WO2014171388A1 - Nonwoven fabric and textile treating agent - Google Patents

Nonwoven fabric and textile treating agent Download PDF

Info

Publication number
WO2014171388A1
WO2014171388A1 PCT/JP2014/060384 JP2014060384W WO2014171388A1 WO 2014171388 A1 WO2014171388 A1 WO 2014171388A1 JP 2014060384 W JP2014060384 W JP 2014060384W WO 2014171388 A1 WO2014171388 A1 WO 2014171388A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nonwoven fabric
fiber
heat
hydrophilicity
Prior art date
Application number
PCT/JP2014/060384
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 寒川
舛木 哲也
祥一 種市
真行 湊崎
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013250489A external-priority patent/JP5640139B1/en
Priority claimed from JP2013250490A external-priority patent/JP5640140B1/en
Priority claimed from JP2014061278A external-priority patent/JP5640164B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201480002109.7A priority Critical patent/CN104540990B/en
Priority to RU2015113763/05A priority patent/RU2571144C1/en
Priority to BR112015011333-8A priority patent/BR112015011333B1/en
Publication of WO2014171388A1 publication Critical patent/WO2014171388A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/188Monocarboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/256Sulfonated compounds esters thereof, e.g. sultones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/262Sulfated compounds thiosulfates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a nonwoven fabric and a fiber treatment agent.
  • the present applicant first heat-treated the core-sheath-type composite fiber having a hydrophilic agent attached to the surface thereof, and changed the hydrophilicity of the fiber, and the hydrophilicity was partially reduced using the technique.
  • the technique which manufactures a nonwoven fabric was proposed (refer patent document 1).
  • the technique of providing a hydrophilic gradient in the thickness direction of the nonwoven fabric is described not only in the same document but also in Patent Documents 2 and 3, for example.
  • Patent Document 5 describes the use of an oil containing a highly polymerized polyorganosiloxane for the purpose of maintaining the dryness of the nonwoven fabric surface even after contact with a liquid without inferior high-speed card properties.
  • the oil agent contains an alkyl sulfate ester salt or an alkyl sulfonate salt.
  • JP 2010-168715 A Japanese Patent Laying-Open No. 2005-87659 JP 2005-314825 A JP 2003-201678 A JP-A-5-51872
  • Patent Document 1 it is indispensable to use a heat-extensible fiber, and other fibers are not assumed, and further improvement in the liquid residue on the surface has been desired.
  • the techniques described in Patent Documents 2 and 3 also have been desired to further improve the liquid residue on the surface.
  • Patent Document 4 is a technique for preventing sticking of elastic fibers, and there is no suggestion that the oil used in the same document is used for other than elastic fibers.
  • the present invention is a nonwoven fabric using heat-fusible fibers to which a fiber treatment agent is attached, wherein the fiber treatment agent comprises the following (A) component, (B) component, and (C) component nonwoven fabric. It is to provide.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • X represents —SO 3 M, —OSO 3 M or —COOM
  • M represents H, Na,
  • this invention is an air through nonwoven fabric containing the heat-fusible fiber to which the fiber processing agent has adhered, Comprising: It has a 1st layer and a 2nd layer adjacent to this, A 1st layer and a 2nd layer
  • the air-through nonwoven fabric NW1 or the air-through nonwoven fabric NW2 in which the heat-fusible fiber having the fiber treatment agent attached to at least one of them is provided.
  • the air-through nonwoven fabric NW1 satisfies the following condition I.
  • the first layer is virtually divided into two in the thickness direction, and the part far from the second layer is the first layer first part among the two parts divided into two equal parts, and the side close to the second layer
  • the first layer second part is compared with the first layer first part, the first layer second part, and the second layer, the following (11) and (12) Meet relationships, (11)
  • the first layer second portion has a higher hydrophilicity than the first layer first portion.
  • the hydrophilicity of any part of the second layer is higher than the second part of the first layer.
  • the said fiber processing agent contains said (A) component, (B) component, and (C) component.
  • the air-through nonwoven fabric NW2 satisfies the following condition II.
  • the second layer is virtually divided into two in the thickness direction, and of the two divided parts, the part closer to the first layer is defined as the second layer first part, and the side far from the first layer
  • the hydrophilicity of the first layer, the second layer first part, and the second layer second part is compared, and the following (21) and (22) Meet relationships, (21)
  • the hydrophilicity of the second layer first portion is higher than that of the first layer.
  • the hydrophilicity of the second layer second portion is higher than that of the second layer first portion.
  • the said fiber processing agent contains said (A) component, (B) component, and (C) component.
  • the present invention is a fiber treatment agent containing the following component (A), component (B) and component (C), wherein the content ratio of the component (A) to the component (C) (the former:
  • the latter is a nonwoven fabric fiber treatment agent having a mass ratio of 1: 3 to 4: 1 and containing the component (A) in a proportion of 30% by mass or less based on the mass of the fiber treatment agent.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • X represents —SO 3 M, —OSO 3 M or —COOM
  • M represents H, Na, K, Mg, Ca or ammonium.
  • FIG.1 (a) is a perspective view which shows one Embodiment of the nonwoven fabric of this invention
  • FIG.1 (b) is a partially expanded view of the cross section along the thickness direction of the nonwoven fabric shown to Fig.1 (a).
  • FIG. 2 is a schematic view showing a process for producing a partially hydrophobized nonwoven fabric using heat hydrophobized fibers.
  • FIG. 3 is a diagram schematically showing a cross-sectional structure of another embodiment of the nonwoven fabric of the present invention.
  • FIG. 4 is a diagram schematically showing a cross-sectional structure of another embodiment of the nonwoven fabric of the present invention.
  • FIG. 5 is a diagram schematically showing a cross-sectional structure of still another embodiment of the nonwoven fabric of the present invention.
  • FIG. 6 is a diagram schematically showing a cross-sectional structure of still another embodiment of the nonwoven fabric of the present invention.
  • FIG. 7 is a schematic view showing an apparatus suitably used for producing the nonwoven fabric of the present invention.
  • FIG. 8 is a graph showing the evaluation results of the size of the hydrophilic gradient generated by heat treatment.
  • FIG. 9 is a schematic view showing a cross-sectional structure of a nonwoven fabric produced in a comparative example.
  • An object of the present invention relates to providing a nonwoven fabric that can eliminate the disadvantages of the above-described conventional technology, an efficient or simple manufacturing method of the nonwoven fabric, and the like.
  • the nonwoven fabric of the present invention is preferably an air-through nonwoven fabric.
  • the “air-through nonwoven fabric” referred to in the present invention refers to a nonwoven fabric manufactured through a process of spraying a fluid of 50 ° C. or higher, for example, gas or water vapor, onto a web or a nonwoven fabric, and not only a nonwoven fabric manufactured only in this step, It also includes a nonwoven fabric produced by adding this step to a nonwoven fabric produced by another method, or a nonwoven fabric produced by performing some step after this step.
  • the nonwoven fabric of the present invention includes not only an air-through nonwoven fabric but also a composite of an air-through nonwoven fabric and a fiber sheet or film material such as another nonwoven fabric.
  • the non-woven fabric of the present invention is a non-woven fabric using heat-sealing fibers to which a fiber treatment agent containing a specific compound is attached, and is preferably an air-through non-woven fabric.
  • the fiber treatment agent used in the present invention adheres to the surface of the heat-fusible fiber, and increases the hydrophilicity of the fiber surface as compared with that before attaching the fiber treatment agent.
  • the non-woven fabric of the present invention uses a heat-sealing fiber to which a fiber treatment agent containing the above-described components (A), (B) and (C) is attached as one type of constituent fibers.
  • This fiber treatment agent is used for the purpose of controlling the hydrophilicity of the nonwoven fabric of the present invention.
  • the nonwoven fabric of this invention may be comprised only from the heat sealing
  • the nonwoven fabric of the present invention may have a single layer structure or a multilayer structure.
  • the air-through nonwoven fabric NW1 and the air-through nonwoven fabric NW2 which are preferred embodiments of the nonwoven fabric of the present invention have a multilayer structure including a first layer and a second layer.
  • the first layer and the second layer are adjacent and in direct contact with each other, and no other layer is interposed between the two layers.
  • the above-described heat-fusible fiber to which the fiber treating agent is attached is included in at least one of the first layer and the second layer.
  • the first layer includes the heat-sealing fiber
  • the second layer includes the heat-sealing fiber
  • both the first layer and the second layer include the heat-sealing fiber. It is out.
  • the first layer and the second layer are distinguished from each other by factors such as the type of material of the fibers constituting the layers, the thickness of the fibers, the presence / absence of hydrophilic treatment, and the layer formation method.
  • factors such as the type of material of the fibers constituting the layers, the thickness of the fibers, the presence / absence of hydrophilic treatment, and the layer formation method.
  • the air-through nonwoven fabric NW1 and the air-through nonwoven fabric NW2 may each have the first layer side as a use surface or the second layer side as a use surface. Which side is used is determined according to the specific application of the air-through nonwoven fabric. For example, when the air-through nonwoven fabric NW1 or the air-through nonwoven fabric NW2 is used as the top sheet of the absorbent article, the use of the first layer side can maximize the various characteristics of the air-through nonwoven fabric. preferable.
  • the fiber treatment agent used for the nonwoven fabric of the present invention and the fiber treatment agent for nonwoven fabric treatment of the present invention are the above-mentioned (A) component, (B) component and (C) component, that is, polyorganosiloxane, alkyl phosphate ester, and An anionic surfactant represented by the general formula (1) described later is contained.
  • the fiber to which the fiber treatment agent containing these three components is attached is subjected to a heat treatment, so that the polyorganosiloxane promotes the penetration of the anionic surfactant having an alkyl chain into the fiber. Changes to a lower value by heat treatment.
  • the anionic surfactant represented by the general formula (1) has a bulky alkyl group and can penetrate into the fiber so as to wrap around the hydrophilic group. Penetration into the fiber is easy to promote. Thereby, for example, in the step of blowing hot air onto the web, which is one step of the manufacturing process described later, the amount of heat received by the fibers in the web is naturally different between the hot air blowing surface and the opposite surface (net surface).
  • the amount of heat received differs between the fiber on the hot air blowing surface and the fiber on the opposite side, and the contact angle value of the fiber also changes between the fiber on the hot air blowing surface and the fiber on the opposite side. It will be. Using this, a nonwoven fabric having a gradient in hydrophilicity is produced from one surface side, which is the first surface when viewed in plan, to the other surface side, which is the second surface opposite to the first surface. can do.
  • each component will be described.
  • any of linear ones and those having a crosslinked two-dimensional or three-dimensional network structure can be used. Preferably it is substantially linear.
  • suitable polyorganosiloxanes are alkylalkoxysilanes, arylalkoxysilanes, alkylhalosiloxane polymers or cyclic siloxanes, and the alkoxy groups are typically methoxy groups.
  • alkyl group an alkyl group which may have a side chain having 1 to 18 carbon atoms, preferably 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms is suitable.
  • the aryl group include a phenyl group, an alkylphenyl group, and an alkoxyphenyl group.
  • a cyclic hydrocarbon group such as a cyclohexyl group or a cyclopentyl group, or an aralkyl group such as a benzyl group may be used.
  • the polyorganosiloxane referred to in the present invention is a polyorganosiloxane modified with a highly hydrophilic POE chain from the viewpoint of further promoting the penetration of the surfactant and increasing the contact angle of the fiber surface by heating. It is a concept that does not include.
  • the most typical polyorganosiloxane preferred in the present invention includes polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane and the like, and polydimethylsiloxane is particularly preferred.
  • the molecular weight of the polyorganosiloxane is preferably a high molecular weight.
  • the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000.
  • more preferably 800,000 or less still more preferably 600,000 or less.
  • Two or more types of polyorganosiloxanes having different molecular weights may be used as the polyorganosiloxane.
  • one of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and preferably Is not more than 1 million, more preferably not more than 800,000, still more preferably not more than 600,000.
  • the other one has a weight average molecular weight of preferably less than 100,000, more preferably not more than 50,000, more preferably 30,000. It is 5,000 or less, more preferably 20,000 or less, preferably 2000 or more, more preferably 3000 or more, and still more preferably 5000 or more.
  • a preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is a mass ratio, preferably 1:10 to 4: 1. More preferably, it is 1: 5 to 2: 1.
  • the weight average molecular weight of the polyorganosiloxane is measured using GPC.
  • the measurement conditions are as follows.
  • the calculated molecular weight is calculated with polystyrene. Separation column: GMHHR-H + GMHHR-H (cation)
  • Eluent L Farmin DM20 / CHCl 3
  • Solvent flow rate 1.0 ml / min Separation column temperature: 40 ° C
  • the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of increasing the change in hydrophilicity due to heat treatment. Moreover, 30 mass% or less is preferable from a viewpoint which is easy to absorb a liquid on the nonwoven fabric surface, and 20 mass% or less is still more preferable.
  • the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
  • the nonwoven fabric according to the present invention when the nonwoven fabric according to the present invention is applied to the absorbent article as a top sheet, the viewpoint of preventing the hydrophilicity on the top side from being excessively lowered, that is, the liquid flow distance described later becomes long, and the excretory liquid is applied to the skin. Also from the viewpoint of preventing the amount of adhesion from increasing, the content of the polyorganosiloxane in the fiber treatment agent is preferably within the above range.
  • polyorganosiloxane as the component (A).
  • “KF-96H-1 million Cs” manufactured by Shin-Etsu Silicone Co., “SH200 Fluid 1000000 Cs” manufactured by Toray Dow Corning Co., Ltd. and those containing two types of polyorganosiloxane include “ KM-903 "or" BY22-060 "manufactured by Toray Dow Corning can be used.
  • the component (B), an alkyl phosphate ester is intended to improve the properties of raw cotton through the card machine and the uniformity of the web, thereby improving the productivity of the nonwoven fabric and preventing the quality from deteriorating. It is blended in the treatment agent.
  • the alkyl phosphate ester include those having a saturated carbon chain such as stearyl phosphate ester, myristyl phosphate ester, lauryl phosphate ester, palmityl phosphate ester, oleyl phosphate ester, palmitoleyl phosphate ester, etc. Examples include unsaturated carbon chains and those having side chains in these carbon chains.
  • alkyl phosphate ester having 16 to 18 carbon chains.
  • alkyl phosphate ester salt include alkali metals such as sodium and potassium, ammonia, and various amines.
  • Alkyl phosphate ester can be used individually by 1 type or in mixture of 2 or more types.
  • the blending ratio of the component (B) in the fiber treatment agent is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoints of card machine passability and web uniformity, and heat treatment. From the viewpoint of preventing the fiber from being hydrophobized by the polyorganosiloxane resulting from the above, it is preferably 30% by mass or less, more preferably 25% by mass or less.
  • component (C) is an anionic surfactant represented by the general formula (1) shown above.
  • (C) component points out the component which does not contain the alkyl phosphate ester which is (B) component.
  • (C) component can be used individually by 1 type or in mixture of 2 or more types.
  • anionic surfactant in which X in the general formula (1) is —SO 3 M, that is, the hydrophilic group is a sulfonic acid or a salt thereof include, for example, a dialkylsulfonic acid or a salt thereof.
  • dialkyl sulfonic acid examples include dioctadecyl sulfosuccinic acid, didecyl sulfosuccinic acid, ditridecyl sulfosuccinic acid, di-2-ethylhexyl sulfosuccinic acid, and the like, and dicarboxylic acids such as dialkyl sulfosuccinic acid and dialkyl sulfoglutaric acid.
  • Saturated fatty acids and unsaturated fatty acids such as compounds sulfonated at the alpha position, 2-sulfotetradecanoic acid 1-ethyl ester (or amide) sodium salt, 2-sulfohexadecanoic acid 1-ethyl ester (or amide) sodium salt
  • dialkyl alkenes obtained by sulfonating internal olefins of hydrocarbon chains and unsaturated fatty acids Such as sulfonic acid can be mentioned.
  • the number of carbon atoms in each of the two-chain alkyl groups of the dialkyl sulfonic acid is preferably 4 or more and 14 or less, particularly 6 or more and 10 or less.
  • anionic surfactant in which the hydrophilic group is sulfonic acid or a salt thereof include the following anionic surfactants.
  • anionic surfactant in which X in the general formula (1) is —OSO 3 M, that is, the hydrophilic group is sulfuric acid or a salt thereof include dialkyl sulfates, and specific examples thereof include 2-ethylhexyl.
  • anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
  • X in the general formula (1) is —COOM
  • a dialkylcarboxylic acid can be mentioned, and specific examples thereof include 11-ethoxyhepta.
  • Hydroxy fatty acid chlorides such as compounds in which the hydroxy moiety of hydroxy fatty acids such as sodium decanecarboxylate and sodium 2-ethoxypentacarboxylate is alkoxylated and the fatty acid moiety is sodiumated, and the amino group of amino acids such as sarcosine and glycine are alkoxylated
  • compounds obtained by reacting carboxylic acid in the amino acid part with sodium and compounds obtained by reacting fatty acid chloride with the amino group of arginic acid.
  • anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
  • a heat treating property treated with a fiber treating agent is obtained by using a fiber treating agent in which an anionic surfactant represented by the general formula (1) and polyorganosiloxane are blended.
  • the fiber becomes a fiber whose hydrophilicity tends to be lowered by heat treatment.
  • polyorganosiloxane promotes the penetration of an anionic surfactant having two or more alkyl chains into the fiber, so that the hydrophilicity of the fiber surface tends to be lowered by heat treatment.
  • the polysiloxane chain of the polyorganosiloxane and the alkyl chain of the anionic surfactant are incompatible with each other, so that the anionic surfactant penetrates when the fiber is heated and melted into the more familiar fiber. Presumed to happen.
  • the blending ratio of the component (C) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more from the viewpoint of increasing the change in hydrophilicity due to heat treatment. When it becomes too high, it is preferably 20% by mass or less, more preferably 13% by mass or less, from the viewpoint of easily holding the liquid and impairing dryness.
  • the blending ratio of the component (C) is preferably 1% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 13% by mass or less.
  • the content ratio (the former: latter) of the polyorganosiloxane of component (A) and the anionic surfactant of component (C) in the fiber treatment agent is preferably 1: 3 to 4: 1 by mass ratio.
  • the ratio is preferably 1: 2 to 3: 1.
  • the content ratio (the former: latter) of the polyorganosiloxane of component (A) and the alkyl phosphate ester of component (B) in the fiber treatment agent is preferably a mass ratio of 1: 5 to 10: 1. More preferably, it is 1: 2 to 3: 1.
  • the fiber treatment agent used in the present invention may contain other components in addition to the components (A) to (C) described above.
  • anionic, cationic, zwitterionic and nonionic surfactants can be used.
  • anionic surfactants include alkyl phosphate sodium salt, alkyl ether phosphate sodium salt, dialkyl phosphate sodium salt, dialkyl sulfosuccinate sodium salt, alkylbenzene sulfonate sodium salt, alkyl sulfonate sodium salt, alkyl sulfate sodium salt, secondary Examples include alkyl sulfate sodium salt (all alkyls preferably have 6 to 22 carbon atoms, particularly preferably 8 to 22 carbon atoms). These may use other alkali metal salts such as potassium salts in place of sodium salts.
  • Examples of the cationic surfactant include alkyl (or alkenyl) trimethyl ammonium halide, dialkyl (or alkenyl) dimethyl ammonium halide, alkyl (or alkenyl) pyridinium halide, and these compounds have 6 or more carbon atoms. Those having 18 or less alkyl groups or alkenyl groups are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
  • Examples of zwitterionic surfactants include alkyl betaines.
  • alkylbetaines alkyl (C1-30) dimethylbetaine, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) dihydroxyalkyl (C1 ⁇ 30)
  • Betaine-type amphoteric surfactants such as betaine and sulfobetaine-type amphoteric surfactants, alanine type [alkyl (carbon number 1-30) aminopropionic acid type, alkyl (carbon number 1-30) imino Dipropionic acid type, etc.]
  • Amphoteric surfactants, Glycine types such as alkylbetaines [Alkyl (carbon number 1-30) aminoacetic acid type, etc.]
  • Amino acid type amphoteric surfactants such as amphoteric surfactants, alkyls (carbon number 1 ⁇ 30) Aminosulfonic acid type amphoteric surfactants such
  • glycerin fatty acid ester is preferable, and glycerin monocaprylate is more preferable.
  • the fiber treatment agent used in the nonwoven fabric of the present invention and the fiber treatment agent for nonwoven fabrics of the present invention may contain a treatment agent such as an anti-sticking agent such as modified silicone.
  • the heat-fusible fiber of the present invention is treated with a fiber treatment agent, and the above-described fiber treatment agent is attached to at least the surface.
  • the heat-fusible fiber used in the present invention is a fiber constituting the heat-fusible nonwoven fabric.
  • the heat-fusible fiber include a heat-fusible core-sheath type composite fiber and a non-heat-extensible fiber. Examples thereof include fibers, heat shrink fibers, three-dimensional crimp fibers, latent crimp fibers, and hollow fibers. In the present invention, it is preferable to use a heat-fusible core-sheath composite fiber.
  • the heat-fusible core-sheath type conjugate fiber of the present invention is a heat-fusible core-sheath type conjugate fiber similar to the heat-fusible core-sheath type conjugate fiber before the fiber treatment agent is attached.
  • the core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or an irregular shape, and is preferably a concentric core-sheath type.
  • Examples of the heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached include, for example, “a sheath portion containing a polyethylene resin and a core made of a resin component having a higher melting point than the polyethylene resin” described in JP 2010-168715 A
  • a core-sheath type composite fiber having a part hereinafter, this fiber is referred to as a core-sheath type composite fiber P.
  • Examples of the polyethylene resin constituting the sheath of the core-sheath type composite fiber P include low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and the like.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • a high density polyethylene of ⁇ 0.965 g / cm 3 is preferred.
  • the resin component constituting the sheath portion of the core-sheath type composite fiber P is preferably a polyethylene resin alone, but other resins can also be blended.
  • Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like.
  • EVA ethylene-vinyl acetate copolymer
  • EVOH ethylene-vinyl alcohol copolymer
  • the resin component which comprises a sheath part it is preferable that 50 mass% or more in the resin component of a sheath part is 70 mass% or more and 100 mass% or less especially polyethylene resin.
  • the polyethylene resin constituting the sheath portion of the core-sheath type composite fiber P preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
  • the sheath part of the core-sheath type composite fiber P plays a role of providing the heat-fusible core-sheath type composite fiber with heat-fusibility and taking in the fiber treatment agent described above during heat treatment.
  • a core part is a part which provides intensity
  • a resin component constituting the core part of the core-sheath type composite fiber P a resin component having a melting point higher than that of the polyethylene resin that is the constituent resin of the sheath part can be used without particular limitation.
  • the resin component constituting the core examples include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Furthermore, a polyamide-type polymer, the copolymer of 2 or more types of the resin component mentioned above, etc. can be used. A plurality of types of resins can be blended and used. In this case, the melting point of the core is the melting point of the resin having the highest melting point.
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • a polyamide-type polymer, the copolymer of 2 or more types of the resin component mentioned above, etc. can be used.
  • a plurality of types of resins can be blended and used.
  • the melting point of the core is the melting point of the resin having the highest melting point.
  • the heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached has a difference in melting point between the resin component constituting the core part and the resin component constituting the sheath part (the former-the latter) at 20 ° C. or higher. It is preferable that the non-woven fabric can be easily manufactured, and is preferably 150 ° C. or lower.
  • the melting point when the resin component constituting the core is a blend of a plurality of types of resins is the melting point of the resin having the highest melting point.
  • the heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached is preferably a fiber whose length is extended by heating (hereinafter also referred to as a heat-extensible composite fiber).
  • the heat-extensible fiber include a fiber that spontaneously extends as the crystal state of the resin changes due to heating.
  • the heat-extensible fiber is present in the nonwoven fabric in a state where its length is extended by heating and / or in a state where it can be extended by heating. When heat-extensible fibers are heated, the fiber treatment agent on the surface is easily taken into the interior, and it becomes easy to form a plurality of portions having greatly different hydrophilicity by heat treatment in the fibers and the nonwoven fabric produced using the fibers.
  • a preferable heat-extensible conjugate fiber has a first resin component that constitutes a core portion and a second resin component that comprises a polyethylene resin and constitutes a sheath portion, and the first resin component is a second resin component.
  • a 1st resin component is a component which expresses the heat
  • a 2nd resin component is a component which expresses heat-fusibility.
  • the melting points of the first resin component and the second resin component were determined by using a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.), and performing thermal analysis of a finely cut fiber sample (sample weight 2 mg) at a heating rate of 10 ° C./min.
  • the melting peak temperature of each resin is measured and defined by the melting peak temperature.
  • the resin is defined as “resin having no melting point”.
  • the temperature at which the second resin component is fused to such an extent that the fusion point strength of the fiber can be measured is used as the softening point as the temperature at which the molecules of the second resin component begin to flow, and this is used instead of the melting point.
  • the preferred orientation index of the first resin component in the heat-stretchable conjugate fiber is naturally different depending on the resin used.
  • the orientation index is preferably 60% or less, more preferably 40% or less. More preferably, it is 25% or less.
  • the first resin component is polyester
  • the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more.
  • the orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber. And when the orientation index of a 1st resin component and a 2nd resin component is each said value, a heat
  • the orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A.
  • a method for achieving the orientation index as described above for each resin component in the thermally extensible composite fiber is described in paragraphs [0033] to [0036] of JP-A No. 2010-168715.
  • the heat stretchable conjugate fiber can be stretched by heat at a temperature lower than the melting point of the first resin component.
  • the heat-extensible composite fiber preferably has a thermal elongation rate of 0.5 to 20% at a temperature 10 ° C. higher than the melting point of the second resin component (softening point in the case of a resin having no melting point), Preferably it is 3 to 20%, more preferably 5.0 to 20%.
  • a nonwoven fabric containing fibers having such a thermal elongation rate becomes bulky due to the elongation of the fibers or has a three-dimensional appearance.
  • the thermal elongation rate of the fiber is determined by the method described in paragraphs [0031] to [0032] of JP2010-168715A.
  • the ratio (mass ratio, the former: latter) of the first resin component and the second resin component in the heat-extensible composite fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially 50:50 to 70. : 30 is preferable.
  • the fiber length of the heat-extensible conjugate fiber one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
  • the fiber diameter of the heat-extensible composite fiber is appropriately selected according to the specific use of the nonwoven fabric.
  • the nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of the absorbent article, it is preferable to use a nonwoven fabric having a thickness of 10 to 35 ⁇ m, particularly 15 to 30 ⁇ m.
  • the fiber diameter of the heat-extensible composite fiber is reduced when the fiber diameter is reduced, and the fiber diameter is a fiber diameter when the nonwoven fabric is actually used.
  • Japanese Patent No. 4131852 Japanese Patent Laid-Open No. 2005-350836, Japanese Patent Laid-Open No. 2007-303035, Japanese Patent Laid-Open No. 2007-204899,
  • the fibers described in JP 2007-204901 A and JP 2007-204902 A can also be used.
  • the heat-fusible fiber may contain titanium oxide. Titanium oxide preferably has a particle size in the range of 0.1 ⁇ m to 2 ⁇ m, for example, and can be spun by containing it in a resin in the fiber spinning step. By using fibers containing titanium oxide, the nonwoven fabric has increased whiteness and concealment. In particular, an absorbent article using a nonwoven fabric containing a fiber containing titanium oxide as a surface material or the like has high concealment of body fluids such as menstrual blood and urine absorbed in the absorbent body, and the visual appearance from the appearance after use A dry feeling can be obtained.
  • Titanium oxide can be added at any content, but from the viewpoint of enhancing concealability, the amount of titanium oxide to be contained in the heat-fusible fiber is preferably 0.5% by mass with respect to the total mass of the fiber. Above, more preferably 1 mass% or more, from the viewpoint of productivity, fiber strength properties, card process properties in the nonwoven fabric manufacturing process, cut property in the post-processing step, preferably 5 mass% or less, More preferably, it is 4.5 mass% or less.
  • the hydrophilicity of the surface of the fiber is increased as compared with the case where the fiber treating agent is adhered, as compared with before the adhesion.
  • the adhesion amount of the fiber treatment agent is preferably 0.1% by mass or more, more preferably, from the viewpoint of increasing the hydrophilicity of the fiber as a proportion of the total mass of the heat-sealable core-sheath composite fiber excluding the fiber treatment agent. It is 0.1 to 1.5% by mass, and more preferably 0.2 to 1.0% by mass.
  • the method for attaching the fiber treatment agent to the fiber surface various known methods can be employed without any particular limitation. For example, application by spraying, application by slot coater, application by roll transfer, immersion in a hydrophilic oil, and the like can be mentioned. These treatments may be performed on the fibers before being formed into a web, or may be performed after the fibers are formed into a web by various methods.
  • the fiber having the fiber treatment agent attached to the surface thereof is dried at a temperature sufficiently lower than the melting point of the ethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing dryer.
  • the heat-fusible fiber of the present invention is preferably used for the production of sheet materials such as webs and nonwoven fabrics.
  • a part of the layered body can be formed on the manufactured sheet material.
  • the hydrophilic property of a desired part can be reduced by heat-processing after the manufacturing process of the sheet material, and manufacture of a sheet material and a laminated body.
  • the decrease in hydrophilicity may decrease the entire hydrophilicity of the sheet material, or may decrease a part of the sheet material.
  • the thickness (fineness) of the fiber is selected in an appropriate range according to the specific application such as a non-woven fabric produced by using the fiber, but from the viewpoint of producing a non-woven fabric that is soft and has a good touch. Is preferably 1.0 to 10.0 dtex, and more preferably 2.0 to 8.0 dtex.
  • the non-woven fabric of the present invention may be a mixture of heat-extensible fibers and non-heat-extensible fibers as heat-fusible fibers.
  • the non-heat-extensible fiber is a bicomponent composite fiber that includes a high-melting component and a low-melting component, and the low-melting component is continuously present in the length direction on at least a part of the fiber surface.
  • the form of the composite fiber (non-heat-extensible fiber) includes various forms such as a core-sheath type and a side-by-side type, and any form can be used.
  • the heat-fusible composite fiber is drawn at the raw material stage.
  • the term “stretching treatment” as used herein refers to a stretching operation with a stretching ratio of about 2 to 6 times.
  • the mixing ratio of the heat-extensible fiber and the non-heat-extensible fiber is preferably 1: 9 to 9: 1 for the former: the latter and more preferably 4: 6 to 6: 4 in terms of mass ratio.
  • a nonwoven fabric having a plurality of portions having different hydrophilicities can be obtained by heat-treating a web or nonwoven fabric produced using heat-fusible fibers.
  • the contact angle of water with respect to the fiber taken out from the nonwoven fabric is preferably 90 degrees or less.
  • the hydrophilicity of the surface is further increased by the fiber treatment agent, it becomes possible to form a plurality of regions having greatly different hydrophilicities on the fiber itself or a nonwoven fabric produced using the fiber.
  • the heat-fusible core-sheath composite fiber taken out from the nonwoven fabric of the present invention has a contact angle with water of preferably 90 degrees or less, more preferably 85 degrees or less, and hydrophilicity. If it is too high, the liquid tends to be held, and therefore it is preferably at least 60 °, more preferably at least 65 °. Further, it is preferably 65 to 85 degrees, and more preferably 70 to 80 degrees.
  • a decrease in hydrophilicity is synonymous with an increase in contact angle.
  • the contact angle of water with the fiber taken out from the nonwoven fabric is measured by the following method.
  • a measuring device an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used. Distilled water is used for contact angle measurement.
  • the amount of liquid discharged from an ink jet type water droplet discharge part (manufactured by Cluster Technology Co., Ltd., pulse injector CTC-25 having a discharge part pore diameter of 25 ⁇ m) is set to 20 picoliters, and a water drop is dropped just above the fiber.
  • the state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera.
  • the recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later.
  • the sample for measurement (fiber obtained by taking out from a nonwoven fabric) is the fiber located in the corresponding part in the top part P1 of a convex part, the recessed part vicinity part, and back surface (flat surface) P2 shown in FIG.1 (b) from an outermost layer.
  • FIG. 1 (a) and FIG. 1 (b) are views showing a nonwoven fabric 1 which is an embodiment of the nonwoven fabric of the present invention. After forming a web from the heat-fusible fiber of the present invention, one of the webs is shown. It was obtained by reducing the hydrophilicity of the part.
  • a method for obtaining a web from the heat-fusible fiber of the present invention various known methods such as a card method, an airlaid method, and a spunbond method can be used. As shown in FIG. The method used (card method) is preferred.
  • FIG. 2 the nonwoven fabric shown in FIG. 1 (a) and FIG.
  • FIG. 1 (b) forms a web 12 using a card machine 11 with a short fiber aggregate of fibers whose hydrophilicity is lowered by heat as a raw material. Then, the web 12 was introduced into an embossing device 13 having a pair of rolls 14 and 15 for embossing, and the web 16 after embossing was heat treated by a hot-air treatment device 17 using an air-through method.
  • One of the pair of rolls used for embossing is an embossing roll 14 in which convex portions for embossing in a lattice pattern are formed on the peripheral surface, and the other has a smooth peripheral surface and faces the embossing roll.
  • the flat roll 15 is arranged.
  • Embossing is performed by pressing and compressing the web between the convex portion of the embossing roll 14 and the smooth peripheral surface of the flat roll 15. Thereby, the nonwoven fabric which has the thin part (embossing part) 18 formed by the embossing, and the thick part 19 other than that is obtained.
  • the temperature applied to the web 12 during embossing when producing the nonwoven fabric 1 in this way is set to the sheath portion of the heat-fusible core-sheath conjugate fiber.
  • a temperature not lower than the melting point of the polyethylene resin and not higher than the melting point of the resin component of the core is applied.
  • the air permeability decreases as the compression becomes closer to the embossed portion of the web.
  • the polyethylene resin constituting the embossed portion only needs to be melted by pressure and can be minimized.
  • the portion (embossed portion) that has been consolidated by embossing has little or no amount of hot air to pass, and hot air passes through thicker portions other than the embossed portion. , Hydrophilicity decreases.
  • the thin portion 18 and / or its peripheral portion formed by embossing becomes a hydrophilic portion, and becomes relatively hydrophobic as it becomes closer to the other thick portion 19, and the thickest portion becomes thicker.
  • a nonwoven fabric in which the vicinity of the portion is a portion exhibiting the maximum hydrophobicity is obtained.
  • fusing of the sheath part of parts other than an embossing part advances, the intersection of a fiber is heat-seal
  • the nonwoven fabric 1 shown in FIGS. 1 (a) and 1 (b) has a single layer structure.
  • the nonwoven fabric 1 has a concavo-convex surface 10b having one concavo-convex shape, and the other surface is flat or a flat surface 10a having a smaller degree of concavo-convexity than the concavo-convex surface.
  • the thick portion 19 and the thin portion 18 in the nonwoven fabric 1 form a convex portion 119 and a concave portion 118 on the concave-convex surface 10 b of the nonwoven fabric 1.
  • the recess 118 includes a first linear recess 118a extending in parallel with each other and a second linear recess 118b extending in parallel with each other, and the first linear recess 118a and the second linear recess 118b. And intersect at a predetermined angle.
  • the convex portion 119 is formed in a rhombus-shaped closed region surrounded by the concave portion 118.
  • the top part P1 of the thick part is the top part P1 of the convex part 119 formed on the uneven surface 10b of the nonwoven fabric by the thick part 19.
  • the thin portion 18 or its neighboring portion P3 has high hydrophilicity.
  • the hydrophilicity gradually increases from the top portion P1 of the thick portion 19 toward the thin portion (embossed portion) 18 or its vicinity P3.
  • the uneven surface 10b of the nonwoven fabric 1 is directed to the embossing roll 14 side during embossing, and is directed to the side opposite to the net surface (breathable support) when hot air treatment is performed by an air-through method. It is the surface of the side which sprays directly. Therefore, when a heat-extensible conjugate fiber is used as a constituent fiber of the nonwoven fabric, the heat-extensible conjugate fiber extends more greatly on the uneven surface 10b than on the flat surface 10a. Therefore, the fiber diameter in the surface of the flat surface 10a becomes larger than the fiber diameter in the surface of the uneven surface 10b. Further, the hydrophilicity of the thick portion 19 is lower on the uneven surface 10b side than on the flat surface 10a side.
  • the temperature applied to the web at the time of embossing is from the melting point of the polyethylene resin constituting the sheath portion from the viewpoint of suppressing changes in the hydrophilicity at the embossed portion and / or its vicinity (peripheral portion). It is preferably 20 ° C. or lower and lower than the melting point of the resin component constituting the core.
  • the temperature applied during the hot air treatment is at least 10 ° C. lower than the melting point of the polyethylene resin, in particular, more than the melting point of the polyethylene resin, and more preferably the melting point of the polyethylene resin +5 from the viewpoint of surely causing a change in hydrophilicity. It is preferable that the temperature is not lower than ° C.
  • a nonwoven fabric having a plurality of portions with greatly different hydrophilicity is produced without requiring a complicated device or a special device.
  • the obtained nonwoven fabric has a good touch and is unlikely to cause liquid residue on the surface. Liquid flow hardly occurs and shows good absorption performance.
  • a surface material and a surface sheet are synonymous.
  • the hydrophilicity of the heat-fusible core-sheath composite fiber of the present invention or the web containing the same is lowered by heat treatment.
  • the hydrophilic part and the hydrophilic part in the nonwoven fabric of the present invention need only have a high degree of hydrophilicity in comparison with the part whose hydrophilicity has been lowered by heat treatment.
  • the hydrophobic part or the hydrophobic part may be a part where the hydrophilicity is lowered before the hydrophilicity is lowered by heat treatment or compared with a part where the hydrophilicity is not lowered.
  • the lowering of the hydrophilicity may be any treatment that lowers the hydrophilicity in comparison with that before the heat treatment.
  • a decrease in hydrophilicity is synonymous with an increase in contact angle.
  • the decrease in hydrophilicity means that the difference in contact angle is 2 degrees or more, preferably 2.5 degrees or more, more preferably 3 degrees or more, and 5 degrees or more. More preferably, it is. Further, it is preferably 10 degrees or less, more preferably 8 degrees or less, and even more preferably 7 degrees or less.
  • the nonwoven fabric of the present invention may be made three-dimensional by secondary processing after partially lowering the hydrophilicity, and may be appropriately subjected to additional processes such as performing a hydrophilization treatment only for a part.
  • the nonwoven fabric of this invention may have a hydrophilicity gradient in one of the thickness direction or the plane direction, and may have a hydrophilicity gradient in the thickness direction and a plane direction.
  • the non-woven fabric according to the present invention can be applied to various fields by taking advantage of a hydrophilicity gradient, such as partly hydrophilic and partly hydrophobic or hydrophilicity-reduced part.
  • a top sheet, a second sheet (a sheet disposed between the top sheet and the absorbent body) in an absorbent article used to absorb liquid discharged from the body such as sanitary napkins, panty liners, disposable diapers, and incontinence pads
  • a back sheet a leak-proof sheet, or a personal wipe sheet, a skin care sheet, or an objective wiper.
  • the basis weight of the web or nonwoven fabric used for the production of the nonwoven fabric is selected within a suitable range depending on the specific use of the intended nonwoven fabric.
  • the basis weight of the finally obtained nonwoven fabric is preferably 10 g / m 2 or more and 80 g / m 2 or less, particularly preferably 15 g / m 2 or more and 60 g / m 2 or less.
  • the basis weight is preferably 10 to 80 g / m 2 , particularly preferably 15 to 60 g / m 2 .
  • the thickness of the convex portion 119 (thick portion 19) in the nonwoven fabric 1 is preferably 0.5 to 3 mm, particularly 0.7 to 3 mm in the state after bulk recovery by hot air.
  • the thickness of the recess 118 (thin portion 18) is preferably 0.01 to 0.4, particularly 0.02 to 0.2 mm. The thickness of the recess 118 is not substantially changed before and after the hot air is blown.
  • the thickness of the convex part 119 and the concave part 118 is measured by observing the longitudinal section of the nonwoven fabric 1.
  • the nonwoven fabric is cut into a size of 100 mm ⁇ 100 mm, and a measurement piece is collected. A plate of 12.5 g (diameter 56.4 mm) is placed on the measurement piece, and a load of 49 Pa is applied. Under this condition, the longitudinal section of the nonwoven fabric is observed with a microscope (manufactured by Keyence Corporation, VHX-900), and the thicknesses of the convex portions 119 and the concave portions 118 are measured.
  • the “thickness of the nonwoven fabric” refers to the thickness of the convex part (thick part).
  • the area ratio between the concave portion 118 and the convex portion 119 in the nonwoven fabric 1 is represented by an embossing rate (an embossed area ratio, that is, a ratio of the total area of the concave portion with respect to the entire nonwoven fabric 1), and affects the bulkiness and strength of the nonwoven fabric 1.
  • an embossing rate in the nonwoven fabric 1 is preferably 5 to 35%, more preferably 10 to 25%.
  • the embossing rate is measured by the following method. First, using a microscope (manufactured by Keyence Co., Ltd., VHX-900), an enlarged surface photograph of the nonwoven fabric 1 is obtained. An embossed area U is calculated.
  • the embossing rate can be calculated by the formula (U / T) ⁇ 100.
  • the air-through nonwoven fabric NW1 which is a preferred embodiment of the nonwoven fabric of the present invention, includes the thermoplastic fiber to which the fiber treatment agent is adhered, and thus has hydrophilicity along the thickness direction when viewed as a whole of the air-through nonwoven fabric. Has a slope.
  • the first layer is virtually divided into two in the thickness direction, and a portion farther from the second layer among the two divided portions is defined as a first layer first portion, When the portion closer to the layer is the first layer second portion, when the hydrophilicity of the first layer first portion, the first layer second portion, and the second layer is compared, the following (11) and The relationship of (12) is satisfied.
  • the first layer second portion has higher hydrophilicity than the first layer first portion.
  • the hydrophilicity of any part of the second layer is higher than that of the second part of the first layer.
  • the first layer first portion, the first layer second portion, and the second layer have a hydrophilicity relationship between the first layer, the first portion, the first layer, the second portion, and the second layer.
  • Any site in “Any part in the second layer” refers to a part having the highest hydrophilicity among the hydrophilicities measured along the thickness direction of the second layer. The same applies to the first layer first part and the first layer second part, and the hydrophilicity of the first layer first part and the first layer second part refers to the hydrophilicity of these parts along the thickness direction. It is the said hydrophilicity in the site
  • hydrophilicity referred to in the present invention is determined based on the contact angle of the fiber measured by the method described below. Specifically, a low hydrophilicity is synonymous with a large contact angle, and a high hydrophilicity is synonymous with a small contact angle.
  • a fiber is taken out from a predetermined portion in the thickness direction of the nonwoven fabric, and the contact angle of water with the fiber is measured.
  • an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used as a measuring device. Distilled water is used to measure the contact angle.
  • the amount of liquid discharged from an ink jet type water droplet discharge part (manufactured by Cluster Technology Co., Ltd., pulse injector CTC-25 having a discharge part pore diameter of 25 ⁇ m) is set to 20 picoliters, and a water drop is dropped just above the fiber.
  • the state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera.
  • the recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later.
  • an image is recorded every 17 msec.
  • the first image of water droplets on the fiber taken out from the nonwoven fabric is attached to the attached software FAMAS (software version is 2.6.2, analysis method is droplet method, analysis method is ⁇ / 2 method)
  • the image processing algorithm is non-reflective, the image processing image mode is frame, the threshold level is 200, and the curvature is not corrected).
  • the air-through nonwoven fabric NW1 has higher hydrophilicity from the first part toward the second part in the first layer.
  • the air-through nonwoven fabric NW1 has a higher hydrophilicity from the first layer second portion toward the second layer. Due to the fact that such a gradient is provided in the hydrophilicity in the thickness direction, when the liquid is supplied to the first surface side of the air-through nonwoven fabric NW1, the liquid quickly permeates through the nonwoven fabric. . Therefore, it is difficult for the liquid to flow along the surface on the first surface side. As a result, it is difficult for the liquid to remain on the surface on the first surface side, which is the surface supplied with the liquid. These remarkable effects become particularly remarkable when the air-through nonwoven fabric NW1 is used as a surface sheet of an absorbent article with the surface on the first layer side facing the skin.
  • FIGS. 3 to 5 show various specific examples of the air-through nonwoven fabric NW1 having the above-described hydrophilicity gradient.
  • NW1 having the above-described hydrophilicity gradient.
  • the 3 has a first layer 10 and a second layer 20.
  • the first layer 10 and the second layer 20 are in direct contact with each other, and there are no other layers interposed between the two layers.
  • the first layer 10 and the second layer 20 are each a single fiber layer, and are not composed of a multi-layer laminate that is further subdivided.
  • the first layer 10 and the second layer 20 are bonded to each other on the entire area of the opposing surfaces, and no gap is generated between the both layers 10 and 20.
  • the 1st layer 10 and the 2nd layer 20 are represented by the same thickness, this is because each layer 10 and 20 was shown typically, In actual air through nonwoven fabric 1A, The thickness of the first layer 10 and the second layer 20 may be different.
  • the first layer 10 and the second layer 20 are both composed of randomly deposited fibers.
  • the fibers constituting the first layer 10 are fused by an air-through method at the intersections of the fibers.
  • the intersection of the fibers constituting the first layer 10 and the fibers constituting the second layer 20 is fused by an air-through method.
  • the fibers constituting the first layer 10 may be bonded by means other than air-through fusion. For example, they may be additionally bonded by means such as fusion by hot embossing, entanglement by a high-pressure jet flow, adhesion by an adhesive, or the like. The same applies to the second layer 20 and also at the boundary between the first layer 10 and the second layer 20.
  • the 1st layer 10 which consists of a single layer is virtually divided into two in the thickness direction, it is a site
  • the second portion 12 is more hydrophilic than the first portion 11.
  • the first layer 10 includes the heat-fusible fiber to which the fiber treatment agent described above is attached.
  • the hydrophilicity of the first layer 10 may be gradually increased from the first part 11 toward the second part 12, or the hydrophilicity is stepped from the first part 11 toward the second part 12. The shape may be higher.
  • the hydrophilicity is preferably gradually increased from the first portion 11 toward the second portion 12.
  • the first layer 10 includes the heat-fusible fiber to which the fiber treatment agent described above is attached.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is 70 degrees or more, particularly It is preferable that it is 72 degree
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 60 degrees or more, particularly 65.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less.
  • the second layer 20 has the same hydrophilicity in any part of the second layer 20.
  • the hydrophilicity of the second layer 20 is higher than the hydrophilicity of the first layer second portion 12.
  • the nonwoven fabric 1A of the present embodiment has higher hydrophilicity in the order of the first layer first portion 11, the first layer second portion 12, and the second layer 20.
  • the contact angle of water with respect to the fibers contained in the second layer 20 is 20 degrees or more, particularly 30 degrees or more, provided that the contact angle of water with respect to the fibers contained in the first layer first portion 12 is smaller. Is preferably 75 degrees or less, and particularly preferably 65 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer 20 is preferably 20 degrees or more and 75 degrees or less, and more preferably 30 degrees or more and 65 degrees or less.
  • the hydrophilicity of the second layer 20 is the same in any part.
  • the fibers are hydrophilic. What is necessary is just to use the fiber processing agent called the oil agent conventionally used in order to provide.
  • the fiber treatment agents include various surfactants.
  • the surfactant anionic, cationic, zwitterionic and nonionic surfactants can be used.
  • anionic surfactants include alkyl phosphate salts, alkyl ether phosphate salts, dialkyl phosphate salts, dialkyl sulfosuccinate salts, alkyl benzene sulfonate salts, alkyl sulfonate salts, alkyl sulfate salts, secondary alkyl sulfate salts and the like ( Any of the above alkyl preferably has 6 to 22 carbon atoms.)
  • alkali metal salt include sodium salt and potassium salt.
  • Examples of the cationic surfactant include alkyl (or alkenyl) trimethylammonium halide, dialkyl (or alkenyl) dimethylammonium halide, alkyl (or alkenyl) pyridinium halide and the like. These compounds have 6 to 18 carbon atoms. Those having an alkyl group or an alkenyl group are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
  • zwitterionic surfactants examples include alkyl (C1-30) dimethylbetaine, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) dihydroxy.
  • Betaine-type zwitterionic surfactants such as alkyl (carbon number 1-30) betaines and sulfobetaine-type amphoteric surfactants, alanine type [alkyl (carbon numbers 1-30) aminopropionic acid type, alkyl (carbon number 1) To 30) iminodipropionic acid type, etc.] zwitterionic surfactant, glycine type [alkyl (carbon number 1-30) aminoacetic acid type, etc.] amino acid type zwitterionic surfactant such as zwitterionic surfactant, alkyl (carbon (Formula 1-30) Aminosulfonic acid type zwitterionic surfactants such as taurine type.
  • the constituent fiber of the second layer 20 is not treated with the above-described fiber treatment agent containing the components (A) to (C).
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 and the water with respect to the fibers contained in the second layer 20 is preferably 1 degree or more, particularly 10 degrees or more, more preferably 20 degrees or more, and 50 degrees or less, particularly 40 degrees or less. Preferably there is.
  • the difference is preferably 1 ° to 50 °, more preferably 10 ° to 40 °.
  • the difference between the contact angle of water with respect to the fibers contained in the first layer first portion 11 and the contact angle of water with respect to the fibers contained in the second layer 20 is 2 degrees or more, particularly 10 degrees or more, and more preferably 20 degrees or more, provided that the contact angle difference between the first layer second portion 12 and the second layer 20 is larger than that described above.
  • the difference is preferably 2 ° to 65 °, more preferably 10 ° to 50 °.
  • the above-described fiber treatment agent is used, and the hot air blowing conditions in the air-through method described later, that is, the temperature and the air volume of the hot air are appropriately used. It may be controlled to.
  • the nonwoven fabrics 1B and 1C of the embodiment shown in FIGS. 4 and 5 will be described.
  • the same members as those in FIG. 3 are denoted by the same reference numerals.
  • the first layer 10 has the same configuration as the first layer 10 of the nonwoven fabric 1A shown in FIG.
  • the second layer 20 of the non-woven fabric 1B when this is virtually bisected in the thickness direction, the portion closer to the first layer 10 out of the two bisected portions is the second.
  • a layer first portion 21 is called, and a portion far from the first layer 10 is called a second layer second portion 22. Since the second layer 20 is composed of a single layer, there is no boundary between the first portion 21 and the second portion 22. Further, the fibers constituting the first part 21 and the fibers constituting the second part 22 are the same.
  • the hydrophilicity of the first layer first portion 11, the first layer second portion 12, the second layer first portion 22, and the second layer second portion 22 is compared.
  • the first layer second portion 12 has higher hydrophilicity than the first layer first portion 11, the following (13) and (14) The relationship is also satisfied.
  • the hydrophilicity of the second layer first portion 21 is higher than that of the first layer second portion 12;
  • the second layer second portion 22 is more hydrophilic than the second layer first portion 21.
  • the nonwoven fabric 1B of this embodiment has a gradient of hydrophilicity with respect to the first layer 10 and also has a gradient of hydrophilicity with respect to the second layer 20.
  • the magnitude relationship of the hydrophilicity is as follows: first layer first part 11 ⁇ first layer second part 12 ⁇ second layer first part 21 ⁇ second layer second part 22.
  • the second layer 20 may have a gradually increasing hydrophilicity from the second portion 21 toward the second portion 22, or The hydrophilicity may increase stepwise from the two regions 21 toward the second region 22.
  • the hydrophilicity is preferably gradually increased from the second portion 21 toward the second portion 22.
  • the heat-fusible fiber to which the fiber treatment agent described above is attached is included not only in the first layer 10 but also in the second layer 20. Preferably it is.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is 70 degrees or more, particularly 72 degrees or more. Further, it is preferably 85 degrees or less, particularly 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 60 degrees or more, particularly 65. It is preferable that it is more than degree.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more, particularly 55 degrees or more. Moreover, it is preferable that it is 75 degrees or less, especially 70 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more and 75 degrees or less, and more preferably 55 degrees or more and 70 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 20 degrees or more, particularly 30. It is preferable that it is more than degree.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 20 degrees or more and 70 degrees or less, and preferably 30 degrees or more and 65 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 and the second layer first portion 21 are included.
  • the difference from the contact angle of water with respect to the fibers (first layer second portion 12 ⁇ second layer first portion 21) is preferably 1 degree or more, particularly preferably 10 degrees or more, and 30 degrees or less, particularly 25 degrees or less. It is preferable that For example, the difference is preferably 1 degree or more and 30 degrees or less, more preferably 10 degrees or more and 25 degrees or less.
  • the portion 11-the second layer second portion 22) is 2 degrees or more, particularly 10 degrees, provided that the contact angle difference between the first layer second portion 12 and the second layer first portion 21 is larger than that described above. It is preferable that the angle be 65 degrees or less, particularly 50 degrees or less.
  • the difference is preferably 2 ° to 65 °, more preferably 10 ° to 50 °.
  • the fiber treatment agent described above is used for each layer, and the hot air blowing conditions in the air-through method described later, that is, What is necessary is just to control the temperature and air volume of hot air appropriately.
  • the nonwoven fabric 1B of this embodiment the same effect as the nonwoven fabric 1A shown in FIG. 3 is exhibited.
  • the nonwoven fabric 1B of the present embodiment has a gradient of hydrophilicity with respect to the second layer 20, the effect exhibited by the nonwoven fabric 1A shown in FIG. 3 becomes even more remarkable.
  • the nonwoven fabric 1C shown in FIG. 5 has a hydrophilicity gradient with respect to the first layer 10 and also has a hydrophilicity gradient with respect to the second layer 20, similarly to the nonwoven fabric 1B shown in FIG. 4 described above. Further, similarly to the nonwoven fabric 1B shown in FIG. 4, the first portion 10 has a higher hydrophilicity in the second portion 12 than the first portion 11, and the second layer 20 also has a higher degree of hydrophilicity than the first portion 21. Also, the second portion 22 has a higher hydrophilicity.
  • the non-woven fabric 1C of the present embodiment is different from the non-woven fabric 1B shown in FIG. 4 in that the degree of hydrophilicity is such that the first layer first part 11 ⁇ second layer first part 21 ⁇ first layer second part 12 ⁇ The second layer is the second portion 22. Except this point, it is the same as the nonwoven fabric 1B shown in FIG.
  • the first layer second portion 12 is more hydrophilic than the first layer first portion 11
  • An air-through nonwoven fabric that satisfies the following relationships (15), (16), and (17).
  • the second layer first portion 21 is more hydrophilic than the first layer first portion 11.
  • the first layer second portion 12 has a higher hydrophilicity than the second layer first portion 21.
  • the hydrophilicity of the second layer second portion 22 is higher than that of the first layer second portion 12.
  • the nonwoven fabric 1C of the present embodiment has higher hydrophilicity in order from the first layer 10 side toward the second layer 20 side. Instead, the hydrophilicity relationship is reversed between the first layer second portion 12 and the second layer first portion 21.
  • the nonwoven fabric 1C of this embodiment having such a hydrophilicity relationship has the same effects as the nonwoven fabrics 1A and 1B shown in FIGS. 12 and the second layer first portion 21 are reversed in the relationship of hydrophilicity, the effect that the liquid that has once passed through the nonwoven fabric 1C is difficult to return, and the liquid in the plane direction of the nonwoven fabric 1C. There is also an effect that the liquid permeates through the nonwoven fabric 1C while being diffused.
  • the effect that the liquid is difficult to return is advantageous in that, when the nonwoven fabric 1C is used as the top sheet of the absorbent article, the liquid once absorbed by the absorbent body is difficult to return even when subjected to the wearer's pressure resistance. It is. Moreover, when the nonwoven fabric 1C is used as the surface sheet of the absorbent article, the effect that the liquid is transmitted while diffusing in the plane direction of the nonwoven fabric 1C is that the liquid is absorbed in all the portions in the plane direction of the absorbent body. This is advantageous in that the absorption performance of the absorber can be effectively utilized.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more, particularly preferably 72 degrees or more. Further, it is preferably 85 degrees or less, particularly 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 50 degrees or more, particularly 55. It is preferable that it is more than degree.
  • the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 50 degrees or greater and 75 degrees or less, and preferably 55 degrees or greater and 70 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is 60 degrees or more, particularly 65 degrees or more. Moreover, it is preferable that it is 80 degrees or less, especially 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 30 degrees or more, particularly 40. It is preferable that it is at least.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 30 degrees or more and 70 degrees or less, and preferably 40 degrees or more and 65 degrees or less.
  • the second layer first The difference between the contact angle of water with respect to the fibers contained in the first portion 21 and the contact angle of water with respect to the fibers contained in the first layer second portion 12 (second layer first portion 21-first layer second portion 12) Is preferably 1 degree or more, particularly preferably 2 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less.
  • the difference is preferably 1 to 30 degrees, more preferably 2 to 25 degrees.
  • the contact angle of water with respect to the fibers contained in the first layer first portion 11 and the second layer second portion 22 is preferably 2 degrees or more, particularly preferably 5 degrees or more, and 55 degrees or less, particularly 45 degrees. Or less.
  • the difference is preferably 2 ° to 55 °, more preferably 5 ° to 45 °.
  • the hydrophilicity may gradually increase from the first part 11 toward the second part 12, or, alternatively, from the first part 11 toward the second part 12.
  • the hydrophilicity may be increased stepwise.
  • the hydrophilicity may be gradually increased from the second part 22 toward the first part 21, or the hydrophilicity is stepped from the second part 22 toward the first part 21.
  • the shape may be higher.
  • the fiber treatment agent described above is used for each layer, and the hot air blowing conditions in the air-through method described later, that is, What is necessary is just to control the temperature and air volume of hot air appropriately.
  • it is used for the first layer 10 in order to reverse the hydrophilicity relationship between the first layer second portion 12 and the second layer first portion 21 with the nonwoven fabric 1B of the embodiment shown in FIG.
  • the fiber treatment agent is compared with the fiber treatment agent used for the second layer 20, the degree of hydrophilicity is set so that the fiber treatment agent used for the second layer 20 is lower. It is advantageous to choose.
  • FIG. 4 the relationship of hydrophilicity between the 1st layer 2nd site
  • FIG. It can be reversed with the nonwoven fabric 1B of the embodiment shown.
  • the air-through nonwoven fabric NW2 which is another preferred embodiment of the present invention, includes a thermoplastic fiber to which the fiber treatment agent is attached, and thus has a hydrophilicity along the thickness direction when viewed as a whole of the air-through nonwoven fabric. Has a slope.
  • the second layer is virtually divided into two in the thickness direction, and a portion closer to the first layer among the two divided portions is defined as a second layer first portion,
  • the hydrophilicity of the first layer, the second layer first part, and the second layer second part is compared, and the following (21) and The relationship (22) is satisfied.
  • the hydrophilicity of the first part of the second layer is higher than that of the first layer.
  • the second layer second portion has a higher hydrophilicity than the second layer first portion.
  • the magnitude relationship of the hydrophilicity between the first layer, the second layer first portion, and the second layer second portion is as follows: first layer ⁇ second layer first portion ⁇ second layer second portion It becomes.
  • the degree of “hydrophilicity” referred to in the present invention is determined based on the contact angle of the fiber measured by the method described in [Method for measuring contact angle].
  • the air-through nonwoven fabric NW2 has higher hydrophilicity from the first layer to the second layer.
  • the air-through nonwoven fabric NW2 has a higher hydrophilicity from the first part toward the second part in the second layer. Due to the fact that such a gradient is provided in the hydrophilicity in the thickness direction, when the liquid is supplied to the first surface side of the air-through nonwoven fabric NW2, the liquid quickly permeates through the nonwoven fabric. . Therefore, it is difficult for the liquid to flow along the surface on the first surface side. As a result, it is difficult for the liquid to remain on the surface on the first surface side, which is the surface supplied with the liquid. And the liquid which permeate
  • FIG. 6 shows a specific example of the air-through nonwoven fabric NW2 having the above-described hydrophilicity gradient.
  • the air-through nonwoven fabric 1D shown in the figure has a first layer 10 and a second layer 20.
  • the first layer 10 and the second layer 20 are in direct contact with each other, and there are no other layers interposed between the two layers.
  • the first layer 10 and the second layer 20 are each a single fiber layer, and are not composed of a multi-layer laminate that is further subdivided.
  • the first layer 10 and the second layer 20 are bonded to each other on the entire area of the opposing surfaces, and no gap is generated between the both layers 10 and 20.
  • the 1st layer 10 and the 2nd layer 20 are represented by the same thickness, this is because each layer 10 and 20 was shown typically, and in actual air through nonwoven fabric 1D, The thickness of the first layer 10 and the second layer 20 may be different.
  • the first layer 10 and the second layer 20 are both composed of randomly deposited fibers.
  • the fibers constituting the first layer 10 are fused by an air-through method at the intersections of the fibers.
  • the intersection of the fibers constituting the first layer 10 and the fibers constituting the second layer 20 is fused by an air-through method.
  • the fibers constituting the first layer 10 may be bonded by means other than air-through fusion. For example, they may be additionally bonded by means such as fusion by hot embossing, entanglement by a high-pressure jet flow, adhesion by an adhesive, or the like. The same applies to the second layer 20 and also at the boundary between the first layer 10 and the second layer 20.
  • the second layer 20 when the second layer 20 composed of a single layer is virtually divided into two equal parts in the thickness direction, the part closer to the first layer 10 is divided into the two parts divided into two parts. A portion far from the first layer 10 is called a second layer second portion 22. Since the second layer 20 is composed of a single layer, there is no boundary between the second part 21 and the second part 22. Further, the fibers constituting the second part 21 and the fibers constituting the second part 22 are the same.
  • the hydrophilicity of the second part 22 is higher than that of the second part 21.
  • the heat-fusible fiber to which the fiber treatment agent described above is attached is included in the second layer 20.
  • the hydrophilicity of the second layer 20 may be gradually increased from the second part 21 toward the second part 22, or the hydrophilicity is stepped from the second part 21 toward the second part 22.
  • the shape may be higher.
  • the hydrophilicity is preferably gradually increased from the second portion 21 toward the second portion 22.
  • the heat-fusible fiber to which the fiber treatment agent described above is attached is included in the second layer 20.
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is 50 degrees or more, particularly It is preferable that it is 60 degree
  • the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more and 80 degrees or less, and more preferably 60 degrees or more and 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 30 degrees or more, particularly 40.
  • the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 30 degrees to 75 degrees, and more preferably 40 degrees to 70 degrees.
  • the first layer 10 has the same hydrophilicity in any part of the first layer 10.
  • the hydrophilicity of the first layer 10 is lower than the hydrophilicity of the second layer first portion 21.
  • the nonwoven fabric 1D of the present embodiment has a higher hydrophilicity in the order of the first layer 10, the second layer first portion 21, and the second layer second portion 22.
  • the contact angle of water with respect to the fibers contained in the first layer 10 is 75 degrees or more, particularly 80 degrees or more, provided that the contact angle of water with respect to the fibers contained in the second layer first portion 21 is larger. Is preferably 90 degrees or less, and particularly preferably 85 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer 10 is preferably 75 ° to 90 °, and preferably 80 ° to 85 °.
  • a fiber treating agent called an oil agent that has been conventionally used for imparting hydrophilicity to the fiber may be used.
  • Typical examples of such fiber treatment agents include various surfactants.
  • the surfactant anionic, cationic, zwitterionic and nonionic surfactants can be used.
  • examples of the surfactant include those described above as the surfactant used to make the second layer of the nonwoven fabric 1A have the same hydrophilicity at any part.
  • the constituent fibers of the first layer 10 are not treated with the above-described fiber treatment agent containing the components (A) to (C).
  • the contact angle of water with the fibers contained in the first layer 10 and the water with respect to the fibers contained in the second layer first portion 21 is preferably 1 degree or more, particularly 10 degrees or more, more preferably 15 degrees or more, 40 degrees or less, particularly 30 degrees or less. Further, it is preferably 25 degrees or less. For example, the difference is preferably 1 to 40 degrees, more preferably 10 to 30 degrees, and more preferably 15 to 25 degrees.
  • the difference between the contact angle of water with respect to the fibers contained in the first layer 10 and the contact angle of water with respect to the fibers contained in the second layer second portion 22 is 2 degrees or more, particularly 10 degrees or more, and more preferably 20 degrees or more, provided that the contact angle difference between the first layer 10 and the second layer first part 21 is larger than that described above. It is preferably 60 ° or less, particularly 50 ° or less, and more preferably 35 ° or less.
  • the difference is preferably 2 degrees or more and 60 degrees or less, more preferably 10 degrees or more and 50 degrees or less, and more preferably 20 degrees or more and 35 degrees or less.
  • the heat-fusible fiber has a hydrophilicity on the surface of the fiber as a result of the fiber treatment agent adhering to the heat-fusible fiber, as compared to before the fiber treating agent is attached.
  • the adhesion amount of the fiber treatment agent is preferably 0.1% by mass or more, more preferably from 0.1 to 10% from the viewpoint of increasing the hydrophilicity of the fiber, as a proportion of the total mass of heat-fusible fibers excluding the fiber treatment agent.
  • the amount is 1.5% by mass, more preferably 0.2 to 1.0% by mass.
  • the method for attaching the fiber treatment agent to the surface of the heat-fusible fiber various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform processing before air-through processing described later.
  • the fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
  • the heat-fusible fiber examples include a heat-fusible core-sheath composite fiber, a non-heat-stretchable fiber, a heat-shrinkable fiber, a three-dimensional crimped fiber, a latent-crimped fiber, and a hollow fiber. These fibers can be used alone or in combination of two or more. Of these fibers, it is particularly preferable to use a heat-fusible core-sheath composite fiber.
  • the heat-fusible fiber has a heat-fusible property before and after the fiber treatment agent is attached, and has a core-sheath type composite structure.
  • the core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or an irregular shape. In particular, a concentric core-sheath type is preferable.
  • the fineness of the heat-fusible fiber is preferably 1.0 dtex or more and 10.0 dtex or less. More preferably, it is 0 dtex or more and 8.0 dtex or less.
  • the fineness of the heat-fusible fiber may be the same between the first layer 10 and the second layer 20, or may be different.
  • the fineness of the heat-fusible fiber in each of the layers 10 and 20 is different, the fineness of the heat-fusible fiber contained in the second layer 20 is greater than the fineness of the heat-fusible fiber contained in the first layer 10. Is preferably small.
  • the first layer 10 can be used without using a heat-fusible fiber having a small fineness for the second layer 20.
  • the drawability of the liquid toward the second layer 20 is sufficient.
  • the heat-fusible core-sheath type composite fiber include the core-sheath type composite fiber P described above.
  • the heat-fusible core-sheath conjugate fiber to which the fiber treatment agent is attached is a heat-extensible conjugate fiber.
  • the configurations and preferred configurations of the core-sheath type composite fiber P and the heat-extensible composite fiber are also as described above.
  • the heat-fusible fiber a mixture of heat-extensible fiber and non-heat-extensible fiber may be used.
  • the non-heat-extensible fiber is a bicomponent composite fiber that includes a high-melting component and a low-melting component, and the low-melting component is continuously present in the length direction on at least a part of the fiber surface.
  • the form of the composite fiber (non-heat-extensible fiber) includes various forms such as a core-sheath type and a side-by-side type, and any form can be used.
  • the heat-fusible composite fiber is drawn at the raw material stage.
  • the term “stretching treatment” as used herein refers to a stretching operation with a stretching ratio of about 2 to 6 times.
  • the mixing ratio of the heat-extensible fiber and the non-heat-extensible fiber is preferably 1: 9 to 9: 1 for the former: the latter and more preferably 4: 6 to 6: 4 in terms of mass ratio.
  • heat-extensible fibers may be used for the first layer
  • non-heat-extensible fibers may be used for the second layer
  • heat-extensible fibers may be used for the second layer
  • non-heat-extensible fibers may be used for the second layer. It may be used.
  • FIG. 7 shows a manufacturing apparatus suitably used for manufacturing the air-through nonwoven fabric NW1 and / or the air-through nonwoven fabric NW2.
  • the manufacturing apparatus 100 shown in the figure includes a first web manufacturing unit 110, a second web manufacturing unit 120, an embossing unit 130, an air-through processing unit 140, a calendar unit 150, and a winding unit 160.
  • the first web production unit 110 and the second web production unit 120 are both constituted by a card machine.
  • the 1st web manufacture part 110 is a site
  • the 2nd web manufacture part 120 is a site
  • the first web production unit 110 and the second web production unit 120 are supplied with appropriate raw material fibers according to the specific use of the target air-through nonwoven fabric, and the first web 111 and the second web 122 are produced. . An appropriate amount of fiber treatment agent is attached to the raw fiber according to the specific use of the target air-through nonwoven fabric.
  • the first web 111 and the second web 122 fed out from the first web production unit 110 and the second web production unit 120 are overlapped at the embossing unit 130 and embossed. At this time, the webs 111 and 122 are overlapped so that the first web 111 is arranged on the second web 122.
  • the embossed portion 130 can be composed of, for example, an uneven roll 131 and an anvil roll 132.
  • the embossing conditions in the embossed part 130 may be any conditions as long as the constituent fibers of both webs 111 and 122 are pressed under heating to form an embossed fused part (not shown).
  • fever extensible fiber as a heat-fusion fiber, it is preferable to give an embossing process on the temperature conditions which this heat
  • the superposed web 101 formed by integrating the webs 111 and 122 in the embossed part 130 is conveyed to the air-through processing part 140.
  • the air-through processing unit 140 has a sealed chamber 141.
  • a circulating endless belt 142 is disposed in the chamber 141.
  • the endless belt 142 is made of a breathable material, for example, a metal wire mesh belt.
  • the overlapping web 101 is placed on the endless belt 142 and conveyed.
  • a blowout port for air heated to a predetermined temperature (hereinafter also referred to as “hot air”).
  • a suction port (not shown) for blowing hot air is also provided in the chamber 141.
  • the overlapping web 101 conveyed into the chamber 141 passes through the chamber 141, hot air is blown against the overlapping web 101 in an air-through manner.
  • the hot air is blown from the first web 111 side of the overlapping web 101.
  • the hot air blown is discharged from the second web 122 side of the overlapping web 101.
  • the outlet (not shown) is arranged to face the first web 111 in the overlapping web 101, and the suction port (not shown) is the first web. It is arranged so as to face 122.
  • the fiber of the fiber treatment agent according to the amount of heat received by the heat-fusible fiber.
  • the degree of penetration into the interior is different.
  • the greater the degree of penetration of the fiber treatment agent the lower the hydrophilicity of the fiber compared to the initial state where the fiber treatment agent is adhered. In this production method, this phenomenon is used to generate a hydrophilicity gradient in the target air-through nonwoven fabric.
  • the fiber existing on the hot air blowing surface receives the largest amount of heat
  • the fiber existing on the opposite side of the hot air blowing surface that is, the surface facing the endless belt 142 receives the smallest amount of heat. It becomes like this. Therefore, in this manufacturing method, the fiber existing on the surface of the first web 111 in the overlapping web 101 receives the largest amount of heat, and the fiber existing on the surface of the second web 122 receives the smallest amount of heat.
  • the degree of penetration of the fiber treatment agent into the fibers from the first web 111 side toward the second web 122 side decreases.
  • the hydrophilicity increases from the first web 111 side toward the second web 122 side.
  • the fiber treatment agent is attached only to the heat-fusible fiber constituting the first web 111
  • the normal fiber oil agent is attached to the heat-fusible fiber constituting the second web 122.
  • the gradient of hydrophilicity arises in the 1st layer 10 formed from the 1st web 111, and the air through nonwoven fabric 1 of the form shown in FIG. 3 is obtained.
  • the first layer formed from the first web 111 is formed.
  • the air-through nonwoven fabric 1A or 1B having the form shown in FIG. 4 or 5 is obtained.
  • Whether the air-through nonwoven fabric 1A or the air-through nonwoven fabric 1B is obtained is controlled by the type and amount of fiber treatment agent to be adhered to each heat-fusible fiber constituting the first web 111 and the second web 122. Can do.
  • the fiber treatment agent attached to the heat-fusible fiber constituting the second web 122 has a higher hydrophilicity than the fiber treatment agent attached to the heat-fusible fiber constituting the first web 111. In that case, the air-through nonwoven fabric 1A having the form shown in FIG. 4 is easily obtained.
  • the air-through nonwoven fabric 1A having the form shown in FIG. 4 is more easily obtained.
  • the hydrophilicity of the fiber treatment agent attached to the heat-fusible fiber constituting the first web 111 and the fiber treatment agent attached to the heat-fusible fiber constituting the second web 122 is low. Is easy to obtain the air-through nonwoven fabric 1B having the form shown in FIG.
  • the fiber existing on the surface of the first web 111 in the overlapping web 101 receives the largest amount of heat
  • the fiber existing on the surface of the second web 122 receives the smallest amount of heat
  • the surface facing the first web 111 receives the largest amount of heat
  • the surface facing the endless belt 142 receives the smallest amount of heat.
  • the hydrophilicity of the second web 122 increases from the surface facing the first web 111 toward the surface facing the endless belt 142. Moreover, if a fiber oil agent having a lower hydrophilicity than the fiber treatment agent is used as the fiber oil agent to be adhered to the constituent fibers of the first web 111, the overlapping web 101 is moved from the first web 111 side to the second web 122 side. Since the hydrophilicity increases, the air-through nonwoven fabric 1D having the form shown in FIG. 6 is obtained as the air-through nonwoven fabric NW2.
  • the above method expresses a gradient of hydrophilicity by partially reducing the hydrophilicity of the heat-fusible fiber to which the fiber treatment agent has been applied by applying heat in the thickness direction of the nonwoven fabric. I am letting. Therefore, according to the above method, it is not necessary to overlap a plurality of nonwoven fabrics to provide a gradient in hydrophilicity, and it is possible to provide a gradient in hydrophilicity along the thickness direction of one single nonwoven fabric.
  • the air-through processing unit 140 As described above, a gradient of hydrophilicity occurs along the thickness direction of the overlapping web 101. At the same time, in the air-through processing section 140, heat-bonding of the constituent fibers of the overlapping web 101 occurs, and the target air-through nonwoven fabric 102 is obtained. The obtained air-through nonwoven fabric 102 exits from the air-through treatment unit 140 and is then introduced into the calendar unit 150 to be calendered. By the calendering process, the surface of the air-through nonwoven fabric 102 becomes smooth, and fuzzing and the like are reduced. Thereafter, the air-through nonwoven fabric 102 is wound up by the winding unit 160.
  • embossing by the embossed portion 130 may not be performed depending on circumstances.
  • the obtained air-through nonwoven fabric 102 is smooth with no irregularities on the front and back surfaces.
  • embossing by the embossed portion 130 is performed and a heat-extensible fiber is used as the heat-fusible fiber, a plurality of protrusions are formed on the surface due to the heat extension of the heat-extensible fiber.
  • the air-through nonwoven fabric 102 having the above is obtained.
  • the convex portion is formed in a region surrounded by the embossed fused portion.
  • the convex portion has a shape protruding from the second layer side toward the first layer side.
  • the second web 122 corresponding to the second layer is in contact with the endless belt 142 during the air-through process, so that the extension of the extended heat-extensible fibers is regulated by the endless belt 142.
  • the convex portion When the convex portion is formed on the air-through nonwoven fabric as described above, the convex portion has a high degree of hydrophilicity from the top to the bottom of the convex portion.
  • the reason for this is as follows.
  • An embossed fusion part is formed at the bottom of the convex part. Since the embossed fusion part is formed into a film or a fusion state close to that by the fusion of fibers, the air permeability is lowered. On the other hand, there is no portion that hinders air permeability at the top of the convex portion and in the vicinity thereof.
  • the hot air easily passes through the top of the convex portion and the vicinity thereof, and the hydrophilicity is likely to decrease.
  • hot air does not easily pass through the embossed fusion, and the hydrophilicity is unlikely to decrease.
  • the convex portion has a higher hydrophilicity from the top to the bottom.
  • the non-woven fabric of the present invention thus obtained may then be subjected to secondary processing.
  • secondary processing include known three-dimensional shaping.
  • the nonwoven fabric of the present invention can be applied to various fields by utilizing the gradient of hydrophilicity along the thickness direction.
  • a top sheet, a second sheet (a sheet disposed between the top sheet and the absorbent body) in an absorbent article used to absorb liquid discharged from the body such as sanitary napkins, panty liners, disposable diapers, and incontinence pads ,
  • a back sheet, a leak-proof sheet, a personal wipe sheet, a skin care sheet, and an objective wiper When using the nonwoven fabric of this invention as a surface sheet or a second sheet of an absorbent article, it is preferable to use the 1st layer side of this nonwoven fabric as a skin opposing surface side.
  • the basis weight of the web used for producing the nonwoven fabric of the present invention is selected in an appropriate range depending on the specific use of the intended nonwoven fabric.
  • the basis weight of the finally obtained nonwoven fabric is preferably 10 g / m 2 or more and 80 g / m 2 or less, particularly preferably 15 g / m 2 or more and 60 g / m 2 or less.
  • An absorbent article used for absorbing liquid discharged from the body typically includes a top sheet, a back sheet, and a liquid-retaining absorbent body disposed between both sheets.
  • the absorbent body and the back sheet when the nonwoven fabric according to the present invention is used as the top sheet materials usually used in the technical field can be used without any particular limitation.
  • the absorbent body a fiber assembly made of a fiber material such as pulp fiber or a structure in which an absorbent polymer is held can be coated with a covering sheet such as tissue paper or nonwoven fabric.
  • a liquid-impermeable or water-repellent sheet such as a thermoplastic resin film or a laminate of the film and a nonwoven fabric can be used.
  • the back sheet may have water vapor permeability.
  • the absorbent article may further include various members depending on the specific application of the absorbent article. Such members are known to those skilled in the art. For example, when the absorbent article is applied to a disposable diaper or a sanitary napkin, a pair or two or more pairs of three-dimensional guards can be disposed on the left and right sides of the topsheet.
  • the embossed portion forming pattern in the case of forming the embossed portion on the nonwoven fabric can be an arbitrary pattern such as a multi-row stripe shape, a dot shape, a checkered shape, or a spiral shape, instead of the lattice shape.
  • the shape of each point in the case of a dot shape may be a circle, an ellipse, a triangle, a quadrangle, a hexagon, a heart shape, or an arbitrary shape.
  • an embossing roll and / or a flat roll can be heated, and the nonwoven fabric which the embossing part and / or the periphery hydrophilicity fell can also be manufactured.
  • the nonwoven fabric of the present invention when used for diapers, napkins, wipers, and other products, heat is applied to the desired part at any time before production, during production, and after product formation.
  • the hydrophilicity of some or all of the nonwoven fabrics of the present invention can be lowered, or water repellency can be achieved.
  • the present invention further discloses the following fibers or nonwoven fabrics.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • X represents —SO 3 M, —OSO 3 M or —COOM
  • M represents H, Na, K, Mg, Ca or ammonium.
  • the polyorganosiloxane is contained in a proportion of 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less, based on the total mass of the fiber treatment agent.
  • the first surface of the nonwoven fabric has a second surface opposite to the first surface, and the hydrophilicity increases from the first surface side to the second surface side.
  • the nonwoven fabric has a concavo-convex shape, the hydrophilicity is high from the top to the bottom of the convex part,
  • the difference between the contact angle of the top of the convex part and the contact angle of the bottom is preferably 2.5 degrees or more, more preferably 3 degrees or more, and even more preferably 5 degrees or more,
  • ⁇ 5> It has a thin part formed by embossing and a thick part other than that, the thin part or its vicinity is hydrophilic, and the top part of the thick part is the thickness
  • the nonwoven fabric is an air-through nonwoven fabric
  • the heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
  • the first layer is virtually divided into two in the thickness direction, and of the two parts divided into two, the part far from the second layer is the first layer first part, and the side close to the second layer
  • the first layer second part is compared with the first layer first part, the first layer second part, and the second layer, the following (1) and (2) Satisfy the relationship, (1)
  • the first layer second part has higher hydrophilicity than the first layer first part
  • the hydrophilicity of any part of the second layer is higher than the second part of the first layer.
  • ⁇ 8> The nonwoven fabric according to ⁇ 7>, wherein the hydrophilicity of the second layer is the same in any part of the second layer.
  • ⁇ 9> ⁇ 7> or ⁇ 7> The contact angle of water with respect to the fibers contained in the first part of the first layer is preferably 70 degrees or more, particularly preferably 72 degrees or more, and preferably 85 degrees or less, particularly preferably 82 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first layer second portion is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion, preferably 50 degrees or more, More preferably 60 degrees or more, particularly preferably 65 degrees or more, 80 degrees or less, preferably 75 degrees or less, more preferably 70 degrees or less, and any one of the above ⁇ 7> to ⁇ 9>
  • ⁇ 11> The non-woven fabric according to any one of ⁇ 7> to ⁇ 10>, wherein a contact angle of water with respect to fibers contained in the second layer is 20 degrees or greater and 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the second layer is preferably 20 ° or more, particularly preferably 30 ° or more, provided that the contact angle of water with respect to the fibers contained in the first portion of the first part is smaller.
  • the difference between the contact angle of water with respect to the fibers contained in the first layer and the second portion and the contact angle of water with respect to the fibers contained in the second layer (first layer, second portion-second layer) is 1 degree or more
  • the difference between the contact angle of water with respect to the fibers contained in the first portion of the first layer and the contact angle of water with respect to the fibers contained in the second layer (first layer, first portion-second layer) is the first layer first step.
  • the constituent fiber of the second layer 20 is the nonwoven fabric according to any one of the above ⁇ 7> to ⁇ 14>, which is not treated with the fiber treatment agent containing the components (A) to (C).
  • the second layer is virtually divided into two in the thickness direction. Of the two parts divided in half, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part.
  • the second part is the second part
  • the second layer first part, the second layer first part, and the second layer second part are compared with each other, the following relationships (13) and (14) are satisfied.
  • the second layer first part has higher hydrophilicity than the first layer second part
  • the second layer second portion has a higher hydrophilicity than the second layer first portion.
  • the contact angle of water with respect to the fibers contained in the first part of the second layer is 50 degrees or more, preferably 55 degrees or more, more preferably 60 degrees or more, particularly preferably 65 degrees or more, and 80
  • the non-woven fabric according to the above ⁇ 16> which is not more than 75 degrees, preferably not more than 75 degrees, and more preferably not more than 70 degrees.
  • ⁇ 18> On the condition that the contact angle of water with respect to the fibers contained in the second layer second part is smaller than the contact angle of water with respect to the fibers contained in the second layer first part, preferably 20 degrees or more, The non-woven fabric according to ⁇ 16> or ⁇ 17>, more preferably 40 degrees or more and 70 degrees or less, preferably 65 degrees or less.
  • the nonwoven fabric according to any one of ⁇ 16> to ⁇ 18>, preferably 1 degree or more, particularly preferably 10 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less.
  • the second layer is virtually divided into two in the thickness direction. Of the two divided parts, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part.
  • the hydrophilicity of the first layer first part, the first layer second part, the second layer first part, and the second layer second part is compared.
  • the nonwoven fabric according to ⁇ 7> that satisfies the relationship of (17).
  • the second layer first part has higher hydrophilicity than the first layer first part.
  • the hydrophilicity of the first layer second portion is higher than that of the second layer first portion.
  • the second layer second portion has higher hydrophilicity than the first layer second portion.
  • Difference between the contact angle of water with respect to the fibers contained in the first part of the second layer and the contact angle of water with respect to the fibers contained in the second part of the first layer (second layer first part-first layer second part) Is preferably 1 degree or more, particularly preferably 2 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less.
  • the difference between the contact angle of water with respect to the fibers contained in the first part of the first layer and the contact angle of water with respect to the fibers contained in the second part of the second layer (first layer first part-second layer second part) Is preferably 2 ° or more, particularly preferably 5 ° or more, and 55 ° or less, particularly preferably 45 ° or less, according to the above ⁇ 21> or ⁇ 22>.
  • the first layer is the nonwoven fabric according to any one of ⁇ 21> to ⁇ 23>, wherein the hydrophilicity gradually increases from the first part toward the second part.
  • ⁇ 25> The nonwoven fabric according to any one of ⁇ 7> to ⁇ 24>, wherein the heat-fusible fiber to which the fiber treatment agent is attached is contained in a first layer.
  • ⁇ 26> The nonwoven fabric according to any one of ⁇ 7> to ⁇ 24>, wherein a heat-extensible fiber is used for the first layer and a non-heat-extensible fiber is used for the second layer.
  • the nonwoven fabric is an air-through nonwoven fabric
  • the heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
  • the second layer is virtually divided into two in the thickness direction, and the portion closer to the first layer of the two divided portions is the second layer first portion, and the side far from the first layer
  • the nonwoven fabric according to any one of ⁇ 1> to ⁇ 6>, which satisfies a relationship.
  • (1) The hydrophilicity of the second layer first portion is higher than that of the first layer.
  • the second layer second portion has a higher hydrophilicity than the second layer first portion.
  • the contact angle of water with respect to the fibers contained in the first part of the second layer is preferably 50 degrees or more, particularly preferably 60 degrees or more, and is preferably 80 degrees or less, particularly preferably 75 degrees or less.
  • the contact angle of water with respect to the fibers contained in the first part of the second layer is preferably 50 degrees or greater and 80 degrees or less, and more preferably 60 degrees or greater and 75 degrees or less. .
  • the contact angle of water with respect to the fibers contained in the second part of the second layer is 30 degrees or more, particularly 40 degrees or more, provided that the contact angle of water with respect to the fibers contained in the second part of the first part is smaller.
  • the contact angle of water with respect to the fibers contained in the first layer is preferably 75 degrees or more, particularly preferably 80 degrees or more, on condition that the contact angle of water with respect to the fibers contained in the first part of the second layer is larger.
  • the nonwoven fabric according to any one of ⁇ 27> to ⁇ 30>, preferably 90 degrees or less, particularly preferably 85 degrees or less.
  • the difference between the contact angle of water with respect to the fibers contained in the first layer and the contact angle of water with respect to the fibers contained in the first portion of the second layer (first layer 10 -second layer first portion 21) is 1 degree.
  • the nonwoven fabric is preferably 10 ° or more, more preferably 15 ° or more, 40 ° or less, particularly preferably 30 ° or less, and further preferably 25 ° or less.
  • the nonwoven fabric described. ⁇ 33> The difference between the contact angle of water with respect to the fibers contained in the first layer and the contact angle of water with respect to the fibers contained in the second portion of the second layer (the first layer—the second portion of the second portion) is the first layer— 2 degrees or more, particularly 10 degrees or more, more preferably 20 degrees or more, preferably 60 degrees or less, particularly 50 degrees or less, more
  • the nonwoven fabric according to any one of the above ⁇ 27> to ⁇ 32>, which is preferably 35 degrees or less.
  • ⁇ 34> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 33>, wherein the fineness of the heat-fusible fiber contained in the second layer is smaller than the fineness of the heat-fusible fiber contained in the first layer.
  • ⁇ 35> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 34>, wherein a heat-extensible fiber is used for the second layer and a non-heat-extensible fiber is used for the second layer.
  • the second layer is the nonwoven fabric according to any one of ⁇ 16> to ⁇ 35>, wherein the hydrophilicity gradually increases from the first part toward the second part.
  • ⁇ 37> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 36>, wherein the heat-fusible fiber to which the fiber treatment agent is attached is included in a second layer.
  • ⁇ 38> ⁇ 7> thru
  • the nonwoven fabric according to any one of 1. ⁇ 39> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 19>, wherein the heat-fusible fiber is a heat-extensible fiber whose length is extended by heat.
  • ⁇ 41> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 40>, wherein the polyorganosiloxane is polydimethylsiloxane.
  • the alkyl phosphate ester used as the component (B) is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having a carbon chain of 16 to 18 The nonwoven fabric described.
  • the component (C) is a dialkylsulfonic acid or a salt thereof.
  • each of the two-chain alkyl groups of the dialkylsulfonic acid has 4 to 14, particularly 6 to 10, carbon atoms.
  • the adhesion amount of the fiber treatment agent to the heat-fusible fiber is such that the ratio to the total mass of the heat-fusible fiber excluding the fiber treatment agent is 0.1% by mass or more, preferably 0.1 to 1.5 mass.
  • the molecular weight of the polyorganosiloxane as component (A) is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000 or less, more preferably 800,000 in terms of weight average molecular weight.
  • ⁇ 48> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 47>, wherein two or more types of polyorganosiloxanes having different molecular weights are used as the polyorganosiloxane as the component (A).
  • component (A) Two or more types of polyorganosiloxanes having different molecular weights are used as the component, One of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably.
  • the other type has a weight average molecular weight of preferably less than 100,000, more preferably 50,000 or less, more preferably 35,000 or less, still more preferably 20,000 or less, and preferably 2,000 or more, more
  • the blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is preferably from 1:10 to 4: 1, more preferably by mass.
  • the blending ratio of the component (A) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, and 30% by mass with respect to the total mass of the fiber treatment agent.
  • the blending ratio of the component (B) in the fiber treatment agent is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 25% by mass or less.
  • the blending ratio of the component (C) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 20% by mass or less, more preferably 13% by mass or less.
  • the content ratio (the former: latter) of the polyorganosiloxane as the component (A) and the anionic surfactant as the component (C) in the fiber treatment agent is preferably 1: 3 to 4: 1 by mass ratio,
  • the content ratio (the former: latter) of the polyorganosiloxane of component (A) and the alkyl phosphate ester of component (B) in the fiber treatment agent is preferably 1: 5 to 10: 1 by mass ratio,
  • the heat-fusible fiber includes a heat-extensible fiber composed of a heat-extensible composite fiber having a first resin component that constitutes a core portion and a second resin component that constitutes a sheath portion,
  • the heat-extensible conjugate fiber preferably has a thermal elongation rate of 0.5% to 20% at a temperature 10 ° C.
  • a fiber treatment agent for nonwoven fabric containing the following component (A), component (B) and component (C), wherein the content ratio of the component (A) to the component (C) (the former: the latter) is mass.
  • the fiber treatment agent for nonwoven fabrics having a ratio of 1: 3 to 4: 1 and containing the component (A) in a proportion of 1% by mass to 30% by mass with respect to the mass of the fiber treatment agent.
  • Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond
  • R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond.
  • the polydimethylsiloxane is composed of two or more types of polydimethylsiloxane, one of which is composed of polydimethylsiloxane having a weight average molecular weight of 100,000 or more, and the other is composed of polydimethylsiloxane having a weight average molecular weight of less than 100,000.
  • a preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is preferably a mass ratio of 1:10 to 4: 1.
  • the blending ratio of the component (B) in the fiber treatment agent is 5% by mass or more, preferably 10% by mass or more, and 30% by mass or less, preferably 25% by mass or less.
  • ⁇ 65> The fiber treatment agent for nonwoven fabric according to any one of ⁇ 59> to ⁇ 64>, wherein the component (C) is a dialkylsulfonic acid or a salt thereof.
  • the component (C) is a dialkylsulfonic acid or a salt thereof.
  • or the mixture ratio of the said (C) component in the said fiber processing agent is 1 mass% or more, Preferably it is 5 mass% or more, and is 20 mass% or less, Preferably it is 13 mass% or less.
  • the content ratio of the polyorganosiloxane of the component (A) and the anionic surfactant of the component (C) in the fiber treatment agent is preferably a mass ratio of 1: 3 to 4: 1, more preferably 1
  • the content ratio of the polyorganosiloxane of the component (A) and the alkyl phosphate ester of the component (B) in the fiber treatment agent is 1: 4 to 3: 1, preferably 1: 2 to mass ratio.
  • ⁇ 70> A heat-fusible fiber to which the fiber treatment agent according to any one of ⁇ 59> to ⁇ 69> is attached.
  • the adhesion amount of the fiber treatment agent is such that the ratio to the total mass of the heat-fusible fiber excluding the fiber treatment agent is 0.1% by mass or more, preferably 0.1 to 1.5% by mass, and more preferably.
  • the contact angle with respect to water is 90 degrees or less, preferably 85 degrees or less, 60 degrees or more, preferably 65 degrees or more, 65 to 85 degrees, preferably 70 to 80 degrees ⁇ 70 > Or ⁇ 71>.
  • the heat stretchable fiber is a heat stretchable conjugate fiber having a first resin component constituting a core portion and a second resin component constituting a sheath portion, and the heat stretchable conjugate fiber is a second resin component.
  • the thermal elongation at a temperature 10 ° C. higher than the melting point (softening point in the case of a resin having no melting point) is 0.5 to 20%, preferably 3 to 20%, more preferably 5.0 to 20%.
  • thermoplastic fiber contains titanium oxide in a ratio of 0.5 mass% to 5 mass% with respect to the total mass of the heat-fusible fiber.
  • ⁇ 76> A non-woven fabric using the heat-fusible fiber according to any one of ⁇ 70> to ⁇ 75>.
  • ⁇ 77> The nonwoven fabric according to ⁇ 76>, wherein the heat-extensible fiber and the non-heat-extensible fiber are mixed as the heat-fusible fiber.
  • ⁇ 78> The nonwoven fabric according to ⁇ 76> or ⁇ 78>, which is an air-through nonwoven fabric.
  • ⁇ 79> The web or nonwoven fabric containing the heat-fusible fiber to which the fiber treatment agent according to any one of the above items ⁇ 59> to ⁇ 69> is attached is subjected to heat treatment, and the hydrophilicity of a part of the web or the nonwoven fabric is imparted.
  • the web or nonwoven fabric containing the heat-fusible fiber to which the fiber treatment agent according to any one of the above items ⁇ 59> to ⁇ 79> is attached is subjected to heat treatment, and the hydrophilicity of a part of the web or the nonwoven fabric is imparted.
  • Example 1 Manufacture of a fiber whose hydrophilicity is lowered by heat A heat-fusible, heat-fusible, core-sheath type composite fiber having a core part made of polypropylene resin and a sheath part made of polyethylene resin is described below. It was immersed in the fiber treatment agent (oil agent) A of the composition. After the immersion, drying was performed to obtain a heat-fusible core-sheath composite fiber to which a fiber treatment agent was adhered. The amount of the oil agent attached to the fiber was 0.39% by mass.
  • composition of fiber treatment agent A Polyorganosiloxane (component (A), silicone “KM-903” manufactured by Shin-Etsu Silicone): 8.3% by mass (Composition of silicone “KM-903”) -Polydimethylsiloxane having a weight average molecular weight of about 500,000: 18% by mass -Polydimethylsiloxane having a weight average molecular weight of about 20,000: 42% by mass ⁇ Dispersant: 5% by mass ⁇ Water: 35% by mass Alkyl phosphate potassium salt [the component (B), manufactured by Kao Corporation, neutralized potassium hydroxide of gripper 4131]: 22.9% by mass Dialkylsulfosuccinate sodium salt [component (C), manufactured by Kao Corporation, Perex OT-P]: 9.2% by mass Alkyl (stearyl) betaine [components other than the above (A) to (C), manufactured by Kao Corporation, Anhitol 86B]: 13.8% by mass Polyoxyethylene
  • the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” described above, not the blending amount of “KM-903” as a whole. That is, the blending ratio of each component of the fiber treatment agent shown in Table 1 is a value calculated by excluding the dispersant and water in KM-903.
  • the nonwoven fabric was manufactured by the method shown in FIG. 2 without using a non-heat-extensible fiber.
  • a specific manufacturing method is as follows. First, the web formed using the card machine was embossed. The embossing was performed such that a grid-like embossed part was formed and the area ratio of the embossed part (compressed part) was 22%. The embossing processing temperature was 110 ° C. Next, air-through processing was performed. In the air-through process, heat treatment was performed once by blowing hot air from the embossed surface side in the embossing process. The heat treatment temperature for air-through processing was 136 ° C.
  • the obtained nonwoven fabric has a thin portion (embossed portion) 18 and a thick portion 19 other than that, as shown in FIGS.
  • the concave and convex surface 10b having a large undulation and the other surface are a substantially flat surface 10a.
  • Example 2 A nonwoven fabric of Example 2 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
  • Example 3 A nonwoven fabric of Example 3 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
  • Example 4 A nonwoven fabric of Example 4 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
  • Example 5 Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 1, a nonwoven fabric of Example 5 was obtained.
  • Example 6 Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 2, a nonwoven fabric of Example 6 was obtained.
  • Example 7 Implemented except that instead of heat-extensible heat-fusible core-sheath type composite fiber, only non-heat-stretchable fiber consisting of polyester resin in the core and polyethylene resin in the sheath was used as the heat-fusible fiber
  • a nonwoven fabric of Example 7 was obtained in the same manner as Example 3.
  • Example 8 Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 4, the nonwoven fabric of Example 8 was obtained.
  • Example 9 As the heat-fusible fiber, in place of the heat-extensible heat-fusible core-sheath type composite fiber, the heat-fusible core-sheath type composite fiber used in Example 1 and the non-heat-stretching used in Example 5 What was mixed with the active fiber at a mass ratio of 1: 1 was used. Specifically, the fiber treatment agent A is immersed in the heat-extensible fiber and the non-heat-extensible fiber, and the fiber treatment agent A is adhered so that the amount of adhesion per gram is the same. It was produced by blending fibers. A nonwoven fabric of Example 9 was obtained in the same manner as Example 1 except that the heat-fusible fiber was used.
  • Example 10 As the heat-fusible fiber, in place of the heat-extensible heat-fusible core-sheath type composite fiber, the heat-fusible core-sheath type composite fiber used in Example 1 and the non-heat-stretching used in Example 5 What was mixed with the active fiber at a mass ratio of 1: 1 was used. Specifically, the heat-extensible fibers and non-heat-extensible fibers were soaked with the content ratios of the components of the fiber treatment agent A (oil agent) changed to the ratios shown in Table 1, and each of them per 1 g. After attaching the said fiber treatment agent so that the adhesion amount might become the same, it produced by mixing those fibers. A nonwoven fabric of Example 10 was obtained in the same manner as Example 1 except that the heat-fusible fiber was used.
  • Comparative Examples 1 and 2 The nonwoven fabrics of Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the content ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratios shown in Table 1. Specifically, the fiber treatment agent that does not contain the component (A) in Comparative Example 1 and the component (C) in Comparative Example 2 was used.
  • Comparative Examples 3 and 4 The nonwoven fabrics of Comparative Examples 3 and 4 were obtained in the same manner as in Example 5 except that the content ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1. Specifically, in Comparative Example 3, the component (A) was used, and in Comparative Example 4, the fiber treatment agent not containing the component (C) was used.
  • fever extensible fiber and the non-heat extensible fiber were extract
  • the contact angle of water with respect to each heat-extensible fiber and each non-heat-extensible fiber was measured by the same method.
  • each fiber was cut from the outermost layer portion of the nonwoven fabric with a fiber length of 1 mm using precision scissors and tweezers and taken out from the nonwoven fabric.
  • the “convex portion top portion P1” in the “contact angle” column is the top portion P1 of the convex portion 119 of the uneven surface 10b (the top portion of the thick portion), and the “back surface P2” is the convex portion on the flat surface 10a. It is a measurement result of the contact angle with the distilled water of the fiber taken out from the nonwoven fabric in the site
  • the contact angle measurement results of Examples 1 and 2 and Comparative Example 1 are shown in FIG.
  • the surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead.
  • the sanitary napkin for evaluation was obtained by fixing the periphery.
  • Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
  • an acrylic plate having a transmission hole with an inner diameter of 1 cm is overlapped, and a constant load of 100 Pa is applied to the napkin. Under such a load, 6.0 g of defibrinated horse blood is poured from the permeation hole of the acrylic plate.
  • the acrylic plate is removed 60 seconds after pouring the horse blood, and then the weight (W2) of the nonwoven fabric is measured.
  • the difference from the weight (W1) of the nonwoven fabric before pouring horse blood is measured in advance. (W2-W1) is calculated.
  • the above operation is performed three times, and the average value of the three times is defined as the remaining liquid amount (mg).
  • the liquid remaining amount is an index of how much the wearer's skin gets wet. The smaller the liquid remaining amount, the better the result. The results are shown in Table 1.
  • the surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead.
  • the sanitary napkin for evaluation was obtained by fixing the periphery.
  • Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
  • an acrylic plate having a transmission hole with an inner diameter of 1 cm is overlapped, and a constant load of 100 Pa is applied to the napkin. Under such a load, a total of 9.0 g of defibrinated horse blood is poured every 3.0 minutes from the permeation hole of the acrylic plate.
  • the acrylic plate is removed 300 seconds after pouring the horse blood, and then a tissue paper is placed on the surface of the nonwoven fabric, and further, a weight is placed on the tissue paper, and a load of 2000 Pa is applied to the napkin. After 5 seconds from the stacking of the weight stones, the weight stones and the tissue paper are removed, the weight of the tissue paper (W4) is measured, and the weight of the tissue paper before being stacked on the surface of the nonwoven fabric (W3 ) (W4 ⁇ W3).
  • the above operation is performed three times, and the average value of the three times is defined as a liquid return amount (mg). The smaller the liquid return amount, the higher the evaluation.
  • Table 1 The results are shown in Table 1.
  • the surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead.
  • the sanitary napkin for evaluation was obtained by fixing the periphery.
  • Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
  • the test apparatus has a mounting portion in which the mounting surface of the napkin is inclined 45 ° with respect to the horizontal plane. A napkin is placed on the placement portion so that the topsheet faces upward.
  • colored distilled water is dropped onto the napkin at a rate of 1 g / 10 sec.
  • the distance from the point where the nonwoven fabric gets wet to the point where the test liquid is first absorbed by the absorbent is measured.
  • the above operation is performed three times, and the average of the three times is defined as the liquid flow distance (mm).
  • the liquid flow distance is an index of the amount that the liquid touches the wearer's skin without being absorbed by the sanitary napkin. The shorter the liquid flow distance, the higher the evaluation.
  • the recoverability of the nonwoven fabric is when the thickness of the convex portion of the nonwoven fabric before wrapping the nonwoven fabric in a roll shape (thickness before storage) is C, and the thickness of the convex portion of the nonwoven fabric after blowing hot air (thickness after recovery) is D. Is represented by the following formula (2).
  • the thickness of the nonwoven fabric after the hot air is sprayed is measured 1 minute to 1 hour after the hot air is sprayed.
  • the thickness of the nonwoven fabric is measured by the method described above.
  • Examples 5 and 6 using non-heat-extensible fibers as the heat-fusible fibers had good touch. Further, the amount of liquid remaining on the surface was larger than that of Examples 1 and 2, but smaller than that of Comparative Examples 3 and 4, and was sufficiently satisfactory.
  • Examples 9 and 10 using a mixture of heat-extensible fibers and non-heat-extensible fibers as the heat-fusible fibers have a good touch and have a surface The liquid residue has decreased.
  • Examples 11 to 14 The air through nonwoven fabric of the form shown in FIG. 3 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed.
  • Table 2 shows the raw material fibers of the first web 111 supplied to the first web manufacturing unit 110 of the manufacturing apparatus 100 and the raw material fibers of the second web 122 supplied to the second web manufacturing unit 120.
  • the table also describes the composition of the fiber treatment agent applied to each raw fiber.
  • the temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec.
  • an air-through nonwoven fabric having a two-layer structure having the basis weight shown in the table was obtained.
  • the fineness was 4.2 dtex and the fiber length was 44 mm.
  • the thermal expansion ratio of the core resin at the melting point + 10 ° C. was 9.5%.
  • the fiber treatment agents shown in Table 2 are as shown in Table 6 below.
  • the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” of component (A) shown in Table 6, and the total amount of “KM-903” It is not a blending amount (the same applies to Tables 3 to 5 below).
  • Examples 15 and 16 The air through nonwoven fabric of the form shown in FIG. 4 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed.
  • Table 3 shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the first web manufacturing section 110. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 1 to 4 described above.
  • the temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 1, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table
  • Example 17 The air through nonwoven fabric of the form shown in FIG. 5 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed.
  • Table 4 below shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the first web manufacturing section 110. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 1 to 4 described above.
  • the temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 1, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table
  • Examples 18 to 21 The air through nonwoven fabric of the form shown in FIG. 6 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed.
  • Table 6 shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the second web manufacturing section 120. The table also describes the composition of the fiber treatment agent applied to each raw fiber.
  • the temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec.
  • an air-through nonwoven fabric having a two-layer structure having the basis weight shown in the table was obtained.
  • the fineness was 3.3 dtex, and the fiber length was 44 mm.
  • the thermal expansion ratio of the core resin at the melting point + 10 ° C. was 9.5%.
  • the fiber treatment agents shown in Table 6 are as shown in Table 7 below.
  • the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” of component (A) shown in Table 7, and the total amount of “KM-903” It is not a compounding amount.
  • the fiber treatment agent not containing the component (A) in Comparative Example 7 and the component (C) in Comparative Example 8 was used.
  • the temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 18, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table
  • the diaper for infants made by Kao Corporation: Mary's Sarasara Air-Through (registered trademark) M size manufactured in 2013
  • a nonwoven fabric specimen hereinafter referred to as a nonwoven fabric specimen
  • the liquid remaining amount on the top sheet and the liquid flow distance on the top sheet were measured by the following method.
  • the liquid return amount and the liquid absorption amount were measured by the following methods.
  • the composition of artificial urine is as follows. 1.94% by mass of urea, 0.7954% by mass of sodium chloride, 0.11058% by mass of magnesium sulfate (septahydrate), 0.06208% by mass of calcium chloride (dihydrate), 0.19788% by mass of potassium sulfate , Polyoxyethylene lauryl ether 0.0035 mass% and ion-exchanged water (remaining amount).
  • the diaper was spread in a flat shape, an acrylic plate with a cylindrical injection portion was placed on the top sheet, a weight was placed on the acrylic plate, and a load of 2 kPa was applied to the absorber portion.
  • the injection part provided in the acrylic plate has a cylindrical shape (height 53 mm) having an inner diameter of 36 mm.
  • the acrylic plate has a cylindrical portion of 1/3 in the longitudinal direction and the central axis in the width direction. A through hole having an inner diameter of 36 mm is formed so that the central axes coincide with each other and communicates between the inside of the cylindrical injection portion and the surface sheet facing surface of the acrylic plate.
  • the core wrap sheet covering the diaper's absorbent core is placed so that the central axis of the cylindrical injection portion of the acrylic plate comes to the position of 155 mm from the tip of the ventral portion in the longitudinal direction of the core wrap sheet, and 40 g of artificial urine is injected. Absorbed and allowed to stand for 10 minutes, and further injected 40 g of artificial urine for absorption. Such artificial urine injection operation was repeated four times, and a total of 160 g of artificial urine was absorbed in the diaper. After standing for 10 minutes from the completion of the injection, the above cylinder and pressure were removed. Next, filter paper No. manufactured by Advantech Co., Ltd., centering on the injection point of artificial urine in the diaper.
  • Liquid return amount (g) mass of filter paper after pressurization (W4) ⁇ mass of first filter paper (W3)
  • the absorbent article using the nonwoven fabric of the present invention particularly the air-through nonwoven fabric NW1
  • the air-through nonwoven fabric of Example 17 is effectively prevented from flowing liquid along the surface. It can be seen that the liquid is difficult to remain.
  • the air-through nonwoven fabric of Example 17 is used as the top sheet, it can be seen that in addition to these effects, the liquid return amount is small and the liquid absorption amount is large.
  • the absorbent article using the nonwoven fabric of the present invention in particular, the air-through nonwoven fabric NW2 as the surface sheet, is effectively prevented from flowing liquid along the surface, and the liquid remains on the surface. It turns out to be difficult. It can also be seen that the amount of liquid return is small.
  • the nonwoven fabric of the present invention is easily obtained by heat-treating a web or nonwoven fabric containing fibers whose hydrophilicity is lowered by heat, and the hydrophilicity of a desired portion is lowered.
  • the nonwoven fabric of the present invention has a part in which the hydrophilicity is partially reduced, and can be utilized for various applications by utilizing the characteristics. According to the nonwoven fabric fiber treatment agent and the nonwoven fabric production method of the present invention, a nonwoven fabric having a portion with reduced hydrophilicity can be efficiently produced.
  • the part to be subjected to heat treatment can be prepared without mixing the fibers, making two layers, or performing the hydrophilic treatment in a separate process after making the nonwoven fabric.
  • the hydrophilicity of the desired part of a nonwoven fabric can be reduced only by changing or controlling the passage of hot air.
  • the liquid residue of the nonwoven fabric can be reduced by controlling the hydrophilicity of the nonwoven fabric.
  • the nonwoven fabric of the present invention when used as a surface sheet of an absorbent article, the body fluid once absorbed may flow back to the surface side in contact with the skin of the wearer, or the body fluid may flow on the nonwoven fabric surface. Can be prevented. Therefore, when the nonwoven fabric of the present invention is used as, for example, a surface sheet of an absorbent article, the nonwoven fabric satisfies the absorption performance required for the surface sheet, such as reduction of the remaining liquid amount and reduction of the liquid flow amount.
  • the present invention it is possible to effectively prevent the liquid from flowing along the surface and to obtain a nonwoven fabric in which the liquid hardly remains on the surface.
  • the present invention it is possible to effectively prevent the liquid from flowing along the surface and to obtain a nonwoven fabric in which the liquid hardly remains on the surface. Moreover, a nonwoven fabric in which the liquid that has once permeated does not easily reverse is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

This nonwoven fabric uses a thermally adhesive textile to which a textile treating agent has adhered, the textile treating agent containing (A) a polyorganosiloxane, (B) an alkyl phosphate ester, and (C) an anionic surfactant represented by general formula (1). (In the formula: Z represents a straight-chain or branched-chain alkyl chain having a carbon number of 1 to 12, which may include an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group, or a double bond; R1 and R2 each independently represent a straight-chain or branched-chain alkyl group having a carbon number of 2 to 16, which may include an ester group, an amide group, a polyoxyalkylene group, an ether group, or a double bond; X represents -SO3M, -OSO3M, or -COOM; and M represents H, Na, K, Mg, Ca, or ammonium.)

Description

不織布及び繊維処理剤Nonwoven fabric and fiber treatment agent
 本発明は、不織布及び繊維処理剤に関する。 The present invention relates to a nonwoven fabric and a fiber treatment agent.
 本出願人は先に、表面に親水化剤を付着させた芯鞘型複合繊維を熱処理して、該繊維の親水性を変化させる技術、及び当該技術を用いて部分的に親水性が低下した不織布を製造する技術を提案した(特許文献1参照)。不織布の厚さ方向において親水性の勾配を設ける技術は、同文献だけでなく、例えば特許文献2及び3にも記載されている。 The present applicant first heat-treated the core-sheath-type composite fiber having a hydrophilic agent attached to the surface thereof, and changed the hydrophilicity of the fiber, and the hydrophilicity was partially reduced using the technique. The technique which manufactures a nonwoven fabric was proposed (refer patent document 1). The technique of providing a hydrophilic gradient in the thickness direction of the nonwoven fabric is described not only in the same document but also in Patent Documents 2 and 3, for example.
 ところで、繊維を処理する処理剤として、シリコーン系化合物を配合したものが知られており、例えば特許文献4には、弾性繊維を製造する際の繊維どうしの膠着を防止するために、高重合ポリオルガノシロキサン及びベースオイルからなる油剤を用いることが記載されている。また特許文献5には、高速カード性が劣ることなく、不織布表面のドライネスを液体との接触後も維持させることを目的として、高重合ポリオルガノシロキサンを含む油剤を用いることが記載されている。しかし、該油剤に、アルキル硫酸エステル塩やアルキルスルホン酸塩などを含有させることは記載されていない。 By the way, what mixed the silicone type compound as a processing agent which processes a fiber is known, for example, in patent document 4, in order to prevent the sticking of the fiber at the time of manufacturing an elastic fiber, highly polymerized polymer The use of an oil agent composed of an organosiloxane and a base oil is described. Patent Document 5 describes the use of an oil containing a highly polymerized polyorganosiloxane for the purpose of maintaining the dryness of the nonwoven fabric surface even after contact with a liquid without inferior high-speed card properties. However, it is not described that the oil agent contains an alkyl sulfate ester salt or an alkyl sulfonate salt.
特開2010-168715号公報JP 2010-168715 A 特開2005-87659号公報Japanese Patent Laying-Open No. 2005-87659 特開2005-314825号公報JP 2005-314825 A 特開2003-201678号公報JP 2003-201678 A 特開平5-51872号公報JP-A-5-51872
 特許文献1においては、熱伸長性繊維を用いることが必須となっており、それ以外の繊維については想定しておらず、表面の液残り性などについて更に向上が望まれていた。特許文献2及び3に記載の技術についても、表面の液残り性などについて更に向上が望まれていた。 In Patent Document 1, it is indispensable to use a heat-extensible fiber, and other fibers are not assumed, and further improvement in the liquid residue on the surface has been desired. The techniques described in Patent Documents 2 and 3 also have been desired to further improve the liquid residue on the surface.
 また、特許文献4の技術は、弾性繊維どうしの膠着を防止する技術であり、同文献で用いた油剤を、弾性繊維以外に用いる示唆はない。 Further, the technique of Patent Document 4 is a technique for preventing sticking of elastic fibers, and there is no suggestion that the oil used in the same document is used for other than elastic fibers.
 本発明は、繊維処理剤が付着した熱融着性繊維を用いた不織布であって、前記繊維処理剤が、下記の(A)成分、(B)成分及び(C)成分を含有する不織布を提供するものである。
(A)ポリオルガノシロキサン、
(B)アルキルリン酸エステル、
(C)下記の一般式(1)で表わされるアニオン界面活性剤
Figure JPOXMLDOC01-appb-C000003
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
The present invention is a nonwoven fabric using heat-fusible fibers to which a fiber treatment agent is attached, wherein the fiber treatment agent comprises the following (A) component, (B) component, and (C) component nonwoven fabric. It is to provide.
(A) polyorganosiloxane,
(B) an alkyl phosphate ester,
(C) Anionic surfactant represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000003
(In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
 また、本発明は、繊維処理剤が付着している熱融着性繊維を含むエアスルー不織布であって、第1層とこれに隣接する第2層とを有し、第1層及び第2層のうちの少なくとも一方に前記繊維処理剤が付着している前記熱融着性繊維が含まれているエアスルー不織布NW1又はエアスルー不織布NW2を提供するものである。 Moreover, this invention is an air through nonwoven fabric containing the heat-fusible fiber to which the fiber processing agent has adhered, Comprising: It has a 1st layer and a 2nd layer adjacent to this, A 1st layer and a 2nd layer The air-through nonwoven fabric NW1 or the air-through nonwoven fabric NW2 in which the heat-fusible fiber having the fiber treatment agent attached to at least one of them is provided.
 前記エアスルー不織布NW1は下記条件Iを満たす。
(条件I)
 第1層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第2層から遠い側の部位を第1層第1部位とし、第2層に近い側の部位を第1層第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層との親水度を比較すると、下記の(11)及び(12)の関係を満たし、
(11)第1層第1部位よりも、第1層第2部位の方が親水度が高い、
(12)第1層第2部位よりも、第2層におけるいずれかの部位の方が親水度が高い、
 前記繊維処理剤が、上記の(A)成分、(B)成分及び(C)成分を含有する。
The air-through nonwoven fabric NW1 satisfies the following condition I.
(Condition I)
The first layer is virtually divided into two in the thickness direction, and the part far from the second layer is the first layer first part among the two parts divided into two equal parts, and the side close to the second layer When the first layer second part is compared with the first layer first part, the first layer second part, and the second layer, the following (11) and (12) Meet relationships,
(11) The first layer second portion has a higher hydrophilicity than the first layer first portion.
(12) The hydrophilicity of any part of the second layer is higher than the second part of the first layer.
The said fiber processing agent contains said (A) component, (B) component, and (C) component.
 前記エアスルー不織布NW2は下記条件IIを満たす。
(条件II)
 第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第2層第1部位とし、第1層から遠い側の部位を第2層第2部位としたとき、第1層と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(21)及び(22)の関係を満たし、
(21)第1層よりも、第2層第1部位の方が親水度が高い、
(22)第2層第1部位よりも、第2層第2部位の方が親水度が高い、
 前記繊維処理剤が、上記の(A)成分、(B)成分及び(C)成分を含有する。
The air-through nonwoven fabric NW2 satisfies the following condition II.
(Condition II)
The second layer is virtually divided into two in the thickness direction, and of the two divided parts, the part closer to the first layer is defined as the second layer first part, and the side far from the first layer When the second layer is the second part, the hydrophilicity of the first layer, the second layer first part, and the second layer second part is compared, and the following (21) and (22) Meet relationships,
(21) The hydrophilicity of the second layer first portion is higher than that of the first layer.
(22) The hydrophilicity of the second layer second portion is higher than that of the second layer first portion.
The said fiber processing agent contains said (A) component, (B) component, and (C) component.
 また、本発明は、下記の(A)成分、(B)成分及び(C)成分を含有する繊維処理剤であって、該(A)成分と該(C)成分との含有比率(前者:後者)が質量比で1:3~4:1であり、かつ該(A)成分が繊維処理剤の質量に対して30質量%以下の割合で含まれている不織布用繊維処理剤を提供するものである。
(A)ポリオルガノシロキサン、
(B)アルキルリン酸エステル、
(C)下記の一般式(1)で表わされるアニオン界面活性剤
Figure JPOXMLDOC01-appb-C000004
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
Further, the present invention is a fiber treatment agent containing the following component (A), component (B) and component (C), wherein the content ratio of the component (A) to the component (C) (the former: The latter is a nonwoven fabric fiber treatment agent having a mass ratio of 1: 3 to 4: 1 and containing the component (A) in a proportion of 30% by mass or less based on the mass of the fiber treatment agent. Is.
(A) polyorganosiloxane,
(B) an alkyl phosphate ester,
(C) Anionic surfactant represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000004
(In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
図1(a)は、本発明の不織布の一実施形態を示す斜視図であり、図1(b)は、図1(a)に示す不織布の厚み方向に沿う断面の一部拡大図である。Fig.1 (a) is a perspective view which shows one Embodiment of the nonwoven fabric of this invention, FIG.1 (b) is a partially expanded view of the cross section along the thickness direction of the nonwoven fabric shown to Fig.1 (a). . 図2は、熱疎水化繊維を用いて、部分的に疎水化された不織布を製造する工程を示す模式図である。FIG. 2 is a schematic view showing a process for producing a partially hydrophobized nonwoven fabric using heat hydrophobized fibers. 図3は、本発明の不織布の他の実施形態の断面構造を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross-sectional structure of another embodiment of the nonwoven fabric of the present invention. 図4は、本発明の不織布の他の実施形態の断面構造を模式的に示す図である。FIG. 4 is a diagram schematically showing a cross-sectional structure of another embodiment of the nonwoven fabric of the present invention. 図5は、本発明の不織布の更に他の実施形態の断面構造を模式的に示す図である。FIG. 5 is a diagram schematically showing a cross-sectional structure of still another embodiment of the nonwoven fabric of the present invention. 図6は、本発明の不織布の更に他の実施形態の断面構造を模式的に示す図である。FIG. 6 is a diagram schematically showing a cross-sectional structure of still another embodiment of the nonwoven fabric of the present invention. 図7は、本発明の不織布の製造に好適に用いられる装置を示す模式図である。FIG. 7 is a schematic view showing an apparatus suitably used for producing the nonwoven fabric of the present invention. 図8は、熱処理により生じる親水勾配の大きさの評価結果を示すグラフである。FIG. 8 is a graph showing the evaluation results of the size of the hydrophilic gradient generated by heat treatment. 図9は、比較例で製造した不織布の断面構造を示す模式図である。FIG. 9 is a schematic view showing a cross-sectional structure of a nonwoven fabric produced in a comparative example.
発明の詳細な説明Detailed Description of the Invention
 本発明の課題は、前述した従来技術が有する欠点を解消し得る不織布、及びその不織布の効率的または簡便な製造方法等を提供することに関する。 An object of the present invention relates to providing a nonwoven fabric that can eliminate the disadvantages of the above-described conventional technology, an efficient or simple manufacturing method of the nonwoven fabric, and the like.
 以下本発明を、その好ましい実施形態に基づき説明する。
 本発明の不織布は、エアスルー不織布であることが好ましい。
 本発明で言う「エアスルー不織布」とは、50℃以上の流体、例えば気体や水蒸気を、ウエブ又は不織布に吹き付ける工程を経て製造された不織布を言い、本工程のみで製造される不織布のみならず、他の方法で作製された不織布に本工程を付加して製造した不織布あるいは本工程の後に何らかの工程を行って製造した不織布をも含む意味である。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The nonwoven fabric of the present invention is preferably an air-through nonwoven fabric.
The “air-through nonwoven fabric” referred to in the present invention refers to a nonwoven fabric manufactured through a process of spraying a fluid of 50 ° C. or higher, for example, gas or water vapor, onto a web or a nonwoven fabric, and not only a nonwoven fabric manufactured only in this step, It also includes a nonwoven fabric produced by adding this step to a nonwoven fabric produced by another method, or a nonwoven fabric produced by performing some step after this step.
 また、本発明の不織布は、エアスルー不織布のみならず、エアスルー不織布と、他の不織布等の繊維シートやフィルム材とを複合化したものも包含する。
 本発明の不織布は、特定の化合物を含有する繊維処理剤が付着した熱融着繊維を用いた不織布であり、好ましくはエアスルー不織布である。
The nonwoven fabric of the present invention includes not only an air-through nonwoven fabric but also a composite of an air-through nonwoven fabric and a fiber sheet or film material such as another nonwoven fabric.
The non-woven fabric of the present invention is a non-woven fabric using heat-sealing fibers to which a fiber treatment agent containing a specific compound is attached, and is preferably an air-through non-woven fabric.
 本発明で用いる繊維処理剤は、前記熱融着性繊維の表面に付着しており、繊維の表面の親水度を、繊維処理剤を付着させる前に比して高めるものである。 The fiber treatment agent used in the present invention adheres to the surface of the heat-fusible fiber, and increases the hydrophilicity of the fiber surface as compared with that before attaching the fiber treatment agent.
 本発明の不織布は、上述した(A)成分、(B)成分及び(C)成分を含有する繊維処理剤が付着した熱融着繊維を、構成繊維の1種として用いたものである。この繊維処理剤は、本発明の不織布の親水度を制御する目的で用いられる。 The non-woven fabric of the present invention uses a heat-sealing fiber to which a fiber treatment agent containing the above-described components (A), (B) and (C) is attached as one type of constituent fibers. This fiber treatment agent is used for the purpose of controlling the hydrophilicity of the nonwoven fabric of the present invention.
 前記の繊維処理剤が付着した熱融着繊維は、不織布のいずれかの部位に存在していればよい。また、本発明の不織布は、この繊維処理剤が付着した熱融着繊維のみから構成されていてもよく、あるいは他の1種又は2種以上の繊維を付加的に含んでいてもよい。 It is sufficient that the heat-sealing fiber to which the fiber treatment agent is attached is present in any part of the nonwoven fabric. Moreover, the nonwoven fabric of this invention may be comprised only from the heat sealing | fusion fiber to which this fiber processing agent adhered, or may contain the other 1 type, or 2 or more types of fiber additionally.
 本発明の不織布は、単層構造のものであっても良いし、多層構造であっても良い。本発明の不織布の好ましい実施形態であるエアスルー不織布NW1及びエアスルー不織布NW2は、第1層及び第2層を含む多層構造のものである。第1層と第2層とは隣接して直接に接しており、両層間に他の層は介在していない。上述した、繊維処理剤が付着した熱融着繊維は、第1層及び第2層のうちの少なくとも一方に含まれている。例えば第1層が、該熱融着繊維を含んでいるか、第2層が該熱融着繊維を含んでいるか、又は第1層及び第2層の両層が、該熱融着繊維を含んでいる。 The nonwoven fabric of the present invention may have a single layer structure or a multilayer structure. The air-through nonwoven fabric NW1 and the air-through nonwoven fabric NW2 which are preferred embodiments of the nonwoven fabric of the present invention have a multilayer structure including a first layer and a second layer. The first layer and the second layer are adjacent and in direct contact with each other, and no other layer is interposed between the two layers. The above-described heat-fusible fiber to which the fiber treating agent is attached is included in at least one of the first layer and the second layer. For example, the first layer includes the heat-sealing fiber, the second layer includes the heat-sealing fiber, or both the first layer and the second layer include the heat-sealing fiber. It is out.
 第1層と第2層とは、それらの層を構成する繊維の材料の種類、繊維の太さ、親水化処理の有無、層の形成方法等の要因によって区別される。本発明のエアスルー不織布の厚さ方向断面を電子顕微鏡で拡大すると、これらの要因に起因して、両層の境界部分を観察することができる。 The first layer and the second layer are distinguished from each other by factors such as the type of material of the fibers constituting the layers, the thickness of the fibers, the presence / absence of hydrophilic treatment, and the layer formation method. When the cross section in the thickness direction of the air-through nonwoven fabric of the present invention is enlarged with an electron microscope, the boundary portion between both layers can be observed due to these factors.
 エアスルー不織布NW1及びエアスルー不織布NW2は、何れも、その第1層側を使用面にしてもよく、あるいは第2層側を使用面にしてもよい。どちらの側を使用面にするかは、エアスルー不織布の具体的な用途に応じて決定すればよい。例えばエアスルー不織布NW1又はエアスルー不織布NW2を、吸収性物品の表面シートとして用いる場合には、第1層側を使用面とすることが、該エアスルー不織布が有する種々の特性を最大限活かすことができるので好ましい。 The air-through nonwoven fabric NW1 and the air-through nonwoven fabric NW2 may each have the first layer side as a use surface or the second layer side as a use surface. Which side is used is determined according to the specific application of the air-through nonwoven fabric. For example, when the air-through nonwoven fabric NW1 or the air-through nonwoven fabric NW2 is used as the top sheet of the absorbent article, the use of the first layer side can maximize the various characteristics of the air-through nonwoven fabric. preferable.
 本発明の不織布に用いられる繊維処理剤及び本発明の不織布処理用繊維処理剤は、上述した(A)成分、(B)成分及び(C)成分、すなわちポリオルガノシロキサン、アルキルリン酸エステル、及び後述する一般式(1)で表されるアニオン界面活性剤を含有している。この3成分を含む繊維処理剤が付着した繊維は、熱処理を施すことにより、ポリオルガノシロキサンが、アルキル鎖を有するアニオン界面活性剤の繊維内部への浸透を促進するため、繊維の表面の親水度が熱処理によって低い値へと変化する。これは、ポリオルガノシロキサンのポリシロキサン鎖と、アニオン界面活性剤の持つ、アルキル鎖が不相溶なため、アニオン界面活性剤が、より馴染みやすい繊維内部へ、繊維が加熱溶融した際に浸透するために起こると考えられる。その中でも、一般式(1)で表されるアニオン界面活性剤は、アルキル基が嵩高で、親水基を包み込むようにして繊維内部へ浸透していくことが可能なため、ポリオルガノシロキサンの存在により繊維内部への浸透が促進されやすい。これにより、例えば後述する製造工程の一工程であるウエブに熱風を吹きつける工程において、ウエブ中の繊維が受ける熱量は、熱風吹き付け面とその反対側の面(ネット面)とにおいて自ずと異なっていることにより、熱風吹き付け面の繊維とその反対側の面の繊維とでは、受ける熱量が異なり、熱風吹き付け面の繊維とその反対側の面の繊維とではその繊維の接触角の値も変わってくることになる。このことを利用して不織布を平面視したときの第1面である一方の面側からこれとは反対側の第2面である他方の面側に向けて親水度に勾配を有する不織布を製造することができる。以下、それぞれの成分について説明する。 The fiber treatment agent used for the nonwoven fabric of the present invention and the fiber treatment agent for nonwoven fabric treatment of the present invention are the above-mentioned (A) component, (B) component and (C) component, that is, polyorganosiloxane, alkyl phosphate ester, and An anionic surfactant represented by the general formula (1) described later is contained. The fiber to which the fiber treatment agent containing these three components is attached is subjected to a heat treatment, so that the polyorganosiloxane promotes the penetration of the anionic surfactant having an alkyl chain into the fiber. Changes to a lower value by heat treatment. This is because the polysiloxane chain of the polyorganosiloxane and the alkyl chain of the anionic surfactant are incompatible with each other, so the anionic surfactant penetrates into the more familiar fiber when the fiber is heated and melted. It is thought to happen because of this. Among them, the anionic surfactant represented by the general formula (1) has a bulky alkyl group and can penetrate into the fiber so as to wrap around the hydrophilic group. Penetration into the fiber is easy to promote. Thereby, for example, in the step of blowing hot air onto the web, which is one step of the manufacturing process described later, the amount of heat received by the fibers in the web is naturally different between the hot air blowing surface and the opposite surface (net surface). Therefore, the amount of heat received differs between the fiber on the hot air blowing surface and the fiber on the opposite side, and the contact angle value of the fiber also changes between the fiber on the hot air blowing surface and the fiber on the opposite side. It will be. Using this, a nonwoven fabric having a gradient in hydrophilicity is produced from one surface side, which is the first surface when viewed in plan, to the other surface side, which is the second surface opposite to the first surface. can do. Hereinafter, each component will be described.
〔(A)成分〕
 ポリオルガノシロキサンとしては、直鎖状のもの、架橋二次元又は三次元網状構造を有するもののいずれも使用できる。好ましくは実質上直鎖状のものである。
[Component (A)]
As the polyorganosiloxane, any of linear ones and those having a crosslinked two-dimensional or three-dimensional network structure can be used. Preferably it is substantially linear.
 ポリオルガノシロキサンのうち好適なものの具体例は、アルキルアルコキシシランやアリールアルコキシシラン、アルキルハロシロキサンの重合物あるいは環状シロキサンであり、アルコキシ基としては、典型的にはメトキシ基である。アルキル基としては炭素数1以上18以下、好ましくは1以上8以下、特に1以上4以下の側鎖を有してもよいアルキル基が適当である。アリール基としては、フェニル基やアルキルフェニル基、アルコキシフェニル基等が例示される。アルキル基やアリール基に代えて、シクロヘキシル基やシクロペンチル基等の環状炭化水素基、ベンジル基のごときアラルキル基であってもよい。
 また、本発明でいうポリオルガノシロキサンは、界面活性剤の浸透をより促進させ、加熱により繊維表面の接触角をより高い目的にする観点から、親水性の高いPOE鎖で変性したポリオルガノシロキサンを含まない概念である。
Specific examples of suitable polyorganosiloxanes are alkylalkoxysilanes, arylalkoxysilanes, alkylhalosiloxane polymers or cyclic siloxanes, and the alkoxy groups are typically methoxy groups. As the alkyl group, an alkyl group which may have a side chain having 1 to 18 carbon atoms, preferably 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms is suitable. Examples of the aryl group include a phenyl group, an alkylphenyl group, and an alkoxyphenyl group. Instead of an alkyl group or an aryl group, a cyclic hydrocarbon group such as a cyclohexyl group or a cyclopentyl group, or an aralkyl group such as a benzyl group may be used.
Further, the polyorganosiloxane referred to in the present invention is a polyorganosiloxane modified with a highly hydrophilic POE chain from the viewpoint of further promoting the penetration of the surfactant and increasing the contact angle of the fiber surface by heating. It is a concept that does not include.
 本発明において好ましい最も典型的なポリオルガノシロキサンとしては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリジプロピルシロキサン等が挙げられるが、ポリジメチルシロキサンが特に好ましい。 The most typical polyorganosiloxane preferred in the present invention includes polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane and the like, and polydimethylsiloxane is particularly preferred.
 ポリオルガノシロキサンの分子量は、高分子量であることが好ましく、具体的には、重量平均分子量で好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下である。また、ポリオルガノシロキサンとして、分子量の異なる2種類以上のポリオルガノシロキサンを用いてもよい。分子量が異なる2種類以上のポリオルガノシロキサンを用いる場合、そのうちの一種類は、重量平均分子量が、好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、また、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下であり、他の一種類は、重量平均分子量が、好ましくは10万未満、より好ましくは5万以下、より好ましくは3万5千以下、更に好ましくは2万以下であり、また、好ましくは2000以上、より好ましくは3000以上、更に好ましくは5000以上である。また、重量平均分子量が10万以上のポリオルガノシロキサンと重量平均分子量が10万未満のポリオルガノシロキサンとの好ましい配合比率(前者:後者)は、質量比で、好ましくは1:10~4:1、より好ましくは1:5~2:1である。 The molecular weight of the polyorganosiloxane is preferably a high molecular weight. Specifically, the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000. Hereinafter, more preferably 800,000 or less, still more preferably 600,000 or less. Two or more types of polyorganosiloxanes having different molecular weights may be used as the polyorganosiloxane. When two or more types of polyorganosiloxanes having different molecular weights are used, one of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and preferably Is not more than 1 million, more preferably not more than 800,000, still more preferably not more than 600,000. The other one has a weight average molecular weight of preferably less than 100,000, more preferably not more than 50,000, more preferably 30,000. It is 5,000 or less, more preferably 20,000 or less, preferably 2000 or more, more preferably 3000 or more, and still more preferably 5000 or more. A preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is a mass ratio, preferably 1:10 to 4: 1. More preferably, it is 1: 5 to 2: 1.
 ポリオルガノシロキサンの重量平均分子量はGPCを用いて測定される。測定条件は下記のとおりである。また、換算分子量の計算はポリスチレンで行う。
 分離カラム:GMHHR-H+GMHHR-H(カチオン)
 溶離液:LファーミンDM20/CHCl3
 溶媒流速:1.0ml/min
 分離カラム温度:40℃
The weight average molecular weight of the polyorganosiloxane is measured using GPC. The measurement conditions are as follows. The calculated molecular weight is calculated with polystyrene.
Separation column: GMHHR-H + GMHHR-H (cation)
Eluent: L Farmin DM20 / CHCl 3
Solvent flow rate: 1.0 ml / min
Separation column temperature: 40 ° C
 ポリオルガノシロキサンの繊維処理剤中の含有量は、熱処理による親水度の変化を大きくする観点から1質量%以上であることが好ましく、5質量%以上であることが更に好ましい。また、不織布表面で液を吸収させやすい観点から30質量%以下が好ましく、20質量%以下が更に好ましい。例えばポリオルガノシロキサンの繊維処理剤中の含有量は、1質量%以上30質量%以下であることが好ましく、5質量%以上20質量%以下であることが更に好ましい。 The content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of increasing the change in hydrophilicity due to heat treatment. Moreover, 30 mass% or less is preferable from a viewpoint which is easy to absorb a liquid on the nonwoven fabric surface, and 20 mass% or less is still more preferable. For example, the content of the polyorganosiloxane in the fiber treatment agent is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
 更に、本発明による不織布を吸収性物品に表面シートとして適用した際に、頂部側の親水度が低下しすぎることを防止する観点、つまり、後述する液流れ距離が長くなり、排泄液が肌に付着する量が増加することを防止する観点からも、ポリオルガノシロキサンの繊維処理剤中の含有量は上記の範囲内とすることが好ましい。 Furthermore, when the nonwoven fabric according to the present invention is applied to the absorbent article as a top sheet, the viewpoint of preventing the hydrophilicity on the top side from being excessively lowered, that is, the liquid flow distance described later becomes long, and the excretory liquid is applied to the skin. Also from the viewpoint of preventing the amount of adhesion from increasing, the content of the polyorganosiloxane in the fiber treatment agent is preferably within the above range.
 (A)成分としてのポリオルガノシロキサンとしては、市販品を用いることもできる。例えば、信越シリコーン社製の「KF-96H-100万Cs」、東レ・ダウコーニング社製の「SH200 Fluid 1000000Cs」、また2種類のポリオルガノシロキサンを含有するものとしては、信越シリコーン社製の「KM-903」や、東レ・ダウコーニング社製の「BY22-060」を用いることができる。 Commercially available products can also be used as the polyorganosiloxane as the component (A). For example, “KF-96H-1 million Cs” manufactured by Shin-Etsu Silicone Co., “SH200 Fluid 1000000 Cs” manufactured by Toray Dow Corning Co., Ltd. and those containing two types of polyorganosiloxane include “ KM-903 "or" BY22-060 "manufactured by Toray Dow Corning can be used.
〔(B)成分〕
 (B)成分であるアルキルリン酸エステルは、原綿のカード機通過性やウエブの均一性などの特性を改良し、これによって不織布の生産性の向上と品質低下を防止することを目的として、繊維処理剤に配合される。
 アルキルリン酸エステルの具体例としては、ステアリルリン酸エステル、ミリスチルリン酸エステル、ラウリルリン酸エステル、パルミチルリン酸エステルなどの飽和の炭素鎖を持つものや、オレイルリン酸エステル、パルミトレイルリン酸エステルなどの不飽和の炭素鎖及び、これらの炭素鎖に側鎖を有するものが挙げられる。より好ましくは、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和又は部分中和塩である。なお、アルキルリン酸エステルの塩としては、ナトリウムやカリウムなどのアルカリ金属、アンモニア、各種アミン類などが挙げられる。アルキルリン酸エステルは、一種を単独で又は2種以上を混合して用いることができる。
[(B) component]
The component (B), an alkyl phosphate ester, is intended to improve the properties of raw cotton through the card machine and the uniformity of the web, thereby improving the productivity of the nonwoven fabric and preventing the quality from deteriorating. It is blended in the treatment agent.
Specific examples of the alkyl phosphate ester include those having a saturated carbon chain such as stearyl phosphate ester, myristyl phosphate ester, lauryl phosphate ester, palmityl phosphate ester, oleyl phosphate ester, palmitoleyl phosphate ester, etc. Examples include unsaturated carbon chains and those having side chains in these carbon chains. More preferably, it is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having 16 to 18 carbon chains. Examples of the alkyl phosphate ester salt include alkali metals such as sodium and potassium, ammonia, and various amines. Alkyl phosphate ester can be used individually by 1 type or in mixture of 2 or more types.
 前記繊維処理剤中の前記(B)成分の配合割合は、カード機通過性やウエブの均一性などの観点から、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、熱処理に起因するポリオルガノシロキサンによる繊維の疎水化を妨げないようにする観点から、好ましくは30質量%以下、より好ましくは25質量%以下である。 The blending ratio of the component (B) in the fiber treatment agent is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoints of card machine passability and web uniformity, and heat treatment. From the viewpoint of preventing the fiber from being hydrophobized by the polyorganosiloxane resulting from the above, it is preferably 30% by mass or less, more preferably 25% by mass or less.
〔(C)成分〕
 (C)成分は、先に示した一般式(1)で表わされるアニオン界面活性剤である。(C)成分は、(B)成分であるアルキルリン酸エステルは含まない成分を指す。また、(C)成分は、一種を単独で又は2種以上を混合して用いることができる。
[Component (C)]
The component (C) is an anionic surfactant represented by the general formula (1) shown above. (C) component points out the component which does not contain the alkyl phosphate ester which is (B) component. Moreover, (C) component can be used individually by 1 type or in mixture of 2 or more types.
 一般式(1)中のXが―SOM、すなわち親水基がスルホン酸又はその塩である前記アニオン界面活性剤としては、例えば、ジアルキルスルホン酸又はそれらの塩を挙げることができる。ジアルキルスルホン酸の具体例としては、ジオクタデシルスルホコハク酸、ジデシルスルホコハク酸、ジトリデシルスルホコハク酸、ジ2‐エチルヘキシルスルホコハク酸などの、ジアルキルスルホコハク酸、ジアルキルスルホグルタル酸などのジカルボン酸をエステル化し、ジエステルのアルファ位をスルホン化した化合物や、2-スルホテトラデカン酸1-エチルエステル(又はアミド)ナトリウム塩や、2-スルホヘキサデカン酸1-エチルエステル(又はアミド)ナトリウム塩などの飽和脂肪酸や不飽和脂肪酸エステル(又はアミド)のα位をスルホン化したアルファスルホ脂肪酸アルキルエステル(又はアミド)や、炭化水素鎖の内部オレフィンや不飽和脂肪酸の内部オレフィンをスルホン化することで得られるジアルキルアルケンスルホン酸などを挙げることができる。ジアルキルスルホン酸の2鎖のアルキル基それぞれの炭素数は、4個以上14個以下、特に、6個以上10個以下であることが好ましい。 Examples of the anionic surfactant in which X in the general formula (1) is —SO 3 M, that is, the hydrophilic group is a sulfonic acid or a salt thereof, include, for example, a dialkylsulfonic acid or a salt thereof. Specific examples of the dialkyl sulfonic acid include dioctadecyl sulfosuccinic acid, didecyl sulfosuccinic acid, ditridecyl sulfosuccinic acid, di-2-ethylhexyl sulfosuccinic acid, and the like, and dicarboxylic acids such as dialkyl sulfosuccinic acid and dialkyl sulfoglutaric acid. Saturated fatty acids and unsaturated fatty acids such as compounds sulfonated at the alpha position, 2-sulfotetradecanoic acid 1-ethyl ester (or amide) sodium salt, 2-sulfohexadecanoic acid 1-ethyl ester (or amide) sodium salt Alpha sulfo fatty acid alkyl esters (or amides) sulfonated at the α-position of esters (or amides), dialkyl alkenes obtained by sulfonating internal olefins of hydrocarbon chains and unsaturated fatty acids Such as sulfonic acid can be mentioned. The number of carbon atoms in each of the two-chain alkyl groups of the dialkyl sulfonic acid is preferably 4 or more and 14 or less, particularly 6 or more and 10 or less.
 親水基がスルホン酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。 Specific examples of the anionic surfactant in which the hydrophilic group is sulfonic acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中のXが―OSO3M、すなわち親水基が硫酸又はその塩である前記アニオン界面活性剤としては、ジアルキル硫酸エステルを挙げることができ、その具体例としては、2-エチルヘキシル硫酸ナトリウム塩や、2-ヘキシルデシル硫酸ナトリウム塩などの分岐鎖を有するアルコールを硫酸化した化合物や、硫酸ポリオキシエチレン2‐ヘキシルデシルや硫酸ポリオキシエチレン2-ヘキシルデシルなどの分岐鎖を有するアルコールと硫酸基の間にPOE鎖を導入したような化合物や、12-サルフェートステアリン酸1-メチルエステル(又はアミド)3-サルフェートへキサン酸1-メチルエステル(又はアミド)などのヒドロキシ脂肪酸エステル(又はアミド)を硫酸化した化合物などを挙げることができる。 Examples of the anionic surfactant in which X in the general formula (1) is —OSO 3 M, that is, the hydrophilic group is sulfuric acid or a salt thereof, include dialkyl sulfates, and specific examples thereof include 2-ethylhexyl. Compounds with sulfated alcohols such as sodium sulfate and sodium 2-hexyldecyl sulfate, and alcohols with branched chains such as polyoxyethylene 2-hexyldecyl sulfate and polyoxyethylene 2-hexyldecyl sulfate And hydroxy fatty acid esters (or 12-sulfate stearic acid 1-methyl ester (or amide) 3-sulfate hexanoic acid 1-methyl ester (or amide) And compounds obtained by sulfating amides).
 親水基がカルボン酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中のXが―COOM、すなわち親水基がカルボン酸又はその塩である前記アニオン界面活性剤としては、ジアルキルカルボン酸を挙げることができ、その具体例としては、11‐エトキシヘプタデカンカルボン酸ナトリウム塩や2‐エトキシペンタカルボン酸ナトリウム塩などのヒドロキシ脂肪酸のヒドロキシ部分をアルコキシ化し、脂肪酸部分をナトリウム化した化合物や、サルコシンやグリシンなどのアミノ酸のアミノ基にアルコキシ化したヒドロキシ脂肪酸クロリドを反応させ、アミノ酸部のカルボン酸をナトリウム化させた化合物や、アルギニン酸のアミノ基に脂肪酸クロリドを反応させて得られる化合物などを挙げることができる。 As the anionic surfactant in which X in the general formula (1) is —COOM, that is, the hydrophilic group is a carboxylic acid or a salt thereof, a dialkylcarboxylic acid can be mentioned, and specific examples thereof include 11-ethoxyhepta. Hydroxy fatty acid chlorides, such as compounds in which the hydroxy moiety of hydroxy fatty acids such as sodium decanecarboxylate and sodium 2-ethoxypentacarboxylate is alkoxylated and the fatty acid moiety is sodiumated, and the amino group of amino acids such as sarcosine and glycine are alkoxylated And compounds obtained by reacting carboxylic acid in the amino acid part with sodium, and compounds obtained by reacting fatty acid chloride with the amino group of arginic acid.
 親水基がカルボン酸又はその塩である前記アニオン界面活性剤としては、より具体的には下記のアニオン界面活性剤を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the anionic surfactant in which the hydrophilic group is a carboxylic acid or a salt thereof include the following anionic surfactants.
Figure JPOXMLDOC01-appb-C000008
 本発明においては、繊維処理剤として、一般式(1)で表されるアニオン界面活性剤とポリオルガノシロキサンが配合された繊維処理剤を用いることにより、繊維処理剤で処理された熱融着性繊維は、熱処理により親水度が低下しやすい繊維となる。この理由は、ポリオルガノシロキサンが、特に2鎖以上のアルキル鎖を有するアニオン界面活性剤の繊維内部への浸透を促進するため、繊維表面の親水度が熱処理によって低下しやすい。これは、ポリオルガノシロキサンのポリシロキサン鎖と、アニオン界面活性剤の持つ、アルキル鎖が不相溶なため、より馴染みやすい繊維内部へ、繊維が加熱溶融した際に、アニオン界面活性剤が浸透するために起こると推定される。 In the present invention, as a fiber treating agent, a heat treating property treated with a fiber treating agent is obtained by using a fiber treating agent in which an anionic surfactant represented by the general formula (1) and polyorganosiloxane are blended. The fiber becomes a fiber whose hydrophilicity tends to be lowered by heat treatment. The reason for this is that polyorganosiloxane promotes the penetration of an anionic surfactant having two or more alkyl chains into the fiber, so that the hydrophilicity of the fiber surface tends to be lowered by heat treatment. This is because the polysiloxane chain of the polyorganosiloxane and the alkyl chain of the anionic surfactant are incompatible with each other, so that the anionic surfactant penetrates when the fiber is heated and melted into the more familiar fiber. Presumed to happen.
 前記繊維処理剤中の前記(C)成分の配合割合は、熱処理による親水度の変化を大きくする観点から、好ましくは1質量%以上、より好ましくは5質量%以上であり、また、親水性が高くなりすぎると、液を持ちやすくなりドライ性を損なう観点から、好ましくは20質量%以下、より好ましくは13質量%以下である。また、前記(C)成分の前記配合割合は、好ましくは1質量%以上20質量%以下であり、より好ましくは5質量%以上13質量%以下である。 The blending ratio of the component (C) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more from the viewpoint of increasing the change in hydrophilicity due to heat treatment. When it becomes too high, it is preferably 20% by mass or less, more preferably 13% by mass or less, from the viewpoint of easily holding the liquid and impairing dryness. The blending ratio of the component (C) is preferably 1% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 13% by mass or less.
 前記繊維処理剤における(A)成分のポリオルガノシロキサンと、(C)成分のアニオン界面活性剤との含有比率(前者:後者)は、質量比で、好ましくは1:3~4:1、より好ましくは1:2~3:1である。また、繊維処理剤における(A)成分のポリオルガノシロキサンと、(B)成分のアルキルリン酸エステルとの含有比率(前者:後者)は、質量比で、好ましくは1:5~10:1、より好ましくは1:2~3:1である。 The content ratio (the former: latter) of the polyorganosiloxane of component (A) and the anionic surfactant of component (C) in the fiber treatment agent is preferably 1: 3 to 4: 1 by mass ratio. The ratio is preferably 1: 2 to 3: 1. In addition, the content ratio (the former: latter) of the polyorganosiloxane of component (A) and the alkyl phosphate ester of component (B) in the fiber treatment agent is preferably a mass ratio of 1: 5 to 10: 1. More preferably, it is 1: 2 to 3: 1.
 本発明で用いる繊維処理剤は、上述した(A)~(C)成分に加えて、他の成分を含んでいても良い。前記(A)~(C)成分以外に配合する他の成分としては、アニオン性、カチオン性、両性イオン性及びノニオン性の界面活性剤等を用いることができる。 The fiber treatment agent used in the present invention may contain other components in addition to the components (A) to (C) described above. As other components to be blended in addition to the components (A) to (C), anionic, cationic, zwitterionic and nonionic surfactants can be used.
 アニオン性の界面活性剤の例としては、アルキルホスフェートナトリウム塩、アルキルエーテルホスフェートナトリウム塩、ジアルキルホスフェートナトリウム塩、ジアルキルスルホサクシネートナトリウム塩、アルキルベンゼンスルホネートナトリウム塩、アルキルスルホネートナトリウム塩、アルキルサルフェートナトリウム塩、セカンダリーアルキルサルフェートナトリウム塩等が挙げられる(いずれのアルキルも炭素数6以上22以下、特に8以上22以下が好ましい)。これらは、ナトリウム塩に代えてカリウム塩等の他のアルカリ金属塩を用いることもできる。 Examples of anionic surfactants include alkyl phosphate sodium salt, alkyl ether phosphate sodium salt, dialkyl phosphate sodium salt, dialkyl sulfosuccinate sodium salt, alkylbenzene sulfonate sodium salt, alkyl sulfonate sodium salt, alkyl sulfate sodium salt, secondary Examples include alkyl sulfate sodium salt (all alkyls preferably have 6 to 22 carbon atoms, particularly preferably 8 to 22 carbon atoms). These may use other alkali metal salts such as potassium salts in place of sodium salts.
 カチオン性の界面活性剤の例としては、アルキル(又はアルケニル)トリメチルアンモニウムハライド、ジアルキル(又はアルケニル)ジメチルアンモニウムハライド、アルキル(又はアルケニル)ピリジニウムハライド等が挙げられ、これらの化合物は、炭素数6以上18以下のアルキル基又はアルケニル基を有するものが好ましい。上記ハライド化合物におけるハロゲンとしては、塩素、臭素等が挙げられる。 Examples of the cationic surfactant include alkyl (or alkenyl) trimethyl ammonium halide, dialkyl (or alkenyl) dimethyl ammonium halide, alkyl (or alkenyl) pyridinium halide, and these compounds have 6 or more carbon atoms. Those having 18 or less alkyl groups or alkenyl groups are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
 両性イオン性の界面活性剤の例としては、アルキルベタインが挙げられる。アルキルベタインの中でも、アルキル(炭素数1~30)ジメチルベタイン、アルキル(炭素数1~30)アミドアルキル(炭素数1~4)ジメチルベタイン、アルキル(炭素数1~30)ジヒドロキシアルキル(炭素数1~30)ベタイン、スルフォベタイン型両性界面活性剤等のベタイン型両性イオン性界面活性剤や、アラニン型[アルキル(炭素数1~30)アミノプロピオン酸型、アルキル(炭素数1~30)イミノジプロピオン酸型等]両性界面活性剤、アルキルベタイン等のグリシン型[アルキル(炭素数1~30)アミノ酢酸型等]両性界面活性剤などのアミノ酸型両性界面活性剤、アルキル(炭素数1~30)タウリン型などのアミノスルホン酸型両性界面活性剤が挙げられる。中でもアルキル(炭素数1~30)ジメチルベタインが好ましく、炭素数16~22(例えばステアリル)のアルキルジメチルベタインが特に好ましい。 Examples of zwitterionic surfactants include alkyl betaines. Among alkylbetaines, alkyl (C1-30) dimethylbetaine, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) dihydroxyalkyl (C1 ~ 30) Betaine-type amphoteric surfactants such as betaine and sulfobetaine-type amphoteric surfactants, alanine type [alkyl (carbon number 1-30) aminopropionic acid type, alkyl (carbon number 1-30) imino Dipropionic acid type, etc.] Amphoteric surfactants, Glycine types such as alkylbetaines [Alkyl (carbon number 1-30) aminoacetic acid type, etc.] Amino acid type amphoteric surfactants, such as amphoteric surfactants, alkyls (carbon number 1 ~ 30) Aminosulfonic acid type amphoteric surfactants such as taurine type. Among them, alkyl (1 to 30 carbon atoms) dimethyl betaine is preferable, and alkyl dimethyl betaine having 16 to 22 carbon atoms (for example, stearyl) is particularly preferable.
 ノニオン性の界面活性剤の例としては、グリセリン脂肪酸エステル、ポリ(好ましくはn=2~10)グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル(いずれも好ましくは脂肪酸の炭素数8~60)、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)アミド、ポリオキシアルキレン(付加モル数2~20)アルキル(炭素数8~22)エーテル、ポリオキシアルキレン変性シリコーン、アミノ変性シリコーン等が挙げられる。中でもグリセリン脂肪酸エステルが好ましく、グリセリンモノカプリレートがより好ましい。 Examples of nonionic surfactants include polyhydric alcohol fatty acid esters such as glycerin fatty acid esters, poly (preferably n = 2 to 10) glycerin fatty acid esters, sorbitan fatty acid esters (preferably those having 8 to 8 carbon atoms of fatty acids). 60), polyoxyalkylene (added mole number 2-20) alkyl (carbon number 8-22) amide, polyoxyalkylene (added mole number 2-20) alkyl (carbon number 8-22) ether, polyoxyalkylene-modified silicone And amino-modified silicone. Of these, glycerin fatty acid ester is preferable, and glycerin monocaprylate is more preferable.
 本発明の不織布に用いられる繊維処理剤及び本発明の不織布用繊維処理剤は、変性シリコーン等の膠着防止剤等の処理剤を添加してもよい。 The fiber treatment agent used in the nonwoven fabric of the present invention and the fiber treatment agent for nonwoven fabrics of the present invention may contain a treatment agent such as an anti-sticking agent such as modified silicone.
〔繊維処理剤で処理する繊維〕
 本発明の熱融着性繊維は、繊維処理剤で処理されており、少なくとも表面に前述した繊維処理剤が付着している。
 本発明に用いる熱融着性繊維とは、熱融着性不織布を構成する繊維のことであり、熱融着性繊維の例としては、熱融着性芯鞘型複合繊維、非熱伸長性繊維、熱収縮繊維、立体捲縮繊維、潜在捲縮繊維、中空繊維等を挙げることができる。本発明においては、熱融着性芯鞘型複合繊維を用いることが好ましい。
 本発明の熱融着性芯鞘型複合繊維は、繊維処理剤を付着させる前の熱融着性芯鞘型複合繊維と同様に、熱融着性であり且つ芯鞘型の複合繊維である。芯鞘型の複合繊維は、同心の芯鞘型でも、偏心の芯鞘型でも、サイド・バイ・サイド型でも、異型形でも良く、同心の芯鞘型であることが好ましい。
[Fiber treated with fiber treatment agent]
The heat-fusible fiber of the present invention is treated with a fiber treatment agent, and the above-described fiber treatment agent is attached to at least the surface.
The heat-fusible fiber used in the present invention is a fiber constituting the heat-fusible nonwoven fabric. Examples of the heat-fusible fiber include a heat-fusible core-sheath type composite fiber and a non-heat-extensible fiber. Examples thereof include fibers, heat shrink fibers, three-dimensional crimp fibers, latent crimp fibers, and hollow fibers. In the present invention, it is preferable to use a heat-fusible core-sheath composite fiber.
The heat-fusible core-sheath type conjugate fiber of the present invention is a heat-fusible core-sheath type conjugate fiber similar to the heat-fusible core-sheath type conjugate fiber before the fiber treatment agent is attached. . The core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or an irregular shape, and is preferably a concentric core-sheath type.
 繊維処理剤を付着させる熱融着性芯鞘型複合繊維としては、例えば、特開2010-168715号公報に記載の「ポリエチレン樹脂を含む鞘部及び該ポリエチレン樹脂より融点が高い樹脂成分からなる芯部を有する芯鞘型複合繊維(以下、この繊維を芯鞘型複合繊維Pという)」が挙げられる。芯鞘型複合繊維Pの鞘部を構成するポリエチレン樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられ、密度が0.935~0.965g/cm3である高密度ポリエチレンであることが好ましい。芯鞘型複合繊維Pの鞘部を構成する樹脂成分は、ポリエチレン樹脂単独であることが好ましいが、他の樹脂をブレンドすることもできる。ブレンドする他の樹脂としては、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-ビニルアルコール共重合体(EVOH)等が挙げられる。ただし、鞘部を構成する樹脂成分は、鞘部の樹脂成分中の50質量%以上が、特に70質量%以上100質量%以下がポリエチレン樹脂であることが好ましい。また、芯鞘型複合繊維Pの鞘部を構成するポリエチレン樹脂は、結晶子サイズが10nm以上20nm以下であることが好ましく、11.5nm以上18nm以下であることがより好ましい。 Examples of the heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached include, for example, “a sheath portion containing a polyethylene resin and a core made of a resin component having a higher melting point than the polyethylene resin” described in JP 2010-168715 A A core-sheath type composite fiber having a part (hereinafter, this fiber is referred to as a core-sheath type composite fiber P). Examples of the polyethylene resin constituting the sheath of the core-sheath type composite fiber P include low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and the like. A high density polyethylene of ~ 0.965 g / cm 3 is preferred. The resin component constituting the sheath portion of the core-sheath type composite fiber P is preferably a polyethylene resin alone, but other resins can also be blended. Other resins to be blended include polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and the like. However, as for the resin component which comprises a sheath part, it is preferable that 50 mass% or more in the resin component of a sheath part is 70 mass% or more and 100 mass% or less especially polyethylene resin. Further, the polyethylene resin constituting the sheath portion of the core-sheath type composite fiber P preferably has a crystallite size of 10 nm or more and 20 nm or less, and more preferably 11.5 nm or more and 18 nm or less.
 芯鞘型複合繊維Pの鞘部は、熱融着性芯鞘型複合繊維に熱融着性を付与するとともに、熱処理時に、前述した繊維処理剤を内部に取り込む役割を担う。他方、芯部は、熱融着性芯鞘型複合繊維に強度を付与する部分である。芯鞘型複合繊維Pの芯部を構成する樹脂成分としては、鞘部の構成樹脂であるポリエチレン樹脂より融点が高い樹脂成分を特に制限なく用いることができる。芯部を構成する樹脂成分としては、例えば、ポリプロピレン(PP)等のポリオレフィン系樹脂(ポリエチレン樹脂を除く)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル系樹脂等が挙げられる。更に、ポリアミド系重合体や前述した樹脂成分の2種以上の共重合体なども使用することができる。複数種類の樹脂をブレンドして使用することもでき、その場合、芯部の融点は、融点が最も高い樹脂の融点とする。
 繊維処理剤を付着させる熱融着性芯鞘型複合繊維は、芯部を構成する樹脂成分の融点と鞘部を構成する樹脂成分との融点の差(前者-後者)が、20℃以上であることが、不織布の製造が容易となることから好ましく、また150℃以下であることが好ましい。芯部を構成する樹脂成分が複数種類の樹脂のブレンドである場合の融点は、融点が最も高い樹脂の融点とする。
The sheath part of the core-sheath type composite fiber P plays a role of providing the heat-fusible core-sheath type composite fiber with heat-fusibility and taking in the fiber treatment agent described above during heat treatment. On the other hand, a core part is a part which provides intensity | strength to a heat-fusible core-sheath-type composite fiber. As the resin component constituting the core part of the core-sheath type composite fiber P, a resin component having a melting point higher than that of the polyethylene resin that is the constituent resin of the sheath part can be used without particular limitation. Examples of the resin component constituting the core include polyolefin resins such as polypropylene (PP) (excluding polyethylene resin), polyester resins such as polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Furthermore, a polyamide-type polymer, the copolymer of 2 or more types of the resin component mentioned above, etc. can be used. A plurality of types of resins can be blended and used. In this case, the melting point of the core is the melting point of the resin having the highest melting point.
The heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached has a difference in melting point between the resin component constituting the core part and the resin component constituting the sheath part (the former-the latter) at 20 ° C. or higher. It is preferable that the non-woven fabric can be easily manufactured, and is preferably 150 ° C. or lower. The melting point when the resin component constituting the core is a blend of a plurality of types of resins is the melting point of the resin having the highest melting point.
 繊維処理剤を付着させる熱融着性芯鞘型複合繊維は、加熱によってその長さが伸びる繊維(以下、熱伸長性複合繊維ともいう)であることが好ましい。熱伸長性繊維としては、例えば加熱により樹脂の結晶状態が変化して自発的に伸びる繊維が挙げられる。熱伸長性繊維は、不織布中において、加熱によってその長さが伸長した状態、及び/又は、加熱によって伸長可能な状態で存在している。熱伸長性繊維は、加熱時に、表面の繊維処理剤が内部に取り込まれやすく、繊維やそれを用いて製造した不織布等に、加熱処理によって親水度の大きく異なる複数の部分を形成し易くなる。 The heat-fusible core-sheath composite fiber to which the fiber treatment agent is attached is preferably a fiber whose length is extended by heating (hereinafter also referred to as a heat-extensible composite fiber). Examples of the heat-extensible fiber include a fiber that spontaneously extends as the crystal state of the resin changes due to heating. The heat-extensible fiber is present in the nonwoven fabric in a state where its length is extended by heating and / or in a state where it can be extended by heating. When heat-extensible fibers are heated, the fiber treatment agent on the surface is easily taken into the interior, and it becomes easy to form a plurality of portions having greatly different hydrophilicity by heat treatment in the fibers and the nonwoven fabric produced using the fibers.
 好ましい熱伸長性複合繊維は、芯部を構成する第1樹脂成分と、鞘部を構成する、ポリエチレン樹脂を含む第2樹脂成分とを有しており、第1樹脂成分は、第2樹脂成分より高い融点を有している。第1樹脂成分は該繊維の熱伸長性を発現する成分であり、第2樹脂成分は熱融着性を発現する成分である。
 第1樹脂成分及び第2樹脂成分の融点は、示差走査型熱量計(セイコーインスツルメンツ株式会社製DSC6200)を用い、細かく裁断した繊維試料(サンプル重量2mg)の熱分析を昇温速度10℃/minで行い、各樹脂の融解ピーク温度を測定し、その融解ピーク温度で定義される。第2樹脂成分の融点がこの方法で明確に測定できない場合、その樹脂を「融点を持たない樹脂」と定義する。この場合、第2樹脂成分の分子の流動が始まる温度として、繊維の融着点強度が計測できる程度に第2樹脂成分が融着する温度を軟化点とし、これを融点の代わりに用いる。
A preferable heat-extensible conjugate fiber has a first resin component that constitutes a core portion and a second resin component that comprises a polyethylene resin and constitutes a sheath portion, and the first resin component is a second resin component. Has a higher melting point. A 1st resin component is a component which expresses the heat | fever extensibility of this fiber, and a 2nd resin component is a component which expresses heat-fusibility.
The melting points of the first resin component and the second resin component were determined by using a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.), and performing thermal analysis of a finely cut fiber sample (sample weight 2 mg) at a heating rate of 10 ° C./min. The melting peak temperature of each resin is measured and defined by the melting peak temperature. When the melting point of the second resin component cannot be clearly measured by this method, the resin is defined as “resin having no melting point”. In this case, the temperature at which the second resin component is fused to such an extent that the fusion point strength of the fiber can be measured is used as the softening point as the temperature at which the molecules of the second resin component begin to flow, and this is used instead of the melting point.
 熱伸長性複合繊維における第1樹脂成分の好ましい配向指数は、用いる樹脂により自ずと異なるが、例えばポリプロピレン樹脂の場合は、配向指数が60%以下であることが好ましく、より好ましくは40%以下であり、更に好ましくは25%以下である。第1樹脂成分がポリエステルの場合は、配向指数が25%以下であることが好ましく、より好ましくは20%以下であり、更に好ましくは10%以下である。一方、第2樹脂成分は、その配向指数が5%以上であることが好ましく、より好ましくは15%以上であり、更に好ましくは30%以上である。配向指数は、繊維を構成する樹脂の高分子鎖の配向の程度の指標となるものである。そして、第1樹脂成分及び第2樹脂成分の配向指数がそれぞれ前記の値であることによって、熱伸長性複合繊維は、加熱によって伸長するようになる。 The preferred orientation index of the first resin component in the heat-stretchable conjugate fiber is naturally different depending on the resin used. For example, in the case of a polypropylene resin, the orientation index is preferably 60% or less, more preferably 40% or less. More preferably, it is 25% or less. When the first resin component is polyester, the orientation index is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less. On the other hand, the second resin component preferably has an orientation index of 5% or more, more preferably 15% or more, and still more preferably 30% or more. The orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber. And when the orientation index of a 1st resin component and a 2nd resin component is each said value, a heat | fever extensible composite fiber comes to expand | extend by heating.
 第1樹脂成分及び第2樹脂成分の配向指数は、特開2010-168715号公報の段落〔0027〕~〔0029〕に記載の方法によって求められる。また、熱伸長性複合繊維における各樹脂成分が前記のような配向指数を達成する方法は、特開2010-168715号公報の段落〔0033〕~〔0036〕に記載されている。 The orientation index of the first resin component and the second resin component is determined by the method described in paragraphs [0027] to [0029] of JP 2010-168715 A. A method for achieving the orientation index as described above for each resin component in the thermally extensible composite fiber is described in paragraphs [0033] to [0036] of JP-A No. 2010-168715.
 熱伸長性複合繊維は、第1樹脂成分の融点よりも低い温度において熱によって伸長可能になっている。そして熱伸長性複合繊維は、第2樹脂成分の融点(融点を持たない樹脂の場合は軟化点)より10℃高い温度での熱伸長率が0.5~20%であることが好ましく、より好ましくは3~20%、更に好ましくは5.0~20%である。このような熱伸長率の繊維を含む不織布は、該繊維の伸長によって嵩高くなり、あるいは立体的な外観を呈する。繊維の熱伸長率は、特開2010-168715号公報の段落〔0031〕~〔0032〕に記載の方法によって求められる。 The heat stretchable conjugate fiber can be stretched by heat at a temperature lower than the melting point of the first resin component. The heat-extensible composite fiber preferably has a thermal elongation rate of 0.5 to 20% at a temperature 10 ° C. higher than the melting point of the second resin component (softening point in the case of a resin having no melting point), Preferably it is 3 to 20%, more preferably 5.0 to 20%. A nonwoven fabric containing fibers having such a thermal elongation rate becomes bulky due to the elongation of the fibers or has a three-dimensional appearance. The thermal elongation rate of the fiber is determined by the method described in paragraphs [0031] to [0032] of JP2010-168715A.
 熱伸長性複合繊維における第1樹脂成分と第2樹脂成分との比率(質量比、前者:後者)は10:90~90:10、特に20:80~80:20、とりわけ50:50~70:30であることが好ましい。熱伸長性複合繊維の繊維長は、不織布の製造方法に応じて適切な長さのものが用いられる。不織布を例えば後述するようにカード法で製造する場合には、繊維長を30~70mm程度とすることが好ましい。 The ratio (mass ratio, the former: latter) of the first resin component and the second resin component in the heat-extensible composite fiber is 10:90 to 90:10, particularly 20:80 to 80:20, especially 50:50 to 70. : 30 is preferable. As the fiber length of the heat-extensible conjugate fiber, one having an appropriate length is used according to the method for producing the nonwoven fabric. For example, when the nonwoven fabric is manufactured by the card method as described later, the fiber length is preferably about 30 to 70 mm.
 熱伸長性複合繊維の繊維径は、不織布の具体的な用途に応じ適切に選択される。不織布を吸収性物品の表面シート等の吸収性物品の構成部材として用いる場合には、10~35μm、特に15~30μmのものを用いることが好ましい。なお熱伸長性複合繊維は、伸長によってその繊維径が小さくなるところ、前記の繊維径とは、不織布を実際に使用するときの繊維径のことである。 The fiber diameter of the heat-extensible composite fiber is appropriately selected according to the specific use of the nonwoven fabric. When the nonwoven fabric is used as a constituent member of an absorbent article such as a surface sheet of the absorbent article, it is preferable to use a nonwoven fabric having a thickness of 10 to 35 μm, particularly 15 to 30 μm. In addition, the fiber diameter of the heat-extensible composite fiber is reduced when the fiber diameter is reduced, and the fiber diameter is a fiber diameter when the nonwoven fabric is actually used.
 熱伸長性複合繊維としては、上述の熱伸長性複合繊維のほかに、特許第4131852号公報、特開2005-350836号公報、特開2007-303035号公報、特開2007-204899号公報、特開2007-204901号公報及び特開2007-204902号公報等に記載の繊維を用いることもできる。 As the heat-extensible composite fiber, in addition to the above-described heat-extensible composite fiber, Japanese Patent No. 4131852, Japanese Patent Laid-Open No. 2005-350836, Japanese Patent Laid-Open No. 2007-303035, Japanese Patent Laid-Open No. 2007-204899, The fibers described in JP 2007-204901 A and JP 2007-204902 A can also be used.
 熱融着性繊維は酸化チタンを含んでいても良い。
 酸化チタンは、例えば粒径が0.1μm~2μmの範囲であることが好ましく、繊維紡糸工程で樹脂に含有させて紡糸することができる。
 酸化チタンを含有させた繊維を用いることにより、不織布は白色度が高まり、隠蔽性が高くなる。特に、酸化チタンを含有させた繊維を用いた不織布を表面材等に使用した吸収性物品では、吸収体に吸収した経血や尿等の体液の隠蔽性が高く、使用後の外観からくる視覚的ドライ感が得られる。
 酸化チタンは任意の含有量で加えることができるが、隠蔽性を高める観点から、熱融着性繊維に含有させる酸化チタンの量は、繊維の全質量に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上であり、また、生産性、繊維強伸度物性、不織布製造工程でのカード工程性、後加工工程でのカット性の観点から、好ましくは5質量%以下、より好ましくは4.5質量%以下である。
The heat-fusible fiber may contain titanium oxide.
Titanium oxide preferably has a particle size in the range of 0.1 μm to 2 μm, for example, and can be spun by containing it in a resin in the fiber spinning step.
By using fibers containing titanium oxide, the nonwoven fabric has increased whiteness and concealment. In particular, an absorbent article using a nonwoven fabric containing a fiber containing titanium oxide as a surface material or the like has high concealment of body fluids such as menstrual blood and urine absorbed in the absorbent body, and the visual appearance from the appearance after use A dry feeling can be obtained.
Titanium oxide can be added at any content, but from the viewpoint of enhancing concealability, the amount of titanium oxide to be contained in the heat-fusible fiber is preferably 0.5% by mass with respect to the total mass of the fiber. Above, more preferably 1 mass% or more, from the viewpoint of productivity, fiber strength properties, card process properties in the nonwoven fabric manufacturing process, cut property in the post-processing step, preferably 5 mass% or less, More preferably, it is 4.5 mass% or less.
〔繊維処理剤による繊維の処理〕
 本発明の熱融着性芯鞘型複合繊維は、繊維処理剤が付着していることによって、付着させる前に比して、繊維の表面の親水度が高められている。
 繊維処理剤の付着量は、繊維処理剤を除く熱融着性芯鞘型複合繊維の全質量に対する割合が、繊維の親水度を高める観点から、好ましくは0.1質量%以上、より好ましくは0.1~1.5質量%であり、より好ましくは0.2~1.0質量%である。
[Treatment of fiber with fiber treatment agent]
In the heat-fusible core-sheath type composite fiber of the present invention, the hydrophilicity of the surface of the fiber is increased as compared with the case where the fiber treating agent is adhered, as compared with before the adhesion.
The adhesion amount of the fiber treatment agent is preferably 0.1% by mass or more, more preferably, from the viewpoint of increasing the hydrophilicity of the fiber as a proportion of the total mass of the heat-sealable core-sheath composite fiber excluding the fiber treatment agent. It is 0.1 to 1.5% by mass, and more preferably 0.2 to 1.0% by mass.
 繊維処理剤を繊維の表面に付着させる方法としては、各種公知の方法を特に制限なく採用することができる。例えば、スプレーによる塗布、スロットコーターによる塗布、ロール転写による塗布、親水性油剤への浸漬、等が挙げられる。これらの処理は、ウエブ化する前の繊維に対して行っても良いし、繊維を各種の方法でウエブ化した後に行っても良い。繊維処理剤が表面に付着した繊維は、例えば、熱風送風式の乾燥機により、エチレン樹脂の融点より十分に低い温度(例えば120℃以下)で乾燥される。 As the method for attaching the fiber treatment agent to the fiber surface, various known methods can be employed without any particular limitation. For example, application by spraying, application by slot coater, application by roll transfer, immersion in a hydrophilic oil, and the like can be mentioned. These treatments may be performed on the fibers before being formed into a web, or may be performed after the fibers are formed into a web by various methods. The fiber having the fiber treatment agent attached to the surface thereof is dried at a temperature sufficiently lower than the melting point of the ethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing dryer.
 本発明の熱融着性繊維は、ウエブや不織布等のシート材の製造等に好ましく用いられる。また、その製造したシート材に、積層体の一部の層を構成させることもできる。そして、そのシート材の製造工程や、シート材や積層体の製造後に熱処理することで、所望の部分の親水性を低下させることができる。親水性の低下は、シート材の全体の親水性を低下させても良いし、シート材の一部を低下させても良い。繊維の太さ(繊度)は、それを用いて製造するもの、例えば不織布等の具体的な用途に応じて適切な範囲が選択されるが、柔軟で肌触り等の良い不織布等を製造する観点からは、1.0~10.0dtexが好ましく、2.0~8.0dtexであることがより好ましい。 The heat-fusible fiber of the present invention is preferably used for the production of sheet materials such as webs and nonwoven fabrics. In addition, a part of the layered body can be formed on the manufactured sheet material. And the hydrophilic property of a desired part can be reduced by heat-processing after the manufacturing process of the sheet material, and manufacture of a sheet material and a laminated body. The decrease in hydrophilicity may decrease the entire hydrophilicity of the sheet material, or may decrease a part of the sheet material. The thickness (fineness) of the fiber is selected in an appropriate range according to the specific application such as a non-woven fabric produced by using the fiber, but from the viewpoint of producing a non-woven fabric that is soft and has a good touch. Is preferably 1.0 to 10.0 dtex, and more preferably 2.0 to 8.0 dtex.
 本発明の不織布は、熱融着性繊維として、熱伸長性繊維と非熱伸長性繊維を混綿されたものを用いてもよい。非熱伸長性繊維は、高融点成分と低融点成分とを含み、低融点成分が繊維表面の少なくとも一部を長さ方向に連続して存在している二成分系の複合繊維である。複合繊維(非熱伸長性繊維)の形態には芯鞘型やサイド・バイ・サイド型などの様々な形態があり、いずれの形態であっても用いることができる。熱融着性の複合繊維は原料の段階で延伸処理が施されている。ここで言う延伸処理とは、延伸倍率2~6倍程度の延伸操作のことである。熱伸長性繊維と非熱伸長性繊維との混合割合は、質量比で、前者:後者が1:9~9:1が好ましく、より好ましくは4:6~6:4である。これにより熱風で不織布の嵩を回復させることがより容易になり、それぞれの繊維を単独で用いるよりも、肌触りとドライ性の良好な不織布とすることができる。 The non-woven fabric of the present invention may be a mixture of heat-extensible fibers and non-heat-extensible fibers as heat-fusible fibers. The non-heat-extensible fiber is a bicomponent composite fiber that includes a high-melting component and a low-melting component, and the low-melting component is continuously present in the length direction on at least a part of the fiber surface. The form of the composite fiber (non-heat-extensible fiber) includes various forms such as a core-sheath type and a side-by-side type, and any form can be used. The heat-fusible composite fiber is drawn at the raw material stage. The term “stretching treatment” as used herein refers to a stretching operation with a stretching ratio of about 2 to 6 times. The mixing ratio of the heat-extensible fiber and the non-heat-extensible fiber is preferably 1: 9 to 9: 1 for the former: the latter and more preferably 4: 6 to 6: 4 in terms of mass ratio. Thereby, it becomes easier to recover the bulk of the nonwoven fabric with hot air, and it is possible to obtain a nonwoven fabric with better touch and dryness than using each fiber alone.
 このように、熱融着性繊維を用いて製造したウエブや不織布に、熱処理を施すことによって、親水度が相互に異なる複数の部分を有する不織布が得られる。 Thus, a nonwoven fabric having a plurality of portions having different hydrophilicities can be obtained by heat-treating a web or nonwoven fabric produced using heat-fusible fibers.
 本発明の熱融着性繊維は、不織布中から取り出した繊維に対する水の接触角が90度以下であることが好ましい。繊維処理剤により、表面の親水度をより高めた方が、繊維自体や、それを用いて製造した不織布等に、親水度が大きく異なる複数の領域を形成することが可能となる。同様の観点から、本発明の不織布中から取り出した熱融着性芯鞘型複合繊維は、水に対する接触角が、好ましくは90度以下、より好ましくは85度以下であり、また、親水性が高すぎると液を持ちやすくなってしまうことから、好ましくは60度以上、より好ましくは65度以上である。また好ましくは65~85度であり、より好ましくは70~80度である。親水度の低下は接触角の増大と同義である。 In the heat-fusible fiber of the present invention, the contact angle of water with respect to the fiber taken out from the nonwoven fabric is preferably 90 degrees or less. When the hydrophilicity of the surface is further increased by the fiber treatment agent, it becomes possible to form a plurality of regions having greatly different hydrophilicities on the fiber itself or a nonwoven fabric produced using the fiber. From the same viewpoint, the heat-fusible core-sheath composite fiber taken out from the nonwoven fabric of the present invention has a contact angle with water of preferably 90 degrees or less, more preferably 85 degrees or less, and hydrophilicity. If it is too high, the liquid tends to be held, and therefore it is preferably at least 60 °, more preferably at least 65 °. Further, it is preferably 65 to 85 degrees, and more preferably 70 to 80 degrees. A decrease in hydrophilicity is synonymous with an increase in contact angle.
 不織布中から取り出した繊維に対する水の接触角は次の方法で測定される。測定装置として、協和界面科学株式会社製の自動接触角計MCA-Jを用いる。接触角測定には蒸留水を用いる。インクジェット方式水滴吐出部(クラスターテクノロジー社製、吐出部孔径が25μmのパルスインジェクターCTC-25)から吐出される液量を20ピコリットルに設定して、水滴を、繊維の真上に滴下する。滴下の様子を水平に設置されたカメラに接続された高速度録画装置に録画する。録画装置は後に画像解析をする観点から、高速度キャプチャー装置が組み込まれたパーソナルコンピュータが望ましい。本測定では、17msec毎に、画像が録画される。録画された映像において、不織布中から取り出した繊維に水滴が着滴した最初の画像を、付属ソフトFAMAS(ソフトのバージョンは2.6.2、解析手法は液滴法、解析方法はθ/2法、画像処理アルゴリズムは無反射、画像処理イメージモードはフレーム、スレッシホールドレベルは200、曲率補正はしない、とする)にて画像解析を行い、水滴の空気に触れる面と繊維のなす角を算出し、接触角とする。
 なお、測定用サンプル(不織布から取り出して得られる繊維)は、図1(b)に示す凸部の頂部P1、凹部近傍部及び裏面(平坦面)P2における対応部位に位置する繊維を最表層から繊維長1mmで裁断し、該繊維を接触角計のサンプル台に載せて、水平に維持し、該繊維1本につき異なる2箇所の接触角を測定する。前述の各部位において、N=5本の接触角を小数点以下1桁まで計測し、合計10箇所の測定値を平均した値(小数点以下第2桁で四捨五入)を各々の接触角と定義する。
The contact angle of water with the fiber taken out from the nonwoven fabric is measured by the following method. As a measuring device, an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used. Distilled water is used for contact angle measurement. The amount of liquid discharged from an ink jet type water droplet discharge part (manufactured by Cluster Technology Co., Ltd., pulse injector CTC-25 having a discharge part pore diameter of 25 μm) is set to 20 picoliters, and a water drop is dropped just above the fiber. The state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera. The recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later. In this measurement, an image is recorded every 17 msec. In the recorded video, the first image of water droplets on the fiber taken out from the nonwoven fabric is attached to the attached software FAMAS (software version is 2.6.2, analysis method is droplet method, analysis method is θ / 2 Method, image processing algorithm is non-reflective, image processing image mode is frame, threshold level is 200, and curvature correction is not performed). Calculate the contact angle.
In addition, the sample for measurement (fiber obtained by taking out from a nonwoven fabric) is the fiber located in the corresponding part in the top part P1 of a convex part, the recessed part vicinity part, and back surface (flat surface) P2 shown in FIG.1 (b) from an outermost layer. Cut with a fiber length of 1 mm, place the fiber on a sample table of a contact angle meter, keep it horizontal, and measure two different contact angles for each fiber. In each of the aforementioned parts, N = 5 contact angles are measured to one decimal place, and a value obtained by averaging a total of 10 measured values (rounded to the second decimal place) is defined as each contact angle.
 図1(a)及び図1(b)は、本発明の不織布の一実施形態である不織布1を示す図であり、本発明の熱融着性繊維からウエブを形成した後、該ウエブの一部の親水性を低下させて得られたものである。本発明の熱融着性繊維からからウエブを得る方法としては、カード法、エアレイド法、スパンボンド法等の各種公知の方法を用いることができるが、図2に示すように、カード機11を用いる方法(カード法)が好ましい。
 図1(a)及び図1(b)に示す不織布は、図2に示すように、熱により親水性が低下する繊維の短繊維集合体を原材料として、カード機11を用いてウエブ12を形成し、該ウエブ12を一対のロール14,15を備えたエンボス装置13に導入してエンボス加工を行い、エンボス加工後のウエブ16に、エアスルー方式による熱風処理装置17により熱処理を施して得られたものである。
 エンボス加工に用いた一対のロールは、一方は、格子状パターンのエンボス用凸部が周面に形成されたエンボスロール14であり、他方は、平滑な周面を有し、該エンボスロールに対向配置されたフラットロール15である。エンボス加工は、ウエブを、エンボスロール14の凸部とフラットロール15の平滑な周面との間で加圧し圧縮することにより行う。これにより、エンボス加工により形成された厚みの薄い部分(エンボス部)18と、それ以外の厚みの厚い部分19とを有する不織布が得られる。
FIG. 1 (a) and FIG. 1 (b) are views showing a nonwoven fabric 1 which is an embodiment of the nonwoven fabric of the present invention. After forming a web from the heat-fusible fiber of the present invention, one of the webs is shown. It was obtained by reducing the hydrophilicity of the part. As a method for obtaining a web from the heat-fusible fiber of the present invention, various known methods such as a card method, an airlaid method, and a spunbond method can be used. As shown in FIG. The method used (card method) is preferred.
As shown in FIG. 2, the nonwoven fabric shown in FIG. 1 (a) and FIG. 1 (b) forms a web 12 using a card machine 11 with a short fiber aggregate of fibers whose hydrophilicity is lowered by heat as a raw material. Then, the web 12 was introduced into an embossing device 13 having a pair of rolls 14 and 15 for embossing, and the web 16 after embossing was heat treated by a hot-air treatment device 17 using an air-through method. Is.
One of the pair of rolls used for embossing is an embossing roll 14 in which convex portions for embossing in a lattice pattern are formed on the peripheral surface, and the other has a smooth peripheral surface and faces the embossing roll. The flat roll 15 is arranged. Embossing is performed by pressing and compressing the web between the convex portion of the embossing roll 14 and the smooth peripheral surface of the flat roll 15. Thereby, the nonwoven fabric which has the thin part (embossing part) 18 formed by the embossing, and the thick part 19 other than that is obtained.
 本発明の不織布を製造する一実施態様においては、このようにして不織布1を製造するときのエンボス加工の際に、ウエブ12に加える温度を、熱融着性芯鞘型複合繊維の前記鞘部を構成するポリエチレン樹脂の融点以下に抑えておき、それに続く、熱風処理時に、該ポリエチレン樹脂の融点以上で芯部の樹脂成分の融点以下の温度を加える。このエンボス加工時には、圧縮によりウエブのエンボス部に近いほど通気性が低下する一方、該エンボス部を構成するポリエチレン樹脂の溶融は圧力による溶融のみで済み、最低限に抑えられる。他方、熱風処理時には、主として、エンボスにより圧密化された部分(エンボス部)は、熱風の通過量がほとんど無いか、あっても少なく、エンボス部以外の厚みの厚い部分ほど熱風が通過し易いため、親水性が低下する。
 これにより、エンボス加工により形成された厚みの薄い部分18及び/又はその周辺部が親水部となり、それ以外の厚みの厚い部分19に近くなるに従い、相対的に疎水性になり、最も厚みの厚い部分近傍が極大の疎水性を示す部分となっている不織布が得られる。また、前記熱風処理により、エンボス部以外の部分の鞘部の溶融が進行し、繊維の交点が熱融着して、強度のある不織布が得られる。
In one embodiment of producing the nonwoven fabric of the present invention, the temperature applied to the web 12 during embossing when producing the nonwoven fabric 1 in this way is set to the sheath portion of the heat-fusible core-sheath conjugate fiber. In the subsequent hot air treatment, a temperature not lower than the melting point of the polyethylene resin and not higher than the melting point of the resin component of the core is applied. At the time of this embossing, the air permeability decreases as the compression becomes closer to the embossed portion of the web. On the other hand, the polyethylene resin constituting the embossed portion only needs to be melted by pressure and can be minimized. On the other hand, at the time of hot air treatment, the portion (embossed portion) that has been consolidated by embossing has little or no amount of hot air to pass, and hot air passes through thicker portions other than the embossed portion. , Hydrophilicity decreases.
As a result, the thin portion 18 and / or its peripheral portion formed by embossing becomes a hydrophilic portion, and becomes relatively hydrophobic as it becomes closer to the other thick portion 19, and the thickest portion becomes thicker. A nonwoven fabric in which the vicinity of the portion is a portion exhibiting the maximum hydrophobicity is obtained. Moreover, by the said hot air process, melting | fusing of the sheath part of parts other than an embossing part advances, the intersection of a fiber is heat-seal | fused, and a strong nonwoven fabric is obtained.
 図1(a)及び図1(b)に示す不織布1は、単層構造をしている。不織布1は、その片面が凹凸形状を有する凹凸面10bとなっており、他面が、平坦であるか又は前記凹凸面に比して凹凸の程度が小さい平坦面10aとなっている。
 不織布1における厚みの厚い部分19と厚みの薄い部分18とは、不織布1の凹凸面10bに、凸部119と凹部118を形成している。凹部118は、互いに平行に延びる第1の線状凹部118aと、互いに平行に延びる第2の線状凹部118bとを有しており、第1の線状凹部118aと第2の線状凹部118bとが所定の角度をなして交差している。凸部119は、凹部118に囲まれた菱形状の閉鎖領域内に形成されている。
The nonwoven fabric 1 shown in FIGS. 1 (a) and 1 (b) has a single layer structure. The nonwoven fabric 1 has a concavo-convex surface 10b having one concavo-convex shape, and the other surface is flat or a flat surface 10a having a smaller degree of concavo-convexity than the concavo-convex surface.
The thick portion 19 and the thin portion 18 in the nonwoven fabric 1 form a convex portion 119 and a concave portion 118 on the concave-convex surface 10 b of the nonwoven fabric 1. The recess 118 includes a first linear recess 118a extending in parallel with each other and a second linear recess 118b extending in parallel with each other, and the first linear recess 118a and the second linear recess 118b. And intersect at a predetermined angle. The convex portion 119 is formed in a rhombus-shaped closed region surrounded by the concave portion 118.
 厚みの厚い部分の頂部P1は、厚みの厚い部分19によって不織布の凹凸面10bに形成される凸部119の頂部P1である。厚みの厚い部分19の頂部P1に比して、厚みの薄い部分18又はその近傍部P3の親水性が高いことが、凹凸面10b側から液が入った場合に、平坦面10a側に液が抜けやすく、不織布1中の液残りが少なくなる点から好ましい。また、厚みの厚い部分19の頂部P1から厚みの薄い部分(エンボス部)18又はその近傍部P3に向かって漸次親水度が高くなっていることが好ましい。 The top part P1 of the thick part is the top part P1 of the convex part 119 formed on the uneven surface 10b of the nonwoven fabric by the thick part 19. Compared with the top portion P1 of the thick portion 19, the thin portion 18 or its neighboring portion P3 has high hydrophilicity. When liquid enters from the uneven surface 10b side, the liquid is introduced to the flat surface 10a side. It is preferable in terms of easy removal and less liquid residue in the nonwoven fabric 1. Further, it is preferable that the hydrophilicity gradually increases from the top portion P1 of the thick portion 19 toward the thin portion (embossed portion) 18 or its vicinity P3.
 不織布1の凹凸面10bは、エンボス加工時にエンボスロール14側に向けられ、且つエア-スルー方式で熱風処理を行う際に、ネット面(通気性の支持体)とは反対側に向けられ、熱風を直接吹き付ける側の面である。従って、不織布の構成繊維に熱伸長性複合繊維を用いた場合、その熱伸長性複合繊維は、平坦面10aよりも凹凸面10bにおいて大きく伸長する。そのため、熱伸長性複合繊維は、凹凸面10bの表面における繊維径より、平坦面10aの表面における繊維径が大きくなる。また、厚みの厚い部分19における親水度は、凹凸面10b側が平坦面10a側に比して低くなる。 The uneven surface 10b of the nonwoven fabric 1 is directed to the embossing roll 14 side during embossing, and is directed to the side opposite to the net surface (breathable support) when hot air treatment is performed by an air-through method. It is the surface of the side which sprays directly. Therefore, when a heat-extensible conjugate fiber is used as a constituent fiber of the nonwoven fabric, the heat-extensible conjugate fiber extends more greatly on the uneven surface 10b than on the flat surface 10a. Therefore, the fiber diameter in the surface of the flat surface 10a becomes larger than the fiber diameter in the surface of the uneven surface 10b. Further, the hydrophilicity of the thick portion 19 is lower on the uneven surface 10b side than on the flat surface 10a side.
 不織布1の製造方法において、エンボス加工時にウエブに加える温度は、エンボス部及び/又はその近傍部(周辺部)における親水度の変化を抑制する観点から、前記鞘部を構成するポリエチレン樹脂の融点より20℃低い温度以上で、かつ芯部を構成する樹脂成分の融点未満であることが好ましい。他方、熱風処理時に加える温度は、親水度の変化を確実に生じさせる観点から、前記ポリエチレン樹脂の融点より10℃低い温度以上、特に前記ポリエチレン樹脂の融点以上、さらには、前記ポリエチレン樹脂の融点+5℃以上であることが好ましい。
 本発明の熱融着性芯鞘型複合繊維又はそれを用いて製造した不織布によれば、複雑な装置や特別な装置を要さずに、親水度が大きく異なる複数の部位を有する不織布を製造することができ、得られた不織布は、例えば、生理用ナプキン、パンティライナー、使い捨ておむつ等の吸収性物品の表面シートとして用いたときに、肌触りがよく、表面に液残りが生じにくく、表面に液流れが生じにくく、良好な吸収性能を示す。
 なお、本明細書において、表面材と表面シートとは同義である。
In the manufacturing method of the nonwoven fabric 1, the temperature applied to the web at the time of embossing is from the melting point of the polyethylene resin constituting the sheath portion from the viewpoint of suppressing changes in the hydrophilicity at the embossed portion and / or its vicinity (peripheral portion). It is preferably 20 ° C. or lower and lower than the melting point of the resin component constituting the core. On the other hand, the temperature applied during the hot air treatment is at least 10 ° C. lower than the melting point of the polyethylene resin, in particular, more than the melting point of the polyethylene resin, and more preferably the melting point of the polyethylene resin +5 from the viewpoint of surely causing a change in hydrophilicity. It is preferable that the temperature is not lower than ° C.
According to the heat-fusible core-sheath-type conjugate fiber of the present invention or a nonwoven fabric produced using the same, a nonwoven fabric having a plurality of portions with greatly different hydrophilicity is produced without requiring a complicated device or a special device. When used as a surface sheet of absorbent articles such as sanitary napkins, panty liners, disposable diapers, etc., the obtained nonwoven fabric has a good touch and is unlikely to cause liquid residue on the surface. Liquid flow hardly occurs and shows good absorption performance.
In addition, in this specification, a surface material and a surface sheet are synonymous.
 本発明の熱融着性芯鞘型複合繊維又はこれを含むウエブ等は、親水度が、熱処理により低下する。本発明の不織布における親水部や親水性の部分は、熱処理により親水度を低下させた部分との比較において、親水度が高ければ良い。また、疎水部や疎水性の部分は、熱処理により親水度を低下させる前、あるいは親水度を低下させない部分との比較において親水度が低下した部分であれば良い。親水度の低下は、熱処理前との比較において親水度を低下させる処理であれば良い。親水度の低下は接触角の増大と同義である。ここでいう親水度が低下したとは、接触角の差が、2度以上であることをいい、2.5度以上であることが好ましく、3度以上であることがさらに好ましく、5度以上であることがことさら好ましい。また、10度以下であることが好ましく、8度以下であることがより好ましく、7度以下であることがことさら好ましい。 The hydrophilicity of the heat-fusible core-sheath composite fiber of the present invention or the web containing the same is lowered by heat treatment. The hydrophilic part and the hydrophilic part in the nonwoven fabric of the present invention need only have a high degree of hydrophilicity in comparison with the part whose hydrophilicity has been lowered by heat treatment. In addition, the hydrophobic part or the hydrophobic part may be a part where the hydrophilicity is lowered before the hydrophilicity is lowered by heat treatment or compared with a part where the hydrophilicity is not lowered. The lowering of the hydrophilicity may be any treatment that lowers the hydrophilicity in comparison with that before the heat treatment. A decrease in hydrophilicity is synonymous with an increase in contact angle. Here, the decrease in hydrophilicity means that the difference in contact angle is 2 degrees or more, preferably 2.5 degrees or more, more preferably 3 degrees or more, and 5 degrees or more. More preferably, it is. Further, it is preferably 10 degrees or less, more preferably 8 degrees or less, and even more preferably 7 degrees or less.
 本発明の不織布は、部分的に親水性を低下させた後、2次加工で立体的にしてもよく、さらに、一部分だけ、親水化処理を行うなどの追加工は適宜行っても良い。また、本発明の不織布は、その厚み方向又は平面方向の一方に親水度勾配を有していても良いし、厚み方向及び平面方向に親水度勾配を有していても良い。 The nonwoven fabric of the present invention may be made three-dimensional by secondary processing after partially lowering the hydrophilicity, and may be appropriately subjected to additional processes such as performing a hydrophilization treatment only for a part. Moreover, the nonwoven fabric of this invention may have a hydrophilicity gradient in one of the thickness direction or the plane direction, and may have a hydrophilicity gradient in the thickness direction and a plane direction.
 本発明に係る不織布は、一部が親水性、他の一部が疎水性又は親水性低下部等、親水度勾配を有するであること等を活かして、種々の分野に適用できる。例えば生理用ナプキン、パンティライナー、使い捨ておむつ、失禁パッドなどの身体から排出される液の吸収に用いられる吸収性物品における表面シート、セカンドシート(表面シートと吸収体との間に配されるシート)、裏面シート、防漏シート、あるいは対人用清拭シート、スキンケア用シート、さらには対物用のワイパーなどとして好適に用いられる。 The non-woven fabric according to the present invention can be applied to various fields by taking advantage of a hydrophilicity gradient, such as partly hydrophilic and partly hydrophobic or hydrophilicity-reduced part. For example, a top sheet, a second sheet (a sheet disposed between the top sheet and the absorbent body) in an absorbent article used to absorb liquid discharged from the body such as sanitary napkins, panty liners, disposable diapers, and incontinence pads , A back sheet, a leak-proof sheet, or a personal wipe sheet, a skin care sheet, or an objective wiper.
 不織布の製造に用いるウエブや不織布の坪量は、目的とする不織布の具体的な用途に応じて適切な範囲が選択される。最終的に得られる不織布の坪量は、10g/m2以上80g/m2以下、特に15g/m2以上60g/m2以下であることが好ましい。 The basis weight of the web or nonwoven fabric used for the production of the nonwoven fabric is selected within a suitable range depending on the specific use of the intended nonwoven fabric. The basis weight of the finally obtained nonwoven fabric is preferably 10 g / m 2 or more and 80 g / m 2 or less, particularly preferably 15 g / m 2 or more and 60 g / m 2 or less.
 不織布1は、これを例えば吸収性物品の表面シートとして用いる場合には、その坪量が10~80g/m2、特に15~60g/m2であることが好ましい。同様の用途に用いる場合、不織布1における凸部119(厚みの厚い部分19)の厚みは、熱風による嵩回復後の状態において0.5~3mm、特に0.7~3mmであることが好ましい。一方、凹部118(厚みの薄い部分18)の厚みは0.01~0.4、特に0.02~0.2mmであることが好ましい。なお凹部118の厚みは、熱風の吹き付けの前後において実質的に変化はない。凸部119及び凹部118の厚みは、不織布1の縦断面を観察することによって測定される。まず、不織布を100mm×100mmの大きさに裁断し測定片を採取する。その測定片の上に12.5g(直径56.4mm)のプレートを載置し、49Paの荷重を加える。この状態下に不織布の縦断面をマイクロスコープ(株式会社キーエンス製、VHX-900)で観察し、凸部119及び凹部118の厚みを測定する。なお、不織布に凸部(厚みの厚い部分)及び凹部(厚みの薄い部分)が形成されている場合、「不織布の厚み」とは、凸部(厚みの厚い部分)の厚みのことをいう。 When the nonwoven fabric 1 is used as, for example, a surface sheet of an absorbent article, the basis weight is preferably 10 to 80 g / m 2 , particularly preferably 15 to 60 g / m 2 . When used for the same purpose, the thickness of the convex portion 119 (thick portion 19) in the nonwoven fabric 1 is preferably 0.5 to 3 mm, particularly 0.7 to 3 mm in the state after bulk recovery by hot air. On the other hand, the thickness of the recess 118 (thin portion 18) is preferably 0.01 to 0.4, particularly 0.02 to 0.2 mm. The thickness of the recess 118 is not substantially changed before and after the hot air is blown. The thickness of the convex part 119 and the concave part 118 is measured by observing the longitudinal section of the nonwoven fabric 1. First, the nonwoven fabric is cut into a size of 100 mm × 100 mm, and a measurement piece is collected. A plate of 12.5 g (diameter 56.4 mm) is placed on the measurement piece, and a load of 49 Pa is applied. Under this condition, the longitudinal section of the nonwoven fabric is observed with a microscope (manufactured by Keyence Corporation, VHX-900), and the thicknesses of the convex portions 119 and the concave portions 118 are measured. In addition, when the convex part (thick part) and the concave part (thin part) are formed in the nonwoven fabric, the “thickness of the nonwoven fabric” refers to the thickness of the convex part (thick part).
 不織布1における凹部118と凸部119との面積比は、エンボス化率(エンボス面積率、すなわち不織布1全体に対する凹部の面積の合計の比率)で表され、不織布1の嵩高感や強度に影響を与える。これらの観点から、不織布1におけるエンボス化率は、5~35%、特に10~25%であることが好ましい。エンボス化率は、以下の方法によって測定される。まずマイクロスコープ(株式会社キーエンス製、VHX-900)を用いて不織布1の表面拡大写真を得、この表面拡大写真にスケールを合わせ、測定部の全体面積Tにおける、エンボス部分の寸法を測定し、エンボス部面積Uを算出する。
エンボス化率は、計算式(U/T)×100、によって算出することができる。
The area ratio between the concave portion 118 and the convex portion 119 in the nonwoven fabric 1 is represented by an embossing rate (an embossed area ratio, that is, a ratio of the total area of the concave portion with respect to the entire nonwoven fabric 1), and affects the bulkiness and strength of the nonwoven fabric 1. give. From these viewpoints, the embossing rate in the nonwoven fabric 1 is preferably 5 to 35%, more preferably 10 to 25%. The embossing rate is measured by the following method. First, using a microscope (manufactured by Keyence Co., Ltd., VHX-900), an enlarged surface photograph of the nonwoven fabric 1 is obtained. An embossed area U is calculated.
The embossing rate can be calculated by the formula (U / T) × 100.
 本発明の不織布の好ましい実施形態であるエアスルー不織布NW1は、前記の繊維処理剤が付着している熱可塑性繊維を含むことによって、該エアスルー不織布全体でみたときに、厚さ方向に沿って親水度に勾配を有している。詳細には、第1層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第2層から遠い側の部位を第1層第1部位とし、第2層に近い側の部位を第1層第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層との親水度を比較すると、下記の(11)及び(12)の関係を満たす。
(11)第1層第1部位よりも、第1層第2部位の方が親水度が高い。
(12)第1層第2部位よりも、第2層におけるいずれかの部位の方が親水度が高い。
The air-through nonwoven fabric NW1, which is a preferred embodiment of the nonwoven fabric of the present invention, includes the thermoplastic fiber to which the fiber treatment agent is adhered, and thus has hydrophilicity along the thickness direction when viewed as a whole of the air-through nonwoven fabric. Has a slope. Specifically, the first layer is virtually divided into two in the thickness direction, and a portion farther from the second layer among the two divided portions is defined as a first layer first portion, When the portion closer to the layer is the first layer second portion, when the hydrophilicity of the first layer first portion, the first layer second portion, and the second layer is compared, the following (11) and The relationship of (12) is satisfied.
(11) The first layer second portion has higher hydrophilicity than the first layer first portion.
(12) The hydrophilicity of any part of the second layer is higher than that of the second part of the first layer.
 エアスルー不織布NW1は、第1層第1部位と、第1層第2部位と、第2層との親水度の大小関係が、第1層第1部位<第1層第2部位<第2層におけるいずれかの部位となる。「第2層におけるいずれかの部位」とは、第2層の厚み方向に沿って測定された親水度のうち、最も親水度が高い部位のことを言う。第1層第1部位及び第1層第2部位についても同様であり、第1層第1部位及び第1層第2部位の親水度とは、これらの部位を厚み方向に沿って親水度を測定したとき、最も高い親水度を示す部位での当該親水度のことである。また、本発明に言う「親水度」は、以下に述べる方法で測定された繊維の接触角に基づきその程度が判断される。具体的には、親水度が低いことは接触角が大きいことと同義であり、親水度が高いことは接触角が小さいことと同義である。 In the air-through nonwoven fabric NW1, the first layer first portion, the first layer second portion, and the second layer have a hydrophilicity relationship between the first layer, the first portion, the first layer, the second portion, and the second layer. Any site in “Any part in the second layer” refers to a part having the highest hydrophilicity among the hydrophilicities measured along the thickness direction of the second layer. The same applies to the first layer first part and the first layer second part, and the hydrophilicity of the first layer first part and the first layer second part refers to the hydrophilicity of these parts along the thickness direction. It is the said hydrophilicity in the site | part which shows the highest hydrophilicity when measured. The “hydrophilicity” referred to in the present invention is determined based on the contact angle of the fiber measured by the method described below. Specifically, a low hydrophilicity is synonymous with a large contact angle, and a high hydrophilicity is synonymous with a small contact angle.
  〔接触角の測定方法〕
 不織布における厚み方向の所定の部位から繊維を取り出し、その繊維に対する水の接触角を測定する。測定装置として、協和界面科学株式会社製の自動接触角計MCA-Jを用いる。接触角の測定には蒸留水を用いる。インクジェット方式水滴吐出部(クラスターテクノロジー社製、吐出部孔径が25μmのパルスインジェクターCTC-25)から吐出される液量を20ピコリットルに設定して、水滴を、繊維の真上に滴下する。滴下の様子を水平に設置されたカメラに接続された高速度録画装置に録画する。録画装置は後に画像解析をする観点から、高速度キャプチャー装置が組み込まれたパーソナルコンピュータが望ましい。本測定では、17msec毎に画像が録画される。録画された映像において、不織布から取り出した繊維に水滴が着滴した最初の画像を、付属ソフトFAMAS(ソフトのバージョンは2.6.2、解析手法は液滴法、解析方法はθ/2法、画像処理アルゴリズムは無反射、画像処理イメージモードはフレーム、スレッシホールドレベルは200、曲率補正はしない、とする)にて画像解析を行い、水滴の空気に触れる面と繊維のなす角を算出し、接触角とする。不織布から取り出した繊維は、繊維長1mmに裁断し、該繊維を接触角計のサンプル台に載せて、水平に維持する。該繊維1本につき異なる2箇所の接触角を測定する。N=5本の接触角を小数点以下1桁まで計測し、合計10箇所の測定値を平均した値(小数点以下第2桁で四捨五入)を接触角と定義する。
[Measurement method of contact angle]
A fiber is taken out from a predetermined portion in the thickness direction of the nonwoven fabric, and the contact angle of water with the fiber is measured. As a measuring device, an automatic contact angle meter MCA-J manufactured by Kyowa Interface Science Co., Ltd. is used. Distilled water is used to measure the contact angle. The amount of liquid discharged from an ink jet type water droplet discharge part (manufactured by Cluster Technology Co., Ltd., pulse injector CTC-25 having a discharge part pore diameter of 25 μm) is set to 20 picoliters, and a water drop is dropped just above the fiber. The state of dripping is recorded on a high-speed recording device connected to a horizontally installed camera. The recording device is preferably a personal computer incorporating a high-speed capture device from the viewpoint of image analysis later. In this measurement, an image is recorded every 17 msec. In the recorded video, the first image of water droplets on the fiber taken out from the nonwoven fabric is attached to the attached software FAMAS (software version is 2.6.2, analysis method is droplet method, analysis method is θ / 2 method) The image processing algorithm is non-reflective, the image processing image mode is frame, the threshold level is 200, and the curvature is not corrected). And the contact angle. The fiber taken out from the nonwoven fabric is cut into a fiber length of 1 mm, and the fiber is placed on a sample table of a contact angle meter and kept horizontal. Two different contact angles are measured for each fiber. N = 5 contact angles are measured to one decimal place, and a value obtained by averaging a total of 10 measured values (rounded to the second decimal place) is defined as the contact angle.
 上述のとおり、エアスルー不織布NW1は、第1層において、第1部位から第2部位に向けて親水度が高くなっている。またエアスルー不織布NW1は、第1層第2部位から第2層に向けて親水度が高くなっている。厚み方向の親水度にこのような勾配が設けられていることに起因して、エアスルー不織布NW1は、第1面側に液が供給されると、その液は素早く不織布中を透過するようになる。したがって、第1面側の表面において、液が該表面を伝って流れにくくなる。その結果、液が供給された面である第1面側の表面に液が残留しにくくなる。これらの顕著な効果は、エアスルー不織布NW1を、その第1層側の表面を肌対向面とした、吸収性物品の表面シートとして用いた場合に特に顕著なものとなる。 As described above, the air-through nonwoven fabric NW1 has higher hydrophilicity from the first part toward the second part in the first layer. In addition, the air-through nonwoven fabric NW1 has a higher hydrophilicity from the first layer second portion toward the second layer. Due to the fact that such a gradient is provided in the hydrophilicity in the thickness direction, when the liquid is supplied to the first surface side of the air-through nonwoven fabric NW1, the liquid quickly permeates through the nonwoven fabric. . Therefore, it is difficult for the liquid to flow along the surface on the first surface side. As a result, it is difficult for the liquid to remain on the surface on the first surface side, which is the surface supplied with the liquid. These remarkable effects become particularly remarkable when the air-through nonwoven fabric NW1 is used as a surface sheet of an absorbent article with the surface on the first layer side facing the skin.
 図3ないし図5には、上述した親水度の勾配を有するエアスルー不織布NW1の種々の具体例が示されている。以下、これらの図に示される形態のエアスルー不織布について説明する。 FIGS. 3 to 5 show various specific examples of the air-through nonwoven fabric NW1 having the above-described hydrophilicity gradient. Hereinafter, the air-through nonwoven fabric of the form shown in these drawings will be described.
 図3に示すエアスルー不織布1Aは、第1層10と第2層20とを有している。第1層10と第2層20とは直接に接しており、両層間に介在する他の層は存在していない。第1層10及び第2層20は、それぞれ単一の繊維層であり、それ以上に細分化された複数層の積層体から構成されたものではない。第1層10と第2層20とはそれらの対向面の全域において結合しており、両層10,20間に空隙は生じていない。なお図3においては、第1層10と第2層20とが同じ厚さで表されているが、これは各層10,20を模式的に示したからであり、実際のエアスルー不織布1Aにおいては、第1層10と第2層20の厚さは異なっていてもよい。 3 has a first layer 10 and a second layer 20. The first layer 10 and the second layer 20 are in direct contact with each other, and there are no other layers interposed between the two layers. The first layer 10 and the second layer 20 are each a single fiber layer, and are not composed of a multi-layer laminate that is further subdivided. The first layer 10 and the second layer 20 are bonded to each other on the entire area of the opposing surfaces, and no gap is generated between the both layers 10 and 20. In addition, in FIG. 3, although the 1st layer 10 and the 2nd layer 20 are represented by the same thickness, this is because each layer 10 and 20 was shown typically, In actual air through nonwoven fabric 1A, The thickness of the first layer 10 and the second layer 20 may be different.
 第1層10及び第2層20はいずれもランダムに堆積された繊維から構成されている。第1層10を構成する繊維は、繊維の交点においてエアスルー方式で融着している。第2層20についても同様である。また、第1層10と第2層20との境界においては、第1層10を構成する繊維と、第2層20を構成する繊維との交点がエアスルー方式で融着している。付加的に、第1層10を構成する繊維は、エアスルー方式の融着以外の手段で結合していてもよい。例えば熱エンボス加工による融着、高圧ジェット流による絡合、接着剤による接着などの手段で付加的に結合していてもよい。第2層20についても同様であり、また第1層10と第2層20との境界においても同様である。 The first layer 10 and the second layer 20 are both composed of randomly deposited fibers. The fibers constituting the first layer 10 are fused by an air-through method at the intersections of the fibers. The same applies to the second layer 20. In addition, at the boundary between the first layer 10 and the second layer 20, the intersection of the fibers constituting the first layer 10 and the fibers constituting the second layer 20 is fused by an air-through method. In addition, the fibers constituting the first layer 10 may be bonded by means other than air-through fusion. For example, they may be additionally bonded by means such as fusion by hot embossing, entanglement by a high-pressure jet flow, adhesion by an adhesive, or the like. The same applies to the second layer 20 and also at the boundary between the first layer 10 and the second layer 20.
 本発明の不織布においては、単一層からなる第1層10を、その厚さ方向に仮想的に二等分したとき、二等分した2つの部位のうち、第2層20から遠い側の部位を第1層第1部位11と呼び、第2層20に近い側の部位を第1層第2部位12と呼ぶ。第1層10は単一層からなるので、第1部位11と第2部位12との間に境界は存在しない。また、第1部位11を構成する繊維と、第2部位12を構成する繊維とは同一である。 In the nonwoven fabric of this invention, when the 1st layer 10 which consists of a single layer is virtually divided into two in the thickness direction, it is a site | part on the side far from the 2nd layer 20 among the two parts divided into two. Is called the first layer first portion 11, and the portion closer to the second layer 20 is called the first layer second portion 12. Since the first layer 10 is composed of a single layer, there is no boundary between the first portion 11 and the second portion 12. Further, the fibers constituting the first part 11 and the fibers constituting the second part 12 are the same.
 図3に示す実施形態の不織布1Aの第1層10においては、第1部位11よりも、第2部位12の方が親水度が高くなっている。このような親水度の勾配を第1層10に設けるためには、先に述べた繊維処理剤が付着した熱融着性繊維が、第1層10に含まれていることが好ましい。この場合、第1層10は、第1部位11から第2部位12に向けて親水度が漸次高くなっていてもよく、あるいは、第1部位11から第2部位12に向けて親水度がステップ状に高くなっていてもよい。厚み方向に沿った液の透過を良好にする観点からは、第1部位11から第2部位12に向けて親水度が漸次高くなっていることが好ましい。親水度が漸次高くなる親水度の勾配を設ける観点からも、先に述べた繊維処理剤が付着した熱融着性繊維が、第1層10に含まれていることが好ましい。 In the first layer 10 of the nonwoven fabric 1 </ b> A of the embodiment shown in FIG. 3, the second portion 12 is more hydrophilic than the first portion 11. In order to provide such a gradient of hydrophilicity in the first layer 10, it is preferable that the first layer 10 includes the heat-fusible fiber to which the fiber treatment agent described above is attached. In this case, the hydrophilicity of the first layer 10 may be gradually increased from the first part 11 toward the second part 12, or the hydrophilicity is stepped from the first part 11 toward the second part 12. The shape may be higher. From the viewpoint of improving the permeation of the liquid along the thickness direction, the hydrophilicity is preferably gradually increased from the first portion 11 toward the second portion 12. From the viewpoint of providing a gradient of hydrophilicity in which the hydrophilicity gradually increases, it is preferable that the first layer 10 includes the heat-fusible fiber to which the fiber treatment agent described above is attached.
 親水度が漸次高くなっているか、それともステップ状に高くなっているかを問わず、第1層10においては、第1層第1部位11に含まれる繊維に対する水の接触角が70度以上、特に72度以上であることが好ましい。また85度以下、特に82度以下であることが好ましい。例えば第1層第1部位11に含まれる繊維に対する水の接触角は、70度以上85度以下であることが好ましく、72度以上82度以下であることが好ましい。一方、第1層第2部位12に含まれる繊維に対する水の接触角は、第1層第1部位11に含まれる繊維に対する水の接触角よりも小さいことを条件として、60度以上、特に65度以上であることが好ましい。また80度以下、特に75度以下であることが好ましい。例えば第1層第2部位12に含まれる繊維に対する水の接触角は、60度以上80度以下であることが好ましく、65度以上75度以下であることが好ましい。 Regardless of whether the hydrophilicity is gradually increased or stepwise, in the first layer 10, the contact angle of water with respect to the fibers contained in the first layer first portion 11 is 70 degrees or more, particularly It is preferable that it is 72 degree | times or more. Further, it is preferably 85 degrees or less, particularly 82 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less. On the other hand, on the condition that the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 60 degrees or more, particularly 65. It is preferable that it is more than degree. Moreover, it is preferable that it is 80 degrees or less, especially 75 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less.
 親水度に勾配を有する第1層10とは対照的に、本実施形態においては、第2層20はその親水度が、該第2層20のいずれの部位においても同じになっている。そして、第2層20の親水度は、第1層第2部位12の親水度よりも高くなっている。このように、本実施形態の不織布1Aは、第1層第1部位11、第1層第2部位12及び第2層20の順で親水度が高くなっている。第2層20に含まれる繊維に対する水の接触角は、第1層第1部位12に含まれる繊維に対する水の接触角よりも小さいことを条件として、20度以上、特に30度以上であることが好ましく、75度以下、特に65度以下であることが好ましい。例えば第2層20に含まれる繊維に対する水の接触角は、20度以上75度以下であることが好ましく、30度以上65度以下であることが好ましい。 In contrast to the first layer 10 having a gradient in hydrophilicity, in the present embodiment, the second layer 20 has the same hydrophilicity in any part of the second layer 20. The hydrophilicity of the second layer 20 is higher than the hydrophilicity of the first layer second portion 12. Thus, the nonwoven fabric 1A of the present embodiment has higher hydrophilicity in the order of the first layer first portion 11, the first layer second portion 12, and the second layer 20. The contact angle of water with respect to the fibers contained in the second layer 20 is 20 degrees or more, particularly 30 degrees or more, provided that the contact angle of water with respect to the fibers contained in the first layer first portion 12 is smaller. Is preferably 75 degrees or less, and particularly preferably 65 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer 20 is preferably 20 degrees or more and 75 degrees or less, and more preferably 30 degrees or more and 65 degrees or less.
 本実施形態においては、上述のとおり、第2層20の親水度がいずれの部位においても同じになっているところ、そのような第2層20を形成するためには、例えば繊維に親水性を付与するために従来用いられてきた油剤と呼ばれる繊維処理剤を用いればよい。そのような繊維処理剤としては、例えば各種の界面活性剤が典型的なものとして挙げられる。界面活性剤としては、陰イオン、陽イオン、両性イオン及び非イオンの界面活性剤等を用いることができる。 In the present embodiment, as described above, the hydrophilicity of the second layer 20 is the same in any part. In order to form such a second layer 20, for example, the fibers are hydrophilic. What is necessary is just to use the fiber processing agent called the oil agent conventionally used in order to provide. Typical examples of such fiber treatment agents include various surfactants. As the surfactant, anionic, cationic, zwitterionic and nonionic surfactants can be used.
 陰イオン界面活性剤の例としては、アルキルホスフェート塩、アルキルエーテルホスフェート塩、ジアルキルホスフェート塩、ジアルキルスルホサクシネート塩、アルキルベンゼンスルホネート塩、アルキルスルホネート塩、アルキルサルフェート塩、セカンダリーアルキルサルフェート塩等が挙げられる(前記いずれのアルキルも炭素数6~22が好ましい。)。アルカリ金属塩としてはナトリウム塩、カリウム塩等が挙げられる。 Examples of anionic surfactants include alkyl phosphate salts, alkyl ether phosphate salts, dialkyl phosphate salts, dialkyl sulfosuccinate salts, alkyl benzene sulfonate salts, alkyl sulfonate salts, alkyl sulfate salts, secondary alkyl sulfate salts and the like ( Any of the above alkyl preferably has 6 to 22 carbon atoms.) Examples of the alkali metal salt include sodium salt and potassium salt.
 陽イオン界面活性剤の例としては、アルキル(又はアルケニル)トリメチルアンモニウムハライド、ジアルキル(又はアルケニル)ジメチルアンモニウムハライド、アルキル(又はアルケニル)ピリジニウムハライド等が挙げられ、これらの化合物は、炭素数6~18のアルキル基又はアルケニル基を有するものが好ましい。前記のハライド化合物におけるハロゲンとしては、塩素、臭素等が挙げられる。 Examples of the cationic surfactant include alkyl (or alkenyl) trimethylammonium halide, dialkyl (or alkenyl) dimethylammonium halide, alkyl (or alkenyl) pyridinium halide and the like. These compounds have 6 to 18 carbon atoms. Those having an alkyl group or an alkenyl group are preferred. Examples of the halogen in the halide compound include chlorine and bromine.
 両性イオン界面活性剤の例としては、アルキル(炭素数1~30)ジメチルベタイン、アルキル(炭素数1~30)アミドアルキル(炭素数1~4)ジメチルベタイン、アルキル(炭素数1~30)ジヒドロキシアルキル(炭素数1~30)ベタイン、スルフォベタイン型両性界面活性剤等のベタイン型両性イオン界面活性剤や、アラニン型[アルキル(炭素数1~30)アミノプロピオン酸型、アルキル(炭素数1~30)イミノジプロピオン酸型等]両性イオン界面活性剤、グリシン型[アルキル(炭素数1~30)アミノ酢酸型等]両性イオン界面活性剤などのアミノ酸型両性イオン界面活性剤、アルキル(炭素数1~30)タウリン型などのアミノスルホン酸型両性イオン界面活性剤が挙げられる。 Examples of zwitterionic surfactants include alkyl (C1-30) dimethylbetaine, alkyl (C1-30) amidoalkyl (C1-4) dimethylbetaine, alkyl (C1-30) dihydroxy. Betaine-type zwitterionic surfactants such as alkyl (carbon number 1-30) betaines and sulfobetaine-type amphoteric surfactants, alanine type [alkyl (carbon numbers 1-30) aminopropionic acid type, alkyl (carbon number 1) To 30) iminodipropionic acid type, etc.] zwitterionic surfactant, glycine type [alkyl (carbon number 1-30) aminoacetic acid type, etc.] amino acid type zwitterionic surfactant such as zwitterionic surfactant, alkyl (carbon (Formula 1-30) Aminosulfonic acid type zwitterionic surfactants such as taurine type.
 非イオン界面活性剤の例としては、グリセリン脂肪酸エステル、ポリ(好ましくはn=2~10)グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル(いずれも好ましくは脂肪酸の炭素数8~22)、ポリオキシエチレンアルキル(炭素数8~22)アミド、ポリオキシエチレンアルキル(炭素数8~22)エーテル、アミノ変性シリコーンなどが挙げられる。 Examples of nonionic surfactants include polyhydric alcohol fatty acid esters such as glycerin fatty acid ester, poly (preferably n = 2 to 10) glycerin fatty acid ester, sorbitan fatty acid ester (all preferably 8 to 22 carbon atoms of fatty acid). ), Polyoxyethylene alkyl (carbon number 8 to 22) amide, polyoxyethylene alkyl (carbon number 8 to 22) ether, amino-modified silicone, and the like.
 なお第2層20の構成繊維は、上述した(A)成分ないし(C)成分を含む繊維処理剤によって処理されていないことが好ましい。 In addition, it is preferable that the constituent fiber of the second layer 20 is not treated with the above-described fiber treatment agent containing the components (A) to (C).
 第1層10から第2層20への液の透過を一層円滑に行う観点から、第1層第2部位12に含まれる繊維に対する水の接触角と、第2層20に含まれる繊維に対する水の接触角との差(第1層第2部位12-第2層20)は、1度以上、特に10度以上、更に20度以上であることが好ましく、50度以下、特に40度以下であることが好ましい。例えば前記の差は、1度以上50度以下であることが好ましく、10度以上40度以下であることが更に好ましい。 From the viewpoint of smoother liquid permeation from the first layer 10 to the second layer 20, the contact angle of water with respect to the fibers contained in the first layer second portion 12 and the water with respect to the fibers contained in the second layer 20. The difference from the contact angle (first layer second portion 12−second layer 20) is preferably 1 degree or more, particularly 10 degrees or more, more preferably 20 degrees or more, and 50 degrees or less, particularly 40 degrees or less. Preferably there is. For example, the difference is preferably 1 ° to 50 °, more preferably 10 ° to 40 °.
 前記と同様の観点から、第1層第1部位11に含まれる繊維に対する水の接触角と、第2層20に含まれる繊維に対する水の接触角との差(第1層第1部位11-第2層20)は、上述した第1層第2部位12-第2層20の接触角の差よりも大きいことを条件として、2度以上、特に10度以上、更に20度以上であることが好ましく、65度以下、特に50度以下であることが好ましい。例えば前記の差は、2度以上65度以下であることが好ましく、10度以上50度以下であることが更に好ましい。 From the same viewpoint as described above, the difference between the contact angle of water with respect to the fibers contained in the first layer first portion 11 and the contact angle of water with respect to the fibers contained in the second layer 20 (first layer first portion 11− The second layer 20) is 2 degrees or more, particularly 10 degrees or more, and more preferably 20 degrees or more, provided that the contact angle difference between the first layer second portion 12 and the second layer 20 is larger than that described above. Is preferably 65 ° or less, and particularly preferably 50 ° or less. For example, the difference is preferably 2 ° to 65 °, more preferably 10 ° to 50 °.
 以上のとおりの接触角を有する各層・各部位からなるエアスルー不織布を製造するためには、上述した繊維処理剤を用い、かつ後述するエアスルー法における熱風の吹き付け条件、すなわち熱風の温度や風量を適切に制御すればよい。 In order to produce an air-through nonwoven fabric composed of each layer and each part having the contact angle as described above, the above-described fiber treatment agent is used, and the hot air blowing conditions in the air-through method described later, that is, the temperature and the air volume of the hot air are appropriately used. It may be controlled to.
 次に、図4及び図5に示す実施形態の不織布1B,1Cについて説明する。これらの不織布1B,1Cについては、先に説明した不織布1Aと相違する点について説明し、同じ点については特に説明しないが、不織布1Aに関する説明が適宜適用される。また図4及び図5において、図3と同じ部材には同じ符号を付してある。 Next, the nonwoven fabrics 1B and 1C of the embodiment shown in FIGS. 4 and 5 will be described. About these nonwoven fabrics 1B and 1C, although the point which is different from the nonwoven fabric 1A demonstrated previously is demonstrated and the same point is not demonstrated in particular, the description regarding the nonwoven fabric 1A is applied suitably. 4 and 5, the same members as those in FIG. 3 are denoted by the same reference numerals.
 図4に示す不織布1Bのうち、第1層10は、図3に示す不織布1Aの第1層10と同様の構成となっている。一方、不織布1Bの第2層20に関しては、これをその厚さ方向に仮想的に二等分したとき、二等分した2つの部位のうち、第1層10に近い側の部位を第2層第1部位21と呼び、第1層10から遠い側の部位を第2層第2部位22と呼ぶ。第2層20は単一層からなるので、第1部位21と第2部位22との間に境界は存在しない。また、第1部位21を構成する繊維と、第2部位22を構成する繊維とは同一である。 In the nonwoven fabric 1B shown in FIG. 4, the first layer 10 has the same configuration as the first layer 10 of the nonwoven fabric 1A shown in FIG. On the other hand, regarding the second layer 20 of the non-woven fabric 1B, when this is virtually bisected in the thickness direction, the portion closer to the first layer 10 out of the two bisected portions is the second. A layer first portion 21 is called, and a portion far from the first layer 10 is called a second layer second portion 22. Since the second layer 20 is composed of a single layer, there is no boundary between the first portion 21 and the second portion 22. Further, the fibers constituting the first part 21 and the fibers constituting the second part 22 are the same.
 本実施形態に不織布1Bにおいては、第1層第1部位11と、第1層第2部位12と、第2層第1部位22と、第2層第2部位22との親水度を比較すると、先に述べた(11)の関係、すなわち第1層第1部位11よりも、第1層第2部位12の方が親水度が高いことに加えて、下記の(13)及び(14)の関係も満たしている。
(13)第1層第2部位12よりも、第2層第1部位21の方が親水度が高い、
(14)第2層第1部位21よりも、第2層第2部位22の方が親水度が高い。
In the nonwoven fabric 1B according to the present embodiment, when the hydrophilicity of the first layer first portion 11, the first layer second portion 12, the second layer first portion 22, and the second layer second portion 22 is compared. In addition to the relationship (11) described above, that is, the first layer second portion 12 has higher hydrophilicity than the first layer first portion 11, the following (13) and (14) The relationship is also satisfied.
(13) The hydrophilicity of the second layer first portion 21 is higher than that of the first layer second portion 12;
(14) The second layer second portion 22 is more hydrophilic than the second layer first portion 21.
 このように、本実施形態の不織布1Bは、第1層10に関して親水度の勾配を有し、かつ第2層20に関しても親水度の勾配を有している。そして、親水度の大小関係が、第1層第1部位11<第1層第2部位12<第2層第1部位21<第2層第2部位22となっている。この場合、先に述べた不織布1Aの第1層10と同様に、第2層20は、第2部位21から第2部位22に向けて親水度が漸次高くなっていてもよく、あるいは、第2部位21から第2部位22に向けて親水度がステップ状に高くなっていてもよい。厚み方向に沿った液の透過を良好にする観点からは、第2部位21から第2部位22に向けて親水度が漸次高くなっていることが好ましい。親水度が漸次高くなる親水度の勾配を設ける観点からも、先に述べた繊維処理剤が付着した熱融着性繊維が、第1層10だけでなく、第2層20にも含まれていることが好ましい。 Thus, the nonwoven fabric 1B of this embodiment has a gradient of hydrophilicity with respect to the first layer 10 and also has a gradient of hydrophilicity with respect to the second layer 20. The magnitude relationship of the hydrophilicity is as follows: first layer first part 11 <first layer second part 12 <second layer first part 21 <second layer second part 22. In this case, similarly to the first layer 10 of the nonwoven fabric 1A described above, the second layer 20 may have a gradually increasing hydrophilicity from the second portion 21 toward the second portion 22, or The hydrophilicity may increase stepwise from the two regions 21 toward the second region 22. From the viewpoint of improving the permeation of the liquid along the thickness direction, the hydrophilicity is preferably gradually increased from the second portion 21 toward the second portion 22. From the viewpoint of providing a gradient of hydrophilicity that gradually increases in hydrophilicity, the heat-fusible fiber to which the fiber treatment agent described above is attached is included not only in the first layer 10 but also in the second layer 20. Preferably it is.
 不織布1Bの第1層10においては、第1層第1部位11に含まれる繊維に対する水の接触角が70度以上、特に72度以上であることが好ましい。また85度以下、特に82度以下であることが好ましい。例えば第1層第1部位11に含まれる繊維に対する水の接触角は、70度以上85度以下であることが好ましく、72度以上82度以下であることが好ましい。一方、第1層第2部位12に含まれる繊維に対する水の接触角は、第1層第1部位11に含まれる繊維に対する水の接触角よりも小さいことを条件として、60度以上、特に65度以上であることが好ましい。また80度以下、特に75度以下であることが好ましい。例えば第1層第2部位12に含まれる繊維に対する水の接触角は、60度以上80度以下であることが好ましく、65度以上75度以下であることが好ましい。 In the first layer 10 of the nonwoven fabric 1B, it is preferable that the contact angle of water with respect to the fibers contained in the first layer first portion 11 is 70 degrees or more, particularly 72 degrees or more. Further, it is preferably 85 degrees or less, particularly 82 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less. On the other hand, on the condition that the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 60 degrees or more, particularly 65. It is preferable that it is more than degree. Moreover, it is preferable that it is 80 degrees or less, especially 75 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less.
 不織布1Bの第2層20においては、第2層第1部位21に含まれる繊維に対する水の接触角が50度以上、特に55度以上であることが好ましい。また75度以下、特に70度以下であることが好ましい。例えば第2層第1部位21に含まれる繊維に対する水の接触角は、50度以上75度以下であることが好ましく、55度以上70度以下であることが好ましい。一方、第2層第2部位22に含まれる繊維に対する水の接触角は、第2層第1部位21に含まれる繊維に対する水の接触角よりも小さいことを条件として、20度以上、特に30度以上であることが好ましい。また70度以下、特に65度以下であることが好ましい。例えば第2層第2部位22に含まれる繊維に対する水の接触角は、20度以上70度以下であることが好ましく、30度以上65度以下であることが好ましい。 In the second layer 20 of the nonwoven fabric 1B, the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more, particularly 55 degrees or more. Moreover, it is preferable that it is 75 degrees or less, especially 70 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more and 75 degrees or less, and more preferably 55 degrees or more and 70 degrees or less. On the other hand, if the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 20 degrees or more, particularly 30. It is preferable that it is more than degree. Moreover, it is preferable that it is 70 degrees or less, especially 65 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 20 degrees or more and 70 degrees or less, and preferably 30 degrees or more and 65 degrees or less.
 第1層10から第2層20への液の透過を一層円滑に行う観点から、第1層第2部位12に含まれる繊維に対する水の接触角と、第2層第1部位21に含まれる繊維に対する水の接触角との差(第1層第2部位12-第2層第1部位21)は、1度以上、特に10度以上であることが好ましく、30度以下、特に25度以下であることが好ましい。例えば前記の差は、1度以上30度以下であることが好ましく、10度以上25度以下であることが更に好ましい。 From the viewpoint of smoother liquid permeation from the first layer 10 to the second layer 20, the contact angle of water with respect to the fibers contained in the first layer second portion 12 and the second layer first portion 21 are included. The difference from the contact angle of water with respect to the fibers (first layer second portion 12−second layer first portion 21) is preferably 1 degree or more, particularly preferably 10 degrees or more, and 30 degrees or less, particularly 25 degrees or less. It is preferable that For example, the difference is preferably 1 degree or more and 30 degrees or less, more preferably 10 degrees or more and 25 degrees or less.
 前記と同様の観点から、第1層第1部位11に含まれる繊維に対する水の接触角と、第2層第2部位22に含まれる繊維に対する水の接触角との差(第1層第1部位11-第2層第2部位22)は、上述した第1層第2部位12-第2層第1部位21の接触角の差よりも大きいことを条件として、2度以上、特に10度以上であることが好ましく、65度以下、特に50度以下であることが好ましい。例えば前記の差は、2度以上65度以下であることが好ましく、10度以上50度以下であることが更に好ましい。 From the same viewpoint as described above, the difference between the contact angle of water with respect to the fibers contained in the first layer first portion 11 and the contact angle of water with respect to the fibers contained in the second layer second portion 22 (first layer first). The portion 11-the second layer second portion 22) is 2 degrees or more, particularly 10 degrees, provided that the contact angle difference between the first layer second portion 12 and the second layer first portion 21 is larger than that described above. It is preferable that the angle be 65 degrees or less, particularly 50 degrees or less. For example, the difference is preferably 2 ° to 65 °, more preferably 10 ° to 50 °.
 以上のとおりの接触角を有する各層・各部位からなる図4に示すエアスルー不織布1Bを製造するためには、上述した繊維処理剤を各層に用い、かつ後述するエアスルー法における熱風の吹き付け条件、すなわち熱風の温度や風量を適切に制御すればよい。特に、本実施形態の不織布1Bによれば、図3に示す不織布1Aと同様の効果が奏される。特に本実施形態の不織布1Bは、第2層20に関しても親水度の勾配を有しているので、図3に示す不織布1Aで奏される効果が一層顕著なものとなる。 In order to produce the air-through nonwoven fabric 1B shown in FIG. 4 composed of each layer and each part having the contact angle as described above, the fiber treatment agent described above is used for each layer, and the hot air blowing conditions in the air-through method described later, that is, What is necessary is just to control the temperature and air volume of hot air appropriately. In particular, according to the nonwoven fabric 1B of this embodiment, the same effect as the nonwoven fabric 1A shown in FIG. 3 is exhibited. In particular, since the nonwoven fabric 1B of the present embodiment has a gradient of hydrophilicity with respect to the second layer 20, the effect exhibited by the nonwoven fabric 1A shown in FIG. 3 becomes even more remarkable.
 図5に示す不織布1Cは、上述した図4に示す不織布1Bと同様に、第1層10に関して親水度の勾配を有し、かつ第2層20に関しても親水度の勾配を有している。また、図4に示す不織布1Bと同様に、第1層10に関しては、第1部位11よりも第2部位12の方が親水度が高く、かつ第2層20に関しても、第1部位21よりも第2部位22の方が親水度が高くなっている。本実施形態の不織布1Cが、図4に示す不織布1Bと相違する点は、親水度の大小関係が、第1層第1部位11<第2層第1部位21<第1層第2部位12<第2層第2部位22となっている点である。この点以外は、図4に示す不織布1Bと同様である。 The nonwoven fabric 1C shown in FIG. 5 has a hydrophilicity gradient with respect to the first layer 10 and also has a hydrophilicity gradient with respect to the second layer 20, similarly to the nonwoven fabric 1B shown in FIG. 4 described above. Further, similarly to the nonwoven fabric 1B shown in FIG. 4, the first portion 10 has a higher hydrophilicity in the second portion 12 than the first portion 11, and the second layer 20 also has a higher degree of hydrophilicity than the first portion 21. Also, the second portion 22 has a higher hydrophilicity. The non-woven fabric 1C of the present embodiment is different from the non-woven fabric 1B shown in FIG. 4 in that the degree of hydrophilicity is such that the first layer first part 11 <second layer first part 21 <first layer second part 12 <The second layer is the second portion 22. Except this point, it is the same as the nonwoven fabric 1B shown in FIG.
 要するに、本実施形態の不織布1Cは、先に述べた(11)の関係、すなわち第1層第1部位11よりも、第1層第2部位12の方が親水度が高いことに加えて、下記の(15)、(16)及び(17)の関係を満たすエアスルー不織布である。
(15)第1層第1部位11よりも、第2層第1部位21の方が親水度が高い、
(16)第2層第1部位21よりも、第1層第2部位12の方が親水度が高い。
(17)第1層第2部位12よりも、第2層第2部位22の方が親水度が高い。
In short, in the nonwoven fabric 1C of the present embodiment, in addition to the relationship (11) described above, that is, the first layer second portion 12 is more hydrophilic than the first layer first portion 11, An air-through nonwoven fabric that satisfies the following relationships (15), (16), and (17).
(15) The second layer first portion 21 is more hydrophilic than the first layer first portion 11.
(16) The first layer second portion 12 has a higher hydrophilicity than the second layer first portion 21.
(17) The hydrophilicity of the second layer second portion 22 is higher than that of the first layer second portion 12.
 このように、本実施形態の不織布1Cは、これまで説明してきた不織布1A,1Bと異なり、第1層10側から第2層20側に向かうに連れて親水度が順次高くなっているのではなく、第1層第2部位12と第2層第1部位21との間で親水度の関係が逆転している。このような親水度の関係を有する本実施形態の不織布1Cは、これまで説明してきた図3及び図4にそれぞれ示す不織布1A,1Bと同様の効果を奏することに加え、第1層第2部位12と第2層第1部位21との間で親水度の関係が逆転していることに起因して、不織布1Cを一旦透過した液が逆戻りしづらいという効果、及び不織布1Cの平面方向に液が拡散しながら該不織布1Cを液が透過するという効果も奏する。液が逆戻りしづらいという効果は、不織布1Cを吸収性物品の表面シートとして用いた場合に、吸収体に一旦吸収された液が、着用者の耐圧を受けても逆戻りしづらくなるという点で有利である。また、不織布1Cの平面方向に液が拡散しながら透過するという効果は、不織布1Cを吸収性物品の表面シートとして用いた場合に、吸収体の平面方向のすべての部位において液を吸収させることができ、吸収体の吸収性能を有効活用できるという点で有利である。 Thus, unlike the nonwoven fabrics 1A and 1B described so far, the nonwoven fabric 1C of the present embodiment has higher hydrophilicity in order from the first layer 10 side toward the second layer 20 side. Instead, the hydrophilicity relationship is reversed between the first layer second portion 12 and the second layer first portion 21. The nonwoven fabric 1C of this embodiment having such a hydrophilicity relationship has the same effects as the nonwoven fabrics 1A and 1B shown in FIGS. 12 and the second layer first portion 21 are reversed in the relationship of hydrophilicity, the effect that the liquid that has once passed through the nonwoven fabric 1C is difficult to return, and the liquid in the plane direction of the nonwoven fabric 1C. There is also an effect that the liquid permeates through the nonwoven fabric 1C while being diffused. The effect that the liquid is difficult to return is advantageous in that, when the nonwoven fabric 1C is used as the top sheet of the absorbent article, the liquid once absorbed by the absorbent body is difficult to return even when subjected to the wearer's pressure resistance. It is. Moreover, when the nonwoven fabric 1C is used as the surface sheet of the absorbent article, the effect that the liquid is transmitted while diffusing in the plane direction of the nonwoven fabric 1C is that the liquid is absorbed in all the portions in the plane direction of the absorbent body. This is advantageous in that the absorption performance of the absorber can be effectively utilized.
 不織布1Cの第1層10においては、第1層第1部位11に含まれる繊維に対する水の接触角が70度以上、特に72度以上であることが好ましい。また85度以下、特に82度以下であることが好ましい。例えば第1層第1部位11に含まれる繊維に対する水の接触角は、70度以上85度以下であることが好ましく、72度以上82度以下であることが好ましい。一方、第1層第2部位12に含まれる繊維に対する水の接触角は、第1層第1部位11に含まれる繊維に対する水の接触角よりも小さいことを条件として、50度以上、特に55度以上であることが好ましい。また75度以下、特に70度以下であることが好ましい。例えば第1層第2部位12に含まれる繊維に対する水の接触角は、50度以上75度以下であることが好ましく、55度以上70度以下であることが好ましい。 In the first layer 10 of the nonwoven fabric 1C, the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more, particularly preferably 72 degrees or more. Further, it is preferably 85 degrees or less, particularly 82 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer first portion 11 is preferably 70 degrees or more and 85 degrees or less, and preferably 72 degrees or more and 82 degrees or less. On the other hand, on the condition that the contact angle of water with respect to the fibers contained in the first layer second portion 12 is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion 11, it is 50 degrees or more, particularly 55. It is preferable that it is more than degree. Moreover, it is preferable that it is 75 degrees or less, especially 70 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer second portion 12 is preferably 50 degrees or greater and 75 degrees or less, and preferably 55 degrees or greater and 70 degrees or less.
 不織布1Cの第2層20においては、第2層第1部位21に含まれる繊維に対する水の接触角が60度以上、特に65度以上であることが好ましい。また80度以下、特に75度以下であることが好ましい。例えば第2層第1部位21に含まれる繊維に対する水の接触角は、60度以上80度以下であることが好ましく、65度以上75度以下であることが好ましい。一方、第2層第2部位22に含まれる繊維に対する水の接触角は、第2層第1部位21に含まれる繊維に対する水の接触角よりも小さいことを条件として、30度以上、特に40度以上であることが好ましい。また70度以下、特に65度以下であることが好ましい。例えば第2層第2部位22に含まれる繊維に対する水の接触角は、30度以上70度以下であることが好ましく、40度以上65度以下であることが好ましい。 In the second layer 20 of the nonwoven fabric 1C, it is preferable that the contact angle of water with respect to the fibers contained in the second layer first portion 21 is 60 degrees or more, particularly 65 degrees or more. Moreover, it is preferable that it is 80 degrees or less, especially 75 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 60 degrees or more and 80 degrees or less, and more preferably 65 degrees or more and 75 degrees or less. On the other hand, if the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 30 degrees or more, particularly 40. It is preferable that it is at least. Moreover, it is preferable that it is 70 degrees or less, especially 65 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 30 degrees or more and 70 degrees or less, and preferably 40 degrees or more and 65 degrees or less.
 不織布1Cを一旦透過した液が逆戻りしづらいという効果、及び不織布1Cの平面方向に液が拡散しながら該不織布1Cを液が透過するという効果を一層顕著なものにする観点から、第2層第1部位21に含まれる繊維に対する水の接触角と、第1層第2部位12に含まれる繊維に対する水の接触角との差(第2層第1部位21-第1層第2部位12)は、1度以上、特に2度以上であることが好ましく、30度以下、特に25度以下であることが好ましい。例えば前記の差は、1度以上30度以下であることが好ましく、2度以上25度以下であることが更に好ましい。 From the viewpoint of making the effect that the liquid once transmitted through the nonwoven fabric 1C is difficult to reverse and the effect that the liquid permeates through the nonwoven fabric 1C while the liquid diffuses in the plane direction of the nonwoven fabric 1C, the second layer first The difference between the contact angle of water with respect to the fibers contained in the first portion 21 and the contact angle of water with respect to the fibers contained in the first layer second portion 12 (second layer first portion 21-first layer second portion 12) Is preferably 1 degree or more, particularly preferably 2 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less. For example, the difference is preferably 1 to 30 degrees, more preferably 2 to 25 degrees.
 また、第1層10から第2層20への液の透過を一層円滑に行う観点から、第1層第1部位11に含まれる繊維に対する水の接触角と、第2層第2部位22に含まれる繊維に対する水の接触角との差(第1層第1部位11-第2層第2部位22)は、2度以上、特に5度以上であることが好ましく、55度以下、特に45度以下であることが好ましい。例えば前記の差は、2度以上55度以下であることが好ましく、5度以上45度以下であることが更に好ましい。 Further, from the viewpoint of smoother liquid permeation from the first layer 10 to the second layer 20, the contact angle of water with respect to the fibers contained in the first layer first portion 11 and the second layer second portion 22 The difference from the contact angle of water with respect to the contained fibers (first layer first portion 11 -second layer second portion 22) is preferably 2 degrees or more, particularly preferably 5 degrees or more, and 55 degrees or less, particularly 45 degrees. Or less. For example, the difference is preferably 2 ° to 55 °, more preferably 5 ° to 45 °.
 本実施形態の不織布1Cの第1層10においては、第1部位11から第2部位12に向けて親水度が漸次高くなっていてもよく、あるいは、第1部位11から第2部位12に向けて親水度がステップ状に高くなっていてもよい。一方、第2層20においては、第2部位22から第1部位21に向けて親水度が漸次高くなっていてもよく、あるいは、第2部位22から第1部位21に向けて親水度がステップ状に高くなっていてもよい。 In the first layer 10 of the nonwoven fabric 1C of the present embodiment, the hydrophilicity may gradually increase from the first part 11 toward the second part 12, or, alternatively, from the first part 11 toward the second part 12. The hydrophilicity may be increased stepwise. On the other hand, in the second layer 20, the hydrophilicity may be gradually increased from the second part 22 toward the first part 21, or the hydrophilicity is stepped from the second part 22 toward the first part 21. The shape may be higher.
 以上のとおりの接触角を有する各層・各部位からなる図5に示すエアスルー不織布1Cを製造するためには、上述した繊維処理剤を各層に用い、かつ後述するエアスルー法における熱風の吹き付け条件、すなわち熱風の温度や風量を適切に制御すればよい。特に、第1層第2部位12と第2層第1部位21との間で親水度の関係を、図4に示す実施形態の不織布1Bと逆転させるためには、第1層10に用いられる繊維処理剤と、第2層20に用いられる繊維処理剤とを比較した場合、親水度の程度が、第2層20に用いられる繊維処理剤のほうがより低くなるように、各繊維処理剤を選択することが有利である。また、第2層20の構成繊維として、後述する熱伸長性繊維を用いることでも、第1層第2部位12と第2層第1部位21との間で親水度の関係を、図4に示す実施形態の不織布1Bと逆転させることができる。 In order to manufacture the air-through nonwoven fabric 1C shown in FIG. 5 composed of each layer and each part having the contact angle as described above, the fiber treatment agent described above is used for each layer, and the hot air blowing conditions in the air-through method described later, that is, What is necessary is just to control the temperature and air volume of hot air appropriately. In particular, it is used for the first layer 10 in order to reverse the hydrophilicity relationship between the first layer second portion 12 and the second layer first portion 21 with the nonwoven fabric 1B of the embodiment shown in FIG. When the fiber treatment agent is compared with the fiber treatment agent used for the second layer 20, the degree of hydrophilicity is set so that the fiber treatment agent used for the second layer 20 is lower. It is advantageous to choose. Moreover, the relationship of hydrophilicity between the 1st layer 2nd site | part 12 and the 2nd layer 1st site | part 21 is shown in FIG. 4 also by using the heat | fever extensible fiber mentioned later as a constituent fiber of the 2nd layer 20. FIG. It can be reversed with the nonwoven fabric 1B of the embodiment shown.
 本発明の別の好ましい実施形態であるエアスルー不織布NW2は、前記の繊維処理剤が付着している熱可塑性繊維を含むことによって、該エアスルー不織布全体でみたときに、厚さ方向に沿って親水度に勾配を有している。詳細には、第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第2層第1部位とし、第2層から遠い側の部位を第2層第2部位としたとき、第1層と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(21)及び(22)の関係を満たす。
(21)第1層よりも、第2層第1部位の方が親水度が高い。
(22)第2層第1部位よりも、第2層第2部位の方が親水度が高い。
The air-through nonwoven fabric NW2, which is another preferred embodiment of the present invention, includes a thermoplastic fiber to which the fiber treatment agent is attached, and thus has a hydrophilicity along the thickness direction when viewed as a whole of the air-through nonwoven fabric. Has a slope. Specifically, the second layer is virtually divided into two in the thickness direction, and a portion closer to the first layer among the two divided portions is defined as a second layer first portion, When the part far from the layer is the second layer second part, the hydrophilicity of the first layer, the second layer first part, and the second layer second part is compared, and the following (21) and The relationship (22) is satisfied.
(21) The hydrophilicity of the first part of the second layer is higher than that of the first layer.
(22) The second layer second portion has a higher hydrophilicity than the second layer first portion.
 エアスルー不織布NW2は、第1層と、第2層第1部位と、第2層第2部位との親水度の大小関係が、第1層<第2層第1部位<第2層第2部位となる。本発明に言う「親水度」は、前記の〔接触角の測定方法〕に記載の方法で測定された繊維の接触角に基づきその程度が判断される。 In the air-through nonwoven fabric NW2, the magnitude relationship of the hydrophilicity between the first layer, the second layer first portion, and the second layer second portion is as follows: first layer <second layer first portion <second layer second portion It becomes. The degree of “hydrophilicity” referred to in the present invention is determined based on the contact angle of the fiber measured by the method described in [Method for measuring contact angle].
 上述のとおり、エアスルー不織布NW2は、第1層から第2層に向けて親水度が高くなっている。またエアスルー不織布NW2は、第2層において、第1部位から第2部位に向けて親水度が高くなっている。厚み方向の親水度にこのような勾配が設けられていることに起因して、エアスルー不織布NW2は、第1面側に液が供給されると、その液は素早く不織布中を透過するようになる。したがって、第1面側の表面において、液が該表面を伝って流れにくくなる。その結果、液が供給された面である第1面側の表面に液が残留しにくくなる。しかも、本発明のエアスルー不織布を一旦透過した液は、逆戻りしづらくなる。これらの顕著な効果は、エアスルー不織布NW2を、その第1層側の表面を肌対向面とした、吸収性物品の表面シートとして用いた場合に特に顕著なものとなる。 As described above, the air-through nonwoven fabric NW2 has higher hydrophilicity from the first layer to the second layer. In addition, the air-through nonwoven fabric NW2 has a higher hydrophilicity from the first part toward the second part in the second layer. Due to the fact that such a gradient is provided in the hydrophilicity in the thickness direction, when the liquid is supplied to the first surface side of the air-through nonwoven fabric NW2, the liquid quickly permeates through the nonwoven fabric. . Therefore, it is difficult for the liquid to flow along the surface on the first surface side. As a result, it is difficult for the liquid to remain on the surface on the first surface side, which is the surface supplied with the liquid. And the liquid which permeate | transmitted the air through nonwoven fabric of this invention becomes difficult to reverse. These remarkable effects become particularly remarkable when the air-through nonwoven fabric NW2 is used as a surface sheet of an absorbent article with the surface on the first layer side facing the skin.
 図6には、上述した親水度の勾配を有するエアスルー不織布NW2の具体例が示されている。同図に示すエアスルー不織布1Dは、第1層10と第2層20とを有している。第1層10と第2層20とは直接に接しており、両層間に介在する他の層は存在していない。第1層10及び第2層20は、それぞれ単一の繊維層であり、それ以上に細分化された複数層の積層体から構成されたものではない。第1層10と第2層20とはそれらの対向面の全域において結合しており、両層10,20間に空隙は生じていない。なお図6においては、第1層10と第2層20とが同じ厚さで表されているが、これは各層10,20を模式的に示したからであり、実際のエアスルー不織布1Dにおいては、第1層10と第2層20の厚さは異なっていてもよい。 FIG. 6 shows a specific example of the air-through nonwoven fabric NW2 having the above-described hydrophilicity gradient. The air-through nonwoven fabric 1D shown in the figure has a first layer 10 and a second layer 20. The first layer 10 and the second layer 20 are in direct contact with each other, and there are no other layers interposed between the two layers. The first layer 10 and the second layer 20 are each a single fiber layer, and are not composed of a multi-layer laminate that is further subdivided. The first layer 10 and the second layer 20 are bonded to each other on the entire area of the opposing surfaces, and no gap is generated between the both layers 10 and 20. In addition, in FIG. 6, although the 1st layer 10 and the 2nd layer 20 are represented by the same thickness, this is because each layer 10 and 20 was shown typically, and in actual air through nonwoven fabric 1D, The thickness of the first layer 10 and the second layer 20 may be different.
 第1層10及び第2層20はいずれもランダムに堆積された繊維から構成されている。第1層10を構成する繊維は、繊維の交点においてエアスルー方式で融着している。第2層20についても同様である。また、第1層10と第2層20との境界においては、第1層10を構成する繊維と、第2層20を構成する繊維との交点がエアスルー方式で融着している。付加的に、第1層10を構成する繊維は、エアスルー方式の融着以外の手段で結合していてもよい。例えば熱エンボス加工による融着、高圧ジェット流による絡合、接着剤による接着などの手段で付加的に結合していてもよい。第2層20についても同様であり、また第1層10と第2層20との境界においても同様である。 The first layer 10 and the second layer 20 are both composed of randomly deposited fibers. The fibers constituting the first layer 10 are fused by an air-through method at the intersections of the fibers. The same applies to the second layer 20. In addition, at the boundary between the first layer 10 and the second layer 20, the intersection of the fibers constituting the first layer 10 and the fibers constituting the second layer 20 is fused by an air-through method. In addition, the fibers constituting the first layer 10 may be bonded by means other than air-through fusion. For example, they may be additionally bonded by means such as fusion by hot embossing, entanglement by a high-pressure jet flow, adhesion by an adhesive, or the like. The same applies to the second layer 20 and also at the boundary between the first layer 10 and the second layer 20.
 本発明においては、単一層からなる第2層20を、その厚さ方向に仮想的に二等分したとき、二等分した2つの部位のうち、第1層10に近い側の部位を第2層第1部位21と呼び、第1層10から遠い側の部位を第2層第2部位22と呼ぶ。第2層20は単一層からなるので、第2部位21と第2部位22との間に境界は存在しない。また、第2部位21を構成する繊維と、第2部位22を構成する繊維とは同一である。 In the present invention, when the second layer 20 composed of a single layer is virtually divided into two equal parts in the thickness direction, the part closer to the first layer 10 is divided into the two parts divided into two parts. A portion far from the first layer 10 is called a second layer second portion 22. Since the second layer 20 is composed of a single layer, there is no boundary between the second part 21 and the second part 22. Further, the fibers constituting the second part 21 and the fibers constituting the second part 22 are the same.
 図6に示す実施形態の不織布1Dの第2層20においては、第2部位21よりも、第2部位22の方が親水度が高くなっている。このような親水度の勾配を第2層20に設けるためには、先に述べた繊維処理剤が付着した熱融着性繊維が、第2層20に含まれていることが好ましい。この場合、第2層20は、第2部位21から第2部位22に向けて親水度が漸次高くなっていてもよく、あるいは、第2部位21から第2部位22に向けて親水度がステップ状に高くなっていてもよい。厚み方向に沿った液の透過を良好にする観点からは、第2部位21から第2部位22に向けて親水度が漸次高くなっていることが好ましい。親水度が漸次高くなる親水度の勾配を設ける観点からも、先に述べた繊維処理剤が付着した熱融着性繊維が、第2層20に含まれていることが好ましい。 In the second layer 20 of the nonwoven fabric 1D of the embodiment shown in FIG. 6, the hydrophilicity of the second part 22 is higher than that of the second part 21. In order to provide such a gradient of hydrophilicity in the second layer 20, it is preferable that the heat-fusible fiber to which the fiber treatment agent described above is attached is included in the second layer 20. In this case, the hydrophilicity of the second layer 20 may be gradually increased from the second part 21 toward the second part 22, or the hydrophilicity is stepped from the second part 21 toward the second part 22. The shape may be higher. From the viewpoint of improving the permeation of the liquid along the thickness direction, the hydrophilicity is preferably gradually increased from the second portion 21 toward the second portion 22. From the viewpoint of providing a gradient of hydrophilicity in which the hydrophilicity gradually increases, it is preferable that the heat-fusible fiber to which the fiber treatment agent described above is attached is included in the second layer 20.
 親水度が漸次高くなっているか、それともステップ状に高くなっているかを問わず、第2層20においては、第2層第1部位21に含まれる繊維に対する水の接触角が50度以上、特に60度以上であることが好ましい。また80度以下、特に75度以下であることが好ましい。例えば第2層第1部位21に含まれる繊維に対する水の接触角は、50度以上80度以下であることが好ましく、60度以上75度以下であることが更に好ましい。一方、第2層第2部位22に含まれる繊維に対する水の接触角は、第2層第1部位21に含まれる繊維に対する水の接触角よりも小さいことを条件として、30度以上、特に40度以上であることが好ましい。また75度以下、特に70度以下であることが好ましい。例えば第2層第2部位22に含まれる繊維に対する水の接触角は、30度以上75度以下であることが好ましく、40度以上70度以下であることが好ましい。 Regardless of whether the degree of hydrophilicity is gradually increased or stepwise, in the second layer 20, the contact angle of water with respect to the fibers contained in the second layer first portion 21 is 50 degrees or more, particularly It is preferable that it is 60 degree | times or more. Moreover, it is preferable that it is 80 degrees or less, especially 75 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer first portion 21 is preferably 50 degrees or more and 80 degrees or less, and more preferably 60 degrees or more and 75 degrees or less. On the other hand, if the contact angle of water with respect to the fibers contained in the second layer second portion 22 is smaller than the contact angle of water with respect to the fibers contained in the second layer first portion 21, it is 30 degrees or more, particularly 40. It is preferable that it is more than degree. Moreover, it is preferable that it is 75 degrees or less, especially 70 degrees or less. For example, the contact angle of water with respect to the fibers contained in the second layer second portion 22 is preferably 30 degrees to 75 degrees, and more preferably 40 degrees to 70 degrees.
 親水度に勾配を有する第2層20とは対照的に、第1層10はその親水度が、該第1層10のいずれの部位においても同じになっている。そして、第1層10の親水度は、第2層第1部位21の親水度よりも低くなっている。このように、本実施形態の不織布1Dは、第1層10、第2層第1部位21及び第2層第2部位22の順で親水度が高くなっている。第1層10に含まれる繊維に対する水の接触角は、第2層第1部位21に含まれる繊維に対する水の接触角よりも大きいことを条件として、75度以上、特に80度以上であることが好ましく、90度以下、特に85度以下であることが好ましい。例えば第1層10に含まれる繊維に対する水の接触角は、75度以上90度以下であることが好ましく、80度以上85度以下であることが好ましい。 In contrast to the second layer 20 having a gradient in hydrophilicity, the first layer 10 has the same hydrophilicity in any part of the first layer 10. The hydrophilicity of the first layer 10 is lower than the hydrophilicity of the second layer first portion 21. Thus, the nonwoven fabric 1D of the present embodiment has a higher hydrophilicity in the order of the first layer 10, the second layer first portion 21, and the second layer second portion 22. The contact angle of water with respect to the fibers contained in the first layer 10 is 75 degrees or more, particularly 80 degrees or more, provided that the contact angle of water with respect to the fibers contained in the second layer first portion 21 is larger. Is preferably 90 degrees or less, and particularly preferably 85 degrees or less. For example, the contact angle of water with respect to the fibers contained in the first layer 10 is preferably 75 ° to 90 °, and preferably 80 ° to 85 °.
 親水度がいずれの部位においても同じになっている第1層10を形成するためには、例えば繊維に親水性を付与するために従来用いられてきた油剤と呼ばれる繊維処理剤を用いればよい。そのような繊維処理剤としては、例えば各種の界面活性剤が典型的なものとして挙げられる。界面活性剤としては、陰イオン、陽イオン、両性イオン及び非イオンの界面活性剤等を用いることができる。界面活性剤の例としては、不織布1Aの第2層を、、親水度がいずれの部位においても同じものとするために用いる界面活性剤として上述した各種のものが挙げられる。 In order to form the first layer 10 having the same hydrophilicity at any part, for example, a fiber treating agent called an oil agent that has been conventionally used for imparting hydrophilicity to the fiber may be used. Typical examples of such fiber treatment agents include various surfactants. As the surfactant, anionic, cationic, zwitterionic and nonionic surfactants can be used. Examples of the surfactant include those described above as the surfactant used to make the second layer of the nonwoven fabric 1A have the same hydrophilicity at any part.
 なお第1層10の構成繊維は、上述した(A)成分ないし(C)成分を含む繊維処理剤によって処理されていないことが好ましい。 In addition, it is preferable that the constituent fibers of the first layer 10 are not treated with the above-described fiber treatment agent containing the components (A) to (C).
 第1層10から第2層20への液の透過を一層円滑に行う観点から、第1層10に含まれる繊維に対する水の接触角と、第2層第1部位21に含まれる繊維に対する水の接触角との差(第1層10-第2層第1部位21)は、1度以上、特に10度以上、更には15度以上であることが好ましく、40度以下、特に30度以下、更には25度以下であることが好ましい。例えば前記の差は、1度以上40度以下であることが好ましく、10度以上30度以下であることが更に好ましく、15度以上25度以下であることがより好ましい。 From the viewpoint of smoother liquid permeation from the first layer 10 to the second layer 20, the contact angle of water with the fibers contained in the first layer 10 and the water with respect to the fibers contained in the second layer first portion 21. The difference from the contact angle of the first layer 10 to the second layer first portion 21 is preferably 1 degree or more, particularly 10 degrees or more, more preferably 15 degrees or more, 40 degrees or less, particularly 30 degrees or less. Further, it is preferably 25 degrees or less. For example, the difference is preferably 1 to 40 degrees, more preferably 10 to 30 degrees, and more preferably 15 to 25 degrees.
 前記と同様の観点から、第1層10に含まれる繊維に対する水の接触角と、第2層第2部位22に含まれる繊維に対する水の接触角との差(第1層10-第2層第2部位22)は、上述した第1層10-第2層第1部位21の接触角の差よりも大きいことを条件として、2度以上、特に10度以上、更には20度以上であることが好ましく、60度以下、特に50度以下、更には35度以下であることが好ましい。例えば前記の差は、2度以上60度以下であることが好ましく、10度以上50度以下であることが更に好ましく、20度以上35度以下であることがより好ましい。 From the same viewpoint as described above, the difference between the contact angle of water with respect to the fibers contained in the first layer 10 and the contact angle of water with respect to the fibers contained in the second layer second portion 22 (first layer 10−second layer). The second part 22) is 2 degrees or more, particularly 10 degrees or more, and more preferably 20 degrees or more, provided that the contact angle difference between the first layer 10 and the second layer first part 21 is larger than that described above. It is preferably 60 ° or less, particularly 50 ° or less, and more preferably 35 ° or less. For example, the difference is preferably 2 degrees or more and 60 degrees or less, more preferably 10 degrees or more and 50 degrees or less, and more preferably 20 degrees or more and 35 degrees or less.
 次に、エアスルー不織布NW1及びNW2に含まれる、前記繊維処理剤が付着した前記熱融着性繊維について説明する。熱融着性繊維は、繊維処理剤が付着していることによって、これを付着させる前に比して、繊維の表面の親水度が高められている。繊維処理剤の付着量は、繊維処理剤を除く熱融着性繊維の全質量に対する割合が、繊維の親水度を高める観点から、好ましくは0.1質量%以上、より好ましくは0.1~1.5質量%であり、より好ましくは0.2~1.0質量%である。 Next, the heat-fusible fiber to which the fiber treatment agent is attached, which is included in the air-through nonwoven fabrics NW1 and NW2, will be described. The heat-fusible fiber has a hydrophilicity on the surface of the fiber as a result of the fiber treatment agent adhering to the heat-fusible fiber, as compared to before the fiber treating agent is attached. The adhesion amount of the fiber treatment agent is preferably 0.1% by mass or more, more preferably from 0.1 to 10% from the viewpoint of increasing the hydrophilicity of the fiber, as a proportion of the total mass of heat-fusible fibers excluding the fiber treatment agent. The amount is 1.5% by mass, more preferably 0.2 to 1.0% by mass.
 繊維処理剤を熱融着性繊維の表面に付着させる方法としては、各種公知の方法を特に制限なく採用することができる。例えば、スプレーによる塗布、スロットコーターによる塗布、ロール転写による塗布、繊維処理剤への浸漬等が挙げられる。これらの処理は、ウエブ化する前の繊維に対して行ってもよいし、繊維を各種の方法でウエブ化した後に行ってもよい。ただし、後述するエアスルー処理よりも前に処理を行う必要がある。繊維処理剤が表面に付着した繊維は、例えば、熱風送風式の乾燥機により、ポリエチレン樹脂の融点より十分に低い温度(例えば120℃以下)で乾燥される。 As the method for attaching the fiber treatment agent to the surface of the heat-fusible fiber, various known methods can be employed without any particular limitation. For example, application by spraying, application by a slot coater, application by roll transfer, immersion in a fiber treatment agent, and the like can be mentioned. These treatments may be performed on the fibers before being made into a web, or after the fibers are made into a web by various methods. However, it is necessary to perform processing before air-through processing described later. The fiber having the fiber treatment agent attached to the surface is dried at a temperature sufficiently lower than the melting point of the polyethylene resin (for example, 120 ° C. or less) by, for example, a hot air blowing type dryer.
 熱融着性繊維としては、例えば熱融着性芯鞘型複合繊維、非熱伸長性繊維、熱収縮繊維、立体捲縮繊維、潜在捲縮繊維、中空繊維等を挙げることができる。これらの繊維は1種を単独で又は2種以上を組み合わせて用いることができる。これらの繊維のうち、熱融着性芯鞘型複合繊維を用いることが特に好ましい。 Examples of the heat-fusible fiber include a heat-fusible core-sheath composite fiber, a non-heat-stretchable fiber, a heat-shrinkable fiber, a three-dimensional crimped fiber, a latent-crimped fiber, and a hollow fiber. These fibers can be used alone or in combination of two or more. Of these fibers, it is particularly preferable to use a heat-fusible core-sheath composite fiber.
 熱融着性繊維は、繊維処理剤の付着の前後いずれにおいても熱融着性を有し、かつ芯鞘型の複合構造を有している。芯鞘型の複合繊維は、同心の芯鞘型でも、偏心の芯鞘型でも、サイド・バイ・サイド型でも、異型形(異形型)でもよい。特に同心の芯鞘型であることが好ましい。繊維がどのような形態をとる場合であっても、柔軟で肌触り等のよい不織布等を製造する観点からは、熱融着性繊維の繊度は1.0dtex以上10.0dtex以下が好ましく、2.0dtex以上8.0dtex以下であることがより好ましい。 The heat-fusible fiber has a heat-fusible property before and after the fiber treatment agent is attached, and has a core-sheath type composite structure. The core-sheath type composite fiber may be a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or an irregular shape. In particular, a concentric core-sheath type is preferable. Regardless of the form of the fibers, from the viewpoint of producing a flexible nonwoven fabric having good touch and the like, the fineness of the heat-fusible fiber is preferably 1.0 dtex or more and 10.0 dtex or less. More preferably, it is 0 dtex or more and 8.0 dtex or less.
 熱融着性繊維の繊度は、第1層10と第2層20とで同じであってもよく、あるいは相違していてもよい。各層10,20における熱融着性繊維の繊度が相違する場合、第1層10に含まれる熱融着性繊維の繊度よりも、第2層20に含まれる熱融着性繊維の繊度の方が小さいことが好ましい。こうすることによって、第1層10から第2層20に向けて毛管力が高まる勾配が生じ、そのことと、繊維処理剤に起因する親水度の勾配とが相まって、第1層10から第2層20に向けての液の引き込み性が向上するという有利な効果が奏される。尤も、本発明においては、繊維処理剤に起因する親水度の勾配が十分に付与されているので、第2層20に繊度の小さな熱融着性繊維を用いなくても、第1層10から第2層20に向けての液の引き込み性は十分なものとなる。 The fineness of the heat-fusible fiber may be the same between the first layer 10 and the second layer 20, or may be different. When the fineness of the heat-fusible fiber in each of the layers 10 and 20 is different, the fineness of the heat-fusible fiber contained in the second layer 20 is greater than the fineness of the heat-fusible fiber contained in the first layer 10. Is preferably small. By doing so, a gradient in which the capillary force increases from the first layer 10 toward the second layer 20 is generated, and this is combined with a gradient of hydrophilicity attributed to the fiber treatment agent, so that the second layer 10 has a second gradient. There is an advantageous effect that the drawability of the liquid toward the layer 20 is improved. However, in the present invention, since the gradient of the hydrophilicity attributed to the fiber treatment agent is sufficiently imparted, the first layer 10 can be used without using a heat-fusible fiber having a small fineness for the second layer 20. The drawability of the liquid toward the second layer 20 is sufficient.
 特に好ましい熱融着性芯鞘型複合繊維としては、前述した芯鞘型複合繊維Pが挙げられる。また、繊維処理剤を付着させる熱融着性芯鞘型複合繊維は、熱伸長性複合繊維である。芯鞘型複合繊維Pや熱伸長性複合繊維の構成や好ましい構成も前述した通りである。 Particularly preferable examples of the heat-fusible core-sheath type composite fiber include the core-sheath type composite fiber P described above. Moreover, the heat-fusible core-sheath conjugate fiber to which the fiber treatment agent is attached is a heat-extensible conjugate fiber. The configurations and preferred configurations of the core-sheath type composite fiber P and the heat-extensible composite fiber are also as described above.
 本発明においては、熱融着性繊維として、熱伸長性繊維と非熱伸長性繊維を混綿されたものを用いてもよい。非熱伸長性繊維は、高融点成分と低融点成分とを含み、低融点成分が繊維表面の少なくとも一部を長さ方向に連続して存在している二成分系の複合繊維である。複合繊維(非熱伸長性繊維)の形態には芯鞘型やサイド・バイ・サイド型などの様々な形態があり、いずれの形態であっても用いることができる。熱融着性の複合繊維は原料の段階で延伸処理が施されている。ここで言う延伸処理とは、延伸倍率2~6倍程度の延伸操作のことである。熱伸長性繊維と非熱伸長性繊維との混合割合は、質量比で、前者:後者が1:9~9:1が好ましく、より好ましくは4:6~6:4である。これにより熱風で不織布の嵩を回復させることがより容易になり、それぞれの繊維を単独で用いるよりも、肌触りとドライ性の良好なエアスルー不織布とすることができる。また、第1層に熱伸長性繊維を用い、第2層に非熱伸長性繊維を用いてもよいし、第2層に熱伸長性繊維を用い、第2層に非熱伸長性繊維を用いてもよい。 In the present invention, as the heat-fusible fiber, a mixture of heat-extensible fiber and non-heat-extensible fiber may be used. The non-heat-extensible fiber is a bicomponent composite fiber that includes a high-melting component and a low-melting component, and the low-melting component is continuously present in the length direction on at least a part of the fiber surface. The form of the composite fiber (non-heat-extensible fiber) includes various forms such as a core-sheath type and a side-by-side type, and any form can be used. The heat-fusible composite fiber is drawn at the raw material stage. The term “stretching treatment” as used herein refers to a stretching operation with a stretching ratio of about 2 to 6 times. The mixing ratio of the heat-extensible fiber and the non-heat-extensible fiber is preferably 1: 9 to 9: 1 for the former: the latter and more preferably 4: 6 to 6: 4 in terms of mass ratio. Thereby, it becomes easier to recover the bulk of the nonwoven fabric with hot air, and an air-through nonwoven fabric having better touch and dryness than using each fiber alone can be obtained. Alternatively, heat-extensible fibers may be used for the first layer, non-heat-extensible fibers may be used for the second layer, heat-extensible fibers may be used for the second layer, and non-heat-extensible fibers may be used for the second layer. It may be used.
 図7には、前述したエアスルー不織布NW1及び/又はエアスルー不織布NW2を製造するために好適に用いられる製造装置が示されている。同図に示す製造装置100は、第1ウエブ製造部110、第2ウエブ製造部120、エンボス部130、エアスルー処理部140、カレンダー部150及び巻き取り部160を備えている。 FIG. 7 shows a manufacturing apparatus suitably used for manufacturing the air-through nonwoven fabric NW1 and / or the air-through nonwoven fabric NW2. The manufacturing apparatus 100 shown in the figure includes a first web manufacturing unit 110, a second web manufacturing unit 120, an embossing unit 130, an air-through processing unit 140, a calendar unit 150, and a winding unit 160.
 第1ウエブ製造部110及び第2ウエブ製造部120はいずれもカード機から構成されている。第1ウエブ製造部110は、目的とするエアスルー不織布における第1層に対応するウエブを製造する部位である。一方、第2ウエブ製造部120は、目的とするエアスルー不織布における第2層に対応するウエブを製造する部位である。第1ウエブ製造部110及び第2ウエブ製造部120には、目的とするエアスルー不織布の具体的な用途に応じて適切な原料繊維が供給され、第1ウエブ111及び第2ウエブ122が製造される。原料繊維には、目的とするエアスルー不織布の具体的な用途に応じて、適切な量の繊維処理剤が付着している。 The first web production unit 110 and the second web production unit 120 are both constituted by a card machine. The 1st web manufacture part 110 is a site | part which manufactures the web corresponding to the 1st layer in the target air through nonwoven fabric. On the other hand, the 2nd web manufacture part 120 is a site | part which manufactures the web corresponding to the 2nd layer in the target air through nonwoven fabric. The first web production unit 110 and the second web production unit 120 are supplied with appropriate raw material fibers according to the specific use of the target air-through nonwoven fabric, and the first web 111 and the second web 122 are produced. . An appropriate amount of fiber treatment agent is attached to the raw fiber according to the specific use of the target air-through nonwoven fabric.
 第1ウエブ製造部110及び第2ウエブ製造部120から繰り出された第1ウエブ111及び第2ウエブ122は、エンボス部130において重ね合わされてエンボス加工が行われる。このとき、第2ウエブ122上に第1ウエブ111が配されるように両ウエブ111,122が重ね合わされる。エンボス部130は例えば凹凸ロール131とアンビルロール132とから構成することができる。エンボス部130におけるエンボス加工の条件は、両ウエブ111,122の構成繊維どうしが加熱下に加圧されてエンボス融着部(図示せず)が形成される条件であればよい。また、熱融着繊維として熱伸長性繊維を用いる場合には、該熱伸長性繊維が伸長する温度条件下にエンボス加工を施すことが好ましい。 The first web 111 and the second web 122 fed out from the first web production unit 110 and the second web production unit 120 are overlapped at the embossing unit 130 and embossed. At this time, the webs 111 and 122 are overlapped so that the first web 111 is arranged on the second web 122. The embossed portion 130 can be composed of, for example, an uneven roll 131 and an anvil roll 132. The embossing conditions in the embossed part 130 may be any conditions as long as the constituent fibers of both webs 111 and 122 are pressed under heating to form an embossed fused part (not shown). Moreover, when using a heat | fever extensible fiber as a heat-fusion fiber, it is preferable to give an embossing process on the temperature conditions which this heat | fever extensible fiber extends | stretches.
 エンボス部130において両ウエブ111,122が一体化されて形成された重ね合わせウエブ101は、エアスルー処理部140へ搬送される。エアスルー処理部140は密閉されたチャンバ141を有している。チャンバ141内には周回する無端ベルト142が配置されている。無端ベルト142は通気性の材料、例えば金属ワイヤのメッシュベルトからなる。重ね合わせウエブ101は、無端ベルト142上に載置されて搬送される。チャンバ141内には、所定温度に加熱された空気(以下「熱風」とも言う。)の吹き出し口(図示せず)が設けられている。更にチャンバ141内には、吹き出された熱風の吸引口(図示せず)も設けられている。チャンバ141内に搬送された重ね合わせウエブ101が該チャンバ141内を通過する間に、重ね合わせウエブ101に対して熱風がエアスルー方式で吹き付けられる。熱風の吹き付けは、重ね合わせウエブ101における第1ウエブ111側から行われる。吹き付けられた熱風は、重ね合わせウエブ101における第2ウエブ122側から放出される。この目的のために、前記の吹き出し口(図示せず)は、重ね合わせウエブ101における第1ウエブ111と対向するように配置されており、かつ前記の吸引口(図示せず)は第1ウエブ122と対向するように配置されている。 The superposed web 101 formed by integrating the webs 111 and 122 in the embossed part 130 is conveyed to the air-through processing part 140. The air-through processing unit 140 has a sealed chamber 141. A circulating endless belt 142 is disposed in the chamber 141. The endless belt 142 is made of a breathable material, for example, a metal wire mesh belt. The overlapping web 101 is placed on the endless belt 142 and conveyed. Inside the chamber 141, there is provided a blowout port (not shown) for air heated to a predetermined temperature (hereinafter also referred to as “hot air”). Furthermore, a suction port (not shown) for blowing hot air is also provided in the chamber 141. While the overlapping web 101 conveyed into the chamber 141 passes through the chamber 141, hot air is blown against the overlapping web 101 in an air-through manner. The hot air is blown from the first web 111 side of the overlapping web 101. The hot air blown is discharged from the second web 122 side of the overlapping web 101. For this purpose, the outlet (not shown) is arranged to face the first web 111 in the overlapping web 101, and the suction port (not shown) is the first web. It is arranged so as to face 122.
 先に述べたとおり、(A)成分ないし(C)成分を含む繊維処理剤が付着している熱融着性繊維においては、該熱融着性繊維が受ける熱量に応じて繊維処理剤の繊維内部への浸透の程度が相違する。繊維処理剤の浸透の程度が大きくなるほど、繊維処理剤を付着させた初期状態に比べて繊維の親水度は低下する。本製造方法においては、この現象を利用して、目的とするエアスルー不織布に親水度の勾配を生じさせている。 As described above, in the heat-fusible fiber to which the fiber treatment agent containing the components (A) to (C) is attached, the fiber of the fiber treatment agent according to the amount of heat received by the heat-fusible fiber. The degree of penetration into the interior is different. The greater the degree of penetration of the fiber treatment agent, the lower the hydrophilicity of the fiber compared to the initial state where the fiber treatment agent is adhered. In this production method, this phenomenon is used to generate a hydrophilicity gradient in the target air-through nonwoven fabric.
 詳細には、エアスルー法によれば、熱風吹き付け面に存在する繊維が最も大きな熱量を受け、かつ熱風吹き付け面と反対側、すなわち無端ベルト142との対向面に存在する繊維が最も小さな熱量を受けるようになる。したがって本製造方法においては、重ね合わせウエブ101における第1ウエブ111の表面に存在する繊維が最も大きな熱量を受け、第2ウエブ122の表面に存在する繊維が最も小さな熱量を受ける。その結果、重ね合わせウエブ101においては、第1ウエブ111側から第2ウエブ122側に向けて、繊維処理剤の繊維内部への浸透の程度が小さくなる。このことに起因して、重ね合わせウエブ101においては、第1ウエブ111側から第2ウエブ122側に向けて親水度が高くなる。この場合、第1ウエブ111を構成する熱融着性繊維にのみ前記繊維処理剤を付着させておき、第2ウエブ122を構成する熱融着性繊維には通常の繊維油剤を付着させておくと、第1ウエブ111から形成される第1層10において親水度の勾配が生じて、図3に示す形態のエアスルー不織布1が得られる。また、第1ウエブ111を構成する熱融着性繊維及び第2ウエブを構成する熱融着性繊維の双方に繊維処理剤を付着させておくと、第1ウエブ111から形成される第1層10及び第2ウエブ122から形成される第2層20の双方において親水度の勾配が生じて、図4又は図5に示す形態のエアスルー不織布1A又は1Bが得られる。エアスルー不織布1Aが得られるか又はエアスルー不織布1Bが得られるかは、第1ウエブ111及び第2ウエブ122を構成する各熱融着性繊維に付着させる繊維処理剤の種類や付着量によって制御することができる。例えば第1ウエブ111を構成する熱融着性繊維に付着させる繊維処理剤よりも、第2ウエブ122を構成する熱融着性繊維に付着させる繊維処理剤の方が親水度の高いものである場合には、図4に示す形態のエアスルー不織布1Aが得られやすい。これに加えて、熱風の吹き付けの風量を増やすと、図4に示す形態のエアスルー不織布1Aが一層得られやすい。一方、第1ウエブ111を構成する熱融着性繊維に付着させる繊維処理剤と、第2ウエブ122を構成する熱融着性繊維に付着させる繊維処理剤の親水度が低いものである場合には、図5に示す形態のエアスルー不織布1Bが得られやすい。 Specifically, according to the air-through method, the fiber existing on the hot air blowing surface receives the largest amount of heat, and the fiber existing on the opposite side of the hot air blowing surface, that is, the surface facing the endless belt 142 receives the smallest amount of heat. It becomes like this. Therefore, in this manufacturing method, the fiber existing on the surface of the first web 111 in the overlapping web 101 receives the largest amount of heat, and the fiber existing on the surface of the second web 122 receives the smallest amount of heat. As a result, in the overlapping web 101, the degree of penetration of the fiber treatment agent into the fibers from the first web 111 side toward the second web 122 side decreases. Due to this, in the overlapping web 101, the hydrophilicity increases from the first web 111 side toward the second web 122 side. In this case, the fiber treatment agent is attached only to the heat-fusible fiber constituting the first web 111, and the normal fiber oil agent is attached to the heat-fusible fiber constituting the second web 122. And the gradient of hydrophilicity arises in the 1st layer 10 formed from the 1st web 111, and the air through nonwoven fabric 1 of the form shown in FIG. 3 is obtained. In addition, when a fiber treatment agent is attached to both the heat-fusible fiber constituting the first web 111 and the heat-fusible fiber constituting the second web 111, the first layer formed from the first web 111 is formed. 10 and the second layer 20 formed from the second web 122 cause a gradient of hydrophilicity, and the air-through nonwoven fabric 1A or 1B having the form shown in FIG. 4 or 5 is obtained. Whether the air-through nonwoven fabric 1A or the air-through nonwoven fabric 1B is obtained is controlled by the type and amount of fiber treatment agent to be adhered to each heat-fusible fiber constituting the first web 111 and the second web 122. Can do. For example, the fiber treatment agent attached to the heat-fusible fiber constituting the second web 122 has a higher hydrophilicity than the fiber treatment agent attached to the heat-fusible fiber constituting the first web 111. In that case, the air-through nonwoven fabric 1A having the form shown in FIG. 4 is easily obtained. In addition to this, when the amount of hot air blowing is increased, the air-through nonwoven fabric 1A having the form shown in FIG. 4 is more easily obtained. On the other hand, when the hydrophilicity of the fiber treatment agent attached to the heat-fusible fiber constituting the first web 111 and the fiber treatment agent attached to the heat-fusible fiber constituting the second web 122 is low. Is easy to obtain the air-through nonwoven fabric 1B having the form shown in FIG.
 また、本製造方法においては、重ね合わせウエブ101における第1ウエブ111の表面に存在する繊維が最も大きな熱量を受け、第2ウエブ122の表面に存在する繊維が最も小さな熱量を受ける。特に第2ウエブ122に関しては、第1ウエブ111との対向面が最も大きな熱量を受け、無端ベルト142との対向面が最も小さな熱量を受ける。その結果、第2ウエブ122を構成する熱融着性繊維に前記繊維処理剤を付着させておくと、第2ウエブ122においては、第1ウエブ111との対向面側から、無端ベルト142との対向面側に向けて、繊維処理剤の繊維内部への浸透の程度が小さくなる。このことに起因して、第2ウエブ122においては、第1ウエブ111との対向面側から、無端ベルト142との対向面側に向けて、親水度が高くなる。しかも、第1ウエブ111の構成繊維に付着させる繊維油剤として、前記繊維処理剤よりも親水度の低いものを用いれば、重ね合わせウエブ101においては、第1ウエブ111側から第2ウエブ122側に向けて親水度が高くなるので、前述したエアスルー不織布NW2として、図6に示す形態のエアスルー不織布1Dが得られる。 Further, in the present manufacturing method, the fiber existing on the surface of the first web 111 in the overlapping web 101 receives the largest amount of heat, and the fiber existing on the surface of the second web 122 receives the smallest amount of heat. In particular, for the second web 122, the surface facing the first web 111 receives the largest amount of heat, and the surface facing the endless belt 142 receives the smallest amount of heat. As a result, if the fiber treatment agent is adhered to the heat-fusible fiber constituting the second web 122, the second web 122 is connected to the endless belt 142 from the surface facing the first web 111. The degree of penetration of the fiber treatment agent into the fibers decreases toward the opposite surface. As a result, the hydrophilicity of the second web 122 increases from the surface facing the first web 111 toward the surface facing the endless belt 142. Moreover, if a fiber oil agent having a lower hydrophilicity than the fiber treatment agent is used as the fiber oil agent to be adhered to the constituent fibers of the first web 111, the overlapping web 101 is moved from the first web 111 side to the second web 122 side. Since the hydrophilicity increases, the air-through nonwoven fabric 1D having the form shown in FIG. 6 is obtained as the air-through nonwoven fabric NW2.
 このように、以上の方法は、熱の付与によって、繊維処理剤が付与された熱融着性繊維の親水度を、不織布の厚み方向で部分的に低下させることで、親水度の勾配を発現させている。したがって以上の方法によれば、複数枚の不織布を重ね合わせて親水度に勾配を設ける必要がなく、一枚の単一の不織布の厚み方向に沿って親水度に勾配を設けることができる。 Thus, the above method expresses a gradient of hydrophilicity by partially reducing the hydrophilicity of the heat-fusible fiber to which the fiber treatment agent has been applied by applying heat in the thickness direction of the nonwoven fabric. I am letting. Therefore, according to the above method, it is not necessary to overlap a plurality of nonwoven fabrics to provide a gradient in hydrophilicity, and it is possible to provide a gradient in hydrophilicity along the thickness direction of one single nonwoven fabric.
 エアスルー処理部140においては、上述のとおり、重ね合わせウエブ101の厚み方向に沿った親水度の勾配が生じる。これとともに、エアスルー処理部140においては、重ね合わせウエブ101の構成繊維どうしの熱融着が生じ、目的とするエアスルー不織布102が得られる。得られたエアスルー不織布102は、エアスルー処理部140から出た後にカレンダー部150に導入されてカレンダー加工が行われる。カレンダー加工によって、エアスルー不織布102の表面が平滑となり、毛羽立ち等が少なくなる。その後、エアスルー不織布102は、巻き取り部160において巻き取られる。 In the air-through processing unit 140, as described above, a gradient of hydrophilicity occurs along the thickness direction of the overlapping web 101. At the same time, in the air-through processing section 140, heat-bonding of the constituent fibers of the overlapping web 101 occurs, and the target air-through nonwoven fabric 102 is obtained. The obtained air-through nonwoven fabric 102 exits from the air-through treatment unit 140 and is then introduced into the calendar unit 150 to be calendered. By the calendering process, the surface of the air-through nonwoven fabric 102 becomes smooth, and fuzzing and the like are reduced. Thereafter, the air-through nonwoven fabric 102 is wound up by the winding unit 160.
 なお、以上の製造方法においては、場合によってはエンボス部130によるエンボス加工を行わなくてもよい。その場合には、得られるエアスルー不織布102は、表裏面に凹凸のない平滑なものとなる。これとは対照的に、エンボス部130によるエンボス加工を行い、かつ熱融着性繊維として熱伸長性繊維を用いた場合には、熱伸長繊維の熱伸長に起因して表面に複数の凸部を有するエアスルー不織布102が得られる。凸部は、エンボス融着部によって囲まれた領域に形成される。また凸部は、第2層側から第1層側に向けて突出した形状となる。この理由は、エアスルー処理のときに、第2層側に対応する第2ウエブ122が無端ベルト142と当接しているので、伸長した熱伸長性繊維の突出が無端ベルト142によって規制されるのに対して、第1層側に対応する第1ウエブ111ではそのような規制が存在しないからである。この観点から、熱伸長性繊維を第1ウエブ111に含有させておくと、凹凸感のある凸部を形成しやすくなるので好ましい。 In the above manufacturing method, embossing by the embossed portion 130 may not be performed depending on circumstances. In that case, the obtained air-through nonwoven fabric 102 is smooth with no irregularities on the front and back surfaces. In contrast, when embossing by the embossed portion 130 is performed and a heat-extensible fiber is used as the heat-fusible fiber, a plurality of protrusions are formed on the surface due to the heat extension of the heat-extensible fiber. The air-through nonwoven fabric 102 having the above is obtained. The convex portion is formed in a region surrounded by the embossed fused portion. The convex portion has a shape protruding from the second layer side toward the first layer side. This is because the second web 122 corresponding to the second layer is in contact with the endless belt 142 during the air-through process, so that the extension of the extended heat-extensible fibers is regulated by the endless belt 142. On the other hand, there is no such restriction in the first web 111 corresponding to the first layer side. From this point of view, it is preferable that the heat-extensible fiber is contained in the first web 111 because it is easy to form a convex portion having a feeling of unevenness.
 前記のようにしてエアスルー不織布に凸部が形成される場合、該凸部においては、該凸部の頂部から底部にかけて親水度が高くなっている。この理由は次のとおりである。凸部における底部には、エンボス融着部が形成されている。エンボス融着部は、繊維の融着によってフィルム化ないしそれに近い融着状態になっているので、通気性が低下している。一方、凸部における頂部及びその近傍には通気性を妨げる部位が存在しない。その結果、エアスルー処理においては、凸部における頂部及びその近傍ほど熱風が通過しやすく親水度が低下しやすい。逆にエンボス融着ほど熱風が通過しにくく、親水度が低下しにくい。そのことに起因して、凸部はその頂部から底部にかけて親水度が高くなる。 When the convex portion is formed on the air-through nonwoven fabric as described above, the convex portion has a high degree of hydrophilicity from the top to the bottom of the convex portion. The reason for this is as follows. An embossed fusion part is formed at the bottom of the convex part. Since the embossed fusion part is formed into a film or a fusion state close to that by the fusion of fibers, the air permeability is lowered. On the other hand, there is no portion that hinders air permeability at the top of the convex portion and in the vicinity thereof. As a result, in the air-through treatment, the hot air easily passes through the top of the convex portion and the vicinity thereof, and the hydrophilicity is likely to decrease. On the other hand, hot air does not easily pass through the embossed fusion, and the hydrophilicity is unlikely to decrease. As a result, the convex portion has a higher hydrophilicity from the top to the bottom.
 このようにして得られた本発明の不織布には、その後、二次加工を施してもよい。二次加工としては、例えば公知の立体賦形加工が挙げられる。 The non-woven fabric of the present invention thus obtained may then be subjected to secondary processing. Examples of secondary processing include known three-dimensional shaping.
 本発明の不織布は、その厚み方向に沿った親水度の勾配を活かして、種々の分野に適用できる。例えば生理用ナプキン、パンティライナー、使い捨ておむつ、失禁パッドなどの身体から排出される液の吸収に用いられる吸収性物品における表面シート、セカンドシート(表面シートと吸収体との間に配されるシート)、裏面シート、防漏シート、あるいは対人用清拭シート、スキンケア用シート、更に対物用のワイパーなどとして好適に用いられる。本発明の不織布を吸収性物品の表面シートやセカンドシートとして用いる場合には、該不織布の第1層側を肌対向面側として用いることが好ましい。 The nonwoven fabric of the present invention can be applied to various fields by utilizing the gradient of hydrophilicity along the thickness direction. For example, a top sheet, a second sheet (a sheet disposed between the top sheet and the absorbent body) in an absorbent article used to absorb liquid discharged from the body such as sanitary napkins, panty liners, disposable diapers, and incontinence pads , A back sheet, a leak-proof sheet, a personal wipe sheet, a skin care sheet, and an objective wiper. When using the nonwoven fabric of this invention as a surface sheet or a second sheet of an absorbent article, it is preferable to use the 1st layer side of this nonwoven fabric as a skin opposing surface side.
 本発明の不織布の製造に用いるウエブの坪量は、目的とする不織布の具体的な用途に応じて適切な範囲が選択される。最終的に得られる不織布の坪量は、10g/m2以上80g/m2以下、特に15g/m2以上60g/m2以下であることが好ましい。 The basis weight of the web used for producing the nonwoven fabric of the present invention is selected in an appropriate range depending on the specific use of the intended nonwoven fabric. The basis weight of the finally obtained nonwoven fabric is preferably 10 g / m 2 or more and 80 g / m 2 or less, particularly preferably 15 g / m 2 or more and 60 g / m 2 or less.
 身体から排出される液の吸収に用いられる吸収性物品は、典型的には、表面シート、裏面シート及び両シート間に介在配置された液保持性の吸収体を具備している。本発明に係る不織布を表面シートとして用いた場合の吸収体及び裏面シートとしては、当該技術分野において通常用いられている材料を特に制限無く用いることができる。
 例えば吸収体としては、パルプ繊維等の繊維材料からなる繊維集合体又はこれに吸収性ポリマーを保持させたものを、ティッシュペーパーや不織布等の被覆シートで被覆してなるものを用いることができる。裏面シートとしては、熱可塑性樹脂のフィルムや、該フィルムと不織布とのラミネート等の液不透過性ないし撥水性のシートを用いることができる。裏面シートは水蒸気透過性を有していてもよい。吸収性物品は更に、該吸収性物品の具体的な用途に応じた各種部材を具備していてもよい。そのような部材は当業者に公知である。例えば吸収性物品を使い捨ておむつや生理用ナプキンに適用する場合には、表面シート上の左右両側部に一対又は二対以上の立体ガードを配置することができる。
An absorbent article used for absorbing liquid discharged from the body typically includes a top sheet, a back sheet, and a liquid-retaining absorbent body disposed between both sheets. As the absorbent body and the back sheet when the nonwoven fabric according to the present invention is used as the top sheet, materials usually used in the technical field can be used without any particular limitation.
For example, as the absorbent body, a fiber assembly made of a fiber material such as pulp fiber or a structure in which an absorbent polymer is held can be coated with a covering sheet such as tissue paper or nonwoven fabric. As the back sheet, a liquid-impermeable or water-repellent sheet such as a thermoplastic resin film or a laminate of the film and a nonwoven fabric can be used. The back sheet may have water vapor permeability. The absorbent article may further include various members depending on the specific application of the absorbent article. Such members are known to those skilled in the art. For example, when the absorbent article is applied to a disposable diaper or a sanitary napkin, a pair or two or more pairs of three-dimensional guards can be disposed on the left and right sides of the topsheet.
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は、上述した実施形態に制限されない。
 例えば、不織布にエンボス部を形成する場合のエンボス部の形成パターンは、格子状に代えて、多列のストライプ状、ドット状、市松模様状、スパイラル状等任意のパターンとすることができる。ドット状とする場合の個々の点の形状としては、円形、楕円形、三角形、四角形、六角形、ハート型、任意の形状とすることができる。また正方形若しくは長方形の格子状や、亀甲模様をなす形状を採用してもよい。
 また、図2に示す不織布の製造方法において、エンボス加工を施す際にエンボスロール及び/又はフラットロールを加熱し、エンボス部及び/又はその周辺の親水性が低下した不織布を製造することもできる。また、本発明の不織布を、おむつやナプキン、ワイパー、その他の製品に用いる場合において、製造の前、製造の途中、及び製品の形にした後のいずれの時点でも、所望の部分に熱を加えて、本発明の不織布の一部または全部について親水性を低下させることができ、または撥水性にすることもできる。
As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to embodiment mentioned above.
For example, the embossed portion forming pattern in the case of forming the embossed portion on the nonwoven fabric can be an arbitrary pattern such as a multi-row stripe shape, a dot shape, a checkered shape, or a spiral shape, instead of the lattice shape. The shape of each point in the case of a dot shape may be a circle, an ellipse, a triangle, a quadrangle, a hexagon, a heart shape, or an arbitrary shape. Moreover, you may employ | adopt the shape which makes a square or rectangular lattice shape, or a tortoiseshell pattern.
Moreover, in the manufacturing method of the nonwoven fabric shown in FIG. 2, when embossing is performed, an embossing roll and / or a flat roll can be heated, and the nonwoven fabric which the embossing part and / or the periphery hydrophilicity fell can also be manufactured. In addition, when the nonwoven fabric of the present invention is used for diapers, napkins, wipers, and other products, heat is applied to the desired part at any time before production, during production, and after product formation. Thus, the hydrophilicity of some or all of the nonwoven fabrics of the present invention can be lowered, or water repellency can be achieved.
 上述した実施形態に関し、本発明は更に以下の繊維又は不織布を開示する。
<1>
 繊維処理剤が付着した熱融着性繊維を用いた不織布であって、前記繊維処理剤が、下記の(A)成分、(B)成分及び(C)成分を含有する不織布。
(A)ポリオルガノシロキサン、
(B)アルキルリン酸エステル、
(C)下記の一般式(1)で表わされるアニオン界面活性剤
Figure JPOXMLDOC01-appb-C000009
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
Regarding the embodiment described above, the present invention further discloses the following fibers or nonwoven fabrics.
<1>
A nonwoven fabric using heat-fusible fibers to which a fiber treatment agent is attached, wherein the fiber treatment agent comprises the following components (A), (B) and (C).
(A) polyorganosiloxane,
(B) an alkyl phosphate ester,
(C) Anionic surfactant represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000009
(In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
<2>
 前記ポリオルガノシロキサンが繊維処理剤の全質量に対して、1質量%以上、好ましくは5質量%以上、また、30質量%以下、好ましくは20質量%以下の割合で含まれている前記<1>に記載の不織布。
<3>
 前記不織布の第一面と、これとは反対側の第二面とを有し、第一面側から第二面側にかけて親水度が高くなっている前記<1>又は<2>に記載の不織布。
<4>
 前記不織布が凹凸形状を有し、凸部の頂部から底部にかけて親水度が高くなっており、
 前記凸部の頂部の接触角と前記底部の接触角との差が、2.5度以上であることが好ましく、3度以上であることがさらに好ましく、5度以上であることがことさら好ましく、また、10度以下であることが好ましく、8度以下であることがより好ましく、7度以下であることがことさら好ましい前記<1>ないし<3>の何れか1に記載の不織布。
<5>
 エンボス加工により形成された厚みの薄い部分と、それ以外の厚みの厚い部分とを有し、前記厚みの薄い部分又はその近傍部が親水性であり、前記厚みの厚い部分の頂部は、前記厚みの薄い部分又はその近傍部よりも親水度が低くなっている前記<1>ないし<4>の何れか1に記載の不織布。
<6>
 エアスルー不織布である、前記<1>ないし<5>の何れか1に記載の不織布。
<2>
<1 in which the polyorganosiloxane is contained in a proportion of 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less, based on the total mass of the fiber treatment agent. > Non-woven fabric.
<3>
As described in <1> or <2>, the first surface of the nonwoven fabric has a second surface opposite to the first surface, and the hydrophilicity increases from the first surface side to the second surface side. Non-woven fabric.
<4>
The nonwoven fabric has a concavo-convex shape, the hydrophilicity is high from the top to the bottom of the convex part,
The difference between the contact angle of the top of the convex part and the contact angle of the bottom is preferably 2.5 degrees or more, more preferably 3 degrees or more, and even more preferably 5 degrees or more, The nonwoven fabric according to any one of <1> to <3>, preferably 10 degrees or less, more preferably 8 degrees or less, and even more preferably 7 degrees or less.
<5>
It has a thin part formed by embossing and a thick part other than that, the thin part or its vicinity is hydrophilic, and the top part of the thick part is the thickness The non-woven fabric according to any one of <1> to <4>, wherein the hydrophilicity is lower than that of the thin portion or the vicinity thereof.
<6>
The nonwoven fabric according to any one of <1> to <5>, which is an air-through nonwoven fabric.
<7>
 前記不織布がエアスルー不織布であり、
 第1層とこれに隣接する第2層とを有し、第1層及び第2層のうちの少なくとも一方に前記繊維処理剤が付着している前記熱融着性繊維が含まれており、
 第1層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第2層から遠い側の部位を第1層第1部位とし、第2層に近い側の部位を第1層第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層との親水度を比較すると、下記の(1)及び(2)の関係を満たす、
(1)第1層第1部位よりも、第1層第2部位の方が親水度が高い、
(2)第1層第2部位よりも、第2層におけるいずれかの部位の方が親水度が高い、
 前記<1>ないし<6>の何れか1に記載の不織布。
<8>
 第2層の親水度が、該第2層のいずれの部位においても同じになっている前記<7>に記載の不織布。
<9>
 第1層第1部位に含まれる繊維に対する水の接触角が70度以上、特に72度以上であることが好ましく、また85度以下、特に82度以下であることが好ましい前記<7>又は<8>に記載の不織布。
<10>
 第1層第2部位に含まれる繊維に対する水の接触角は、第1層第1部位に含まれる繊維に対する水の接触角よりも小さいことを条件として、50度以上、好ましくは55度以上、更に好ましくは60度以上、特に好ましくは65度以上であり、また、80度以下、好ましくは75度以下、更に好ましくは70度以下である、前記<7>ないし<9>の何れか1に記載の不織布。
<11>
 第2層に含まれる繊維に対する水の接触角が20度以上75度以下である前記<7>ないし<10>の何れか1に記載の不織布。
<12>
 第2層に含まれる繊維に対する水の接触角は、第1層第1部位に含まれる繊維に対する水の接触角よりも小さいことを条件として、20度以上、特に30度以上であることが好ましく、75度以下、特に65度以下であることが好ましい前記<7>ないし<11>の何れか1に記載の不織布。
<13>
 第1層第2部位に含まれる繊維に対する水の接触角と、第2層に含まれる繊維に対する水の接触角との差(第1層第2部位-第2層)が、1度以上、特に10度以上、更に20度以上であることが好ましく、50度以下、特に40度以下であることが好ましい前記<7>ないし<12>の何れか1に記載の不織布。
<14>
 第1層第1部位に含まれる繊維に対する水の接触角と、第2層に含まれる繊維に対する水の接触角との差(第1層第1部位-第2層)が、第1層第2部位-第2層の接触角の差よりも大きいことを条件として、2度以上、特に10度以上、更に20度以上であることが好ましく、65度以下、特に50度以下であることが好ましい前記<7>ないし<13>の何れか1に記載の不織布。
<15>
 第2層20の構成繊維は、(A)成分ないし(C)成分を含む繊維処理剤によって処理されていない前記<7>ないし<14>の何れか1に記載の不織布。
<7>
The nonwoven fabric is an air-through nonwoven fabric,
The heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
The first layer is virtually divided into two in the thickness direction, and of the two parts divided into two, the part far from the second layer is the first layer first part, and the side close to the second layer When the first layer second part is compared with the first layer first part, the first layer second part, and the second layer, the following (1) and (2) Satisfy the relationship,
(1) The first layer second part has higher hydrophilicity than the first layer first part,
(2) The hydrophilicity of any part of the second layer is higher than the second part of the first layer.
The nonwoven fabric according to any one of <1> to <6>.
<8>
The nonwoven fabric according to <7>, wherein the hydrophilicity of the second layer is the same in any part of the second layer.
<9>
<7> or <7> The contact angle of water with respect to the fibers contained in the first part of the first layer is preferably 70 degrees or more, particularly preferably 72 degrees or more, and preferably 85 degrees or less, particularly preferably 82 degrees or less. The nonwoven fabric according to 8>.
<10>
On the condition that the contact angle of water with respect to the fibers contained in the first layer second portion is smaller than the contact angle of water with respect to the fibers contained in the first layer first portion, preferably 50 degrees or more, More preferably 60 degrees or more, particularly preferably 65 degrees or more, 80 degrees or less, preferably 75 degrees or less, more preferably 70 degrees or less, and any one of the above <7> to <9> The nonwoven fabric described.
<11>
The non-woven fabric according to any one of <7> to <10>, wherein a contact angle of water with respect to fibers contained in the second layer is 20 degrees or greater and 75 degrees or less.
<12>
The contact angle of water with respect to the fibers contained in the second layer is preferably 20 ° or more, particularly preferably 30 ° or more, provided that the contact angle of water with respect to the fibers contained in the first portion of the first part is smaller. The nonwoven fabric according to any one of <7> to <11>, preferably 75 degrees or less, particularly preferably 65 degrees or less.
<13>
The difference between the contact angle of water with respect to the fibers contained in the first layer and the second portion and the contact angle of water with respect to the fibers contained in the second layer (first layer, second portion-second layer) is 1 degree or more, The nonwoven fabric according to any one of <7> to <12>, particularly preferably 10 degrees or more, more preferably 20 degrees or more, and preferably 50 degrees or less, particularly preferably 40 degrees or less.
<14>
The difference between the contact angle of water with respect to the fibers contained in the first portion of the first layer and the contact angle of water with respect to the fibers contained in the second layer (first layer, first portion-second layer) is the first layer first step. 2 degrees or more, particularly 10 degrees or more, more preferably 20 degrees or more, preferably 65 degrees or less, particularly 50 degrees or less, provided that the contact angle is larger than the difference between the contact angles of the two parts and the second layer. Preferred non-woven fabric according to any one of <7> to <13>.
<15>
The constituent fiber of the second layer 20 is the nonwoven fabric according to any one of the above <7> to <14>, which is not treated with the fiber treatment agent containing the components (A) to (C).
<16>
 第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第1部位とし、第1層から遠い側の部位を第2部位としたとき、第1層第2部位と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(13)及び(14)の関係を満たす前記<7>に記載の不織布。
(13)第1層第2部位よりも、第2層第1部位の方が親水度が高い、
(14)第2層第1部位よりも、第2層第2部位の方が親水度が高い。
<17>
 第2層においては、第2層第1部位に含まれる繊維に対する水の接触角が50度以上、好ましくは55度以上、更に好ましくは60度以上、特に好ましくは65度以上であり、また80度以下、好ましくは75度以下、更に好ましくは70度以下である前記<16>に記載の不織布。
<18>
 第2層第2部位に含まれる繊維に対する水の接触角は、第2層第1部位に含まれる繊維に対する水の接触角よりも小さいことを条件として、20度以上、好ましくは30度以上、更に好ましくは40度以上であり、また70度以下、好ましくは65度以下である、前記<16>又は<17>に記載の不織布。
<19>
 第1層第2部位に含まれる繊維に対する水の接触角と、第2層第1部位に含まれる繊維に対する水の接触角との差(第1層第2部位-第2層第1部位)が、1度以上、特に10度以上であることが好ましく、30度以下、特に25度以下であることが好ましい前記<16>ないし<18>の何れか1に記載の不織布。
<20>
 第1層第1部位に含まれる繊維に対する水の接触角と、第2層第2部位に含まれる繊維に対する水の接触角との差(第1層第1部位-第2層第2部位)が、第1層第2部位-第2層第1部位の接触角の差よりも大きいことを条件として、2度以上、特に10度以上であることが好ましく、65度以下、特に50度以下であることが好ましい前記<16>ないし<19>の何れか1に記載の不織布。
<16>
The second layer is virtually divided into two in the thickness direction. Of the two parts divided in half, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part. When the second part is the second part, the second layer first part, the second layer first part, and the second layer second part are compared with each other, the following relationships (13) and (14) are satisfied. The nonwoven fabric as described in said <7>.
(13) The second layer first part has higher hydrophilicity than the first layer second part,
(14) The second layer second portion has a higher hydrophilicity than the second layer first portion.
<17>
In the second layer, the contact angle of water with respect to the fibers contained in the first part of the second layer is 50 degrees or more, preferably 55 degrees or more, more preferably 60 degrees or more, particularly preferably 65 degrees or more, and 80 The non-woven fabric according to the above <16>, which is not more than 75 degrees, preferably not more than 75 degrees, and more preferably not more than 70 degrees.
<18>
On the condition that the contact angle of water with respect to the fibers contained in the second layer second part is smaller than the contact angle of water with respect to the fibers contained in the second layer first part, preferably 20 degrees or more, The non-woven fabric according to <16> or <17>, more preferably 40 degrees or more and 70 degrees or less, preferably 65 degrees or less.
<19>
Difference between the contact angle of water with respect to the fibers contained in the second part of the first layer and the contact angle of water with respect to the fibers contained in the first part of the second layer (first layer second part-second layer first part) However, the nonwoven fabric according to any one of <16> to <18>, preferably 1 degree or more, particularly preferably 10 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less.
<20>
The difference between the contact angle of water with respect to the fibers contained in the first part of the first layer and the contact angle of water with respect to the fibers contained in the second part of the second layer (first layer first part-second layer second part) However, on the condition that the contact angle difference between the second layer first part and the second layer first part is greater than 2 degrees, preferably 10 degrees or more, 65 degrees or less, particularly 50 degrees or less The nonwoven fabric according to any one of the above <16> to <19>, which is preferably
<21>
 第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第1部位とし、第1層から遠い側の部位を第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(15)、(16)及び(17)の関係を満たす前記<7>に記載の不織布。
(15)第1層第1部位よりも、第2層第1部位の方が親水度が高い。
(16)第2層第1部位よりも、第1層第2部位の方が親水度が高い。
(17)第1層第2部位よりも、第2層第2部位の方が親水度が高い。
<22>
 第2層第1部位に含まれる繊維に対する水の接触角と、第1層第2部位に含まれる繊維に対する水の接触角との差(第2層第1部位-第1層第2部位)は、1度以上、特に2度以上であることが好ましく、30度以下、特に25度以下であることが好ましい前記<21>に記載の不織布。
<23>
 第1層第1部位に含まれる繊維に対する水の接触角と、第2層第2部位に含まれる繊維に対する水の接触角との差(第1層第1部位-第2層第2部位)が、2度以上、特に5度以上であることが好ましく、55度以下、特に45度以下であることが好ましい前記<21>又は<22>に記載の不織布。
<24>
 第1層は、その第1部位から第2部位に向けて親水度が漸次高くなっている前記<21>ないし<23>の何れか1に記載の不織布。
<21>
The second layer is virtually divided into two in the thickness direction. Of the two divided parts, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part. When it is set as the second part, the hydrophilicity of the first layer first part, the first layer second part, the second layer first part, and the second layer second part is compared. , (16) and the nonwoven fabric according to <7> that satisfies the relationship of (17).
(15) The second layer first part has higher hydrophilicity than the first layer first part.
(16) The hydrophilicity of the first layer second portion is higher than that of the second layer first portion.
(17) The second layer second portion has higher hydrophilicity than the first layer second portion.
<22>
Difference between the contact angle of water with respect to the fibers contained in the first part of the second layer and the contact angle of water with respect to the fibers contained in the second part of the first layer (second layer first part-first layer second part) Is preferably 1 degree or more, particularly preferably 2 degrees or more, and preferably 30 degrees or less, particularly preferably 25 degrees or less.
<23>
The difference between the contact angle of water with respect to the fibers contained in the first part of the first layer and the contact angle of water with respect to the fibers contained in the second part of the second layer (first layer first part-second layer second part) Is preferably 2 ° or more, particularly preferably 5 ° or more, and 55 ° or less, particularly preferably 45 ° or less, according to the above <21> or <22>.
<24>
The first layer is the nonwoven fabric according to any one of <21> to <23>, wherein the hydrophilicity gradually increases from the first part toward the second part.
<25>
 前記繊維処理剤が付着している前記熱融着性繊維が、第1層に含まれている前記<7>ないし<24>の何れか1に記載の不織布。
<26>
 第1層に熱伸長性繊維を用い、第2層に非熱伸長性繊維を用いた前記<7>ないし<24>の何れか1に記載の不織布。
<25>
The nonwoven fabric according to any one of <7> to <24>, wherein the heat-fusible fiber to which the fiber treatment agent is attached is contained in a first layer.
<26>
The nonwoven fabric according to any one of <7> to <24>, wherein a heat-extensible fiber is used for the first layer and a non-heat-extensible fiber is used for the second layer.
<27>
 前記不織布がエアスルー不織布であり、
 第1層とこれに隣接する第2層とを有し、第1層及び第2層のうちの少なくとも一方に前記繊維処理剤が付着している前記熱融着性繊維が含まれており、
 第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第2層第1部位とし、第1層から遠い側の部位を第2層第2部位としたとき、第1層と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(1)及び(2)の関係を満たす前記<1>ないし<6>の何れか1に記載の不織布。
(1)第1層よりも、第2層第1部位の方が親水度が高い。
(2)第2層第1部位よりも、第2層第2部位の方が親水度が高い。
<28>
 第2層においては、第2層第1部位に含まれる繊維に対する水の接触角が50度以上、特に60度以上であることが好ましく、また80度以下、特に75度以下であることが好ましく、第2層第1部位に含まれる繊維に対する水の接触角は、50度以上80度以下であることが好ましく、60度以上75度以下であることが更に好ましい前記<27>に記載の不織布。
<29>
 第2層第2部位に含まれる繊維に対する水の接触角は、第2層第1部位に含まれる繊維に対する水の接触角よりも小さいことを条件として、30度以上、特に40度以上であることが好ましく、また75度以下、特に70度以下であることが好ましい前記<27>又は<28>の何れか1に記載の不織布。
<30>
 第1層はその親水度が、該第1層のいずれの部位においても同じになっている前記<27ないし<29>の何れか1に記載の不織布。
<31>
 第1層に含まれる繊維に対する水の接触角は、第2層第1部位に含まれる繊維に対する水の接触角よりも大きいことを条件として、75度以上、特に80度以上であることが好ましく、90度以下、特に85度以下であることが好ましい前記<27>ないし<30>の何れか1に記載の不織布。
<32>
 第1層に含まれる繊維に対する水の接触角と、第2層第1部位に含まれる繊維に対する水の接触角との差(第1層10-第2層第1部位21)は、1度以上、特に10度以上、更には15度以上であることが好ましく、40度以下、特に30度以下、更には25度以下であることが好ましい前記<27>ないし<31>の何れか1に記載の不織布。
<33>
 第1層に含まれる繊維に対する水の接触角と、第2層第2部位に含まれる繊維に対する水の接触角との差(第1層-第2層第2部位)は、第1層-第2層第1部位の接触角の差よりも大きいことを条件として、2度以上、特に10度以上、更には20度以上であることが好ましく、60度以下、特に50度以下、更には35度以下であることが好ましい、前記<27>ないし<32>の何れか1に記載の不織布。
<27>
The nonwoven fabric is an air-through nonwoven fabric,
The heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
The second layer is virtually divided into two in the thickness direction, and the portion closer to the first layer of the two divided portions is the second layer first portion, and the side far from the first layer When the first layer, the second layer first portion, and the second layer second portion are compared with each other, the following (1) and (2) The nonwoven fabric according to any one of <1> to <6>, which satisfies a relationship.
(1) The hydrophilicity of the second layer first portion is higher than that of the first layer.
(2) The second layer second portion has a higher hydrophilicity than the second layer first portion.
<28>
In the second layer, the contact angle of water with respect to the fibers contained in the first part of the second layer is preferably 50 degrees or more, particularly preferably 60 degrees or more, and is preferably 80 degrees or less, particularly preferably 75 degrees or less. The contact angle of water with respect to the fibers contained in the first part of the second layer is preferably 50 degrees or greater and 80 degrees or less, and more preferably 60 degrees or greater and 75 degrees or less. .
<29>
The contact angle of water with respect to the fibers contained in the second part of the second layer is 30 degrees or more, particularly 40 degrees or more, provided that the contact angle of water with respect to the fibers contained in the second part of the first part is smaller. The nonwoven fabric according to any one of the above <27> or <28>, which is preferably 75 ° or less, particularly preferably 70 ° or less.
<30>
The nonwoven fabric according to any one of the above <27 to <29>, wherein the first layer has the same hydrophilicity in any part of the first layer.
<31>
The contact angle of water with respect to the fibers contained in the first layer is preferably 75 degrees or more, particularly preferably 80 degrees or more, on condition that the contact angle of water with respect to the fibers contained in the first part of the second layer is larger. The nonwoven fabric according to any one of <27> to <30>, preferably 90 degrees or less, particularly preferably 85 degrees or less.
<32>
The difference between the contact angle of water with respect to the fibers contained in the first layer and the contact angle of water with respect to the fibers contained in the first portion of the second layer (first layer 10 -second layer first portion 21) is 1 degree. In particular, it is preferably 10 ° or more, more preferably 15 ° or more, 40 ° or less, particularly preferably 30 ° or less, and further preferably 25 ° or less. The nonwoven fabric described.
<33>
The difference between the contact angle of water with respect to the fibers contained in the first layer and the contact angle of water with respect to the fibers contained in the second portion of the second layer (the first layer—the second portion of the second portion) is the first layer— 2 degrees or more, particularly 10 degrees or more, more preferably 20 degrees or more, preferably 60 degrees or less, particularly 50 degrees or less, more The nonwoven fabric according to any one of the above <27> to <32>, which is preferably 35 degrees or less.
<34>
 第1層に含まれる熱融着性繊維の繊度よりも、第2層に含まれる熱融着性繊維の繊度の方が小さい前記<1>ないし<33>の何れか1に記載の不織布。
<35>
 第2層に熱伸長性繊維を用い、第2層に非熱伸長性繊維を用いた前記<1>ないし<34>の何れか1に記載の不織布。
<36>
 第2層は、その第1部位から第2部位に向けて親水度が漸次高くなっている前記<16>ないし<35>の何れか1に記載の不織布。
<37>
 前記繊維処理剤が付着している前記熱融着性繊維が、第2層に含まれている前記<1>ないし<36>の何れか1に記載の不織布。
<38>
 第2層側から第1層側に向けて突出した凸部を複数有し、該凸部においては、該凸部の頂部から底部にかけて親水度が高くなっている前記<7>ないし<37>の何れか1に記載の不織布。
<39>
 前記熱融着性繊維が、熱によってその長さが伸びる熱伸長性繊維である前記<1>ないし<19>の何れか1に記載の不織布。
<40>
 前記熱融着性繊維は、酸化チタンを熱融着性繊維の全質量に対して0.5質量%以上5質量%以下の割合で含んでいる、前記<1>ないし<39>の何れか1に記載の不織布。
<34>
The nonwoven fabric according to any one of <1> to <33>, wherein the fineness of the heat-fusible fiber contained in the second layer is smaller than the fineness of the heat-fusible fiber contained in the first layer.
<35>
The nonwoven fabric according to any one of <1> to <34>, wherein a heat-extensible fiber is used for the second layer and a non-heat-extensible fiber is used for the second layer.
<36>
The second layer is the nonwoven fabric according to any one of <16> to <35>, wherein the hydrophilicity gradually increases from the first part toward the second part.
<37>
The nonwoven fabric according to any one of <1> to <36>, wherein the heat-fusible fiber to which the fiber treatment agent is attached is included in a second layer.
<38>
<7> thru | or <37> which have multiple convex part which protruded toward the 1st layer side from the 2nd layer side, and in this convex part, hydrophilicity becomes high from the top part to the bottom part of this convex part. The nonwoven fabric according to any one of 1.
<39>
The nonwoven fabric according to any one of <1> to <19>, wherein the heat-fusible fiber is a heat-extensible fiber whose length is extended by heat.
<40>
Any of the above <1> to <39>, wherein the heat-fusible fiber contains titanium oxide in a proportion of 0.5% by mass or more and 5% by mass or less with respect to the total mass of the heat-fusible fiber. The nonwoven fabric according to 1.
<41>
 前記ポリオルガノシロキサンが、ポリジメチルシロキサンである前記<1>ないし<40>の何れか1に記載の不織布。
<42>
 前記(B)成分として用いるアルキルリン酸エステルが、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和または部分中和塩である前記<1>ないし<41>の何れか1に記載の不織布。
<43>
 前記(C)成分が、ジアルキルスルホン酸又はその塩である、前記<1>ないし<42>の何れか1に記載の不織布。
<44>
 前記ジアルキルスルホン酸の2鎖のアルキル基それぞれの炭素数は、4~14個、特に、6~10個である前記<43>記載の不織布。
<45>
 前記(A)成分と前記(C)成分との含有比率(前者:後者)が、質量比で1:3~4:1である前記<1>ないし<44>の何れか1に記載の不織布。
<46>
 前記熱融着性繊維への繊維処理剤の付着量は、繊維処理剤を除く熱融着性繊維の全質量に対する割合が、0.1質量%以上、好ましくは0.1~1.5質量%であり、より好ましくは0.2~1.0質量%である前記<1>ないし<45>の何れか1に記載の不織布。
<47>
 (A)成分であるポリオルガノシロキサンの分子量は、重量平均分子量で好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下である前記<1>ないし<46>の何れか1に記載の不織布。
<48>
 (A)成分であるポリオルガノシロキサンとして、分子量の異なる2種類以上のポリオルガノシロキサンを用いた前記<1>ないし<47>の何れか1に記載の不織布。
<49>
 (A)成分として分子量が異なる2種類以上のポリオルガノシロキサンを用い、
 そのうちの一種類は、重量平均分子量が、好ましくは10万以上、より好ましくは15万以上、更に好ましくは20万以上であり、また、好ましくは100万以下、より好ましくは80万以下、更に好ましくは60万以下であり、
 他の一種類は、重量平均分子量が、好ましくは10万未満、より好ましくは5万以下、より好ましくは3万5千以下、更に好ましくは2万以下であり、また、好ましくは2000以上、より好ましくは3000以上、更に好ましくは5000以上である前記<1>ないし<48>の何れか1に記載の不織布。
<50>
 重量平均分子量が10万以上のポリオルガノシロキサンと重量平均分子量が10万未満のポリオルガノシロキサンとの配合比率(前者:後者)が、質量比で、好ましくは1:10~4:1、より好ましくは1:5~2:1である前記<49>に記載の不織布。
<41>
The nonwoven fabric according to any one of <1> to <40>, wherein the polyorganosiloxane is polydimethylsiloxane.
<42>
In any one of the above items <1> to <41>, wherein the alkyl phosphate ester used as the component (B) is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having a carbon chain of 16 to 18 The nonwoven fabric described.
<43>
The nonwoven fabric according to any one of <1> to <42>, wherein the component (C) is a dialkylsulfonic acid or a salt thereof.
<44>
The nonwoven fabric according to the above <43>, wherein each of the two-chain alkyl groups of the dialkylsulfonic acid has 4 to 14, particularly 6 to 10, carbon atoms.
<45>
The nonwoven fabric according to any one of <1> to <44>, wherein the content ratio of the component (A) to the component (C) (the former: the latter) is 1: 3 to 4: 1 by mass ratio. .
<46>
The adhesion amount of the fiber treatment agent to the heat-fusible fiber is such that the ratio to the total mass of the heat-fusible fiber excluding the fiber treatment agent is 0.1% by mass or more, preferably 0.1 to 1.5 mass. %, More preferably 0.2 to 1.0% by mass, the nonwoven fabric according to any one of <1> to <45>.
<47>
The molecular weight of the polyorganosiloxane as component (A) is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000 or less, more preferably 800,000 in terms of weight average molecular weight. The nonwoven fabric according to any one of <1> to <46>, more preferably 600,000 or less.
<48>
The nonwoven fabric according to any one of <1> to <47>, wherein two or more types of polyorganosiloxanes having different molecular weights are used as the polyorganosiloxane as the component (A).
<49>
(A) Two or more types of polyorganosiloxanes having different molecular weights are used as the component,
One of them has a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably. Is less than 600,000,
The other type has a weight average molecular weight of preferably less than 100,000, more preferably 50,000 or less, more preferably 35,000 or less, still more preferably 20,000 or less, and preferably 2,000 or more, more The nonwoven fabric according to any one of <1> to <48>, preferably 3000 or more, more preferably 5000 or more.
<50>
The blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is preferably from 1:10 to 4: 1, more preferably by mass. Is the nonwoven fabric according to <49>, wherein the ratio is 1: 5 to 2: 1.
<51>
 前記繊維処理剤中の(A)成分の配合割合は、該繊維処理剤の全質量に対して1質量%以上であることが好ましく、5質量%以上であることが更に好ましく、また30質量%以下が好ましく、20質量%以下が更に好ましい前記<1>ないし<50>の何れか1に記載の不織布。
<52>
 前記繊維処理剤中の(B)成分の配合割合は、好ましくは5質量%以上、より好ましくは10質量%以上であり、また好ましくは30質量%以下、より好ましくは25質量%以下である前記<1>ないし<51>の何れか1に記載の不織布。
<53>
 前記繊維処理剤中の前記(C)成分の配合割合は、好ましくは1質量%以上、より好ましくは5質量%以上であり、好ましくは20質量%以下、より好ましくは13質量%以下である前記<1>ないし<52>の何れか1に記載の不織布。
<54>
 繊維処理剤における(A)成分のポリオルガノシロキサンと、(C)成分のアニオン界面活性剤との含有比率(前者:後者)は、質量比で、好ましくは1:3~4:1であり、より好ましくは1:2~3:1である前記<1>ないし<53>の何れか1に記載の不織布。
<55>
 繊維処理剤における(A)成分のポリオルガノシロキサンと、(B)成分のアルキルリン酸エステルとの含有比率(前者:後者)は、質量比で、好ましくは1:5~10:1であり、より好ましくは1:2~3:1である前記<1>ないし<54>の何れか1に記載の不織布。
<56>
 前記熱融着性繊維として、芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分とを有する熱伸長性複合繊維からなる熱伸長性繊維を含んでおり、
 前記熱伸長性複合繊維は、第2樹脂成分の融点(融点を持たない樹脂の場合は軟化点)より10℃高い温度での熱伸長率0.5%以上20%以下であることが好ましく、より好ましくは3%以上20%以下、更に好ましくは5.0%以上20%以下である前記<1>ないし<55>の何れか1に記載の不織布。
<57>
 前記<1>ないし<56>の何れか1に記載の不織布を用いた吸収性物品。
<58>
 生理用ナプキンである、前記<57>記載の吸収性物品。
<51>
The blending ratio of the component (A) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, and 30% by mass with respect to the total mass of the fiber treatment agent. The non-woven fabric according to any one of the above items <1> to <50>, preferably 20% by mass or less.
<52>
The blending ratio of the component (B) in the fiber treatment agent is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 25% by mass or less. The nonwoven fabric according to any one of <1> to <51>.
<53>
The blending ratio of the component (C) in the fiber treatment agent is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 20% by mass or less, more preferably 13% by mass or less. The nonwoven fabric according to any one of <1> to <52>.
<54>
The content ratio (the former: latter) of the polyorganosiloxane as the component (A) and the anionic surfactant as the component (C) in the fiber treatment agent is preferably 1: 3 to 4: 1 by mass ratio, The nonwoven fabric according to any one of <1> to <53>, more preferably 1: 2 to 3: 1.
<55>
The content ratio (the former: latter) of the polyorganosiloxane of component (A) and the alkyl phosphate ester of component (B) in the fiber treatment agent is preferably 1: 5 to 10: 1 by mass ratio, The nonwoven fabric according to any one of <1> to <54>, more preferably 1: 2 to 3: 1.
<56>
The heat-fusible fiber includes a heat-extensible fiber composed of a heat-extensible composite fiber having a first resin component that constitutes a core portion and a second resin component that constitutes a sheath portion,
The heat-extensible conjugate fiber preferably has a thermal elongation rate of 0.5% to 20% at a temperature 10 ° C. higher than the melting point of the second resin component (softening point in the case of a resin having no melting point) The nonwoven fabric according to any one of <1> to <55>, more preferably 3% to 20%, and still more preferably 5.0% to 20%.
<57>
An absorbent article using the nonwoven fabric according to any one of <1> to <56>.
<58>
The absorbent article according to <57>, which is a sanitary napkin.
<59>
 下記の(A)成分、(B)成分及び(C)成分を含有する不織布用繊維処理剤であって、該(A)成分と該(C)成分との含有比率(前者:後者)が質量比で1:3~4:1であり、かつ該(A)成分が繊維処理剤の質量に対して1質量%以上30質量%以下の割合で含まれている不織布用繊維処理剤。
(A)ポリオルガノシロキサン、
(B)アルキルリン酸エステル、
(C)下記の一般式(1)で表わされるアニオン界面活性剤
Figure JPOXMLDOC01-appb-C000010
 (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
<60>
 前記ポリオルガノシロキサンが、ポリジメチルシロキサンである前記<59>記載の不織布用繊維処理剤。
<61>
 前記ポリジメチルシロキサンが2種類以上のポリジメチルシロキサンから構成され、そのうちの一種類が重量平均分子量10万以上のポリジメチルシロキサン、他の一種類が重量平均分子量10万未満のポリジメチルシロキサンから構成される前記<59>又は<60>記載の不織布用繊維処理剤。
<62>
 重量平均分子量が10万以上のポリオルガノシロキサンと重量平均分子量が10万未満のポリオルガノシロキサンとの好ましい配合比率(前者:後者)は、質量比で、好ましくは1:10~4:1、より好ましくは1:5~2:1である前記<61>記載の不織布用繊維処理剤。
<63>
 前記(B)成分として用いるアルキルリン酸エステルが、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和または部分中和塩である前記<59>ないし<62>の何れか1に記載の不織布用繊維処理剤。
<64>
 前記繊維処理剤中の前記(B)成分の配合割合は、5質量%以上、好ましくは10質量%以上であり、30質量%以下、好ましくは25質量%以下である前記<59>ないし<63>の何れか1に記載の不織布用繊維処理剤。
<65>
 前記(C)成分が、ジアルキルスルホン酸又はその塩である、前記<59>ないし<64>の何れか1に記載の不織布用繊維処理剤。
<66>
 前記ジアルキルスルホン酸の2鎖のアルキル基それぞれの炭素数は、4~14個、特に、6~10個であることが好ましい前記<65>記載の不織布用繊維処理剤。
<67>
 前記繊維処理剤中の前記(C)成分の配合割合は、1質量%以上、好ましくは5質量%以上であり、また、20質量%以下、好ましくは13質量%以下である前記<59>ないし<67>の何れか1に記載の不織布用繊維処理剤。
<68>
 前記繊維処理剤における前記(A)成分のポリオルガノシロキサンと、前記(C)成分のアニオン界面活性剤との含有比率は、質量比で、好ましくは1:3~4:1、より好ましくは1:2~3:1である前記<59>ないし<67>の何れか1に記載の不織布用繊維処理剤。
<69>
 前記繊維処理剤における前記(A)成分のポリオルガノシロキサンと、前記(B)成分のアルキルリン酸エステルとの含有比率は、質量比で、1:4~3:1、好ましくは1:2~2:1である前記<59>ないし<68>の何れか1に記載の不織布用繊維処理剤。
<59>
A fiber treatment agent for nonwoven fabric containing the following component (A), component (B) and component (C), wherein the content ratio of the component (A) to the component (C) (the former: the latter) is mass. The fiber treatment agent for nonwoven fabrics having a ratio of 1: 3 to 4: 1 and containing the component (A) in a proportion of 1% by mass to 30% by mass with respect to the mass of the fiber treatment agent.
(A) polyorganosiloxane,
(B) an alkyl phosphate ester,
(C) Anionic surfactant represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000010
(In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
<60>
The fiber treatment agent for nonwoven fabrics according to <59>, wherein the polyorganosiloxane is polydimethylsiloxane.
<61>
The polydimethylsiloxane is composed of two or more types of polydimethylsiloxane, one of which is composed of polydimethylsiloxane having a weight average molecular weight of 100,000 or more, and the other is composed of polydimethylsiloxane having a weight average molecular weight of less than 100,000. <59> or <60> The fiber treatment agent for nonwoven fabrics described in the above.
<62>
A preferable blending ratio (the former: latter) of the polyorganosiloxane having a weight average molecular weight of 100,000 or more and the polyorganosiloxane having a weight average molecular weight of less than 100,000 is preferably a mass ratio of 1:10 to 4: 1. The fiber treatment agent for nonwoven fabrics according to <61>, preferably in the range of 1: 5 to 2: 1.
<63>
Any one of the above <59> to <62>, wherein the alkyl phosphate used as the component (B) is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate having a carbon chain of 16 to 18 The fiber treatment agent for nonwoven fabrics as described.
<64>
The blending ratio of the component (B) in the fiber treatment agent is 5% by mass or more, preferably 10% by mass or more, and 30% by mass or less, preferably 25% by mass or less. > The fiber processing agent for nonwoven fabrics of any one of>.
<65>
The fiber treatment agent for nonwoven fabric according to any one of <59> to <64>, wherein the component (C) is a dialkylsulfonic acid or a salt thereof.
<66>
The fiber treatment agent for nonwoven fabrics according to <65>, wherein the number of carbon atoms in each of the two-chain alkyl groups of the dialkylsulfonic acid is preferably 4 to 14, particularly 6 to 10.
<67>
<59> thru | or the mixture ratio of the said (C) component in the said fiber processing agent is 1 mass% or more, Preferably it is 5 mass% or more, and is 20 mass% or less, Preferably it is 13 mass% or less. The fiber treatment agent for nonwoven fabrics according to any one of <67>.
<68>
The content ratio of the polyorganosiloxane of the component (A) and the anionic surfactant of the component (C) in the fiber treatment agent is preferably a mass ratio of 1: 3 to 4: 1, more preferably 1 The fiber treatment agent for nonwoven fabrics according to any one of the above items <59> to <67>, which is from 2 to 3: 1.
<69>
The content ratio of the polyorganosiloxane of the component (A) and the alkyl phosphate ester of the component (B) in the fiber treatment agent is 1: 4 to 3: 1, preferably 1: 2 to mass ratio. The fiber treatment agent for nonwoven fabrics according to any one of the above items <59> to <68>, which is 2: 1.
<70>
 前記<59>ないし<69>の何れか1に記載の繊維処理剤が付着した熱融着性繊維。
<71>
 前記繊維処理剤の付着量は、該繊維処理剤を除く熱融着性繊維の全質量に対する割合が、0.1質量%以上、好ましくは0.1~1.5質量%であり、より好ましくは0.2~1.0質量%である前記<70>記載の熱融着性繊維。
<72>
 水に対する接触角が、90度以下、好ましくは85度以下であり、60度以上、好ましくは65度以上であり、また、65~85度であり、好ましくは70~80度である前記<70>又は<71>記載の熱融着性繊維。
<73>
 前記熱融着性繊維が、熱伸長性繊維である前記<70>ないし<72>の何れか1に記載の熱融着性繊維。
<74>
 前記熱伸長性繊維は、芯部を構成する第1樹脂成分と、鞘部を構成する第2樹脂成分とを有する熱伸長性複合繊維であり、該熱伸長性複合繊維は、第2樹脂成分の融点(融点を持たない樹脂の場合は軟化点)より10℃高い温度での熱伸長率が0.5~20%であり、好ましくは3~20%、より好ましくは5.0~20%である前記<70>ないし<73>の何れか1に記載の熱融着性繊維。
<75>
 前記熱融着性繊維は、酸化チタンを熱融着性繊維の全質量に対して0.5質量%以上5質量%以下の割合で含んでいる、前記<70>ないし<74>の何れか1に記載の熱融着性繊維。
<70>
A heat-fusible fiber to which the fiber treatment agent according to any one of <59> to <69> is attached.
<71>
The adhesion amount of the fiber treatment agent is such that the ratio to the total mass of the heat-fusible fiber excluding the fiber treatment agent is 0.1% by mass or more, preferably 0.1 to 1.5% by mass, and more preferably. The heat-fusible fiber according to the above <70>, wherein is 0.2 to 1.0% by mass.
<72>
The contact angle with respect to water is 90 degrees or less, preferably 85 degrees or less, 60 degrees or more, preferably 65 degrees or more, 65 to 85 degrees, preferably 70 to 80 degrees <70 > Or <71>.
<73>
The heat-fusible fiber according to any one of <70> to <72>, wherein the heat-fusible fiber is a heat-extensible fiber.
<74>
The heat stretchable fiber is a heat stretchable conjugate fiber having a first resin component constituting a core portion and a second resin component constituting a sheath portion, and the heat stretchable conjugate fiber is a second resin component. The thermal elongation at a temperature 10 ° C. higher than the melting point (softening point in the case of a resin having no melting point) is 0.5 to 20%, preferably 3 to 20%, more preferably 5.0 to 20%. The heat-fusible fiber according to any one of the above <70> to <73>.
<75>
Any of the above <70> to <74>, wherein the heat-fusible fiber contains titanium oxide in a ratio of 0.5 mass% to 5 mass% with respect to the total mass of the heat-fusible fiber. The heat-fusible fiber according to 1.
<76>
 前記<70>ないし<75>の何れか1に記載の熱融着性繊維を用いた不織布。
<77>
 前記熱融着性繊維として、前記熱伸長性繊維と非熱伸長性繊維とが混綿されている前記<76>記載の不織布。
<78>
 エアスルー不織布である、前記<76>又は<78>記載の不織布。
<79>
 前記<59>ないし<69>の何れか1に記載の繊維処理剤を付着させた熱融着性繊維を含むウエブ又は不織布に、熱処理を施し、該ウエブ又は該不織布の一部の親水性を低下させた不織布を得る、不織布の製造方法。
<80>
 前記<59>ないし<79>の何れか1に記載の繊維処理剤を付着させた熱融着性繊維を含むウエブ又は不織布に、熱処理を施し、該ウエブ又は該不織布の一部の親水性を低下させる、不織布の親水性の制御方法。
<76>
A non-woven fabric using the heat-fusible fiber according to any one of <70> to <75>.
<77>
The nonwoven fabric according to <76>, wherein the heat-extensible fiber and the non-heat-extensible fiber are mixed as the heat-fusible fiber.
<78>
The nonwoven fabric according to <76> or <78>, which is an air-through nonwoven fabric.
<79>
The web or nonwoven fabric containing the heat-fusible fiber to which the fiber treatment agent according to any one of the above items <59> to <69> is attached is subjected to heat treatment, and the hydrophilicity of a part of the web or the nonwoven fabric is imparted. A method for producing a nonwoven fabric, wherein a reduced nonwoven fabric is obtained.
<80>
The web or nonwoven fabric containing the heat-fusible fiber to which the fiber treatment agent according to any one of the above items <59> to <79> is attached is subjected to heat treatment, and the hydrophilicity of a part of the web or the nonwoven fabric is imparted. A method for controlling the hydrophilicity of a nonwoven fabric to be lowered.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
〔実施例1〕
 (1)熱で親水性が低下する繊維の製造
 熱融着性繊維である、芯部がポリプロピレン樹脂、鞘部がポリエチレン樹脂からなる熱伸長性の熱融着性芯鞘型複合繊維を、下記組成の繊維処理剤(油剤)Aに浸漬した。浸漬後に、乾燥させて、繊維処理剤が付着した熱融着性芯鞘型複合繊維を得た。繊維に対する油剤付着量は0.39質量%であった。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.
[Example 1]
(1) Manufacture of a fiber whose hydrophilicity is lowered by heat A heat-fusible, heat-fusible, core-sheath type composite fiber having a core part made of polypropylene resin and a sheath part made of polyethylene resin is described below. It was immersed in the fiber treatment agent (oil agent) A of the composition. After the immersion, drying was performed to obtain a heat-fusible core-sheath composite fiber to which a fiber treatment agent was adhered. The amount of the oil agent attached to the fiber was 0.39% by mass.
(繊維処理剤Aの組成)
・ポリオルガノシロキサン(前記(A)成分、信越シリコーン製のシリコーン「KM-903」):8.3質量%
 (シリコーン「KM-903」の組成)
   ・重量平均分子量が約50万のポリジメチルシロキサン:18質量%
   ・重量平均分子量が約2万のポリジメチルシロキサン:42質量%
   ・分散剤:5質量%
   ・水:35質量%
・アルキルリン酸エステルカリウム塩〔前記(B)成分、花王株式会社製、グリッパー4131の水酸化カリウム中和物〕:22.9質量%
・ジアルキルスルホサクシネートナトリウム塩〔前記(C)成分,花王株式会社製、ペレックスOT-P〕:9.2質量%
・アルキル(ステアリル)ベタイン〔前記(A)~(C)以外の成分、花王株式会社製、アンヒトール86B〕:13.8質量%
・ポリオキシエチレン(付加モル数:2) ステアリルアミド〔前記(A)~(C)以外の成分、川研ファインケミカルズ製、アミゾールSDE〕:27.5質量%
・ポリオキシエチレン、ポリオキシプロピレン、変性シリコーン〔前記(A)~(C)以外の成分、信越化学工業株式会社製、X-22-4515〕:18.3質量%
(Composition of fiber treatment agent A)
Polyorganosiloxane (component (A), silicone “KM-903” manufactured by Shin-Etsu Silicone): 8.3% by mass
(Composition of silicone “KM-903”)
-Polydimethylsiloxane having a weight average molecular weight of about 500,000: 18% by mass
-Polydimethylsiloxane having a weight average molecular weight of about 20,000: 42% by mass
・ Dispersant: 5% by mass
・ Water: 35% by mass
Alkyl phosphate potassium salt [the component (B), manufactured by Kao Corporation, neutralized potassium hydroxide of gripper 4131]: 22.9% by mass
Dialkylsulfosuccinate sodium salt [component (C), manufactured by Kao Corporation, Perex OT-P]: 9.2% by mass
Alkyl (stearyl) betaine [components other than the above (A) to (C), manufactured by Kao Corporation, Anhitol 86B]: 13.8% by mass
Polyoxyethylene (number of moles added: 2) stearylamide [components other than the above (A) to (C), manufactured by Kawaken Fine Chemicals, Amizole SDE]: 27.5% by mass
Polyoxyethylene, polyoxypropylene, modified silicone [components other than the above (A) to (C), manufactured by Shin-Etsu Chemical Co., Ltd., X-22-4515]: 18.3 mass%
 表1中、(A)成分の配合量は、上記の「KM-903」の組成のうち、シリコーンのみの配合量のことであり、「KM-903」全体の配合量ではない。すなわち、表1に示す繊維処理剤の各成分の配合割合は、KM-903中の分散剤及び水を除外して算出した値である。 In Table 1, the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” described above, not the blending amount of “KM-903” as a whole. That is, the blending ratio of each component of the fiber treatment agent shown in Table 1 is a value calculated by excluding the dispersant and water in KM-903.
(2)不織布の製造
 得られた繊維を用い、非熱伸長性繊維は用いずに、図2に示す方法により不織布を製造した。具体的な製造方法は次のとおりである。先ず、カード機を用いて形成したウエブにエンボス加工を施した。エンボス加工は、格子状のエンボス部が形成され且つエンボス部(圧縮部)の面積率が22%となるように行った。エンボス加工の加工温度は、110℃であった。次にエアスルー加工を行った。エアスルー加工は、エンボス加工におけるエンボス面側から熱風を吹き付ける熱処理を1回行った。エアスルー加工の熱処理温度は、136℃とした。
 得られた不織布は、図1(a)及び図1(b)に示すように、厚みの薄い部分(エンボス部)18とそれ以外の厚みの厚い部分19とを有し、片面が凸部119と凹部118とを有する起伏の大きい凹凸面10b、もう片面が、ほぼ平坦な平坦面10aとなっていた。
(2) Manufacture of nonwoven fabric Using the obtained fiber, the nonwoven fabric was manufactured by the method shown in FIG. 2 without using a non-heat-extensible fiber. A specific manufacturing method is as follows. First, the web formed using the card machine was embossed. The embossing was performed such that a grid-like embossed part was formed and the area ratio of the embossed part (compressed part) was 22%. The embossing processing temperature was 110 ° C. Next, air-through processing was performed. In the air-through process, heat treatment was performed once by blowing hot air from the embossed surface side in the embossing process. The heat treatment temperature for air-through processing was 136 ° C.
The obtained nonwoven fabric has a thin portion (embossed portion) 18 and a thick portion 19 other than that, as shown in FIGS. The concave and convex surface 10b having a large undulation and the other surface are a substantially flat surface 10a.
〔実施例2〕
 繊維処理剤A(油剤)の各成分の配合割合を、表1に記載の割合に変更した以外は実施例1と同様にして、実施例2の不織布を得た。
〔実施例3〕
 繊維処理剤A(油剤)の各成分の配合割合を、表1に記載の割合に変更した以外は実施例1と同様にして、実施例3の不織布を得た。
〔実施例4〕
 繊維処理剤A(油剤)の各成分の配合割合を、表1に記載の割合に変更した以外は実施例1と同様にして、実施例4の不織布を得た。
[Example 2]
A nonwoven fabric of Example 2 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
Example 3
A nonwoven fabric of Example 3 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
Example 4
A nonwoven fabric of Example 4 was obtained in the same manner as in Example 1 except that the blending ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1.
〔実施例5〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、芯部がポリエステル樹脂、鞘部がポリエチレン樹脂からなる非熱伸長性繊維のみを用いた以外は実施例1と同様にして、実施例5の不織布を得た。
〔実施例6〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、芯部がポリエステル樹脂、鞘部がポリエチレン樹脂からなる非熱伸長性繊維のみを用いた以外は実施例2と同様にして、実施例6の不織布を得た。
Example 5
Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 1, a nonwoven fabric of Example 5 was obtained.
Example 6
Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 2, a nonwoven fabric of Example 6 was obtained.
〔実施例7〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、芯部がポリエステル樹脂、鞘部がポリエチレン樹脂からなる非熱伸長性繊維のみを用いた以外は、実施例3と同様にして、実施例7の不織布を得た。
〔実施例8〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、芯部がポリエステル樹脂、鞘部がポリエチレン樹脂からなる非熱伸長性繊維のみを用いた以外は実施例4と同様にして、実施例8の不織布を得た。
Example 7
Implemented except that instead of heat-extensible heat-fusible core-sheath type composite fiber, only non-heat-stretchable fiber consisting of polyester resin in the core and polyethylene resin in the sheath was used as the heat-fusible fiber A nonwoven fabric of Example 7 was obtained in the same manner as Example 3.
Example 8
Example in which only a non-heat-extensible fiber having a core portion made of a polyester resin and a sheath portion made of a polyethylene resin was used as the heat-fusible fiber instead of the heat-extensible heat-fusible core-sheath type composite fiber. In the same manner as in Example 4, the nonwoven fabric of Example 8 was obtained.
〔実施例9〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、実施例1で用いた熱融着性芯鞘型複合繊維と、実施例5で用いた非熱伸長性繊維とを質量比で1:1で混綿したものを用いた。具体的には熱伸長性繊維と非熱伸長性繊維とに、繊維処理剤Aを浸漬させ、それぞれに1g当たりの付着量が同じになるように繊維処理剤Aを付着させた後、それらの繊維を混綿することで作製した。前記熱融着性繊維を用いた以外は実施例1と同様にして、実施例9の不織布を得た。
〔実施例10〕
 熱融着性繊維として、熱伸長性の熱融着性芯鞘型複合繊維に代えて、実施例1で用いた熱融着性芯鞘型複合繊維と、実施例5で用いた非熱伸長性繊維とを質量比で1:1で混綿したものを用いた。具体的には熱伸長性繊維と非熱伸長性繊維とに、繊維処理剤A(油剤)の各成分の含有割合を表1に記載の割合に変更したものを浸漬させ、それぞれに1g当たりの付着量が同じになるように当該繊維処理剤を付着させた後、それらの繊維を混綿することで作製した。前記熱融着性繊維を用いた以外は実施例1と同様にして、実施例10の不織布を得た。
Example 9
As the heat-fusible fiber, in place of the heat-extensible heat-fusible core-sheath type composite fiber, the heat-fusible core-sheath type composite fiber used in Example 1 and the non-heat-stretching used in Example 5 What was mixed with the active fiber at a mass ratio of 1: 1 was used. Specifically, the fiber treatment agent A is immersed in the heat-extensible fiber and the non-heat-extensible fiber, and the fiber treatment agent A is adhered so that the amount of adhesion per gram is the same. It was produced by blending fibers. A nonwoven fabric of Example 9 was obtained in the same manner as Example 1 except that the heat-fusible fiber was used.
Example 10
As the heat-fusible fiber, in place of the heat-extensible heat-fusible core-sheath type composite fiber, the heat-fusible core-sheath type composite fiber used in Example 1 and the non-heat-stretching used in Example 5 What was mixed with the active fiber at a mass ratio of 1: 1 was used. Specifically, the heat-extensible fibers and non-heat-extensible fibers were soaked with the content ratios of the components of the fiber treatment agent A (oil agent) changed to the ratios shown in Table 1, and each of them per 1 g. After attaching the said fiber treatment agent so that the adhesion amount might become the same, it produced by mixing those fibers. A nonwoven fabric of Example 10 was obtained in the same manner as Example 1 except that the heat-fusible fiber was used.
〔比較例1及び2〕
 繊維処理剤A(油剤)の各成分の含有割合を、表1に記載の割合に変更した以外は実施例1と同様にして、比較例1及び2の不織布をそれぞれ得た。具体的には、比較例1では(A)成分を、比較例2では(C)成分を含有しない繊維処理剤をそれぞれ用いた。
[Comparative Examples 1 and 2]
The nonwoven fabrics of Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the content ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratios shown in Table 1. Specifically, the fiber treatment agent that does not contain the component (A) in Comparative Example 1 and the component (C) in Comparative Example 2 was used.
〔比較例3及び4〕
 繊維処理剤A(油剤)の各成分の含有割合を、表1に記載の割合に変更した以外は実施例5と同様にして、比較例3及び4の不織布をそれぞれ得た。具体的には、比較例3では(A)成分を、比較例4では(C)成分を含有しない繊維処理剤をそれぞれ用いた。
[Comparative Examples 3 and 4]
The nonwoven fabrics of Comparative Examples 3 and 4 were obtained in the same manner as in Example 5 except that the content ratio of each component of the fiber treatment agent A (oil agent) was changed to the ratio shown in Table 1. Specifically, in Comparative Example 3, the component (A) was used, and in Comparative Example 4, the fiber treatment agent not containing the component (C) was used.
〔繊維処理剤の付着量の測定方法〕
 繊維処理剤の付着量は、迅速残脂抽出機を用いて測定した。繊維2gを測り、下部に小さな孔のあいた所定の容器に入れた。その後、フタで繊維を押さえることで、繊維を容器の下部に押し込み、そこへ10ccのエタノール/メタノール(1:1)混合の溶液を投入し、10分間静置した後にもう一度フタをのせて、強くおしつけることで繊維に含まれているエタノール/メタノール成分を絞り、秤量皿に液を入れた。秤量皿を熱することで溶媒を飛ばし、秤量皿の元の重さから、加熱後の重量を測ることで繊維処理剤の付着量を測定した。N=3測定し、その平均を油剤付着量とした。
[Method of measuring the amount of fiber treatment agent attached]
The adhesion amount of the fiber treatment agent was measured using a rapid residual oil extractor. 2 g of fiber was measured and placed in a predetermined container with a small hole at the bottom. After that, press the fiber with the lid to push the fiber into the lower part of the container, put 10cc ethanol / methanol (1: 1) mixed solution into it, let it stand for 10 minutes, put on the lid again, The ethanol / methanol component contained in the fiber was squeezed by pouring and the liquid was put into a weighing dish. The solvent was blown off by heating the weighing pan, and the amount of the fiber treatment agent adhered was measured by measuring the weight after heating from the original weight of the weighing pan. N = 3 was measured, and the average was defined as the oil adhesion amount.
〔評価〕
〔接触角〕
 実施例1~10及び比較例1~4で得られた不織布について、不織布中から取り出した繊維に対する水の接触角を測定した。それらの結果を表1に示した。実施例1~8及び比較例1~4で得られた不織布については、不織布中から取り出した繊維に対する水の接触角は、特開2010-168715号公報の段落〔0057〕に記載の方法、より具体的には前記の〔接触角の測定方法〕に記載の方法により測定した。
 また、実施例9及び10で得られた不織布については、各不織布の「凸部頂部P1」及び「裏面P2」から熱伸長性繊維及び非熱伸長性繊維をそれぞれ下記の方法で採取し、採取した各熱伸長性繊維及び各非熱伸長性繊維に対する水の接触角を同様の方法により測定した。
[Evaluation]
[Contact angle]
For the nonwoven fabrics obtained in Examples 1 to 10 and Comparative Examples 1 to 4, the contact angle of water with the fibers taken out from the nonwoven fabric was measured. The results are shown in Table 1. For the nonwoven fabrics obtained in Examples 1 to 8 and Comparative Examples 1 to 4, the contact angle of water with respect to the fibers taken out from the nonwoven fabric was determined by the method described in paragraph [0057] of JP2010-168715A. Specifically, it was measured by the method described in [Measuring method of contact angle].
Moreover, about the nonwoven fabric obtained in Example 9 and 10, the heat | fever extensible fiber and the non-heat extensible fiber were extract | collected by the following method from the "convex part top part P1" and "back surface P2" of each nonwoven fabric, respectively, and extract | collected The contact angle of water with respect to each heat-extensible fiber and each non-heat-extensible fiber was measured by the same method.
〔熱伸長性繊維及び非熱伸長性繊維の採取方法〕
 混綿された不織布中から、精密はさみとピンセットを用いて、不織布の最表層部分からそれぞれの繊維を繊維長1mmで裁断し、不織布から取り出した。
[Method of collecting heat-extensible fibers and non-heat-extensible fibers]
From the blended nonwoven fabric, each fiber was cut from the outermost layer portion of the nonwoven fabric with a fiber length of 1 mm using precision scissors and tweezers and taken out from the nonwoven fabric.
 表1中の「接触角」の欄の「凸部頂部P1」は、凹凸面10bの凸部119の頂部P1(厚みの厚い部分の頂部)、「裏面P2」は、平坦面10aにおける凸部の頂部P1に対応する部位P2における不織布中から取り出した繊維の蒸留水との接触角の測定結果である。また、実施例1,2及び比較例1の接触角の測定結果を、図8に示した。 In Table 1, the “convex portion top portion P1” in the “contact angle” column is the top portion P1 of the convex portion 119 of the uneven surface 10b (the top portion of the thick portion), and the “back surface P2” is the convex portion on the flat surface 10a. It is a measurement result of the contact angle with the distilled water of the fiber taken out from the nonwoven fabric in the site | part P2 corresponding to the top part P1. The contact angle measurement results of Examples 1 and 2 and Comparative Example 1 are shown in FIG.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
〔表面シート液残り量〕
 花王株式会社の市販の生理用ナプキン(商品名「ロリエさらさらクッション肌きれい吸収」)から表面シートを取り除き、その代わりに、実施例1~10及び比較例1~4の各不織布を積層し、その周囲を固定して評価用の生理用ナプキンを得た。各不織布は、裏面P2側を吸収体側に向けて配置した。
 前記生理用ナプキンの表面上に、内径1cmの透過孔を有するアクリル板を重ねて、該ナプキンに100Paの一定荷重を掛ける。斯かる荷重下において、該アクリル板の透過孔から脱繊維馬血6.0gを流し込む。前記馬血を流し込んでから60秒後にアクリル板を取り除き、次いで、該不織布の重量(W2)を測定し、予め測定しておいた、馬血を流し込む前の不織布の重量(W1)との差(W2-W1)を算出する。以上の操作を3回行い、3回の平均値を液残り量(mg)とする。液残り量は、装着者の肌がどの程度濡れるかの指標となるものであり、液残り量が少ないほど程、良い結果である。それらの結果を表1に示した。
[Remaining amount of surface sheet liquid]
The surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead. The sanitary napkin for evaluation was obtained by fixing the periphery. Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
On the surface of the sanitary napkin, an acrylic plate having a transmission hole with an inner diameter of 1 cm is overlapped, and a constant load of 100 Pa is applied to the napkin. Under such a load, 6.0 g of defibrinated horse blood is poured from the permeation hole of the acrylic plate. The acrylic plate is removed 60 seconds after pouring the horse blood, and then the weight (W2) of the nonwoven fabric is measured. The difference from the weight (W1) of the nonwoven fabric before pouring horse blood is measured in advance. (W2-W1) is calculated. The above operation is performed three times, and the average value of the three times is defined as the remaining liquid amount (mg). The liquid remaining amount is an index of how much the wearer's skin gets wet. The smaller the liquid remaining amount, the better the result. The results are shown in Table 1.
〔ウェットバック量〕
 花王株式会社の市販の生理用ナプキン(商品名「ロリエさらさらクッション肌きれい吸収」)から表面シートを取り除き、その代わりに、実施例1~10及び比較例1~4の各不織布を積層し、その周囲を固定して評価用の生理用ナプキンを得た。各不織布は、裏面P2側を吸収体側に向けて配置した。
 前記生理用ナプキンの表面上に、内径1cmの透過孔を有するアクリル板を重ねて、該ナプキンに100Paの一定荷重を掛ける。斯かる荷重下において、該アクリル板の透過孔から3分ごとに脱繊維馬血を3.0gずつ合計9.0g流し込む。前記馬血を流し込んでから300秒後にアクリル板を取り除き、次いで、ティッシュペーパーを前記不織布の表面上に重ね、更に、該ティッシュペーパーの上に重石を重ねて、該ナプキンに2000Paの荷重を掛ける。重石を重ねてから5秒後に該重石及びティッシュペーパーを取り除き、該ティッシュペーパーの重量(W4)を測定し、予め測定しておいた、前記不織布の表面上に重ねる前のティッシュペーパーの重量(W3)との差(W4-W3)を算出する。以上の操作を3回行い、3回の平均値を液戻り量(mg)とし、液戻り量が少ないほど高評価となる。それらの結果を表1に示した。
[Wetback amount]
The surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead. The sanitary napkin for evaluation was obtained by fixing the periphery. Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
On the surface of the sanitary napkin, an acrylic plate having a transmission hole with an inner diameter of 1 cm is overlapped, and a constant load of 100 Pa is applied to the napkin. Under such a load, a total of 9.0 g of defibrinated horse blood is poured every 3.0 minutes from the permeation hole of the acrylic plate. The acrylic plate is removed 300 seconds after pouring the horse blood, and then a tissue paper is placed on the surface of the nonwoven fabric, and further, a weight is placed on the tissue paper, and a load of 2000 Pa is applied to the napkin. After 5 seconds from the stacking of the weight stones, the weight stones and the tissue paper are removed, the weight of the tissue paper (W4) is measured, and the weight of the tissue paper before being stacked on the surface of the nonwoven fabric (W3 ) (W4−W3). The above operation is performed three times, and the average value of the three times is defined as a liquid return amount (mg). The smaller the liquid return amount, the higher the evaluation. The results are shown in Table 1.
〔液流れ距離〕
 花王株式会社の市販の生理用ナプキン(商品名「ロリエさらさらクッション肌きれい吸収」)から表面シートを取り除き、その代わりに、実施例1~10及び比較例1~4の各不織布を積層し、その周囲を固定して評価用の生理用ナプキンを得た。各不織布は、裏面P2側を吸収体側に向けて配置した。
 試験装置は、ナプキンの載置面が水平面に対して45°傾斜している載置部を有している。この載置部に、表面シートが上方を向くようにナプキンを載置する。試験液として、着色させた蒸留水を1g/10secの速度でナプキンに滴下させる。初めに不織布が濡れた地点から試験液が吸収体に初めて吸収された地点までの距離を測定する。以上の操作を3回行い、3回の平均値を液流れ距離(mm)とする。液流れ距離は、液が生理用ナプキンに吸収されずに装着者の肌にふれてしまう量の指標となるものであり、液流れ距離が短いほど高評価となる。
[Liquid flow distance]
The surface sheet is removed from a commercially available sanitary napkin (trade name “Laurier Sarah Cushion Skin Clean Absorption”) of Kao Corporation, and each of the nonwoven fabrics of Examples 1 to 10 and Comparative Examples 1 to 4 is laminated instead. The sanitary napkin for evaluation was obtained by fixing the periphery. Each nonwoven fabric was arranged with the back surface P2 side facing the absorber side.
The test apparatus has a mounting portion in which the mounting surface of the napkin is inclined 45 ° with respect to the horizontal plane. A napkin is placed on the placement portion so that the topsheet faces upward. As a test solution, colored distilled water is dropped onto the napkin at a rate of 1 g / 10 sec. First, the distance from the point where the nonwoven fabric gets wet to the point where the test liquid is first absorbed by the absorbent is measured. The above operation is performed three times, and the average of the three times is defined as the liquid flow distance (mm). The liquid flow distance is an index of the amount that the liquid touches the wearer's skin without being absorbed by the sanitary napkin. The shorter the liquid flow distance, the higher the evaluation.
〔不織布の嵩回復性〕
 不織布の嵩回復性を下記の方法で評価し、結果を表1に示した。
 不織布の厚みの測定方法については、WO2010074207A1に記載の方法で行った。嵩回復性の評価については、外径85mmの紙管に巻き長さ2700mでロール状に巻き回し、その後常温で2週間保管し、ロール化した不織布を、150m/minの搬送速度で繰り出し、処理温度115℃処理時間0.2秒、風速2.8m/秒で該不織布に熱風を吹き付けることにより不織布厚みを回復させる。不織布の回復性は、不織布をロール状に巻きつける前の不織布の凸部の厚み(保存前厚み)をCとし、熱風吹き付け後の不織布の凸部の厚み(回復後厚み)をDとしたとき、以下の式(2)で表される。熱風吹き付け後の不織布厚みの測定は、熱風吹き付けから1分~1時間後に測定する。不織布の厚みは、先に述べた方法で測定する。
  嵩回復性(%)=(D/C)×100 (2)
 式(2)で算出した嵩回復性が60%未満の場合をC、60%以上~70%未満の場合をB、70%以上~80%未満の場合をA、80%以上の場合をSと評価する。嵩回復性の値が高いほど高評価となる。
[Bulk recoverability of nonwoven fabric]
The bulk recoverability of the nonwoven fabric was evaluated by the following method, and the results are shown in Table 1.
About the measuring method of the thickness of a nonwoven fabric, it carried out by the method as described in WO20110074207A1. For evaluation of the bulk recovery property, it was wound around a paper tube having an outer diameter of 85 mm in a roll shape with a length of 2700 m, then stored at room temperature for 2 weeks, and the rolled nonwoven fabric was fed out at a conveyance speed of 150 m / min and processed. The nonwoven fabric thickness is recovered by blowing hot air onto the nonwoven fabric at a temperature of 115 ° C. for a treatment time of 0.2 seconds and a wind speed of 2.8 m / second. The recoverability of the nonwoven fabric is when the thickness of the convex portion of the nonwoven fabric before wrapping the nonwoven fabric in a roll shape (thickness before storage) is C, and the thickness of the convex portion of the nonwoven fabric after blowing hot air (thickness after recovery) is D. Is represented by the following formula (2). The thickness of the nonwoven fabric after the hot air is sprayed is measured 1 minute to 1 hour after the hot air is sprayed. The thickness of the nonwoven fabric is measured by the method described above.
Bulk recoverability (%) = (D / C) × 100 (2)
C when the bulk recovery calculated by the formula (2) is less than 60%, B when it is 60% or more and less than 70%, A when 70% or more and less than 80%, and S when it is 80% or more. And evaluate. The higher the bulk recovery value, the higher the evaluation.
 表1及び図3に示す結果から、前記(A)~(C)成分を配合した実施例1~10においては、前記(A)成分を配合していない比較例1,3、及び前記(C)成分を含有していない比較例2,4に比して、凸部頂部P1と裏面P2との間の親水度の差が大きくなっていることが判る。また、表1に示す液残り量の評価結果から、実施例1~10で得られた大きな親水勾配を有する不織布を、表面シートに用いることによって、比較例1,2で得られた親水勾配が相対的に小さい不織布を用いた場合に比して、表面シートの表面の液残りやウェットバック量が少なくなり、吸収性が向上したことが判る。
 表1に示す結果から、実施例1~10においては、前記(A)成分の含有量が少ないものの液流れ距離が短くなっていることが判る。
From the results shown in Table 1 and FIG. 3, in Examples 1 to 10 containing the components (A) to (C), Comparative Examples 1 and 3 not containing the component (A) and (C ) It can be seen that the difference in hydrophilicity between the convex portion top portion P1 and the back surface P2 is larger than in Comparative Examples 2 and 4 which do not contain the component. Further, from the evaluation results of the remaining amount of liquid shown in Table 1, the hydrophilic gradient obtained in Comparative Examples 1 and 2 was obtained by using the nonwoven fabric having a large hydrophilic gradient obtained in Examples 1 to 10 for the surface sheet. As compared with the case of using a relatively small non-woven fabric, it can be seen that the liquid residue and the wetback amount on the surface of the surface sheet are reduced, and the absorbability is improved.
From the results shown in Table 1, it can be seen that in Examples 1 to 10, although the content of the component (A) is small, the liquid flow distance is short.
 熱融着性繊維として非熱伸長性繊維を用いた実施例5,6は、表1に示す結果から明かなとおり、肌触りが良好なものとなった。また、表面の液残り量に関しても、実施例1,2に比して大きくなるが、比較例3,4に比しては小さくなり、十分満足できる値となった。
 熱融着性繊維として、熱伸長性繊維と非熱伸長性繊維とを混綿したものを用いた実施例9,10は、表1に示す結果から明かなとおり、肌触りが良好で、かつ表面の液残りが少なくなった。
As is clear from the results shown in Table 1, Examples 5 and 6 using non-heat-extensible fibers as the heat-fusible fibers had good touch. Further, the amount of liquid remaining on the surface was larger than that of Examples 1 and 2, but smaller than that of Comparative Examples 3 and 4, and was sufficiently satisfactory.
Examples 9 and 10 using a mixture of heat-extensible fibers and non-heat-extensible fibers as the heat-fusible fibers, as is clear from the results shown in Table 1, have a good touch and have a surface The liquid residue has decreased.
  〔実施例11ないし14〕
 図7に示す製造装置100を用いて、図3に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第2ウエブ製造部120に供給する第2ウエブ122の原料繊維を以下の表2に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。このようにして、同表に示す坪量を有する2層構造のエアスルー不織布を得た。
[Examples 11 to 14]
The air through nonwoven fabric of the form shown in FIG. 3 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 2 below shows the raw material fibers of the first web 111 supplied to the first web manufacturing unit 110 of the manufacturing apparatus 100 and the raw material fibers of the second web 122 supplied to the second web manufacturing unit 120. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Thus, an air-through nonwoven fabric having a two-layer structure having the basis weight shown in the table was obtained.
 表2に示す第1ウエブの熱融着性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は3.3dtexで、繊維長は51mmであった。また、同表に示す第2ウエブの熱融着性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は2.4dtexで、繊維長は51mmであった。また、同表に示す熱伸長性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は4.2dtexで、繊維長は44mmであった。芯の樹脂の融点+10℃における熱伸長率は9.5%であった。 The heat-fusible fiber of the first web shown in Table 2 is a concentric core-sheath type composite fiber in which the core is polyethylene terephthalate and the sheath is polyethylene, and the mass ratio of the core to the sheath is the core: sheath = The fineness was 3.3 dtex and the fiber length was 51 mm. Further, the heat-fusible fiber of the second web shown in the same table is a concentric core-sheath type composite fiber in which the core is polyethylene terephthalate and the sheath is polyethylene, and the mass ratio of the core to the sheath is the core: Sheath = 50: 50, the fineness was 2.4 dtex, and the fiber length was 51 mm. The heat-extensible fiber shown in the table is a concentric core-sheath type composite fiber whose core is polyethylene terephthalate and whose sheath is polyethylene, and the mass ratio of the core to the sheath is core: sheath = 50: 50. The fineness was 4.2 dtex and the fiber length was 44 mm. The thermal expansion ratio of the core resin at the melting point + 10 ° C. was 9.5%.
 表2に示す繊維処理剤は、以下の表6に示すとおりである。なお表2中、成分(A)の配合量は、表6に示す成分(A)の「KM-903」の組成のうち、シリコーンのみの配合量のことであり、「KM-903」全体の配合量ではない(以下の表3ないし表5についても同様である。)。 The fiber treatment agents shown in Table 2 are as shown in Table 6 below. In Table 2, the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” of component (A) shown in Table 6, and the total amount of “KM-903” It is not a blending amount (the same applies to Tables 3 to 5 below).
  〔実施例15及び16〕
 図7に示す製造装置100を用いて、図4に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第1ウエブ製造部110に供給する第2ウエブ122の原料繊維を以下の表3に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。同表に示す繊維及び繊維処理剤は、前述の実施例1ないし4と同じものである。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。これ以外は実施例1と同様にして、同表に示す坪量を有する2層構造のエアスルー不織布を得た。
Examples 15 and 16
The air through nonwoven fabric of the form shown in FIG. 4 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 3 below shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the first web manufacturing section 110. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 1 to 4 described above. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 1, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table | surface.
  〔実施例17〕
 図7に示す製造装置100を用いて、図5に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第1ウエブ製造部110に供給する第2ウエブ122の原料繊維を以下の表4に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。同表に示す繊維及び繊維処理剤は、前述の実施例1ないし4と同じものである。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。これ以外は実施例1と同様にして、同表に示す坪量を有する2層構造のエアスルー不織布を得た。
Example 17
The air through nonwoven fabric of the form shown in FIG. 5 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 4 below shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the first web manufacturing section 110. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 1 to 4 described above. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 1, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table | surface.
  〔比較例5及び6〕
 図7に示す製造装置100を用いて、図9に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第2ウエブ製造部120に供給する第2ウエブ122の原料繊維を以下の表5に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。同表に示す繊維及び繊維処理剤は、前述の実施例11ないし14と同じものである。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。これ以外は実施例1と同様にして、同表に示す坪量を有し、第1層10及び第2層20の2層構造のエアスルー不織布を得た。
[Comparative Examples 5 and 6]
The air through nonwoven fabric of the form shown in FIG. 9 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 5 below shows the raw material fibers of the first web 111 supplied to the first web manufacturing unit 110 of the manufacturing apparatus 100 and the raw material fibers of the second web 122 supplied to the second web manufacturing unit 120. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 11 to 14 described above. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 1, and had the basic weight shown to the same table | surface, and obtained the air through nonwoven fabric of the 2 layer structure of the 1st layer 10 and the 2nd layer 20.
  〔実施例18ないし21〕
 図7に示す製造装置100を用いて、図6に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第2ウエブ製造部120に供給する第2ウエブ122の原料繊維を以下の表6に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。このようにして、同表に示す坪量を有する2層構造のエアスルー不織布を得た。
[Examples 18 to 21]
The air through nonwoven fabric of the form shown in FIG. 6 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 6 below shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the second web manufacturing section 120. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Thus, an air-through nonwoven fabric having a two-layer structure having the basis weight shown in the table was obtained.
 表6に示す第1ウエブの熱融着性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は3.3dtexで、繊維長は51mmであった。また、同表に示す第2ウエブの熱融着性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は2.4dtexで、繊維長は51mmであった。また、同表に示す熱伸長性繊維は、芯がポリエチレンテレフタレートであり、鞘がポリエチレンである同心タイプの芯鞘型複合繊維であり、芯と鞘との質量比は芯:鞘=50:50であり、繊度は3.3dtexで、繊維長は44mmであった。芯の樹脂の融点+10℃における熱伸長率は9.5%であった。 The heat-fusible fiber of the first web shown in Table 6 is a concentric core-sheath type composite fiber in which the core is polyethylene terephthalate and the sheath is polyethylene, and the mass ratio of the core to the sheath is the core: sheath = The fineness was 3.3 dtex and the fiber length was 51 mm. Further, the heat-fusible fiber of the second web shown in the same table is a concentric core-sheath type composite fiber in which the core is polyethylene terephthalate and the sheath is polyethylene, and the mass ratio of the core to the sheath is the core: Sheath = 50: 50, the fineness was 2.4 dtex, and the fiber length was 51 mm. The heat-extensible fiber shown in the table is a concentric core-sheath type composite fiber whose core is polyethylene terephthalate and whose sheath is polyethylene, and the mass ratio of the core to the sheath is core: sheath = 50: 50. The fineness was 3.3 dtex, and the fiber length was 44 mm. The thermal expansion ratio of the core resin at the melting point + 10 ° C. was 9.5%.
 表6に示す繊維処理剤は、以下の表7に示すとおりである。なお表6中、成分(A)の配合量は、表7に示す成分(A)の「KM-903」の組成のうち、シリコーンのみの配合量のことであり、「KM-903」全体の配合量ではない。 The fiber treatment agents shown in Table 6 are as shown in Table 7 below. In Table 6, the blending amount of component (A) is the blending amount of silicone alone in the composition of “KM-903” of component (A) shown in Table 7, and the total amount of “KM-903” It is not a compounding amount.
  〔比較例7及び8〕
 図7に示す製造装置100を用いて、図6に示す形態のエアスルー不織布を製造した。ただしエンボス部130によるエンボス加工は行わなかった。製造装置100の第1ウエブ製造部110に供給する第1ウエブ111の原料繊維及び第2ウエブ製造部120に供給する第2ウエブ122の原料繊維を以下の表6に示す。同表には、各原料繊維に対して施した繊維処理剤の組成も記載されている。同表に示す繊維及び繊維処理剤は、前述の実施例18ないし21と同じものである。繊維処理剤の各成分の含有割合を、表6に記載の割合に変更した以外は実施例18と同様にして、比較例7及び8の不織布をそれぞれ得た。具体的には、比較例7では(A)成分を、比較例8では(C)成分を含有しない繊維処理剤をそれぞれ用いた。エアスルー処理部における熱風の温度は136℃、風速は0.8m/secに設定した。これ以外は実施例18と同様にして、同表に示す坪量を有する2層構造のエアスルー不織布を得た。
[Comparative Examples 7 and 8]
The air through nonwoven fabric of the form shown in FIG. 6 was manufactured using the manufacturing apparatus 100 shown in FIG. However, embossing by the embossed portion 130 was not performed. Table 6 below shows the raw fibers of the first web 111 supplied to the first web manufacturing section 110 of the manufacturing apparatus 100 and the raw fibers of the second web 122 supplied to the second web manufacturing section 120. The table also describes the composition of the fiber treatment agent applied to each raw fiber. The fibers and fiber treatment agents shown in the table are the same as those in Examples 18 to 21 described above. Nonwoven fabrics of Comparative Examples 7 and 8 were obtained in the same manner as in Example 18 except that the content ratio of each component of the fiber treatment agent was changed to the ratio shown in Table 6. Specifically, the fiber treatment agent not containing the component (A) in Comparative Example 7 and the component (C) in Comparative Example 8 was used. The temperature of hot air in the air-through treatment section was set to 136 ° C., and the wind speed was set to 0.8 m / sec. Except this, it carried out similarly to Example 18, and obtained the air through nonwoven fabric of the 2 layer structure which has the basic weight shown to the same table | surface.
  〔評価〕
 評価は、吸収性物品の一例として乳幼児用おむつ(花王株式会社製:メリーズさらさらエアスルー(登録商標)Mサイズ2013年製)から表面シートを取り除き、その代わりに不織布の試験体(以下、不織布試験体という)を用い、その周囲を固定して得た評価用の乳幼児用おむつを用いて行った。このようにして得られたおむつについて、以下の方法で表面シート上での液残り量、及び表面シート上での液流れ距離を以下の方法で測定した。実施例17及び比較例5,6については、これらの評価に加えて、液戻り量、及び液吸収量を以下の方法で測定した。実施例18ないし21及び比較例7、8については、表面シート上での液残り量及び表面シート上での液流れ距離の評価に加えて、液戻り量、及び液吸収量を以下の方法で測定した。これらの結果を、以下の表2ないし表6に示す。
[Evaluation]
As an example of the absorbent article, the diaper for infants (made by Kao Corporation: Mary's Sarasara Air-Through (registered trademark) M size manufactured in 2013) was removed from the surface sheet, and a non-woven fabric specimen (hereinafter referred to as a nonwoven fabric specimen) was used instead. And using a baby diaper for evaluation obtained by fixing the periphery. About the diaper obtained in this way, the liquid remaining amount on the top sheet and the liquid flow distance on the top sheet were measured by the following method. For Example 17 and Comparative Examples 5 and 6, in addition to these evaluations, the liquid return amount and the liquid absorption amount were measured by the following methods. For Examples 18 to 21 and Comparative Examples 7 and 8, in addition to the evaluation of the remaining liquid amount on the top sheet and the liquid flow distance on the top sheet, the liquid return amount and the liquid absorption amount were determined by the following methods. It was measured. These results are shown in Tables 2 to 6 below.
  〔表面シート上での液残り量〕
 おむつを平面状に拡げ、おむつの吸収性コアを覆っているコアラップシートの長手方向の腹側部分の先端から155mmの位置に、注入ポンプを用いて5g/秒の速度で人工尿を40g注入して吸収させ、10分間放置し、更に人工尿40gを注入して吸収させた。斯かる人工尿の注入操作を4回繰り返し、合計160gの人工尿をおむつに吸収させた。注入完了から10分静置した後に、注入点を中心に10cm×10cmの表面シートを剥がし、その質量(W2)を測定する。その後、その表面シートを、乾燥機を用いて105℃で、1時間乾燥させて、その質量(W1)を測定し、次式のようにして、液残り量を算出した。
液残り量(g)=160g注入後の表面材の質量(W2)-乾燥させた表面材の質量(W1)
 人工尿の組成は次の通りである。尿素1.94質量%、塩化ナトリウム0.7954質量%、硫酸マグネシウム(七水和物)0.11058質量%、塩化カルシウム(二水和物)0.06208質量%、硫酸カリウム0.19788質量%、ポリオキシエチレンラウリルエーテル0.0035質量%及びイオン交換水(残量)。 
[Liquid remaining amount on top sheet]
40g of artificial urine is injected at a rate of 5g / sec using an infusion pump at a position of 155mm from the tip of the ventral portion in the longitudinal direction of the core wrap sheet covering the absorbent core of the diaper. Then, it was allowed to stand for 10 minutes, and then 40 g of artificial urine was injected and absorbed. Such artificial urine injection operation was repeated four times, and a total of 160 g of artificial urine was absorbed in the diaper. After standing for 10 minutes from the completion of the injection, the 10 cm × 10 cm surface sheet is peeled off around the injection point, and the mass (W2) is measured. Then, the surface sheet was dried at 105 ° C. for 1 hour using a dryer, the mass (W1) was measured, and the remaining liquid amount was calculated according to the following formula.
Liquid remaining amount (g) = 160 g of surface material after injection (W2) −mass of dried surface material (W1)
The composition of artificial urine is as follows. 1.94% by mass of urea, 0.7954% by mass of sodium chloride, 0.11058% by mass of magnesium sulfate (septahydrate), 0.06208% by mass of calcium chloride (dihydrate), 0.19788% by mass of potassium sulfate , Polyoxyethylene lauryl ether 0.0035 mass% and ion-exchanged water (remaining amount).
  〔表面シート上での液流れ距離〕
 傾斜角度45°の台の平滑な表面上におむつを、表面シート側を上面にし、かつ腹側を下にして固定する。次いで、この使い捨ておむつに対して、腹側端部から長手方向260mm、幅方向中央の位置に赤色2号で着色した生理食塩水(イオン交換水を用いた0.9%食塩水)40gを注入ポンプを用いて注入速度5g/秒で注入する。注入直後に生理食塩水が表面シート上を流れた最も長い距離(mm)を測定し、これを液流れ距離とする。
[Liquid flow distance on top sheet]
A diaper is fixed on a smooth surface of a table with an inclination angle of 45 ° with the top sheet side facing up and the ventral side facing down. Then, 40 g of physiological saline (0.9% saline using ion-exchanged water) colored with red No. 2 was injected into the disposable diaper at a position of 260 mm in the longitudinal direction from the abdominal end and in the center in the width direction. Inject using a pump at an infusion rate of 5 g / sec. Immediately after injection, the longest distance (mm) in which physiological saline has flowed on the top sheet is measured, and this is defined as the liquid flow distance.
  〔液戻り量〕
 おむつを平面状に拡げ、表面シート上に、円筒状の注入部の付いたアクリル板をのせ、更にそのアクリル板上に錘をのせ、吸収体部分に対して2kPaの荷重を加えた。アクリル板に設けられた注入部は、内径36mmの円筒(高さ53mm)状をなし、アクリル板には、長手方向の1/3の部分、幅方向の中心軸に、該円筒状注入部の中心軸線が一致し、該円筒状注入部の内部とアクリル板の表面シート対向面との間を連通する内径36mmの貫通孔が形成されている。おむつの吸収性コアを覆っているコアラップシートの長手方向の腹側部分の先端から155mmの位置にアクリル板の円筒状注入部の中心軸が来るように配置し、人工尿40gを注入して吸収させ、10分間放置し、更に人工尿40gを注入して吸収させた。斯かる人工尿の注入操作を4回繰り返し、合計160gの人工尿をおむつに吸収させた。注入完了から10分静置した後に、上述の円筒および圧力を取り除いた。次いで、おむつにおける人工尿の注入点を中心としてアドバンテック社製のろ紙No.5C(100mm×100mm,質量測定W3)を16枚、更にその上に3.5kPaの圧力がかかるように荷重をかけた。2分経過後荷重を取り除き、人工尿を吸収したろ紙の質量(W4)を測定し、次式のようにして、液戻り量を算出した。
  液戻り量(g)=加圧後のろ紙の質量(W4)-最初のろ紙の質量(W3)
[Liquid return amount]
The diaper was spread in a flat shape, an acrylic plate with a cylindrical injection portion was placed on the top sheet, a weight was placed on the acrylic plate, and a load of 2 kPa was applied to the absorber portion. The injection part provided in the acrylic plate has a cylindrical shape (height 53 mm) having an inner diameter of 36 mm. The acrylic plate has a cylindrical portion of 1/3 in the longitudinal direction and the central axis in the width direction. A through hole having an inner diameter of 36 mm is formed so that the central axes coincide with each other and communicates between the inside of the cylindrical injection portion and the surface sheet facing surface of the acrylic plate. The core wrap sheet covering the diaper's absorbent core is placed so that the central axis of the cylindrical injection portion of the acrylic plate comes to the position of 155 mm from the tip of the ventral portion in the longitudinal direction of the core wrap sheet, and 40 g of artificial urine is injected. Absorbed and allowed to stand for 10 minutes, and further injected 40 g of artificial urine for absorption. Such artificial urine injection operation was repeated four times, and a total of 160 g of artificial urine was absorbed in the diaper. After standing for 10 minutes from the completion of the injection, the above cylinder and pressure were removed. Next, filter paper No. manufactured by Advantech Co., Ltd., centering on the injection point of artificial urine in the diaper. A load was applied so that 16 pieces of 5C (100 mm × 100 mm, mass measurement W3) were applied, and a pressure of 3.5 kPa was further applied thereon. After the elapse of 2 minutes, the load was removed, the mass (W4) of the filter paper that absorbed artificial urine was measured, and the liquid return amount was calculated according to the following equation.
Liquid return amount (g) = mass of filter paper after pressurization (W4) −mass of first filter paper (W3)
  〔液吸収量〕
 作製したおむつの質量(W5)を測定する。次に、傾斜角度20°の台の平滑な表面上におむつを、表面シート側を上面にし、かつ腹側を下にして固定する。この状態で、おむつの吸収性コアを覆っているコアラップシートの長手方向の腹側部分の先端から110mmの位置に注入ポンプを用いて5g/秒の速度で人工尿を40g注入して吸収させ、5分間放置し、更に人工尿40gを注入した。斯かる人工尿の注入操作を繰り返し行い、おむつの下方側の端部から漏れ出したら注入を止め、その時のおむつの質量(W6)を測定し、次式のようにして、液吸収量を算出した。
  液吸収量(g)=吸収後のおむつの質量(W6)-吸収前のおむつの質量(W5)
[Liquid absorption]
The mass (W5) of the produced diaper is measured. Next, a diaper is fixed on a smooth surface of a table having an inclination angle of 20 ° with the top sheet side facing up and the abdomen side facing down. In this state, 40 g of artificial urine is injected and absorbed at a rate of 5 g / sec at a position 110 mm from the distal end of the longitudinal side of the core wrap sheet covering the absorbent core of the diaper using an infusion pump. The mixture was left for 5 minutes, and 40 g of artificial urine was further injected. Repeat the injection of artificial urine, stop the injection when it leaks from the lower end of the diaper, measure the mass (W6) of the diaper at that time, and calculate the amount of liquid absorption using the following formula did.
Liquid absorption (g) = Mass of diaper after absorption (W6)-Mass of diaper before absorption (W5)
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表2ないし表5に示す結果から明かなとおり、本発明の不織布、特にエアスルー不織布NW1を表面シートとして用いた吸収性物品は、表面を伝って液が流れることが効果的に防止され、表面に液が残りにくいことが判る。特に実施例17のエアスルー不織布を表面シートとして用いた場合には、これらの効果に加えて、液戻り量が少なく、かつ液吸収量が多くなることが判る。 As is clear from the results shown in Tables 2 to 5, the absorbent article using the nonwoven fabric of the present invention, particularly the air-through nonwoven fabric NW1, as a surface sheet is effectively prevented from flowing liquid along the surface. It can be seen that the liquid is difficult to remain. In particular, when the air-through nonwoven fabric of Example 17 is used as the top sheet, it can be seen that in addition to these effects, the liquid return amount is small and the liquid absorption amount is large.
 表6に示す結果から明らかなとおり、本発明の不織布、特にエアスルー不織布NW2を表面シートとして用いた吸収性物品は、表面を伝って液が流れることが効果的に防止され、表面に液が残りにくいことが判る。また、液戻り量が少ないことも判る。 As is apparent from the results shown in Table 6, the absorbent article using the nonwoven fabric of the present invention, in particular, the air-through nonwoven fabric NW2 as the surface sheet, is effectively prevented from flowing liquid along the surface, and the liquid remains on the surface. It turns out to be difficult. It can also be seen that the amount of liquid return is small.
 本発明の不織布は、熱により親水性が低下する繊維を含むウエブ又は不織布に熱処理を施すことにより容易に得られ、所望の部分の親水性が低下している。
 本発明の不織布は、部分的に親水性を低下させた部分を有し、その特性を活かして種々の用途に活用することができる。
 本発明の不織布用繊維処理剤及び不織布の製造方法によれば、親水性を低下させた部分を有する不織布を効率的に製造することができる。
 本発明の不織布の親水性を制御する方法によれば、わざわざ繊維を混ぜ合わせたり、2層にしたり、不織布化したあとに別工程での親水化処理を行わなくても、熱処理を施す部位を変えたり、熱風の通過量を制御するだけで、不織布の所望の部分の親水性を低下させることができる。
The nonwoven fabric of the present invention is easily obtained by heat-treating a web or nonwoven fabric containing fibers whose hydrophilicity is lowered by heat, and the hydrophilicity of a desired portion is lowered.
The nonwoven fabric of the present invention has a part in which the hydrophilicity is partially reduced, and can be utilized for various applications by utilizing the characteristics.
According to the nonwoven fabric fiber treatment agent and the nonwoven fabric production method of the present invention, a nonwoven fabric having a portion with reduced hydrophilicity can be efficiently produced.
According to the method for controlling the hydrophilicity of the nonwoven fabric of the present invention, the part to be subjected to heat treatment can be prepared without mixing the fibers, making two layers, or performing the hydrophilic treatment in a separate process after making the nonwoven fabric. The hydrophilicity of the desired part of a nonwoven fabric can be reduced only by changing or controlling the passage of hot air.
 本発明の不織布によれば、不織布の親水性を制御することにより、不織布の液残りを低減化することができる。例えば、本発明の不織布を吸収性物品の表面シートとして用いた場合に、一度吸収された体液が着用者の肌と当接している表面側へ逆流することや、不織布表面上を体液が流れることを防止することができる。よって、本発明の不織布は、例えば吸収性物品の表面シートとして用いた場合に、該表面シートとして要求される液残り量低減や液流れ量低減といった吸収性能を満足するものとなる。 According to the nonwoven fabric of the present invention, the liquid residue of the nonwoven fabric can be reduced by controlling the hydrophilicity of the nonwoven fabric. For example, when the nonwoven fabric of the present invention is used as a surface sheet of an absorbent article, the body fluid once absorbed may flow back to the surface side in contact with the skin of the wearer, or the body fluid may flow on the nonwoven fabric surface. Can be prevented. Therefore, when the nonwoven fabric of the present invention is used as, for example, a surface sheet of an absorbent article, the nonwoven fabric satisfies the absorption performance required for the surface sheet, such as reduction of the remaining liquid amount and reduction of the liquid flow amount.
 本発明によれば、表面を伝って液が流れることが効果的に防止され、表面に液が残りにくい不織布が得られる。 According to the present invention, it is possible to effectively prevent the liquid from flowing along the surface and to obtain a nonwoven fabric in which the liquid hardly remains on the surface.
 本発明によれば、表面を伝って液が流れることが効果的に防止され、表面に液が残りにくい不織布が得られる。また、一旦透過した液の逆戻りが起こりにくい不織布が得られる。
 
According to the present invention, it is possible to effectively prevent the liquid from flowing along the surface and to obtain a nonwoven fabric in which the liquid hardly remains on the surface. Moreover, a nonwoven fabric in which the liquid that has once permeated does not easily reverse is obtained.

Claims (31)

  1.  繊維処理剤が付着した熱融着性繊維を用いた不織布であって、前記繊維処理剤が、下記の(A)成分、(B)成分及び(C)成分を含有する不織布。
    (A)ポリオルガノシロキサン、
    (B)アルキルリン酸エステル、
    (C)下記の一般式(1)で表わされるアニオン界面活性剤
    Figure JPOXMLDOC01-appb-C000001
     (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
    A nonwoven fabric using heat-fusible fibers to which a fiber treatment agent is attached, wherein the fiber treatment agent comprises the following components (A), (B) and (C).
    (A) polyorganosiloxane,
    (B) an alkyl phosphate ester,
    (C) Anionic surfactant represented by the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
  2.  前記ポリオルガノシロキサンが繊維処理剤の全質量に対して1質量%以上30質量%以下の割合で含まれている請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein the polyorganosiloxane is contained in a proportion of 1% by mass to 30% by mass with respect to the total mass of the fiber treatment agent.
  3.  前記不織布の第一面と、これとは反対側の第二面とを有し、第一面側から第二面側にかけて親水度が高くなっている請求項1又は2に記載の不織布。 The nonwoven fabric according to claim 1 or 2, wherein the nonwoven fabric has a first surface of the nonwoven fabric and a second surface opposite to the first surface, and the hydrophilicity increases from the first surface side to the second surface side.
  4.  前記熱融着性繊維が熱によってその長さが伸びる熱伸長性繊維である請求項1~3の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 3, wherein the heat-fusible fiber is a heat-extensible fiber whose length is extended by heat.
  5.  前記不織布が凹凸形状を有し、凸部の頂部から底部にかけて親水度が高くなっている請求項1~4の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 4, wherein the nonwoven fabric has a concavo-convex shape, and the hydrophilicity increases from the top to the bottom of the convex portion.
  6.  前記凸部の頂部の接触角と前記底部の接触角との差が、2.5度以上10度以下である、請求項5に記載の不織布。 The nonwoven fabric according to claim 5, wherein a difference between a contact angle of a top portion of the convex portion and a contact angle of the bottom portion is 2.5 degrees or more and 10 degrees or less.
  7.  エンボス加工により形成された厚みの薄い部分と、それ以外の厚みの厚い部分とを有し、前記厚みの薄い部分又はその近傍部が親水性であり、前記厚みの厚い部分の頂部は、前記厚みの薄い部分又はその近傍部よりも親水度が低くなっている請求項1ないし6の何れか1項に記載の不織布。 It has a thin part formed by embossing and a thick part other than that, the thin part or its vicinity is hydrophilic, and the top part of the thick part is the thickness The nonwoven fabric of any one of Claims 1 thru | or 6 whose hydrophilicity is lower than the thin part or its vicinity part.
  8.  前記不織布がエアスルー不織布であり、
     第1層とこれに隣接する第2層とを有し、第1層及び第2層のうちの少なくとも一方に前記繊維処理剤が付着している前記熱融着性繊維が含まれており、
     第1層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第2層から遠い側の部位を第1層第1部位とし、第2層に近い側の部位を第1層第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層との親水度を比較すると、下記の(11)及び(12)の関係を満たす請求項1ないし7の何れか1項に記載の不織布。
    (11)第1層第1部位よりも、第1層第2部位の方が親水度が高い。
    (12)第1層第2部位よりも、第2層におけるいずれかの部位の方が親水度が高い。
    The nonwoven fabric is an air-through nonwoven fabric,
    The heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
    The first layer is virtually divided into two in the thickness direction, and of the two parts divided into two, the part far from the second layer is the first layer first part, and the side close to the second layer When the first layer second part is compared with the first layer first part, the first layer second part, and the second layer, the following (11) and (12) The nonwoven fabric according to any one of claims 1 to 7, which satisfies the relationship.
    (11) The first layer second portion has higher hydrophilicity than the first layer first portion.
    (12) The hydrophilicity of any part of the second layer is higher than that of the second part of the first layer.
  9.  第2層の親水度が、該第2層のいずれの部位においても同じになっている請求項8に記載の不織布。 The nonwoven fabric according to claim 8, wherein the hydrophilicity of the second layer is the same in any part of the second layer.
  10.  第1層第1部位に含まれる繊維に対する水の接触角が70度以上85度以下であり、第1層第2部位に含まれる繊維に対する水の接触角が60度以上80度以下である請求項8又は9に記載の不織布。 The contact angle of water with respect to the fibers contained in the first part of the first layer is 70 degrees or more and 85 degrees or less, and the contact angle of water with respect to the fibers contained in the first part of the second part is 60 degrees or more and 80 degrees or less. Item 10. The nonwoven fabric according to item 8 or 9.
  11.  第2層に含まれる繊維に対する水の接触角が20度以上75度以下である請求項8ないし10の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 8 to 10, wherein a contact angle of water with respect to fibers contained in the second layer is 20 degrees or more and 75 degrees or less.
  12.  第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第1部位とし、第1層から遠い側の部位を第2部位としたとき、第1層第2部位と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(13)及び(14)の関係を満たす請求項8に記載の不織布。
    (13)第1層第2部位よりも、第2層第1部位の方が親水度が高い。
    (14)第2層第1部位よりも、第2層第2部位の方が親水度が高い。
    The second layer is virtually divided into two in the thickness direction. Of the two parts divided in half, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part. When the second part is the second part, the second layer first part, the second layer first part, and the second layer second part are compared with each other, the following relationships (13) and (14) are satisfied. The nonwoven fabric according to claim 8.
    (13) The second layer first part has higher hydrophilicity than the first layer second part.
    (14) The second layer second portion has a higher hydrophilicity than the second layer first portion.
  13.  第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第1部位とし、第1層から遠い側の部位を第2部位としたとき、第1層第1部位と、第1層第2部位と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(15)、(16)及び(17)の関係を満たす請求項8に記載の不織布。
    (15)第1層第1部位よりも、第2層第1部位の方が親水度が高い。
    (16)第2層第1部位よりも、第1層第2部位の方が親水度が高い。
    (17)第1層第2部位よりも、第2層第2部位の方が親水度が高い。
    The second layer is virtually divided into two in the thickness direction. Of the two parts divided in half, the part closer to the first layer is defined as the first part, and the part far from the first layer is defined as the first part. When it is set as the second part, the hydrophilicity of the first part first part, the first layer second part, the second layer first part, and the second layer second part is compared. The nonwoven fabric according to claim 8 satisfying the relationship of (16) and (17).
    (15) The second layer first part has higher hydrophilicity than the first layer first part.
    (16) The hydrophilicity of the first layer second portion is higher than that of the second layer first portion.
    (17) The second layer second portion has higher hydrophilicity than the first layer second portion.
  14.  第1層は、その第1部位から第2部位に向けて親水度が漸次高くなっている請求項8ないし13の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 8 to 13, wherein the first layer has a gradually increasing hydrophilicity from the first part toward the second part.
  15.  前記繊維処理剤が付着している前記熱融着性繊維が、第1層に含まれている請求項8ないし14の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 8 to 14, wherein the heat-fusible fiber to which the fiber treatment agent is attached is contained in a first layer.
  16.  前記不織布がエアスルー不織布であり、
     第1層とこれに隣接する第2層とを有し、第1層及び第2層のうちの少なくとも一方に前記繊維処理剤が付着している前記熱融着性繊維が含まれており、
     第2層をその厚さ方向に仮想的に二等分し、二等分した2つの部位のうち、第1層に近い側の部位を第2層第1部位とし、第1層から遠い側の部位を第2層第2部位としたとき、第1層と、第2層第1部位と、第2層第2部位との親水度を比較すると、下記の(21)及び(22)の関係を満たす請求項1ないし7の何れか1項に記載の不織布。
    (21)第1層よりも、第2層第1部位の方が親水度が高い。
    (22)第2層第1部位よりも、第2層第2部位の方が親水度が高い。
    The nonwoven fabric is an air-through nonwoven fabric,
    The heat-fusible fiber has a first layer and a second layer adjacent to the first layer, and the fiber treatment agent is attached to at least one of the first layer and the second layer.
    The second layer is virtually divided into two in the thickness direction, and of the two divided parts, the part closer to the first layer is defined as the second layer first part, and the side far from the first layer When the second layer is the second part, the hydrophilicity of the first layer, the second layer first part, and the second layer second part is compared, and the following (21) and (22) The nonwoven fabric according to any one of claims 1 to 7, which satisfies the relationship.
    (21) The hydrophilicity of the first part of the second layer is higher than that of the first layer.
    (22) The second layer second portion has a higher hydrophilicity than the second layer first portion.
  17.  第2層は、その第1部位から第2部位に向けて親水度が漸次高くなっている請求項12ないし16の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 12 to 16, wherein the second layer has a gradually increasing hydrophilicity from the first part toward the second part.
  18.  前記繊維処理剤が付着している前記熱融着性繊維が、第2層に含まれている請求項12ないし17の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 12 to 17, wherein the heat-fusible fiber to which the fiber treatment agent is attached is contained in a second layer.
  19.  第2層側から第1層側に向けて突出した凸部を複数有し、該凸部においては、該凸部の頂部から底部にかけて親水度が高くなっている請求項8ないし18の何れか1項に記載の不織布。 The convex part which protruded toward the 1st layer side from the 2nd layer side has two or more, In this convex part, the hydrophilicity becomes high from the top part to the bottom part of this convex part. The nonwoven fabric according to item 1.
  20.  前記(A)成分と前記(C)成分との含有比率(前者:後者)が、質量比で1:3~4:1である請求項1ないし19の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 19, wherein a content ratio (the former: the latter) of the component (A) and the component (C) is 1: 3 to 4: 1 by mass ratio.
  21.  前記(C)成分が、ジアルキルスルホン酸又はその塩である、請求項1ないし20の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 20, wherein the component (C) is a dialkylsulfonic acid or a salt thereof.
  22.  前記ジアルキルスルホン酸の2鎖のアルキル基それぞれの炭素数は4~14個である、請求項21に記載の不織布。 The nonwoven fabric according to claim 21, wherein each of the two-chain alkyl groups of the dialkylsulfonic acid has 4 to 14 carbon atoms.
  23.  前記ポリオルガノシロキサンが、ポリジメチルシロキサンである請求項1ないし122の何れか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 122, wherein the polyorganosiloxane is polydimethylsiloxane.
  24.  前記(B)成分として用いるアルキルリン酸エステルが、炭素鎖が16~18のモノ又はジアルキルリン酸エステルの完全中和または部分中和塩である請求項1ないし23の何れか1項に記載の不織布。 The alkyl phosphate ester used as the component (B) is a completely neutralized or partially neutralized salt of a mono- or dialkyl phosphate ester having 16 to 18 carbon chains. Non-woven fabric.
  25.  請求項1ないし24の何れか1項記載の不織布を用いた吸収性物品。 An absorbent article using the nonwoven fabric according to any one of claims 1 to 24.
  26.  下記の(A)成分、(B)成分及び(C)成分を含有する不織布用繊維処理剤であって、該(A)成分と該(C)成分との含有比率(前者:後者)が質量比で1:3~4:1であり、かつ該(A)成分が繊維処理剤の質量に対して30質量%以下の割合で含まれている不織布用繊維処理剤。
    (A)ポリオルガノシロキサン、
    (B)アルキルリン酸エステル、
    (C)下記の一般式(1)で表わされるアニオン界面活性剤
    Figure JPOXMLDOC01-appb-C000002
     (式中、Zはエステル基、アミド基、アミン基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数1~12の直鎖又は分岐鎖のアルキル鎖を表わし、R1及びR2はそれぞれ独立に、エステル基、アミド基、ポリオキシアルキレン基、エーテル基若しくは2重結合を含んでいてもよい、炭素数2~16の直鎖又は分岐鎖のアルキル基を表わし、Xは―SO3M、―OSO3M又は―COOMを表わし、MはH、Na、K、Mg、Ca又はアンモニウムを表わす。)
    A fiber treatment agent for nonwoven fabric containing the following component (A), component (B) and component (C), wherein the content ratio of the component (A) to the component (C) (the former: the latter) is mass. The fiber treatment agent for nonwoven fabrics having a ratio of 1: 3 to 4: 1 and containing the component (A) in a proportion of 30% by mass or less with respect to the mass of the fiber treatment agent.
    (A) polyorganosiloxane,
    (B) an alkyl phosphate ester,
    (C) Anionic surfactant represented by the following general formula (1)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Z represents an ester group, an amide group, an amine group, a polyoxyalkylene group, an ether group or a linear or branched alkyl chain having 1 to 12 carbon atoms which may contain a double bond; R 1 and R 2 each independently represents an ester group, an amide group, a polyoxyalkylene group, an ether group or a linear or branched alkyl group having 2 to 16 carbon atoms, which may contain a double bond. , X represents —SO 3 M, —OSO 3 M or —COOM, and M represents H, Na, K, Mg, Ca or ammonium.)
  27.  前記ポリオルガノシロキサンが、ポリジメチルシロキサンである請求項26に記載の不織布用繊維処理剤。 The fiber treatment agent for nonwoven fabric according to claim 26, wherein the polyorganosiloxane is polydimethylsiloxane.
  28.  前記ポリジメチルシロキサンが2種類以上のポリジメチルシロキサンから構成され、そのうちの一種類が重量平均分子量10万以上のポリジメチルシロキサン、他の一種類が重量平均分子量10万未満のポリジメチルシロキサンから構成される請求項26又は27に記載の不織布用繊維処理剤。 The polydimethylsiloxane is composed of two or more types of polydimethylsiloxane, one of which is composed of polydimethylsiloxane having a weight average molecular weight of 100,000 or more, and the other is composed of polydimethylsiloxane having a weight average molecular weight of less than 100,000. The fiber treatment agent for nonwoven fabrics according to claim 26 or 27.
  29.  前記(C)成分が、ジアルキルスルホン酸又はその塩である、請求項26~28の何れか1項に記載の不織布用繊維処理剤。 The fiber treatment agent for nonwoven fabric according to any one of claims 26 to 28, wherein the component (C) is a dialkylsulfonic acid or a salt thereof.
  30.  請求項26~29の何れか1項記載の繊維処理剤が付着した熱融着性繊維。 A heat-fusible fiber to which the fiber treatment agent according to any one of claims 26 to 29 is adhered.
  31.  前記熱融着性繊維が、熱伸長性繊維である請求項30に記載の熱融着性繊維。 The heat-fusible fiber according to claim 30, wherein the heat-fusible fiber is a heat-extensible fiber.
PCT/JP2014/060384 2013-04-19 2014-04-10 Nonwoven fabric and textile treating agent WO2014171388A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480002109.7A CN104540990B (en) 2013-04-19 2014-04-10 Non-woven fabrics and fibre finish
RU2015113763/05A RU2571144C1 (en) 2013-04-19 2014-04-10 Agent for treatment of nonwoven and textile fabric
BR112015011333-8A BR112015011333B1 (en) 2013-04-19 2014-04-10 NON-WOVEN FABRIC, ABSORBENT ARTICLE, FIBER TREATMENT FOR NON-WOVEN FABRIC AND THERMALLY ADHESIVE FIBER

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013088942 2013-04-19
JP2013-088942 2013-04-19
JP2013-250489 2013-12-03
JP2013-250490 2013-12-03
JP2013250489A JP5640139B1 (en) 2013-12-03 2013-12-03 Non-woven
JP2013250490A JP5640140B1 (en) 2013-12-03 2013-12-03 Non-woven
JP2014061278A JP5640164B2 (en) 2013-04-19 2014-03-25 Nonwoven fabric and fiber treatment agent
JP2014-061278 2014-03-25

Publications (1)

Publication Number Publication Date
WO2014171388A1 true WO2014171388A1 (en) 2014-10-23

Family

ID=51731331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060384 WO2014171388A1 (en) 2013-04-19 2014-04-10 Nonwoven fabric and textile treating agent

Country Status (1)

Country Link
WO (1) WO2014171388A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108202A (en) * 2013-12-03 2015-06-11 花王株式会社 Nonwoven fabric and absorbent article including the same
WO2016051833A1 (en) * 2014-09-29 2016-04-07 花王株式会社 Laminated nonwoven fabric and manufacturing method therefor
WO2016060238A1 (en) * 2014-10-17 2016-04-21 花王株式会社 Nonwoven fabric
WO2016098796A1 (en) * 2014-12-17 2016-06-23 花王株式会社 Liquid film cleavage agent
JP2017110329A (en) * 2015-12-16 2017-06-22 花王株式会社 Laminated nonwoven fabric
JP2019002100A (en) * 2017-06-16 2019-01-10 花王株式会社 Nonwoven fabric
EP3639802A4 (en) * 2017-06-16 2021-04-07 Kao Corporation Absorbent article
WO2021237507A1 (en) 2020-05-27 2021-12-02 The Procter & Gamble Company Absorbent article with topsheet comprising cellulose-based fibers
CN114555873A (en) * 2019-10-09 2022-05-27 宇部爱科喜模株式会社 Short fiber for air-laid web and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551872A (en) * 1991-08-09 1993-03-02 Matsumoto Yushi Seiyaku Co Ltd Treating agent for binder fiber
JP2001159078A (en) * 1999-09-24 2001-06-12 Chisso Corp Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP2005314825A (en) * 2004-04-27 2005-11-10 Kao Corp Three-dimensional nonwoven fabric
JP2005336642A (en) * 2004-05-26 2005-12-08 Oji Kinocloth Co Ltd Synthetic resin fiber and nonwoven fabric containing the same synthetic resin fiber
JP2006136351A (en) * 2004-11-10 2006-06-01 Shin Etsu Chem Co Ltd Softener composition for sanitation material
JP2006316375A (en) * 2005-05-12 2006-11-24 Takemoto Oil & Fat Co Ltd Treating agent for synthetic fiber and method for treatment of synthetic fiber
JP2007247128A (en) * 2006-02-17 2007-09-27 Matsumoto Yushi Seiyaku Co Ltd Water permeability-imparting agent and water-permeable fiber with the same attached thereto

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551872A (en) * 1991-08-09 1993-03-02 Matsumoto Yushi Seiyaku Co Ltd Treating agent for binder fiber
JP2001159078A (en) * 1999-09-24 2001-06-12 Chisso Corp Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP2005314825A (en) * 2004-04-27 2005-11-10 Kao Corp Three-dimensional nonwoven fabric
JP2005336642A (en) * 2004-05-26 2005-12-08 Oji Kinocloth Co Ltd Synthetic resin fiber and nonwoven fabric containing the same synthetic resin fiber
JP2006136351A (en) * 2004-11-10 2006-06-01 Shin Etsu Chem Co Ltd Softener composition for sanitation material
JP2006316375A (en) * 2005-05-12 2006-11-24 Takemoto Oil & Fat Co Ltd Treating agent for synthetic fiber and method for treatment of synthetic fiber
JP2007247128A (en) * 2006-02-17 2007-09-27 Matsumoto Yushi Seiyaku Co Ltd Water permeability-imparting agent and water-permeable fiber with the same attached thereto

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108202A (en) * 2013-12-03 2015-06-11 花王株式会社 Nonwoven fabric and absorbent article including the same
WO2016051833A1 (en) * 2014-09-29 2016-04-07 花王株式会社 Laminated nonwoven fabric and manufacturing method therefor
WO2016060238A1 (en) * 2014-10-17 2016-04-21 花王株式会社 Nonwoven fabric
WO2016098796A1 (en) * 2014-12-17 2016-06-23 花王株式会社 Liquid film cleavage agent
JP2016117981A (en) * 2014-12-17 2016-06-30 花王株式会社 Liquid film cleavage agent
JP6051333B1 (en) * 2014-12-17 2016-12-27 花王株式会社 Liquid film cleaving agent
JP2017110329A (en) * 2015-12-16 2017-06-22 花王株式会社 Laminated nonwoven fabric
WO2017104512A1 (en) * 2015-12-16 2017-06-22 花王株式会社 Layered non-woven cloth
RU2698821C1 (en) * 2015-12-16 2019-08-30 Као Корпорейшн Laminated non-woven material
JP2019002100A (en) * 2017-06-16 2019-01-10 花王株式会社 Nonwoven fabric
EP3639802A4 (en) * 2017-06-16 2021-04-07 Kao Corporation Absorbent article
JP6996876B2 (en) 2017-06-16 2022-02-03 花王株式会社 Non-woven fabric
CN114555873A (en) * 2019-10-09 2022-05-27 宇部爱科喜模株式会社 Short fiber for air-laid web and method for producing same
WO2021237507A1 (en) 2020-05-27 2021-12-02 The Procter & Gamble Company Absorbent article with topsheet comprising cellulose-based fibers

Similar Documents

Publication Publication Date Title
WO2014171388A1 (en) Nonwoven fabric and textile treating agent
JP6332805B2 (en) Non-woven
JP4975089B2 (en) Nonwoven fabric and method for producing the same
JP6360399B2 (en) Long fiber nonwoven fabric
JP6170815B2 (en) Non-woven
JP5809341B1 (en) Laminated nonwoven fabric and method for producing the same
TWI516578B (en) Non-woven and fiber treatment agent
JP2009030218A (en) Nonwoven fabric and process for producing the same
JP6271657B1 (en) Top sheet for absorbent articles
JP6408320B2 (en) Hydrophilic nonwoven fabric and fiber treatment agent for nonwoven fabric
WO2010074207A1 (en) Non-woven fabric and process for producing same
JP6321505B2 (en) Uneven fabric
RU2713963C1 (en) Multilayer nonwoven material, method for its production, absorbent article and sweat absorbing sheet
JP6190263B2 (en) Nonwoven fabric and absorbent article
WO2016060238A1 (en) Nonwoven fabric
JP5894333B1 (en) Non-woven
JP2012005701A (en) Surface sheet of absorptive article
JP6120282B2 (en) Nonwoven fabric and absorbent article having the same
JP6267501B2 (en) 3D sheet
JP5640140B1 (en) Non-woven
JP5640139B1 (en) Non-woven
JP5640164B2 (en) Nonwoven fabric and fiber treatment agent
JP6587415B2 (en) Absorbent articles
JP2017148141A (en) Absorbent article
JP6382709B2 (en) Nonwoven fabric, surface sheet of absorbent article using the same, absorbent article using the same, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201501391

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015113763

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015/05025

Country of ref document: TR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015011333

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015011333

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150518