric 1B of the present embodiment is formed such that the fiber density of the side region 13c is smaller than the fiber density of the top region 13a that is the top of the protruding portion 13 and the fiber density of the bottom region 13b that is the bottom of the recessed portion 14.
  • the fiber density is the mass of the fiber per unit volume of the nonwoven fabric 1B.
  • High fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1B is large and the distance between fibers is small.
  • Low fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1B is small and the distance between fibers is large.
  • part with a high fiber density has high capillary force
  • part with a low fiber density has low capillary force.
  • the nonwoven fabric 1 ⁇ / b> B is a cross-sectional view
  • the nonwoven fabric 1 ⁇ / b> B is a fiber in a side region 13 c between the top portion (top region 13 a) of the ridge 13 and the bottom portion (bottom region 13 b) of the recess 14.
  • the density is the smallest. Therefore, in the side region 13c, the amount of fibers existing per unit volume of the nonwoven fabric 1B is the smallest, the interfiber distance is the largest, and the nonwoven fabric 1B as a whole has improved air permeability and liquid permeability. improves.
  • the nonwoven fabric 1B may be manufactured according to the manufacturing method described later.
  • the ratio (D 15 / D 13 , D 15 / D 14 ) of the fiber density (D 15 ) of the side region 13c to the fiber density (D 13 ) in the top region 13a or the fiber density (D 14 ) in the bottom region 13b. ) Is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less, and specifically preferably 0.15 or more. 0.9 or less, more preferably 0.2 or more and 0.8 or less.
  • the specific value of the fiber density of the nonwoven fabric 1B is such that the fiber density (D 13 ) in the top region 13a is preferably 80 / mm 2 or more, more preferably 90 / mm 2 or more, and Preferably it is 200 / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more. 180 pieces / mm 2 or less.
  • the fiber density (D 14) of the bottom area 13b preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more and 180 / mm 2 or less.
  • the fiber density of the side region 13c (D 15) is preferably 30 present / mm 2 or more, more preferably 40 present / mm 2 or more, and preferably 80 present / mm 2 or less, more preferably 70 / mm 2 or less, specifically, preferably 30 / mm 2 or more and 80 / mm 2 or less, more preferably 40 / mm 2 or more and 70 / mm 2 or less.
  • the fiber density of the top region 13 a is measured at a position near the top of the ridge 13.
  • the fiber density of the bottom region 13b is measured at a position near the bottom point of the concave strip portion 14.
  • the method for measuring the fiber density is as follows.
  • the nonwoven fabric was cut using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the fiber density in the top area 13a was obtained by dividing the thickness of the cut surface of the nonwoven fabric into three equal parts in the Z direction.
  • the vicinity of the apex of the ridge 13 which is the upper part is magnified using a scanning electron microscope (adjusted to a magnification capable of measuring 30 to 60 fiber cross-sections; 150 to 500 times), and per fixed area (0.5 mm) 2 ) Count the number of cross-sections of the fibers cut by the cut surface.
  • the fiber density in the top region 13a converts into the number of cross sections of the fiber per 1 mm ⁇ 2 >, and makes this the fiber density in the top region 13a.
  • the measurement is performed at three locations, and the average is the fiber density of the sample.
  • the fiber density in the bottom region 13b is obtained by measuring the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction.
  • the fiber density of the side region 13c is determined by measuring the central part when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction.
  • JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
  • the number of fibers having the change point 18 in the constituent fibers constituting the side region 13c is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a and the bottom region 13b. More are formed. Thereby, the top region 13a can easily follow the movement of the wearer's skin, and good skin contact can be realized.
  • the ratio (N 15 / N 13 , N 15 / N 14 ) of the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting is preferably 2 or more, more preferably 5 or more, and preferably Is 20 or less, more preferably 20 or less. Specifically, it is preferably 2 or more and 20 or less, more preferably 5 or more and 20 or less.
  • the number of fibers having the change point 18 (N 13 ) in the constituent fibers constituting the top region 13a is preferably one or more, and further Preferably it is 5 or more, and preferably 15 or less, more preferably 15 or less, specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less.
  • the number (N 14 ) of fibers having the change point 18 in the constituent fibers constituting the bottom region 13b is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably Is 15 or less, and specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less.
  • the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting the side region 13c is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, The number is preferably 20 or less, specifically, preferably 5 or more and 20 or less, and more preferably 10 or more and 20 or less.
  • the method for measuring the number of fibers having the change point 18 is as follows.
  • the number of fibers having the change points 18 is set, and when there are a plurality of change points 18, the number is also set to one. This is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a.
  • the measurement is performed at three places, and the average is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a of the sample.
  • the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Determine by measuring.
  • the number of fibers having the change point 18 in the constituent fibers 11 constituting the side region 13c is obtained by measuring the central portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction.
  • JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
  • the nonwoven fabric 1B of this embodiment is, for example, a disposable diaper having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorber interposed between the both sheets. Or it is used for absorbent articles, such as a sanitary napkin.
  • the top sheet is formed from the nonwoven fabric 1B, or a liquid-permeable sublayer disposed between the top sheet and the absorbent body is formed from the nonwoven fabric 1B.
  • the said surface sheet is formed with the nonwoven fabric 1B, since the nonwoven fabric 1B is a nonwoven fabric of uneven structure, a contact area rate with skin will become low and it will become difficult to rub further.
  • the nonwoven fabric 1B is a nonwoven fabric of a concavo-convex structure, compression resistance improves, a feeling of cushion improves, and the return of body fluid can be prevented.
  • Sheet thickness T S is may be adjusted as appropriate depending on the application, when used as a topsheet or sublayer of the absorbent article is preferably at least 0.5 mm, more preferably at least 1 mm, and preferably 7mm or less, 5 mm or less More specifically, 0.5 mm or more and 7 mm or less are preferable, and 1 mm or more and 5 mm or less are more preferable. By setting it as this range, the bodily fluid absorption speed
  • the layer thickness TL may be different at each site in the nonwoven fabric 1B, and may be appropriately adjusted depending on the application.
  • the layer thickness T L1 of the top region 13a is preferably 0.1 mm or more, more preferably 0.2 mm or more, and 3.0 mm or less. Is preferably 2.0 mm or less, specifically 0.1 mm or more and 3.0 mm or less, more preferably 0.2 mm or more and 2.0 mm or less.
  • the layer thickness T L2 of the bottom region 13b is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less.
  • the layer thickness T L3 of the side region 13c is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Specifically, it is preferably from 0.1 mm to 3.0 mm, and more preferably from 0.2 mm to 2.0 mm.
  • the sheet thickness T S and the layer thickness T L are measured by the following methods.
  • Method of measuring the thickness of the sheet T S is in a state of applying a load of 0.05kPa nonwoven 1B, measured using a thickness gauge.
  • a laser displacement meter manufactured by OMRON Corporation is used for the thickness measuring instrument. Thickness is measured at 10 points, and the average value is calculated as the thickness.
  • the layer thickness TL is measured by enlarging the cross section of the sheet with a Keyence digital microscope VHX-900 by about 20 times to measure the thickness of each layer.
  • the pitch between the top regions 13a adjacent to each other in the Y direction may be appropriately adjusted depending on the application, and is preferably 1 mm or more when used as a surface sheet or sublayer of an absorbent article. 5 mm or more is more preferable, 15 mm or less is preferable, 10 mm or less is more preferable, specifically, 1 mm or more and 15 mm or less is preferable, and 1.5 mm or more and 10 mm or less is more preferable.
  • the basis weight of the nonwoven fabric 1B depends on the specific use of the nonwoven fabric 1B, but when used as a surface sheet or sublayer of an absorbent article, the average value of the entire sheet is preferably 15 g / m 2 or more, and 20 g / m 2. m 2 or more is more preferable, and 50 g / m 2 or less is preferable, 40 g / m 2 or less is more preferable, specifically, 15 g / m 2 or more and 50 g / m 2 or less is preferable, and 20 g / m 2 or more and 40 g. / M 2 or less is more preferable.
  • fiber treatment agent such as fiber colorant, antistatic property agent, lubricant, hydrophilic agent may be attached to the surface of the constituent fiber 11 of the nonwoven fabric 1B at the raw material stage.
  • various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform the process before the hot air blowing process described later.
  • the fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
  • the non-woven fabric of the present invention comprises a fusing step of forming a fiber sheet by thermally fusing intersections of constituent fibers of a fiber web containing high elongation fibers at a fusing portion, and the fiber sheet. It is manufactured by the manufacturing method of a nonwoven fabric provided with the extending process extended
  • One embodiment of the method for producing a nonwoven fabric of the present invention (second invention) will be described with reference to FIG. 11 by taking the above-described preferred method for producing nonwoven fabric 1B as an example.
  • FIG. 11 schematically shows a preferable manufacturing apparatus 100B used in the method for manufacturing the nonwoven fabric 1B.
  • the manufacturing apparatus 100B is suitably used for manufacturing an air-through nonwoven fabric.
  • the manufacturing apparatus 100B includes a web forming unit 200, a hot air processing unit 300, and an extending unit 400 in this order from the upstream side to the downstream side of the manufacturing process.
  • the web forming unit 200 is provided with a web forming apparatus 201 as shown in FIG.
  • a card machine is used as the web forming apparatus 201.
  • a card machine the thing normally used in the technical field of an absorbent article can be used without a restriction
  • another web manufacturing apparatus such as an airlaid apparatus, can be used instead of the card machine.
  • the hot air processing unit 300 includes a hood 301 as shown in FIG. Inside the hood 301, hot air can be blown by an air-through method.
  • the hot air processing unit 300 includes an endless conveyor belt 302 made of a breathable net.
  • the conveyor belt 302 circulates in the hood 301.
  • the conveyor belt 302 is made of a resin such as polyethylene terephthalate or a metal.
  • the temperature of the hot air blown in the hood 301 and the heat treatment time are preferably adjusted so that the intersections of the high elongation fibers included in the constituent fibers 11 of the fiber web 10 are heat-sealed.
  • the temperature of the hot air is preferably adjusted to a temperature that is 0 ° C. to 30 ° C. higher than the melting point of the resin having the lowest melting point among the constituent fibers 11 of the fiber web 10.
  • the heat treatment time is preferably adjusted to 1 to 5 seconds depending on the temperature of the hot air.
  • the wind speed of the hot air is preferably about 0.3 m / sec to 1.5 m / sec.
  • the conveying speed is preferably about 5 m / min to 100 m / min.
  • the stretching unit 400 includes a pair of concave and convex rolls 401 and 402 that can be engaged with each other.
  • the pair of concave and convex rolls 401 and 402 are formed so as to be heatable, and are formed by alternately arranging large-diameter convex portions 403 and 404 and small-diameter concave portions (not shown) in the roll axis direction.
  • the uneven rolls 401 and 402 may or may not be heated, but the heating temperature when heating the uneven rolls 401 and 402 makes it easy to stretch the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a described later.
  • the temperature is 10 ° C. higher than the glass transition point of the fiber and 10 ° C. lower than the melting point, more preferably 20 ° C. higher than the glass transition point of the fiber and 20 ° C. lower than the melting point. It is.
  • the temperature is preferably 67 ° C. or higher and 135 ° C. or lower, more preferably 77 ° C. or higher and 125 ° C. or lower, still more preferably 87 ° C. or higher and 115 ° C. or lower.
  • the interval (pitch) between the large-diameter convex portions 403, 403 adjacent to each other in the roll axis direction of the uneven roll 401 and the roll axis direction of the uneven roll 402 are adjacent to each other.
  • the spacing (pitch) between the large-diameter convex portions 404 and 404 is the same spacing (pitch) w, and the spacing (pitch) w is such that the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a are successfully used in the stretching apparatus.
  • the pressing amount t of the pair of concave and convex rolls 401 and 402 (the distance between the vertex of the large-diameter convex portion 403 and the vertex of the large-diameter convex portion 404 adjacent in the roll axis direction) is The thickness is preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, and specifically preferably 1 mm or more and 3 mm or less. Especially preferably, it is 1.2 mm or more and 2.5 mm or less.
  • the mechanical stretch ratio is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, particularly preferably 2.8. More specifically, it is preferably 1.5 times or more and 3.0 times or less, and particularly preferably 1.7 times or more and 2.8 times or less.
  • the web forming unit 200 uses the short fiber-shaped constituent fiber 11 having high elongation fibers as a raw material, and the fiber web 10 is formed by the web forming apparatus 201 which is a card machine ( Web forming step).
  • the fiber web 10 manufactured by the web forming apparatus 201 is in a state where the constituent fibers 11 are loosely entangled with each other, and has not yet achieved shape retention as a sheet.
  • the fiber sheet 1 a is formed by heat-sealing the intersections of the constituent fibers 11 of the fiber web 10 including high elongation fibers at the fusion part 12 (fusing step). Specifically, the fiber web 10 is conveyed onto the conveyor belt 302, and hot air is blown in an air-through manner while passing through the hood 301 by the hot air processing unit 300. When hot air is thus blown by the air-through method, the constituent fibers 11 of the fiber web 10 are further entangled, and at the same time, the intersection of the entangled fibers is thermally fused (see FIG. 14 (a)) to form a sheet. A fiber sheet 1a having a shape-retaining property is manufactured.
  • the fused fiber web 1a is stretched in one direction (stretching step). Specifically, the fused fiber web 1a having a shape-retaining property as a sheet is conveyed between a pair of concave and convex rolls 401 and 402, as shown in FIGS. 14 (a) to 14 (c). In addition, the fiber web 1a is stretched, and a large fiber diameter is sandwiched between two small-diameter portions 16 and 16 having a small fiber diameter in one constituent fiber 11 between adjacent fusion portions 12 and 12. The large diameter portion 17 is formed, and the change point 18 from the small diameter portion 16 to the large diameter portion 17 is set to 1/3 of the interval T between the fusion portions 12, 12 adjacent to the fusion portion 12. Form within the range.
  • the fiber sheet 1a in which the intersections of the constituent fibers 11 are heat-sealed at the fusion part 12 is conveyed between a pair of concave and convex rolls 401 and 402. Then, the fiber web 1a is stretched in the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
  • CD orthogonal direction
  • MD machine direction
  • the adjacent fused portions 12, 12 fixing the constituent fibers 11 shown in FIG. Is actively stretched in the orthogonal direction (CD, roll axis direction).
  • CD orthogonal direction
  • MD machine direction
  • the nonwoven fabric 1B provided with the structural fiber 11 shown in FIG. 10 can be manufactured continuously and efficiently.
  • the manufactured nonwoven fabric 1B is once wound up and stored in the form of a roll, and then is unwound from the roll and used. Or in the post-process line of the manufacturing apparatus 100B of the nonwoven fabric 1B, a process is given and the target product is manufactured continuously.
  • the nonwoven fabric 1 ⁇ / b> B manufactured as described above pays attention to one constituent fiber 11 among the constituent fibers 11, and the small diameter portion 16 to the large diameter portion 17 adjacent to the fused portion 12. Since the change point 18 is arranged within a range of 3 of the interval T between the adjacent fused portions 12, 12 from the fused portion 12, it is soft and good in terms of touch. In particular, if a plurality of small-diameter portions 16 are formed between the adjacent fused portions 12 and 12 while paying attention to one constituent fiber 11, the touch is further improved. From the viewpoint of easily exhibiting such an effect, the constituent fibers 11 are preferably made of only high elongation fibers.
  • the nonwoven fabric is stretched while being contracted. Therefore, even if the manufacturing method of the nonwoven fabric 1B and the mechanical stretch ratio are the same, the fiber diameter hardly changes. Therefore, the change point 18 which is a part where the fiber diameter changes extremely is difficult when the elastic fiber is contained in the constituent fiber 11, and the part which changes gradually from the small diameter part 16 to the large diameter part 17 continuously. Is easily formed.
  • the continuously and gradually changing portion formed in this way is not necessarily stretched locally near the fusion point because it contains elastic fibers, and is observed randomly rather than near the fusion point. become so.
  • the constituent fibers 11 do not include elastic fibers from the viewpoint of further improving the touch.
  • the nonwoven fabric 1B is a nonwoven fabric with a concavo-convex structure, and the fiber density of the side region 13c is smaller than the fiber density of the top region 13a and the fiber density of the bottom region 13b. Therefore, since the interfiber distance of the side region 13c is wider than the interfiber distance of the top region 13a and the bottom region 13b, the air permeability and liquid permeability are improved as the entire nonwoven fabric 1B. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized.
  • the nonwoven fabric 1B is a nonwoven fabric with a concavo-convex structure, and the number of change points 18 included in one constituent fiber 11 constituting the side region 13c is changed by one constituent fiber 11 constituting the top region 13a. More than the number of the change points 18 which the number of the points 18 and the one component fiber 11 which comprises the bottom region 13b have are formed. Therefore, it becomes easy for the ridge 13 to follow the movement of the wearer's skin, and there is an effect of realizing good skin contact.
  • the nonwoven fabric of this invention (1st invention) is not restrict
  • the manufacturing method of the nonwoven fabric of this invention (1st invention) is not restrict
  • the nonwoven fabric 1 ⁇ / b> A is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. It may be a non-woven fabric having a three-dimensional concavo-convex structure that is arranged at regular intervals so as to form rows intermittently in each direction of the X direction and the Y direction and forms a staggered arrangement pattern.
  • the concavo-convex structure non-woven fabric may be disposed on another non-woven fabric and bonded, or the concavo-convex structure non-woven fabric may be embossed.
  • the nonwoven fabric 1A may be a nonwoven fabric having a flat structure instead of the uneven structure.
  • the fiber web 1a is extended
  • the film may be stretched in the machine direction (MD, flow direction).
  • stretching to a machine direction (MD, a flow direction) the convex part with which a pair of uneven
  • the manufacturing method of 1 A of nonwoven fabrics using the manufacturing apparatus 100 mentioned above between the web formation process using the web formation part 200 and the melt
  • the coating process may be performed before the stretching process using the stretching unit 400.
  • the nonwoven fabric of this invention (2nd invention) is not restrict
  • the manufacturing method of the nonwoven fabric of this invention (2nd invention) is not restrict
  • the nonwoven fabric 1B is a nonwoven fabric having a concavo-convex structure in which streak-like convex portions 13 and concave portions 14 extending in one direction (X direction) are alternately arranged. It may be a non-woven fabric having a three-dimensional concavo-convex structure that is arranged at regular intervals so as to form rows intermittently in each direction of the X direction and the Y direction and forms a staggered arrangement pattern. Further, from the viewpoint of improving the shape retention of the concavo-convex structure, the concavo-convex structure non-woven fabric may be disposed on another non-woven fabric and bonded, or the concavo-convex structure non-woven fabric may be embossed. Moreover, the nonwoven fabric 1B may be a nonwoven fabric with a flat structure instead of the uneven structure.
  • the fiber web 1a is extended
  • the film may be stretched in the machine direction (MD, flow direction).
  • stretching to a machine direction (MD, a flow direction) the convex part with which a pair of uneven
  • a non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
  • the constituent fibers include high elongation fibers, Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions.
  • the difference between the contact angle of the small diameter portion and the contact angle of the large diameter portion is 1 degree or more, more preferably 5 degrees or more, more preferably 10 degrees or more, preferably 25 degrees or less, More preferably, it is 20 degrees or less, more preferably 15 degrees or less, specifically, preferably 1 degree or more and 25 degrees or less, more preferably 5 degrees or more and 20 degrees or less, more preferably 10 degrees or more and 15 degrees or less.
  • the contact angle of the small diameter portion is preferably 60 degrees or more, more preferably 70 degrees or more, more preferably 80 degrees or more, preferably 100 degrees or less, more preferably 95 degrees or less, and more preferably 90 degrees or less.
  • the nonwoven fabric according to ⁇ 1> or ⁇ 2> which is preferably 60 ° to 100 °, more preferably 70 ° to 95 °, and still more preferably 80 ° to 90 °.
  • the contact angle of the large-diameter portion is preferably 55 degrees or more, more preferably 60 degrees or more, more preferably 65 degrees or more, preferably 90 degrees or less, more preferably 85 degrees or less, more preferably 80 degrees or less.
  • the ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter portion to the fiber diameter (diameter L 17 ) of the large diameter portion is preferably 0.5 or more, more preferably 0.55 or more, And it is preferably 0.8 or less, more preferably 0.7 or less, specifically, preferably 0.5 or more and 0.8 or less, more preferably 0.55 or more and 0.7 or less.
  • the nonwoven fabric according to any one of 1> to ⁇ 4>.
  • the changing point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part
  • the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged
  • the non-woven fabric has a top region, a bottom region, and a side region located therebetween, The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
  • the side region is configured with respect to the number (N 13 ) of fibers having change points in the constituent fibers constituting the top region or the number of fibers (N 14 ) having change points in the constituent fibers constituting the bottom region.
  • the ratio (N 15 / N 13 , N 15 / N 14 ) of the number of fibers (N 15 ) having a change point in the constituent fibers is preferably 2 or more, more preferably 5 or more, and preferably 20 or less.
  • a fiber treating agent is attached to the constituent fibers, The nonwoven fabric according to any one of ⁇ 1> to ⁇ 6>, wherein the fiber treatment agent contains a spreadable component.
  • the spreadable component is a component that, when attached to a fiber surface, easily spreads on the fiber surface at a low temperature and has excellent fluidity at a low temperature.
  • the spreadable component is polyorganosiloxane.
  • the polyorganosiloxane is selected from polydimethylsiloxane, polydiethylsiloxane, and polydipropylsiloxane.
  • the fiber treatment agent further contains a hydrophilic component.
  • the zwitterionic surfactant is a betaine-type zwitterionic surfactant, preferably an alkyl (one having 30 to 30 carbon atoms) betaine, more preferably an alkyl betaine having 16 to 22 carbon atoms (eg stearyl). 12>.
  • the nonwoven fabric according to ⁇ 12> selected from silicones.
  • ⁇ 15> The nonwoven fabric according to any one of ⁇ 7> to ⁇ 14>, wherein the fiber treatment agent further contains a hydrophobic component.
  • the hydrophobic component is selected from an alkyl phosphate ester, an anionic surfactant represented by the following general formula (1), and the like.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms, which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • X represents —SO 3 M, —OSO 3 M or —COOM
  • M represents H, Na, K, Mg, Ca or ammonium.
  • High-stretch fibers excluding stretchable fibers that have elasticity (elastomer) and expand and contract, are subjected to heat treatment and / or crimping treatment without drawing treatment after melt spinning at low speed to obtain a composite fiber.
  • Heat-extensible fibers whose length changes by changing the crystalline state of the resin by heating, or fibers produced under relatively low spinning speed using a resin such as polypropylene or polyethylene, or
  • the non-woven fabric according to the above ⁇ 18> which is selected from polyethylene-polypropylene copolymer having a low crystallinity, or fibers produced by dry blending and spinning polyethylene in polypropylene.
  • the high elongation fiber means not only a fiber having a high elongation at the raw material fiber stage, but also a fiber having a high elongation at the stage of the produced nonwoven fabric.
  • the elongation of the high elongation fiber is preferably 100% or more at the raw material stage, more preferably 200% or more, still more preferably 250% or more, and 800% or less.
  • the nonwoven fabric according to any one of the above items ⁇ 18> to ⁇ 21>.
  • the elongation of the high elongation fiber is 60% or more, preferably 70% or more, more preferably 80% or more, preferably 200% or less, at the nonwoven fabric stage. Preferably it is 150% or less, more preferably 120% or less, specifically 60% or more and 200% or less, more preferably 70% or more and 170% or less, and further preferably 80% or more and 150% or less.
  • the change point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part.
  • ⁇ 25> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 24>, in which a plurality of the large-diameter portions are arranged between the adjacent fused portions, paying attention to one of the constituent fibers.
  • ⁇ 26> The non-woven fabric according to any one of ⁇ 1> to ⁇ 25>, wherein the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged.
  • the non-woven fabric has a top region, a bottom region, and a side region located therebetween, The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region, The nonwoven fabric according to ⁇ 26>, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
  • the non-woven fabric has a top region, a bottom region, and a side region located therebetween, The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region, The number of fibers having change points in the constituent fibers constituting the side region, the number of fibers having change points in the constituent fibers constituting the top region, and the change point in the constituent fibers constituting the bottom region.
  • the nonwoven fabric according to ⁇ 7> which is formed.
  • An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets, The absorbent article, wherein the top sheet is formed of the nonwoven fabric according to any one of ⁇ 1> to ⁇ 30>.
  • a non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
  • the constituent fibers include high elongation fibers, Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. And The change point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part,
  • the nonwoven fabric according to any one of 1> to ⁇ 30>.
  • the fiber diameter (diameter L 16 ) of the small diameter portion is preferably 5 ⁇ m or more, more preferably 6.5 ⁇ m or more, particularly preferably 7.5 ⁇ m or more, and preferably 28 ⁇ m or less, more preferably 20 ⁇ m or less, particularly Preferably it is 16 micrometers or less, Specifically, Preferably they are 5 micrometers or more and 28 micrometers or less, More preferably, they are 6.5 micrometers or more and 20 micrometers or less, Especially preferably, they are 7.5 micrometers or more and 16 micrometers or less, The nonwoven fabric as described in said ⁇ 32>.
  • the fiber diameter (diameter L 17 ) of the large diameter portion is preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less, particularly preferably 20 ⁇ m or less.
  • the nonwoven fabric according to any one of the above ⁇ 32> or ⁇ 32> which is preferably 10 ⁇ m to 35 ⁇ m, more preferably 13 ⁇ m to 25 ⁇ m, and particularly preferably 15 ⁇ m to 20 ⁇ m.
  • the change point is the nonwoven fabric according to any one of ⁇ 32> to ⁇ 34>, wherein the fiber diameter is changed by stretching.
  • the nonwoven fabric has one or more, preferably 5 or more, more preferably 10 or more of the constituent fibers having the change point in the 20 constituent fibers.
  • the number (N 13 ) of fibers having the change point in the constituent fibers constituting the top region is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably 15
  • the absorbent article according to the above ⁇ 6> which is not more than the present, and specifically preferably not less than 1 and not more than 15 and more preferably not less than 5 and not more than 15.
  • the number (N 14 ) of fibers having the change point in the constituent fibers constituting the bottom region is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably 15
  • the non-woven fabric according to the above ⁇ 6> or ⁇ 37> which is not more than this, specifically preferably not less than 1 and not more than 15 and more preferably not less than 5 and not more than 15.
  • the number (N 15 ) of fibers having the change point in the constituent fibers constituting the side region is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, more preferably It is 20 or less, specifically, preferably 5 or more and 20 or less, more preferably 10 or more and 20 or less, according to any one of the above ⁇ 6>, ⁇ 37> or ⁇ 38> Non-woven fabric.
  • the fineness of the high elongation fiber is preferably 1.0 dtex or more, more preferably 2.0 dtex or more, and preferably 10.0 dtex or less at the raw material stage, and 8.0 dtex or less.
  • ⁇ 42> The nonwoven fabric according to any one of the above items ⁇ 32> to ⁇ 41>, in which a plurality of the large diameter portions are arranged between the adjacent fused portions by paying attention to one of the constituent fibers.
  • ⁇ 43> Paying attention to one of the constituent fibers, the above-mentioned ⁇ 32> to-having the large-diameter portion of not less than 1 and not more than 5, preferably not less than 1 and not more than 3, between the adjacent fused portions.
  • the non-woven fabric has a top region, a bottom region, and a side region located therebetween, The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region, The nonwoven fabric according to ⁇ 44>, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
  • the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged,
  • the non-woven fabric has a top region, a bottom region, and a side region located therebetween,
  • the top of the ridge is formed from the top region
  • the bottom of the ridge is formed from the bottom region
  • Ratio (D 15 / D 13 ) of fiber density (D 15 ) of the wall portion between the bottom region and the fiber density (D 13 ) in the top region or the fiber density (D 14 ) in the bottom region , D 15 / D 14 ) is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less.
  • the nonwoven fabric according to any one of ⁇ 32> to ⁇ 45> which is 0.15 or more and 0.9 or less, preferably 0.2 or more and 0.8 or less.
  • Fiber density at the top region (D 13) is preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 lines / Mm 2 or less, specifically, 80 / mm 2 or more and 200 / mm 2 or less, preferably 90 / mm 2 or more and 180 / mm 2 or less, according to ⁇ 46>.
  • Fiber density at the bottom region (D 14) is preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 lines / mm 2 or less, specifically, 80 present / mm 2 or more 200 present / mm 2 or less, preferably 90 present / mm 2 or more 180 lines / mm 2 or less is the ⁇ 46> or ⁇ 47> The nonwoven fabric described.
  • the fiber density (D 15 ) in the bottom region is preferably 30 fibers / mm 2 or more, more preferably 40 fibers / mm 2 or more, and preferably 80 fibers / mm 2 or less, more preferably 70 fibers / mm 2. and mm 2 or less, specifically, 30 present / mm 2 or more eighty / mm 2 or less, either preferably at forty / mm 2 or more 70 yarns / mm 2 or less wherein the ⁇ 46> - ⁇ 48> Or the nonwoven fabric according to 1.
  • a fusion process in which the intersection of the constituent fibers of the fiber web including the high elongation fiber to which the fiber treatment agent is applied is thermally fused at the fusion part;
  • a non-woven fabric manufacturing method comprising a stretching step of stretching the fused fiber web in one direction after the fusing step, In the stretching step, the fiber web is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter between one of the constituent fibers between the adjacent fused portions.
  • the fiber sheet is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter in one constituent fiber between the adjacent fused portions.
  • the diameter portion is formed, and the changing point from the small diameter portion to the large diameter portion is formed within a range of 1/3 of the interval between the fusion portions adjacent to the fusion portion.
  • the manufacturing apparatus used in the method for manufacturing the nonwoven fabric includes a stretching section,
  • the extending portion includes a pair of first concavo-convex rolls and second concavo-convex rolls that can be engaged with each other,
  • the interval (pitch) w between large-diameter convex portions adjacent to each other in the roll axis direction of the first concave-convex roll and the interval (pitch) w between large-diameter convex portions adjacent to each other in the roll axis direction of the second concave-convex roll are: It is preferably 1 mm or more, particularly preferably 1.5 mm or more, and preferably 10 mm or less, particularly preferably 8 mm or less, specifically 1 mm or more and 10 mm or less, preferably 1.5 mm or more.
  • the manufacturing method of the nonwoven fabric as described in said ⁇ 52> which is 8 mm or less.
  • the pushing amount t of the first concavo-convex roll and the second concavo-convex roll (the interval between the vertex of the large-diameter convex portion of the first concavo-convex roll adjacent to the roll axis direction and the vertex of the large-diameter convex portion of the second concavo-convex roll) is , Preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, specifically 1 mm or more and 3 mm or less, preferably 1
  • the mechanical stretching ratio of the first uneven roll and the second uneven roll is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, Particularly preferably 2.8 times or less, specifically 1.5 times or more and 3.0 times or less, preferably 1.7 times or more and 2.8 times or less, ⁇ 52> to ⁇ 54 >
  • the manufacturing method of the nonwoven fabric any one of. ⁇ 56> A nonwoven fabric produced by the production method according to any one of ⁇ 51> to ⁇ 55>.
  • An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets,
  • the absorbent article, wherein the top sheet is formed of the nonwoven fabric according to any one of ⁇ 32> to ⁇ 50>, ⁇ 56>.
  • Example 1A The nonwoven fabric of Example 1A of the form shown in FIG.1 and FIG.2 was manufactured using the manufacturing apparatus 100 shown in FIG.
  • the constituent fibers supplied to the manufacturing apparatus 100 are shown in Table 1 below.
  • the composition of the fiber treatment agent applied to the constituent fibers is as shown in Table 1.
  • the fiber treatment agent contains polyorganosiloxane as a spreadable component, and is hydrophilic in addition to the spreadable component. And a hydrophobic component (alkyl phosphate ester, anionic surfactant).
  • the constituent fiber is a fiber made of only high elongation fiber and having no elasticity (elastomer).
  • the high elongation fiber was a concentric core-sheath type composite fiber having a core part made of polyethylene terephthalate and a sheath part made of polyethylene.
  • the elongation of the high elongation fiber was 350%.
  • the distance (pitch) between the large-diameter convex portions 404, 404 included in the pair of concave and convex rolls 401, 402 is 2.0 mm
  • the pressing amount of the pair of concave and convex rolls 401, 402 is 1. 2 mm
  • the mechanical draw ratio was 1.9 times.
  • Example 2A Regarding the manufacturing apparatus 100 in Example 1A, an example is obtained in the same manner as in Example 1A except that the pressing amount of the pair of concave and convex rolls 401 and 402 is changed to 1.4 mm and the mechanical stretch ratio is changed to 2.1 times. A 2A nonwoven fabric was produced.
  • Example 3A Regarding the manufacturing apparatus 100 in Example 1A, the example was changed in the same manner as in Example 1A, except that the pushing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm and the mechanical stretch ratio was changed to 2.3 times. A 3A nonwoven fabric was produced.
  • Example 4A A nonwoven fabric of Example 4A was produced in the same manner as Example 1A except that the composition of the fiber treatment agent in Example 1A was changed as shown in Table 1.
  • Example 5A The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.4 mm, and the mechanical stretch ratio was changed to 2.1 times. Except for these, the nonwoven fabric of Example 5A was produced in the same manner as Example 1A.
  • Example 6A The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm, and the mechanical stretching ratio was changed to 2.3 times. A nonwoven fabric of Example 6A was produced in the same manner as Example 1A except for the above.
  • Example 7A The fiber treatment agent in Example 1A was changed as shown in Table 1.
  • the fiber treatment agent applied to the constituent fibers does not contain a spreadable component but contains a hydrophilic component. Other than that was carried out similarly to Example 1A, and manufactured the nonwoven fabric of Example 7A.
  • Example 8A The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm, and the mechanical stretching ratio was changed to 2.3 times. Otherwise, the nonwoven fabric of Example 8A was produced in the same manner as Example 1A.
  • Example 9A The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm. A nonwoven fabric of Example 9A was produced in the same manner as Example 1A except for the above.
  • Example 1A The constituent fibers in Example 1A were changed as shown in Table 1.
  • the fiber treatment agent applied to the constituent fibers does not contain a spreadable component but contains a hydrophilic component. Moreover, application
  • the absorber was taken out from the commercially available product name “Water Absorbing Safety for Safe Medium Weight ( ⁇ 80 cc)” (made in 2014) of Kao Corporation, and the removed absorber was placed horizontally.
  • a 200 mm ⁇ 100 mm rectangle in which the nonwoven fabrics of Examples 1A to 7A or Comparative Example 1A are arranged on this absorbent body, and a cylindrical portion (inner diameter 10 mm, height 40 mm) is further arranged on the nonwoven fabric.
  • a shaped acrylic plate was placed. Under the condition that the pressure by the acrylic plate was 0.5 kPa, 20 g of artificial urine was collectively injected into the cylindrical portion at a rate of 5 g / sec.
  • the acrylic plate was removed, a commercially available tissue paper 2PL product was folded three times, and an absorbent paper having a size of about 5 cm ⁇ about 12 cm was placed on the inlet, and pressure was applied at 0.5 kpa for 5 seconds. Thereafter, the pressure was removed, and the weight (g) of the tissue paper that absorbed the artificial urine was measured. The weight (g) of the tissue paper before absorption of artificial urine was subtracted from this weight, and the value was defined as the remaining liquid amount (mg) remaining on the nonwoven fabric. The smaller the value of the remaining liquid amount (mg), the higher the liquid remaining property, and the higher the evaluation.
  • composition of artificial urine is as follows. 1.94% by mass of urea, 0.7954% by mass of sodium chloride, 0.11058% by mass of magnesium sulfate (septahydrate), 0.06208% by mass of calcium chloride (dihydrate), 0.19788% by mass of potassium sulfate , Polyoxyethylene lauryl ether 0.0035 mass% and ion-exchanged water (remaining amount).
  • the dry touch property of the nonwoven fabric was measured in accordance with the “153.0-02 REPEATED Liquid Strike-Through Time” method of EDANA (European Nonwoven Fabric Manufacturers Association) using a strike-through time measuring device Lister manufactured by Lenzingtechnik. Liquid Strike-Through Time indicates the time (seconds) required for a predetermined amount of physiological saline to pass from the front surface to the back surface of the nonwoven fabric. Specifically, ten sheets of dedicated filter paper were placed on the pedestal of the testing machine, and a nonwoven fabric was placed thereon.
  • a strike-through plate having electrodes is placed on the non-woven fabric, and 10 ml of physiological saline (4.5 g of sodium chloride in 500 mL) is introduced from a liquid inlet connected to the strike-through plate, and then the power supply of the testing machine Put.
  • the test machine measured the time (seconds) from the state in which the physiological saline touched the electrode until the physiological saline passed through the nonwoven fabric, the water level dropped, and the electrode was not in contact with the electrode. The measurement was performed three times, and the average value was defined as the liquid permeation time of the nonwoven fabric. The shorter the liquid permeation time, the less liquid remaining on the surface, indicating better dry touch properties.
  • Example 1B Using the manufacturing apparatus 100B shown in FIG. 11, the nonwoven fabric of Example 1B having the configuration shown in FIGS. 8 and 9 was manufactured.
  • the constituent fibers supplied to the manufacturing apparatus 100B are shown in Table 2 below.
  • the constituent fiber is a fiber made of only a high elongation fiber and having no elasticity (elastomer).
  • the high elongation fiber was a concentric core-sheath type composite fiber having a core part made of polyethylene terephthalate and a sheath part made of polyethylene. The elongation of the high elongation fiber was 350%.
  • the distance (pitch) between the large-diameter convex portions 404, 404 included in the pair of concave and convex rolls 401, 402 is 2 mm, and the pressing amount of the pair of concave and convex rolls 401, 402 is 1.2 mm. Yes, and the mechanical draw ratio was 1.9 times.
  • Example 2B Regarding the manufacturing apparatus 100B in Example 1B, the push-in amount of the pair of concavo-convex rolls 401 and 402 is changed to 1.6 mm, and the mechanical stretching ratio is changed to 2.3 times. A nonwoven fabric was produced.
  • Example 3B Regarding the manufacturing apparatus 100B in Example 1B, the amount of pressing of the pair of concave and convex rolls 401 and 402 is changed to 2.0 mm, and the mechanical stretching ratio is changed to 2.7 times, in the same manner as in Example 1B. A nonwoven fabric was produced.
  • Example 4B Regarding the constituent fibers in Example 1B, the nonwoven fabric of Example 4B was produced in the same manner as Example 1B, except that the elongation of the high elongation fiber was changed to 250%.
  • Example 5B Regarding the constituent fibers in Example 2B, the nonwoven fabric of Example 5B was manufactured in the same manner as Example 2B, except that the elongation of the high elongation fiber was changed to 250%.
  • Example 6B Regarding the constituent fibers in Example 3B, the nonwoven fabric of Example 6B was produced in the same manner as Example 3B, except that the elongation of the high elongation fiber was changed to 250%.
  • Example 1B The constituent fiber in Example 1B was changed to a composite fiber that had already been drawn. Specifically, the elongation of the composite fiber was 80% drawn fiber. A nonwoven fabric of Comparative Example 1B was produced in the same manner as Example 1B except that the fiber was changed.
  • Comparative Example 2B Regarding the constituent fiber in Example 3B, the composite fiber was changed to an already drawn composite fiber. Specifically, the elongation of the composite fiber was 80% drawn fiber. A nonwoven fabric of Comparative Example 2B was produced in the same manner as Example 3B except that the fiber was changed.
  • Comparative Example 3B By the method according to the manufacturing method described in Patent Document 1, the nonwoven fabric of Comparative Example 3B was formed so as to include the high elongation fiber that is the constituent fiber in Example 4B and the elastic fiber. In addition, the pushing amount of the pair of concave and convex rolls 401 and 402 and the mechanical stretching ratio are the same as in Example 4B.
  • Comparative Example 4B By the method according to the manufacturing method described in Patent Document 1, the nonwoven fabric of Comparative Example 4B was formed so as to include the high elongation fiber that is the constituent fiber in Example 6B and the elastic fiber. In addition, the pushing amount of the pair of concave and convex rolls 401 and 402 and the mechanical stretching ratio are the same as in Example 6B.
  • liquid permeability of nonwoven fabric was measured according to the “153.0-02 REPEATED Liquid Strike-Through Time” method of EDANA (European Non-woven Industries Association) using a strike-through time measuring device Lister manufactured by Lenzingtechnik. Liquid Strike-Through Time indicates the time (seconds) required for a predetermined amount of physiological saline to pass from the front surface to the back surface of the nonwoven fabric. Specifically, ten sheets of dedicated filter paper were placed on the pedestal of the testing machine, and a nonwoven fabric was placed thereon.
  • a strike-through plate having electrodes was placed on the nonwoven fabric, and physiological saline (Otsuka Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd. 10 ml of the product name was put in, and then the tester was turned on.From the state in which the physiological saline touched the electrode, the physiological saline passed through the nonwoven fabric, the water level dropped, and the electrode was not in contact with the electrode. The average time was taken as the liquid permeation time of the nonwoven fabric, and the shorter the liquid permeation time, the better the liquid permeability.
  • the non-woven fabrics of Examples 1B to 6B have a change point 18 from the small diameter portion 16 to the large diameter portion 17 in the region AT or region as compared with the non-woven fabrics of Comparative Example 1B to Comparative Example 4B.
  • the nonwoven fabrics of Example 1B to Example 6B have many change points 18 in the side region 13c, the ridges 13 can easily follow the movement of the wearer's skin and have a good touch. I understood.
  • the nonwoven fabrics of Examples 1B to 6B were found to have good liquid permeability because the positions of the change points 18 are many in the side region 13c and the fiber density in the side region 13c is low.
  • the nonwoven fabrics of Comparative Examples 1B to 2B use stretched fibers having low elongation, the first resin component constituting the core portion of the constituent fibers by stretching, and the sheath portion Peeling occurs between the constituent second resin components. For this reason, the peeled portion of the sheath is caught on the skin, and the touch is lowered. Since it is difficult to maintain the uneven shape and the core portion is exposed and water-repellent, the liquid passing time is reduced.
  • the nonwoven fabric of Comparative Example 3B has a configuration in which elastic fibers are contained in the nonwoven fabric of Example 4B. As described above, when elastic fibers are contained, the nonwoven fabric is stretched while being contracted.
  • the nonwoven fabric of Comparative Example 3B is less likely to produce an effect of improving the touch and liquid permeability.
  • the nonwoven fabric of Comparative Example 4B has a configuration in which elastic fibers are contained in the nonwoven fabric of Example 6B. As described above, when elastic fibers are contained, the nonwoven fabric is stretched while being contracted. Therefore, it is difficult to make a change point that is a part where the fiber diameter changes extremely in the present application, and from the small diameter portion 16 to the large diameter portion 17 continuously. A site that gradually changes is likely to be formed.
  • the continuously and gradually formed portion is not observed near the fusion point because it contains elastic fibers and is not easily stretched locally near the fusion point. Thereby, the nonwoven fabric of Comparative Example 4B is less likely to have an effect of improving the touch and improving liquid permeability.
  • the touch can be further improved.

Abstract

A nonwoven fabric (1A) according to the present invention has multiple thermally fusion-bonded parts (12) which are formed by thermally fusing-bonding intersection points between constituent fibers (11) to each other. The constituent fibers (11) include highly-stretchable fibers. In each of the constituent fibers (11), there is a large diameter portion (17) between adjacent two thermally fusion-bonded parts (12, 12), wherein the large diameter portion (17) has a larger fiber diameter and is sandwiched between two small diameter portions (16, 16) each having a smaller fiber diameter. Each of the constituent fibers (11) is so configured that the hydrophilicity of each of the smaller diameter portions (16) is smaller than that of the larger diameter portion (17).

Description

不織布Non-woven
 本発明は、不織布に関する。 The present invention relates to a nonwoven fabric.
 本出願人は、先に、弾性繊維を含むウエブの一面に、低延伸の非弾性繊維を含むウエブを配し、これらのウエブに対して、エアースルー方式の熱風処理を施して繊維どうしの交点を熱融着させ、これらのウエブが一体化してなる繊維シートを延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後、前記繊維シートの延伸を解放して製造される不織布に関する技術を提案した(特許文献1)。特許文献1に記載の不織布の製造方法においては、繊維シートを延伸させる際、互いに噛み合いが可能になっている一対の凹凸ロールを備えた延伸装置が用いられている。このような一対の凹凸ロールを備えた延伸装置を用いて延伸する技術は、特許文献1以外に、例えば、特許文献2、4及び5にも記載されている。 The applicant previously arranged a web containing low-stretch non-elastic fibers on one side of the web containing elastic fibers, and subjected the air-through hot air treatment to these webs to intersect the fibers. Proposed a technique relating to a non-woven fabric produced by stretching a fiber sheet formed by integrating these webs to stretch the low-elasticity non-elastic fiber, and then releasing the stretching of the fiber sheet. (Patent Document 1). In the method for producing a nonwoven fabric described in Patent Document 1, when a fiber sheet is stretched, a stretching apparatus including a pair of concavo-convex rolls that can be engaged with each other is used. In addition to Patent Document 1, for example, Patent Documents 2, 4, and 5 describe techniques for stretching using such a stretching apparatus including a pair of concave and convex rolls.
 これとは別の技術として、特許文献3には、繊維製品用透水性付与剤を付与した透水性不織布に関する技術が開示されている。 As another technique, Patent Document 3 discloses a technique relating to a water-permeable nonwoven fabric provided with a water-permeability imparting agent for textiles.
特開2008-7924号公報JP 2008-7924 A 特開2013-189745号公報JP 2013-189745 A 特開2000-178876号公報Japanese Patent Laid-Open No. 2000-178876 特開2010-119861号公報JP 2010-119861 A 特開2012-67426号公報JP 2012-67426 A
 特許文献1に記載の製造法によって製造された不織布は、弾性繊維及び長手方向に沿う太さが一様になっていない非弾性繊維を含むように形成されている。このように非弾性繊維の太さが一様になっていないと、肌触りが良好なものとなる。しかし、表面の液残りが少ないドライタッチ性の向上に関して何ら記載されていない。 The nonwoven fabric manufactured by the manufacturing method described in Patent Document 1 is formed to include elastic fibers and non-elastic fibers whose thickness along the longitudinal direction is not uniform. Thus, when the thickness of the non-elastic fiber is not uniform, the touch is good. However, there is no description regarding improvement of dry touch properties with little liquid remaining on the surface.
 また、特許文献2においては、伸縮性繊維、即ち弾性繊維を用いることが必須となっている。そして、特許文献2には、延伸装置により、繊維の繊維径を細くすることの記載はあるが、表面の液残りが少ないドライタッチ性の向上に関して何ら記載されていない。 In Patent Document 2, it is essential to use stretchable fibers, that is, elastic fibers. And although patent document 2 has description of making the fiber diameter of a fiber thin with an extending | stretching apparatus, it is not described at all about the improvement of dry touch property with few liquid residues on the surface.
 また、特許文献3に記載の透水性不織布は、透水性付与剤が付与されているので、表面の液残りが少なくドライタッチ性が向上する。しかし、特許文献3には、構成繊維を延伸して繊維径の細い部分と繊維径の太い部分とを形成すること、及び油剤の付着した繊維を延伸することによって親水性を変化させることに関して、何ら想定していない。 Moreover, since the water-permeable nonwoven fabric described in Patent Document 3 is provided with a water-permeability imparting agent, there is little liquid residue on the surface and dry touch properties are improved. However, Patent Document 3 relates to changing the hydrophilicity by stretching the constituent fibers to form a portion having a small fiber diameter and a portion having a large fiber diameter, and stretching the fiber to which the oil agent is attached. I don't expect anything.
 特許文献1に記載の製造法によって製造された不織布は、弾性繊維及び長手方向に沿う太さが一様になっていない非弾性繊維を含むように形成されている。このように非弾性繊維の太さが一様になっていないと、肌触りが良好なものとなる。しかし、肌触りに関して更に良好にしたいとのニーズがあった。 The nonwoven fabric manufactured by the manufacturing method described in Patent Document 1 is formed to include elastic fibers and non-elastic fibers whose thickness along the longitudinal direction is not uniform. Thus, when the thickness of the non-elastic fiber is not uniform, the touch is good. However, there was a need to improve the feel.
 また、特許文献2においては、伸縮性繊維、即ち弾性繊維を用いることが必須となっている。そして、特許文献2には、延伸装置により、繊維の繊維径を細くすることの記載はあるが、一本の繊維中に、繊維径の細い部分と繊維径の太い部分とを形成し、繊維径の細い部分と太い部分との境界を、如何なる位置に配するかに関して、何ら記載されていない。 In Patent Document 2, it is essential to use stretchable fibers, that is, elastic fibers. And in patent document 2, although there exists description of making the fiber diameter of a fiber thin with an extending | stretching apparatus, the part with a thin fiber diameter and the part with a large fiber diameter are formed in one fiber, and fiber There is no description on what position the boundary between the narrow diameter part and the thick part is arranged.
 また、特許文献4においては、高伸度繊維を用いることに関して、何ら記載されていない。また、特許文献4には、延伸装置により、繊維の繊維径を細くすることに関しても、何ら記載されておらず、一本の繊維中に、繊維径の細い部分と繊維径の太い部分とを形成することに関して、何ら想定していない。 In Patent Document 4, there is no description regarding the use of high elongation fibers. In addition, Patent Document 4 does not describe anything about reducing the fiber diameter of the fiber by a drawing device, and includes a portion having a small fiber diameter and a portion having a large fiber diameter in one fiber. No assumptions are made about the formation.
 また、特許文献5においては、高伸度繊維を用いることに関して、何ら記載されていない。また、特許文献5には、延伸装置により、芯鞘剥離を行って、繊維径を細くすることの記載はあるが、繊維径の細い部分と太い部分との境界を、如何なる位置に配するかに関して、何ら記載されていない。 Moreover, in patent document 5, nothing is described regarding using a high elongation fiber. Further, Patent Document 5 describes that the core sheath is peeled off by a stretching device to reduce the fiber diameter, but in what position the boundary between the thin part and the thick part is arranged. Is not described at all.
 したがって本発明の課題は、前述した従来技術が有する欠点を解消し得る不織布を提供することにある。 Therefore, an object of the present invention is to provide a non-woven fabric that can eliminate the above-mentioned drawbacks of the prior art.
 本発明(第1発明)は、構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布に関する。前記構成繊維は、高伸度繊維を含み、1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有している。前記小径部の親水性が、前記大径部の親水性よりも小さい。 The present invention (first invention) relates to a nonwoven fabric provided with a plurality of fusion parts formed by heat-sealing intersections of constituent fibers. The constituent fiber includes a high elongation fiber, and pays attention to one constituent fiber, and the constituent fiber is sandwiched between two small-diameter portions having a small fiber diameter between the adjacent fused portions. And a large diameter portion having a large fiber diameter. The hydrophilicity of the small diameter part is smaller than the hydrophilicity of the large diameter part.
 本発明(第2発明)は、構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布に関する。前記構成繊維は、高伸度繊維を含む。1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有している。前記融着部に隣接する前記小径部から前記大径部への変化点が、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されている。 The present invention (second invention) relates to a nonwoven fabric provided with a plurality of fused portions formed by heat-sealing the intersections of the constituent fibers. The constituent fibers include high elongation fibers. Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. ing. The changing point from the small diameter portion adjacent to the fusion portion to the large diameter portion is arranged within a range of 1/3 of the interval between the fusion portions adjacent to the fusion portion.
図1は、本発明(第1発明)の不織布の一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the nonwoven fabric of the present invention (first invention). 図2は、図1に示す不織布の厚み方向の断面を示す模式図である。FIG. 2 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric shown in FIG. 図3は、図1に示す不織布を構成する構成繊維どうしが熱融着部にて固定されている状態を説明する図である。FIG. 3 is a diagram illustrating a state in which the constituent fibers constituting the nonwoven fabric shown in FIG. 1 are fixed at the heat-sealing portion. 図4は、図1に示す不織布の製造に好適に用いられる製造装置を示す模式図である。FIG. 4 is a schematic view showing a manufacturing apparatus suitably used for manufacturing the nonwoven fabric shown in FIG. 図5は、図4に示す製造装置の備える延伸部を示す模式図である。FIG. 5 is a schematic diagram illustrating an extending portion included in the manufacturing apparatus illustrated in FIG. 4. 図6は、図5に示すVI-VI線断面図である。6 is a cross-sectional view taken along the line VI-VI shown in FIG. 図7(a)~図7(c)は、隣り合う融着部どうしの間の1本の構成繊維において複数の小径部と大径部とが形成される様子を説明する説明図である。FIG. 7A to FIG. 7C are explanatory views for explaining a state in which a plurality of small diameter portions and large diameter portions are formed in one constituent fiber between adjacent fused portions.
図8は、本発明(第2発明)の不織布の一実施形態を示す斜視図である。FIG. 8 is a perspective view showing an embodiment of the nonwoven fabric of the present invention (second invention). 図9は、図8に示す不織布の厚み方向の断面を示す模式図である。FIG. 9 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric shown in FIG. 図10は、図8に示す不織布を構成する構成繊維どうしが熱融着部にて固定されている状態を説明する図である。FIG. 10 is a diagram for explaining a state in which the constituent fibers constituting the nonwoven fabric shown in FIG. 8 are fixed at the heat fusion part. 図11は、図8に示す不織布の製造に好適に用いられる製造装置を示す模式図である。FIG. 11 is a schematic diagram showing a manufacturing apparatus suitably used for manufacturing the nonwoven fabric shown in FIG. 図12は、図11に示す製造装置の備える延伸部を示す模式図である。FIG. 12 is a schematic diagram illustrating an extending portion included in the manufacturing apparatus illustrated in FIG. 11. 図13は、図12に示すVI-VI線断面図である。13 is a cross-sectional view taken along line VI-VI shown in FIG. 図14(a)~図14(c)は、隣り合う融着部どうしの間の1本の構成繊維において複数の小径部と大径部とが形成される様子を説明する説明図である。14 (a) to 14 (c) are explanatory views for explaining a state in which a plurality of small diameter portions and large diameter portions are formed in one constituent fiber between adjacent fused portions.
発明の詳細な説明Detailed Description of the Invention
 以下本発明(第1発明)を、その好ましい実施形態に基づき図面を参照しながら説明する。
 図1には、本発明(第1発明)の一実施形態である不織布1A(以下、「不織布1A」ともいう。)の斜視図が示されている。図2は、図1に示す不織布1Aの厚み方向の断面を示す模式図である。図3は、図1に示す不織布1Aの構成繊維11の拡大模式図である。不織布1Aは、図3に示すように、構成繊維11同士の交点を熱融着して形成された融着部12を複数備えた不織布である。ここで、構成繊維11同士の交点は、構成繊維11同士の接合点でもある。該接合点は、構成繊維11同士が熱融着して形成されている。即ち、該接合点は融着部12である。そして、不織布1Aは、本実施形態においては、図1に示すように、一方向(X方向)に延びる筋状の凸条部13及び凹条部14が交互に配された凹凸構造の不織布である。具体的には、不織布1Aは、図2に示すように、表裏両面a,bの断面形状が共に厚み方向(Z方向)の上方に向かって凸状をなす複数の凸条部13と、隣り合う凸条部13,13どうしの間に位置する凹条部14とを有している。凹条部14は、表裏両面a,bの断面形状が共に不織布の厚み方向(Z方向)の上方に向かって凹状をなしている。言い換えれば、凹条部14は、表裏両面a,bの断面形状が共に不織布の厚み方向(Z方向)の下方に向かって凸状をなしている。そして、複数の凸条部13は、それぞれ、不織布1Aの一方向(X方向)に連続して延びており、複数の凹条部14も、不織布1Aの一方向Xに連続して延びる溝状をなしている。凸条部13及び凹条部14は、互いに平行であり、前記一方向(X方向)に直交する方向(Y方向)に交互に配されている。
Hereinafter, the present invention (first invention) will be described based on preferred embodiments with reference to the drawings.
FIG. 1 shows a perspective view of a nonwoven fabric 1A (hereinafter also referred to as “nonwoven fabric 1A”) which is an embodiment of the present invention (first invention). FIG. 2 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric 1A shown in FIG. FIG. 3 is an enlarged schematic view of the constituent fibers 11 of the nonwoven fabric 1A shown in FIG. As shown in FIG. 3, the nonwoven fabric 1 </ b> A is a nonwoven fabric provided with a plurality of fusion portions 12 formed by thermally fusing the intersections of the constituent fibers 11. Here, the intersection of the constituent fibers 11 is also a joint point of the constituent fibers 11. The joint point is formed by heat-sealing the constituent fibers 11. That is, the joining point is the fused portion 12. And in this embodiment, as shown in FIG. 1, the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. is there. Specifically, as shown in FIG. 2, the nonwoven fabric 1 </ b> A is adjacent to a plurality of ridges 13 in which the cross-sectional shapes of both the front and back surfaces a and b are convex upward in the thickness direction (Z direction). It has the concave line part 14 located between the convex line parts 13 and 13 which fit. The concave stripe part 14 has a concave shape in which the cross-sectional shapes of the front and back surfaces a and b are both upward in the thickness direction (Z direction) of the nonwoven fabric. In other words, as for the concave strip part 14, the cross-sectional shape of front and back both surfaces a and b has comprised the convex shape toward the downward direction of the thickness direction (Z direction) of a nonwoven fabric. Each of the plurality of ridges 13 extends continuously in one direction (X direction) of the nonwoven fabric 1A, and each of the plurality of ridges 14 also extends in the one direction X of the nonwoven fabric 1A. I am doing. The ridges 13 and the ridges 14 are parallel to each other and are alternately arranged in a direction (Y direction) orthogonal to the one direction (X direction).
 尚、不織布1Aは、図2に示すように不織布1Aを断面視して、頂部域13a、底部域13b及びこれら13a,13bの間に位置する側部域13cを有している。そして、凸条部13の頂部が頂部域13aから形成され、凹条部14の底部が底部域13bから形成されている。頂部域13a、底部域13b及び側部域13cは、不織布1Aの一方向(X方向)に連続して延びている。頂部域13a、底部域13b及び側部域13cは、図2に示すように不織布1Aを断面視して、不織布1AのZ方向の厚みを3等分して、厚み方向(Z方向)の上方の部位を頂部域13a、厚み方向(Z方向)の中央の部位を側部域13c、厚み方向(Z方向)の下方の部位を底部域13bとして区別する。前記の区分は、次の方法で測定される。 In addition, the nonwoven fabric 1A has a top region 13a, a bottom region 13b, and a side region 13c located between these 13a and 13b in a cross-sectional view of the nonwoven fabric 1A as shown in FIG. And the top part of the protruding item | line part 13 is formed from the top part area | region 13a, and the bottom part of the grooved part 14 is formed from the bottom part area | region 13b. The top region 13a, the bottom region 13b, and the side region 13c extend continuously in one direction (X direction) of the nonwoven fabric 1A. As shown in FIG. 2, the top region 13a, the bottom region 13b, and the side region 13c are cross-sectional views of the nonwoven fabric 1A, and divide the thickness of the nonwoven fabric 1A in the Z direction into three equal parts. Are divided into a top region 13a, a central region in the thickness direction (Z direction) as a side region 13c, and a lower region in the thickness direction (Z direction) as a bottom region 13b. The said division is measured by the following method.
 〔頂部域13a、底部域13b、側部域13cの区分方法〕
 フェザー剃刀(品番FAS‐10、フェザー安全剃刀株式会社製)を用いて不織布1AをY方向に切断し、走査電子顕微鏡(日本電子株式会社製のJCM-5100(商品名))で測定する部位が十分に視野に入り測定できる大きさ(10~100倍)に拡大し、不織布1AのZ方向の厚みを3等分して、厚み方向(Z方向)の上方の部位を頂部域13a、厚み方向(Z方向)の中央の部位を側部域13c、厚み方向(Z方向)の下方の部位を底部域13bとして区別する。
 市販のおむつ等から分析する場合は、対象となるおむつ等にコールドスプレーを吹き付けて冷却し、接着力を低下させる。それから、各材料を丁寧に剥がし、対象となる不織布を得、上述の通り切断及び測定を行う。
[Method of dividing top region 13a, bottom region 13b, and side region 13c]
The non-woven fabric 1A was cut in the Y direction using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the site measured with a scanning electron microscope (JCM-5100 (trade name) manufactured by JEOL Ltd.) Enlarged to a size (10 to 100 times) that can be fully measured and measured, and divides the thickness of the non-woven fabric 1A in the Z direction into three equal parts, and the upper region in the thickness direction (Z direction) is the top region 13a, the thickness direction The central region in the (Z direction) is distinguished as the side region 13c, and the lower region in the thickness direction (Z direction) is distinguished as the bottom region 13b.
When analyzing from a commercially available diaper or the like, a cold spray is sprayed on the target diaper or the like to cool the diaper or the like, thereby reducing the adhesive strength. Then, each material is carefully peeled off to obtain a target nonwoven fabric, which is cut and measured as described above.
 不織布1Aは、後述するように、繊維シート1aに、互いに噛み合う一対の凹凸ロール401,402を用いて凹凸加工を施して製造されたものである。上述した不織布1Aの一方向(X方向)とは、繊維シート1aに凹凸加工を施して不織布1Aを製造する際の機械方向(MD,流れ方向)と同じ方向であり、上述した不織布1Aの一方向(X方向)に直交する方向(Y方向)とは、前記機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)と同じ方向である。 As will be described later, the nonwoven fabric 1A is manufactured by subjecting the fiber sheet 1a to a concavo-convex process using a pair of concavo- convex rolls 401 and 402 meshing with each other. The one direction (X direction) of the nonwoven fabric 1A described above is the same direction as the machine direction (MD, flow direction) when the nonwoven fabric 1A is manufactured by performing uneven processing on the fiber sheet 1a. The direction (Y direction) orthogonal to the direction (X direction) is the same direction as the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
 不織布1Aの構成繊維11は、高伸度繊維が含まれている。ここで、構成繊維11が含む高伸度繊維とは、原料の繊維の段階で高伸度である繊維のみならず、製造された不織布1Aの段階でも高伸度である繊維を意味する。「高伸度繊維」としては、弾性(エラストマー)を有して伸縮する伸縮性繊維を除き、例えば特開2010-168715号公報の段落[0033]に記載のように低速で溶融紡糸して複合繊維を得た後に、延伸処理を行わずに加熱処理及び/又は捲縮処理を行うことにより得られる加熱により樹脂の結晶状態が変化して長さの延びる熱伸長性繊維、或いは、ポリプロピレンやポリエチレン等の樹脂を用いて比較的紡糸速度を低い条件にして製造した繊維、又は、結晶化度の低い、ポリエチレン-ポリプロピレン共重合体、若しくはポリプロピレンに、ポリエチレンをドライブレンドし紡糸して製造した繊維等が挙げられる。それらの繊維の内でも高伸度繊維は、熱融着性のある芯鞘型複合繊維であることが好ましい。芯鞘型複合繊維は、同心の芯鞘型でも、偏心の芯鞘型でも、サイド・バイ・サイド型でも、異形型でもよいが、特に同心の芯鞘型であることが好ましい。繊維がどのような形態をとる場合であっても、柔軟で肌触り等のよい不織布等を製造する観点からは、高伸度繊維の繊度は、原料の段階で、1.0dtex以上であることが好ましく、2.0dtex以上であることがより好ましく、そして、10.0dtex以下であることが好ましく、8.0dtex以下であることがより好ましく、具体的には、1.0dtex以上10.0dtex以下が好ましく、2.0dtex以上8.0dtex以下であることがより好ましい。本明細書において、肌触りとは、液を含んでいない状態で肌に触れた際の感覚を官能評価して得られる特性である。また、後述するドライタッチ性とは、液残りを含んだ状態で肌に触れた際の感覚を官能評価して得られる特性である。従って、ドライタッチ性と肌触りとは、別の特性である。 The constituent fibers 11 of the nonwoven fabric 1A include high elongation fibers. Here, the high elongation fiber included in the constituent fiber 11 means not only a fiber having a high elongation at the raw material fiber stage but also a fiber having a high elongation at the stage of the manufactured nonwoven fabric 1A. As the “high elongation fiber”, excluding stretchable fibers that have elasticity (elastomer) and expand and contract, for example, as described in paragraph [0033] of JP 2010-168715, melt spinning is performed at a low speed to form a composite After obtaining the fiber, the heat-extensible fiber, which is obtained by changing the crystal state of the resin by heating and / or crimping without stretching, or polypropylene or polyethylene Fibers manufactured using relatively low spinning speeds using a resin such as polyethylene, polypropylene-polypropylene copolymers with low crystallinity, or fibers manufactured by dry blending polyethylene into polypropylene and spinning, etc. Is mentioned. Among these fibers, the high elongation fiber is preferably a core-sheath type composite fiber having heat-fusibility. The core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or a deformed type, but is preferably a concentric core-sheath type. Whatever form the fiber takes, from the viewpoint of producing a nonwoven fabric that is soft and soft to the touch, the fineness of the high elongation fiber may be 1.0 dtex or more at the raw material stage. Preferably, it is 2.0 dtex or more, more preferably 10.0 dtex or less, more preferably 8.0 dtex or less, specifically, 1.0 dtex or more and 10.0 dtex or less. Preferably, it is 2.0 dtex or more and 8.0 dtex or less. In this specification, the touch is a characteristic obtained by sensory evaluation of a sense when touching the skin in a state that does not contain a liquid. Moreover, the dry touch property mentioned later is the characteristic obtained by sensory evaluation of the feeling at the time of touching skin in the state containing the liquid residue. Therefore, dry touch and touch are different characteristics.
 不織布1Aの構成繊維11は、高伸度繊維に加えて、他の繊維を含んで構成されていてもよいが、非弾性繊維のみから構成されていることが好ましく、融着点近傍に細径化且つ親水度の低い繊維の数を多くするためには、全ての融着点が高伸度繊維で形成されていることが好ましいため、高伸度繊維のみから構成されていることが更に好ましい。他の繊維としては、例えば融点の異なる2成分を含み且つ延伸処理されてなる非熱伸長性の芯鞘型熱融着性複合繊維、或いは、本来的に熱融着性を有さない繊維(例えばコットンやパルプ等の天然繊維、レーヨンやアセテート繊維など)等が挙げられる。不織布1A0が高伸度繊維に加えて他の繊維も含んで構成されている場合、該不織布1A0における高伸度繊維の割合は、好ましくは50質量%以上であり、更に好ましくは80質量%以上であり、そして、殊更好ましくは100質量%である。 The constituent fibers 11 of the nonwoven fabric 1A may be configured to include other fibers in addition to the high elongation fibers, but are preferably configured only from inelastic fibers, and have a small diameter near the fusion point. In order to increase the number of fibers with low hydrophilicity, it is preferable that all fusion points are formed of high-stretch fibers, and therefore, it is more preferable that the fibers are composed of high-stretch fibers only. . Other fibers include, for example, a non-heat-extensible core-sheath-type heat-fusible composite fiber containing two components having different melting points, or a fiber that does not inherently have heat-fusibility ( Examples thereof include natural fibers such as cotton and pulp, rayon and acetate fibers). In the case where the nonwoven fabric 1A0 is configured to include other fibers in addition to the high elongation fibers, the proportion of the high elongation fibers in the nonwoven fabric 1A0 is preferably 50% by mass or more, and more preferably 80% by mass or more. And particularly preferably 100% by weight.
 高伸度繊維の一例である熱伸長性繊維は、原料の段階で、未延伸処理又は弱延伸処理の施された複合繊維であり、例えば、芯部を構成する第1樹脂成分と、鞘部を構成する、ポリエチレン樹脂を含む第2樹脂成分とを有しており、第1樹脂成分は、第2樹脂成分より高い融点を有している。第1樹脂成分は該繊維の熱伸長性を発現する成分であり、第2樹脂成分は熱融着性を発現する成分である。第1樹脂成分及び第2樹脂成分の融点は、示差走査型熱量計(セイコーインスツルメンツ株式会社製DSC6200)を用い、細かく裁断した繊維試料(サンプル重量2mg)の熱分析を昇温速度10℃/minで行い、各樹脂の融解ピーク温度を測定し、その融解ピーク温度で定義される。第2樹脂成分の融点がこの方法で明確に測定できない場合、その樹脂を「融点を持たない樹脂」と定義する。この場合、第2樹脂成分の分子の流動が始まる温度として、繊維の融着点強度が計測できる程度に第2樹脂成分が融着する温度を軟化点とし、これを融点の代わりに用いる。 The heat-extensible fiber, which is an example of a high-stretch fiber, is a composite fiber that has been subjected to an unstretched or weakly stretched treatment at the raw material stage. For example, a first resin component that constitutes a core portion and a sheath portion And a second resin component containing a polyethylene resin, the first resin component having a higher melting point than the second resin component. A 1st resin component is a component which expresses the heat | fever extensibility of this fiber, and a 2nd resin component is a component which expresses heat-fusibility. The melting points of the first resin component and the second resin component were determined by thermal analysis of a finely cut fiber sample (sample weight 2 mg) using a differential scanning calorimeter (DSC6200 manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C./min. The melting peak temperature of each resin is measured and defined by the melting peak temperature. When the melting point of the second resin component cannot be clearly measured by this method, the resin is defined as “resin having no melting point”. In this case, the temperature at which the second resin component is fused to such an extent that the strength of the fusion point of the fiber can be measured is used as the temperature at which the molecular flow of the second resin component begins, and this is used instead of the melting point.
 鞘部を構成する第2樹脂成分としては、上述の通りポリエチレン樹脂を含んでいる。該ポリエチレン樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。特に、密度が0.935g/cm以上0.965g/cm以下である高密度ポリエチレンであることが好ましい。鞘部を構成する第2樹脂成分は、ポリエチレン樹脂単独であることが好ましいが、他の樹脂をブレンドすることもできる。ブレンドする他の樹脂としては、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-ビニルアルコール共重合体(EVOH)等が挙げられる。ただし、鞘部を構成する第2樹脂成分は、鞘部の樹脂成分中の50質量%以上が、特に70質量%以上100質量%以下が、ポリエチレン樹脂であることが好ましい。また、該ポリエチレン樹脂は、結晶子サイズが10nm以上20nm以下であることが好ましく、11.5nm以上18nm以下であることがより好ましい。 As above-mentioned, as a 2nd resin component which comprises a sheath part, the polyethylene resin is included. Examples of the polyethylene resin include low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE). In particular, a high density polyethylene having a density of 0.935 g / cm 3 or more and 0.965 g / cm 3 or less is preferable. The second resin component constituting the sheath is preferably a polyethylene resin alone, but other resins can also be blended. Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like. However, as for the 2nd resin component which comprises a sheath part, it is preferable that 50 mass% or more in the resin component of a sheath part is 70 to 100 mass% especially polyethylene resin. The polyethylene resin preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
 芯部を構成する第1樹脂成分としては、鞘部の構成樹脂であるポリエチレン樹脂より融点が高い樹脂成分を特に制限なく用いることができる。芯部を構成する樹脂成分としては、例えば、ポリプロピレン(PP)等のポリオレフィン系樹脂(ポリエチレン樹脂を除く)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル系樹脂等が挙げられる。更に、ポリアミド系重合体や樹脂成分が2種以上の共重合体等も使用することができる。複数種類の樹脂をブレンドして使用することもでき、その場合、芯部の融点は、融点が最も高い樹脂の融点とする。不織布の製造が容易となることから、芯部を構成する第1樹脂成分の融点と、鞘部を構成する第2樹脂成分の融点との差(前者-後者)が、20℃以上であることが好ましく、また150℃以下であることが好ましい。 As the first resin component constituting the core portion, a resin component having a melting point higher than that of the polyethylene resin that is a constituent resin of the sheath portion can be used without any particular limitation. Examples of the resin component constituting the core include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Furthermore, polyamide-based polymers, copolymers having two or more resin components, and the like can also be used. A plurality of types of resins can be blended and used. In this case, the melting point of the core is the melting point of the resin having the highest melting point. Since the nonwoven fabric can be easily manufactured, the difference between the melting point of the first resin component constituting the core part and the melting point of the second resin component constituting the sheath part (the former-the latter) is 20 ° C. or higher. It is preferable that it is 150 degrees C or less.
 高伸度繊維の一例である熱伸長性繊維における第1樹脂成分の好ましい配向指数は、用いる樹脂により自ずと異なるが、例えば第1樹脂成分がポリプロピレン樹脂の場合は、配向指数が60%以下であることが好ましく、より好ましくは40%以下であり、更に好ましくは25%以下である。第1樹脂成分がポリエステルの場合は、配向指数が25%以下であることが好ましく、より好ましくは20%以下であり、更に好ましくは10%以下である。一方、第2樹脂成分は、その配向指数が5%以上であることが好ましく、より好ましくは15%以上であり、更に好ましくは30%以上である。配向指数は、繊維を構成する樹脂の高分子鎖の配向の程度の指標となるものである。 The preferred orientation index of the first resin component in the thermally stretchable fiber, which is an example of a high elongation fiber, is naturally different depending on the resin used. For example, when the first resin component is a polypropylene resin, the orientation index is 60% or less. More preferably, it is 40% or less, More preferably, it is 25% or less. When the first resin component is polyester, the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less. On the other hand, the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more. The orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber.
 第1樹脂成分及び第2樹脂成分の配向指数は、特開2010-168715号公報の段落〔0027〕~〔0029〕に記載の方法によって求められる。また、熱伸長性繊維における各樹脂成分が前記のような配向指数を達成する方法は、特開2010-168715号公報の段落〔0033〕~〔0036〕に記載されている。 The orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A. A method for achieving the orientation index as described above for each resin component in the heat-extensible fiber is described in paragraphs [0033] to [0036] of Japanese Patent Application Laid-Open No. 2010-168715.
 また、高伸度繊維の伸度は、原料の段階で、100%以上であり、好ましくは200%以上であり、より好ましくは250%以上であり、そして、800%以下であることが好ましく、より好ましくは500%以下であり、更に好ましくは400%以下であり、具体的には、100%以上800%以下であることが好ましく、より好ましくは200%以上500%以下、更に好ましくは250%以上400%以下である。この範囲の伸度を有する高伸度繊維を用いることで、該繊維が延伸装置内で首尾よく引き伸ばされて、後述する小径部16から大径部17への変化点18が融着部12に隣接され、肌触りが良好となる。また、高伸度繊維の伸度は、不織布の段階で、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上であることが好ましく、好ましくは200%以下であり、より好ましくは150%以下、更に好ましくは120%以下、具体的には60%以上200%以下であることが好ましく、より好ましくは70%以上170%以下、更に好ましくは80%以上150%以下である。特に、高伸度繊維の割合100%で作製した不織布の伸度が上述の範囲であることが好ましい。 Further, the elongation of the high elongation fiber is 100% or more, preferably 200% or more, more preferably 250% or more, and preferably 800% or less at the raw material stage. More preferably, it is 500% or less, more preferably 400% or less, specifically, preferably 100% or more and 800% or less, more preferably 200% or more and 500% or less, and still more preferably 250%. More than 400%. By using a high elongation fiber having an elongation in this range, the fiber is successfully stretched in a stretching apparatus, and a change point 18 from a small diameter portion 16 to a large diameter portion 17 described later becomes a fusion portion 12. Adjacent and good touch. Further, the elongation of the high elongation fiber is 60% or more, preferably 70% or more, more preferably 80% or more, preferably 200% or less, at the stage of the nonwoven fabric. More preferably, it is 150% or less, more preferably 120% or less, specifically 60% or more and 200% or less, more preferably 70% or more and 170% or less, and further preferably 80% or more and 150% or less. is there. In particular, it is preferable that the elongation of the nonwoven fabric produced with a high elongation fiber ratio of 100% is in the above range.
 高伸度繊維の伸度はJISL-1015に準拠し、測定環境温湿度20±2℃、65±2%RH、引張試験機のつかみ間隔20mm、引張速度20mm/minの条件での測定を基準とする。なお、既に製造された不織布から繊維を採取して伸度を測定するときを始めとして、つかみ間隔を20mmにできない場合、つまり測定する繊維の長さが20mmに満たない場合には、つかみ間隔を10mm又は5mmに設定して測定する。 The elongation of the high elongation fiber conforms to JISL-1015, and the measurement is based on the measurement environment temperature and humidity of 20 ± 2 ℃, 65 ± 2% RH, the tensile tester's gripping distance is 20mm, and the tensile speed is 20mm / min. And In addition, when collecting fibers from an already manufactured non-woven fabric and measuring the elongation, when the gripping interval cannot be 20 mm, that is, when the length of the fiber to be measured is less than 20 mm, the gripping interval is set. Measure by setting to 10 mm or 5 mm.
 高伸度繊維における第1樹脂成分と第2樹脂成分との比率(質量比、前者:後者)は、原料の段階で、10:90~90:10、特に20:80~80:20、とりわけ50:50~70:30であることが好ましい。高伸度繊維の繊維長は、不織布の製造方法に応じて適切な長さのものが用いられる。不織布を例えば後述するようにカード法で製造する場合には、繊維長を30~70mm程度とすることが好ましい。 The ratio of the first resin component to the second resin component (mass ratio, the former: latter) in the high elongation fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially in the raw material stage. It is preferably 50:50 to 70:30. As the fiber length of the high elongation fiber, one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
 高伸度繊維の繊維径は、原料の段階で、不織布の具体的な用途に応じ適切に選択される。不織布を吸収性物品の表面シート等の吸収性物品の構成部材として用いる場合には、10μm以上のものを用いることが好ましく、特に15μm以上のものを用いることが好ましく、そして、35μm以下のものを用いることが好ましく、特に30μm以下のものを用いることが好ましく、具体的には、10μm以上35μm以下、特に15μm以上30μm以下のものを用いることが好ましい。前記の繊維径は、次の方法で測定される。 The fiber diameter of the high elongation fiber is appropriately selected according to the specific use of the nonwoven fabric at the raw material stage. When a nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of an absorbent article, it is preferable to use one having a thickness of 10 μm or more, particularly preferably 15 μm or more, and one having a thickness of 35 μm or less. It is preferable to use a material having a thickness of 30 μm or less, and specifically, a material having a thickness of 10 μm to 35 μm, particularly 15 μm to 30 μm is preferable. The fiber diameter is measured by the following method.
 〔繊維の繊維径の測定〕
 繊維の繊維径として、繊維の直径(μm)を、走査電子顕微鏡(日本電子株式会社製JCM-5100)を用いて、繊維の断面を200倍~800倍に拡大観察して測定する。繊維の断面は、フェザー剃刀(品番FAS‐10、フェザー安全剃刀株式会社製)を用い、繊維を切断して得る。抽出した繊維1本について円形に近似したときの繊維径を5箇所測定し、それぞれ測定した値5点の平均値を繊維の直径とする。
[Measurement of fiber diameter]
As the fiber diameter, the fiber diameter (μm) is measured by observing the cross section of the fiber at 200 to 800 times using a scanning electron microscope (JCM-5100 manufactured by JEOL Ltd.). The cross section of the fiber is obtained by cutting the fiber using a feather razor (product number FAS-10, manufactured by Feather Safety Razor Co., Ltd.). For each extracted fiber, the fiber diameter when approximated to a circle is measured at five locations, and the average value of the five measured values is taken as the fiber diameter.
 原料の段階で、高伸度繊維の一例である熱伸長性繊維を用いる場合としては、上述の熱伸長性繊維の他に、特許第4131852号公報、特開2005-350836号公報、特開2007-303035号公報、特開2007-204899号公報、特開2007-204901号公報及び特開2007-204902号公報等に記載の繊維を用いることもできる。 In the raw material stage, in the case of using a heat-extensible fiber, which is an example of a high elongation fiber, in addition to the above-described heat-extensible fiber, Japanese Patent No. 4131852, Japanese Patent Application Laid-Open No. 2005-350836, Japanese Patent Application Laid-Open No. 2007-2007 The fibers described in JP-A-303035, JP-A 2007-204899, JP-A 2007-204901, JP-A 2007-204902, and the like can also be used.
 本発明(第1発明)の不織布は、図3に示すように、不織布1Aの構成繊維11の内の1本の構成繊維11に着目して、該構成繊維11が、隣り合う融着部12,12どうしの間に、繊維径の小さい2個の小径部16,16に挟まれた繊維径の大きい大径部17を有している。具体的には、図3に示すように、不織布1Aの構成繊維11の内の1本の構成繊維11に着目して、他の構成繊維11との交点を熱融着して形成された融着部12から、繊維径の小さい小径部16が略同じ繊維径で延出して形成されている。そして、該1本の構成繊維11に着目して、隣り合う融着部12,12それぞれから延出する小径部16,16どうしの間に、小径部16よりも繊維径の大きい大径部17が略同じ繊維径で延出して形成されている。詳述すると、不織布1Aは、1本の構成繊維11に着目して、隣り合う融着部12,12の内の一方の融着部12から他方の融着部12に向かって、一方の融着部12側の小径部16、1個の大径部17、他方の融着部12側の小径部16の順に配されている構成繊維11を有している。また、不織布1Aは、図3に示すように、不織布1Aの構成繊維11の内の1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、大径部17を複数(不織布1Aにおいては2個)備える構成繊維11を有している。詳述すると、不織布1Aは、1本の構成繊維11に着目して、隣り合う融着部12,12の内の一方の融着部12から他方の融着部12に向かって、一方の融着部12側の小径部16、1個目の大径部17、小径部16、2個目の大径部17、他方の融着部12側の小径部16の順に配されている構成繊維11を有している。上述したように不織布1Aの剛性が高まる融着部12に隣り合うように低剛性の小径部16が存在することにより、不織布1Aの柔軟性が向上し、肌触りが良好なる。また、大径部17を複数備える、言い換えると構成繊維11に低剛性の小径部16が多く存在するほど、不織布1Aの柔軟性が更に向上し、肌触りが更に良好になる。不織布1Aは、1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、大径部17を、肌触り向上の観点と不織布強度低下の観点から、好ましくは1個以上備え、更に好ましくは1個以上備え、そして、好ましくは5個以下備え、更に好ましくは3個以下備え、具体的には、好ましくは1個以上5個以下備え、更に好ましくは1個以上3個以下備えている。 As shown in FIG. 3, the nonwoven fabric of the present invention (first invention) pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 </ b> A, and the constituent fibers 11 are adjacent to the fused portion 12. , 12 has a large-diameter portion 17 having a large fiber diameter sandwiched between two small- diameter portions 16, 16 having a small fiber diameter. Specifically, as shown in FIG. 3, paying attention to one constituent fiber 11 of the constituent fibers 11 of the nonwoven fabric 1A, a fusion formed by heat-sealing the intersection with the other constituent fibers 11 A small diameter portion 16 having a small fiber diameter extends from the landing portion 12 with substantially the same fiber diameter. Then, paying attention to the single constituent fiber 11, the large-diameter portion 17 having a fiber diameter larger than that of the small-diameter portion 16 between the small- diameter portions 16 and 16 extending from the adjacent fusion portions 12 and 12. Are extended with substantially the same fiber diameter. More specifically, the nonwoven fabric 1A pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, It has constituent fibers 11 arranged in the order of a small diameter portion 16 on the side of the attachment portion 12, one large diameter portion 17, and a small diameter portion 16 on the side of the other fusion portion 12. Further, as shown in FIG. 3, the nonwoven fabric 1 </ b> A pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 </ b> A, and has a large-diameter portion 17 between adjacent fusion portions 12, 12. The constituent fiber 11 is provided with a plurality of (two in the nonwoven fabric 1A). More specifically, the nonwoven fabric 1A pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, Constituent fibers arranged in the order of the small-diameter portion 16 on the bonding portion 12 side, the first large-diameter portion 17, the small-diameter portion 16, the second large-diameter portion 17, and the small-diameter portion 16 on the other fused portion 12 side. 11. As described above, the low-rigidity small-diameter portion 16 is adjacent to the fused portion 12 where the stiffness of the nonwoven fabric 1A is increased, so that the flexibility of the nonwoven fabric 1A is improved and the touch is improved. Moreover, the softness | flexibility of the nonwoven fabric 1A improves further and the touch becomes further better, so that the small diameter part 16 with a low rigidity is provided in the constituent fiber 11 in multiple numbers. In the nonwoven fabric 1A, focusing on one constituent fiber 11, preferably one large-diameter portion 17 is provided between the adjacent fusion portions 12 and 12 from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. More, more preferably 1 or more, and preferably 5 or less, more preferably 3 or less, specifically preferably 1 or more and 5 or less, more preferably 1 or more and 3 Has less than one.
 大径部17の繊維径(直径L17)に対する小径部16の繊維径(直径L16)の比率(L16/L17)は、好ましくは0.5以上、更に好ましくは0.55以上、そして、好ましくは0.8以下、更に好ましくは0.7以下であり、具体的には、好ましくは0.5以上0.8以下、更に好ましくは0.55以上0.7以下である。具体的に、小径部16の繊維径(直径L16)は、肌触り向上の観点と不織布強度低下の観点から、好ましくは5μm以上、更に好ましくは6.5μm以上、特に好ましくは7.5μm以上であり、そして、好ましくは28μm以下、更に好ましくは20μm以下、特に好ましくは16μm以下であり、具体的には、好ましくは5μm以上28μm以下、更に好ましくは6.5μm以上20μm以下、特に好ましくは7.5μm以上16μm以下である。大径部17の繊維径(直径L17)は、肌触り向上の観点から、好ましくは10μm以上、更に好ましくは13μm以上、特に好ましくは15μm以上であり、好ましくは35μm以下、更に好ましくは25μm以下、特に好ましくは20μm以下であり、具体的には、好ましくは10μm以上35μm以下、更に好ましくは13μm以上25μm以下、特に好ましくは15μm以上20μm以下である。
 小径部16及び大径部17の繊維径(直径L16,L17)は、上述した繊維の繊維径の測定と同様にして測定する。
The ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter part 16 to the fiber diameter (diameter L 17 ) of the large diameter part 17 is preferably 0.5 or more, more preferably 0.55 or more. And preferably it is 0.8 or less, More preferably, it is 0.7 or less, Specifically, Preferably it is 0.5 or more and 0.8 or less, More preferably, it is 0.55 or more and 0.7 or less. Specifically, the fiber diameter (diameter L 16 ) of the small-diameter portion 16 is preferably 5 μm or more, more preferably 6.5 μm or more, particularly preferably 7.5 μm or more from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. And preferably 28 μm or less, more preferably 20 μm or less, particularly preferably 16 μm or less, specifically preferably 5 μm or more and 28 μm or less, more preferably 6.5 μm or more and 20 μm or less, particularly preferably 7. It is 5 μm or more and 16 μm or less. The fiber diameter (diameter L 17 ) of the large diameter portion 17 is preferably 10 μm or more, more preferably 13 μm or more, particularly preferably 15 μm or more, preferably 35 μm or less, more preferably 25 μm or less, from the viewpoint of improving the touch. The thickness is particularly preferably 20 μm or less, specifically, preferably 10 μm or more and 35 μm or less, more preferably 13 μm or more and 25 μm or less, and particularly preferably 15 μm or more and 20 μm or less.
The fiber diameters (the diameters L 16 and L 17 ) of the small diameter part 16 and the large diameter part 17 are measured in the same manner as the fiber diameter measurement described above.
 また、本発明(第1発明)の不織布は、小径部16の親水度が大径部17の親水度よりも小さく形成されている。このような親水度の変化を繊維に付与するには、後述する製造方法に従い不織布1Aを製造すればよい。 Further, the nonwoven fabric of the present invention (first invention) is formed such that the hydrophilicity of the small-diameter portion 16 is smaller than the hydrophilicity of the large-diameter portion 17. In order to impart such a change in hydrophilicity to the fiber, the nonwoven fabric 1A may be manufactured according to the manufacturing method described later.
 本発明(第1発明)に言う「親水度」は、以下に述べる方法で測定された繊維の接触角に基づきその程度が判断される。具体的には、親水度が低いことは接触角が大きいことと同義であり、親水度が高いことは接触角が小さいことと同義である。 The “hydrophilicity” referred to in the present invention (first invention) is judged based on the contact angle of the fiber measured by the method described below. Specifically, a low hydrophilicity is synonymous with a large contact angle, and a high hydrophilicity is synonymous with a small contact angle.
 〔接触角の測定方法〕
 不織布1Aの構成繊維11をランダムに複数抽出し、抽出した構成繊維11の中から小径部16及び大径部17を備えた構成繊維11を選出し、該構成繊維11における小径部16の位置及び大径部17の位置での水の接触角を測定する。測定装置として、協和界面科学株式会社製の自動接触角計MCA-Jを用いる。接触角の測定には蒸留水を用いる。インクジェット方式水滴吐出部(クラスターテクノロジー社製、吐出部孔径が25μmのパルスインジェクターCTC-25)から吐出される液量を15ピコリットルに設定して、水滴を、小径部16の位置及び大径部17の位置それぞれの中央の真上に滴下する。滴下の様子を水平に設置されたカメラに接続された高速度録画装置に録画する。録画装置は後に画像解析をする観点から、高速度キャプチャー装置が組み込まれたパーソナルコンピュータが望ましい。本測定では、17msecごとに画像が録画される。録画された映像において、選出された構成繊維11に水滴が着滴した最初の画像を、付属ソフトFAMAS(ソフトのバージョンは2.6.2、解析手法は液滴法、解析方法はθ/2法、画像処理アルゴリズムは無反射、画像処理イメージモードはフレーム、スレッシホールドレベルは200、曲率補正はしない、とする)にて画像解析を行い、水滴の空気に触れる面と繊維のなす角を算出し、接触角とする。選出された構成繊維11は、繊維長1mm程度に裁断し、該繊維を接触角計のサンプル台に載せて、水平に維持する。該繊維1本の小径部16及び大径部17につき異なる2箇所の接触角を測定する。N=5本の小径部16及び大径部17の接触角を小数点以下1桁まで計測し、合計10箇所の測定値を平均した値(小数点以下第1桁で四捨五入)を小径部16及び大径部17の接触角と定義する。
[Measurement method of contact angle]
A plurality of constituent fibers 11 of the nonwoven fabric 1A are randomly extracted, and the constituent fibers 11 including the small diameter portion 16 and the large diameter portion 17 are selected from the extracted constituent fibers 11, and the position of the small diameter portion 16 in the constituent fibers 11 and The contact angle of water at the position of the large diameter portion 17 is measured. As a measuring device, an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used. Distilled water is used to measure the contact angle. The amount of liquid ejected from an ink jet type water droplet ejection part (manufactured by Cluster Technology, Inc., pulse injector CTC-25 with a pore diameter of 25 μm) is set to 15 picoliters, and the water droplets are positioned at the small diameter part 16 and the large diameter part. It is dripped just above the center of each of the 17 positions. The state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera. The recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later. In this measurement, an image is recorded every 17 msec. In the recorded video, the first image in which water droplets land on the selected constituent fibers 11 is attached to the attached software FAMAS (software version is 2.6.2, the analysis method is the droplet method, and the analysis method is θ / 2. Method, image processing algorithm is non-reflective, image processing image mode is frame, threshold level is 200, and curvature correction is not performed). Calculate the contact angle. The selected constituent fiber 11 is cut into a fiber length of about 1 mm, and the fiber is placed on a sample table of a contact angle meter and kept horizontal. Two different contact angles are measured for the small diameter portion 16 and the large diameter portion 17 of one fiber. Measure the contact angle of N = 5 small diameter parts 16 and large diameter part 17 to one decimal place, and average the measured values of 10 places (rounded to the first decimal place). It is defined as the contact angle of the diameter portion 17.
 不織布1Aの表面の液残りが少なくドライタッチ性が向上する観点から、小径部16の接触角と大径部17の接触角との差(前者-後者)が、1度以上、特に5度以上、更には10度以上であることが好ましく、25度以下、特に20度以下、更には15度以下であることが好ましい。例えば接触角の差は、1度以上25度以下であることが好ましく、5度以上20度以下であることが更に好ましく、10度以上15度以下であることが一層好ましい。具体的に、小径部16の接触角は、60度以上、特に70度以上、更には80度以上であることが好ましく、100度以下、特に95度以下、更には90度以下であることが好ましい。例えば小径部16の接触角は、60度以上100度以下であることが好ましく、70度以上95度以下であることが更に好ましく、80度以上90度以下であることが一層好ましい。また、大径部17の接触角は、55度以上、特に60度以上、更には65度以上であることが好ましく、90度以下、特に85度以下、更には80度以下であることが好ましい。例えば大径部17の接触角は、55度以上90度以下であることが好ましく、60度以上85度以下であることが更に好ましく、65度以上80度以下であることが一層好ましい。 The difference between the contact angle of the small-diameter portion 16 and the contact angle of the large-diameter portion 17 (the former-the latter) is 1 degree or more, particularly 5 degrees or more from the viewpoint of improving the dry touch property with little liquid remaining on the surface of the nonwoven fabric 1A Further, it is preferably 10 degrees or more, preferably 25 degrees or less, particularly preferably 20 degrees or less, and further preferably 15 degrees or less. For example, the difference in contact angle is preferably 1 degree or more and 25 degrees or less, more preferably 5 degrees or more and 20 degrees or less, and still more preferably 10 degrees or more and 15 degrees or less. Specifically, the contact angle of the small diameter portion 16 is 60 degrees or more, particularly 70 degrees or more, more preferably 80 degrees or more, and is preferably 100 degrees or less, particularly 95 degrees or less, and more preferably 90 degrees or less. preferable. For example, the contact angle of the small diameter portion 16 is preferably 60 degrees or more and 100 degrees or less, more preferably 70 degrees or more and 95 degrees or less, and still more preferably 80 degrees or more and 90 degrees or less. The contact angle of the large-diameter portion 17 is 55 degrees or more, particularly 60 degrees or more, more preferably 65 degrees or more, preferably 90 degrees or less, particularly 85 degrees or less, and more preferably 80 degrees or less. . For example, the contact angle of the large-diameter portion 17 is preferably 55 degrees or greater and 90 degrees or less, more preferably 60 degrees or greater and 85 degrees or less, and even more preferably 65 degrees or greater and 80 degrees or less.
 また、本発明(第1発明)の不織布は、図3に示すように、不織布1Aの構成繊維11の内の1本の構成繊維11に着目して、融着部12に隣接する小径部16から大径部17への変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されている。ここで、本発明(第1発明)の不織布の変化点18とは、小さい繊維径で延出する小径部16から、小径部16よりも繊維径の大きい繊維径で延出する大径部17へ、連続的に漸次変化する部位或いは連続的に複数段階に亘って変化する部位を含まず、極端に繊維径が変化する部位を意味する。また、前記1本の構成繊維11が芯鞘型複合繊維の場合には、本発明(第1発明)の不織布の変化点18とは、芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分との間で剥離することによって繊維径が変化する状態を含まず、あくまで、延伸により繊維径が変化している部位を意味する。 Further, as shown in FIG. 3, the nonwoven fabric of the present invention (first invention) focuses on one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 </ b> A, and has a small diameter portion 16 adjacent to the fused portion 12. The change point 18 from the large diameter portion 17 to the large diameter portion 17 is arranged within a range of 3 of the interval T between the fusion portions 12 and 12 adjacent to the fusion portion 12. Here, the change point 18 of the nonwoven fabric of the present invention (first invention) is a large diameter portion 17 extending from a small diameter portion 16 extending with a small fiber diameter and a fiber diameter larger than the small diameter portion 16. It does not include a part that continuously changes gradually or a part that continuously changes over a plurality of stages, and means a part where the fiber diameter changes extremely. When the one constituent fiber 11 is a core-sheath-type composite fiber, the change point 18 of the nonwoven fabric of the present invention (first invention) is the first resin component constituting the core part and the sheath part. It does not include a state in which the fiber diameter is changed by peeling with the second resin component to be configured, and means a portion where the fiber diameter is changed by stretching.
 また、変化点18が、融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されているとは、不織布1Aの構成繊維11をランダムに抽出し、該構成繊維11を、図3に示すように、走査電子顕微鏡として日本電子株式会社製のJCM-5100(商品名)を用いて構成繊維11の隣り合う融着部12,12間が観察できるように(100倍~300倍)に拡大する。次いで、隣り合う融着部12,12の中心どうしの間隔Tを3等分して、一方の融着部12側の領域AT、他方の融着部12側の領域BT、中央の領域CTに区分する。そして、変化点18が、前記領域AT又は前記領域BTに配されていることを意味する。また、変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されている不織布1Aとは、不織布1Aの構成繊維11を20本ランダムに抽出した際に、変化点18を前記領域AT又は前記領域BTに配している構成繊維11が、20本の構成繊維11の内に少なくとも1本以上ある不織布を意味する。具体的に、触り向上の観点から、好ましくは1本以上、更に好ましくは5本以上、特に好ましくは10本以上である。 Further, the fact that the change point 18 is arranged within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the nonwoven fabric 1A are randomly extracted. As shown in FIG. 3, the constituent fibers 11 can be observed between adjacent fused portions 12 and 12 of the constituent fibers 11 using a JCM-5100 (trade name) manufactured by JEOL Ltd. as a scanning electron microscope. (100 times to 300 times). Next, the interval T between the centers of the adjacent fused portions 12 and 12 is divided into three equal parts, and the region AT on the side of one fused portion 12, the region BT on the side of the other fused portion 12, and the center region CT Break down. This means that the change point 18 is arranged in the area AT or the area BT. Further, the non-woven fabric 1A in which the change point 18 is disposed within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the non-woven fabric 1A are 20 When extracted randomly, the constituent fiber 11 in which the change point 18 is arranged in the region AT or the region BT means a nonwoven fabric in which at least one of the 20 constituent fibers 11 is present. Specifically, from the viewpoint of improving touch, it is preferably 1 or more, more preferably 5 or more, and particularly preferably 10 or more.
 本実施形態の不織布1Aは、後述するように、延伸によって、側部域13cだけではなく凸条部13の頂部である頂部域13a及び凹条部14の底部である底部域13bも延伸され、延伸前の原料不織布より不織布全体の繊維密度が低下している。それにより、不織布1A全体の通液性と通気性が向上している。頂部域13a、底部域13b及び側部域13cの中でも、特に延伸されやすく、繊維密度が低下しやすいのが側部域13cであり、側部域13cにおいては、通液性と通気性が特に向上している。 As will be described later, the nonwoven fabric 1A of the present embodiment extends not only the side region 13c but also the top region 13a that is the top of the ridge 13 and the bottom region 13b that is the bottom of the concave 14 by stretching, The fiber density of the whole nonwoven fabric is lower than the raw material nonwoven fabric before stretching. Thereby, the liquid permeability and air permeability of the nonwoven fabric 1A as a whole are improved. Among the top region 13a, the bottom region 13b, and the side region 13c, the side region 13c is particularly easy to be stretched and the fiber density is likely to decrease. In the side region 13c, liquid permeability and air permeability are particularly good. It has improved.
 本実施形態の不織布1Aは、側部域13cの繊維密度が、凸条部13の頂部である頂部域13aの繊維密度及び凹条部14の底部である底部域13bの繊維密度よりも小さく形成されている。ここで、繊維密度とは、不織布1Aの単位体積当たりの繊維の質量のことである。繊維密度が高いとは、不織布1Aの単位体積あたりに存在する繊維の量が多く、繊維間距離が小さいことを意味する。繊維密度が低いとは、不織布1Aの単位体積あたりに存在する繊維の量が少なく、繊維間距離が大きいことを意味する。尚、繊維密度が高い部位は毛管力が高く、繊維密度が低い部位は毛管力が低くなっている。 1 A of nonwoven fabrics of this embodiment form the fiber density of the side part area | region 13c smaller than the fiber density of the top part area | region 13a which is the top part of the protruding item | line part 13, and the fiber density of the bottom part area | region 13b which is the bottom part of the groove part 14. Has been. Here, the fiber density is the mass of the fiber per unit volume of the nonwoven fabric 1A. High fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1A is large and the distance between fibers is small. Low fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1A is small and the distance between fibers is large. In addition, the site | part with a high fiber density has high capillary force, and the site | part with a low fiber density has low capillary force.
 図2に示すように不織布1Aを断面視して、不織布1Aは、凸条部13の頂部(頂部域13a)及び凹条部14の底部(底部域13b)の間の側部域13cの繊維密度が最も小さく形成されている。従って、側部域13cにおいては、不織布1Aの単位体積あたりに存在する繊維の量が最も少なく、繊維間距離が最も大きくなっており、不織布1A全体として、通気性が向上すると共に通液性も向上する。更に、側部域13cの繊維密度がもっとも小さく形成されることにより、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。このような繊維密度を側部域13cに付与するには、後述する製造方法に従い不織布1Aを製造すればよい。 As shown in FIG. 2, the nonwoven fabric 1 </ b> A is a cross-sectional view, and the nonwoven fabric 1 </ b> A is a fiber in the side region 13 c between the top (top region 13 a) of the ridge 13 and the bottom (bottom region 13 b) of the recess 14. The density is the smallest. Accordingly, in the side region 13c, the amount of fibers present per unit volume of the nonwoven fabric 1A is the smallest and the inter-fiber distance is the largest. As a whole, the nonwoven fabric 1A has improved air permeability and liquid permeability. improves. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized. In order to impart such a fiber density to the side region 13c, the nonwoven fabric 1A may be manufactured according to the manufacturing method described later.
 頂部域13aでの繊維密度(D13)、又は底部域13bでの繊維密度(D14)に対する側部域13cの繊維密度(D15)の比率(D15/D13,D15/D14)は、好ましくは0.15以上、更に好ましくは0.2以上であり、そして、好ましくは0.9以下、更に好ましくは0.8以下であり、具体的には、好ましくは0.15以上0.9以下、更に好ましくは0.2以上0.8以下である。また、不織布1Aの繊維密度の具体的な値は、頂部域13aでの繊維密度(D13)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、好ましくは80本/mm以上200本/mm以下、更に好ましくは90本/mm以上180本/mm以下である。また、底部域13bでの繊維密度(D14)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、好ましくは80本/mm以上200本/mm以下、更に好ましくは90本/mm以上180本/mm以下である。また、側部域13cの繊維密度(D15)は、好ましくは30本/mm以上、更に好ましくは40本/mm以上であり、そして、好ましくは80本/mm以下、更に好ましくは70本/mm以下であり、具体的には、好ましくは30本/mm以上80本/mm以下、更に好ましくは40本/mm以上70本/mm以下である。頂部域13aの繊維密度は、凸条部13の頂点付近の位置で測定される。底部域13bの繊維密度は、凹条部14の底点付近の位置で測定される。繊維密度の測定方法は以下のとおりである。 The ratio (D 15 / D 13 , D 15 / D 14 ) of the fiber density (D 15 ) of the side region 13c to the fiber density (D 13 ) in the top region 13a or the fiber density (D 14 ) in the bottom region 13b. ) Is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less, and specifically preferably 0.15 or more. 0.9 or less, more preferably 0.2 or more and 0.8 or less. The specific value of the fiber density of the nonwoven fabric 1A is such that the fiber density (D 13 ) in the top region 13a is preferably 80 / mm 2 or more, more preferably 90 / mm 2 or more, and Preferably it is 200 / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more. 180 pieces / mm 2 or less. Also, the fiber density (D 14) of the bottom area 13b, preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more and 180 / mm 2 or less. The fiber density of the side region 13c (D 15) is preferably 30 present / mm 2 or more, more preferably 40 present / mm 2 or more, and preferably 80 present / mm 2 or less, more preferably 70 / mm 2 or less, specifically, preferably 30 / mm 2 or more and 80 / mm 2 or less, more preferably 40 / mm 2 or more and 70 / mm 2 or less. The fiber density of the top region 13 a is measured at a position near the top of the ridge 13. The fiber density of the bottom region 13b is measured at a position near the bottom point of the concave strip portion 14. The method for measuring the fiber density is as follows.
 〔頂部域13a、底部域13b又は側部域13cでの繊維密度の測定方法〕
 フェザー剃刀(品番FAS‐10、フェザー安全剃刀株式会社製)を用いて不織布を切断し、頂部域13aでの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の上方の部位である凸条部13の頂点付近を、走査電子顕微鏡を用いて拡大観察(繊維断面が30~60本計測できる倍率に調整;150~500倍)し、一定面積当たり(0.5mm)の前記切断面によって切断されている繊維の断面数を数える。次に1mm当たりの繊維の断面数に換算し、これを頂部域13aでの繊維密度とする。測定は3箇所行い、平均してそのサンプルの繊維密度とする。同様に、底部域13bでの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の下方の部位である凹条部14の底点付近を測定して求める。同様に、側部域13cの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の中央の部位を測定して求める。尚、走査電子顕微鏡としては、日本電子株式会社製のJCM-5100(商品名)を用いる。
[Measuring method of fiber density in top region 13a, bottom region 13b or side region 13c]
The nonwoven fabric is cut using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the fiber density in the top region 13a is obtained when the thickness of the cut surface of the nonwoven fabric is divided into three equal parts in the Z direction. The vicinity of the apex of the ridge 13 that is the portion of the region is magnified using a scanning electron microscope (adjusted to a magnification capable of measuring 30 to 60 fiber cross-sections; 150 to 500 times), and per fixed area (0.5 mm 2). ) Of the cross section of the fiber cut by the cut surface. Next, it converts into the number of cross sections of the fiber per 1 mm < 2 >, and makes this the fiber density in the top region 13a. The measurement is performed at three locations, and the average is the fiber density of the sample. Similarly, the fiber density in the bottom region 13b is obtained by measuring the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction. Similarly, the fiber density of the side region 13c is determined by measuring the central part when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction. As the scanning electron microscope, JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
 また、本実施形態の不織布1Aは、側部域13cを構成する構成繊維における変化点18を有する繊維の本数が頂部域13a及び底部域13bを構成する構成繊維における変化点18を有する繊維の本数より多く形成されている。これにより、頂部域13aが着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。頂部域13aを構成する構成繊維における変化点18を有する繊維の本数(N13)、又は底部域13bを構成する構成繊維における変化点18を有する繊維の本数(N14)に対する側部域13cを構成する構成繊維における変化点18を有する繊維の本数(N15)の比率(N15/N13,N15/N14)は、好ましくは2以上、更に好ましくは5以上であり、そして、好ましくは20以下、更に好ましくは20以下であり、具体的には、好ましくは2以上20以下、更に好ましくは5以上20以下である。また、不織布1Aの変化点18を有する繊維の本数の具体的な値に関し、頂部域13aを構成する構成繊維における変化点18を有する繊維の本数(N13)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である。また、底部域13bを構成する構成繊維における変化点18を有する繊維の本数(N14)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である。また、側部域13cを構成する構成繊維における変化点18を有する繊維の本数(N15)は、好ましくは5本以上、更に好ましくは10本以上であり、そして、好ましくは20本以下、更に好ましくは20本以下であり、具体的には、好ましくは5本以上20本以下、更に好ましくは10本以上20本以下である。変化点18を有する繊維の本数の測定方法は以下のとおりである。 Moreover, 1 A of nonwoven fabrics of this embodiment are the number of the fibers which have the change point 18 in the constituent fiber which the number of the fibers which have the change point 18 in the constituent fiber which comprises the side region 13c comprises the top region 13a and the bottom region 13b. More are formed. Thereby, the top region 13a can easily follow the movement of the wearer's skin, and good skin contact can be realized. The side region 13c with respect to the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a (N 13 ) or the number of fibers having the change point 18 in the component fibers constituting the bottom region 13b (N 14 ) The ratio (N 15 / N 13 , N 15 / N 14 ) of the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting is preferably 2 or more, more preferably 5 or more, and preferably Is 20 or less, more preferably 20 or less. Specifically, it is preferably 2 or more and 20 or less, more preferably 5 or more and 20 or less. Further, regarding the specific value of the number of fibers having the change point 18 of the nonwoven fabric 1A, the number of fibers having the change point 18 (N 13 ) in the constituent fibers constituting the top region 13a is preferably one or more, and more Preferably it is 5 or more, and preferably 15 or less, more preferably 15 or less, specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less. . The number (N 14 ) of fibers having the change point 18 in the constituent fibers constituting the bottom region 13b is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably Is 15 or less, and specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less. The number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting the side region 13c is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, The number is preferably 20 or less, specifically, preferably 5 or more and 20 or less, and more preferably 10 or more and 20 or less. The method for measuring the number of fibers having the change point 18 is as follows.
〔頂部域13a、底部域13b又は側部域13cを構成する構成繊維における変化点18を有する繊維の本数の測定方法〕
 頂部域13aを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の上方の部位である凸条部13の頂点付近を、走査電子顕微鏡を用いて拡大観察(繊維断面が30~60本計測できる倍率に調整;50~500倍)し、頂部域13aを構成する構成繊維11を20本ランダムに抽出し、20本の構成繊維11の内に変化点18を有する繊維数を数える。融着部どうしの間に、変化点18が1個以上ある場合に変化点18を有する繊維数とし、複数有する場合も1本とする。これを頂部域13aを構成する構成繊維における変化点18を有する繊維の本数とする。測定は3箇所行い、平均してそのサンプルの頂部域13aを構成する構成繊維における変化点18を有する繊維の本数とする。同様に、底部域13bを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の下方の部位である凹条部14の底点付近を測定して求める。同様に、側部域13cを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の中央の部位を測定して求める。尚、走査電子顕微鏡としては、日本電子株式会社製のJCM-5100(商品名)を用いる。
[Measurement method of the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a, the bottom region 13b, or the side region 13c]
As for the number of fibers having the change point 18 in the constituent fibers 11 constituting the top region 13a, scanning electrons are scanned around the apex of the ridge 13 which is the upper part when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Using a microscope, magnified observation (adjusted to a magnification capable of measuring 30 to 60 fiber cross sections; 50 to 500 times), 20 constituent fibers 11 constituting the top region 13a were randomly extracted, and 20 constituent fibers 11 were extracted. The number of fibers having the change point 18 in the is counted. When there are one or more change points 18 between the fused portions, the number of fibers having the change points 18 is set, and when there are a plurality of change points 18, the number is also set to one. This is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a. The measurement is performed at three places, and the average is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a of the sample. Similarly, regarding the number of fibers having the change point 18 in the constituent fibers 11 constituting the bottom region 13b, the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Determine by measuring. Similarly, the number of fibers having the change point 18 in the constituent fibers 11 constituting the side region 13c is obtained by measuring the central portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. As the scanning electron microscope, JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
 本実施形態の不織布1Aは、例えば、肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する使い捨ておむつ或いは生理用ナプキン等の吸収性物品に用いられる。特に、該吸収性物品の構成部材の内の、前記表面シートを不織布1Aで形成したり、前記表面シートと前記吸収体との間に配される液透過性のサブレイヤーを不織布1Aで形成したりすることができる。不織布1Aによって前記表面シートを形成すると、不織布1Aが凹凸構造の不織布であるので、肌との接触面積率が低くなり、更に擦れ難くなる。また、不織布1Aによって前記表面シート又は前記サブレイヤーを形成すると、不織布1Aが凹凸構造の不織布であるので、耐圧縮性が向上し、クッション感が向上すると共に、体液の逆戻りを防ぐことができる。 1 A of nonwoven fabrics of this embodiment are the disposable diapers which have the surface sheet arrange | positioned at the skin opposing surface side, the back sheet arrange | positioned at the non-skin opposing surface side, and the absorber interposed between the said both sheets, for example. Or it is used for absorbent articles, such as a sanitary napkin. In particular, of the constituent members of the absorbent article, the top sheet is formed from the nonwoven fabric 1A, or a liquid-permeable sublayer disposed between the top sheet and the absorbent body is formed from the nonwoven fabric 1A. Can be. When the surface sheet is formed of the nonwoven fabric 1A, the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and therefore, the contact area ratio with the skin is lowered and it is further difficult to rub. Moreover, when the said surface sheet or the said sublayer is formed with the nonwoven fabric 1A, since the nonwoven fabric 1A is a nonwoven fabric of a concavo-convex structure, compression resistance improves, a feeling of cushion improves, and the return of body fluid can be prevented.
 不織布1Aの厚さについては、不織布1Aの側面視したときの全体の厚さをシート厚みTとし、その凹凸に湾曲した不織布1Aの局部的な厚さを層厚みTとする。シート厚みTは、用途によって適宜調節すればよいが、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、0.5mm以上が好ましく、1mm以上がより好ましく、そして、7mm以下が好ましく、5mm以下がより好ましく、具体的には、0.5mm以上7mm以下が好ましく、1mm以上5mm以下がより好ましい。この範囲とすることにより、使用時の体液吸収速度が速く、吸収体からの液戻りを抑え、更に、適度なクッション性を実現することができる。 The thickness of the nonwoven fabric 1A, the entire thickness of when the side view of the nonwoven fabric 1A and sheet thickness T S, the local thickness of the nonwoven fabric 1A curved in its irregularities and the layer thickness T L. Sheet thickness T S is may be adjusted as appropriate depending on the application, when used as a topsheet or sublayer of the absorbent article is preferably at least 0.5 mm, more preferably at least 1 mm, and preferably 7mm or less, 5 mm or less More specifically, 0.5 mm or more and 7 mm or less are preferable, and 1 mm or more and 5 mm or less are more preferable. By setting it as this range, the bodily fluid absorption speed | velocity at the time of use is quick, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable.
 層厚みTは、不織布1A内の各部位において異なっていてもよく、用途によって適宜調節すればよい。吸収性物品の表面シート或いはサブレイヤーとして用いる場合、頂部域13aの層厚みTL1は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。底部域13bの層厚みTL2は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。側部域13cの層厚みTL3は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。この範囲とすることにより、使用時の体液吸収速度が速く、吸収体からの液戻りを抑え、更に、適度なクッション性を実現することができる。 The layer thickness T L may be different in each part in the nonwoven fabric 1A, and may be appropriately adjusted depending on the application. When used as a surface sheet or sublayer of an absorbent article, the layer thickness T L1 of the top region 13a is preferably 0.1 mm or more, more preferably 0.2 mm or more, and 3.0 mm or less. Is preferably 2.0 mm or less, specifically 0.1 mm or more and 3.0 mm or less, more preferably 0.2 mm or more and 2.0 mm or less. The layer thickness T L2 of the bottom region 13b is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Is preferably from 0.1 mm to 3.0 mm, more preferably from 0.2 mm to 2.0 mm. The layer thickness T L3 of the side region 13c is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Specifically, it is preferably from 0.1 mm to 3.0 mm, and more preferably from 0.2 mm to 2.0 mm. By setting it as this range, the bodily fluid absorption speed | velocity at the time of use is quick, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable.
 シート厚みT及び層厚みTは以下の方法で測定される。
 シート厚みTの測定方法は、不織布1Aに0.05kPaの荷重を加えた状態で、厚み測定器を用いて測定する。厚み測定器にはオムロン社製のレーザー変位計を用いる。厚み測定は、10点測定し、それらの平均値を算出して厚みとする。
 層厚みTの測定法は、シートの断面を株式会社キーエンス製デジタルマイクロスコープVHX-900により約20倍程度で拡大することで、各層の厚みを測定する。
The sheet thickness T S and the layer thickness T L are measured by the following methods.
Method of measuring the thickness of the sheet T S is in a state of applying a load of 0.05kPa nonwoven. 1A, measured by using a thickness gauge. A laser displacement meter manufactured by OMRON Corporation is used for the thickness measuring instrument. Thickness is measured at 10 points, and the average value is calculated as the thickness.
Measurement of layer thickness T L, by enlarging the cross section of the sheet by Keyence Corporation Ltd. digital microscope VHX-900 by about 20 times, to measure the thickness of each layer.
 不織布1Aを平面視したときに、Y方向に隣り合う頂部域13aどうしのピッチは、用途によって適宜調節すればよく、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、1mm以上が好ましく、1.5mm以上がより好ましく、そして、15mm以下が好ましく、10mm以下がより好ましく、具体的には、1mm以上15mm以下が好ましく、1.5mm以上10mm以下がより好ましい。 When the nonwoven fabric 1A is viewed in plan, the pitch between the top regions 13a adjacent to each other in the Y direction may be appropriately adjusted depending on the application, and is preferably 1 mm or more when used as a surface sheet or sublayer of an absorbent article. 5 mm or more is more preferable, 15 mm or less is preferable, 10 mm or less is more preferable, specifically, 1 mm or more and 15 mm or less is preferable, and 1.5 mm or more and 10 mm or less is more preferable.
 また不織布1Aの坪量は、不織布1Aの具体的な用途にもよるが、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、シート全体の平均値で、15g/m以上が好ましく、20g/m以上がより好ましく、そして、50g/m以下が好ましく、40g/m以下がより好ましく、具体的には、15g/m以上50g/m以下が好ましく、20g/m以上40g/m以下がより好ましい。 The basis weight of the nonwoven fabric 1A depends on the specific use of the nonwoven fabric 1A, but when used as a surface sheet or sublayer of an absorbent article, the average value of the entire sheet is preferably 15 g / m 2 or more, and 20 g / m m 2 or more is more preferable, and 50 g / m 2 or less is preferable, 40 g / m 2 or less is more preferable, specifically, 15 g / m 2 or more and 50 g / m 2 or less is preferable, and 20 g / m 2 or more and 40 g. / M 2 or less is more preferable.
 また、不織布1Aの構成繊維11の表面には、繊維処理剤が付着している。特に、原料の段階で、構成繊維11の内の高伸度繊維の表面に繊維処理剤が付着していることが好ましい。前記繊維処理剤は、延展性のある成分を含んでいることが好ましく、延展性のある成分と親水性の成分とが含まれていることが更に好ましい。ここで、延展性のある成分とは、繊維の表面に付着させると、繊維の表面に低温で広がり易く、低温での流動性に優れた成分のことを言う。このような延展性のある成分としては、ガラス転移点が低く、分子鎖に柔軟性のあるシリコーン樹脂が挙げられ、シリコーン樹脂として、Si-O-Si鎖を主鎖とするポリオルガノシロキサンが好ましく用いられる。繊維の表面に付着している繊維処理剤に延展性のある成分と親水性の成分とが含まれている場合、延展性のある成分は、繊維を延伸させる際に広がりやすく、親水性の成分は広がりにくいことで、繊維の延伸部位の親水度が変化すると考えられる。 Further, a fiber treating agent is attached to the surface of the constituent fiber 11 of the nonwoven fabric 1A. In particular, it is preferable that the fiber treatment agent is attached to the surface of the high elongation fiber in the constituent fibers 11 at the raw material stage. The fiber treatment agent preferably includes a spreadable component, and more preferably includes a spreadable component and a hydrophilic component. Here, the spreadable component refers to a component that, when attached to the surface of the fiber, easily spreads on the surface of the fiber at a low temperature and has excellent fluidity at a low temperature. Examples of such a spreadable component include a silicone resin having a low glass transition point and a flexible molecular chain. As the silicone resin, a polyorganosiloxane having a Si—O—Si chain as the main chain is preferable. Used. When the fiber treatment agent adhering to the fiber surface contains a spreadable component and a hydrophilic component, the spreadable component tends to spread when the fiber is stretched, and the hydrophilic component Is difficult to spread, and it is considered that the hydrophilicity of the stretched portion of the fiber changes.
 尚、延展性のある成分の如き、繊維処理剤含有成分の含有量の基準となる「繊維処理剤」は、特に説明しない限り、「不織布に付着している繊維処理剤」であり、不織布に付着させる前の繊維処理剤ではない。繊維処理剤を凹凸不織布に付着させる場合は通常、繊維処理剤を水等の適当な溶媒で希釈したものを用いるため、繊維処理剤含有成分の含有量、例えば延展性のある成分の繊維処理剤中の含有量は、この希釈した繊維処理剤の全質量を基準としたものとなり得る。 Unless otherwise specified, the “fiber treatment agent” that is the standard for the content of the fiber treatment agent-containing component, such as a spreadable component, is “fiber treatment agent attached to the nonwoven fabric”. It is not a fiber treatment agent before adhesion. When the fiber treatment agent is attached to the uneven nonwoven fabric, the fiber treatment agent is usually diluted with an appropriate solvent such as water, so the content of the fiber treatment agent-containing component, for example, a fiber treatment agent of a spreadable component is used. The content in it can be based on the total mass of the diluted fiber treatment agent.
 また、延展性のある成分であるか否かは、以下のように判断する。具体的には、他の繊維処理剤が施されていない高伸度繊維の表面に、判断したい繊維処理剤を付与し、該繊維処理剤が付与された高伸度繊維の親水度を、上述した〔接触角の測定方法〕に基づいて測定する。次いで、該繊維処理剤が付与された高伸度繊維を2.0倍に延伸して、小径部16及び大径部17を形成する。そして、形成された大径部17における親水度を、上述した〔接触角の測定方法〕に基づいて測定する。そして、測定された延伸前の高伸度繊維の親水度と、測定された大径部17における親水度との差が10度以上ある場合に、該繊維処理剤の含有成分が延展性のある成分であると判断する。言い換えれば、不織布1Aの構成繊維中から小径部16及び大径部17を備えた構成繊維11を選出し、該構成繊維11における小径部16の位置及び大径部17の位置での水の接触角を、上述した〔接触角の測定方法〕に基づいて測定する。そして、測定された小径部16の接触角と測定された大径部17の接触角との差が、10度以上である場合に、延展性のある成分が繊維処理剤に含有されていると判断する。また、市販のおむつ等の製品で使用されている不織布の構成繊維において判断する場合には、対象となる不織布を製品より剥がして、エタノールやエタノール/メタノール混合溶媒を用いて処理剤を抽出し、成分分析を行う。そこで同定された成分につき、上述の測定を行い、各成分が延展性を有する剤か否かを判断する。 Also, whether or not it is a spreadable component is determined as follows. Specifically, the fiber treatment agent to be determined is applied to the surface of the high elongation fiber to which no other fiber treatment agent has been applied, and the hydrophilicity of the high elongation fiber to which the fiber treatment agent has been applied is described above. Measured based on [Measurement method of contact angle]. Next, the high elongation fiber to which the fiber treatment agent is applied is stretched 2.0 times to form the small diameter portion 16 and the large diameter portion 17. And the hydrophilicity in the formed large diameter part 17 is measured based on the above-mentioned [Measuring method of a contact angle]. And when the difference between the measured hydrophilicity of the high elongation fiber before stretching and the measured hydrophilicity of the large diameter portion 17 is 10 degrees or more, the component contained in the fiber treatment agent is ductile. Judge as an ingredient. In other words, the constituent fiber 11 having the small diameter portion 16 and the large diameter portion 17 is selected from the constituent fibers of the nonwoven fabric 1A, and the water contacts at the position of the small diameter portion 16 and the position of the large diameter portion 17 in the constituent fiber 11. The angle is measured based on the above-described [Measuring Method of Contact Angle]. And when the difference between the measured contact angle of the small-diameter portion 16 and the measured contact angle of the large-diameter portion 17 is 10 degrees or more, a spreadable component is contained in the fiber treatment agent. to decide. Moreover, when judging in the constituent fibers of the nonwoven fabric used in products such as commercially available diapers, the target nonwoven fabric is peeled off from the product, and the treatment agent is extracted using ethanol or an ethanol / methanol mixed solvent. Perform component analysis. Thus, the above-described measurement is performed on the identified component, and it is determined whether or not each component is a spreadable agent.
 ポリオルガノシロキサンとしては、直鎖状のもの、架橋二次元又は三次元網状構造を有するものいずれも使用できる。好ましくは実質上直鎖状のものである。 As the polyorganosiloxane, either a linear one or a cross-linked two-dimensional or three-dimensional network structure can be used. Preferably it is substantially linear.
 ポリオルガノシロキサンのうち好適なものの具体例は、アルキルアルコキシシランやアリールアルコキシシラン、アルキルハロシロキサンの重合物あるいは環状シロキサンであり、アルコキシ基としては、典型的にはメトキシ基である。アルキル基としては炭素数1以上18以下、好ましくは1以上8以下、特に1以上4以下の側鎖を有してもよいアルキル基が適当である。アリール基としては、フェニル基やアルキルフェニル基、アルコキシフェニル基等が例示される。アルキル基やアリール基に代えて、シクロヘキシル基やシクロペンチル基等の環状炭化水素基、ベンジル基のごときアラルキル基であってもよい。 Specific examples of suitable polyorganosiloxanes are alkylalkoxysilanes, arylalkoxysilanes, alkylhalosiloxane polymers or cyclic siloxanes, and the alkoxy groups are typically methoxy groups. As the alkyl group, an alkyl group which may have a side chain having 1 to 18 carbon atoms, preferably 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms is suitable. Examples of the aryl group include a phenyl group, an alkylphenyl group, and an alkoxyphenyl group. Instead of an alkyl group or an aryl group, a cyclic hydrocarbon group such as a cyclohexyl group or a cyclopentyl group, or an aralkyl group such as a benzyl group may be used.
 好ましい最も典型的なポリオルガノシロキサンとしては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリジプロピルシロキサン等が挙げられ、ポリジメチルシロキサンが特に好ましい。 Preferred examples of the most typical polyorganosiloxane include polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane and the like, with polydimethylsiloxane being particularly preferred.
 ポリオルガノシロキサンの分子量は、高分子量であることが好ましく、具体的には、重量平均分子量で好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下である。また、ポリオルガノシロキサンとして、分子量の異なる2種類以上のポリオルガノシロキサンを用いてもよい。分子量が異なる2種類以上のポリオルガノシロキサンを用いる場合、そのうちの一種類は、重量平均分子量が、好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、また、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下であり、他の一種類は、重量平均分子量が、好ましくは10万未満、より好ましくは5万以下、より好ましくは3万5千以下、更に好ましくは2万以下であり、また、好ましくは2000以上、より好ましくは3000以上、更に好ましくは5000以上である。また、重量平均分子量が10万以上のポリオルガノシロキサンと重量平均分子量が10万未満のポリオルガノシロキサンとの好ましい配合比率(前者:後者)は、質量比で、好ましくは1:10~4:1、より好ましくは1:5~2:1である。 The molecular weight of the polyorganosiloxane is preferably a high molecular weight. Specifically, the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000. Hereinafter, more preferably 800,000 or less, still more preferably 600,000 or less. Two or more types of polyorganosiloxanes having different molecular weights may be used as the polyorganosiloxane. When two or more types of polyorganosiloxanes having different molecular weights are used, one of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and preferably Is not more than 1 million, more preferably not more than 800,000, still more preferably not more than 600,000. The other one has a weight average molecular weight of preferably less than 100,000, more preferably not more than 50,000, more preferably 30,000. It is 5,000 or less, more preferably 20,000 or less, preferably 2000 or more, more preferably 3000 or more, and still more preferably 5000 or more. A preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is a mass ratio, preferably 1:10 to 4: 1. More preferably, it is 1: 5 to 2: 1.
 ポリオルガノシロキサンの重量平均分子量はGPCを用いて測定される。測定条件は下記のとおりである。また、換算分子量の計算はポリスチレンで行う。
 分離カラム:GMHHR-H+GMHHR-H(カチオン)
 溶離液:LファーミンDM20/CHCl3
 溶媒流速:1.0ml/min
 分離カラム温度:40℃
The weight average molecular weight of the polyorganosiloxane is measured using GPC. The measurement conditions are as follows. The calculated molecular weight is calculated with polystyrene.
Separation column: GMHHR-H + GMHHR-H (cation)
Eluent: L Farmin DM20 / CHCl 3
Solvent flow rate: 1.0 ml / min
Separation column temperature: 40 ° C
 ポリオルガノシロキサンの繊維処理剤中の含有量は、繊維の親水度の変化を大きくする観点から1質量%以上であることが好ましく、5質量%以上であることが更に好ましく、そして30質量%以下が好ましく、20質量%以下が更に好ましい。具体的にはポリオルガノシロキサンの繊維処理剤中の含有量は、1質量%以上30質量%以下であることが好ましく、5質量%以上20質量%以下であることが更に好ましい。 The content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, and more preferably 30% by mass or less from the viewpoint of increasing the change in the hydrophilicity of the fiber. Is preferable, and 20 mass% or less is still more preferable. Specifically, the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
 ポリオルガノシロキサンとしては市販品を用いることもできる。例えば、信越化学工業株式会社製の「KF-96H-100万Cs」、東レ・ダウコーニング社製の「SH200 Fluid 1000000Cs」、また2種類のポリオルガノシロキサンを含有するものとしては、信越化学工業株式会社製の「KM-903」や、東レ・ダウコーニング株式会社製の「BY22-060」を用いることができる。 Commercially available products can be used as the polyorganosiloxane. For example, “KF-96H-1 million Cs” manufactured by Shin-Etsu Chemical Co., Ltd., “SH200 Fluid 1000000 Cs” manufactured by Toray Dow Corning Co., Ltd., and Shin-Etsu Chemical Co., Ltd. “KM-903” manufactured by company or “BY22-060” manufactured by Toray Dow Corning Co., Ltd. can be used.
 親水性の成分としては、両性イオン性の界面活性剤、或いはノニオン性の界面活性剤等を用いることができる。 As the hydrophilic component, a zwitterionic surfactant or a nonionic surfactant can be used.
 両性イオン性の界面活性剤の例としては、アルキル(炭素数1~30)ベタイン、アルキル(炭素数1~30)アミドアルキル(炭素数1~4)ジメチルベタイン、アルキル(炭素数1~30)ジヒドロキシアルキル(炭素数1~30)ベタイン、スルフォベタイン型両性界面活性剤等のベタイン型両性イオン性界面活性剤や、アラニン型[アルキル(炭素数1~30)アミノプロピオン酸型、アルキル(炭素数1~30)イミノジプロピオン酸型等]両性界面活性剤、アルキルベタイン等のグリシン型[アルキル(炭素数1~30)アミノ酢酸型等]両性界面活性剤などのアミノ酸型両性界面活性剤、アルキル(炭素数1~30)タウリン型などのアミノスルホン酸型両性界面活性剤が挙げられる。中でもベタイン型両性イオン性界面活性剤が好ましく、アルキル(炭素数1~30)ベタインがより好ましく、炭素数16~22(例えばステアリル)のアルキルベタインが特に好ましい。 Examples of zwitterionic surfactants include alkyl (C1-30) betaines, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) Betaine-type zwitterionic surfactants such as dihydroxyalkyl (1-30 carbon atoms) betaine, sulfobetaine-type amphoteric surfactants, alanine type [alkyl (1-30 carbon atoms) aminopropionic acid type, alkyl (carbon Formula 1 to 30) Iminodipropionic acid type and the like] Amphoteric surfactant, Glycine type such as alkylbetaine [Alkyl (C1 to C30) aminoacetic acid type and the like] Amino acid type amphoteric surfactant such as amphoteric surfactant, Examples thereof include aminosulfonic acid type amphoteric surfactants such as alkyl (having 1 to 30 carbon atoms) taurine type. Of these, betaine-type zwitterionic surfactants are preferred, alkyl (C1-30) betaines are more preferred, and alkylbetaines having 16-22 carbon atoms (eg, stearyl) are particularly preferred.
 ノニオン性の界面活性剤の例としては、グリセリン脂肪酸エステル、ポリ(好ましくはn=2~10)グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル(いずれも好ましくは脂肪酸の炭素数8~60)、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)アミド、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)エーテル、ポリオキシアルキレン変性シリコーン、アミノ変性シリコーン等が挙げられる。 Examples of nonionic surfactants include polyhydric alcohol fatty acid esters such as glycerin fatty acid esters, poly (preferably n = 2 to 10) glycerin fatty acid esters, sorbitan fatty acid esters (preferably those having 8 to 8 carbon atoms of fatty acids). 60), polyoxyalkylene (added mole number 2-20) alkyl (carbon number 8-22) amide, polyoxyalkylene (added mole number 2-20) alkyl (carbon number 8-22) ether, polyoxyalkylene-modified silicone And amino-modified silicone.
 前記繊維処理剤は、延展性のある成分、及び親水性の成分以外に、疎水性の成分も含有していることが好ましい。疎水性の成分としては、アルキルリン酸エステル、下記の一般式(1)で表されるアニオン界面活性剤(以下、単に「アニオン界面活性剤」とも言う。)等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表し、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表し、Xは―SO3M、―OSO3M又は―COOMを表し、MはH、Na、K、Mg、Ca又はアンモニウムを表す。)
The fiber treatment agent preferably contains a hydrophobic component in addition to the spreadable component and the hydrophilic component. Examples of the hydrophobic component include alkyl phosphate esters, anionic surfactants represented by the following general formula (1) (hereinafter also simply referred to as “anionic surfactants”), and the like.
Figure JPOXMLDOC01-appb-C000002
(Wherein Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms, which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
 アルキルリン酸エステルは、原綿のカード機通過性やウエブの均一性などの特性を改良し、これによって不織布の生産性の向上と品質低下を防止することを目的として、繊維処理剤に配合される。アルキルリン酸エステルの具体例としては、ステアリルリン酸エステル、ミリスチルリン酸エステル、ラウリルリン酸エステル、パルミチルリン酸エステルなどの飽和の炭素鎖を持つものや、オレイルリン酸エステル、パルミトレイルリン酸エステルなどの不飽和の炭素鎖及び、これらの炭素鎖に側鎖を有するものが挙げられる。より好ましくは、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和又は部分中和塩である。なお、アルキルリン酸エステルの塩としては、ナトリウムやカリウムなどのアルカリ金属、アンモニア、各種アミン類などが挙げられる。アルキルリン酸エステルは、一種を単独で又は2種以上を混合して用いることができる。 Alkyl phosphate esters are incorporated into fiber treatment agents for the purpose of improving the properties of raw cotton through the card machine and the uniformity of the web, thereby improving the productivity of the nonwoven fabric and preventing the quality from deteriorating. . Specific examples of the alkyl phosphate ester include those having a saturated carbon chain such as stearyl phosphate ester, myristyl phosphate ester, lauryl phosphate ester, palmityl phosphate ester, oleyl phosphate ester, palmitoleyl phosphate ester, etc. Examples include unsaturated carbon chains and those having side chains in these carbon chains. More preferably, it is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having 16 to 18 carbon chains. Examples of the alkyl phosphate ester salt include alkali metals such as sodium and potassium, ammonia, and various amines. Alkyl phosphate ester can be used individually by 1 type or in mixture of 2 or more types.
 アルキルリン酸エステルの配合割合は、カード機通過性やウエブの均一性などの観点から、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、熱処理に起因するポリオルガノシロキサンによる繊維の疎水化を妨げないようにする観点から、好ましくは30質量%以下、より好ましくは25質量%以下である。 The blending ratio of the alkyl phosphate ester is preferably 5% by mass or more, more preferably 10% by mass or more from the viewpoint of card machine passability and web uniformity, etc., and also depends on the polyorganosiloxane resulting from the heat treatment. From the viewpoint of not hindering the hydrophobicity of the fiber, it is preferably 30% by mass or less, more preferably 25% by mass or less.
 繊維処理剤におけるポリオルガノシロキサンと、アルキルリン酸エステルとの含有比率(前者:後者)は、質量比で、好ましくは1:5~10:1であり、より好ましくは1:2~3:1である。 The content ratio (the former: latter) of the polyorganosiloxane and the alkyl phosphate ester in the fiber treatment agent is preferably 1: 5 to 10: 1, more preferably 1: 2 to 3: 1 in terms of mass ratio. It is.
 上記の一般式(1)で表されるアニオン界面活性剤は、前記アルキルリン酸エステルは含まない成分を指す。また上記の一般式(1)で表されるアニオン界面活性剤は、一種を単独で又は2種以上を混合して用いることができる。 The anionic surfactant represented by the above general formula (1) refers to a component that does not contain the alkyl phosphate ester. Moreover, the anionic surfactant represented by the above general formula (1) can be used singly or in combination of two or more.
 一般式(1)中のXが―SOM、すなわち親水基がスルホン酸又はその塩である前記アニオン界面活性剤としては、例えば、ジアルキルスルホン酸又はそれらの塩を挙げることができる。ジアルキルスルホン酸の具体例としては、ジオクタデシルスルホコハク酸、ジデシルスルホコハク酸、ジトリデシルスルホコハク酸、ジ2‐エチルヘキシルスルホコハク酸などの、ジアルキルスルホコハク酸、ジアルキルスルホグルタル酸などのジカルボン酸をエステル化し、ジエステルのアルファ位をスルホン化した化合物や、2-スルホテトラデカン酸1-エチルエステル(又はアミド)ナトリウム塩や、2-スルホヘキサデカン酸1-エチルエステル(又はアミド)ナトリウム塩などの飽和脂肪酸や不飽和脂肪酸エステル(又はアミド)のα位をスルホン化したアルファスルホ脂肪酸アルキルエステル(又はアミド)や、炭化水素鎖の内部オレフィンや不飽和脂肪酸の内部オレフィンをスルホン化することで得られるジアルキルアルケンスルホン酸などを挙げることができる。ジアルキルスルホン酸の2鎖のアルキル基それぞれの炭素数は、4個以上14個以下、特に、6個以上10個以下であることが好ましい。 Examples of the anionic surfactant in which X in the general formula (1) is —SO 3 M, that is, the hydrophilic group is a sulfonic acid or a salt thereof, include, for example, a dialkylsulfonic acid or a salt thereof. Specific examples of the dialkyl sulfonic acid include dioctadecyl sulfosuccinic acid, didecyl sulfosuccinic acid, ditridecyl sulfosuccinic acid, di-2-ethylhexyl sulfosuccinic acid, and the like, and dicarboxylic acids such as dialkyl sulfosuccinic acid and dialkyl sulfoglutaric acid. Saturated fatty acids and unsaturated fatty acids such as compounds sulfonated at the alpha position, 2-sulfotetradecanoic acid 1-ethyl ester (or amide) sodium salt, 2-sulfohexadecanoic acid 1-ethyl ester (or amide) sodium salt Alpha sulfo fatty acid alkyl esters (or amides) sulfonated at the α-position of esters (or amides), dialkyl alkenes obtained by sulfonating internal olefins of hydrocarbon chains and unsaturated fatty acids Such as sulfonic acid can be mentioned. The number of carbon atoms in each of the two-chain alkyl groups of the dialkyl sulfonic acid is preferably 4 or more and 14 or less, particularly 6 or more and 10 or less.
 親水基がスルホン酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。 Specific examples of the anionic surfactant in which the hydrophilic group is sulfonic acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中のXが―OSO3M、すなわち親水基が硫酸又はその塩である前記アニオン界面活性剤としては、ジアルキル硫酸エステルを挙げることができ、その具体例としては、2-エチルヘキシル硫酸ナトリウム塩や、2-ヘキシルデシル硫酸ナトリウム塩などの分岐鎖を有するアルコールを硫酸化した化合物や、硫酸ポリオキシエチレン2‐ヘキシルデシルや硫酸ポリオキシエチレン2-ヘキシルデシルなどの分岐鎖を有するアルコールと硫酸基の間にPOE鎖を導入したような化合物や、12-サルフェートステアリン酸1-メチルエステル(又はアミド)3-サルフェートへキサン酸 1-メチルエステル(又はアミド)などのヒドロキシ脂肪酸エステル(又はアミド)を硫酸化した化合物などを挙げることができる。 Examples of the anionic surfactant in which X in the general formula (1) is —OSO 3 M, that is, the hydrophilic group is sulfuric acid or a salt thereof, include dialkyl sulfates, and specific examples thereof include 2-ethylhexyl. Compounds with sulfated alcohols such as sodium sulfate and sodium 2-hexyldecyl sulfate, and alcohols with branched chains such as polyoxyethylene 2-hexyldecyl sulfate and polyoxyethylene 2-hexyldecyl sulfate And hydroxy fatty acid esters (or 12-sulfate stearic acid 1-methyl ester (or amide) 3-sulfate hexanoic acid 1-methyl ester (or amide) And compounds obtained by sulfating amides).
 親水基が硫酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
More specific examples of the anionic surfactant in which the hydrophilic group is sulfuric acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中のXが―COOM、すなわち親水基がカルボン酸又はその塩である前記アニオン界面活性剤としては、ジアルキルカルボン酸を挙げることができ、その具体例としては、11‐エトキシヘプタデカンカルボン酸ナトリウム塩や2‐エトキシペンタカルボン酸ナトリウム塩などのヒドロキシ脂肪酸のヒドロキシ部分をアルコキシ化し、脂肪酸部分をナトリウム化した化合物や、サルコシンやグリシンなどのアミノ酸のアミノ基にアルコキシ化したヒドロキシ脂肪酸クロリドを反応させ、アミノ酸部のカルボン酸をナトリウム化させた化合物や、アルギニン酸のアミノ基に脂肪酸クロリドを反応させて得られる化合物などを挙げることができる。 As the anionic surfactant in which X in the general formula (1) is —COOM, that is, the hydrophilic group is a carboxylic acid or a salt thereof, a dialkylcarboxylic acid can be mentioned, and specific examples thereof include 11-ethoxyhepta. Hydroxy fatty acid chlorides, such as compounds in which the hydroxy moiety of hydroxy fatty acids such as sodium decanecarboxylate and sodium 2-ethoxypentacarboxylate is alkoxylated and the fatty acid moiety is sodiumated, and the amino group of amino acids such as sarcosine and glycine are alkoxylated And compounds obtained by reacting carboxylic acid in the amino acid part with sodium, and compounds obtained by reacting fatty acid chloride with the amino group of arginic acid.
 親水基がカルボン酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
Specific examples of the anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000006
 一般式(1)で表されるアニオン界面活性剤の配合割合は、好ましくは1質量%以上、より好ましくは5質量%以上であり、また、親水性が高くなりすぎると、液を持ちやすくなりドライ性を損なう観点から、好ましくは20質量%以下、より好ましくは13質量%以下である。また、一般式(1)で表されるアニオン界面活性剤の前記配合割合は、好ましくは1質量%以上20質量%以下であり、より好ましくは5質量%以上13質量%以下である。 The blending ratio of the anionic surfactant represented by the general formula (1) is preferably 1% by mass or more, more preferably 5% by mass or more. If the hydrophilicity is too high, the liquid tends to be held. From the viewpoint of impairing dryness, it is preferably 20% by mass or less, more preferably 13% by mass or less. The blending ratio of the anionic surfactant represented by the general formula (1) is preferably 1% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 13% by mass or less.
 繊維処理剤におけるポリオルガノシロキサンと、一般式(1)で表されるアニオン界面活性剤との含有比率(前者:後者)は、質量比で、好ましくは1:3~4:1であり、より好ましくは1:2~3:1である。 The content ratio (the former: the latter) of the polyorganosiloxane and the anionic surfactant represented by the general formula (1) in the fiber treatment agent is preferably 1: 3 to 4: 1 in terms of mass ratio. The ratio is preferably 1: 2 to 3: 1.
 更に、前記繊維処理剤は、延展性のある成分、親水性の成分、アルキルリン酸エステル、及びアニオン界面活性剤以外に、アニオン性の界面活性材、或いはカチオン性の界面活性剤等を用いることができる。 Furthermore, the fiber treatment agent uses an anionic surfactant or a cationic surfactant in addition to a spreadable component, a hydrophilic component, an alkyl phosphate ester, and an anionic surfactant. Can do.
 アニオン性の界面活性剤の例としては、アルキルホスフェートナトリウム塩、アルキルエーテルホスフェートナトリウム塩、ジアルキルホスフェートナトリウム塩、ジアルキルスルホサクシネートナトリウム塩、アルキルベンゼンスルホネートナトリウム塩、アルキルスルホネートナトリウム塩、アルキルサルフェートナトリウム塩、セカンダリーアルキルサルフェートナトリウム塩等が挙げられる(いずれのアルキルも炭素数6以上22以下、特に8以上22以下が好ましい)。これらは、ナトリウム塩に代えてカリウム塩等の他のアルカリ金属塩を用いることもできる。 Examples of anionic surfactants include alkyl phosphate sodium salt, alkyl ether phosphate sodium salt, dialkyl phosphate sodium salt, dialkyl sulfosuccinate sodium salt, alkylbenzene sulfonate sodium salt, alkyl sulfonate sodium salt, alkyl sulfate sodium salt, secondary Examples include alkyl sulfate sodium salt (all alkyls preferably have 6 to 22 carbon atoms, particularly preferably 8 to 22 carbon atoms). These may use other alkali metal salts such as potassium salts in place of sodium salts.
 カチオン性の界面活性剤の例としては、アルキル(又はアルケニル)トリメチルアンモニウムハライド、ジアルキル(又はアルケニル)ジメチルアンモニウムハライド、アルキル(又はアルケニル)ピリジニウムハライド等が挙げられ、これらの化合物は、炭素数6以上18以下のアルキル基又はアルケニル基を有するものが好ましい。上記ハライド化合物におけるハロゲンとしては、塩素、臭素等が挙げられる。 Examples of the cationic surfactant include alkyl (or alkenyl) trimethyl ammonium halide, dialkyl (or alkenyl) dimethyl ammonium halide, alkyl (or alkenyl) pyridinium halide, and these compounds have 6 or more carbon atoms. Those having 18 or less alkyl groups or alkenyl groups are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
 前記繊維処理剤は、変性シリコーン等の膠着防止剤、繊維着色剤、潤滑剤等の処理剤を更に添加してもよい。 The fiber treatment agent may further contain a treatment agent such as an anti-sticking agent such as modified silicone, a fiber colorant, or a lubricant.
 繊維処理剤を構成繊維11の表面に付着させる方法としては、各種公知の方法を特に制限なく採用することができる。例えば、スプレーによる塗布、スロットコーターによる塗布、ロール転写による塗布、繊維処理剤への浸漬等が挙げられる。これらの処理は、ウエブ化する前の繊維に対して行ってもよいし、繊維を各種の方法でウエブ化した後に行ってもよい。ただし、後述する延伸処理よりも前に処理を行う必要がある。繊維処理剤が表面に付着した繊維は、例えば、熱風送風式の乾燥機により、ポリエチレン樹脂の融点より十分に低い温度(例えば120℃以下)で乾燥される。 As a method for attaching the fiber treatment agent to the surface of the constituent fibers 11, various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform the treatment before the stretching treatment described later. The fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
 本発明(第1発明)の不織布は、繊維処理剤が付与された高伸度繊維を含む繊維ウエブの構成繊維同士の交点を融着部にて熱融着する融着工程と、前記融着工程の後に、融着された前記繊維ウエブを一方向に延伸する延伸工程とを備える不織布の製造方法によって製造される。本発明(第1発明)の不織布の製造方法の一実施態様について、上述した不織布1Aの好ましい製造方法を例に挙げ、図4を参照しながら説明する。図4には、不織布1Aの製造方法に用いられる好ましい製造装置100が模式的に示されている。製造装置100は、エア-スルー不織布の製造に好適に用いられるものである。製造装置100は、製造工程の上流側から下流側に向けて、ウエブ形成部200、熱風処理部300及び延伸部400をこの順で備えている。 The non-woven fabric of the present invention (first invention) includes a fusing step of heat-sealing intersections of constituent fibers of a fiber web including a high elongation fiber to which a fiber treating agent is applied, at the fusing portion, and the fusing After the step, the nonwoven fabric is produced by a method for producing a nonwoven fabric comprising a drawing step of drawing the fused fiber web in one direction. One embodiment of the method for producing a nonwoven fabric of the present invention (first invention) will be described with reference to FIG. 4 taking the preferred method for producing the nonwoven fabric 1A as an example. FIG. 4 schematically shows a preferable manufacturing apparatus 100 used in the method for manufacturing the nonwoven fabric 1A. The manufacturing apparatus 100 is suitably used for manufacturing an air-through nonwoven fabric. The manufacturing apparatus 100 includes a web forming unit 200, a hot air processing unit 300, and an extending unit 400 in this order from the upstream side to the downstream side of the manufacturing process.
 ウエブ形成部200には、図4に示すように、ウエブ形成装置201が備えられている。ウエブ形成装置201としては、カード機が用いられている。カード機としては、吸収性物品の技術分野において通常用いられているものと同様のものを特に制限なく用いることができる。不織布1Aの具体的な用途に応じ、カード機に代えて、他のウエブ製造装置、例えばエアレイド装置を用いることもできる。 The web forming unit 200 is provided with a web forming apparatus 201 as shown in FIG. A card machine is used as the web forming apparatus 201. As a card machine, the thing normally used in the technical field of an absorbent article can be used without a restriction | limiting in particular. Depending on the specific use of the nonwoven fabric 1A, another web manufacturing apparatus, such as an airlaid apparatus, may be used instead of the card machine.
 熱風処理部300は、図4に示すように、フード301を備えている。フード301内では、エアースルー方式で熱風を吹き付けることができるようになっている。また、熱風処理部300は、通気性ネットからなる無端状のコンベアベルト302を備えている。コンベアベルト302は、フード301内を周回している。コンベアベルト302は、ポリエチレンテレフタレート等の樹脂、或いは金属から形成されている。 The hot air processing unit 300 includes a hood 301 as shown in FIG. Inside the hood 301, hot air can be blown by an air-through method. The hot air processing unit 300 includes an endless conveyor belt 302 made of a breathable net. The conveyor belt 302 circulates in the hood 301. The conveyor belt 302 is made of a resin such as polyethylene terephthalate or a metal.
 フード301内にて吹き付けられる熱風の温度及び熱処理時間は、繊維ウエブ10の構成繊維11の含む高伸度繊維の交点が熱融着するように調整することが好ましい。具体的に、熱風の温度は、繊維ウエブ10の構成繊維11の内の最も融点が低い樹脂の融点に対して、0℃~30℃高い温度に調整することが好ましい。熱処理時間は、熱風の温度に応じて、1秒~5秒に調整することが好ましい。また、構成繊維11同士の更なる交絡を促す観点から、熱風の風速は0.3m/秒~1.5m/秒程度であることが好ましい。また、搬送速度は、5m/min~100m/min程度であることが好ましい。 The temperature of the hot air blown in the hood 301 and the heat treatment time are preferably adjusted so that the intersections of the high elongation fibers included in the constituent fibers 11 of the fiber web 10 are heat-sealed. Specifically, the temperature of the hot air is preferably adjusted to a temperature that is 0 ° C. to 30 ° C. higher than the melting point of the resin having the lowest melting point among the constituent fibers 11 of the fiber web 10. The heat treatment time is preferably adjusted to 1 to 5 seconds depending on the temperature of the hot air. Further, from the viewpoint of encouraging further entanglement between the constituent fibers 11, the wind speed of the hot air is preferably about 0.3 m / sec to 1.5 m / sec. Further, the conveying speed is preferably about 5 m / min to 100 m / min.
 延伸部400は、図4,図5に示すように、互いに噛み合いが可能になっている一対の凹凸ロール401,402を備えている。一対の凹凸ロール401,402は、加熱可能に形成されており、それぞれ、大径凸部403,404と小径凹部(図示せず)とがロール軸方向に交互に配されて形成されている。凹凸ロール401,402は加熱してもしなくても良いが、凹凸ロール401,402を加熱する場合の加熱温度は、後述する繊維シート1aの構成繊維11の含む高伸度繊維を延伸し易くする観点から、高伸度繊維内の最もガラス転移点が高い樹脂のガラス転移点以上、高伸度繊維内の最も融点が低い樹脂の融点以下にすることが好ましい。より好ましくは、繊維のガラス転移点より10℃高い温度以上、融点よりも10℃低い温度以下であり、更に好ましくは繊維のガラス転移点より20℃高い温度以上、融点よりも20℃低い温度以下である。例えば、繊維に芯/鞘構造の繊維として、ガラス転移点67℃、融点258℃のPET(芯)/ガラス転移点-20℃、融点135℃のPE(鞘)を用いた際に加熱する場合には、67℃以上、135℃以下が好ましい、より好ましくは77℃以上、125℃以下、更に好ましくは87℃以上、115℃以下に加温する。 As shown in FIGS. 4 and 5, the extending portion 400 includes a pair of concave and convex rolls 401 and 402 that can be engaged with each other. The pair of concave and convex rolls 401 and 402 are formed so as to be heatable, and are formed by alternately arranging large-diameter convex portions 403 and 404 and small-diameter concave portions (not shown) in the roll axis direction. The uneven rolls 401 and 402 may or may not be heated, but the heating temperature when heating the uneven rolls 401 and 402 makes it easy to stretch the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a described later. From the viewpoint, it is preferable to be not less than the glass transition point of the resin having the highest glass transition point in the high elongation fiber and not more than the melting point of the resin having the lowest melting point in the high elongation fiber. More preferably, the temperature is 10 ° C. higher than the glass transition point of the fiber and 10 ° C. lower than the melting point, more preferably 20 ° C. higher than the glass transition point of the fiber and 20 ° C. lower than the melting point. It is. For example, when a fiber having a core / sheath structure of PET (core) having a glass transition point of 67 ° C. and a melting point of 258 ° C./PE (sheath) having a glass transition point of −20 ° C. and a melting point of 135 ° C. is used as the fiber. The temperature is preferably 67 ° C. or higher and 135 ° C. or lower, more preferably 77 ° C. or higher and 125 ° C. or lower, still more preferably 87 ° C. or higher and 115 ° C. or lower.
 また、製造装置100においては、図6に示すように、凹凸ロール401のロール軸方向に隣り合う大径凸部どうし403,403の間隔(ピッチ)、及び凹凸ロール402のロール軸方向に隣り合う大径凸部どうし404,404の間隔(ピッチ)が同じ間隔(ピッチ)wであり、間隔(ピッチ)wは、繊維シート1aの構成繊維11の含む高伸度繊維が延伸装置内で首尾よく引き伸ばされて、先に述べた小径部から大径部への変化点が融着部に隣接され、肌触りが良好となる観点から、好ましくは1mm以上であり、特に好ましくは1.5mm以上であり、そして、好ましくは10mm以下であり、特に好ましくは8mm以下であり、具体的には、好ましくは1mm以上10mm以下であり、特に好ましくは1.5mm以上8mm以下である。同様の観点から、図6に示すように、一対の凹凸ロール401,402の押し込み量t(ロール軸方向に隣り合う大径凸部403の頂点と大径凸部404の頂点との間隔)は、好ましくは1mm以上であり、特に好ましくは1.2mm以上であり、そして、好ましくは3mm以下であり、特に好ましくは2.5mm以下であり、具体的には、好ましくは1mm以上3mm以下であり、特に好ましくは1.2mm以上2.5mm以下である。そして機械延伸倍率は、同様の観点から、好ましくは1.5倍以上であり、特に好ましくは1.7倍以上であり、そして、好ましくは3.0倍以下であり、特に好ましくは2.8倍以下であり、具体的には、好ましくは1.5倍以上3.0倍以下であり、特に好ましくは1.7倍以上2.8倍以下である。 In the manufacturing apparatus 100, as shown in FIG. 6, the interval (pitch) between the large-diameter convex portions 403, 403 adjacent to each other in the roll axis direction of the uneven roll 401 and the roll axis direction of the uneven roll 402 are adjacent to each other. The spacing (pitch) between the large-diameter convex portions 404 and 404 is the same spacing (pitch) w, and the spacing (pitch) w is such that the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a are successfully used in the stretching apparatus. From the viewpoint of extending and extending the previously described change point from the small-diameter portion to the large-diameter portion adjacent to the fused portion and improving the touch, it is preferably 1 mm or more, particularly preferably 1.5 mm or more. And, it is preferably 10 mm or less, particularly preferably 8 mm or less, specifically, preferably 1 mm or more and 10 mm or less, particularly preferably 1.5 mm or more and 8 mm or less. A. From the same viewpoint, as shown in FIG. 6, the pushing amount t of the pair of concavo-convex rolls 401 and 402 (the distance between the apex of the large-diameter convex portion 403 and the apex of the large-diameter convex portion 404 adjacent in the roll axis direction) is The thickness is preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, and specifically preferably 1 mm or more and 3 mm or less. Especially preferably, it is 1.2 mm or more and 2.5 mm or less. From the same viewpoint, the mechanical stretch ratio is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, particularly preferably 2.8. More specifically, it is preferably 1.5 times or more and 3.0 times or less, and particularly preferably 1.7 times or more and 2.8 times or less.
 以上の構成を有する製造装置100を用いた不織布1Aの製造方法について説明する。
 先ず、図4に示すように、ウエブ形成部200にて、繊維処理剤が既に付与された高伸度繊維を有する短繊維状の構成繊維11を原料として用い、カード機であるウエブ形成装置201によって繊維ウエブ10を形成する(ウエブ形成工程)。ウエブ形成装置201によって製造された繊維ウエブ10は、その構成繊維11どうしが緩く絡合した状態にあり、シートとしての保形性を獲得するには至っていない。
The manufacturing method of 1 A of nonwoven fabrics using the manufacturing apparatus 100 which has the above structure is demonstrated.
First, as shown in FIG. 4, a web forming apparatus 201, which is a card machine, uses, as a raw material, short fiber-like constituent fibers 11 having high elongation fibers to which a fiber treating agent has already been applied. To form the fiber web 10 (web forming step). The fiber web 10 manufactured by the web forming apparatus 201 is in a state where the constituent fibers 11 are loosely entangled with each other, and has not yet achieved shape retention as a sheet.
 次いで、図4に示すように、高伸度繊維を含む繊維ウエブ10の構成繊維11同士の交点を融着部12にて熱融着して繊維シート1aを形成する(融着工程)。具体的には、繊維ウエブ10は、コンベアベルト302上に搬送され、熱風処理部300にて、フード301内を通過する間に、熱風がエアースルー方式で吹き付けられる。このようにエアースルー方式で熱風が吹き付けられると、繊維ウエブ10の構成繊維11同士が更に交絡すると同時に、絡合した繊維の交点が熱融着して(図7(a)参照)、シート状の保形性を有する繊維シート1aが製造される。 Next, as shown in FIG. 4, the fiber sheet 1a is formed by thermally fusing the intersections of the constituent fibers 11 of the fiber web 10 including the high elongation fibers at the fusion part 12 (fusing step). Specifically, the fiber web 10 is conveyed onto the conveyor belt 302, and hot air is blown in an air-through manner while passing through the hood 301 by the hot air processing unit 300. When hot air is thus blown by the air-through method, the constituent fibers 11 of the fiber web 10 are further entangled, and at the same time, the intersection of the entangled fibers is thermally fused (see FIG. 7 (a)) to form a sheet. A fiber sheet 1a having a shape-retaining property is manufactured.
 次いで、図4に示すように、融着された繊維ウエブ1aを一方向に延伸する(延伸工程)。具体的には、シートとしての保形性を有する融着された繊維ウエブ1aを、一対の凹凸ロール401,402の間に搬送して、図7(a)~図7(c)に示すように、繊維ウエブ1aを延伸して、隣り合う融着部12,12どうしの間の1本の構成繊維11に、繊維径の小さい2個の小径部16,16に挟まれた繊維径の大きい大径部17を形成すると共に、該小径部16から該大径部17への変化点18を、該融着部12から隣り合う該融着部12,12どうしの間隔Tの1/3の範囲内に形成する。詳述すると、図7(a)に示すような、構成繊維11同士の交点が融着部12にて熱融着している繊維シート1aを、一対の凹凸ロール401,402の間に搬送して、繊維ウエブ1aを、機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)に延伸する。繊維シート1aが直交方向(CD,ロール軸方向)に延伸される際には、図7(a)に示す、構成繊維11同士を固定している隣り合う該融着部12,12どうしの間の領域が、直交方向(CD,ロール軸方向)に積極的に引き伸ばされる。特に、図7(b)に示すように、構成繊維11同士を固定している各融着部12の近傍で、先ず局部収縮が起こり易く、隣り合う融着部12,12どうしの間の1本の構成繊維11に関しては、両端に2個の小径部16,16が形成され、該2個の小径部16,16に挟まれた部分が大径部17となり、2個の小径部16,16に挟まれた大径部17が形成される。このように、各融着部12の近傍で、先ず局部収縮が起こり易いので、小径部16から大径部17への変化点18が、該融着部12から隣り合う該融着部12,12どうしの間隔Tの1/3の範囲内に形成される。 Next, as shown in FIG. 4, the fused fiber web 1a is stretched in one direction (stretching step). Specifically, the fused fiber web 1a having a shape retaining property as a sheet is conveyed between a pair of concave and convex rolls 401 and 402, as shown in FIGS. 7 (a) to 7 (c). In addition, the fiber web 1a is stretched, and a large fiber diameter is sandwiched between two small- diameter portions 16 and 16 having a small fiber diameter in one constituent fiber 11 between adjacent fusion portions 12 and 12. The large diameter portion 17 is formed, and the change point 18 from the small diameter portion 16 to the large diameter portion 17 is set to 1/3 of the interval T between the fusion portions 12, 12 adjacent to the fusion portion 12. Form within the range. Specifically, as shown in FIG. 7A, the fiber sheet 1a in which the intersections of the constituent fibers 11 are thermally fused at the fusion part 12 is conveyed between a pair of concave and convex rolls 401 and 402. Then, the fiber web 1a is stretched in the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction). When the fiber sheet 1a is stretched in the orthogonal direction (CD, roll axis direction), the adjacent fused portions 12, 12 fixing the constituent fibers 11 shown in FIG. Is actively stretched in the orthogonal direction (CD, roll axis direction). In particular, as shown in FIG. 7B, local contraction is likely to occur first in the vicinity of each fusion part 12 that fixes the constituent fibers 11, and 1 between the adjacent fusion parts 12, 12. With respect to the constituent fiber 11, two small- diameter portions 16, 16 are formed at both ends, and a portion sandwiched between the two small- diameter portions 16, 16 becomes a large-diameter portion 17. A large-diameter portion 17 sandwiched between 16 is formed. In this way, local contraction is likely to occur in the vicinity of each fusion part 12, so that the change point 18 from the small diameter part 16 to the large diameter part 17 is adjacent to the fusion part 12 adjacent to the fusion part 12. It is formed within a range of 1/3 of the interval T between the twelve.
 そして、一部の隣り合う融着部12,12どうしの間の1本の構成繊維11に関しては、図7(c)に示すように、伸長できる余地(伸びしろ)を残した状態で、更に直交方向(CD,ロール軸方向)に延伸され、該隣り合う融着部12,12どうしの間の大径部17が延伸され、大径部17の中に小径部16が形成されるようになる。 Then, with respect to one constituent fiber 11 between some adjacent fused portions 12 and 12, as shown in FIG. 7 (c), in a state where there is a room for expansion (extension margin), It is stretched in the orthogonal direction (CD, roll axis direction), the large diameter portion 17 between the adjacent fused portions 12, 12 is stretched, and the small diameter portion 16 is formed in the large diameter portion 17. Become.
 1本の構成繊維11における隣り合う該融着部12,12どうしの間の領域を積極的に引き伸ばす際、構成繊維11の表面に付着した繊維処理剤の内、延展性のある成分は、低温での流動性に優れているので、繊維の伸長に伴って流動し、小径部16の表面に付着した状態が維持される。一方、構成繊維11の表面に付着した繊維処理剤の内、延展性のある成分以外の成分は、隣り合う該融着部12,12どうしの間の領域を積極的に引き伸ばす際、繊維の伸長に伴って流動できず、小径部16の表面に付着した状態が維持できない。従って、隣り合う該融着部12,12どうしの間の領域を延伸することによって形成される小径部16の表面と大径部17の表面では、付着されている繊維処理剤の組成比率が変化する。具体的には、小径部16の表面には、延展性のある成分のみ付着し易く、一方、大径部17の表面には、延展性のある成分と親水化成分とを含む繊維処理剤が付着するようになる。よって、小径部16の親水度が大径部17の親水度よりも小さくなり易い。特に、延展性のある成分として上述したポリオルガノシロキサンが用いられていると、ポリオルガノシロキサン自身が疎水性であるため、更に小径部16の親水度が大径部17の親水度よりも小さくなり易い。 When the region between the adjacent fused portions 12 and 12 in one constituent fiber 11 is positively stretched, the spreadable component of the fiber treatment agent attached to the surface of the constituent fiber 11 is a low temperature. Is excellent in fluidity, so that it flows along with the elongation of the fiber and is maintained attached to the surface of the small diameter portion 16. On the other hand, among the fiber treatment agent attached to the surface of the constituent fiber 11, components other than the spreadable component are stretched when the region between the adjacent fused portions 12, 12 is actively stretched. As a result, it cannot flow, and the state of adhering to the surface of the small diameter portion 16 cannot be maintained. Therefore, the composition ratio of the attached fiber treatment agent varies between the surface of the small diameter portion 16 and the surface of the large diameter portion 17 formed by stretching the region between the adjacent fusion portions 12 and 12. To do. Specifically, only a spreadable component easily adheres to the surface of the small diameter portion 16, while a fiber treatment agent containing a spreadable component and a hydrophilic component is formed on the surface of the large diameter portion 17. It comes to adhere. Therefore, the hydrophilicity of the small diameter portion 16 tends to be smaller than the hydrophilicity of the large diameter portion 17. In particular, when the above-described polyorganosiloxane is used as a spreadable component, since the polyorganosiloxane itself is hydrophobic, the hydrophilicity of the small diameter portion 16 becomes smaller than the hydrophilicity of the large diameter portion 17. easy.
 以上のように、製造装置100を用いた不織布1Aの製造方法によれば、図3に示す構成繊維11を備え、小径部16の親水度が大径部17の親水度よりも小さい不織布1Aを連続的に効率よく製造することができる。製造された不織布1Aは、図4に示すように、一旦巻き取られてロールの形態で保管された後、該ロールから繰り出されて使用される。或いは、不織布1Aの製造装置100の後工程ラインにおいて、加工が施されて、目的とする製品が連続的に製造される。 As described above, according to the method for manufacturing the nonwoven fabric 1A using the manufacturing apparatus 100, the nonwoven fabric 1A including the constituent fibers 11 shown in FIG. 3 and having a smaller hydrophilicity of the small diameter portion 16 than that of the large diameter portion 17 is obtained. It can be manufactured continuously and efficiently. As shown in FIG. 4, the manufactured nonwoven fabric 1 </ b> A is once wound up and stored in the form of a roll, and then is unwound from the roll and used. Alternatively, processing is performed in the subsequent process line of the manufacturing apparatus 100 for the nonwoven fabric 1A, and the target product is continuously manufactured.
 以上のように製造された不織布1Aは、図3に示すように、構成繊維11の内の1本の構成繊維11に着目して、融着部12に隣接する小径部16から大径部17への変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されているので、柔らかく、肌触りに関して良好となる。特に、1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、小径部16が複数形成されていれば、肌触りに関して更に良好となる。このような効果を奏し易い観点から、構成繊維11は、高伸度繊維のみからなることが好ましい。 As shown in FIG. 3, the nonwoven fabric 1 </ b> A manufactured as described above pays attention to one constituent fiber 11 among the constituent fibers 11, and the small diameter portion 16 adjacent to the fusion portion 12 to the large diameter portion 17. Since the change point 18 is arranged within a range of 3 of the interval T between the adjacent fused portions 12, 12 from the fused portion 12, it is soft and good in terms of touch. In particular, if a plurality of small-diameter portions 16 are formed between the adjacent fused portions 12 and 12 while paying attention to one constituent fiber 11, the touch is further improved. From the viewpoint of easily exhibiting such an effect, the constituent fibers 11 are preferably made of only high elongation fibers.
 仮に、構成繊維11に弾性繊維が入っている場合、不織布が収縮されながら延伸されるため、不織布1Aの製造方法と機械延伸倍率が同じ場合であっても、繊維径の変化が起こりにくい。その為、極端に繊維径が変化する部位である変化点18が、構成繊維11に弾性繊維が入っている場合、できにくく、小径部16から大径部17へ、連続的に漸次変化する部位が形成されやすくなる。このように形成される連続的に漸次変化する部位は、弾性繊維が入っているため、融着点付近で局部的に延伸されるとは限らず、融着点付近というよりもランダムに観察されるようになる。尚、肌触りを更に良好とする観点からも、構成繊維11に弾性繊維を含まないほうが好ましい。 If elastic fibers are contained in the constituent fibers 11, the nonwoven fabric is stretched while being contracted. Therefore, even if the manufacturing method of the nonwoven fabric 1A and the mechanical stretch ratio are the same, the fiber diameter hardly changes. Therefore, the change point 18 which is a part where the fiber diameter changes extremely is difficult when the elastic fiber is contained in the constituent fiber 11, and the part which changes gradually from the small diameter part 16 to the large diameter part 17 continuously. Is easily formed. The continuously and gradually changing portion formed in this way is not necessarily stretched locally near the fusion point because it contains elastic fibers, and is observed randomly rather than near the fusion point. Become so. In addition, it is preferable that the constituent fibers 11 do not include elastic fibers from the viewpoint of further improving the touch.
 また、不織布1Aは、小径部16の親水度が大径部17の親水度よりも小さく形成されている構成繊維11を含んで構成されている。従って、不織布1Aの表面において、親水度の低下した部分(小径部16)が分散しているので、不織布1Aは、表面の液残りが少なくドライタッチ性が向上し、小径部16により繊維間距離が広がり液通過性が向上する。 Further, the nonwoven fabric 1A includes the constituent fibers 11 in which the hydrophilicity of the small diameter portion 16 is smaller than the hydrophilicity of the large diameter portion 17. Accordingly, since the portion having a reduced hydrophilicity (small diameter portion 16) is dispersed on the surface of the nonwoven fabric 1A, the nonwoven fabric 1A has less liquid residue on the surface and improves the dry touch property, and the small diameter portion 16 reduces the interfiber distance. Spreads and liquid permeability improves.
 また、不織布1Aは、凹凸構造の不織布であり、側部域13cの繊維密度が、頂部域13aの繊維密度及び底部域13bの繊維密度よりも小さく形成されている。その為、側部域13cの繊維間距離が、頂部域13a及び底部域13bの繊維間距離よりも広いので、不織布1A全体として、通気性、通液性が向上する。更に、側部域13cの繊維密度がもっとも小さく形成されることにより、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。 Further, the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and the fiber density of the side region 13c is smaller than the fiber density of the top region 13a and the fiber density of the bottom region 13b. Therefore, since the interfiber distance of the side region 13c is wider than the interfiber distance of the top region 13a and the bottom region 13b, the air permeability and liquid permeability are improved as the whole nonwoven fabric 1A. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized.
 また、不織布1Aは、凹凸構造の不織布であり、側部域13cを構成する1本の構成繊維11の有する変化点18の数が、頂部域13aを構成する1本の構成繊維11の有する変化点18の数及び底部域13bを構成する1本の構成繊維11の有する変化点18の数よりも多く形成されている。その為、側部域13cにおいて親水度の低下した部分(小径部16)が多く分散しているので、表面の液残りが更に少なくドライタッチ性が更に向上し、小径部16により繊維間距離が広がり液透過性が向上する。 Further, the nonwoven fabric 1A is a nonwoven fabric having a concavo-convex structure, and the number of change points 18 of one constituent fiber 11 constituting the side region 13c is changed by the one constituent fiber 11 constituting the top region 13a. More than the number of the change points 18 which the number of the points 18 and the one component fiber 11 which comprises the bottom region 13b have are formed. For this reason, since the portion having a reduced hydrophilicity (small diameter portion 16) is dispersed in the side region 13c, the liquid residue on the surface is further reduced and the dry touch property is further improved. Spreading liquid permeability is improved.
 次に、以下で本発明(第2発明)を、その好ましい実施形態に基づき図面を参照しながら説明する。
 図8には、本発明(第2発明)の一実施形態である不織布1B(以下、「不織布1B」ともいう。)の斜視図が示されている。図9は、図8に示す不織布1Bの厚み方向の断面を示す模式図である。図10は、図8に示す不織布1Bの構成繊維11の拡大模式図である。不織布1Bは、図8に示すように、構成繊維11同士の交点を熱融着して形成された融着部12(図10参照)を複数備えた不織布である。そして、不織布1Bは、本実施形態においては、図8に示すように、一方向(X方向)に延びる筋状の凸条部13及び凹条部14が交互に配された凹凸構造の不織布である。具体的には、不織布1Bは、図9に示すように、表裏両面a,bの断面形状が共に厚み方向(Z方向)の上方に向かって凸状をなす複数の凸条部13と、隣り合う凸条部13,13どうしの間に位置する凹条部14とを有している。凹条部14は、表裏両面a,bの断面形状が共に不織布の厚み方向(Z方向)の上方に向かって凹状をなしている。言い換えれば、凹条部14は、表裏両面a,bの断面形状が共に不織布の厚み方向(Z方向)の下方に向かって凸状をなしている。そして、複数の凸条部13は、それぞれ、不織布1Bの一方向(X方向)に連続して延びており、複数の凹条部14も、不織布1Bの一方向Xに連続して延びる溝状をなしている。凸条部13及び凹条部14は、互いに平行であり、前記一方向(X方向)に直交する方向(Y方向)に交互に配されている。
Next, the present invention (second invention) will be described below based on the preferred embodiment with reference to the drawings.
FIG. 8 is a perspective view of a nonwoven fabric 1B (hereinafter also referred to as “nonwoven fabric 1B”) which is an embodiment of the present invention (second invention). FIG. 9 is a schematic diagram showing a cross section in the thickness direction of the nonwoven fabric 1B shown in FIG. FIG. 10 is an enlarged schematic view of the constituent fibers 11 of the nonwoven fabric 1B shown in FIG. As shown in FIG. 8, the nonwoven fabric 1 </ b> B is a nonwoven fabric provided with a plurality of fusion portions 12 (see FIG. 10) formed by heat-sealing the intersections of the constituent fibers 11. And in this embodiment, as shown in FIG. 8, the nonwoven fabric 1B is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. is there. Specifically, as shown in FIG. 9, the nonwoven fabric 1B is adjacent to a plurality of ridges 13 in which the cross-sectional shapes of the front and back surfaces a and b are both convex upward in the thickness direction (Z direction). It has the concave line part 14 located between the convex line parts 13 and 13 which fit. The concave stripe part 14 has a concave shape in which the cross-sectional shapes of the front and back surfaces a and b are both upward in the thickness direction (Z direction) of the nonwoven fabric. In other words, as for the concave strip part 14, the cross-sectional shape of front and back both surfaces a and b has comprised the convex shape toward the downward direction of the thickness direction (Z direction) of a nonwoven fabric. And the some protruding item | line part 13 is continuously extended in one direction (X direction) of the nonwoven fabric 1B, respectively, and the several groove part 14 is also groove shape extended continuously in the one direction X of the nonwoven fabric 1B. I am doing. The ridges 13 and the ridges 14 are parallel to each other and are alternately arranged in a direction (Y direction) orthogonal to the one direction (X direction).
 尚、不織布1Bは、図9に示すように不織布1Bを断面視して、頂部域13a、底部域13b及びこれら13a,13bの間に位置する側部域13cを有している。そして、凸条部13の頂部が頂部域13aから形成され、凹条部14の底部が底部域13bから形成されている。頂部域13a、底部域13b及び側部域13cは、不織布1Bの一方向(X方向)に連続して延びている。頂部域13a、底部域13b及び側部域13cは、図9に示すように不織布1Bを断面視して、不織布1BのZ方向の厚みを3等分して、厚み方向(Z方向)の上方の部位を頂部域13a、厚み方向(Z方向)の中央の部位を側部域13c、厚み方向(Z方向)の下方の部位を底部域13bとして区別する。前記の区分は、次の方法で測定される。 In addition, the nonwoven fabric 1B has the top part area | region 13a, the bottom part area | region 13b, and the side part area | region 13c located between these 13a, 13b in the cross sectional view of the nonwoven fabric 1B, as shown in FIG. And the top part of the protruding item | line part 13 is formed from the top part area | region 13a, and the bottom part of the grooved part 14 is formed from the bottom part area | region 13b. The top region 13a, the bottom region 13b, and the side region 13c extend continuously in one direction (X direction) of the nonwoven fabric 1B. As shown in FIG. 9, the top region 13a, the bottom region 13b, and the side region 13c are cross-sectional views of the nonwoven fabric 1B, and the thickness in the Z direction of the nonwoven fabric 1B is equally divided into three, and the upper portion in the thickness direction (Z direction). Are divided into a top region 13a, a central region in the thickness direction (Z direction) as a side region 13c, and a lower region in the thickness direction (Z direction) as a bottom region 13b. The said division is measured by the following method.
 〔頂部域13a、底部域13b、側部域13cの区分方法〕
 フェザー剃刀(品番FAS‐10、フェザー安全剃刀(株)製)を用いて不織布1BをY方向に切断し、走査電子顕微鏡(日本電子(株)社製のJCM-5100(商品名))で測定する部位が十分に視野に入り測定できる大きさ(10~100倍)に拡大し、不織布1BのZ方向の厚みを3等分して、厚み方向(Z方向)の上方の部位を頂部域13a、厚み方向(Z方向)の中央の部位を側部域13c、厚み方向(Z方向)の下方の部位を底部域13bとして区別する。
 市販のおむつ等から分析する場合は、対象となるおむつ等にコールドスプレーを吹き付け、ホットメルト接着剤を固化させる。それから、各材料を丁寧に剥がし、対象となる不織布を得、上述の通り切断及び測定を行う。
[Method of dividing top region 13a, bottom region 13b, and side region 13c]
Using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), the nonwoven fabric 1B was cut in the Y direction and measured with a scanning electron microscope (JCM-5100 (trade name) manufactured by JEOL Ltd.). The area to be expanded is enlarged to a size that can be measured (10 to 100 times), the thickness of the nonwoven fabric 1B is divided into three equal parts, and the upper part in the thickness direction (Z direction) is the top region 13a. The central portion in the thickness direction (Z direction) is distinguished as a side region 13c, and the lower portion in the thickness direction (Z direction) is distinguished as a bottom region 13b.
When analyzing from a commercially available diaper or the like, a cold spray is sprayed on the target diaper or the like to solidify the hot melt adhesive. Then, each material is carefully peeled off to obtain a target nonwoven fabric, which is cut and measured as described above.
 不織布1Bは、後述するように、繊維シート1aに、互いに噛み合う一対の凹凸ロール401,402を用いて凹凸加工を施して製造されたものである。上述した不織布1Bの一方向(X方向)とは、繊維シート1aに凹凸加工を施して不織布1Bを製造する際の機械方向(MD,流れ方向)と同じ方向であり、上述した不織布1Bの一方向(X方向)に直交する方向(Y方向)とは、前記機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)と同じ方向である。 As will be described later, the nonwoven fabric 1B is manufactured by performing uneven processing on the fiber sheet 1a using a pair of uneven rolls 401 and 402 meshing with each other. The one direction (X direction) of the nonwoven fabric 1B described above is the same direction as the machine direction (MD, flow direction) when the nonwoven fabric 1B is manufactured by performing uneven processing on the fiber sheet 1a. The direction (Y direction) orthogonal to the direction (X direction) is the same direction as the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction).
 不織布1Bの構成繊維11は、高伸度繊維が含まれている。ここで、構成繊維11が含む高伸度繊維とは、原料の繊維の段階で高伸度である繊維のみならず、製造された不織布1Bの段階でも高伸度である繊維を意味する。「高伸度繊維」としては、弾性(エラストマー)を有して伸縮する伸縮性繊維を除き、例えば特開2010-168715号公報の段落[0033]に記載のように低速で溶融紡糸して複合繊維を得た後に、延伸処理を行わずに加熱処理及び/又は捲縮処理を行うことにより得られる加熱により樹脂の結晶状態が変化して長さの延びる熱伸長性繊維、或いは、ポリプロピレンやポリエチレン等の樹脂を用いて比較的紡糸速度を低い条件にして製造した繊維、又は、結晶化度の低い、ポリエチレン-ポリプロピレン共重合体、若しくはポリプロピレンに、ポリエチレンをドライブレンドし紡糸して製造した繊維等が挙げられる。それらの繊維の内でも高伸度繊維は、熱融着性のある芯鞘型複合繊維であることが好ましい。芯鞘型複合繊維は、同心の芯鞘型でも、偏心の芯鞘型でも、サイド・バイ・サイド型でも、異形型でもよいが、特に同心の芯鞘型であることが好ましい。繊維がどのような形態をとる場合であっても、柔軟で肌触り等のよい不織布等を製造する観点からは、高伸度繊維の繊度は、原料の段階で、1.0dtex以上であることが好ましく、2.0dtex以上であることがより好ましく、そして、10.0dtex以下であることが好ましく、8.0dtex以下であることがより好ましく、具体的には、1.0dtex以上10.0dtex以下が好ましく、2.0dtex以上8.0dtex以下であることがより好ましい。 The constituent fibers 11 of the nonwoven fabric 1B include high elongation fibers. Here, the high elongation fiber included in the constituent fiber 11 means not only a fiber having a high elongation at the raw material fiber stage, but also a fiber having a high elongation at the stage of the manufactured nonwoven fabric 1B. As the “high elongation fiber”, excluding stretchable fibers that have elasticity (elastomer) and expand and contract, for example, as described in paragraph [0033] of JP 2010-168715, melt spinning is performed at a low speed to form a composite After obtaining the fiber, the heat-extensible fiber, which is obtained by changing the crystal state of the resin by heating and / or crimping without stretching, or polypropylene or polyethylene Fibers manufactured using relatively low spinning speeds using a resin such as polyethylene, polypropylene-polypropylene copolymers with low crystallinity, or fibers manufactured by dry blending polyethylene into polypropylene and spinning, etc. Is mentioned. Among these fibers, the high elongation fiber is preferably a core-sheath type composite fiber having heat-fusibility. The core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or a deformed type, but is preferably a concentric core-sheath type. Whatever form the fiber takes, from the viewpoint of producing a nonwoven fabric that is soft and soft to the touch, the fineness of the high elongation fiber may be 1.0 dtex or more at the raw material stage. Preferably, it is 2.0 dtex or more, more preferably 10.0 dtex or less, more preferably 8.0 dtex or less, specifically, 1.0 dtex or more and 10.0 dtex or less. Preferably, it is 2.0 dtex or more and 8.0 dtex or less.
 不織布1Bの構成繊維11は、高伸度繊維に加えて、他の繊維を含んで構成されていてもよいが、非弾性繊維のみから構成されていることが好ましく、高伸度繊維のみから構成されていることが更に好ましい。他の繊維としては、例えば融点の異なる2成分を含み且つ延伸処理されてなる非熱伸長性の芯鞘型熱融着性複合繊維、或いは、本来的に熱融着性を有さない繊維(例えばコットンやパルプ等の天然繊維、レーヨンやアセテート繊維など)等が挙げられる。不織布1B0が高伸度繊維に加えて他の繊維も含んで構成されている場合、該不織布1B0における高伸度繊維の割合は、好ましくは50質量%以上であり、更に好ましくは80質量%以上であり、そして、好ましくは100質量%以下であり、更に好ましくは100質量%以下であることが好ましく、具体的には、好ましくは50質量%以上100質量%以下であり、更に好ましくは80質量%以上100質量%以下であることが好ましい。 The constituent fiber 11 of the nonwoven fabric 1B may be configured to include other fibers in addition to the high elongation fiber, but is preferably composed only of inelastic fibers, and is composed only of high elongation fibers. More preferably. Other fibers include, for example, a non-heat-extensible core-sheath-type heat-fusible composite fiber containing two components having different melting points, or a fiber that does not inherently have heat-fusibility ( Examples thereof include natural fibers such as cotton and pulp, rayon and acetate fibers). When the nonwoven fabric 1B0 includes other fibers in addition to the high elongation fibers, the proportion of the high elongation fibers in the nonwoven fabric 1B0 is preferably 50% by mass or more, and more preferably 80% by mass or more. And preferably 100% by mass or less, more preferably 100% by mass or less, specifically preferably 50% by mass or more and 100% by mass or less, and more preferably 80% by mass. % Or more and 100% by mass or less is preferable.
 高伸度繊維の一例である熱伸長性繊維は、原料の段階で、未延伸処理又は弱延伸処理の施された複合繊維であり、例えば、芯部を構成する第1樹脂成分と、鞘部を構成する、ポリエチレン樹脂を含む第2樹脂成分とを有しており、第1樹脂成分は、第2樹脂成分より高い融点を有している。第1樹脂成分は該繊維の熱伸長性を発現する成分であり、第2樹脂成分は熱融着性を発現する成分である。第1樹脂成分及び第2樹脂成分の融点は、示差走査型熱量計(セイコーインスツルメンツ株式会社製DSC6200)を用い、細かく裁断した繊維試料(サンプル重量2mg)の熱分析を昇温速度10℃/minで行い、各樹脂の融解ピーク温度を測定し、その融解ピーク温度で定義される。第2樹脂成分の融点がこの方法で明確に測定できない場合、その樹脂を「融点を持たない樹脂」と定義する。この場合、第2樹脂成分の分子の流動が始まる温度として、繊維の融着点強度が計測できる程度に第2樹脂成分が融着する温度を軟化点とし、これを融点の代わりに用いる。 The heat-extensible fiber, which is an example of a high-stretch fiber, is a composite fiber that has been subjected to an unstretched or weakly stretched treatment at the raw material stage. For example, a first resin component that constitutes a core portion and a sheath portion And a second resin component containing a polyethylene resin, the first resin component having a higher melting point than the second resin component. A 1st resin component is a component which expresses the heat | fever extensibility of this fiber, and a 2nd resin component is a component which expresses heat-fusibility. The melting points of the first resin component and the second resin component were determined by thermal analysis of a finely cut fiber sample (sample weight 2 mg) using a differential scanning calorimeter (DSC6200 manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C./min. The melting peak temperature of each resin is measured and defined by the melting peak temperature. When the melting point of the second resin component cannot be clearly measured by this method, the resin is defined as “resin having no melting point”. In this case, the temperature at which the second resin component is fused to such an extent that the strength of the fusion point of the fiber can be measured is used as the temperature at which the molecular flow of the second resin component begins, and this is used instead of the melting point.
 鞘部を構成する第2樹脂成分としては、上述の通りポリエチレン樹脂を含んでいる。該ポリエチレン樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。特に、密度が0.935g/cm以上0.965g/cm以下である高密度ポリエチレンであることが好ましい。鞘部を構成する第2樹脂成分は、ポリエチレン樹脂単独であることが好ましいが、他の樹脂をブレンドすることもできる。ブレンドする他の樹脂としては、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-ビニルアルコール共重合体(EVOH)等が挙げられる。ただし、鞘部を構成する第2樹脂成分は、鞘部の樹脂成分中の50質量%以上が、特に70質量%以上100質量%以下が、ポリエチレン樹脂であることが好ましい。また、該ポリエチレン樹脂は、結晶子サイズが10nm以上20nm以下であることが好ましく、11.5nm以上18nm以下であることがより好ましい。 As above-mentioned, as a 2nd resin component which comprises a sheath part, the polyethylene resin is included. Examples of the polyethylene resin include low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE). In particular, a high density polyethylene having a density of 0.935 g / cm 3 or more and 0.965 g / cm 3 or less is preferable. The second resin component constituting the sheath is preferably a polyethylene resin alone, but other resins can also be blended. Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like. However, as for the 2nd resin component which comprises a sheath part, it is preferable that 50 mass% or more in the resin component of a sheath part is 70 to 100 mass% especially polyethylene resin. The polyethylene resin preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
 芯部を構成する第1樹脂成分としては、鞘部の構成樹脂であるポリエチレン樹脂より融点が高い樹脂成分を特に制限なく用いることができる。芯部を構成する樹脂成分としては、例えば、ポリプロピレン(PP)等のポリオレフィン系樹脂(ポリエチレン樹脂を除く)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル系樹脂等が挙げられる。更に、ポリアミド系重合体や樹脂成分が2種以上の共重合体等も使用することができる。複数種類の樹脂をブレンドして使用することもでき、その場合、芯部の融点は、融点が最も高い樹脂の融点とする。不織布の製造が容易となることから、芯部を構成する第1樹脂成分の融点と、鞘部を構成する第2樹脂成分の融点との差(前者-後者)が、20℃以上であることが好ましく、また150℃以下であることが好ましい。 As the first resin component constituting the core portion, a resin component having a melting point higher than that of the polyethylene resin that is a constituent resin of the sheath portion can be used without any particular limitation. Examples of the resin component constituting the core include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Furthermore, polyamide-based polymers, copolymers having two or more resin components, and the like can also be used. A plurality of types of resins can be blended and used. In this case, the melting point of the core is the melting point of the resin having the highest melting point. Since the nonwoven fabric can be easily manufactured, the difference between the melting point of the first resin component constituting the core part and the melting point of the second resin component constituting the sheath part (the former-the latter) is 20 ° C. or higher. It is preferable that it is 150 degrees C or less.
 高伸度繊維の一例である熱伸長性繊維における第1樹脂成分の好ましい配向指数は、用いる樹脂により自ずと異なるが、例えば第1樹脂成分がポリプロピレン樹脂の場合は、配向指数が60%以下であることが好ましく、より好ましくは40%以下であり、更に好ましくは25%以下である。第1樹脂成分がポリエステルの場合は、配向指数が25%以下であることが好ましく、より好ましくは20%以下であり、更に好ましくは10%以下である。一方、第2樹脂成分は、その配向指数が5%以上であることが好ましく、より好ましくは15%以上であり、更に好ましくは30%以上である。配向指数は、繊維を構成する樹脂の高分子鎖の配向の程度の指標となるものである。 The preferred orientation index of the first resin component in the thermally stretchable fiber, which is an example of a high elongation fiber, is naturally different depending on the resin used. For example, when the first resin component is a polypropylene resin, the orientation index is 60% or less. More preferably, it is 40% or less, More preferably, it is 25% or less. When the first resin component is polyester, the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less. On the other hand, the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more. The orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber.
 第1樹脂成分及び第2樹脂成分の配向指数は、特開2010-168715号公報の段落〔0027〕~〔0029〕に記載の方法によって求められる。また、熱伸長性繊維における各樹脂成分が前記のような配向指数を達成する方法は、特開2010-168715号公報の段落〔0033〕~〔0036〕に記載されている。 The orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A. A method for achieving the orientation index as described above for each resin component in the heat-extensible fiber is described in paragraphs [0033] to [0036] of Japanese Patent Application Laid-Open No. 2010-168715.
 また、高伸度繊維の伸度は、原料の段階で、100%以上であることが好ましく、より好ましくは200%以上であり、更に好ましくは250%以上であり、そして、800%以下であることが好ましく、より好ましくは500%以下であり、更に好ましくは400%以下であり、具体的には、100%以上800%以下であることが好ましく、より好ましくは200%以上500%以下、更に好ましくは250%以上400%以下である。この範囲の伸度を有する高伸度繊維を用いることで、該繊維が延伸装置内で首尾よく引き伸ばされて、後述する小径部16から大径部17への変化点18が融着部12に隣接され、肌触りが良好となる。 Further, the elongation of the high elongation fiber is preferably 100% or more at the raw material stage, more preferably 200% or more, still more preferably 250% or more, and 800% or less. It is preferably 500% or less, more preferably 400% or less, specifically preferably 100% or more and 800% or less, more preferably 200% or more and 500% or less, Preferably they are 250% or more and 400% or less. By using a high elongation fiber having an elongation in this range, the fiber is successfully stretched in a stretching apparatus, and a change point 18 from a small diameter portion 16 to a large diameter portion 17 described later becomes a fusion portion 12. Adjacent and good touch.
 高伸度繊維の伸度はJISL-1015に準拠し、測定環境温湿度20±2℃、65±2%RH、引張試験機のつかみ間隔20mm、引張速度20mm/min の条件での測定を基準とする。なお、既に製造された不織布から繊維を採取して伸度を測定するときを始めとして、つかみ間隔を20mmにできない場合、つまり測定する繊維の長さが20mmに満たない場合には、つかみ間隔を10mm又は5mmに設定して測定する。 The elongation of the high elongation fiber conforms to JISL-1015, and the measurement is based on the measurement environment temperature and humidity of 20 ± 2 ° C, 65 ± 2% RH, the tensile tester gripping distance of 20mm, and the tensile speed of 20mm / min. And In addition, when collecting fibers from an already manufactured non-woven fabric and measuring the elongation, when the gripping interval cannot be 20 mm, that is, when the length of the fiber to be measured is less than 20 mm, the gripping interval is set. Measure by setting to 10 mm or 5 mm.
 高伸度繊維における第1樹脂成分と第2樹脂成分との比率(質量比、前者:後者)は、原料の段階で、10:90~90:10、特に20:80~80:20、とりわけ50:50~70:30であることが好ましい。高伸度繊維の繊維長は、不織布の製造方法に応じて適切な長さのものが用いられる。不織布を例えば後述するようにカード法で製造する場合には、繊維長を30~70mm程度とすることが好ましい。 The ratio of the first resin component to the second resin component (mass ratio, the former: latter) in the high elongation fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially in the raw material stage. It is preferably 50:50 to 70:30. As the fiber length of the high elongation fiber, one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
 高伸度繊維の繊維径は、原料の段階で、不織布の具体的な用途に応じ適切に選択される。不織布を吸収性物品の表面シート等の吸収性物品の構成部材として用いる場合には、10μm以上のものを用いることが好ましく、特に15μm以上のものを用いることが好ましく、そして、35μm以下のものを用いることが好ましく、特に30μm以下のものを用いることが好ましく、具体的には、10μm以上35μm以下、特に15μm以上30μm以下のものを用いることが好ましい。前記の繊維径は、次の方法で測定される。 The fiber diameter of the high elongation fiber is appropriately selected according to the specific use of the nonwoven fabric at the raw material stage. When a nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of an absorbent article, it is preferable to use one having a thickness of 10 μm or more, particularly preferably 15 μm or more, and one having a thickness of 35 μm or less. It is preferable to use a material having a thickness of 30 μm or less, and specifically, a material having a thickness of 10 μm to 35 μm, particularly 15 μm to 30 μm is preferable. The fiber diameter is measured by the following method.
 〔繊維の繊維径の測定〕
 繊維の繊維径として、繊維の直径(μm)を、走査電子顕微鏡(日本電子(株)社製JCM-5100)を用いて、繊維の断面を200倍~800倍に拡大観察して測定する。繊維の断面は、フェザー剃刀(品番FAS‐10、フェザー安全剃刀(株)製)を用い、繊維を切断して得る。抽出した繊維1本について円形に近似したときの繊維径を5箇所測定し、それぞれ測定した値5点の平均値を繊維の直径とする。
[Measurement of fiber diameter]
The fiber diameter (μm) is measured by using a scanning electron microscope (JCM-5100 manufactured by JEOL Ltd.) and observing the cross section of the fiber at 200 to 800 times. The cross section of the fiber is obtained by cutting the fiber using a feather razor (product number FAS-10, manufactured by Feather Safety Razor Co., Ltd.). For each extracted fiber, the fiber diameter when approximated to a circle is measured at five locations, and the average value of the five measured values is taken as the fiber diameter.
 原料の段階で、高伸度繊維の一例である熱伸長性繊維を用いる場合としては、上述の熱伸長性繊維の他に、特許第4131852号公報、特開2005-350836号公報、特開2007-303035号公報、特開2007-204899号公報、特開2007-204901号公報及び特開2007-204902号公報等に記載の繊維を用いることもできる。 In the raw material stage, in the case of using a heat-extensible fiber, which is an example of a high elongation fiber, in addition to the above-described heat-extensible fiber, Japanese Patent No. 4131852, Japanese Patent Application Laid-Open No. 2005-350836, Japanese Patent Application Laid-Open No. 2007-2007 The fibers described in JP-A-303035, JP-A 2007-204899, JP-A 2007-204901, JP-A 2007-204902, and the like can also be used.
 本発明(第2発明)の不織布は、図10に示すように、不織布1Bの構成繊維11の内の1本の構成繊維11に着目して、該構成繊維11が、隣り合う融着部12,12どうしの間に、繊維径の小さい2個の小径部16,16に挟まれた繊維径の大きい大径部17を有している。具体的には、図10に示すように、不織布1Bの構成繊維11の内の1本の構成繊維11に着目して、他の構成繊維11との交点を熱融着して形成された融着部12から、繊維径の小さい小径部16が略同じ繊維径で延出して形成されている。そして、該1本の構成繊維11に着目して、隣り合う融着部12,12それぞれから延出する小径部16,16どうしの間に、小径部16よりも繊維径の大きい大径部17が略同じ繊維径で延出して形成されている。詳述すると、不織布1Bは、1本の構成繊維11に着目して、隣り合う融着部12,12の内の一方の融着部12から他方の融着部12に向かって、一方の融着部12側の小径部16、1個の大径部17、他方の融着部12側の小径部16の順に配されている構成繊維11を有している。また、不織布1Bは、図10に示すように、不織布1Bの構成繊維11の内の1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、大径部17を複数(不織布1Bにおいては2個)備える構成繊維11を有している。詳述すると、不織布1Bは、1本の構成繊維11に着目して、隣り合う融着部12,12の内の一方の融着部12から他方の融着部12に向かって、一方の融着部12側の小径部16、1個目の大径部17、小径部16、2個目の大径部17、他方の融着部12側の小径部16の順に配されている構成繊維11を有している。上述したように不織布1Bの剛性が高まる融着部12に隣り合うように低剛性の小径部16が存在することにより、不織布1Bの柔軟性が向上し、肌触りが良好なる。また、大径部17を複数備える、言い換えると構成繊維11に低剛性の小径部16が多く存在するほど、不織布1Bの柔軟性が更に向上し、肌触りが更に良好になる。不織布1Bは、1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、大径部17を、肌触り向上の観点と不織布強度低下の観点から、好ましくは1個以上備え、更に好ましくは1個以上備え、そして、好ましくは5個以下備え、更に好ましくは3個以下備え、具体的には、好ましくは1個以上5個以下備え、更に好ましくは1個以上3個以下備えている。 As shown in FIG. 10, the nonwoven fabric of the present invention (second invention) pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1B, and the constituent fibers 11 are adjacent to the fused portion 12. , 12 has a large-diameter portion 17 having a large fiber diameter sandwiched between two small- diameter portions 16, 16 having a small fiber diameter. Specifically, as shown in FIG. 10, focusing on one constituent fiber 11 of the constituent fibers 11 of the nonwoven fabric 1B, a fusion formed by heat-sealing the intersection with the other constituent fibers 11 is performed. A small diameter portion 16 having a small fiber diameter extends from the landing portion 12 with substantially the same fiber diameter. Then, paying attention to the single constituent fiber 11, the large-diameter portion 17 having a fiber diameter larger than that of the small-diameter portion 16 between the small- diameter portions 16 and 16 extending from the adjacent fusion portions 12 and 12. Are extended with substantially the same fiber diameter. More specifically, the nonwoven fabric 1B pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, It has constituent fibers 11 arranged in the order of a small diameter portion 16 on the side of the attachment portion 12, one large diameter portion 17, and a small diameter portion 16 on the side of the other fusion portion 12. Further, as shown in FIG. 10, the nonwoven fabric 1 </ b> B focuses on one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 </ b> B, and has a large diameter portion 17 between the adjacent fusion portions 12, 12. The constituent fiber 11 is provided with a plurality (two in the nonwoven fabric 1B). More specifically, the nonwoven fabric 1B pays attention to one constituent fiber 11, and from one fused portion 12 of adjacent fused portions 12, 12, toward the other fused portion 12, Constituent fibers arranged in the order of the small-diameter portion 16 on the bonding portion 12 side, the first large-diameter portion 17, the small-diameter portion 16, the second large-diameter portion 17, and the small-diameter portion 16 on the other fused portion 12 side. 11. As described above, the low-rigidity small-diameter portion 16 is adjacent to the fused portion 12 where the stiffness of the nonwoven fabric 1B is increased, thereby improving the flexibility of the nonwoven fabric 1B and improving the touch. Moreover, the softness | flexibility of the nonwoven fabric 1B improves further and the touch becomes further better, so that there are many small diameter parts 16 with a plurality of large diameter parts 17, in other words, the constituent fiber 11 has low rigidity. The nonwoven fabric 1B pays attention to one constituent fiber 11, and preferably has one large-diameter portion 17 between the adjacent fused portions 12, 12, from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. More, more preferably 1 or more, and preferably 5 or less, more preferably 3 or less, specifically preferably 1 or more and 5 or less, more preferably 1 or more and 3 Has less than one.
 大径部17の繊維径(直径L17)に対する小径部16の繊維径(直径L16)の比率(L16/L17)は、好ましくは0.5以上、更に好ましくは0.55以上、そして、好ましくは0.8以下、更に好ましくは0.7以下であり、具体的には、好ましくは0.5以上0.8以下、更に好ましくは0.55以上0.7以下である。具体的に、小径部16の繊維径(直径L16)は、肌触り向上の観点と不織布強度低下の観点から、好ましくは5μm以上、更に好ましくは6.5μm以上、特に好ましくは7.5μm以上であり、そして、好ましくは28μm以下、更に好ましくは20μm以下、特に好ましくは16μm以下であり、具体的には、好ましくは5μm以上28μm以下、更に好ましくは6.5μm以上20μm以下、特に好ましくは7.5μm以上16μm以下である。大径部17の繊維径(直径L17)は、肌触り向上の観点から、好ましくは10μm以上、更に好ましくは13μm以上、特に好ましくは15μm以上であり、好ましくは35μm以下、更に好ましくは25μm以下、特に好ましくは20μm以下であり、具体的には、好ましくは10μm以上35μm以下、更に好ましくは13μm以上25μm以下、特に好ましくは15μm以上20μm以下である。
 小径部16及び大径部17の繊維径(直径L16,L17)は、上述した繊維の繊維径の測定と同様にして測定する。
The ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter part 16 to the fiber diameter (diameter L 17 ) of the large diameter part 17 is preferably 0.5 or more, more preferably 0.55 or more. And preferably it is 0.8 or less, More preferably, it is 0.7 or less, Specifically, Preferably it is 0.5 or more and 0.8 or less, More preferably, it is 0.55 or more and 0.7 or less. Specifically, the fiber diameter (diameter L 16 ) of the small-diameter portion 16 is preferably 5 μm or more, more preferably 6.5 μm or more, particularly preferably 7.5 μm or more from the viewpoint of improving the touch and reducing the strength of the nonwoven fabric. And preferably 28 μm or less, more preferably 20 μm or less, particularly preferably 16 μm or less, specifically preferably 5 μm or more and 28 μm or less, more preferably 6.5 μm or more and 20 μm or less, particularly preferably 7. It is 5 μm or more and 16 μm or less. The fiber diameter (diameter L 17 ) of the large diameter portion 17 is preferably 10 μm or more, more preferably 13 μm or more, particularly preferably 15 μm or more, preferably 35 μm or less, more preferably 25 μm or less, from the viewpoint of improving the touch. The thickness is particularly preferably 20 μm or less, specifically, preferably 10 μm or more and 35 μm or less, more preferably 13 μm or more and 25 μm or less, and particularly preferably 15 μm or more and 20 μm or less.
The fiber diameters (the diameters L 16 and L 17 ) of the small diameter part 16 and the large diameter part 17 are measured in the same manner as the fiber diameter measurement described above.
 また、本発明(第2発明)の不織布は、図10に示すように、不織布1Bの構成繊維11の内の1本の構成繊維11に着目して、融着部12に隣接する小径部16から大径部17への変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されている。ここで、本発明(第2発明)の不織布の変化点18とは、小さい繊維径で延出する小径部16から、小径部16よりも繊維径の大きい繊維径で延出する大径部17へ、連続的に漸次変化する部位或いは連続的に複数段階に亘って変化する部位を含まず、極端に繊維径が変化する部位を意味する。また、前記1本の構成繊維11が芯鞘型複合繊維の場合には、本発明(第2発明)の不織布の変化点18とは、芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分との間で剥離することによって繊維径が変化する状態を含まず、あくまで、延伸により繊維径が変化している部位を意味する。 Further, as shown in FIG. 10, the nonwoven fabric of the present invention (second invention) pays attention to one constituent fiber 11 among the constituent fibers 11 of the nonwoven fabric 1 </ b> B, and a small-diameter portion 16 adjacent to the fused portion 12. The change point 18 from the large diameter portion 17 to the large diameter portion 17 is arranged within a range of 3 of the interval T between the fusion portions 12 and 12 adjacent to the fusion portion 12. Here, the change point 18 of the nonwoven fabric of the present invention (second invention) is a large diameter portion 17 extending from a small diameter portion 16 extending with a small fiber diameter and a fiber diameter larger than that of the small diameter portion 16. It does not include a part that continuously changes gradually or a part that continuously changes over a plurality of stages, and means a part where the fiber diameter changes extremely. In the case where the single constituent fiber 11 is a core-sheath type composite fiber, the change point 18 of the nonwoven fabric of the present invention (second invention) is the first resin component constituting the core part and the sheath part. It does not include a state in which the fiber diameter is changed by peeling with the second resin component to be configured, and means a portion where the fiber diameter is changed by stretching.
 また、変化点18が、融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されているとは、不織布1Bの構成繊維11をランダムに抽出し、該構成繊維11を、図10に示すように、走査電子顕微鏡として日本電子(株)社製のJCM-5100(商品名)を用いて構成繊維11の隣り合う融着部12,12間が観察できるように
(100倍~300倍)に拡大する。次いで、隣り合う融着部12,12の中心どうしの間隔Tを3等分して、一方の融着部12側の領域AT、他方の融着部12側の領域BT、中央の領域CTに区分する。そして、変化点18が、前記領域AT又は前記領域BTに配されていることを意味する。また、変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されている不織布1Bとは、不織布1Bの構成繊維11を20本ランダムに抽出した際に、変化点18を前記領域AT又は前記領域BTに配している構成繊維11が、20本の構成繊維11の内に少なくとも1本以上ある不織布を意味する。具体的に、触り向上の観点から、好ましくは1本以上、更に好ましくは5本以上、特に好ましくは10本以上である。
In addition, the fact that the change point 18 is arranged within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the nonwoven fabric 1B are randomly extracted. As shown in FIG. 10, using JCM-5100 (trade name) manufactured by JEOL Ltd. as a scanning electron microscope, the constituent fibers 11 are bonded between adjacent fusion portions 12 and 12. Enlarge it so that it can be observed (100 to 300 times). Next, the interval T between the centers of the adjacent fused portions 12 and 12 is divided into three equal parts, and the region AT on the side of one fused portion 12, the region BT on the side of the other fused portion 12, and the center region CT Break down. This means that the change point 18 is arranged in the area AT or the area BT. Further, the non-woven fabric 1B in which the change point 18 is disposed within a range of 1/3 of the interval T between the adjacent fused portions 12 and 12 from the fused portion 12 means that the constituent fibers 11 of the non-woven fabric 1B are 20 When extracted randomly, the constituent fiber 11 in which the change point 18 is arranged in the region AT or the region BT means a nonwoven fabric in which at least one of the 20 constituent fibers 11 is present. Specifically, from the viewpoint of improving touch, it is preferably 1 or more, more preferably 5 or more, and particularly preferably 10 or more.
 本実施形態の不織布1Bは、後述するように、延伸によって、側部域13cだけではなく凸条部13の頂部である頂部域13a及び凹条部14の底部である底部域13bも延伸され、延伸前の原料不織布より不織布全体の繊維密度が低下している。それにより、不織布1B全体の通液性と通気性が向上している。頂部域13a、底部域13b及び側部域13cの中でも、特に延伸されやすく、繊維密度が低下しやすいのが側部域13cであり、側部域13cにおいては、通液性と通気性が特に向上している。 As will be described later, the nonwoven fabric 1B of the present embodiment extends not only the side region 13c but also the top region 13a that is the top of the ridge 13 and the bottom region 13b that is the bottom of the concave 14 by stretching, The fiber density of the whole nonwoven fabric is lower than the raw material nonwoven fabric before stretching. Thereby, the liquid permeability and air permeability of the whole nonwoven fabric 1B are improving. Among the top region 13a, the bottom region 13b, and the side region 13c, the side region 13c is particularly easy to be stretched and the fiber density is likely to decrease. In the side region 13c, liquid permeability and air permeability are particularly good. It has improved.
 本実施形態の不織布1Bは、側部域13cの繊維密度が、凸条部13の頂部である頂部域13aの繊維密度及び凹条部14の底部である底部域13bの繊維密度よりも小さく形成されている。ここで、繊維密度とは、不織布1Bの単位体積当たりの繊維の質量のことである。繊維密度が高いとは、不織布1Bの単位体積あたりに存在する繊維の量が多く、繊維間距離が小さいことを意味する。繊維密度が低いとは、不織布1Bの単位体積あたりに存在する繊維の量が少なく、繊維間距離が大きいことを意味する。尚、繊維密度が高い部位は毛管力が高く、繊維密度が低い部位は毛管力が低くなっている。 The nonwoven fabric 1B of the present embodiment is formed such that the fiber density of the side region 13c is smaller than the fiber density of the top region 13a that is the top of the protruding portion 13 and the fiber density of the bottom region 13b that is the bottom of the recessed portion 14. Has been. Here, the fiber density is the mass of the fiber per unit volume of the nonwoven fabric 1B. High fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1B is large and the distance between fibers is small. Low fiber density means that the amount of fibers present per unit volume of the nonwoven fabric 1B is small and the distance between fibers is large. In addition, the site | part with a high fiber density has high capillary force, and the site | part with a low fiber density has low capillary force.
 図9に示すように不織布1Bを断面視して、不織布1Bは、凸条部13の頂部(頂部域13a)及び凹条部14の底部(底部域13b)の間の側部域13cの繊維密度が最も小さく形成されている。従って、側部域13cにおいては、不織布1Bの単位体積あたりに存在する繊維の量が最も少なく、繊維間距離が最も大きくなっており、不織布1B全体として、通気性が向上すると共に通液性も向上する。更に、側部域13cの繊維密度がもっとも小さく形成されることにより、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。このような繊維密度を側部域13cに付与するには、後述する製造方法に従い不織布1Bを製造すればよい。 As shown in FIG. 9, the nonwoven fabric 1 </ b> B is a cross-sectional view, and the nonwoven fabric 1 </ b> B is a fiber in a side region 13 c between the top portion (top region 13 a) of the ridge 13 and the bottom portion (bottom region 13 b) of the recess 14. The density is the smallest. Therefore, in the side region 13c, the amount of fibers existing per unit volume of the nonwoven fabric 1B is the smallest, the interfiber distance is the largest, and the nonwoven fabric 1B as a whole has improved air permeability and liquid permeability. improves. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized. In order to impart such a fiber density to the side region 13c, the nonwoven fabric 1B may be manufactured according to the manufacturing method described later.
 頂部域13aでの繊維密度(D13)、又は底部域13bでの繊維密度(D14)に対する側部域13cの繊維密度(D15)の比率(D15/D13,D15/D14)は、好ましくは0.15以上、更に好ましくは0.2以上であり、そして、好ましくは0.9以下、更に好ましくは0.8以下であり、具体的には、好ましくは0.15以上0.9以下、更に好ましくは0.2以上0.8以下である。また、不織布1Bの繊維密度の具体的な値は、頂部域13aでの繊維密度(D13)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、好ましくは80本/mm以上200本/mm以下、更に好ましくは90本/mm以上180本/mm以下である。また、底部域13bでの繊維密度(D14)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、好ましくは80本/mm以上200本/mm以下、更に好ましくは90本/mm以上180本/mm以下である。また、側部域13cの繊維密度(D15)は、好ましくは30本/mm以上、更に好ましくは40本/mm以上であり、そして、好ましくは80本/mm以下、更に好ましくは70本/mm以下であり、具体的には、好ましくは30本/mm以上80本/mm以下、更に好ましくは40本/mm以上70本/mm以下である。頂部域13aの繊維密度は、凸条部13の頂点付近の位置で測定される。底部域13bの繊維密度は、凹条部14の底点付近の位置で測定される。繊維密度の測定方法は以下のとおりである。 The ratio (D 15 / D 13 , D 15 / D 14 ) of the fiber density (D 15 ) of the side region 13c to the fiber density (D 13 ) in the top region 13a or the fiber density (D 14 ) in the bottom region 13b. ) Is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less, and specifically preferably 0.15 or more. 0.9 or less, more preferably 0.2 or more and 0.8 or less. The specific value of the fiber density of the nonwoven fabric 1B is such that the fiber density (D 13 ) in the top region 13a is preferably 80 / mm 2 or more, more preferably 90 / mm 2 or more, and Preferably it is 200 / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more. 180 pieces / mm 2 or less. Also, the fiber density (D 14) of the bottom area 13b, preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 / mm 2 or less, specifically, preferably 80 / mm 2 or more and 200 / mm 2 or less, more preferably 90 / mm 2 or more and 180 / mm 2 or less. The fiber density of the side region 13c (D 15) is preferably 30 present / mm 2 or more, more preferably 40 present / mm 2 or more, and preferably 80 present / mm 2 or less, more preferably 70 / mm 2 or less, specifically, preferably 30 / mm 2 or more and 80 / mm 2 or less, more preferably 40 / mm 2 or more and 70 / mm 2 or less. The fiber density of the top region 13 a is measured at a position near the top of the ridge 13. The fiber density of the bottom region 13b is measured at a position near the bottom point of the concave strip portion 14. The method for measuring the fiber density is as follows.
 〔頂部域13a、底部域13b又は側部域13cでの繊維密度の測定方法〕
 フェザー剃刀(品番FAS‐10、フェザー安全剃刀(株)製)を用いて不織布を切断し、頂部域13aでの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の上方の部位である凸条部13の頂点付近を、走査電子顕微鏡を用いて拡大観察(繊維断面が30~60本計測できる倍率に調整;150~500倍)し、一定面積当たり(0.5mm)の前記切断面によって切断されている繊維の断面数を数える。次に1mm当たりの繊維の断面数に換算し、これを頂部域13aでの繊維密度とする。測定は3箇所行い、平均してそのサンプルの繊維密度とする。同様に、底部域13bでの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の下方の部位である凹条部14の底点付近を測定して求める。同様に、側部域13cの繊維密度に関しては、不織布の切断面の厚みをZ方向に3等分した際の中央の部位を測定して求める。尚、走査電子顕微鏡としては、日本電子(株)社製のJCM-5100(商品名)を用いる。
[Measuring method of fiber density in top region 13a, bottom region 13b or side region 13c]
The nonwoven fabric was cut using a feather razor (part number FAS-10, manufactured by Feather Safety Razor Co., Ltd.), and the fiber density in the top area 13a was obtained by dividing the thickness of the cut surface of the nonwoven fabric into three equal parts in the Z direction. The vicinity of the apex of the ridge 13 which is the upper part is magnified using a scanning electron microscope (adjusted to a magnification capable of measuring 30 to 60 fiber cross-sections; 150 to 500 times), and per fixed area (0.5 mm) 2 ) Count the number of cross-sections of the fibers cut by the cut surface. Next, it converts into the number of cross sections of the fiber per 1 mm < 2 >, and makes this the fiber density in the top region 13a. The measurement is performed at three locations, and the average is the fiber density of the sample. Similarly, the fiber density in the bottom region 13b is obtained by measuring the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction. Similarly, the fiber density of the side region 13c is determined by measuring the central part when the thickness of the cut surface of the nonwoven fabric is equally divided into three in the Z direction. As a scanning electron microscope, JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
 また、本実施形態の不織布1Bは、側部域13cを構成する構成繊維における変化点18を有する繊維の本数が頂部域13a及び底部域13bを構成する構成繊維における変化点18を有する繊維の本数より多く形成されている。これにより、頂部域13aが着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。頂部域13aを構成する構成繊維における変化点18を有する繊維の本数(N13)、又は底部域13bを構成する構成繊維における変化点18を有する繊維の本数(N14)に対する側部域13cを構成する構成繊維における変化点18を有する繊維の本数(N15)の比率(N15/N13,N15/N14)は、好ましくは2以上、更に好ましくは5以上であり、そして、好ましくは20以下、更に好ましくは20以下であり、具体的には、好ましくは2以上20以下、更に好ましくは5以上20以下である。また、不織布1Bの変化点18を有する繊維の本数の具体的な値に関し、頂部域13aを構成する構成繊維における変化点18を有する繊維の本数(N13)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である。また、底部域13bを構成する構成繊維における変化点18を有する繊維の本数(N14)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である。また、側部域13cを構成する構成繊維における変化点18を有する繊維の本数(N15)は、好ましくは5本以上、更に好ましくは10本以上であり、そして、好ましくは20本以下、更に好ましくは20本以下であり、具体的には、好ましくは5本以上20本以下、更に好ましくは10本以上20本以下である。変化点18を有する繊維の本数の測定方法は以下のとおりである。 Further, in the nonwoven fabric 1B of the present embodiment, the number of fibers having the change point 18 in the constituent fibers constituting the side region 13c is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a and the bottom region 13b. More are formed. Thereby, the top region 13a can easily follow the movement of the wearer's skin, and good skin contact can be realized. The side region 13c with respect to the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a (N 13 ) or the number of fibers having the change point 18 in the component fibers constituting the bottom region 13b (N 14 ) The ratio (N 15 / N 13 , N 15 / N 14 ) of the number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting is preferably 2 or more, more preferably 5 or more, and preferably Is 20 or less, more preferably 20 or less. Specifically, it is preferably 2 or more and 20 or less, more preferably 5 or more and 20 or less. Moreover, regarding the specific value of the number of fibers having the change point 18 of the nonwoven fabric 1B, the number of fibers having the change point 18 (N 13 ) in the constituent fibers constituting the top region 13a is preferably one or more, and further Preferably it is 5 or more, and preferably 15 or less, more preferably 15 or less, specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less. . The number (N 14 ) of fibers having the change point 18 in the constituent fibers constituting the bottom region 13b is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably Is 15 or less, and specifically, preferably 1 or more and 15 or less, more preferably 5 or more and 15 or less. The number (N 15 ) of fibers having the change point 18 in the constituent fibers constituting the side region 13c is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, The number is preferably 20 or less, specifically, preferably 5 or more and 20 or less, and more preferably 10 or more and 20 or less. The method for measuring the number of fibers having the change point 18 is as follows.
〔頂部域13a、底部域13b又は側部域13cを構成する構成繊維における変化点18を有する繊維の本数の測定方法〕
 頂部域13aを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の上方の部位である凸条部13の頂点付近を、走査電子顕微鏡を用いて拡大観察(繊維断面が30~60本計測できる倍率に調整;50~500倍)し、頂部域13aを構成する構成繊維11を20本ランダムに抽出し、20本の構成繊維11の内に変化点18を有する繊維数を数える。融着部どうしの間に、変化点18が1個以上ある場合に変化点18を有する繊維数とし、複数有する場合も1本とする。これを頂部域13aを構成する構成繊維における変化点18を有する繊維の本数とする。測定は3箇所行い、平均してそのサンプルの頂部域13aを構成する構成繊維における変化点18を有する繊維の本数とする。同様に、底部域13bを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の下方の部位である凹条部14の底点付近を測定して求める。同様に、側部域13cを構成する構成繊維11における変化点18を有する繊維の本数に関しては、不織布の厚みをZ方向に3等分した際の中央の部位を測定して求める。尚、走査電子顕微鏡としては、日本電子(株)社製のJCM-5100(商品名)を用いる。
[Measurement method of the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a, the bottom region 13b, or the side region 13c]
As for the number of fibers having the change point 18 in the constituent fibers 11 constituting the top region 13a, scanning electrons are scanned around the apex of the ridge 13 which is the upper part when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Using a microscope, magnified observation (adjusted to a magnification capable of measuring 30 to 60 fiber cross sections; 50 to 500 times), 20 constituent fibers 11 constituting the top region 13a were randomly extracted, and 20 constituent fibers 11 were extracted. The number of fibers having the change point 18 in the is counted. When there are one or more change points 18 between the fused portions, the number of fibers having the change points 18 is set, and when there are a plurality of change points 18, the number is also set to one. This is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a. The measurement is performed at three places, and the average is the number of fibers having the change point 18 in the constituent fibers constituting the top region 13a of the sample. Similarly, regarding the number of fibers having the change point 18 in the constituent fibers 11 constituting the bottom region 13b, the vicinity of the bottom point of the concave portion 14 which is a lower portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. Determine by measuring. Similarly, the number of fibers having the change point 18 in the constituent fibers 11 constituting the side region 13c is obtained by measuring the central portion when the thickness of the nonwoven fabric is equally divided into three in the Z direction. As a scanning electron microscope, JCM-5100 (trade name) manufactured by JEOL Ltd. is used.
 本実施形態の不織布1Bは、例えば、肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する使い捨ておむつ或いは生理用ナプキン等の吸収性物品に用いられる。特に、該吸収性物品の構成部材の内の、前記表面シートを不織布1Bで形成したり、前記表面シートと前記吸収体との間に配される液透過性のサブレイヤーを不織布1Bで形成したりすることができる。不織布1Bによって前記表面シートを形成すると、不織布1Bが凹凸構造の不織布であるので、肌との接触面積率が低くなり、更に擦れ難くなる。また、不織布1Bによって前記表面シート又は前記サブレイヤーを形成すると、不織布1Bが凹凸構造の不織布であるので、耐圧縮性が向上し、クッション感が向上すると共に、体液の逆戻りを防ぐことができる。 The nonwoven fabric 1B of this embodiment is, for example, a disposable diaper having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorber interposed between the both sheets. Or it is used for absorbent articles, such as a sanitary napkin. In particular, among the constituent members of the absorbent article, the top sheet is formed from the nonwoven fabric 1B, or a liquid-permeable sublayer disposed between the top sheet and the absorbent body is formed from the nonwoven fabric 1B. Can be. If the said surface sheet is formed with the nonwoven fabric 1B, since the nonwoven fabric 1B is a nonwoven fabric of uneven structure, a contact area rate with skin will become low and it will become difficult to rub further. Moreover, when the said surface sheet or the said sublayer is formed with the nonwoven fabric 1B, since the nonwoven fabric 1B is a nonwoven fabric of a concavo-convex structure, compression resistance improves, a feeling of cushion improves, and the return of body fluid can be prevented.
 不織布1Bの厚さについては、不織布1Bの側面視したときの全体の厚さをシート厚みTとし、その凹凸に湾曲した不織布1Bの局部的な厚さを層厚みTとする。シート厚みTは、用途によって適宜調節すればよいが、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、0.5mm以上が好ましく、1mm以上がより好ましく、そして、7mm以下が好ましく、5mm以下がより好ましく、具体的には、0.5mm以上7mm以下が好ましく、1mm以上5mm以下がより好ましい。この範囲とすることにより、使用時の体液吸収速度が速く、吸収体からの液戻りを抑え、更に、適度なクッション性を実現することができる。 The thickness of the nonwoven fabric 1B, the entire thickness of when the side view of the nonwoven fabric 1B and sheet thickness T S, the local thickness of the nonwoven fabric 1B curved in its irregularities and the layer thickness T L. Sheet thickness T S is may be adjusted as appropriate depending on the application, when used as a topsheet or sublayer of the absorbent article is preferably at least 0.5 mm, more preferably at least 1 mm, and preferably 7mm or less, 5 mm or less More specifically, 0.5 mm or more and 7 mm or less are preferable, and 1 mm or more and 5 mm or less are more preferable. By setting it as this range, the bodily fluid absorption speed | velocity at the time of use is quick, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable.
 層厚みTは、不織布1B内の各部位において異なっていてもよく、用途によって適宜調節すればよい。吸収性物品の表面シート或いはサブレイヤーとして用いる場合、頂部域13aの層厚みTL1は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。底部域13bの層厚みTL2は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。側部域13cの層厚みTL3は、0.1mm以上であることが好ましく、0.2mm以上がより好ましく、そして、3.0mm以下であることが好ましく、2.0mm以下がより好ましく、具体的には、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上2.0mm以下がより好ましい。この範囲とすることにより、使用時の体液吸収速度が速く、吸収体からの液戻りを抑え、更に、適度なクッション性を実現することができる。 The layer thickness TL may be different at each site in the nonwoven fabric 1B, and may be appropriately adjusted depending on the application. When used as a surface sheet or sublayer of an absorbent article, the layer thickness T L1 of the top region 13a is preferably 0.1 mm or more, more preferably 0.2 mm or more, and 3.0 mm or less. Is preferably 2.0 mm or less, specifically 0.1 mm or more and 3.0 mm or less, more preferably 0.2 mm or more and 2.0 mm or less. The layer thickness T L2 of the bottom region 13b is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Is preferably from 0.1 mm to 3.0 mm, more preferably from 0.2 mm to 2.0 mm. The layer thickness T L3 of the side region 13c is preferably 0.1 mm or more, more preferably 0.2 mm or more, and preferably 3.0 mm or less, more preferably 2.0 mm or less. Specifically, it is preferably from 0.1 mm to 3.0 mm, and more preferably from 0.2 mm to 2.0 mm. By setting it as this range, the bodily fluid absorption speed | velocity at the time of use is quick, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable.
 シート厚みT及び層厚みTは以下の方法で測定される。
 シート厚みTの測定方法は、不織布1Bに0.05kPaの荷重を加えた状態で、厚み測定器を用いて測定する。厚み測定器にはオムロン社製のレーザー変位計を用いる。厚み測定は、10点測定し、それらの平均値を算出して厚みとする。
 層厚みTの測定法は、シートの断面をキーエンス製デジタルマイクロスコープVHX-900により約20倍程度で拡大することで、各層の厚みを測定する。
The sheet thickness T S and the layer thickness T L are measured by the following methods.
Method of measuring the thickness of the sheet T S is in a state of applying a load of 0.05kPa nonwoven 1B, measured using a thickness gauge. A laser displacement meter manufactured by OMRON Corporation is used for the thickness measuring instrument. Thickness is measured at 10 points, and the average value is calculated as the thickness.
The layer thickness TL is measured by enlarging the cross section of the sheet with a Keyence digital microscope VHX-900 by about 20 times to measure the thickness of each layer.
 不織布1Bを平面視したときに、Y方向に隣り合う頂部域13aどうしのピッチは、用途によって適宜調節すればよく、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、1mm以上が好ましく、1.5mm以上がより好ましく、そして、15mm以下が好ましく、10mm以下がより好ましく、具体的には、1mm以上15mm以下が好ましく、1.5mm以上10mm以下がより好ましい。 When the nonwoven fabric 1B is viewed in plan, the pitch between the top regions 13a adjacent to each other in the Y direction may be appropriately adjusted depending on the application, and is preferably 1 mm or more when used as a surface sheet or sublayer of an absorbent article. 5 mm or more is more preferable, 15 mm or less is preferable, 10 mm or less is more preferable, specifically, 1 mm or more and 15 mm or less is preferable, and 1.5 mm or more and 10 mm or less is more preferable.
 また不織布1Bの坪量は、不織布1Bの具体的な用途にもよるが、吸収性物品の表面シート或いはサブレイヤーとして用いる場合、シート全体の平均値で、15g/m以上が好ましく、20g/m以上がより好ましく、そして、50g/m以下が好ましく、40g/m以下がより好ましく、具体的には、15g/m以上50g/m以下が好ましく、20g/m以上40g/m以下がより好ましい。 The basis weight of the nonwoven fabric 1B depends on the specific use of the nonwoven fabric 1B, but when used as a surface sheet or sublayer of an absorbent article, the average value of the entire sheet is preferably 15 g / m 2 or more, and 20 g / m 2. m 2 or more is more preferable, and 50 g / m 2 or less is preferable, 40 g / m 2 or less is more preferable, specifically, 15 g / m 2 or more and 50 g / m 2 or less is preferable, and 20 g / m 2 or more and 40 g. / M 2 or less is more preferable.
 また、不織布1Bの構成繊維11の表面には、原料の段階で、繊維着色剤、静電気防止特性剤、潤滑剤、親水剤等の繊維処理剤が、少量付着されていてもよい。 Further, a small amount of fiber treatment agent such as fiber colorant, antistatic property agent, lubricant, hydrophilic agent may be attached to the surface of the constituent fiber 11 of the nonwoven fabric 1B at the raw material stage.
 繊維処理剤を構成繊維11の表面に付着させる方法としては、各種公知の方法を特に制限なく採用することができる。例えば、スプレーによる塗布、スロットコーターによる塗布、ロール転写による塗布、繊維処理剤への浸漬等が挙げられる。これらの処理は、ウエブ化する前の繊維に対して行ってもよいし、繊維を各種の方法でウエブ化した後に行ってもよい。ただし、後述する熱風吹き付け処理よりも前に処理を行う必要がある。繊維処理剤が表面に付着した繊維は、例えば、熱風送風式の乾燥機により、ポリエチレン樹脂の融点より十分に低い温度(例えば120℃以下)で乾燥される。 As a method for attaching the fiber treatment agent to the surface of the constituent fibers 11, various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform the process before the hot air blowing process described later. The fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
 本発明(第2発明)の不織布は、高伸度繊維を含む繊維ウエブの構成繊維同士の交点を融着部にて熱融着して繊維シートを形成する融着工程と、前記繊維シートを一方向に延伸する延伸工程とを備える不織布の製造方法によって製造される。本発明(第2発明)の不織布の製造方法の一実施態様について、上述した不織布1Bの好ましい製造方法を例に挙げ、図11を参照しながら説明する。図11には、不織布1Bの製造方法に用いられる好ましい製造装置100Bが模式的に示されている。製造装置100Bは、エア-スルー不織布の製造に好適に用いられるものである。製造装置100Bは、製造工程の上流側から下流側に向けて、ウエブ形成部200、熱風処理部300及び延伸部400をこの順で備えている。 The non-woven fabric of the present invention (second invention) comprises a fusing step of forming a fiber sheet by thermally fusing intersections of constituent fibers of a fiber web containing high elongation fibers at a fusing portion, and the fiber sheet. It is manufactured by the manufacturing method of a nonwoven fabric provided with the extending process extended | stretched to one direction. One embodiment of the method for producing a nonwoven fabric of the present invention (second invention) will be described with reference to FIG. 11 by taking the above-described preferred method for producing nonwoven fabric 1B as an example. FIG. 11 schematically shows a preferable manufacturing apparatus 100B used in the method for manufacturing the nonwoven fabric 1B. The manufacturing apparatus 100B is suitably used for manufacturing an air-through nonwoven fabric. The manufacturing apparatus 100B includes a web forming unit 200, a hot air processing unit 300, and an extending unit 400 in this order from the upstream side to the downstream side of the manufacturing process.
 ウエブ形成部200には、図11に示すように、ウエブ形成装置201が備えられている。ウエブ形成装置201としては、カード機が用いられている。カード機としては、吸収性物品の技術分野において通常用いられているものと同様のものを特に制限なく用いることができる。不織布1Bの具体的な用途に応じ、カード機に代えて、他のウエブ製造装置、例えばエアレイド装置を用いることもできる。 The web forming unit 200 is provided with a web forming apparatus 201 as shown in FIG. A card machine is used as the web forming apparatus 201. As a card machine, the thing normally used in the technical field of an absorbent article can be used without a restriction | limiting in particular. Depending on the specific use of the nonwoven fabric 1B, another web manufacturing apparatus, such as an airlaid apparatus, can be used instead of the card machine.
 熱風処理部300は、図11に示すように、フード301を備えている。フード301内では、エアースルー方式で熱風を吹き付けることができるようになっている。また、熱風処理部300は、通気性ネットからなる無端状のコンベアベルト302を備えている。コンベアベルト302は、フード301内を周回している。コンベアベルト302は、ポリエチレンテレフタレート等の樹脂、或いは金属から形成されている。 The hot air processing unit 300 includes a hood 301 as shown in FIG. Inside the hood 301, hot air can be blown by an air-through method. The hot air processing unit 300 includes an endless conveyor belt 302 made of a breathable net. The conveyor belt 302 circulates in the hood 301. The conveyor belt 302 is made of a resin such as polyethylene terephthalate or a metal.
 フード301内にて吹き付けられる熱風の温度及び熱処理時間は、繊維ウエブ10の構成繊維11の含む高伸度繊維の交点が熱融着するように調整することが好ましい。具体的に、熱風の温度は、繊維ウエブ10の構成繊維11の内の最も融点が低い樹脂の融点に対して、0℃~30℃高い温度に調整することが好ましい。熱処理時間は、熱風の温度に応じて、1秒~5秒に調整することが好ましい。また、構成繊維11同士の更なる交絡を促す観点から、熱風の風速は0.3m/秒~1.5m/秒程度であることが好ましい。また、搬送速度は、5m/min~100m/min程度であることが好ましい。 The temperature of the hot air blown in the hood 301 and the heat treatment time are preferably adjusted so that the intersections of the high elongation fibers included in the constituent fibers 11 of the fiber web 10 are heat-sealed. Specifically, the temperature of the hot air is preferably adjusted to a temperature that is 0 ° C. to 30 ° C. higher than the melting point of the resin having the lowest melting point among the constituent fibers 11 of the fiber web 10. The heat treatment time is preferably adjusted to 1 to 5 seconds depending on the temperature of the hot air. Further, from the viewpoint of encouraging further entanglement between the constituent fibers 11, the wind speed of the hot air is preferably about 0.3 m / sec to 1.5 m / sec. Further, the conveying speed is preferably about 5 m / min to 100 m / min.
 延伸部400は、図11,図12に示すように、互いに噛み合いが可能になっている一対の凹凸ロール401,402を備えている。一対の凹凸ロール401,402は、加熱可能に形成されており、それぞれ、大径凸部403,404と小径凹部(図示せず)とがロール軸方向に交互に配されて形成されている。凹凸ロール401,402は加熱してもしなくても良いが、凹凸ロール401,402を加熱する場合の加熱温度は、後述する繊維シート1aの構成繊維11の含む高伸度繊維を延伸し易くする観点から、高伸度繊維内の最もガラス転移点が高い樹脂のガラス転移点以上、高伸度繊維内の最も融点が低い樹脂の融点以下にすることが好ましい。より好ましくは、繊維のガラス転移点より10℃高い温度以上、融点よりも10℃低い温度以下であり、更に好ましくは繊維のガラス転移点より20℃高い温度以上、融点よりも20℃低い温度以下である。例えば、繊維に芯/鞘構造の繊維として、ガラス転移点67℃、融点258℃のPET(芯)/ガラス転移点-20℃、融点135℃のPE(鞘)を用いた際に加熱する場合には、67℃以上、135℃以下が好ましい、より好ましくは77℃以上、125℃以下、更に好ましくは87℃以上、115℃以下に加温する。 As shown in FIGS. 11 and 12, the stretching unit 400 includes a pair of concave and convex rolls 401 and 402 that can be engaged with each other. The pair of concave and convex rolls 401 and 402 are formed so as to be heatable, and are formed by alternately arranging large-diameter convex portions 403 and 404 and small-diameter concave portions (not shown) in the roll axis direction. The uneven rolls 401 and 402 may or may not be heated, but the heating temperature when heating the uneven rolls 401 and 402 makes it easy to stretch the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a described later. From the viewpoint, it is preferable to be not less than the glass transition point of the resin having the highest glass transition point in the high elongation fiber and not more than the melting point of the resin having the lowest melting point in the high elongation fiber. More preferably, the temperature is 10 ° C. higher than the glass transition point of the fiber and 10 ° C. lower than the melting point, more preferably 20 ° C. higher than the glass transition point of the fiber and 20 ° C. lower than the melting point. It is. For example, when a fiber having a core / sheath structure of PET (core) having a glass transition point of 67 ° C. and a melting point of 258 ° C./PE (sheath) having a glass transition point of −20 ° C. and a melting point of 135 ° C. is used as the fiber. The temperature is preferably 67 ° C. or higher and 135 ° C. or lower, more preferably 77 ° C. or higher and 125 ° C. or lower, still more preferably 87 ° C. or higher and 115 ° C. or lower.
 また、製造装置100Bにおいては、図13に示すように、凹凸ロール401のロール軸方向に隣り合う大径凸部どうし403,403の間隔(ピッチ)、及び凹凸ロール402のロール軸方向に隣り合う大径凸部どうし404,404の間隔(ピッチ)が同じ間隔(ピッチ)wであり、間隔(ピッチ)wは、繊維シート1aの構成繊維11の含む高伸度繊維が延伸装置内で首尾よく引き伸ばされて、先に述べた小径部から大径部への変化点が融着部に隣接され、肌触りが良好となる観点から、好ましくは1mm以上であり、特に好ましくは1.5mm以上であり、そして、好ましくは10mm以下であり、特に好ましくは8mm以下であり、具体的には、好ましくは1mm以上10mm以下であり、特に好ましくは1.5mm以上8mm以下である。同様の観点から、図13に示すように、一対の凹凸ロール401,402の押し込み量t(ロール軸方向に隣り合う大径凸部403の頂点と大径凸部404の頂点との間隔)は、好ましくは1mm以上であり、特に好ましくは1.2mm以上であり、そして、好ましくは3mm以下であり、特に好ましくは2.5mm以下であり、具体的には、好ましくは1mm以上3mm以下であり、特に好ましくは1.2mm以上2.5mm以下である。そして機械延伸倍率は、同様の観点から、好ましくは1.5倍以上であり、特に好ましくは1.7倍以上であり、そして、好ましくは3.0倍以下であり、特に好ましくは2.8倍以下であり、具体的には、好ましくは1.5倍以上3.0倍以下であり、特に好ましくは1.7倍以上2.8倍以下である。 Further, in the manufacturing apparatus 100B, as shown in FIG. 13, the interval (pitch) between the large-diameter convex portions 403, 403 adjacent to each other in the roll axis direction of the uneven roll 401 and the roll axis direction of the uneven roll 402 are adjacent to each other. The spacing (pitch) between the large-diameter convex portions 404 and 404 is the same spacing (pitch) w, and the spacing (pitch) w is such that the high elongation fibers included in the constituent fibers 11 of the fiber sheet 1a are successfully used in the stretching apparatus. From the viewpoint of extending and extending the previously described change point from the small-diameter portion to the large-diameter portion adjacent to the fused portion and improving the touch, it is preferably 1 mm or more, particularly preferably 1.5 mm or more. And preferably 10 mm or less, particularly preferably 8 mm or less, specifically preferably 1 mm or more and 10 mm or less, particularly preferably 1.5 mm or more and 8 mm. It is below. From the same viewpoint, as shown in FIG. 13, the pressing amount t of the pair of concave and convex rolls 401 and 402 (the distance between the vertex of the large-diameter convex portion 403 and the vertex of the large-diameter convex portion 404 adjacent in the roll axis direction) is The thickness is preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, and specifically preferably 1 mm or more and 3 mm or less. Especially preferably, it is 1.2 mm or more and 2.5 mm or less. From the same viewpoint, the mechanical stretch ratio is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, particularly preferably 2.8. More specifically, it is preferably 1.5 times or more and 3.0 times or less, and particularly preferably 1.7 times or more and 2.8 times or less.
 以上の構成を有する製造装置100Bを用いた不織布1Bの製造方法について説明する。
 先ず、図11に示すように、ウエブ形成部200にて、高伸度繊維を有する短繊維状の構成繊維11を原料として用い、カード機であるウエブ形成装置201によって繊維ウエブ10を形成する(ウエブ形成工程)。ウエブ形成装置201によって製造された繊維ウエブ10は、その構成繊維11どうしが緩く絡合した状態にあり、シートとしての保形性を獲得するには至っていない。
The manufacturing method of the nonwoven fabric 1B using the manufacturing apparatus 100B which has the above structure is demonstrated.
First, as shown in FIG. 11, the web forming unit 200 uses the short fiber-shaped constituent fiber 11 having high elongation fibers as a raw material, and the fiber web 10 is formed by the web forming apparatus 201 which is a card machine ( Web forming step). The fiber web 10 manufactured by the web forming apparatus 201 is in a state where the constituent fibers 11 are loosely entangled with each other, and has not yet achieved shape retention as a sheet.
 次いで、図11に示すように、高伸度繊維を含む繊維ウエブ10の構成繊維11同士の交点を融着部12にて熱融着して繊維シート1aを形成する(融着工程)。具体的には、繊維ウエブ10は、コンベアベルト302上に搬送され、熱風処理部300にて、フード301内を通過する間に、熱風がエアースルー方式で吹き付けられる。このようにエアースルー方式で熱風が吹き付けられると、繊維ウエブ10の構成繊維11同士が更に交絡すると同時に、絡合した繊維の交点が熱融着して(図14(a)参照)、シート状の保形性を有する繊維シート1aが製造される。 Next, as shown in FIG. 11, the fiber sheet 1 a is formed by heat-sealing the intersections of the constituent fibers 11 of the fiber web 10 including high elongation fibers at the fusion part 12 (fusing step). Specifically, the fiber web 10 is conveyed onto the conveyor belt 302, and hot air is blown in an air-through manner while passing through the hood 301 by the hot air processing unit 300. When hot air is thus blown by the air-through method, the constituent fibers 11 of the fiber web 10 are further entangled, and at the same time, the intersection of the entangled fibers is thermally fused (see FIG. 14 (a)) to form a sheet. A fiber sheet 1a having a shape-retaining property is manufactured.
 次いで、図11に示すように、融着された繊維ウエブ1aを一方向に延伸する(延伸工程)。具体的には、シートとしての保形性を有する融着された繊維ウエブ1aを、一対の凹凸ロール401,402の間に搬送して、図14(a)~図14(c)に示すように、繊維ウエブ1aを延伸して、隣り合う融着部12,12どうしの間の1本の構成繊維11に、繊維径の小さい2個の小径部16,16に挟まれた繊維径の大きい大径部17を形成すると共に、該小径部16から該大径部17への変化点18を、該融着部12から隣り合う該融着部12,12どうしの間隔Tの1/3の範囲内に形成する。詳述すると、図14(a)に示すような、構成繊維11同士の交点が融着部12にて熱融着している繊維シート1aを、一対の凹凸ロール401,402の間に搬送して、繊維ウエブ1aを、機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)に延伸する。繊維シート1aが直交方向(CD,ロール軸方向)に延伸される際には、図14(a)に示す、構成繊維11同士を固定している隣り合う該融着部12,12どうしの間の領域が、直交方向(CD,ロール軸方向)に積極的に引き伸ばされる。特に、図14(b)に示すように、構成繊維11同士を固定している各融着部12の近傍で、先ず局部収縮が起こり易く、隣り合う融着部12,12どうしの間の1本の構成繊維11に関しては、両端に2個の小径部16,16が形成され、該2個の小径部16,16に挟まれた部分が大径部17となり、2個の小径部16,16に挟まれた大径部17が形成される。このように、各融着部12の近傍で、先ず局部収縮が起こり易いので、小径部16から大径部17への変化点18が、該融着部12から隣り合う該融着部12,12どうしの間隔Tの1/3の範囲内に形成される。 Next, as shown in FIG. 11, the fused fiber web 1a is stretched in one direction (stretching step). Specifically, the fused fiber web 1a having a shape-retaining property as a sheet is conveyed between a pair of concave and convex rolls 401 and 402, as shown in FIGS. 14 (a) to 14 (c). In addition, the fiber web 1a is stretched, and a large fiber diameter is sandwiched between two small- diameter portions 16 and 16 having a small fiber diameter in one constituent fiber 11 between adjacent fusion portions 12 and 12. The large diameter portion 17 is formed, and the change point 18 from the small diameter portion 16 to the large diameter portion 17 is set to 1/3 of the interval T between the fusion portions 12, 12 adjacent to the fusion portion 12. Form within the range. Specifically, as shown in FIG. 14A, the fiber sheet 1a in which the intersections of the constituent fibers 11 are heat-sealed at the fusion part 12 is conveyed between a pair of concave and convex rolls 401 and 402. Then, the fiber web 1a is stretched in the orthogonal direction (CD, roll axis direction) orthogonal to the machine direction (MD, flow direction). When the fiber sheet 1a is stretched in the orthogonal direction (CD, roll axis direction), the adjacent fused portions 12, 12 fixing the constituent fibers 11 shown in FIG. Is actively stretched in the orthogonal direction (CD, roll axis direction). In particular, as shown in FIG. 14B, local contraction is likely to occur first in the vicinity of each fusion part 12 that fixes the constituent fibers 11, and 1 between the adjacent fusion parts 12, 12. With respect to the constituent fiber 11, two small- diameter portions 16, 16 are formed at both ends, and a portion sandwiched between the two small- diameter portions 16, 16 becomes a large-diameter portion 17. A large-diameter portion 17 sandwiched between 16 is formed. In this way, local contraction is likely to occur in the vicinity of each fusion part 12, so that the change point 18 from the small diameter part 16 to the large diameter part 17 is adjacent to the fusion part 12 adjacent to the fusion part 12. It is formed within a range of 1/3 of the interval T between the twelve.
 そして、一部の隣り合う融着部12,12どうしの間の1本の構成繊維11に関しては、図14(c)に示すように、伸長できる余地(伸びしろ)を残した状態で、更に直交方向(CD,ロール軸方向)に延伸され、該隣り合う融着部12,12どうしの間の大径部17が延伸され、大径部17の中に小径部16が形成されるようになる。 Then, with respect to one constituent fiber 11 between some adjacent fused portions 12, 12, as shown in FIG. 14 (c), in a state in which there is left a room for expansion (extension margin), It is stretched in the orthogonal direction (CD, roll axis direction), the large diameter portion 17 between the adjacent fused portions 12, 12 is stretched, and the small diameter portion 16 is formed in the large diameter portion 17. Become.
 以上のように、製造装置100Bを用いた不織布1Bの製造方法によれば、図10に示す構成繊維11を備える不織布1Bを連続的に効率よく製造することができる。製造された不織布1Bは、図11に示すように、一旦巻き取られてロールの形態で保管された後、該ロールから繰り出されて使用される。或いは、不織布1Bの製造装置100Bの後工程ラインにおいて、加工が施されて、目的とする製品が連続的に製造される。 As mentioned above, according to the manufacturing method of the nonwoven fabric 1B using the manufacturing apparatus 100B, the nonwoven fabric 1B provided with the structural fiber 11 shown in FIG. 10 can be manufactured continuously and efficiently. As shown in FIG. 11, the manufactured nonwoven fabric 1B is once wound up and stored in the form of a roll, and then is unwound from the roll and used. Or in the post-process line of the manufacturing apparatus 100B of the nonwoven fabric 1B, a process is given and the target product is manufactured continuously.
 以上のように製造された不織布1Bは、図10に示すように、構成繊維11の内の1本の構成繊維11に着目して、融着部12に隣接する小径部16から大径部17への変化点18が、該融着部12から隣り合う融着部12,12どうしの間隔Tの1/3の範囲内に配されているので、柔らかく、肌触りに関して良好となる。特に、1本の構成繊維11に着目して、隣り合う融着部12,12どうしの間に、小径部16が複数形成されていれば、肌触りに関して更に良好となる。このような効果を奏し易い観点から、構成繊維11は、高伸度繊維のみからなることが好ましい。 As shown in FIG. 10, the nonwoven fabric 1 </ b> B manufactured as described above pays attention to one constituent fiber 11 among the constituent fibers 11, and the small diameter portion 16 to the large diameter portion 17 adjacent to the fused portion 12. Since the change point 18 is arranged within a range of 3 of the interval T between the adjacent fused portions 12, 12 from the fused portion 12, it is soft and good in terms of touch. In particular, if a plurality of small-diameter portions 16 are formed between the adjacent fused portions 12 and 12 while paying attention to one constituent fiber 11, the touch is further improved. From the viewpoint of easily exhibiting such an effect, the constituent fibers 11 are preferably made of only high elongation fibers.
 仮に、構成繊維11に弾性繊維が入っている場合、不織布が収縮されながら延伸されるため、不織布1Bの製造方法と機械延伸倍率が同じ場合であっても、繊維径の変化が起こりにくい。その為、極端に繊維径が変化する部位である変化点18が、構成繊維11に弾性繊維が入っている場合、できにくく、小径部16から大径部17へ、連続的に漸次変化する部位が形成されやすくなる。このように形成される連続的に漸次変化する部位は、弾性繊維が入っているため、融着点付近で局部的に延伸されるとは限らず、融着点付近というよりもランダムに観察されるようになる。尚、肌触りを更に良好とする観点からも、構成繊維11に弾性繊維を含まないほうが好ましい。 If elastic fibers are contained in the constituent fibers 11, the nonwoven fabric is stretched while being contracted. Therefore, even if the manufacturing method of the nonwoven fabric 1B and the mechanical stretch ratio are the same, the fiber diameter hardly changes. Therefore, the change point 18 which is a part where the fiber diameter changes extremely is difficult when the elastic fiber is contained in the constituent fiber 11, and the part which changes gradually from the small diameter part 16 to the large diameter part 17 continuously. Is easily formed. The continuously and gradually changing portion formed in this way is not necessarily stretched locally near the fusion point because it contains elastic fibers, and is observed randomly rather than near the fusion point. Become so. In addition, it is preferable that the constituent fibers 11 do not include elastic fibers from the viewpoint of further improving the touch.
 また、不織布1Bは、凹凸構造の不織布であり、側部域13cの繊維密度が、頂部域13aの繊維密度及び底部域13bの繊維密度よりも小さく形成されている。その為、側部域13cの繊維間距離が、頂部域13a及び底部域13bの繊維間距離よりも広いので、不織布1B全体として、通気性、通液性が向上する。更に、側部域13cの繊維密度がもっとも小さく形成されることにより、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現することができる。 Moreover, the nonwoven fabric 1B is a nonwoven fabric with a concavo-convex structure, and the fiber density of the side region 13c is smaller than the fiber density of the top region 13a and the fiber density of the bottom region 13b. Therefore, since the interfiber distance of the side region 13c is wider than the interfiber distance of the top region 13a and the bottom region 13b, the air permeability and liquid permeability are improved as the entire nonwoven fabric 1B. Furthermore, when the fiber density of the side region 13c is formed to be the smallest, the ridge portion 13 can easily follow the movement of the wearer's skin, and good skin contact can be realized.
 また、不織布1Bは、凹凸構造の不織布であり、側部域13cを構成する1本の構成繊維11の有する変化点18の数が、頂部域13aを構成する1本の構成繊維11の有する変化点18の数及び底部域13bを構成する1本の構成繊維11の有する変化点18の数よりも多く形成されている。その為、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌当たりを実現する効果を奏する。 Moreover, the nonwoven fabric 1B is a nonwoven fabric with a concavo-convex structure, and the number of change points 18 included in one constituent fiber 11 constituting the side region 13c is changed by one constituent fiber 11 constituting the top region 13a. More than the number of the change points 18 which the number of the points 18 and the one component fiber 11 which comprises the bottom region 13b have are formed. Therefore, it becomes easy for the ridge 13 to follow the movement of the wearer's skin, and there is an effect of realizing good skin contact.
 本発明(第1発明)の不織布は、上述の本実施形態の不織布1Aに何ら制限されるものではなく、適宜変更可能である。
 また、本発明(第1発明)の不織布の製造方法は、上述の実施態様の製造方法に何ら制限されるものではなく、適宜変更可能である。
The nonwoven fabric of this invention (1st invention) is not restrict | limited at all to the nonwoven fabric 1A of the above-mentioned this embodiment, It can change suitably.
Moreover, the manufacturing method of the nonwoven fabric of this invention (1st invention) is not restrict | limited to the manufacturing method of the above-mentioned embodiment at all, and can be changed suitably.
 例えば、不織布1Aは、図1に示すように、一方向(X方向)に延びる筋状の凸条部13及び凹条部14が交互に配された凹凸構造の不織布であるが、凸部がX方向及びY方向の各方向に間欠的に列をなすように一定の間隔で配されて、千鳥格子状の配置パターンをなしている三次元の凹凸構造の不織布であってもよい。また、凹凸構造の保形性を向上させる観点から、別の不織布の上に凹凸構造の不織布を配して貼り合せたり、凹凸構造の不織布にエンボス加工を施してもよい。また、不織布1Aは、凹凸構造ではなく、フラットな構造の不織布であってもよい。 For example, as shown in FIG. 1, the nonwoven fabric 1 </ b> A is a nonwoven fabric having a concavo-convex structure in which streaky ridges 13 and ridges 14 extending in one direction (X direction) are alternately arranged. It may be a non-woven fabric having a three-dimensional concavo-convex structure that is arranged at regular intervals so as to form rows intermittently in each direction of the X direction and the Y direction and forms a staggered arrangement pattern. Further, from the viewpoint of improving the shape retention of the concavo-convex structure, the concavo-convex structure non-woven fabric may be disposed on another non-woven fabric and bonded, or the concavo-convex structure non-woven fabric may be embossed. Moreover, the nonwoven fabric 1A may be a nonwoven fabric having a flat structure instead of the uneven structure.
 また、上述した製造装置100を用いた不織布1Aの製造方法によれば、繊維ウエブ1aを、機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)に延伸しているが、機械方向(MD,流れ方向)に延伸してもよい。このように機械方向(MD,流れ方向)に延伸する場合には、互いに噛み合う一対の凹凸ロール401,402の備える凸部が、回転軸方向に沿うように周面に配されていればよい。 Moreover, according to the manufacturing method of 1 A of nonwoven fabrics using the manufacturing apparatus 100 mentioned above, although the fiber web 1a is extended | stretched in the orthogonal direction (CD, roll axial direction) orthogonal to a machine direction (MD, flow direction). The film may be stretched in the machine direction (MD, flow direction). Thus, when extending | stretching to a machine direction (MD, a flow direction), the convex part with which a pair of uneven | corrugated roll 401,402 which meshes | engages mutually should just be distribute | arranged to the surrounding surface so that a rotating shaft direction may be followed.
 また、上述した製造装置100を用いた不織布1Aの製造方法によれば、ウエブ形成部200を用いるウエブ形成工程と、熱風処理部300を用いる融着工程との間、又は熱風処理部300を用いる融着工程と、延伸部400を用いる延伸工程との間に繊維処理剤塗布部を用いる塗布工程を設けてもよい。該塗布工程は、延伸部400を用いる延伸工程の前にあればよい。 Moreover, according to the manufacturing method of 1 A of nonwoven fabrics using the manufacturing apparatus 100 mentioned above, between the web formation process using the web formation part 200 and the melt | fusion process using the hot air processing part 300, or the hot air processing part 300 is used. You may provide the application | coating process which uses a fiber treatment agent application part between a melt | fusion process and the extending | stretching process using the extending part 400. FIG. The coating process may be performed before the stretching process using the stretching unit 400.
 本発明(第2発明)の不織布は、上述の本実施形態の不織布1Bに何ら制限されるものではなく、適宜変更可能である。
 また、本発明(第2発明)の不織布の製造方法は、上述の実施態様の製造方法に何ら制限されるものではなく、適宜変更可能である。
The nonwoven fabric of this invention (2nd invention) is not restrict | limited to the nonwoven fabric 1B of this embodiment mentioned above at all, It can change suitably.
Moreover, the manufacturing method of the nonwoven fabric of this invention (2nd invention) is not restrict | limited at all to the manufacturing method of the above-mentioned embodiment, It can change suitably.
 例えば、不織布1Bは、図8に示すように、一方向(X方向)に延びる筋状の凸条部13及び凹条部14が交互に配された凹凸構造の不織布であるが、凸部がX方向及びY方向の各方向に間欠的に列をなすように一定の間隔で配されて、千鳥格子状の配置パターンをなしている三次元の凹凸構造の不織布であってもよい。また、凹凸構造の保形性を向上させる観点から、別の不織布の上に凹凸構造の不織布を配して貼り合せたり、凹凸構造の不織布にエンボス加工を施してもよい。また、不織布1Bは、凹凸構造ではなく、フラットな構造の不織布であってもよい。 For example, as shown in FIG. 8, the nonwoven fabric 1B is a nonwoven fabric having a concavo-convex structure in which streak-like convex portions 13 and concave portions 14 extending in one direction (X direction) are alternately arranged. It may be a non-woven fabric having a three-dimensional concavo-convex structure that is arranged at regular intervals so as to form rows intermittently in each direction of the X direction and the Y direction and forms a staggered arrangement pattern. Further, from the viewpoint of improving the shape retention of the concavo-convex structure, the concavo-convex structure non-woven fabric may be disposed on another non-woven fabric and bonded, or the concavo-convex structure non-woven fabric may be embossed. Moreover, the nonwoven fabric 1B may be a nonwoven fabric with a flat structure instead of the uneven structure.
 また、上述した製造装置100Bを用いた不織布1Bの製造方法によれば、繊維ウエブ1aを、機械方向(MD,流れ方向)に直交する直交方向(CD,ロール軸方向)に延伸しているが、機械方向(MD,流れ方向)に延伸してもよい。このように機械方向(MD,流れ方向)に延伸する場合には、互いに噛み合う一対の凹凸ロール401,402の備える凸部が、回転軸方向に沿うように周面に配されていればよい。 Moreover, according to the manufacturing method of the nonwoven fabric 1B using the manufacturing apparatus 100B mentioned above, although the fiber web 1a is extended | stretched in the orthogonal direction (CD, roll axial direction) orthogonal to a machine direction (MD, flow direction). The film may be stretched in the machine direction (MD, flow direction). Thus, when extending | stretching to a machine direction (MD, a flow direction), the convex part with which a pair of uneven | corrugated roll 401,402 which meshes | engages mutually should just be distribute | arranged to the surrounding surface so that a rotating shaft direction may be followed.
 上述した一の実施形態における説明省略部分及び一の実施形態のみが有する要件は、それぞれ他の実施形態に適宜適用することができ、また、各実施形態における要件は、適宜、実施形態間で相互に置換可能である。 The description omitted in one embodiment described above and the requirements of only one embodiment can be applied to other embodiments as appropriate, and the requirements in each embodiment can be appropriately changed between the embodiments. Can be substituted.
 上述した実施形態に関し、さらに以下の不織布を開示する。 The following non-woven fabrics are further disclosed with respect to the embodiment described above.
<1>
 構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布であって、
 前記構成繊維は、高伸度繊維を含み、
 1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有しており、
 前記小径部の親水度が、前記大径部の親水度よりも小さい不織布。
<1>
A non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
The constituent fibers include high elongation fibers,
Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. And
A nonwoven fabric in which the hydrophilicity of the small diameter portion is smaller than the hydrophilicity of the large diameter portion.
<2>
 前記小径部の接触角と前記大径部の接触角との差(前者-後者)が、1度以上、更に好ましくは5度以上、一層好ましくは10度以上であり、好ましくは25度以下、更に好ましくは20度以下、一層好ましくは15度以下であり、具体的には、好ましくは1度以上25度以下、更に好ましくは5度以上20度以下、一層好ましくは10度以上15度以下である前記<1>に記載の不織布。
<3>
 前記小径部の接触角は、好ましくは60度以上、更に好ましくは70度以上、一層好ましくは80度以上であり、好ましくは100度以下、更に好ましくは95度以下、一層好ましくは90度以下であり、具体的には、好ましくは60度以上100度以下、更に好ましくは70度以上95度以下、一層好ましくは80度以上90度以下である前記<1>又は<2>に記載の不織布。
<4>
 前記大径部の接触角は、好ましくは55度以上、更に好ましくは60度以上、一層好ましくは65度以上であり、好ましくは90度以下、更に好ましくは85度以下、一層好ましくは80度以下であり、具体的には、好ましくは55度以上90度以下、更に好ましくは60度以上85度以下、一層好ましくは65度以上80度以下である前記<1>~<3>の何れか1に記載の不織布。
<5>
 前記大径部の繊維径(直径L17)に対する前記小径部の繊維径(直径L16)の比率(L16/L17)は、好ましくは0.5以上、更に好ましくは0.55以上、そして、好ましくは0.8以下、更に好ましくは0.7以下であり、具体的には、好ましくは0.5以上0.8以下、更に好ましくは0.55以上0.7以下である前記<1>~<4>の何れか1に記載の不織布。
<6>
 前記融着部に隣接する前記小径部から前記大径部への変化点が、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されており、
 前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布であり、
 前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
 前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
 前記頂部域を構成する構成繊維における変化点を有する繊維の本数(N13)、又は前記底部域を構成する構成繊維における変化点を有する繊維の本数(N14)に対する前記側部域を構成する構成繊維における変化点を有する繊維の本数(N15)の比率(N15/N13,N15/N14)は、好ましくは2以上、更に好ましくは5以上であり、そして、好ましくは20以下、更に好ましくは20以下であり、具体的には、2以上20以下、好ましくは5以上20以下である前記<1>~<5>の何れか1に記載の不織布。
<7>
 前記構成繊維には、繊維処理剤が付着しており、
 前記繊維処理剤は、延展性のある成分を含んでいる前記<1>~<6>の何れか1に記載の不織布。
<8>
 前記延展性のある成分は、繊維の表面に付着させると、繊維の表面に低温で広がり易く、低温での流動性に優れた成分である前記<7>に記載の吸収性物品。
<9>
 前記延展性のある成分は、ポリオルガノシロキサンである前記<7>又は<8>に記載の不織布。
<10>
 前記ポリオルガノシロキサンは、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリジプロピルシロキサンから選ばれる前記<9>に記載の不織布。
<11>
 前記繊維処理剤は更に、親水性の成分を含んでいる前記<7>~<10>の何れか1に記載の不織布。
<2>
The difference between the contact angle of the small diameter portion and the contact angle of the large diameter portion (the former-the latter) is 1 degree or more, more preferably 5 degrees or more, more preferably 10 degrees or more, preferably 25 degrees or less, More preferably, it is 20 degrees or less, more preferably 15 degrees or less, specifically, preferably 1 degree or more and 25 degrees or less, more preferably 5 degrees or more and 20 degrees or less, more preferably 10 degrees or more and 15 degrees or less. The nonwoven fabric as described in <1>.
<3>
The contact angle of the small diameter portion is preferably 60 degrees or more, more preferably 70 degrees or more, more preferably 80 degrees or more, preferably 100 degrees or less, more preferably 95 degrees or less, and more preferably 90 degrees or less. Specifically, the nonwoven fabric according to <1> or <2>, which is preferably 60 ° to 100 °, more preferably 70 ° to 95 °, and still more preferably 80 ° to 90 °.
<4>
The contact angle of the large-diameter portion is preferably 55 degrees or more, more preferably 60 degrees or more, more preferably 65 degrees or more, preferably 90 degrees or less, more preferably 85 degrees or less, more preferably 80 degrees or less. Specifically, any one of the above items <1> to <3>, preferably 55 ° to 90 °, more preferably 60 ° to 85 °, and still more preferably 65 ° to 80 °. The nonwoven fabric described in 1.
<5>
The ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter portion to the fiber diameter (diameter L 17 ) of the large diameter portion is preferably 0.5 or more, more preferably 0.55 or more, And it is preferably 0.8 or less, more preferably 0.7 or less, specifically, preferably 0.5 or more and 0.8 or less, more preferably 0.55 or more and 0.7 or less. The nonwoven fabric according to any one of 1> to <4>.
<6>
The changing point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part,
The non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged,
The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
The side region is configured with respect to the number (N 13 ) of fibers having change points in the constituent fibers constituting the top region or the number of fibers (N 14 ) having change points in the constituent fibers constituting the bottom region. The ratio (N 15 / N 13 , N 15 / N 14 ) of the number of fibers (N 15 ) having a change point in the constituent fibers is preferably 2 or more, more preferably 5 or more, and preferably 20 or less. The nonwoven fabric according to any one of <1> to <5>, more preferably 20 or less, specifically 2 or more and 20 or less, preferably 5 or more and 20 or less.
<7>
A fiber treating agent is attached to the constituent fibers,
The nonwoven fabric according to any one of <1> to <6>, wherein the fiber treatment agent contains a spreadable component.
<8>
The absorbent article according to <7>, wherein the spreadable component is a component that, when attached to a fiber surface, easily spreads on the fiber surface at a low temperature and has excellent fluidity at a low temperature.
<9>
The non-woven fabric according to <7> or <8>, wherein the spreadable component is polyorganosiloxane.
<10>
The non-woven fabric according to <9>, wherein the polyorganosiloxane is selected from polydimethylsiloxane, polydiethylsiloxane, and polydipropylsiloxane.
<11>
The nonwoven fabric according to any one of <7> to <10>, wherein the fiber treatment agent further contains a hydrophilic component.
<12>
 前記親水性の成分は、両性イオン性の界面活性剤、或いはノニオン性の界面活性剤を用いる前記<11>に記載の不織布。
<13>
 前記両性イオン性の界面活性剤は、ベタイン型両性イオン性界面活性剤、好ましくはアルキル(炭素数1~30)ベタイン、より好ましくは炭素数16~22(例えばステアリル)のアルキルベタインである前記<12>に記載の不織布。
<14>
 前記ノニオン性の界面活性剤は、グリセリン脂肪酸エステル、ポリ(好ましくはn=2~10)グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、多価アルコール脂肪酸エステル(いずれも好ましくは脂肪酸の炭素数8~60)、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)アミド、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)エーテル、ポリオキシアルキレン変性シリコーン、アミノ変性シリコーンから選ばれる前記<12>に記載の不織布。
<15>
 前記繊維処理剤は更に、疎水性の成分を含有している前記<7>~<14>の何れか1に記載の不織布。
<16>
 前記疎水性の成分は、アルキルリン酸エステル、下記の一般式(1)で表されるアニオン界面活性剤等から選ばれる前記<15>に記載の不織布。
Figure JPOXMLDOC01-appb-C000007
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表し、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表し、Xは―SO3M、―OSO3M又は―COOMを表し、MはH、Na、K、Mg、Ca又はアンモニウムを表す。)
<17>
 前記アルキルリン酸エステルは、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和又は部分中和塩である前記<16>に記載の不織布。
<18>
 前記構成繊維は、高伸度繊維のみからなる前記<1>~<17>の何れか1に記載の不織布。
<12>
The hydrophilic component according to <11>, wherein the hydrophilic component uses a zwitterionic surfactant or a nonionic surfactant.
<13>
The zwitterionic surfactant is a betaine-type zwitterionic surfactant, preferably an alkyl (one having 30 to 30 carbon atoms) betaine, more preferably an alkyl betaine having 16 to 22 carbon atoms (eg stearyl). 12>.
<14>
The nonionic surfactant is glycerin fatty acid ester, poly (preferably n = 2 to 10) glycerin fatty acid ester, sorbitan fatty acid ester, polyhydric alcohol fatty acid ester (all preferably having 8 to 60 carbon atoms of fatty acid), Polyoxyalkylene (added mole number 2 to 20) alkyl (carbon number 8 to 22) amide, polyoxyalkylene (added mole number 2 to 20) alkyl (carbon number 8 to 22) ether, polyoxyalkylene-modified silicone, amino-modified The nonwoven fabric according to <12>, selected from silicones.
<15>
The nonwoven fabric according to any one of <7> to <14>, wherein the fiber treatment agent further contains a hydrophobic component.
<16>
The non-woven fabric according to <15>, wherein the hydrophobic component is selected from an alkyl phosphate ester, an anionic surfactant represented by the following general formula (1), and the like.
Figure JPOXMLDOC01-appb-C000007
(Wherein Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms, which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
<17>
The nonwoven fabric according to <16>, wherein the alkyl phosphate ester is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having 16 to 18 carbon chains.
<18>
The nonwoven fabric according to any one of the above items <1> to <17>, wherein the constituent fibers are composed of only high elongation fibers.
<19>
 高伸度繊維は、弾性(エラストマー)を有して伸縮する伸縮性繊維を除き、低速で溶融紡糸して複合繊維を得た後に、延伸処理を行わずに加熱処理及び/又は捲縮処理を行うことにより得られる加熱により樹脂の結晶状態が変化して長さの延びる熱伸長性繊維、或いは、ポリプロピレンやポリエチレン等の樹脂を用いて比較的紡糸速度を低い条件にして製造した繊維、又は、結晶化度の低い、ポリエチレン-ポリプロピレン共重合体、若しくはポリプロピレンに、ポリエチレンをドライブレンドし紡糸して製造した繊維から選ばれる前記<18>に記載の不織布。
<20>
 前記不織布における高伸度繊維の割合は、50質量%以上であり、好ましくは80質量%以上であり、そして、殊更好ましくは100質量%である前記<18>又は<19>に記載の不織布。
<21>
 前記高伸度繊維とは、原料の繊維の段階で高伸度である繊維のみならず、製造された前記不織布の段階でも高伸度である繊維を意味する前記<1>~<20>の何れか1に記載の不織布。
<22>
 前記高伸度繊維の伸度は、原料の段階で、100%以上であることが好ましく、より好ましくは200%以上であり、更に好ましくは250%以上であり、そして、800%以下であることが好ましく、より好ましくは500%以下であり、更に好ましくは400%以下であり、具体的には、100%以上800%以下、好ましくは200%以上500%以下、更に好ましくは250%以上400%以下である前記<18>~<21>の何れか1に記載の不織布。
<23>
 前記高伸度繊維の伸度は、不織布の段階で、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上であることが好ましく、好ましくは200%以下であり、より好ましくは150%以下、更に好ましくは120%以下、具体的には60%以上200%以下であることが好ましく、より好ましくは70%以上170%以下、更に好ましくは80%以上150%以下である前記<18>~<22>の何れか1に記載の不織布。
<24>
 前記融着部に隣接する前記小径部から前記大径部への変化点が、前記融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されている前記<1>~<23>の何れか1に記載の不織布。
<25>
 1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部が複数配されている前記<1>~<24>の何れか1に記載の不織布。
<26>
 前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布である前記<1>~<25>の何れか1に記載の不織布。
<27>
 前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
 前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
 前記側部域の繊維密度が、前記頂部域の繊維密度及び前記底部域の繊維密度よりも小さい前記<26>に記載の不織布。
<28>
 前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
 前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
 前記側部域を構成する構成繊維における変化点を有する繊維の本数が、前記頂部域を構成する構成繊維における変化点を有する繊維の本数及び前記底部域を構成する構成繊維における変化点を有する繊維の本数よりも多い前記<25>又は<27>に記載の不織布。
<29>
 前記繊維処理剤を、前記構成繊維を含む繊維ウエブを延伸処理よりも前に、該構成繊維に付着させ、ポリエチレン樹脂の融点より十分に低い温度(例えば120℃以下)で乾燥させた構成繊維から形成されている前記<7>に記載の不織布。
<30>
 前記構成繊維同士の交点は接合点であり、該接合点が前記融着部である前記<1>~<29>の何れか1に記載の不織布。
<31>
 肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する吸収性物品であって、
 前記表面シートは、前記<1>~<30>の何れか1に記載の不織布で形成されている吸収性物品。
<19>
High-stretch fibers, excluding stretchable fibers that have elasticity (elastomer) and expand and contract, are subjected to heat treatment and / or crimping treatment without drawing treatment after melt spinning at low speed to obtain a composite fiber. Heat-extensible fibers whose length changes by changing the crystalline state of the resin by heating, or fibers produced under relatively low spinning speed using a resin such as polypropylene or polyethylene, or The non-woven fabric according to the above <18>, which is selected from polyethylene-polypropylene copolymer having a low crystallinity, or fibers produced by dry blending and spinning polyethylene in polypropylene.
<20>
The non-woven fabric according to <18> or <19>, wherein the ratio of the high elongation fiber in the nonwoven fabric is 50% by mass or more, preferably 80% by mass or more, and particularly preferably 100% by mass.
<21>
The high elongation fiber means not only a fiber having a high elongation at the raw material fiber stage, but also a fiber having a high elongation at the stage of the produced nonwoven fabric. The nonwoven fabric of any one.
<22>
The elongation of the high elongation fiber is preferably 100% or more at the raw material stage, more preferably 200% or more, still more preferably 250% or more, and 800% or less. More preferably 500% or less, still more preferably 400% or less, specifically 100% to 800%, preferably 200% to 500%, more preferably 250% to 400%. The nonwoven fabric according to any one of the above items <18> to <21>.
<23>
The elongation of the high elongation fiber is 60% or more, preferably 70% or more, more preferably 80% or more, preferably 200% or less, at the nonwoven fabric stage. Preferably it is 150% or less, more preferably 120% or less, specifically 60% or more and 200% or less, more preferably 70% or more and 170% or less, and further preferably 80% or more and 150% or less. The nonwoven fabric according to any one of <18> to <22>.
<24>
The change point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part. The nonwoven fabric according to any one of> to <23>.
<25>
The nonwoven fabric according to any one of <1> to <24>, in which a plurality of the large-diameter portions are arranged between the adjacent fused portions, paying attention to one of the constituent fibers.
<26>
The non-woven fabric according to any one of <1> to <25>, wherein the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged.
<27>
The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
The nonwoven fabric according to <26>, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
<28>
The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
The number of fibers having change points in the constituent fibers constituting the side region, the number of fibers having change points in the constituent fibers constituting the top region, and the change point in the constituent fibers constituting the bottom region The non-woven fabric according to <25> or <27>, which is more than the number of.
<29>
From the constituent fiber obtained by adhering the fiber treatment agent to the constituent fiber before the stretching treatment and drying the fiber web containing the constituent fiber at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) The nonwoven fabric according to <7>, which is formed.
<30>
The nonwoven fabric according to any one of <1> to <29>, wherein the intersection between the constituent fibers is a joining point, and the joining point is the fusion part.
<31>
An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets,
The absorbent article, wherein the top sheet is formed of the nonwoven fabric according to any one of <1> to <30>.
<32>
 構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布であって、
 前記構成繊維は、高伸度繊維を含み、
 1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有しており、
 前記融着部に隣接する前記小径部から前記大径部への変化点が、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されている、前記<1>~<30>の何れか1に記載の不織布。
<32>
A non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
The constituent fibers include high elongation fibers,
Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. And
The change point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part, The nonwoven fabric according to any one of 1> to <30>.
<33>
 前記小径部の繊維径(直径L16)は、好ましくは5μm以上、更に好ましくは6.5μm以上、特に好ましくは7.5μm以上であり、そして、好ましくは28μm以下、更に好ましくは20μm以下、特に好ましくは16μm以下であり、具体的には、好ましくは5μm以上28μm以下、更に好ましくは6.5μm以上20μm以下、特に好ましくは7.5μm以上16μm以下である前記<32>に記載の不織布。
<34>
 前記大径部の繊維径(直径L17)は、好ましくは10μm以上、更に好ましくは13μm以上、特に好ましくは15μm以上であり、好ましくは35μm以下、更に好ましくは25μm以下、特に好ましくは20μm以下であり、具体的には、好ましくは10μm以上35μm以下、更に好ましくは13μm以上25μm以下、特に好ましくは15μm以上20μm以下である前記<32>又は<32>の何れか1に記載の不織布。
<35>
 前記変化点は、延伸により繊維径が変化して形成されている前記<32>~<34>の何れか1に記載の不織布。
<36>
 前記不織布は、前記変化点を有する構成繊維を、20本の構成繊維の内に1本以上、好ましくは5本以上、更に好ましくは10本以上有する前記<32>~<35>の何れか1に記載の不織布。
<37>
 前記頂部域を構成する構成繊維における前記変化点を有する繊維の本数(N13)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である前記<6>に記載の吸収性物品。
<38>
 前記底部域を構成する構成繊維における前記変化点を有する繊維の本数(N14)は、好ましくは1本以上、更に好ましくは5本以上であり、そして、好ましくは15本以下、更に好ましくは15本以下であり、具体的には、好ましくは1本以上15本以下、更に好ましくは5本以上15本以下である前記<6>又は<37>に記載の不織布。
<39>
 前記側部域を構成する構成繊維における前記変化点を有する繊維の本数(N15)は、好ましくは5本以上、更に好ましくは10本以上であり、そして、好ましくは20本以下、更に好ましくは20本以下であり、具体的には、好ましくは5本以上20本以下、更に好ましくは10本以上20本以下である前記<6>、<37>又は<38>の何れか1に記載の不織布。
<33>
The fiber diameter (diameter L 16 ) of the small diameter portion is preferably 5 μm or more, more preferably 6.5 μm or more, particularly preferably 7.5 μm or more, and preferably 28 μm or less, more preferably 20 μm or less, particularly Preferably it is 16 micrometers or less, Specifically, Preferably they are 5 micrometers or more and 28 micrometers or less, More preferably, they are 6.5 micrometers or more and 20 micrometers or less, Especially preferably, they are 7.5 micrometers or more and 16 micrometers or less, The nonwoven fabric as described in said <32>.
<34>
The fiber diameter (diameter L 17 ) of the large diameter portion is preferably 10 μm or more, more preferably 13 μm or more, particularly preferably 15 μm or more, preferably 35 μm or less, more preferably 25 μm or less, particularly preferably 20 μm or less. Specifically, the nonwoven fabric according to any one of the above <32> or <32>, which is preferably 10 μm to 35 μm, more preferably 13 μm to 25 μm, and particularly preferably 15 μm to 20 μm.
<35>
The change point is the nonwoven fabric according to any one of <32> to <34>, wherein the fiber diameter is changed by stretching.
<36>
Any one of the above items <32> to <35>, wherein the nonwoven fabric has one or more, preferably 5 or more, more preferably 10 or more of the constituent fibers having the change point in the 20 constituent fibers. The nonwoven fabric described in 1.
<37>
The number (N 13 ) of fibers having the change point in the constituent fibers constituting the top region is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably 15 The absorbent article according to the above <6>, which is not more than the present, and specifically preferably not less than 1 and not more than 15 and more preferably not less than 5 and not more than 15.
<38>
The number (N 14 ) of fibers having the change point in the constituent fibers constituting the bottom region is preferably 1 or more, more preferably 5 or more, and preferably 15 or less, more preferably 15 The non-woven fabric according to the above <6> or <37>, which is not more than this, specifically preferably not less than 1 and not more than 15 and more preferably not less than 5 and not more than 15.
<39>
The number (N 15 ) of fibers having the change point in the constituent fibers constituting the side region is preferably 5 or more, more preferably 10 or more, and preferably 20 or less, more preferably It is 20 or less, specifically, preferably 5 or more and 20 or less, more preferably 10 or more and 20 or less, according to any one of the above <6>, <37> or <38> Non-woven fabric.
<40>
 前記構成繊維は、非弾性繊維のみからなる前記<32>~<39>の何れか1に記載の不織布。
<41>
 前記高伸度繊維の繊度は、原料の段階で、1.0dtex以上であることが好ましく、2.0dtex以上であることがより好ましく、そして、10.0dtex以下であることが好ましく、8.0dtex以下であることがより好ましく、具体的には、1.0dtex以上10.0dtex以下が好ましく、2.0dtex以上8.0dtex以下である前記<32>~<40>の何れか1に記載の不織布。
<42>
 1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部が複数配されている前記<32>~<41>の何れか1に記載の不織布。
<43>
 1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部を1個以上5個以下、好ましくは1個以上3個以下備えている前記<32>~<42>の何れか1に記載の不織布。
<40>
The non-woven fabric according to any one of <32> to <39>, wherein the constituent fibers are composed only of inelastic fibers.
<41>
The fineness of the high elongation fiber is preferably 1.0 dtex or more, more preferably 2.0 dtex or more, and preferably 10.0 dtex or less at the raw material stage, and 8.0 dtex or less. The non-woven fabric according to any one of the above <32> to <40>, more preferably 1.0 dtex or more and 10.0 dtex or less, and more preferably 2.0 dtex or more and 8.0 dtex or less. .
<42>
The nonwoven fabric according to any one of the above items <32> to <41>, in which a plurality of the large diameter portions are arranged between the adjacent fused portions by paying attention to one of the constituent fibers.
<43>
Paying attention to one of the constituent fibers, the above-mentioned <32> to-having the large-diameter portion of not less than 1 and not more than 5, preferably not less than 1 and not more than 3, between the adjacent fused portions. The nonwoven fabric according to any one of <42>.
<44>
 前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布である前記<32>~<43>の何れか1に記載の不織布。
<45>
 前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
 前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
 前記側部域の繊維密度が、該頂部域の繊維密度及び該底部域の繊維密度よりも小さい前記<44>に記載の不織布。
<46>
 前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布であり、
 前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
 前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
 前記頂部域での繊維密度(D13)、又は前記底部域での繊維密度(D14)に対する、前記底部域との間の壁部の繊維密度(D15)の比率(D15/D13,D15/D14)は、好ましくは0.15以上、更に好ましくは0.2以上であり、そして、好ましくは0.9以下、更に好ましくは0.8以下であり、具体的には、0.15以上0.9以下、好ましくは0.2以上0.8以下である前記<32>~<45>の何れか1に記載の不織布。
<47>
 前記頂部域での繊維密度(D13)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、80本/mm以上200本/mm以下、好ましくは90本/mm以上180本/mm以下である前記<46>に記載の不織布。
<48>
 前記底部域での繊維密度(D14)は、好ましくは80本/mm以上、更に好ましくは90本/mm以上であり、そして、好ましくは200本/mm以下、更に好ましくは180本/mm以下であり、具体的には、80本/mm以上200本/mm以下、好ましくは90本/mm以上180本/mm以下である前記<46>又は<47>に記載の不織布。
<49>
 前記底部域の繊維密度(D15)は、好ましくは30本/mm以上、更に好ましくは40本/mm以上であり、そして、好ましくは80本/mm以下、更に好ましくは70本/mm以下であり、具体的には、30本/mm以上80本/mm以下、好ましくは40本/mm以上70本/mm以下である前記<46>~<48>の何れか1に記載の不織布。
<50>
 前記側部域を構成する構成繊維における変化点を有する繊維の本数が、前記頂部域を構成する構成繊維における変化点を有する繊維の本数及び前記底部域を構成する構成繊維における変化点を有する繊維の本数よりも多い前記<45>~<49>の何れか1に記載の不織布。
<44>
The non-woven fabric according to any one of <32> to <43>, wherein the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and recesses extending in one direction are alternately arranged.
<45>
The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
The nonwoven fabric according to <44>, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
<46>
The non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged,
The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
Ratio (D 15 / D 13 ) of fiber density (D 15 ) of the wall portion between the bottom region and the fiber density (D 13 ) in the top region or the fiber density (D 14 ) in the bottom region , D 15 / D 14 ) is preferably 0.15 or more, more preferably 0.2 or more, and preferably 0.9 or less, more preferably 0.8 or less. Specifically, The nonwoven fabric according to any one of <32> to <45>, which is 0.15 or more and 0.9 or less, preferably 0.2 or more and 0.8 or less.
<47>
Fiber density at the top region (D 13) is preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 lines / Mm 2 or less, specifically, 80 / mm 2 or more and 200 / mm 2 or less, preferably 90 / mm 2 or more and 180 / mm 2 or less, according to <46>.
<48>
Fiber density at the bottom region (D 14) is preferably 80 present / mm 2 or more, more preferably 90 present / mm 2 or more, and preferably 200 present / mm 2 or less, more preferably 180 lines / mm 2 or less, specifically, 80 present / mm 2 or more 200 present / mm 2 or less, preferably 90 present / mm 2 or more 180 lines / mm 2 or less is the <46> or <47> The nonwoven fabric described.
<49>
The fiber density (D 15 ) in the bottom region is preferably 30 fibers / mm 2 or more, more preferably 40 fibers / mm 2 or more, and preferably 80 fibers / mm 2 or less, more preferably 70 fibers / mm 2. and mm 2 or less, specifically, 30 present / mm 2 or more eighty / mm 2 or less, either preferably at forty / mm 2 or more 70 yarns / mm 2 or less wherein the <46> - <48> Or the nonwoven fabric according to 1.
<50>
The number of fibers having change points in the constituent fibers constituting the side region, the number of fibers having change points in the constituent fibers constituting the top region, and the change point in the constituent fibers constituting the bottom region The nonwoven fabric according to any one of the above items <45> to <49>, which is more than the number of.
<51>
 繊維処理剤が付与された高伸度繊維を含む繊維ウエブの構成繊維同士の交点を融着部にて熱融着する融着工程と、
 前記融着工程の後に、融着された前記繊維ウエブを一方向に延伸する延伸工程とを備えた不織布の製造方法であって、
 前記延伸工程にて、前記繊維ウエブを延伸して、隣り合う前記融着部どうしの間の1本の前記構成繊維に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を形成すると共に、該小径部の親水度を該大径部の親水度よりも小さくする不織布の製造方法。
<51>
A fusion process in which the intersection of the constituent fibers of the fiber web including the high elongation fiber to which the fiber treatment agent is applied is thermally fused at the fusion part;
A non-woven fabric manufacturing method comprising a stretching step of stretching the fused fiber web in one direction after the fusing step,
In the stretching step, the fiber web is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter between one of the constituent fibers between the adjacent fused portions. A method for producing a nonwoven fabric, in which a diameter portion is formed and the hydrophilicity of the small diameter portion is made smaller than the hydrophilicity of the large diameter portion.
<52>
 前記延伸工程にて、前記繊維シートを延伸して、隣り合う前記融着部どうしの間の1本の前記構成繊維に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を形成すると共に、該小径部から該大径部への変化点を、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に形成する、前記<51>に記載の不織布の製造方法。
<53>
 前記不織布の製造方法に用いられる製造装置は延伸部を備えており、
 前記延伸部は、互いに噛み合いが可能になっている一対の第1凹凸ロール及び第2凹凸ロールを備えており、
 前記第1凹凸ロールのロール軸方向に隣り合う大径凸部どうしの間隔(ピッチ)w、及び前記第2凹凸ロールのロール軸方向に隣り合う大径凸部どうしの間隔(ピッチ)wは、好ましくは1mm以上であり、特に好ましくは1.5mm以上であり、そして、好ましくは10mm以下であり、特に好ましくは8mm以下であり、具体的には、1mm以上10mm以下、好ましくは1.5mm以上8mm以下である前記<52>に記載の不織布の製造方法。
<54>
 前記第1凹凸ロール及び前記第2凹凸ロールの押し込み量t(ロール軸方向に隣り合う第1凹凸ロールの大径凸部の頂点と第2凹凸ロールの大径凸部の頂点との間隔)は、好ましくは1mm以上であり、特に好ましくは1.2mm以上であり、そして、好ましくは3mm以下であり、特に好ましくは2.5mm以下であり、具体的には、1mm以上3mm以下、好ましくは1.2mm以上2.5mm以下である前記<52>又は<53>の何れか1に記載の不織布の製造方法。
<52>
In the stretching step, the fiber sheet is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter in one constituent fiber between the adjacent fused portions. <51> wherein the diameter portion is formed, and the changing point from the small diameter portion to the large diameter portion is formed within a range of 1/3 of the interval between the fusion portions adjacent to the fusion portion. The manufacturing method of the nonwoven fabric as described in any one of.
<53>
The manufacturing apparatus used in the method for manufacturing the nonwoven fabric includes a stretching section,
The extending portion includes a pair of first concavo-convex rolls and second concavo-convex rolls that can be engaged with each other,
The interval (pitch) w between large-diameter convex portions adjacent to each other in the roll axis direction of the first concave-convex roll and the interval (pitch) w between large-diameter convex portions adjacent to each other in the roll axis direction of the second concave-convex roll are: It is preferably 1 mm or more, particularly preferably 1.5 mm or more, and preferably 10 mm or less, particularly preferably 8 mm or less, specifically 1 mm or more and 10 mm or less, preferably 1.5 mm or more. The manufacturing method of the nonwoven fabric as described in said <52> which is 8 mm or less.
<54>
The pushing amount t of the first concavo-convex roll and the second concavo-convex roll (the interval between the vertex of the large-diameter convex portion of the first concavo-convex roll adjacent to the roll axis direction and the vertex of the large-diameter convex portion of the second concavo-convex roll) is , Preferably 1 mm or more, particularly preferably 1.2 mm or more, and preferably 3 mm or less, particularly preferably 2.5 mm or less, specifically 1 mm or more and 3 mm or less, preferably 1 The method for producing a nonwoven fabric according to any one of <52> or <53>, which is 2 mm or more and 2.5 mm or less.
<55>
 前記第1凹凸ロール及び前記第2凹凸ロールの機械延伸倍率は、好ましくは1.5倍以上であり、特に好ましくは1.7倍以上であり、そして、好ましくは3.0倍以下であり、特に好ましくは2.8倍以下であり、具体的には、1.5倍以上3.0倍以下であり、好ましくは1.7倍以上2.8倍以下である前記<52>~<54>の何れか1に記載の不織布の製造方法。
<56>
 前記<51>~<55>の何れか1に記載の製造方法により製造された不織布。
<57>
 肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する吸収性物品であって、
 前記表面シートは、前記<32>~<50>、<56>の何れか1に記載の不織布で形成されている吸収性物品。
<55>
The mechanical stretching ratio of the first uneven roll and the second uneven roll is preferably 1.5 times or more, particularly preferably 1.7 times or more, and preferably 3.0 times or less, Particularly preferably 2.8 times or less, specifically 1.5 times or more and 3.0 times or less, preferably 1.7 times or more and 2.8 times or less, <52> to <54 > The manufacturing method of the nonwoven fabric any one of.
<56>
A nonwoven fabric produced by the production method according to any one of <51> to <55>.
<57>
An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets,
The absorbent article, wherein the top sheet is formed of the nonwoven fabric according to any one of <32> to <50>, <56>.
 以下、本発明の不織布を実施例により更に詳細に説明する。しかしながら本発明の範囲はかかる実施例によって何ら制限されるものではない。 Hereinafter, the nonwoven fabric of the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the examples.
 〔実施例1A〕
 図4に示す製造装置100を用いて、図1及び図2に示す形態の実施例1Aの不織布を製造した。製造装置100に供給する構成繊維を以下の表1に示す。構成繊維に塗布された繊維処理剤の組成は、表1に示す通りであり、繊維処理剤には、延展性のある成分としてポリオルガノシロキサンが含有され、延展性のある成分以外に、親水性の成分及び疎水性の成分(アルキルリン酸エステル,アニオン界面活性剤)が含有されている。表1に示すように、構成繊維は、高伸度繊維のみからなり、弾性(エラストマー)を有していない繊維である。また、高伸度繊維は、芯部がポリエチレンテレフタレートであり、鞘部がポリエチレンである同心タイプの芯鞘型複合繊維であった。高伸度繊維の伸度は、350%であった。また、製造装置100に関しては、一対の凹凸ロール401,402が備える大径凸部どうし404,404の間隔(ピッチ)が2.0mmであり、一対の凹凸ロール401,402の押し込み量が1.2mmであり、そして機械延伸倍率が1.9倍であった。尚、構成繊維への繊維処理剤の塗布は、延伸工程の前であった。
[Example 1A]
The nonwoven fabric of Example 1A of the form shown in FIG.1 and FIG.2 was manufactured using the manufacturing apparatus 100 shown in FIG. The constituent fibers supplied to the manufacturing apparatus 100 are shown in Table 1 below. The composition of the fiber treatment agent applied to the constituent fibers is as shown in Table 1. The fiber treatment agent contains polyorganosiloxane as a spreadable component, and is hydrophilic in addition to the spreadable component. And a hydrophobic component (alkyl phosphate ester, anionic surfactant). As shown in Table 1, the constituent fiber is a fiber made of only high elongation fiber and having no elasticity (elastomer). The high elongation fiber was a concentric core-sheath type composite fiber having a core part made of polyethylene terephthalate and a sheath part made of polyethylene. The elongation of the high elongation fiber was 350%. Moreover, regarding the manufacturing apparatus 100, the distance (pitch) between the large-diameter convex portions 404, 404 included in the pair of concave and convex rolls 401, 402 is 2.0 mm, and the pressing amount of the pair of concave and convex rolls 401, 402 is 1. 2 mm, and the mechanical draw ratio was 1.9 times. In addition, application | coating of the fiber treatment agent to a constituent fiber was before the extending process.
 〔実施例2A〕
 実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.4mmに変更し、機械延伸倍率を2.1倍に変更する以外は実施例1Aと同様にして、実施例2Aの不織布を製造した。
[Example 2A]
Regarding the manufacturing apparatus 100 in Example 1A, an example is obtained in the same manner as in Example 1A except that the pressing amount of the pair of concave and convex rolls 401 and 402 is changed to 1.4 mm and the mechanical stretch ratio is changed to 2.1 times. A 2A nonwoven fabric was produced.
 〔実施例3A〕
 実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.6mmに変更し、機械延伸倍率を2.3倍に変更する以外は実施例1Aと同様にして、実施例3Aの不織布を製造した。
Example 3A
Regarding the manufacturing apparatus 100 in Example 1A, the example was changed in the same manner as in Example 1A, except that the pushing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm and the mechanical stretch ratio was changed to 2.3 times. A 3A nonwoven fabric was produced.
 〔実施例4A〕
 実施例1Aにおける繊維処理剤の組成に関し、表1に示す通りに変更する以外は実施例1Aと同様にして、実施例4Aの不織布を製造した。
Example 4A
A nonwoven fabric of Example 4A was produced in the same manner as Example 1A except that the composition of the fiber treatment agent in Example 1A was changed as shown in Table 1.
 〔実施例5A〕
 実施例1Aにおける繊維処理剤の組成に関し、表1に示す通りに変更した。また、実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.4mmに変更し、機械延伸倍率を2.1倍に変更した。それら以外は実施例1Aと同様にして、実施例5Aの不織布を製造した。
[Example 5A]
The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.4 mm, and the mechanical stretch ratio was changed to 2.1 times. Except for these, the nonwoven fabric of Example 5A was produced in the same manner as Example 1A.
 〔実施例6A〕
 実施例1Aにおける繊維処理剤の組成に関し、表1に示す通りに変更した。また、実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.6mmに変更し、機械延伸倍率を2.3倍に変更した。それら以外は実施例1Aと同様にして、実施例6Aの不織布を製造した。
[Example 6A]
The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm, and the mechanical stretching ratio was changed to 2.3 times. A nonwoven fabric of Example 6A was produced in the same manner as Example 1A except for the above.
 〔実施例7A〕
 実施例1Aにおける繊維処理剤に関し、表1に示す通りに変更した。構成繊維に塗布された繊維処理剤には、延展性のある成分が含有されておらず、親水性の成分が含有されている。それ以外は実施例1Aと同様にして、実施例7Aの不織布を製造した。
Example 7A
The fiber treatment agent in Example 1A was changed as shown in Table 1. The fiber treatment agent applied to the constituent fibers does not contain a spreadable component but contains a hydrophilic component. Other than that was carried out similarly to Example 1A, and manufactured the nonwoven fabric of Example 7A.
 〔実施例8A〕
 実施例1Aにおける繊維処理剤の組成に関し、表1に示す通りに変更した。また、実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.6mmに変更し、機械延伸倍率を2.3倍に変更した。それら以外は実施例1Aと同様にして、実施例8Aの不織布を製造した。
[Example 8A]
The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm, and the mechanical stretching ratio was changed to 2.3 times. Otherwise, the nonwoven fabric of Example 8A was produced in the same manner as Example 1A.
 〔実施例9A〕
 実施例1Aにおける繊維処理剤の組成に関し、表1に示す通りに変更した。また、実施例1Aにおける製造装置100に関し、一対の凹凸ロール401,402の押し込み量を1.6mmに変更した。それら以外は実施例1Aと同様にして、実施例9Aの不織布を製造した。
Example 9A
The composition of the fiber treatment agent in Example 1A was changed as shown in Table 1. Moreover, regarding the manufacturing apparatus 100 in Example 1A, the pressing amount of the pair of concave and convex rolls 401 and 402 was changed to 1.6 mm. A nonwoven fabric of Example 9A was produced in the same manner as Example 1A except for the above.
 〔比較例1A〕
 実施例1Aにおける構成繊維に関し、表1に示す通りに変更した。構成繊維に塗布された繊維処理剤には、延展性のある成分が含有されておらず、親水性の成分が含有されている。また、構成繊維への繊維処理剤の塗布は、延伸工程の後に行った。それら以外は実施例1Aと同様にして、比較例1Aの不織布を製造した。
[Comparative Example 1A]
The constituent fibers in Example 1A were changed as shown in Table 1. The fiber treatment agent applied to the constituent fibers does not contain a spreadable component but contains a hydrophilic component. Moreover, application | coating of the fiber treatment agent to a constituent fiber was performed after the extending process. Except for these, a nonwoven fabric of Comparative Example 1A was produced in the same manner as Example 1A.
 <評価>
 実施例1A~9A及び比較例1Aの不織布に関し、上述した方法により厚みを測定し、不織布の坪量を算出した。それらの結果を下記表1に示す。また、上述した方法により小径部16及び大径部17の接触角を測定した。それらの結果を下記表1に示す。
 また、実施例1A~9A及び比較例1Aの不織布に関し、下記の方法により液残り性、ドライタッチ性、及び肌触りを評価した。それらの結果を下記表1に示す。
<Evaluation>
Regarding the nonwoven fabrics of Examples 1A to 9A and Comparative Example 1A, the thickness was measured by the method described above, and the basis weight of the nonwoven fabric was calculated. The results are shown in Table 1 below. Moreover, the contact angle of the small diameter part 16 and the large diameter part 17 was measured by the method mentioned above. The results are shown in Table 1 below.
Further, with respect to the nonwoven fabrics of Examples 1A to 9A and Comparative Example 1A, the liquid remaining property, dry touch property, and touch were evaluated by the following methods. The results are shown in Table 1 below.
 〔液残り性の評価〕
 花王株式会社の市販の商品名「吸水セーフティ 安心中量用(~80cc)」(2014年製)から吸収体を取り出し、取り出した吸収体を水平に置いた。この吸収体上に、実施例1A~7A又は比較例1Aの不織布を配置し、更に、これらの上に、円筒部(内寸直径10mm、高さ40mm)を中央に配する200mm×100mmの長方形形状のアクリル板を載置した。アクリル板による圧力が0.5kPaである状態下に、前記の円筒部内に人工尿20gを5g/secの速度で一括注入した。7秒経過後、アクリル板を取り除き、市販のティッシュペーパー2PL品を3回折り畳み約5cm×約12cmサイズの吸収紙を注入口上に乗せ、0.5kpaで5秒間圧力をかけた。その後圧力を取り除き、人工尿を吸収したティッシュペーパーの重量(g)を測定した。この重量から人工尿吸収前のティッシュペーパーの重量(g)を差し引き、その値を不織布に残った液残り量(mg)とした。該液残り量(mg)の値が小さいほど、液残り性に優れると判断され、高評価となる。
[Evaluation of liquid residue]
The absorber was taken out from the commercially available product name “Water Absorbing Safety for Safe Medium Weight (˜80 cc)” (made in 2014) of Kao Corporation, and the removed absorber was placed horizontally. A 200 mm × 100 mm rectangle in which the nonwoven fabrics of Examples 1A to 7A or Comparative Example 1A are arranged on this absorbent body, and a cylindrical portion (inner diameter 10 mm, height 40 mm) is further arranged on the nonwoven fabric. A shaped acrylic plate was placed. Under the condition that the pressure by the acrylic plate was 0.5 kPa, 20 g of artificial urine was collectively injected into the cylindrical portion at a rate of 5 g / sec. After 7 seconds, the acrylic plate was removed, a commercially available tissue paper 2PL product was folded three times, and an absorbent paper having a size of about 5 cm × about 12 cm was placed on the inlet, and pressure was applied at 0.5 kpa for 5 seconds. Thereafter, the pressure was removed, and the weight (g) of the tissue paper that absorbed the artificial urine was measured. The weight (g) of the tissue paper before absorption of artificial urine was subtracted from this weight, and the value was defined as the remaining liquid amount (mg) remaining on the nonwoven fabric. The smaller the value of the remaining liquid amount (mg), the higher the liquid remaining property, and the higher the evaluation.
 尚、人工尿の組成は、次の通りである。尿素1.94質量%、塩化ナトリウム0.7954質量%、硫酸マグネシウム(七水和物)0.11058質量%、塩化カルシウム(二水和物)0.06208質量%、硫酸カリウム0.19788質量%、ポリオキシエチレンラウリルエーテル0.0035質量%及びイオン交換水(残量)。 The composition of artificial urine is as follows. 1.94% by mass of urea, 0.7954% by mass of sodium chloride, 0.11058% by mass of magnesium sulfate (septahydrate), 0.06208% by mass of calcium chloride (dihydrate), 0.19788% by mass of potassium sulfate , Polyoxyethylene lauryl ether 0.0035 mass% and ion-exchanged water (remaining amount).
 〔不織布のドライタッチ性の評価〕
 不織布のドライタッチ性は、Lenzing Technik社製のストライクスルー時間測定装置Listerを使用し、EDANA(ヨーロッパ不織布工業会)の「153.0-02 REPEATED Liquid Strike-Through Time」法に準じて測定した。Liquid Strike-Through Timeとは、不織布の表面から裏面に向けて、所定量の生理食塩水が通過するのに要する時間(秒)を示すものである。具体的には、試験機の台座の上に専用の濾紙を10枚重ねて置き、その上に不織布を載せた。次いで、電極を有するストライクスループレートを不織布上に載置して、ストライクスループレートに接続された液投入口から生理食塩水(500mL中の塩化ナトリウム4.5g)を10ml入れ、その後試験機の電源を入れた。試験機は、生理食塩水が電極に触れた状態から、不織布を生理食塩水が通過して水位が下がり、電極と非接触となるまでの時間(秒)を計測した。計測は3回行いその平均値を、不織布の液透過時間とした。液透過時間が短いほど、表面の液残りが少なくドライタッチ性が良好であることを示す。
[Evaluation of dry touch of nonwoven fabric]
The dry touch property of the nonwoven fabric was measured in accordance with the “153.0-02 REPEATED Liquid Strike-Through Time” method of EDANA (European Nonwoven Fabric Manufacturers Association) using a strike-through time measuring device Lister manufactured by Lenzing Technik. Liquid Strike-Through Time indicates the time (seconds) required for a predetermined amount of physiological saline to pass from the front surface to the back surface of the nonwoven fabric. Specifically, ten sheets of dedicated filter paper were placed on the pedestal of the testing machine, and a nonwoven fabric was placed thereon. Next, a strike-through plate having electrodes is placed on the non-woven fabric, and 10 ml of physiological saline (4.5 g of sodium chloride in 500 mL) is introduced from a liquid inlet connected to the strike-through plate, and then the power supply of the testing machine Put. The test machine measured the time (seconds) from the state in which the physiological saline touched the electrode until the physiological saline passed through the nonwoven fabric, the water level dropped, and the electrode was not in contact with the electrode. The measurement was performed three times, and the average value was defined as the liquid permeation time of the nonwoven fabric. The shorter the liquid permeation time, the less liquid remaining on the surface, indicating better dry touch properties.
 〔肌触りの評価〕
 不織布の肌触りは、成人女性10人による官能評価を行った。具体的には、以下に示す点数基準で点数付けを行い、各不織布における全員の平均値を、整数桁に四捨五入して求めた。
 5点:不織布の肌触りが非常に良い。
 4点:不織布の肌触りが良い。
 3点:不織布の肌触りが普通である。
 2点:不織布の肌触りが悪い。
 1点:不織布の肌触りが非常に悪い。
[Evaluation of touch]
The touch of the nonwoven fabric was subjected to sensory evaluation by 10 adult women. Specifically, scoring was performed on the basis of the following score, and the average value of all the members in each nonwoven fabric was rounded to the nearest whole number.
5 points: The touch of the nonwoven fabric is very good.
4 points: The touch of the nonwoven fabric is good.
3 points: The feel of the nonwoven fabric is normal.
2 points: The touch of the nonwoven fabric is bad.
1 point: The touch of the nonwoven fabric is very bad.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1の結果によれば、実施例1A~実施例9Aの不織布は、比較例1Aの不織布に比べて、小径部16の親水度と大径部17の親水度が変化することが分かった。そして、実施例1A~実施例9Aの不織布に関しては、小径部16の親水度が大径部17の親水度よりも小さくなっている。また、実施例1A~実施例9Aの不織布は、比較例1Aの不織布に比べて、表面の液残りが少なくドライタッチ性が良好であることが分かった。また、実施例1A~実施例9Aの不織布は、比較例1Aの不織布に比べて、ドライタッチ性が良好である効果に加え、同等以上の不織布の肌触りであることが分かった。 According to the results shown in Table 1, it was found that the hydrophilicity of the small diameter portion 16 and the hydrophilicity of the large diameter portion 17 changed in the nonwoven fabrics of Examples 1A to 9A compared to the nonwoven fabric of Comparative Example 1A. Regarding the nonwoven fabrics of Examples 1A to 9A, the hydrophilicity of the small diameter portion 16 is smaller than the hydrophilicity of the large diameter portion 17. Further, it was found that the nonwoven fabrics of Examples 1A to 9A had less liquid residue on the surface and better dry touch properties than the nonwoven fabric of Comparative Example 1A. In addition, the nonwoven fabrics of Examples 1A to 9A were found to have the same or better nonwoven fabric feel in addition to the effect of better dry touch properties than the nonwoven fabric of Comparative Example 1A.
 以下、本発明(第2発明)の不織布を実施例により更に詳細に説明する。しかしながら本発明(第2発明)の範囲はかかる実施例によって何ら制限されるものではない。 Hereinafter, the nonwoven fabric of the present invention (second invention) will be described in more detail with reference to examples. However, the scope of the present invention (second invention) is not limited in any way by such embodiments.
 〔実施例1B〕
 図11に示す製造装置100Bを用いて、図8及び図9に示す形態の実施例1Bの不織布を製造した。製造装置100Bに供給する構成繊維を以下の表2に示す。表2に示すように、構成繊維は、高伸度繊維のみからなり、弾性(エラストマー)を有していない繊維である。また、高伸度繊維は、芯部がポリエチレンテレフタレートであり、鞘部がポリエチレンである同心タイプの芯鞘型複合繊維であった。高伸度繊維の伸度は、350%であった。また、製造装置100Bに関しては、一対の凹凸ロール401,402が備える大径凸部どうし404,404の間隔(ピッチ)が2mmであり、一対の凹凸ロール401,402の押し込み量が1.2mmであり、そして機械延伸倍率が1.9倍であった。
[Example 1B]
Using the manufacturing apparatus 100B shown in FIG. 11, the nonwoven fabric of Example 1B having the configuration shown in FIGS. 8 and 9 was manufactured. The constituent fibers supplied to the manufacturing apparatus 100B are shown in Table 2 below. As shown in Table 2, the constituent fiber is a fiber made of only a high elongation fiber and having no elasticity (elastomer). The high elongation fiber was a concentric core-sheath type composite fiber having a core part made of polyethylene terephthalate and a sheath part made of polyethylene. The elongation of the high elongation fiber was 350%. In addition, regarding the manufacturing apparatus 100B, the distance (pitch) between the large-diameter convex portions 404, 404 included in the pair of concave and convex rolls 401, 402 is 2 mm, and the pressing amount of the pair of concave and convex rolls 401, 402 is 1.2 mm. Yes, and the mechanical draw ratio was 1.9 times.
 〔実施例2B〕
 実施例1Bにおける製造装置100Bに関し、一対の凹凸ロール401,402の押し込み量を1.6mmに、機械延伸倍率を2.3倍に変更する以外は実施例1Bと同様にして、実施例2Bの不織布を製造した。
[Example 2B]
Regarding the manufacturing apparatus 100B in Example 1B, the push-in amount of the pair of concavo- convex rolls 401 and 402 is changed to 1.6 mm, and the mechanical stretching ratio is changed to 2.3 times. A nonwoven fabric was produced.
 〔実施例3B〕
 実施例1Bにおける製造装置100Bに関し、一対の凹凸ロール401,402の押し込み量を2.0mmに、機械延伸倍率を2.7倍に変更する以外は実施例1Bと同様にして、実施例3Bの不織布を製造した。
[Example 3B]
Regarding the manufacturing apparatus 100B in Example 1B, the amount of pressing of the pair of concave and convex rolls 401 and 402 is changed to 2.0 mm, and the mechanical stretching ratio is changed to 2.7 times, in the same manner as in Example 1B. A nonwoven fabric was produced.
 〔実施例4B〕
 実施例1Bにおける構成繊維に関し、高伸度繊維の伸度が、250%の繊維に変更する以外は実施例1Bと同様にして、実施例4Bの不織布を製造した。
[Example 4B]
Regarding the constituent fibers in Example 1B, the nonwoven fabric of Example 4B was produced in the same manner as Example 1B, except that the elongation of the high elongation fiber was changed to 250%.
 〔実施例5B〕
 実施例2Bにおける構成繊維に関し、高伸度繊維の伸度が、250%の繊維に変更する以外は実施例2Bと同様にして、実施例5Bの不織布を製造した。
[Example 5B]
Regarding the constituent fibers in Example 2B, the nonwoven fabric of Example 5B was manufactured in the same manner as Example 2B, except that the elongation of the high elongation fiber was changed to 250%.
 〔実施例6B〕
 実施例3Bにおける構成繊維に関し、高伸度繊維の伸度が、250%の繊維に変更する以外は実施例3Bと同様にして、実施例6Bの不織布を製造した。
[Example 6B]
Regarding the constituent fibers in Example 3B, the nonwoven fabric of Example 6B was produced in the same manner as Example 3B, except that the elongation of the high elongation fiber was changed to 250%.
 〔比較例1B〕
 実施例1Bにおける構成繊維に関し、既に延伸している複合繊維に変更した。具体的には、該複合繊維の伸度は、80%の延伸繊維であった。繊維を変更する以外は実施例1Bと同様にして、比較例1Bの不織布を製造した。
[Comparative Example 1B]
The constituent fiber in Example 1B was changed to a composite fiber that had already been drawn. Specifically, the elongation of the composite fiber was 80% drawn fiber. A nonwoven fabric of Comparative Example 1B was produced in the same manner as Example 1B except that the fiber was changed.
 〔比較例2B〕
 実施例3Bにおける構成繊維に関し、既に延伸している複合繊維に変更した。具体的には、該複合繊維の伸度は、80%の延伸繊維であった。繊維を変更する以外は実施例3Bと同様にして、比較例2Bの不織布を製造した。
[Comparative Example 2B]
Regarding the constituent fiber in Example 3B, the composite fiber was changed to an already drawn composite fiber. Specifically, the elongation of the composite fiber was 80% drawn fiber. A nonwoven fabric of Comparative Example 2B was produced in the same manner as Example 3B except that the fiber was changed.
 〔比較例3B〕
 特許文献1に記載の製造法に則した方法で、実施例4Bにおける構成繊維である高伸度繊維と、弾性繊維を含むように比較例3Bの不織布を形成した。尚、一対の凹凸ロール401,402の押し込み量、機械延伸倍率は実施例4Bと同様である。
[Comparative Example 3B]
By the method according to the manufacturing method described in Patent Document 1, the nonwoven fabric of Comparative Example 3B was formed so as to include the high elongation fiber that is the constituent fiber in Example 4B and the elastic fiber. In addition, the pushing amount of the pair of concave and convex rolls 401 and 402 and the mechanical stretching ratio are the same as in Example 4B.
 〔比較例4B〕
 特許文献1に記載の製造法に則した方法で、実施例6Bにおける構成繊維である高伸度繊維と、弾性繊維を含むように比較例4Bの不織布を形成した。尚、一対の凹凸ロール401,402の押し込み量、機械延伸倍率は実施例6Bと同様である。
[Comparative Example 4B]
By the method according to the manufacturing method described in Patent Document 1, the nonwoven fabric of Comparative Example 4B was formed so as to include the high elongation fiber that is the constituent fiber in Example 6B and the elastic fiber. In addition, the pushing amount of the pair of concave and convex rolls 401 and 402 and the mechanical stretching ratio are the same as in Example 6B.
 <評価>
 実施例1B~6B及び比較例1B~4Bの不織布に関し、下記の方法により小径部16から大径部17への変化点18の存在割合を評価し、変化点18がある場合には、変化点18の位置を測定した。また上述した方法により小径部16及び大径部17の繊維径を測定した。それらの結果を下記表2に示す。
 また、実施例1B~6B及び比較例1B~4Bの不織布に関し、上述した方法により、頂部域13a、底部域13b又は側部域13cでの繊維密度、及び、頂部域13a、底部域13b又は側部域13cでの変化点18の数を測定した。それらの結果を下記表2に示す。
 また、実施例1B~6B及び比較例1B~4Bの不織布に関し、下記の方法により肌触り、及び通液性を評価した。それらの結果を下記表2に示す。
<Evaluation>
Regarding the nonwoven fabrics of Examples 1B to 6B and Comparative Examples 1B to 4B, the existence ratio of the change point 18 from the small diameter portion 16 to the large diameter portion 17 is evaluated by the following method. 18 positions were measured. Moreover, the fiber diameter of the small diameter part 16 and the large diameter part 17 was measured by the method mentioned above. The results are shown in Table 2 below.
Further, with respect to the nonwoven fabrics of Examples 1B to 6B and Comparative Examples 1B to 4B, the fiber density in the top region 13a, the bottom region 13b or the side region 13c, and the top region 13a, the bottom region 13b or the side by the method described above. The number of change points 18 in the area 13c was measured. The results are shown in Table 2 below.
Further, with respect to the nonwoven fabrics of Examples 1B to 6B and Comparative Examples 1B to 4B, the touch and liquid permeability were evaluated by the following methods. The results are shown in Table 2 below.
 〔変化点18の存在割合の評価〕
 不織布の構成繊維をランダムに20本抽出し、各構成繊維を、日本電子(株)社製の走査電子顕微鏡:JCM-5100(商品名)を用いて110倍に拡大観察して、小径部16から大径部17への変化点18の有無を観察した。存在割合は下記のように算出した。存在割合(%)=変化点18を有する繊維の本数/20本×100
 ここで、変化点18とは、上述したように、小径部から大径部へ連続的に漸次変化する部位或いは連続的に複数段階に亘って変化する部位、構成繊維の芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分との間で剥離することによって繊維径が変化する状態を含まず、極端に繊維径が変化する部位を意味する。
[Evaluation of the ratio of change points 18]
The 20 constituent fibers of the nonwoven fabric were extracted at random, and each constituent fiber was magnified 110 times using a scanning electron microscope: JCM-5100 (trade name) manufactured by JEOL Ltd. The presence or absence of the changing point 18 from the large diameter portion 17 to the large diameter portion 17 was observed. The existence ratio was calculated as follows. Abundance ratio (%) = number of fibers having changing point 18/20 fibers × 100
Here, as described above, the change point 18 is a part that continuously changes gradually from a small diameter part to a large diameter part or a part that continuously changes over a plurality of stages, and a core part of a constituent fiber. It means a part where the fiber diameter changes extremely without including the state in which the fiber diameter changes by peeling between the 1 resin component and the second resin component constituting the sheath.
 〔変化点18の位置の評価〕
 変化点18がある場合には、隣り合う融着部12,12どうしの間隔Tを3等分して、一方の融着部12側の領域AT、他方の融着部12側の領域BT、中央の領域CTに区分する。そして、変化点18が、前記領域AT、前記領域BT又は中央の領域CTの何れに配されていることを観察した。
 <評価結果>
 A:変化点を有する繊維の内、変化点が、前記領域AT又は前記領域BTに有ると共に、中央の領域CTにも有る繊維が複数本存在する。
 B:変化点を有する繊維の内、変化点が、前記領域AT又は前記領域BTにのみ有る繊維が複数本存在する。
 C:変化点を有する繊維の内、変化点が、中央の領域CTにのみ有る繊維が複数本存在する。
[Evaluation of the position of the change point 18]
When there is a change point 18, the interval T between the adjacent fusion portions 12, 12 is divided into three equal parts, the region AT on one fusion portion 12 side, the region BT on the other fusion portion 12 side, The area is divided into a central area CT. And it observed that the change point 18 was distribute | arranged to any of said area | region AT, said area | region BT, or center area | region CT.
<Evaluation results>
A: Among fibers having change points, there are a plurality of fibers having change points in the region AT or the region BT and also in the central region CT.
B: Among fibers having changing points, there are a plurality of fibers having changing points only in the region AT or the region BT.
C: Among fibers having change points, there are a plurality of fibers having change points only in the central region CT.
 〔不織布の肌触りの評価〕
 20人のモニターに、不織布を見えない状態で触ってもらい、柔軟性、柔らかさ、クッション性等の感触を総合的に不織布の肌触りとして、以下の5段階の判定基準で評価した。結果は、20人の平均値で示した。
 <評価基準>
 5:非常に良い
 4:良い
 3:普通
 2:悪い
 1:非常に悪い
 尚、20人の平均値の評価結果で4以上であれば、ユーザーに肌触りの改善が認識され高い評価が得られることが期待できるレベルである。
[Evaluation of the feel of nonwoven fabric]
Twenty monitors were touched in a state where the nonwoven fabric was not visible, and the touches such as flexibility, softness, and cushioning properties were comprehensively evaluated according to the following five criteria. The results are shown as an average value of 20 people.
<Evaluation criteria>
5: Very good 4: Good 3: Normal 2: Bad 1: Very bad In addition, if the average evaluation result of 20 people is 4 or more, improvement of the touch is recognized by the user and high evaluation is obtained. Is a level that can be expected.
 〔不織布の液透過性の評価〕
 不織布の液透過性は、Lenzing Technik社製のストライクスルー時間測定装置Listerを使用し、EDANA(ヨーロッパ不織布工業会)の「153.0-02 REPEATED Liquid Strike-Through Time」法に準じて測定した。Liquid Strike-Through Timeとは、不織布の表面から裏面に向けて、所定量の生理食塩水が通過するのに要する時間(秒)を示すものである。具体的には、試験機の台座の上に専用の濾紙を10枚重ねて置き、その上に不織布を載せた。次いで、電極を有するストライクスループレートを不織布上に載置して、ストライクスループレートに接続された液投入口から生理食塩水(大塚製薬(株)社製の日本薬局方生理食塩液大塚生食注(商品名)を10ml入れ、その後試験機の電源を入れた。試験機は、生理食塩水が電極に触れた状態から、不織布を生理食塩水が通過して水位が下がり、電極と非接触となるまでの時間(秒)を計測した。計測は3回行いその平均値を、不織布の液透過時間とした。液透過時間が短いほど、液透過性が良好であることを示す。
[Evaluation of liquid permeability of nonwoven fabric]
The liquid permeability of the non-woven fabric was measured according to the “153.0-02 REPEATED Liquid Strike-Through Time” method of EDANA (European Non-woven Industries Association) using a strike-through time measuring device Lister manufactured by Lenzing Technik. Liquid Strike-Through Time indicates the time (seconds) required for a predetermined amount of physiological saline to pass from the front surface to the back surface of the nonwoven fabric. Specifically, ten sheets of dedicated filter paper were placed on the pedestal of the testing machine, and a nonwoven fabric was placed thereon. Next, a strike-through plate having electrodes was placed on the nonwoven fabric, and physiological saline (Otsuka Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd. 10 ml of the product name was put in, and then the tester was turned on.From the state in which the physiological saline touched the electrode, the physiological saline passed through the nonwoven fabric, the water level dropped, and the electrode was not in contact with the electrode. The average time was taken as the liquid permeation time of the nonwoven fabric, and the shorter the liquid permeation time, the better the liquid permeability.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2の結果によれば、実施例1B~実施例6Bの不織布は、比較例1B~比較例4Bの不織布に比べて、小径部16から大径部17への変化点18が領域AT又は領域BTに存在している、言い換えると不織布の剛性が高まる融着部12に隣り合うように低剛性の小径部16が存在することにより、不織布の柔軟性が向上し、肌触りが良好であることが分かった。
更に、実施例1B~実施例6Bの不織布は、変化点18の位置が側部域13cにおいて多いため、凸条部13が着用者の肌の動きに追従しやすくなり、良好な肌触りであることがわかった。また、実施例1B~実施例6Bの不織布は、変化点18の位置が側部域13cにおいて多く、側部域13cの繊維密度が低いので、液透過性が良好であることが分かった。
According to the results of Table 2, the non-woven fabrics of Examples 1B to 6B have a change point 18 from the small diameter portion 16 to the large diameter portion 17 in the region AT or region as compared with the non-woven fabrics of Comparative Example 1B to Comparative Example 4B. The presence of the small-diameter portion 16 having a low rigidity so as to be adjacent to the fused portion 12 that is present in the BT, in other words, the stiffness of the nonwoven fabric is increased, so that the flexibility of the nonwoven fabric is improved and the touch is good. I understood.
Furthermore, since the nonwoven fabrics of Example 1B to Example 6B have many change points 18 in the side region 13c, the ridges 13 can easily follow the movement of the wearer's skin and have a good touch. I understood. In addition, the nonwoven fabrics of Examples 1B to 6B were found to have good liquid permeability because the positions of the change points 18 are many in the side region 13c and the fiber density in the side region 13c is low.
 また、表2の結果によれば、比較例1B~2Bの不織布は、伸度の低い延伸繊維を用いているため、延伸により構成繊維の芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分との間で剥離が生じる。その為、鞘部剥離部位が肌に引っ掛かり、肌触りが低下する。凹凸形状を保ちにくく、芯部が露出しはっ水化するため、液通過時間が低下する。次に、比較例3Bの不織布は、実施例4Bの不織布に対し弾性繊維が入っている構成である。上述したように弾性繊維が入っていると不織布が収縮されながら延伸されるため、機械延伸倍率が同じ場合にも変化点が形成にくく、繊維密度の低下も生じにくい。それにより、比較例3Bの不織布は、肌触りの向上と通液性の向上の効果が生じにくい。次に、比較例4Bの不織布は、実施例6Bの不織布に対し弾性繊維が入っている構成である。上述したように弾性繊維が入っていると不織布が収縮されながら延伸されるため、本願の極端に繊維径が変化する部位である変化点ができにくく、小径部16から大径部17へ、連続的に漸次変化する部位が形成されやすい。比較例4Bの不織布においては、形成された連続的に漸次変化する部位は、弾性繊維が入っているため、融着点付近で局部的に延伸されにくいため、融着点付近に観察されない。それにより、比較例4Bの不織布は、肌触りの向上と通液性の向上の効果が生じにくい。 Further, according to the results of Table 2, since the nonwoven fabrics of Comparative Examples 1B to 2B use stretched fibers having low elongation, the first resin component constituting the core portion of the constituent fibers by stretching, and the sheath portion Peeling occurs between the constituent second resin components. For this reason, the peeled portion of the sheath is caught on the skin, and the touch is lowered. Since it is difficult to maintain the uneven shape and the core portion is exposed and water-repellent, the liquid passing time is reduced. Next, the nonwoven fabric of Comparative Example 3B has a configuration in which elastic fibers are contained in the nonwoven fabric of Example 4B. As described above, when elastic fibers are contained, the nonwoven fabric is stretched while being contracted. Therefore, even when the mechanical draw ratio is the same, it is difficult to form a change point, and the fiber density is not easily lowered. Thereby, the nonwoven fabric of Comparative Example 3B is less likely to produce an effect of improving the touch and liquid permeability. Next, the nonwoven fabric of Comparative Example 4B has a configuration in which elastic fibers are contained in the nonwoven fabric of Example 6B. As described above, when elastic fibers are contained, the nonwoven fabric is stretched while being contracted. Therefore, it is difficult to make a change point that is a part where the fiber diameter changes extremely in the present application, and from the small diameter portion 16 to the large diameter portion 17 continuously. A site that gradually changes is likely to be formed. In the nonwoven fabric of Comparative Example 4B, the continuously and gradually formed portion is not observed near the fusion point because it contains elastic fibers and is not easily stretched locally near the fusion point. Thereby, the nonwoven fabric of Comparative Example 4B is less likely to have an effect of improving the touch and improving liquid permeability.
 本発明(第1発明)によれば、表面の液残りが少なくドライタッチ性が向上する。 According to the present invention (first invention), there is little liquid residue on the surface and dry touch properties are improved.
 本発明(第2発明)によれば、肌触りに関して更に良好にできる。
 
According to the present invention (second invention), the touch can be further improved.

Claims (57)

  1.  構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布であって、
     前記構成繊維は、高伸度繊維を含み、
     1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有しており、
     前記小径部の親水度が、前記大径部の親水度よりも小さい不織布。
    A non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
    The constituent fibers include high elongation fibers,
    Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. And
    A nonwoven fabric in which the hydrophilicity of the small diameter portion is smaller than the hydrophilicity of the large diameter portion.
  2.  前記小径部の接触角と前記大径部の接触角との差(前者-後者)が、1度以上25度以下である請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein a difference between the contact angle of the small diameter portion and the contact angle of the large diameter portion (the former-the latter) is 1 degree or more and 25 degrees or less.
  3.  前記小径部の接触角は、60度以上100度以下である請求項1又は2に記載の不織布。 The non-woven fabric according to claim 1 or 2, wherein a contact angle of the small diameter portion is 60 degrees or more and 100 degrees or less.
  4.  前記大径部の接触角は、55度以上90度以下である請求項1~3の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 3, wherein a contact angle of the large diameter portion is 55 degrees or more and 90 degrees or less.
  5.  前記大径部の繊維径(直径L17)に対する前記小径部の繊維径(直径L16)の比率(L16/L17)は、0.5以上0.8以下である請求項1~4の何れか1項に記載の不織布。 The ratio (L 16 / L 17 ) of the fiber diameter (diameter L 16 ) of the small diameter portion to the fiber diameter (diameter L 17 ) of the large diameter portion is 0.5 or more and 0.8 or less. The nonwoven fabric of any one of these.
  6.  前記融着部に隣接する前記小径部から前記大径部への変化点が、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されており、
     前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布であり、
     前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
     前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
     前記頂部域を構成する構成繊維における変化点を有する繊維の本数(N13)、又は前記底部域を構成する構成繊維における変化点を有する繊維の本数(N14)に対する前記側部域を構成する構成繊維における変化点を有する繊維の本数(N15)の比率(N15/N13,N15/N14)は、2以上20以下である請求項1~5の何れか1項に記載の不織布。
    The changing point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part,
    The non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged,
    The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
    The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
    The side region is configured with respect to the number (N 13 ) of fibers having change points in the constituent fibers constituting the top region or the number of fibers (N 14 ) having change points in the constituent fibers constituting the bottom region. The ratio (N 15 / N 13 , N 15 / N 14 ) of the number (N 15 ) of fibers having change points in the constituent fibers is 2 or more and 20 or less, according to any one of claims 1 to 5. Non-woven fabric.
  7.  前記構成繊維には、繊維処理剤が付着しており、
     前記繊維処理剤は、延展性のある成分を含んでいる請求項1~6の何れか1項に記載の不織布。
    A fiber treating agent is attached to the constituent fibers,
    The nonwoven fabric according to any one of claims 1 to 6, wherein the fiber treatment agent contains a spreadable component.
  8.  前記延展性のある成分は、繊維の表面に付着させると、繊維の表面に低温で広がり易く、低温での流動性に優れた成分である請求項7に記載の吸収性物品。 The absorbent article according to claim 7, wherein the spreadable component is a component that, when attached to the surface of the fiber, easily spreads on the surface of the fiber at a low temperature and has excellent fluidity at a low temperature.
  9.  前記延展性のある成分は、ポリオルガノシロキサンである請求項7又は8に記載の不織布。 The nonwoven fabric according to claim 7 or 8, wherein the spreadable component is polyorganosiloxane.
  10.  前記ポリオルガノシロキサンは、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリジプロピルシロキサンから選ばれる請求項9に記載の不織布。 The nonwoven fabric according to claim 9, wherein the polyorganosiloxane is selected from polydimethylsiloxane, polydiethylsiloxane, and polydipropylsiloxane.
  11.  前記繊維処理剤は更に、親水性の成分を含んでいる請求項7~10の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 7 to 10, wherein the fiber treatment agent further contains a hydrophilic component.
  12.  前記親水性の成分は、両性イオン性の界面活性剤、或いはノニオン性の界面活性剤を用いる請求項11に記載の不織布。 The nonwoven fabric according to claim 11, wherein the hydrophilic component is a zwitterionic surfactant or a nonionic surfactant.
  13.  前記両性イオン性の界面活性剤は、ベタイン型両性イオン性界面活性剤である請求項12に記載の不織布。 The nonwoven fabric according to claim 12, wherein the zwitterionic surfactant is a betaine-type zwitterionic surfactant.
  14.  前記ノニオン性の界面活性剤は、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、多価アルコール脂肪酸エステル、ポリオキシアルキレンアルキルアミド、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン変性シリコーン、アミノ変性シリコーンから選ばれる請求項12に記載の不織布。 The nonionic surfactant is selected from glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyhydric alcohol fatty acid ester, polyoxyalkylene alkylamide, polyoxyalkylene alkyl ether, polyoxyalkylene-modified silicone, and amino-modified silicone. The nonwoven fabric according to claim 12, which is selected.
  15.  前記繊維処理剤は更に、疎水性の成分を含有している請求項7~14の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 7 to 14, wherein the fiber treatment agent further contains a hydrophobic component.
  16.  前記疎水性の成分は、アルキルリン酸エステル、下記の一般式(1)で表されるアニオン界面活性剤等から選ばれる請求項15に記載の不織布。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表し、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表し、Xは―SO3M、―OSO3M又は―COOMを表し、MはH、Na、K、Mg、Ca又はアンモニウムを表す。)
    The nonwoven fabric according to claim 15, wherein the hydrophobic component is selected from an alkyl phosphate ester, an anionic surfactant represented by the following general formula (1), and the like.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms, which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
  17.  前記アルキルリン酸エステルは、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和又は部分中和塩である請求項16に記載の不織布。 The nonwoven fabric according to claim 16, wherein the alkyl phosphate ester is a completely or partially neutralized salt of a mono- or dialkyl phosphate ester having a carbon chain of 16 to 18.
  18.  前記構成繊維は、高伸度繊維のみからなる請求項1~17の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 17, wherein the constituent fibers are composed of high elongation fibers only.
  19.  高伸度繊維は、弾性を有して伸縮する伸縮性繊維を除き、低速で溶融紡糸して複合繊維を得た後に、延伸処理を行わずに加熱処理及び/又は捲縮処理を行うことにより得られる加熱により樹脂の結晶状態が変化して長さの延びる熱伸長性繊維、或いは、ポリプロピレンやポリエチレン等の樹脂を用いて比較的紡糸速度を低い条件にして製造した繊維、又は、結晶化度の低い、ポリエチレン-ポリプロピレン共重合体、若しくはポリプロピレンに、ポリエチレンをドライブレンドし紡糸して製造した繊維から選ばれる請求項18に記載の不織布。 The high elongation fiber is obtained by performing heat treatment and / or crimping treatment without drawing treatment after obtaining a composite fiber by melt spinning at low speed except for elastic fiber that has elasticity and stretches. Heat-extensible fibers whose length changes due to the change in the crystalline state of the resin resulting from heating, or fibers produced under relatively low spinning speeds using resins such as polypropylene and polyethylene, or crystallinity The nonwoven fabric according to claim 18, which is selected from a low-polyethylene-polypropylene copolymer, or a fiber produced by dry blending and spinning polyethylene into polypropylene.
  20.  前記不織布における高伸度繊維の割合は、50質量%以上である請求項18又は19に記載の不織布。 The nonwoven fabric according to claim 18 or 19, wherein a ratio of high elongation fibers in the nonwoven fabric is 50 mass% or more.
  21.  前記高伸度繊維とは、原料の繊維の段階で高伸度である繊維のみならず、製造された前記不織布の段階でも高伸度である繊維を意味する請求項1~20の何れか1項に記載の不織布。 The high elongation fiber means not only a fiber having a high elongation at the stage of a raw material fiber but also a fiber having a high elongation at a stage of the produced nonwoven fabric. The nonwoven fabric according to item.
  22.  前記高伸度繊維の伸度は、原料の段階で、100%以上800%以下である請求項18~21の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 18 to 21, wherein the elongation of the high elongation fiber is 100% or more and 800% or less at a raw material stage.
  23.  前記高伸度繊維の伸度は、不織布の段階で、60%以上200%以下である請求項18~22の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 18 to 22, wherein the elongation of the high elongation fiber is 60% or more and 200% or less at the stage of the nonwoven fabric.
  24.  前記融着部に隣接する前記小径部から前記大径部への変化点が、前記融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されている請求項1~23の何れか1項に記載の不織布。 The change point from the small diameter part adjacent to the fusion part to the large diameter part is arranged within a range of 1/3 of the interval between the fusion parts adjacent to the fusion part. 24. The nonwoven fabric according to any one of 1 to 23.
  25.  1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部が複数配されている請求項1~24の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 24, wherein a plurality of the large-diameter portions are arranged between the adjacent fused portions, paying attention to one of the constituent fibers.
  26.  前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布である請求項1~25の何れか1項に記載の不織布。 The non-woven fabric according to any one of claims 1 to 25, wherein the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged.
  27.  前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
     前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
     前記側部域の繊維密度が、前記頂部域の繊維密度及び前記底部域の繊維密度よりも小さい請求項26に記載の不織布。
    The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
    The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
    The nonwoven fabric according to claim 26, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
  28.  前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
     前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
     前記側部域を構成する構成繊維における変化点を有する繊維の本数が、前記頂部域を構成する構成繊維における変化点を有する繊維の本数及び前記底部域を構成する構成繊維における変化点を有する繊維の本数よりも多い請求項25又は27に記載の不織布。
    The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
    The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
    The number of fibers having change points in the constituent fibers constituting the side region, the number of fibers having change points in the constituent fibers constituting the top region, and the change point in the constituent fibers constituting the bottom region The nonwoven fabric according to claim 25 or 27, wherein the number is greater than
  29.  前記繊維処理剤を、前記構成繊維を含む繊維ウエブを延伸処理よりも前に、該構成繊維に付着させ、ポリエチレン樹脂の融点より十分に低い温度で乾燥させた構成繊維から形成されている請求項7に記載の不織布。 The fiber treatment agent is formed from constituent fibers obtained by adhering a fiber web containing the constituent fibers to the constituent fibers before the stretching treatment and drying the fiber web at a temperature sufficiently lower than the melting point of the polyethylene resin. The nonwoven fabric according to 7.
  30.  前記構成繊維同士の交点は接合点であり、該接合点が前記融着部である請求項1~29の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 29, wherein an intersection between the constituent fibers is a joining point, and the joining point is the fusion part.
  31.  肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する吸収性物品であって、
     前記表面シートは、請求項1~30の何れか1項に記載の不織布で形成されている吸収性物品。
    An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets,
    The absorbent article, wherein the surface sheet is formed of the nonwoven fabric according to any one of claims 1 to 30.
  32.  構成繊維同士の交点を熱融着して形成された融着部を複数備えた不織布であって、
     前記構成繊維は、高伸度繊維を含み、
     1本の前記構成繊維に着目して、該構成繊維は、隣り合う前記融着部どうしの間に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を有しており、
     前記融着部に隣接する前記小径部から前記大径部への変化点が、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に配されている、請求項1~30の何れか1項に記載の不織布。
    A non-woven fabric provided with a plurality of fusion parts formed by heat-sealing the intersections of the constituent fibers,
    The constituent fibers include high elongation fibers,
    Paying attention to one of the constituent fibers, the constituent fiber has a large diameter portion having a large fiber diameter sandwiched between two small diameter portions having a small fiber diameter between the adjacent fused portions. And
    The change point from the small-diameter portion adjacent to the fused portion to the large-diameter portion is disposed within a range of 3 of the interval between the fused portions adjacent to the fused portion. 31. The nonwoven fabric according to any one of 1 to 30.
  33.  前記小径部の繊維径(直径L16)は、5μm以上28μm以下である請求項32に記載の不織布。 The small diameter portion of the fiber diameter (diameter L 16), the nonwoven fabric according to claim 32 is 5μm or more 28μm or less.
  34.  前記大径部の繊維径(直径L17)は、10μm以上35μm以下である請求項32又は33の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 32 and 33, wherein a fiber diameter (diameter L 17 ) of the large diameter portion is 10 µm or more and 35 µm or less.
  35.  前記変化点は、延伸により繊維径が変化して形成されている請求項32~34の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 32 to 34, wherein the change point is formed by changing a fiber diameter by stretching.
  36.  前記不織布は、前記変化点を有する構成繊維を、20本の構成繊維の内に1本以上、5本以上有する請求項32~35の何れか1項に記載の不織布。 The non-woven fabric according to any one of claims 32 to 35, wherein the non-woven fabric has 1 or more and 5 or more constituent fibers having the change point in 20 constituent fibers.
  37.  前記頂部域を構成する構成繊維における前記変化点を有する繊維の本数(N13)は、1本以上15本以下である請求項6に記載の吸収性物品。 The absorbent article according to claim 6, wherein the number (N 13 ) of fibers having the change point in the constituent fibers constituting the top region is 1 or more and 15 or less.
  38.  前記底部域を構成する構成繊維における前記変化点を有する繊維の本数(N14)は、1本以上15本以下である請求項6又は37に記載の不織布。 The nonwoven fabric according to claim 6 or 37, wherein the number (N 14 ) of fibers having the changing point in the constituent fibers constituting the bottom region is 1 or more and 15 or less.
  39.  前記側部域を構成する構成繊維における前記変化点を有する繊維の本数(N15)は、5本以上20本以下である請求項6、37又は38に記載の不織布。 39. The nonwoven fabric according to claim 6, 37 or 38, wherein the number (N 15 ) of fibers having the change point in the constituent fibers constituting the side region is 5 or more and 20 or less.
  40.  前記構成繊維は、非弾性繊維のみからなる請求項32~39の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 32 to 39, wherein the constituent fibers are composed of inelastic fibers only.
  41.  前記高伸度繊維の繊度は、原料の段階で、1.0dtex以上10.0dtex以下である請求項32~40の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 32 to 40, wherein the fineness of the high elongation fiber is 1.0 dtex or more and 10.0 dtex or less at a raw material stage.
  42.  1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部が複数配されている請求項32~41の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 32 to 41, wherein a plurality of the large-diameter portions are arranged between the adjacent fused portions by paying attention to one of the constituent fibers.
  43.  1本の前記構成繊維に着目して、隣り合う前記融着部どうしの間に、前記大径部を1個以上5個以下備えている請求項32~42の何れか1項に記載の不織布。 The non-woven fabric according to any one of claims 32 to 42, wherein paying attention to one of the constituent fibers, the non-woven fabric according to any one of claims 32 to 42, wherein one or more and five or less large-diameter portions are provided between the adjacent fused portions. .
  44.  前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布である請求項32~43の何れか1項に記載の不織布。 The non-woven fabric according to any one of claims 32 to 43, wherein the non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged.
  45.  前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
     前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
     前記側部域の繊維密度が、該頂部域の繊維密度及び該底部域の繊維密度よりも小さい請求項44に記載の不織布。
    The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
    The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
    The nonwoven fabric according to claim 44, wherein the fiber density in the side region is smaller than the fiber density in the top region and the fiber density in the bottom region.
  46.  前記不織布は、一方向に延びる筋状の凸条部及び凹条部が交互に配された凹凸構造の不織布であり、
     前記不織布は、頂部域、底部域及びこれらの間に位置する側部域を有し、
     前記凸条部の頂部が頂部域から形成され、前記凹条部の底部が底部域から形成されており、
     前記頂部域での繊維密度(D13)、又は前記底部域での繊維密度(D14)に対する、前記底部域との間の壁部の繊維密度(D15)の比率(D15/D13,D15/D14)は、0.15以上0.9以下である請求項32~45の何れか1項に記載の不織布。
    The non-woven fabric is a non-woven fabric having a concavo-convex structure in which streaky ridges and ridges extending in one direction are alternately arranged,
    The non-woven fabric has a top region, a bottom region, and a side region located therebetween,
    The top of the ridge is formed from the top region, the bottom of the ridge is formed from the bottom region,
    Ratio (D 15 / D 13 ) of the fiber density (D 15 ) of the wall portion between the bottom region and the fiber density (D 13 ) in the top region or the fiber density (D 14 ) in the bottom region , D 15 / D 14 ) is 0.15 or more and 0.9 or less, and the nonwoven fabric according to any one of claims 32 to 45.
  47.  前記頂部域での繊維密度(D13)は、80本/mm以上200本/mm以下である請求項46に記載の不織布。 The fiber density (D 13) in the top zone, 80 present / mm 2 or more 200 present / mm 2 or less nonwoven fabric according to claim 46.
  48.  前記底部域での繊維密度(D14)は、80本/mm以上200本/mm以下である請求項46又は47に記載の不織布。 The fiber density (D 14) in the bottom zone, 80 present / mm 2 or more 200 present / mm 2 or less nonwoven fabric according to claim 46 or 47.
  49.  前記底部域の繊維密度(D15)は、30本/mm以上80本/mm以下である請求項46~48の何れか1項に記載の不織布。 The fiber density (D 15) of the bottom zone, 30 lines / mm 2 or more eighty / mm 2 or less nonwoven fabric according to any one of claims 46-48 is.
  50.  前記側部域を構成する構成繊維における変化点を有する繊維の本数が、前記頂部域を構成する構成繊維における変化点を有する繊維の本数及び前記底部域を構成する構成繊維における変化点を有する繊維の本数よりも多い請求項45~49の何れか1項に記載の不織布。 The number of fibers having change points in the constituent fibers constituting the side region, the number of fibers having change points in the constituent fibers constituting the top region, and the change point in the constituent fibers constituting the bottom region The nonwoven fabric according to any one of claims 45 to 49, wherein the number of the nonwoven fabrics is larger than the number of the nonwoven fabrics.
  51.  繊維処理剤が付与された高伸度繊維を含む繊維ウエブの構成繊維同士の交点を融着部にて熱融着する融着工程と、
     前記融着工程の後に、融着された前記繊維ウエブを一方向に延伸する延伸工程とを備えた不織布の製造方法であって、
     前記延伸工程にて、前記繊維ウエブを延伸して、隣り合う前記融着部どうしの間の1本の前記構成繊維に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を形成すると共に、該小径部の親水度を該大径部の親水度よりも小さくする不織布の製造方法。
    A fusion process in which the intersection of the constituent fibers of the fiber web including the high elongation fiber to which the fiber treatment agent is applied is thermally fused at the fusion part;
    A non-woven fabric manufacturing method comprising a stretching step of stretching the fused fiber web in one direction after the fusing step,
    In the stretching step, the fiber web is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter between one of the constituent fibers between the adjacent fused portions. A method for producing a nonwoven fabric, in which a diameter portion is formed and the hydrophilicity of the small diameter portion is made smaller than the hydrophilicity of the large diameter portion.
  52.  前記延伸工程にて、前記繊維シートを延伸して、隣り合う前記融着部どうしの間の1本の前記構成繊維に、繊維径の小さい2個の小径部に挟まれた繊維径の大きい大径部を形成すると共に、該小径部から該大径部への変化点を、該融着部から隣り合う該融着部どうしの間隔の1/3の範囲内に形成する、請求項51に記載の不織布の製造方法。 In the stretching step, the fiber sheet is stretched, and the fiber having a large fiber diameter is sandwiched between two small-diameter portions having a small fiber diameter in one constituent fiber between the adjacent fused portions. The diameter portion is formed, and the changing point from the small diameter portion to the large diameter portion is formed within a range of 1/3 of the interval between the fusion portions adjacent to the fusion portion. The manufacturing method of the nonwoven fabric as described.
  53.  前記不織布の製造方法に用いられる製造装置は延伸部を備えており、
     前記延伸部は、互いに噛み合いが可能になっている一対の第1凹凸ロール及び第2凹凸ロールを備えており、
     前記第1凹凸ロールのロール軸方向に隣り合う大径凸部どうしの間隔、及び前記第2凹凸ロールのロール軸方向に隣り合う大径凸部どうしの間隔は、1mm以上10mm以下である請求項52に記載の不織布の製造方法。
    The manufacturing apparatus used in the method for manufacturing the nonwoven fabric includes a stretching section,
    The extending portion includes a pair of first concavo-convex rolls and second concavo-convex rolls that can be engaged with each other,
    The interval between the large-diameter convex portions adjacent to each other in the roll axis direction of the first concave-convex roll and the interval between the large-diameter convex portions adjacent to each other in the roll axis direction of the second concave-convex roll are from 1 mm to 10 mm. 52. A method for producing a nonwoven fabric according to 52.
  54.  前記第1凹凸ロール及び前記第2凹凸ロールの押し込み量は、1mm以上3mm以下である請求項52又は53の何れか1項に記載の不織布の製造方法。 54. The method for producing a nonwoven fabric according to any one of claims 52 and 53, wherein an indentation amount of the first uneven roll and the second uneven roll is 1 mm or more and 3 mm or less.
  55.  前記第1凹凸ロール及び前記第2凹凸ロールの機械延伸倍率は、1.5倍以上3.0倍以下である請求項52~54の何れか1項に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to any one of claims 52 to 54, wherein a mechanical stretch ratio of the first uneven roll and the second uneven roll is 1.5 times or more and 3.0 times or less.
  56.  請求項51~55の何れか1項に記載の製造方法により製造された不織布。 A nonwoven fabric produced by the production method according to any one of claims 51 to 55.
  57.  肌対向面側に配置される表面シートと、非肌対向面側に配置される裏面シートと、前記両シート間に介在される吸収体とを有する吸収性物品であって、
     前記表面シートは、請求項32~50、56の何れか1項に記載の不織布で形成されている吸収性物品。
     
     
    An absorbent article having a top sheet disposed on the skin facing surface side, a back sheet disposed on the non-skin facing surface side, and an absorbent body interposed between the both sheets,
    The absorbent article, wherein the topsheet is formed of the nonwoven fabric according to any one of claims 32 to 50 and 56.

PCT/JP2015/079292 2014-10-17 2015-10-16 Nonwoven fabric WO2016060238A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016147533A RU2656084C1 (en) 2014-10-17 2015-10-16 Non-woven material
CN201580021105.8A CN106232888B (en) 2014-10-17 2015-10-16 Non-woven fabrics
MYPI2016001878A MY177779A (en) 2014-10-17 2015-10-16 Nonwoven fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014212400A JP2016079529A (en) 2014-10-17 2014-10-17 Nonwoven fabric
JP2014212401 2014-10-17
JP2014-212401 2014-10-17
JP2014-212400 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016060238A1 true WO2016060238A1 (en) 2016-04-21

Family

ID=55746773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079292 WO2016060238A1 (en) 2014-10-17 2015-10-16 Nonwoven fabric

Country Status (5)

Country Link
CN (1) CN106232888B (en)
MY (1) MY177779A (en)
RU (1) RU2656084C1 (en)
TW (1) TWI550155B (en)
WO (1) WO2016060238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518150A (en) * 2016-08-31 2019-06-27 ファイバーテックス パーソナル ケア アクティーゼルスカブ Nonwoven sheet and method of making the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948018A (en) * 2017-04-01 2017-07-14 佛山市保乐进出口贸易有限公司 The soft non-woven fabrics of silk or the special additive of fiber and preparation method thereof and non-woven fabrics
JP7065605B2 (en) * 2017-12-28 2022-05-12 ユニ・チャーム株式会社 Fiber non-woven sheet
JP7143438B2 (en) * 2018-10-29 2022-09-28 ユニ・チャーム株式会社 sanitary tampon
JP7033684B2 (en) * 2020-04-09 2022-03-10 花王株式会社 Non-woven fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123366A (en) * 1999-10-19 2001-05-08 Chisso Corp Drawn nonwoven fabric and molding product using the same
JP2002146661A (en) * 2000-11-09 2002-05-22 Canon Inc Method for producing fiber assembly, the resultant fiber assembly, liquid container
JP2010168715A (en) * 2008-12-25 2010-08-05 Kao Corp Nonwoven fabric and method for producing the same
WO2014171388A1 (en) * 2013-04-19 2014-10-23 花王株式会社 Nonwoven fabric and textile treating agent
JP2015108202A (en) * 2013-12-03 2015-06-11 花王株式会社 Nonwoven fabric and absorbent article including the same
JP2015112116A (en) * 2013-12-06 2015-06-22 花王株式会社 Three-dimensional sheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1115516A1 (en) * 1983-02-28 1993-11-30 Vsesoyuznyj Nii Sint Volokon Nonwoven material made of synthetic fibers
JP2727242B2 (en) * 1989-10-18 1998-03-11 三菱レイヨン株式会社 Floppy disk jacket liner
ES2099292T3 (en) * 1991-12-17 1997-05-16 Procter & Gamble ABSORBENT ITEMS THAT HAVE CAST LAYERS.
WO1994028223A1 (en) * 1993-06-02 1994-12-08 Minnesota Mining And Manufacturing Company Nonwoven articles and methods of producing same
SE514391C2 (en) * 1997-12-03 2001-02-19 Sca Hygiene Prod Ab Absorbent articles
JP3794903B2 (en) * 1999-07-12 2006-07-12 ユニ・チャーム株式会社 Elastic stretch composite sheet
RU2217533C1 (en) * 2002-12-06 2003-11-27 Открытое акционерное общество "Научно-исследовательский институт нетканых материалов" Nonwoven material and method for manufacture of non-woven material
WO2007140163A2 (en) * 2006-05-25 2007-12-06 Dow Global Technologies Inc. Soft and extensible polypropylene based spunbond nonwovens
UA95839C2 (en) * 2007-06-22 2011-09-12 Уні-Шарм Корпорейшн Non-woven fabric and method for its production
US8178748B2 (en) * 2008-02-15 2012-05-15 The Procter & Gamble Company Absorbent article
JP5011220B2 (en) * 2008-06-26 2012-08-29 花王株式会社 Telescopic sheet
MY157096A (en) * 2008-12-25 2016-04-29 Kao Corp Non-woven fabric and process for producing same
WO2010074207A1 (en) * 2008-12-25 2010-07-01 花王株式会社 Non-woven fabric and process for producing same
JP5543464B2 (en) * 2009-08-05 2014-07-09 三井化学株式会社 Mixed fiber spunbonded nonwoven fabric, its production method and its use
JP5855901B2 (en) * 2010-11-02 2016-02-09 花王株式会社 Disposable diapers
JP4996766B2 (en) * 2010-11-30 2012-08-08 ユニ・チャーム株式会社 Liquid-permeable sheet and method for producing the same
JP6099030B2 (en) * 2011-06-23 2017-03-22 花王株式会社 Absorbent articles
JP5717602B2 (en) * 2011-09-30 2015-05-13 ユニ・チャーム株式会社 Laminated nonwoven fabric and method for producing the laminated nonwoven fabric
CZ2012655A3 (en) * 2012-09-21 2014-04-02 Pegas Nonwovens S.R.O. Nonwoven fabric with enhanced softness and process for preparing such fabric
JP5622921B2 (en) * 2012-12-19 2014-11-12 花王株式会社 Non-woven

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123366A (en) * 1999-10-19 2001-05-08 Chisso Corp Drawn nonwoven fabric and molding product using the same
JP2002146661A (en) * 2000-11-09 2002-05-22 Canon Inc Method for producing fiber assembly, the resultant fiber assembly, liquid container
JP2010168715A (en) * 2008-12-25 2010-08-05 Kao Corp Nonwoven fabric and method for producing the same
WO2014171388A1 (en) * 2013-04-19 2014-10-23 花王株式会社 Nonwoven fabric and textile treating agent
JP2015108202A (en) * 2013-12-03 2015-06-11 花王株式会社 Nonwoven fabric and absorbent article including the same
JP2015112116A (en) * 2013-12-06 2015-06-22 花王株式会社 Three-dimensional sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518150A (en) * 2016-08-31 2019-06-27 ファイバーテックス パーソナル ケア アクティーゼルスカブ Nonwoven sheet and method of making the same
US10982362B2 (en) 2016-08-31 2021-04-20 Fibertex Personal Care A/S Nonwoven fabric sheet and method for making the same

Also Published As

Publication number Publication date
CN106232888A (en) 2016-12-14
CN106232888B (en) 2017-09-29
MY177779A (en) 2020-09-23
RU2656084C1 (en) 2018-05-30
TW201629289A (en) 2016-08-16
TWI550155B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP4975089B2 (en) Nonwoven fabric and method for producing the same
JP6332805B2 (en) Non-woven
WO2016060238A1 (en) Nonwoven fabric
WO2014171388A1 (en) Nonwoven fabric and textile treating agent
JP5809341B1 (en) Laminated nonwoven fabric and method for producing the same
JP5894333B1 (en) Non-woven
WO2010074207A1 (en) Non-woven fabric and process for producing same
JP6271657B1 (en) Top sheet for absorbent articles
TWI516578B (en) Non-woven and fiber treatment agent
JP6190263B2 (en) Nonwoven fabric and absorbent article
JP6408320B2 (en) Hydrophilic nonwoven fabric and fiber treatment agent for nonwoven fabric
JP6396753B2 (en) Absorbent articles
JP2016060995A (en) Ridged and grooved nonwoven fabric
JP2016079529A (en) Nonwoven fabric
JP6267501B2 (en) 3D sheet
JP6120282B2 (en) Nonwoven fabric and absorbent article having the same
JP6080323B2 (en) Absorbent articles
JP5640140B1 (en) Non-woven
JP5640139B1 (en) Non-woven
JP7057626B2 (en) Absorbent article
JP2017148141A (en) Absorbent article
JP5640164B2 (en) Nonwoven fabric and fiber treatment agent
JP2017101348A (en) Nonwoven fabric
JP2018023474A (en) Fiber sheet for absorbent article
JP6580435B2 (en) Absorbent articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201606982

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016147533

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850802

Country of ref document: EP

Kind code of ref document: A1