WO2016059853A1 - Power control device and power control system provided with same - Google Patents

Power control device and power control system provided with same Download PDF

Info

Publication number
WO2016059853A1
WO2016059853A1 PCT/JP2015/072165 JP2015072165W WO2016059853A1 WO 2016059853 A1 WO2016059853 A1 WO 2016059853A1 JP 2015072165 W JP2015072165 W JP 2015072165W WO 2016059853 A1 WO2016059853 A1 WO 2016059853A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current value
received
unit
power control
Prior art date
Application number
PCT/JP2015/072165
Other languages
French (fr)
Japanese (ja)
Inventor
晋吾 加藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016553993A priority Critical patent/JP6386579B2/en
Publication of WO2016059853A1 publication Critical patent/WO2016059853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/52The controlling of the operation of the load not being the total disconnection of the load, i.e. entering a degraded mode or in current limitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a power control system including a power control device.
  • the power that can be used by power consumers is limited according to the contract with the power supplier. Therefore, when the current value of the received power of the power consumer exceeds the cutoff current value according to the contract with the power supplier, the breaker connected between the power consumer's power system and the commercial power system is activated. As a result, power supply to the power consumer is interrupted. At this time, the electric power consumer cannot use any electrical equipment that uses the received electric power as a power source, which is very inconvenient and sometimes loses the work result until it is shut off. For example, in a desktop PC, data that was being worked on before being shut off may be lost.
  • the breaker cannot be recovered to stop the cutoff.
  • the recovery work is troublesome, especially at night or when the breaker is installed in a dark place.
  • Patent Document 1 An example of a conventional technique for avoiding such breaker interruption is the energy management system disclosed in Patent Document 1.
  • the received power value of a power consumer is measured and compared with the upper limit power value, and the power consumption of the electric device is limited when the received power value exceeds the upper limit power value.
  • the breaker operates to cut off the received power when the current value of the received power exceeds the cutoff current value. Therefore, if it is attempted to prevent the breaker from being interrupted by limiting the power consumption based on the measurement result of the power value as in Patent Document 1, the breaker may operate even if the received power value does not exceed the upper limit power value. For example, if the voltage of the received power is lowered due to voltage fluctuations in the commercial power system, the current value of the received power may exceed the cutoff current value even if the received power value does not exceed the upper limit power value. In such a case, the breaker operates to cut off the received power while the power consumption of the electric device is not limited. Therefore, the technique of Patent Document 1 cannot sufficiently prevent the breaker from being cut off.
  • an object of the present invention is to provide a power control device capable of sufficiently reducing the frequency with which a circuit breaker cuts off received power, and a power control system including the same.
  • a power control apparatus distributes received power received from a power source via a circuit breaker that interrupts an energization path when a current greater than or equal to a cutoff current value flows. Whether the current value of the received power measured by the current measurement unit exceeds the target current value less than the cut-off current value, wherein the power control device supplies power to the power load using the power output from the power distribution unit A determination unit that determines whether or not, and a power adjustment unit that suppresses supply power when the determination unit determines that the current value exceeds the target current value.
  • the power adjustment unit may be configured to change the current value of the received power toward a predetermined value less than the cutoff current value by suppressing the supplied power.
  • the power adjustment unit when the current value of the received power is larger than the target current value and exceeds the upper limit set value below the breaking current value, the power adjustment unit is much larger than when the current value is less than or equal to the upper limit set value.
  • the power supply may be suppressed.
  • the power adjustment unit may be configured to reduce the supplied power to zero.
  • the power adjustment unit may be configured to suppress the supplied power when the number of times that the current value of the received power exceeds the target current value exceeds the set number.
  • the above power control apparatus may further include a temperature detection unit that detects the temperature of the circuit breaker, and the power adjustment unit may further suppress supply power based on a detection result of the temperature detection unit.
  • the power control apparatus may further include a condition setting unit that sets a supply power adjustment condition, and the condition setting unit may be configured to lower the target current value in accordance with a temperature rise of the circuit breaker.
  • the condition setting unit may be configured to reduce the set number of times according to the temperature rise of the circuit breaker.
  • the condition setting unit may be configured to increase the suppression amount of the supplied power in accordance with the temperature rise of the circuit breaker.
  • the power control unit further includes a history storage unit that stores, in the storage unit, cutoff history information that records conditions relating to suppression of supplied power every time the circuit breaker cuts off the received power, and the power adjustment unit further includes a cutoff history
  • the structure which suppresses supply electric power based on information may be sufficient.
  • the interruption history information may record a cutoff date and time when the circuit breaker cuts off the received power, and the power adjustment unit may further suppress supply power based on the cutoff date and time.
  • a power control system includes a circuit breaker that cuts off an energization path when a current equal to or greater than a breaking current value flows, and a power reception that receives power from a power source via the circuit breaker.
  • a power distribution unit that distributes power; a power load; a power control device that supplies power to the power load using power output from the power distribution unit; and a current measurement unit that measures a current value of received power When the current value of the received power exceeds the target current value less than the cut-off current value, the power control device is configured to suppress the supplied power.
  • the above power control system there may be a configuration in which there are a plurality of power control devices and power loads whose supply power is adjusted by the power control devices, and the adjustment conditions of the supply power are different for each power control device. .
  • a power control device that can sufficiently reduce the frequency with which a circuit breaker cuts off received power, and a power control system including the power control device.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a V2H (Vehicle to Home) system 100 according to the first embodiment.
  • the V2H system 100 is an electric power system that can supply electric power stored in a power storage device included in an automobile to another electric power load L in the system. Examples of such vehicles include EV (Electric Vehicle: electric vehicle), PHV (Plug-in Hybrid Vehicle), FCV (Fuel Cell Vehicle: fuel cell vehicle), etc., which are indicated by reference numeral L1 in FIG. Can be mentioned.
  • the V2H system 100 is connected to the commercial power system E (that is, an external power source) via a power receiving point (not shown), and supplies the power Wa received from the commercial power system E to the power load L.
  • the power Wa received from the commercial power system E and its current Ia (or its value) are referred to as the received power Wa and the received current Ia (or the received current value Ia), respectively.
  • the electric power load L is comprised including EV L1 and the electric power consumption load L2.
  • the EV L1 is a power variable load in which setting of power consumption (that is, power required for power storage) is variable, and includes a power storage device (not shown) having a power storage / discharge function.
  • the power consumption load L2 is an electric device that performs only power consumption, such as a home electric device.
  • a current sensor 101 is attached to the main energizing path P1 connecting the commercial power system E and the V2H system 100.
  • the current sensor 101 is a current measurement unit that measures a received current value Ia received from the commercial power system E, and outputs a current measurement signal indicating the measurement result to the power conditioner 1.
  • the power conditioner 1 is referred to as PCS (Power Conditioning System) 1.
  • the current sensor 101 is not particularly limited, but a CT (Current Transfer), a Hall element, a shunt (current shunt), or the like can be used.
  • the received power Wa received through the main energization path P1 is divided by the distribution board 102 and distributed to the power load L through the branch energization path P2.
  • the distribution board 102 is a power distribution unit that includes a main breaker 103 and a branch breaker 104.
  • the main breaker 103 is a circuit breaker connected to the main energization path P1, and includes a tripping device (not shown) having an open / close mechanism for electrically connecting the main energization path P1.
  • the main energization path P1 is turned on when the received current value Ia is equal to or less than the threshold value Ic, but the main energization path P1 is turned off when the received current value Ia exceeds the threshold value Ic.
  • the received power Wa is cut off.
  • the threshold value Ic of the main breaker 103 is referred to as a cut-off current value Ic.
  • This cut-off current value Ic is a specific current value depending on the specifications of the main breaker 103.
  • the specifications of the main breaker 103 are determined according to the contract contents between the owner of the V2H system 100 (that is, the electric power consumer) and the electric power supplier.
  • the branch breaker 104 is a distribution breaker connected to the branch energization path P ⁇ b> 2 through which the electric power divided in the distribution board 102 flows.
  • the branch breaker 104 cuts off the electric power when the current value of the electric power flowing through the branch energization path P2 exceeds a threshold value. This threshold value is also a specific current value depending on the specifications of the branch breaker 104.
  • the PCS 1 is a power control device that controls the power supplied to the EV L1, the storage / discharge function of the power storage device provided in the EV L1, and the like.
  • the electric power Ws supplied to the EV L1 and the current Is are referred to as the supplied electric power Ws and the supplied electric current Is, respectively.
  • the PCS 1 includes a bidirectional inverter 11, a bidirectional DC / DC converter 12, an input unit 13, a memory 14, and a control unit 15.
  • the PCS 1 may include a display unit (not shown).
  • the bidirectional inverter 11 is a bidirectional power converter that performs AC / DC power conversion or DC / AC power conversion based on a control signal output from the control unit 15, and is bidirectional DC / DC via the bus line BL. Connected to the converter 12. A smoothing capacitor (not shown) is connected to the bus line BL. For example, when the bidirectional inverter 11 performs power conversion in the direction A of FIG. 1, the AC power distributed from the distribution board 102 is converted into DC power and output to the bus line BL. When the bidirectional inverter 11 performs power conversion in the direction B, the direct-current power flowing through the bus line BL is converted into alternating current power and output to the distribution board 102 through the branch energization path P2. Switching of the power conversion directions A and B of the bidirectional inverter 11 and the amount of power conversion in each direction A and B are controlled by the control unit 15.
  • the bidirectional DC / DC converter 12 is a DC power conversion unit that performs DC / DC power conversion based on a control signal output from the control unit 15, and is connected between the bus line BL and the EV L1.
  • the bidirectional DC / DC converter 12 performs power conversion in the direction a in FIG. 1
  • the direct current power flowing through the bus line BL is converted into direct current power having a voltage value or a current value according to the specification of the EV L1, and the EV L1.
  • the bidirectional DC / DC converter 12 performs power conversion in the direction b
  • the discharge power output from the EV L1 is converted into direct current power having a voltage value or a current value according to the specification of the bidirectional inverter 11, and a bus.
  • Output to line BL Switching of the power conversion directions a and b of the bidirectional DC / DC converter 12 and the amount of power conversion in each direction a and b are controlled by the control unit 15.
  • the input unit 13 receives a user operation input and outputs an input signal based on the operation input to the control unit 15.
  • the memory 14 is a non-volatile storage medium that stores data non-temporarily.
  • the memory 14 stores, for example, programs and control information used by the components of the PCS 1 (particularly the control unit 15). Further, the memory 14 stores information related to the components of the V2H system 100, for example, information related to the control of the cutoff current value Ic of the main breaker 103, the threshold value of the branch breaker 104, and the received power Wa (a target current value It described below, the number n of excesses).
  • the threshold value m is also stored.
  • the control unit 15 is a control unit that controls each component of the PCS 1 using a program and control information stored in the memory 14.
  • the control unit 15 includes a determination unit 151 and a power adjustment unit 152 as functional components.
  • the determination unit 151 performs various determinations by comparing the received current value Ia indicated by the current measurement signal with the comparison value.
  • This comparison value is a value stored in the memory 14 (target current value It, upper limit set value Iu, cutoff current value Ic, etc. described later), EV L1 allowable supply current value (that is, maximum value or rated value of supply current Is) ) Etc.
  • the determination unit 151 compares the received current value Ia with the target current value It, and determines whether or not the received current value Ia exceeds the target current value It.
  • the power adjustment unit 152 adjusts the supplied power Ws supplied to the EV L1 by PWM control of the bidirectional inverter 11 based on the received current value Ia in order to prevent the main breaker 103 from being cut off.
  • the received current value Ia of the received power Wa is controlled and continuously changes within a range less than the cutoff current value Ic.
  • the power adjustment unit 152 adjusts the supply current Is and proportionally controls the received current value Ia according to the adjustment amount.
  • the received current value Ia is controlled so as to change toward the target current value It within a numerical range that is less than the cut-off current value Ic and the target current value It is the central value. That is, the received current value Ia continuously decreases within the numerical range according to the suppression amount of the supply current Is, and continuously within the numerical range according to the increase amount (reduced suppression amount) of the supply current Is. Increase.
  • This target current value It is set to a value obtained by multiplying the breaking current value Ic by the first safety factor S1 (0 ⁇ S1 ⁇ 1.0).
  • the supply current Is is reduced according to the difference between the received current value Ia and the target current value It so as to suppress the supply power Ws to the EV L1.
  • the supply current Is is increased in order to increase the supply power Ws to the allowable supply power value of EV L1 (that is, the maximum or rated supply power Ws).
  • FIG. 2 is a flowchart for explaining an example of the power control process of the PCS 1 when the EV L1 is stored in the first embodiment.
  • the received current value Ia is measured by the current sensor 101 (step S101), and it is determined whether or not the received current value Ia exceeds the target current value It (step S102). On the other hand, when it is determined that the received current value Ia exceeds the target current value It (YES in step S102), the supplied current Is to the EV L1 is decreased to proportionally control the received current Ia (step S104). Then, the process returns to step S101.
  • step S102 when it is not determined that the received current value Ia exceeds the target current value It (NO in step S102), it is determined whether the received current value Ia is lower than the target current value It (step 110). If it is not determined that the received current value Ia is lower than the target current value It (NO in step S110), the process returns to step S101. On the other hand, when it is determined that the received current value Ia is lower than the target current value It (YES in step S110), it is determined whether or not the supply power Ws of the EV L1 is lower than the allowable supply power value (step S111). This determination may be made based on whether or not the value of the supply current Is is lower than the allowable supply current value, or may be determined by the PCS 1 based on the value of the supply power Ws.
  • step S111 If it is not determined that the supplied power Ws is lower than the allowable supply power value (NO in step S111), the process returns to step S101. On the other hand, when it is determined that the supplied power Ws is lower than the allowable supply power value (YES in step S111), the supply current Is to the EV L1 is increased to proportionally control the received current Ia (step S112). Then, the process returns to step S101.
  • FIG. 3 is a graph illustrating an example of power control in the first embodiment.
  • the received current value Ia is monitored every predetermined time, but the time interval of this monitoring is not particularly limited. Moreover, it is not limited to this illustration, The received electric current value Ia may be monitored continuously. These are the same in other figures (for example, FIG. 5, FIG. 9A, FIG. 9B, and FIG. 14 described later).
  • the power consumption of the power consumption load L2 increases between time points t1 and t6. From time t1 to time t3, the received current value Ia is lower than the target current value It, but the supply current Is has not increased because it has reached the allowable supply current value of EV L1 corresponding to the allowable supply power value.
  • the PCS 1 decreases the supply current Is to suppress the supply power Ws. If the state of Ia> It continues at time t5 and t6, the PCS1 further decreases the supply current Is. When the received current value Ia becomes less than the target current value It at time t7, the PCS 1 increases the supply current Is in order to reduce the suppression of the supply power Ws. When the received current value Ia again exceeds the target current value It at time t8, the PCS 1 decreases the supply current Is in order to suppress the supply power Ws. From time t9 to t11 thereafter, similar proportional control is performed, and the received power Wa is controlled so that the received current value Ia changes in the vicinity of the target current value It or converges to the target current value It.
  • the power control device 1 distributes the received power Wa received from the power source E via the circuit breaker 103 that cuts off the energization path P1 when a current greater than or equal to the cutoff current value Ic flows.
  • the power control device 1 supplies the supply power Ws to the power load L1 using the power output from the power distribution unit 102, and the current value Ia of the received power Wa measured by the current measurement unit 101 is the cutoff current value
  • a determination unit 151 that determines whether or not a target current value It that is less than Ic is exceeded, and a power adjustment unit that suppresses the supplied power Ws when the determination unit 151 determines that the current value Ia exceeds the target current value It. 152.
  • the power control system 100 receives power from the power source E via the circuit breaker 103 and the circuit breaker 103 that breaks the energization path P ⁇ b> 1 when a current greater than or equal to the breaking current value Ic flows.
  • the power distribution unit 102 that divides the received power Wa, the power load L1, the power control device 1 that supplies the supplied power Ws to the power load L1 using the power output from the power distribution unit 102, and the received power Wa
  • a current measuring unit 101 that measures the current value Ia, and when the current value Ia of the received power Wa exceeds a target current value It that is less than the cutoff current value Ic, the power control device 1 suppresses the supplied power Ws. Is done.
  • the current value Ia of the received power Wa exceeds the target current value It, the supplied power Ws supplied to the power load L1 is suppressed. Therefore, the current value Ia of the received power Wa can be reduced so as not to exceed the cutoff current value Ic. Alternatively, the current excess time during which the current value Ia exceeds the breaking current value Ic can be minimized. Therefore, the breaking operation of the circuit breaker 103 can be suppressed or prevented.
  • the power adjustment becomes the power value. It is possible to suppress or prevent the circuit breaker 103 from being interrupted more accurately than in the case where it is performed based on the above. Therefore, the frequency with which the circuit breaker 103 interrupts the received power Wa can be sufficiently reduced.
  • the power control apparatus 1 can suppress the supplied power Ws by acquiring the current value Ia of the received power Wa through the shortest path without using a HEMS (Home Energy Management System) or the like. Therefore, the response time from the acquisition of the current value Ia to the suppression of the supplied power Ws can be shortened as much as possible.
  • HEMS Home Energy Management System
  • the power adjustment unit 152 may be configured to change the current value Ia of the received power Wa toward the predetermined value It less than the cut-off current value Ic by suppressing the supplied power Ws.
  • the power control process by the PCS 1 may be performed using the target current value It and a current value Iu that is set to be larger than the target current value It and equal to or less than the cutoff current value Ic.
  • this current value Iu is referred to as an upper limit set value Iu. That is, this power control process may be performed according to a comparison result between the received current value Ia, the target current value It, and the upper limit set value Iu.
  • the upper limit set value Iu is set to a value obtained by multiplying the breaking current value Ic by the second safety coefficient S2 (S1 ⁇ S2 ⁇ 1).
  • FIG. 4 is a flowchart for explaining an example of the power control method of the PCS 1 in the first modification of the first embodiment.
  • the same processes as those in FIG. 3 are denoted by the same reference numerals, and the description thereof may be omitted.
  • step S102 when it is determined that the received current value Ia measured by the current sensor 101 exceeds the target current value It (YES in step S102), it is determined whether the received current value Ia exceeds the upper limit set value Iu. If it is not determined that the received current value Ia exceeds the upper limit set value Iu (NO in step S103), the supply current Is to the EV L1 is decreased to proportionally control the received current Ia (step S104). ). Then, the process returns to step S101.
  • step S103 when it is determined that the received current value Ia exceeds the upper limit set value Iu (YES in step S103), the supply current Is is set to 0 (step S107). Then, the process returns to step S101.
  • FIG. 5 is a graph illustrating an example of power control in the first modification of the first embodiment.
  • the power consumption of the power consumption load L2 increases from the time point t1 to the time point t6.
  • the PCS 1 sets the supply current Is to 0 and sets the supply power Ws to 0.
  • Ia ⁇ It as at time points t5 and t6, the PCS1 increases the supply current Is in order to reduce the suppression of the supply power Ws.
  • the PCS 1 decreases the supply current Is to suppress the supply power Ws. Similar power control is performed at subsequent times t8 to t11, and the received power Wa is controlled so that the received current value Ia changes in the vicinity of the target current value It or converges to the target current value It.
  • the current adjustment amount (that is, the current suppression amount) subtracted from the supply current Is when the power reception current value Ia exceeds the upper limit set value Iu is the same current as the supply current Is at step S107 in FIG. 4 and time t5 in FIG.
  • the current reduction amount ⁇ Iu may be set to a current reduction amount that is greater than 0 and less than the supply current Is (that is, 0 ⁇ Iu ⁇ Is). Further, the current reduction amount ⁇ Iu is larger than the current adjustment amount in the case of It ⁇ Ia ⁇ Iu.
  • FIG. 6 is a flowchart for explaining another example of the power control method of the PCS 1 in the first modification of the first embodiment.
  • the same processes as those in FIG. 3 or FIG. 4 are denoted by the same reference numerals, and the description thereof may be omitted.
  • step S103 when it is determined that the received current value Ia exceeds the upper limit set value Iu (YES in step S103), the supply current Is is decreased according to the current reduction amount ⁇ Iu (step S108), and the process proceeds to step S101. Return.
  • the power control unit 152 when the current value Ia exceeds the upper limit set value Iu that is larger than the target current value It and less than or equal to the cut-off current value Ic, the power control unit 152 It is good also as a structure which suppresses supply electric power Ws significantly compared with the case where Ia is below upper limit setting value Iu.
  • the power adjustment unit 152 may be configured to reduce the supplied power Ws to zero.
  • the supply power Ws is further reduced or reduced to 0,
  • the current value Ia of the received power Wa can be greatly reduced. Therefore, the frequency with which the circuit breaker 103 interrupts the received power Wa can be further reduced.
  • FIG. 7 is a flowchart for explaining an example of the power control method of the PCS 1 in the second modification of the first embodiment.
  • the excess number n is set to 0 at the start of FIG. In FIG. 7, the same processing as that in FIG. 3, FIG. 4, or FIG.
  • step S105 when it is determined that the received current value Ia measured by the current sensor 101 exceeds the upper limit set value Iu (YES in step S103), 1 is added to the excess number n (step S105), and the excess number n Whether or not has reached a preset number of times m (m is an integer of 2 or more) is determined (step S106). If it is not determined that the excess number n has reached the set number m (NO in step S106), the process returns to step S101 after step S104 is performed.
  • step S106 when it is determined that the excess number n has reached the set number m (YES in step S106), the supply current Is is set to 0 in step S107. Instead of step S107, the same processing as step S108 in FIG. 6 may be performed until Ia ⁇ Iu. Thereafter, the excess number n is reset and set to 0 (step S109), and the process returns to step S101.
  • the power adjustment unit 152 causes the supplied power Ws to be supplied when the excess number n determined that the current value Ia exceeds the target current value It exceeds the set number m. It is good also as a structure which suppresses.
  • the possibility that the circuit breaker 103 cuts off the received power Wa increases with an increase in the numerical value of the set number m, but the frequency at which the supplied power Ws is suppressed can be reduced. Therefore, stable power can be supplied to the power variable load L1 while suppressing interruption of the received power Wa.
  • the V2H system 100 further includes a temperature sensor 105 that detects the temperature of the main breaker 103. Based on the detection result of the temperature sensor 105, the power control condition of the supply power Ws (adjustment condition of the supply current Is by the PCS 1) is determined. The rest is the same as in the first embodiment.
  • a configuration different from the first embodiment will be described.
  • symbol is attached
  • FIG. 8 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the second embodiment.
  • a temperature sensor 105 is arranged in the casing (not shown) of the main breaker 103 or in the vicinity thereof inside the distribution board 102.
  • the temperature sensor 105 is a temperature detection unit that detects the temperature of the main breaker 103, and outputs the detection result to the PCS 1 as a temperature detection signal.
  • the memory 14 stores a data table in which the adjustment condition of the supplied power Ws is set for each temperature of the main breaker 103, and the control unit 15 of the PCS 1 includes a condition setting unit 153 as a functional element.
  • the condition setting unit 153 determines an adjustment condition for the supplied power Ws based on the temperature detection signal and the data table. The adjustment condition determined by the condition setting unit 153 becomes stricter as the detected temperature indicated by the temperature detection signal becomes higher.
  • the operating characteristics of the shut-off operation of the main breaker 103 change according to the structure of the trip device due to the influence of temperature change.
  • the cutoff threshold value Ic of the main breaker 103 decreases as the ambient temperature increases and increases as the ambient temperature decreases.
  • the tripping device is electromagnetic, the operation time from the time when the receiving current Ia exceeds the cutoff threshold Ic to the time when the tripping device cuts off the receiving current Ia becomes shorter as the ambient temperature becomes higher. The lower the temperature, the longer.
  • the influence of the temperature change is less than that in the thermal type and the electromagnetic type, but the cutoff threshold value Ic and the operation time change according to the circuit configuration in the device.
  • the power control condition (adjustment condition) of the supplied power Ws is changed according to the detection result of the temperature sensor 105.
  • FIG. 9A is a graph showing an example of power control when the detected temperature is 10 ° C. in the third embodiment.
  • FIG. 9B is a graph showing an example of power control when the detected temperature is 40 ° C. in the third embodiment.
  • the received current value Ia is controlled so as to shift or converge around the target current value It1 set to 55 [A] in FIG. 9A, and transition around the target current value It2 set to 45 [A] in FIG. 9B. Or it is controlled to converge. That is, when the temperature of the main breaker 103 rises, the difference between the cut-off current value Ic and the target current value It is expanded, but as shown in FIGS.
  • the received current value Ia changes around a lower current value. Or it converges to a lower current value. Therefore, the higher the temperature of the main breaker 103, the more difficult the received current value Ia exceeds the cutoff current value Ic of the main breaker 103.
  • the target current value It is changed according to the temperature change, but the adjustment condition to be changed is not limited to this example.
  • the current adjustment amount for one time of the supply current Is may be increased in accordance with the temperature rise.
  • the upper limit set value Iu when the upper limit set value Iu is set, the upper limit set value Iu may be set so as to decrease as the temperature rises.
  • the threshold value m for the excess number n may be set to decrease as the temperature rises. Note that any of these adjustment conditions can be selected or combined.
  • the power control device 1 further includes the temperature detection unit 105 that detects the temperature of the circuit breaker 103, and the power adjustment unit 152 further supplies power based on the detection result of the temperature detection unit 105. It is set as the structure which suppresses Ws.
  • the power control apparatus 1 may further include a condition setting unit 153 that sets an adjustment condition for the supplied power Ws, and the condition setting unit 153 may be configured to reduce the target current value It according to the temperature rise of the circuit breaker 103. Good. Further, the condition setting unit 153 may be configured to reduce the set number m in accordance with the temperature rise of the circuit breaker 103. In addition, the condition setting unit 153 may be configured to increase the suppression amount of the supplied power Ws according to the temperature rise of the circuit breaker 103.
  • the target current value It can be lowered, the set number m can be reduced, or the amount of suppression of the supplied power Ws can be increased in accordance with the temperature rise of the circuit breaker 103.
  • the power control condition of the supply power Ws (adjustment condition of the supply current Is by the PCS 1) is determined according to the number of times that the main breaker 103 is interrupted. The rest is the same as in the first embodiment.
  • a configuration different from the first embodiment will be described.
  • symbol is attached
  • FIG. 10 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the third embodiment.
  • a power reception monitoring unit 106 that monitors the power reception state of the received power Wa is arranged in the front stage of the main circuit breaker 103 in the main power supply path P ⁇ b> 1.
  • the PCS 1 is provided with a timer 16.
  • the timer 16 is a time measuring unit that measures an elapsed time from a predetermined time, a current time, and the like.
  • the power reception monitoring unit 106 detects a power failure (including a momentary power failure) in the commercial power system E, and outputs a power failure detection signal indicating the detection result to the PCS 1.
  • the power reception monitoring unit 106 may be a power failure detector or a voltmeter that detects the potential of a power reception point. Further, the power reception monitoring unit 106 may be externally attached to the PCS 1 as illustrated in FIG. 10 or may be incorporated in the PCS 1.
  • the determination unit 151 of the PCS 1 determines whether or not the main breaker 103 has performed the operation of cutting off the received power Wa based on the power failure detection signal and the current measurement signal. For example, when the power failure detection signal does not indicate a power failure and the current measurement signal is not 0, the determination unit 151 determines that the main breaker 103 is not performing a cutoff operation. Moreover, when the power failure detection signal does not indicate a power failure and the current measurement signal is 0, the determination unit 151 determines that the main breaker 103 is performing a shut-off operation. When the power failure detection signal indicates a power failure, the determination unit 151 determines that the commercial power system E has a power failure.
  • the configuration for monitoring the power receiving state of the received power Wa is not limited to the example shown in FIG. 11A and 11B are schematic configuration diagrams illustrating another example of the V2H system 100 according to the third embodiment.
  • the power reception monitoring unit 106 may be connected to the front stage and the rear stage of the main breaker 103, and the individual power reception monitoring unit 106 is provided in each of the front stage and the rear stage of the main breaker 103. Also good. In this way, in addition to the received power Wa input to the main breaker 103, the received power Wa output from the main breaker 103 can also be monitored.
  • FIG. 11A the power reception monitoring unit 106 may be connected to the front stage and the rear stage of the main breaker 103, and the individual power reception monitoring unit 106 is provided in each of the front stage and the rear stage of the main breaker 103. Also good. In this way, in addition to the received power Wa input to the main breaker 103, the received power Wa output from the main breaker 103 can also be monitored. Alternatively, as illustrated in
  • the V2H system 100 may include a cutoff monitoring unit 107 that monitors the cutoff operation of the main breaker 103.
  • the interruption monitoring unit 107 has an auxiliary contact unit (not shown) linked to the tripping device, and determines the interruption operation of the main breaker 103 based on the state of the auxiliary contact unit (whether it is in a conductive state or the like).
  • the discrimination result is output to PCS1.
  • blocking monitoring part 107 may be externally attached to PCS1 like FIG. 11B, and may be incorporated in PCS1.
  • the control unit 15 of the PCS 1 includes a condition setting unit 153 and a history storage unit 154 as functional elements.
  • the history storage unit 154 stores the blocking history information of the main breaker 103 in the memory 14.
  • the shut-off history information includes the date and time when the main breaker 103 is shut off, the state of the V2H system 100 (for example, the adjustment conditions of the supplied power Ws such as the target current value It and the upper limit set value Iu, and the temperature of the main breaker 103). Is recorded at each shut-off time.
  • FIG. 12 is a graph showing the target current value It set for the number of interruptions within the latest unit time.
  • the unit time is not particularly limited, and can be set to one year, one month, one week, etc., for example.
  • the unit time is set to one year, and the target current value It of the receiving current value Ia is set according to the number of times of interruption within one year from the most recent interruption time of the main breaker 103.
  • the target current value It is set lower as the number of interruptions is larger, and is set higher as the number of interruptions is smaller.
  • the supplied power Ws is controlled so that the received current value Ia changes or converges to a lower value. Therefore, if the target current value It is reset to a lower value as the number of interruptions increases, the reception current value Ia will not easily exceed the interruption current value Ic of the main breaker 103, so that the interruption of the incoming electric power Wa by the main breaker 103 is suppressed. can do.
  • the supplied power Ws is controlled so that the received current value Ia changes or converges to a higher value. Accordingly, if the target current value It is reset to a higher value in accordance with the decrease in the number of interruptions, the possibility of the main breaker 103 performing the interruption operation is increased, but the received electric power Wa that can be received and used in the V2H system 100 is contracted. It can be increased closer to the power.
  • the adjustment condition (power control condition) of the supplied power Ws may be reset according to the length of the time interval from the most recent interruption time point to the previous time point.
  • the adjustment condition of the supplied power Ws to be reset may be the upper limit set value Iu, a single current adjustment value, or the excess of the power control process for the supplied power Ws being started. It may be a threshold value m of the number of times n. These conditions can be reset by selecting or combining any of these conditions.
  • the power control device 1 stores the history information for storing the interruption history information that records the conditions regarding the suppression of the supplied power Ws every time the circuit breaker 103 interrupts the received power Wa in the storage unit 14.
  • the power adjustment unit 152 is further configured to suppress the supplied power Ws based on the cutoff history information.
  • the circuit breaker 103 it is possible to reduce the breaking frequency of the circuit breaker 103 without being greatly affected by the difference in environment that differs for each power consumer. For example, the specifications and usage environment of the circuit breaker 103 and the variable power load L1 are different for each power consumer. For this reason, the circuit breaker 103 has a non-uniform shut-off characteristic (for example, the ease of occurrence of a shut-off operation) with respect to the suppression condition of the supplied power Ws. Therefore, the frequency of interruption of the circuit breaker 103 can be more effectively reduced by suppressing the supplied power Ws corresponding to the interruption characteristic of the circuit breaker 103 based on the interruption history information.
  • a non-uniform shut-off characteristic for example, the ease of occurrence of a shut-off operation
  • the interruption history information may record the cutoff date and time when the circuit breaker 103 cuts off the received power Wa, and the power adjustment unit 152 may further suppress the supplied power Ws based on the cutoff date and time. .
  • the supplied power Ws can be suppressed based on, for example, the number of interruptions within the latest unit time or the time interval of the most recent interruption date and time.
  • a fourth embodiment will be described.
  • a plurality of PCSs 1 capable of communicating with each other and a variable power load controlled by the PCS 1 are arranged in the V2H system 100.
  • the rest is the same as in the first embodiment.
  • a configuration different from the first to third embodiments will be described.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
  • FIG. 13 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the fourth embodiment.
  • Two PCSs 1a and 1b are arranged in the V2H system 100, and each PCS 1a and 1b is provided with a communication unit 17 that performs wired communication or wireless communication with each other.
  • ranks are set for the PCSs 1a and 1b, and the PCSs 1a and 1b determine the adjustment condition of the supplied power Ws according to the ranks.
  • the PCS 1a to which the EV L1 is connected is set to the top (1st)
  • the PCS 1b to which the power storage unit L3 having a power storage / discharge function is connected is set to the next (2nd). .
  • Stricter adjustment conditions are applied to the 2nd PCS 1b than to the 1st PCS 1a.
  • FIG. 14 is a graph showing an example of power control in the fourth embodiment.
  • the target current value Itb (45 [A]) of the PCS 1 b is set to a value smaller than the target current value Ita (55 [A]) of the PCS 1 a.
  • the power consumption of the power consumption load L2 increases from time t1 to t6, but does not vary much from time t6 to t11.
  • each PCS 1a, 1b can be supplied to the variable power load (EV L1, power storage unit L3 without limiting the supplied power Ws. Therefore, the supply current Is to these is not adjusted, and the variable power loads L1, L3 are not adjusted respectively.
  • the current value corresponds to each allowable supply power value.
  • the received current value Ia is less than the target current value Ita, and Ia> Ita at time t5. Therefore, since the PCS 1a can supply the EV L1 without limiting the supply power Ws between the time points t2 and t5, the supply current Is is not adjusted. On the other hand, since the received current value Ia exceeds the target current value Itb at the time point t2, the PCS 1b starts limiting the supply power Ws to the power storage unit L3 and decreases the supply current Is. When the state of Itb ⁇ Ia ⁇ It is continued at time t3, the PCS 1b further reduces the supply current Is to the power storage unit L3. When the received current value Ia becomes equal to or less than the target current value Itb at time t4, the PCS 1b increases the supply current Is at time t5.
  • the PCSs 1a and 1b decrease the supply current Is, whereby Itb ⁇ Ia ⁇ It. Accordingly, at time t7, the PCS 1a increases the supply current Is, and the PCS 1b decreases the supply current Is. When the state of Itb ⁇ Ia ⁇ Ita continues at time t7, PCS1a further increases the supply current Is and PCS1b further decreases the supply current Is. At time t8, since Ia> Ita> Itb, each PCS 1a, 1b decreases each supply current Is.
  • variable power loads EV L1 and power storage units L3 arranged in the V2H system 100 are prioritized according to the ranks of the PCSs 1 connected to the PCSs 1a and 1b. Attached. For example, in FIG. 14, EV L1 is ranked 1st, and power storage unit L3 is ranked 2nd. Accordingly, each of the variable power loads L1 and L3 is subjected to power control in an order corresponding to its own priority. Therefore, the V2H system 100 can realize a stable operation.
  • the target current values It may be the same for the PCSs 1a and 1b.
  • the PCSs 1a and 1b perform power control at the same time, the adjustment amount of the received current value Ia is doubled and increased. Therefore, there arises a problem that the power control of the V2H system 100 becomes unstable.
  • the target current value It of the supplied power Ws is reset, but the resetting conditions are not limited to these examples.
  • the reset condition may be the upper limit set value Iu (see FIG. 5) or the magnitude of the current adjustment value. These conditions can be reset by selecting or combining any of them.
  • the power control apparatuses 1a and 1b and the power variable loads L1 and L3 whose supply power Ws is adjusted by the power control apparatuses 1a and 1b are plural.
  • the adjustment conditions for the supplied power Ws are different for each of the power control devices 1a and 1b.
  • each variable power load L1 and L3 is adjusted under different conditions for each power control device 1a and 1b connected to itself. Therefore, each power variable load L1, L3 can realize a stable operation.
  • the power control device 1 with stricter adjustment conditions adjusts the supply power Ws earlier, it is possible to prioritize the power variable loads L1 and L3 whose supply power Ws is adjusted.
  • the EV L1 including the power storage device is cited as an example of the variable power load, but the present invention is not limited to this example.
  • the power variable load may be any device that can variably set the power consumption.
  • the power variable load may not have a storage / discharge function.
  • proportional control is cited as an example of control of the received current value Ia and the supply current Is, but the present invention is not limited to this example.
  • the control of the received current value Ia and the supply current Is may be a control that changes around or converges to a predetermined value (for example, the target current value It or the upper limit set value Iu in the case of the received current value Ia).
  • a predetermined value for example, the target current value It or the upper limit set value Iu in the case of the received current value Ia.
  • PID Proportional-Integral-Derivative
  • the received current value Ia changes based on the received current value Ia after control and the deviation, integration, and differentiation of the predetermined value.
  • the power reception current value Ia and the supply current Is can be changed toward the predetermined value. Therefore, it is possible to prevent the received current value Ia from exceeding the breaking current value Ic by controlling the vicinity of the predetermined value so as to change or converge to the predetermined value. In addition, hunting of the current value Ia of the received power Wa can be suppressed and smoothly changed.
  • control unit 15 At least some or all of the functional components of the control unit 15 are realized by physical components (for example, electric circuits, elements, devices, etc.). It may be.
  • the cutoff history information is stored in the memory 14 built in the PCS 1, but the present invention is not limited to this example.
  • the blocking history information may be stored in a non-transitory storage medium externally attached to the PCS 1.
  • the present invention is applied to the PCS 1 of the V2H system 100, but the present invention is not limited to this example.
  • the present invention can be applied to power storage systems other than the V2H system 100, and may be applied to, for example, a system including an EV charger, a PHEV charger, a quick charger, and the like, and a stationary lithium ion storage battery system.
  • the present invention may be applied to a system that adjusts the power supply Ws supplied to electric appliances for home use (especially electric appliances that can adjust power consumption). Or it is applicable also to the electric equipment in general with which the circuit breaker was connected.

Abstract

A power control system is provided with a circuit breaker, a distribution unit, a power load, a power control device, and a current measurement unit. The circuit breaker breaks a current carrying passage when a current equal to or more than a breaking current value flows. The distribution unit distributes reception power received from a power source via the circuit breaker. The power control device supplies supply power to the power load by using power output from the distribution unit. The current measurement unit measures a current value of the reception power. When the current value of the reception power exceeds a target current value less than the breaking current value, the power control device suppresses the supply power.

Description

電力制御装置、及びこれを備える電力制御システムPower control apparatus and power control system including the same
 本発明は、電力制御装置を備える電力制御システムに関する。 The present invention relates to a power control system including a power control device.
 一般に、電力需要家が使用可能な電力は電力供給事業者との契約に応じて制限される。そのため、電力需要家の受電電力の電流値が電力供給事業者との契約内容に応じた遮断電流値を越える場合、電力需要家の電力系統と商用電力系統との間に接続されたブレーカが作動して、電力需要家への電力供給が遮断される。この際、電力需要家は受電電力を電力源とする電気機器などを一切使えなくなるため、非常に不便であり、遮断される迄の作業成果を失う場合もある。たとえば、デスクトップ型のPCなどでは、遮断されるまでの間に作業していたデータが失われたりする。また、電力需要家が使用する電力の総電流値が遮断電流値未満になるまでの期間中はブレーカを復旧して遮断を停止させることはできない。また、ブレーカの復旧は通常手動で行われるため、その復旧作業は面倒であり、特に夜間或いはブレーカが暗所に設置されている場合に非常に面倒である。 Generally, the power that can be used by power consumers is limited according to the contract with the power supplier. Therefore, when the current value of the received power of the power consumer exceeds the cutoff current value according to the contract with the power supplier, the breaker connected between the power consumer's power system and the commercial power system is activated. As a result, power supply to the power consumer is interrupted. At this time, the electric power consumer cannot use any electrical equipment that uses the received electric power as a power source, which is very inconvenient and sometimes loses the work result until it is shut off. For example, in a desktop PC, data that was being worked on before being shut off may be lost. In addition, during the period until the total current value of power used by the power consumer becomes less than the cutoff current value, the breaker cannot be recovered to stop the cutoff. Moreover, since the recovery of the breaker is usually performed manually, the recovery work is troublesome, especially at night or when the breaker is installed in a dark place.
 このようなブレーカの遮断を回避する従来技術の一例として、特許文献1のエネルギー管理システムがある。このシステムでは、電力需要家の受電電力値を計測して上限電力値と比較し、該受電電力値が上限電力値を越える場合に電気機器の消費電力を制限している。 An example of a conventional technique for avoiding such breaker interruption is the energy management system disclosed in Patent Document 1. In this system, the received power value of a power consumer is measured and compared with the upper limit power value, and the power consumption of the electric device is limited when the received power value exceeds the upper limit power value.
特開2008-104310号公報JP 2008-104310 A
 しかしながら、前述のようにブレーカは受電電力の電流値が遮断電流値を越えると作動して受電電力を遮断する。そのため、特許文献1のように電力値の計測結果に基づく消費電力の制限によりブレーカの遮断を防止しようとすると、受電電力値が上限電力値を越えていなくてもブレーカが作動する場合がある。たとえば、商用電力系統の電圧変動により受電電力の電圧が低くなると、受電電力値は上限電力値を越えていなくても、受電電力の電流値が遮断電流値を越えることがある。このような場合、電気機器の消費電力は制限されないまま、ブレーカは作動して受電電力を遮断してしまう。従って、特許文献1の技術では、ブレーカの遮断を十分に防止することはできない。 However, as described above, the breaker operates to cut off the received power when the current value of the received power exceeds the cutoff current value. Therefore, if it is attempted to prevent the breaker from being interrupted by limiting the power consumption based on the measurement result of the power value as in Patent Document 1, the breaker may operate even if the received power value does not exceed the upper limit power value. For example, if the voltage of the received power is lowered due to voltage fluctuations in the commercial power system, the current value of the received power may exceed the cutoff current value even if the received power value does not exceed the upper limit power value. In such a case, the breaker operates to cut off the received power while the power consumption of the electric device is not limited. Therefore, the technique of Patent Document 1 cannot sufficiently prevent the breaker from being cut off.
 また、一般にブレーカの遮断特性は、その仕様、使用環境、受電電力を消費する電気機器の特性などによってばらつきが生じる。そのため、ブレーカの遮断防止のためには、電流値の超過量及びその超過時間を極力小さくする必要がある。ところが、特許文献1はこれらについてなんら言及していない。 In general, the breaking characteristics of breakers vary depending on the specifications, usage environment, and characteristics of the electrical equipment that consumes the received power. Therefore, in order to prevent the breaker from being cut off, it is necessary to minimize the excess amount of current value and the excess time thereof. However, Patent Document 1 makes no mention of these.
 本発明は、上記の状況を鑑みて、回路遮断器が受電電力を遮断する頻度を十分に低減できる電力制御装置、及びこれを備える電力制御システムを提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a power control device capable of sufficiently reducing the frequency with which a circuit breaker cuts off received power, and a power control system including the same.
 上記目的を達成するために本発明の一の態様による電力制御装置は、遮断電流値以上の電流が流れると通電路を遮断する回路遮断器を介して電力源から受電する受電電力を分電する分電部から出力される電力を用いて電力負荷に供給電力を供給する電力制御装置であって、電流計測部により計測される受電電力の電流値は遮断電流値未満の目標電流値を越えるか否かを判定する判定部と、判定部にて電流値が目標電流値を越えると判定される場合に供給電力を抑制する電力調整部と、を備える構成とされる。 In order to achieve the above object, a power control apparatus according to an aspect of the present invention distributes received power received from a power source via a circuit breaker that interrupts an energization path when a current greater than or equal to a cutoff current value flows. Whether the current value of the received power measured by the current measurement unit exceeds the target current value less than the cut-off current value, wherein the power control device supplies power to the power load using the power output from the power distribution unit A determination unit that determines whether or not, and a power adjustment unit that suppresses supply power when the determination unit determines that the current value exceeds the target current value.
 上記の電力制御装置において、電力調整部は、供給電力の抑制により受電電力の電流値を遮断電流値未満の所定値に向かって変化させる構成であってもよい。 In the above power control device, the power adjustment unit may be configured to change the current value of the received power toward a predetermined value less than the cutoff current value by suppressing the supplied power.
 上記の電力制御装置において、受電電力の電流値が目標電流値よりも大きく且つ遮断電流値以下の上限設定値を越える場合、電力調整部は該電流値が上限設定値以下である場合よりも大幅に供給電力を抑制する構成であってもよい。或いは、電力調整部は供給電力を0にする構成であってもよい。 In the above power control device, when the current value of the received power is larger than the target current value and exceeds the upper limit set value below the breaking current value, the power adjustment unit is much larger than when the current value is less than or equal to the upper limit set value. Alternatively, the power supply may be suppressed. Alternatively, the power adjustment unit may be configured to reduce the supplied power to zero.
 上記の電力制御装置において、電力調整部は、受電電力の電流値が目標電流値を越えると判定される超過回数が設定回数を越えると、供給電力を抑制する構成であってもよい。 In the above-described power control device, the power adjustment unit may be configured to suppress the supplied power when the number of times that the current value of the received power exceeds the target current value exceeds the set number.
 上記の電力制御装置において、回路遮断器の温度を検出する温度検出部をさらに備え、電力調整部はさらに温度検出部の検出結果に基づいて供給電力を抑制する構成であってもよい。 The above power control apparatus may further include a temperature detection unit that detects the temperature of the circuit breaker, and the power adjustment unit may further suppress supply power based on a detection result of the temperature detection unit.
 上記の電力制御装置において、供給電力の調整条件を設定する条件設定部をさらに備え、条件設定部は回路遮断器の温度上昇に応じて目標電流値を低くする構成であってもよい。或いは、条件設定部は回路遮断器の温度上昇に応じて設定回数を小さくする構成であってもよい。若しくは、条件設定部は回路遮断器の温度上昇に応じて供給電力の抑制量を増大させる構成であってもよい。 The power control apparatus may further include a condition setting unit that sets a supply power adjustment condition, and the condition setting unit may be configured to lower the target current value in accordance with a temperature rise of the circuit breaker. Alternatively, the condition setting unit may be configured to reduce the set number of times according to the temperature rise of the circuit breaker. Alternatively, the condition setting unit may be configured to increase the suppression amount of the supplied power in accordance with the temperature rise of the circuit breaker.
 上記の電力制御装置において、回路遮断器が受電電力を遮断する毎に供給電力の抑制に関する条件を記録する遮断履歴情報を記憶部に格納する履歴格納部をさらに備え、電力調整部はさらに遮断履歴情報に基づいて供給電力を抑制する構成であってもよい。 In the above power control device, the power control unit further includes a history storage unit that stores, in the storage unit, cutoff history information that records conditions relating to suppression of supplied power every time the circuit breaker cuts off the received power, and the power adjustment unit further includes a cutoff history The structure which suppresses supply electric power based on information may be sufficient.
 上記の電力制御装置において、遮断履歴情報は回路遮断器が受電電力を遮断した遮断日時を記録し、電力調整部はさらに遮断日時に基づいて供給電力を抑制する構成であってもよい。 In the above power control apparatus, the interruption history information may record a cutoff date and time when the circuit breaker cuts off the received power, and the power adjustment unit may further suppress supply power based on the cutoff date and time.
 上記目的を達成するために本発明の一の態様による電力制御システムは、遮断電流値以上の電流が流れると通電路を遮断する回路遮断器と、回路遮断器を介して電力源から受電する受電電力を分電する分電部と、電力負荷と、分電部から出力される電力を用いて電力負荷に供給電力を供給する電力制御装置と、受電電力の電流値を計測する電流計測部と、を備え、受電電力の電流値が遮断電流値未満の目標電流値を越えると、電力制御装置は供給電力を抑制する構成とされる。 In order to achieve the above object, a power control system according to an aspect of the present invention includes a circuit breaker that cuts off an energization path when a current equal to or greater than a breaking current value flows, and a power reception that receives power from a power source via the circuit breaker. A power distribution unit that distributes power; a power load; a power control device that supplies power to the power load using power output from the power distribution unit; and a current measurement unit that measures a current value of received power When the current value of the received power exceeds the target current value less than the cut-off current value, the power control device is configured to suppress the supplied power.
 上記の電力制御システムにおいて、電力制御装置と該電力制御装置により供給電力が調整される電力負荷とはそれぞれ複数であって、電力制御装置毎に供給電力の調整条件が異なる構成であってもよい。 In the above power control system, there may be a configuration in which there are a plurality of power control devices and power loads whose supply power is adjusted by the power control devices, and the adjustment conditions of the supply power are different for each power control device. .
 本発明によると、回路遮断器が受電電力を遮断する頻度を十分に低減できる電力制御装置、及びこれを備える電力制御システムを提供することができる。 According to the present invention, it is possible to provide a power control device that can sufficiently reduce the frequency with which a circuit breaker cuts off received power, and a power control system including the power control device.
第1実施形態に係るV2Hシステムの一例を示す概略構成図である。It is a schematic structure figure showing an example of a V2H system concerning a 1st embodiment. 第1実施形態においてEVを蓄電する場合のPCSの電力制御処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the power control process of PCS in the case of electrically storing EV in 1st Embodiment. 第1実施形態における電力制御の一例を示すグラフである。It is a graph which shows an example of electric power control in a 1st embodiment. 第1実施形態の第1変形例におけるPCSの電力制御方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the power control method of PCS in the 1st modification of 1st Embodiment. 第1実施形態の第1変形例における電力制御の一例を示すグラフである。It is a graph which shows an example of electric power control in the 1st modification of a 1st embodiment. 第1実施形態の第1変形例におけるPCSの電力制御方法の他の一例を説明するためのフローチャートである。It is a flowchart for demonstrating another example of the power control method of PCS in the 1st modification of 1st Embodiment. 第1実施形態の第2変形例におけるPCSの電力制御方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the power control method of PCS in the 2nd modification of 1st Embodiment. 第2実施形態に係るV2Hシステムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the V2H system which concerns on 2nd Embodiment. 第3実施形態において検出温度が10℃である場合の電力制御の一例を示すグラフである。It is a graph which shows an example of electric power control in case detection temperature is 10 ° C in a 3rd embodiment. 第3実施形態において検出温度が40℃である場合の電力制御の一例を示すグラフである。It is a graph which shows an example of electric power control in case detection temperature is 40 ° C in a 3rd embodiment. 第3実施形態に係るV2Hシステムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the V2H system which concerns on 3rd Embodiment. 第3実施形態に係るV2Hシステムの他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the V2H system which concerns on 3rd Embodiment. 第3実施形態に係るV2Hシステムの他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the V2H system which concerns on 3rd Embodiment. 直近の単位時間内の遮断回数に対して設定される目標電流値を示すグラフである。It is a graph which shows the target electric current value set with respect to the frequency | count of interruption | blocking in the latest unit time. 第4実施形態に係るV2Hシステムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the V2H system which concerns on 4th Embodiment. 第4実施形態における電力制御の一例を示すグラフである。It is a graph which shows an example of electric power control in a 4th embodiment.
 以下に図面を参照して本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
<第1実施形態>
 図1は、第1実施形態に係るV2H(Vehicle to Home)システム100の一例を示す概略構成図である。V2Hシステム100は、自動車が備える蓄電装置に蓄えた電力をシステム内の他の電力負荷Lに供給できる電力システムである。このような自動車としては、たとえば、図1の符号L1で示すEV(Electric Vehicle:電気自動車)、PHV(Plug-in Hybrid Vehicle:プラグインハイブリッド自動車)、FCV(Fuel Cell Vehicle:燃料電池車)などを挙げることができる。
<First Embodiment>
FIG. 1 is a schematic configuration diagram illustrating an example of a V2H (Vehicle to Home) system 100 according to the first embodiment. The V2H system 100 is an electric power system that can supply electric power stored in a power storage device included in an automobile to another electric power load L in the system. Examples of such vehicles include EV (Electric Vehicle: electric vehicle), PHV (Plug-in Hybrid Vehicle), FCV (Fuel Cell Vehicle: fuel cell vehicle), etc., which are indicated by reference numeral L1 in FIG. Can be mentioned.
 また、V2Hシステム100は、受電点(不図示)を介して商用電力系統E(すなわち外部の電力源)と接続され、商用電力系統Eから受電する電力Waを電力負荷Lに供給する。なお、以下では、商用電力系統Eから受電する電力Wa及びその電流Ia(又はその値)をそれぞれ受電電力Wa、受電電流Ia(又は受電電流値Ia)と呼ぶ。また、電力負荷LはEV L1と電力消費負荷L2とを含んで構成されている。EV L1は、消費電力(すなわち蓄電に要する電力)の設定が可変な電力可変負荷であり、電力の蓄放電機能を有する蓄電装置(不図示)を備えている。電力消費負荷L2は、家庭用電気機器などの電力消費のみを行う電気機器である。 Further, the V2H system 100 is connected to the commercial power system E (that is, an external power source) via a power receiving point (not shown), and supplies the power Wa received from the commercial power system E to the power load L. Hereinafter, the power Wa received from the commercial power system E and its current Ia (or its value) are referred to as the received power Wa and the received current Ia (or the received current value Ia), respectively. Moreover, the electric power load L is comprised including EV L1 and the electric power consumption load L2. The EV L1 is a power variable load in which setting of power consumption (that is, power required for power storage) is variable, and includes a power storage device (not shown) having a power storage / discharge function. The power consumption load L2 is an electric device that performs only power consumption, such as a home electric device.
 商用電力系統E及びV2Hシステム100間を接続する主幹通電路P1には電流センサ101が取り付けられている。この電流センサ101は、商用電力系統Eから受電する受電電流値Iaを計測する電流計測部であり、その計測結果を示す電流計測信号をパワーコンディショナ1に出力する。なお、以下では、パワーコンディショナ1をPCS(Power Conditioning System)1と呼ぶ。また、電流センサ101は、特に限定しないが、CT(Current Transfer;変流器)、ホール素子、シャント(分流器)などを用いることができる。 A current sensor 101 is attached to the main energizing path P1 connecting the commercial power system E and the V2H system 100. The current sensor 101 is a current measurement unit that measures a received current value Ia received from the commercial power system E, and outputs a current measurement signal indicating the measurement result to the power conditioner 1. Hereinafter, the power conditioner 1 is referred to as PCS (Power Conditioning System) 1. In addition, the current sensor 101 is not particularly limited, but a CT (Current Transfer), a Hall element, a shunt (current shunt), or the like can be used.
 主幹通電路P1を通じて受電する受電電力Waは、分電盤102で分電され、分岐通電路P2を通じて電力負荷Lに配電される。この分電盤102は、主幹ブレーカ103と、分岐ブレーカ104と、を含んで構成される分電部である。 The received power Wa received through the main energization path P1 is divided by the distribution board 102 and distributed to the power load L through the branch energization path P2. The distribution board 102 is a power distribution unit that includes a main breaker 103 and a branch breaker 104.
 主幹ブレーカ103は、主幹通電路P1に接続される回路遮断器であり、主幹通電路P1の電気的な接続の開閉機構を有する引外し装置(不図示)を含んで構成されている。この引外し装置は、受電電流値Iaが閾値Ic以下の場合には主幹通電路P1をオン状態にしているが、受電電流値Iaが閾値Icを越える場合には主幹通電路P1をオフ状態にして受電電力Waを遮断する。以下では主幹ブレーカ103の閾値Icを遮断電流値Icと呼ぶ。この遮断電流値Icは、主幹ブレーカ103の仕様によって固有の電流値である。主幹ブレーカ103の仕様はV2Hシステム100の所有者(すなわち電力需要家)及び電力供給事業者間の契約内容に応じて決定される。 The main breaker 103 is a circuit breaker connected to the main energization path P1, and includes a tripping device (not shown) having an open / close mechanism for electrically connecting the main energization path P1. In this trip device, the main energization path P1 is turned on when the received current value Ia is equal to or less than the threshold value Ic, but the main energization path P1 is turned off when the received current value Ia exceeds the threshold value Ic. The received power Wa is cut off. Hereinafter, the threshold value Ic of the main breaker 103 is referred to as a cut-off current value Ic. This cut-off current value Ic is a specific current value depending on the specifications of the main breaker 103. The specifications of the main breaker 103 are determined according to the contract contents between the owner of the V2H system 100 (that is, the electric power consumer) and the electric power supplier.
 分岐ブレーカ104は、分電盤102内で分電された電力が流れる分岐通電路P2に接続される分電遮断器である。分岐ブレーカ104は、分岐通電路P2を流れる電力の電流値が閾値を越える場合にその電力を遮断する。この閾値も分岐ブレーカ104の仕様によって固有の電流値である。 The branch breaker 104 is a distribution breaker connected to the branch energization path P <b> 2 through which the electric power divided in the distribution board 102 flows. The branch breaker 104 cuts off the electric power when the current value of the electric power flowing through the branch energization path P2 exceeds a threshold value. This threshold value is also a specific current value depending on the specifications of the branch breaker 104.
 また、分電盤102内で分電された電力の一部はPCS1を介してEV L1に供給される。PCS1は、EV L1に供給する電力及びEV L1が備える蓄電装置の蓄放電機能などを制御する電力制御装置である。なお、以下では、EV L1に供給する電力Ws及びその電流Is(又はその値)をそれぞれ供給電力Ws、供給電流Isと呼ぶ。 Further, a part of the power divided in the distribution board 102 is supplied to the EV L1 through the PCS1. The PCS 1 is a power control device that controls the power supplied to the EV L1, the storage / discharge function of the power storage device provided in the EV L1, and the like. Hereinafter, the electric power Ws supplied to the EV L1 and the current Is (or the value thereof) are referred to as the supplied electric power Ws and the supplied electric current Is, respectively.
 次に、PCS1の具体的な構成を説明する。PCS1は、図1に示すように、双方向インバータ11と、双方向DC/DCコンバータ12と、入力部13と、メモリ14と、制御ユニット15と、を含んで構成されている。このほか、PCS1は表示部(不図示)などを含んでいてもよい。 Next, a specific configuration of the PCS 1 will be described. As shown in FIG. 1, the PCS 1 includes a bidirectional inverter 11, a bidirectional DC / DC converter 12, an input unit 13, a memory 14, and a control unit 15. In addition, the PCS 1 may include a display unit (not shown).
 双方向インバータ11は、制御ユニット15から出力される制御信号に基づいて交流/直流電力変換又は直流/交流電力変換を行う双方向電力変換部であり、バスラインBLを介して双方向DC/DCコンバータ12と接続される。なお、このバスラインBLには平滑コンデンサ(不図示)が接続されている。たとえば双方向インバータ11は、図1の方向Aに電力変換する場合、分電盤102から配電される交流電力を直流電力に変換してバスラインBLに出力する。また、双方向インバータ11は、方向Bに電力変換する場合、バスラインBLを流れる直流電力を交流電力に変換して分岐通電路P2を通じて分電盤102に出力する。双方向インバータ11の電力変換方向A、Bの切り替え及び各方向A、Bの電力変換量は制御ユニット15により制御される。 The bidirectional inverter 11 is a bidirectional power converter that performs AC / DC power conversion or DC / AC power conversion based on a control signal output from the control unit 15, and is bidirectional DC / DC via the bus line BL. Connected to the converter 12. A smoothing capacitor (not shown) is connected to the bus line BL. For example, when the bidirectional inverter 11 performs power conversion in the direction A of FIG. 1, the AC power distributed from the distribution board 102 is converted into DC power and output to the bus line BL. When the bidirectional inverter 11 performs power conversion in the direction B, the direct-current power flowing through the bus line BL is converted into alternating current power and output to the distribution board 102 through the branch energization path P2. Switching of the power conversion directions A and B of the bidirectional inverter 11 and the amount of power conversion in each direction A and B are controlled by the control unit 15.
 双方向DC/DCコンバータ12は、制御ユニット15から出力される制御信号に基づいて直流/直流電力変換を行う直流電力変換部であり、バスラインBL及びEV L1間に接続される。たとえば双方向DC/DCコンバータ12は、図1の方向aに電力変換する場合、バスラインBLを流れる直流電力をEV L1の仕様に応じた電圧値又は電流値の直流電力に変換してEV L1に出力する。また、双方向DC/DCコンバータ12は、方向bに電力変換する場合、EV L1から出力される放電電力を双方向インバータ11の仕様に応じた電圧値又は電流値の直流電力に変換してバスラインBLに出力する。双方向DC/DCコンバータ12の電力変換方向a、bの切り替え及び各方向a、bの電力変換量は制御ユニット15により制御される。 The bidirectional DC / DC converter 12 is a DC power conversion unit that performs DC / DC power conversion based on a control signal output from the control unit 15, and is connected between the bus line BL and the EV L1. For example, when the bidirectional DC / DC converter 12 performs power conversion in the direction a in FIG. 1, the direct current power flowing through the bus line BL is converted into direct current power having a voltage value or a current value according to the specification of the EV L1, and the EV L1. Output to. In addition, when the bidirectional DC / DC converter 12 performs power conversion in the direction b, the discharge power output from the EV L1 is converted into direct current power having a voltage value or a current value according to the specification of the bidirectional inverter 11, and a bus. Output to line BL. Switching of the power conversion directions a and b of the bidirectional DC / DC converter 12 and the amount of power conversion in each direction a and b are controlled by the control unit 15.
 入力部13は、ユーザの操作入力を受け付け、該操作入力に基づく入力信号を制御ユニット15に出力する。 The input unit 13 receives a user operation input and outputs an input signal based on the operation input to the control unit 15.
 メモリ14はデータを非一過性に格納する不揮発性の記憶媒体である。メモリ14はたとえばPCS1の構成要素(特に制御ユニット15)で用いられるプログラム及び制御情報などを格納する。また、メモリ14は、V2Hシステム100の構成要素に関する情報、たとえば主幹ブレーカ103の遮断電流値Ic、分岐ブレーカ104の閾値、及び受電電力Waの制御に関する情報(後述する目標電流値It、超過回数nの閾値m)なども格納する。 The memory 14 is a non-volatile storage medium that stores data non-temporarily. The memory 14 stores, for example, programs and control information used by the components of the PCS 1 (particularly the control unit 15). Further, the memory 14 stores information related to the components of the V2H system 100, for example, information related to the control of the cutoff current value Ic of the main breaker 103, the threshold value of the branch breaker 104, and the received power Wa (a target current value It described below, the number n of excesses). The threshold value m) is also stored.
 制御ユニット15は、メモリ14に格納されたプログラム及び制御情報などを用いてPCS1の各構成要素を制御する制御部である。制御ユニット15は機能的な構成要素として判定部151と電力調整部152とを含んで構成されている。 The control unit 15 is a control unit that controls each component of the PCS 1 using a program and control information stored in the memory 14. The control unit 15 includes a determination unit 151 and a power adjustment unit 152 as functional components.
 判定部151は電流計測信号が示す受電電流値Iaと比較値とを比較して様々な判定を行う。この比較値は、メモリ14に格納された値(目標電流値It、後述する上限設定値Iu、遮断電流値Icなど)、EV L1の許容供給電流値(すなわち供給電流Isの最大値又は定格値)などである。たとえば、判定部151は、受電電流値Iaと目標電流値Itとを比較し、受電電流値Iaが目標電流値Itを越えるか否かを判定する。 The determination unit 151 performs various determinations by comparing the received current value Ia indicated by the current measurement signal with the comparison value. This comparison value is a value stored in the memory 14 (target current value It, upper limit set value Iu, cutoff current value Ic, etc. described later), EV L1 allowable supply current value (that is, maximum value or rated value of supply current Is) ) Etc. For example, the determination unit 151 compares the received current value Ia with the target current value It, and determines whether or not the received current value Ia exceeds the target current value It.
 電力調整部152は、主幹ブレーカ103の遮断動作を防止すべく、双方向インバータ11をPWM制御してEV L1に供給する供給電力Wsを受電電流値Iaに基づいて調整する。この供給電力Wsの調整に応じて、受電電力Waの受電電流値Iaは制御されて遮断電流値Ic未満の範囲内で連続的に変化する。 The power adjustment unit 152 adjusts the supplied power Ws supplied to the EV L1 by PWM control of the bidirectional inverter 11 based on the received current value Ia in order to prevent the main breaker 103 from being cut off. In response to the adjustment of the supplied power Ws, the received current value Ia of the received power Wa is controlled and continuously changes within a range less than the cutoff current value Ic.
 たとえば、電力調整部152は、供給電流Isを調整し、その調整量に応じて受電電流値Iaを比例制御する。この比例制御により、受電電流値Iaは、遮断電流値Ic未満且つ目標電流値Itが中心値となる数値範囲内において目標電流値Itに向かって変化するように制御される。即ち、受電電流値Iaは、供給電流Isの抑制量に応じて該数値範囲内で連続的に減少し、供給電流Isの増加量(軽減された抑制量)に応じて該数値範囲内で連続的に増加する。この目標電流値Itは遮断電流値Icに第1安全係数S1(0<S1<1.0)を掛けた値に設定される。従って、受電電流値Iaが目標電流値Itよりも高い場合にはEV L1への供給電力Wsを抑制すべく、受電電流値Ia及び目標電流値Itの差に応じて供給電流Isを低減する。また、受電電流値Iaが目標電流値Itよりも低い場合には供給電力WsをEV L1の許容供給電力値(すなわち最大又は定格の供給電力Ws)まで増加させるべく、供給電流Isを増加する。 For example, the power adjustment unit 152 adjusts the supply current Is and proportionally controls the received current value Ia according to the adjustment amount. By this proportional control, the received current value Ia is controlled so as to change toward the target current value It within a numerical range that is less than the cut-off current value Ic and the target current value It is the central value. That is, the received current value Ia continuously decreases within the numerical range according to the suppression amount of the supply current Is, and continuously within the numerical range according to the increase amount (reduced suppression amount) of the supply current Is. Increase. This target current value It is set to a value obtained by multiplying the breaking current value Ic by the first safety factor S1 (0 <S1 <1.0). Therefore, when the received current value Ia is higher than the target current value It, the supply current Is is reduced according to the difference between the received current value Ia and the target current value It so as to suppress the supply power Ws to the EV L1. When the received current value Ia is lower than the target current value It, the supply current Is is increased in order to increase the supply power Ws to the allowable supply power value of EV L1 (that is, the maximum or rated supply power Ws).
 次に、PCS1による電力制御処理を説明する。図2は、第1実施形態においてEV L1を蓄電する場合のPCS1の電力制御処理の一例を説明するためのフローチャートである。 Next, power control processing by the PCS 1 will be described. FIG. 2 is a flowchart for explaining an example of the power control process of the PCS 1 when the EV L1 is stored in the first embodiment.
 まず、電流センサ101により受電電流値Iaが計測され(ステップS101)、受電電流値Iaが目標電流値Itを越えるか否かが判定される(ステップS102)。一方、受電電流値Iaが目標電流値Itを越えると判定される場合(ステップS102でYES)、EV L1への供給電流Isを減少させて受電電流Iaを比例制御する(ステップS104)。そして、処理はステップS101に戻る。 First, the received current value Ia is measured by the current sensor 101 (step S101), and it is determined whether or not the received current value Ia exceeds the target current value It (step S102). On the other hand, when it is determined that the received current value Ia exceeds the target current value It (YES in step S102), the supplied current Is to the EV L1 is decreased to proportionally control the received current Ia (step S104). Then, the process returns to step S101.
 一方、受電電流値Iaが目標電流値Itを越えると判定されない場合(ステップS102でNO)、受電電流値Iaが目標電流値Itを下回るか否かが判定される(ステップ110)。受電電流値Iaが目標電流値Itを下回ると判定されない場合(ステップS110でNO)、処理はステップS101に戻る。一方、受電電流値Iaが目標電流値Itを下回ると判定される場合(ステップS110でYES)、EV L1の供給電力Wsが許容供給電力値を下回るか否かが判定される(ステップS111)。なお、この判定は、供給電流Isの値が許容供給電流値を下回るか否かで判定されてもよいし、PCS1により供給電力Wsの値に基づいて判定されてもよい。 On the other hand, when it is not determined that the received current value Ia exceeds the target current value It (NO in step S102), it is determined whether the received current value Ia is lower than the target current value It (step 110). If it is not determined that the received current value Ia is lower than the target current value It (NO in step S110), the process returns to step S101. On the other hand, when it is determined that the received current value Ia is lower than the target current value It (YES in step S110), it is determined whether or not the supply power Ws of the EV L1 is lower than the allowable supply power value (step S111). This determination may be made based on whether or not the value of the supply current Is is lower than the allowable supply current value, or may be determined by the PCS 1 based on the value of the supply power Ws.
 供給電力Wsが許容供給電力値を下回ると判定されない場合(ステップS111でNO)、処理はステップS101に戻る。一方、供給電力Wsが許容供給電力値を下回ると判定される場合(ステップS111でYES)、EV L1への供給電流Isを増加させて受電電流Iaを比例制御する(ステップS112)。そして、処理はステップS101に戻る。 If it is not determined that the supplied power Ws is lower than the allowable supply power value (NO in step S111), the process returns to step S101. On the other hand, when it is determined that the supplied power Ws is lower than the allowable supply power value (YES in step S111), the supply current Is to the EV L1 is increased to proportionally control the received current Ia (step S112). Then, the process returns to step S101.
 次に、図2の処理に従う電力制御例を説明する。図3は、第1実施形態における電力制御の一例を示すグラフである。なお、図3では、所定時間毎に受電電流値Iaをモニタしているが、このモニタの時間間隔は特に限定しない。また、この例示に限定されず、受電電流値Iaは連続的にモニタされていてもよい。これらは他の図(たとえば後述する図5、図9A、図9B、及び図14)でも同様である。 Next, an example of power control according to the process of FIG. 2 will be described. FIG. 3 is a graph illustrating an example of power control in the first embodiment. In FIG. 3, the received current value Ia is monitored every predetermined time, but the time interval of this monitoring is not particularly limited. Moreover, it is not limited to this illustration, The received electric current value Ia may be monitored continuously. These are the same in other figures (for example, FIG. 5, FIG. 9A, FIG. 9B, and FIG. 14 described later).
 図3では、電力消費負荷L2の消費電力は時点t1~t6間では増加している。時点t1~t3では、受電電流値Iaが目標電流値Itを下回っているが、供給電流Isは許容供給電力値に対応するEV L1の許容供給電流値に達しているために増加していない。 In FIG. 3, the power consumption of the power consumption load L2 increases between time points t1 and t6. From time t1 to time t3, the received current value Ia is lower than the target current value It, but the supply current Is has not increased because it has reached the allowable supply current value of EV L1 corresponding to the allowable supply power value.
 時点t4にて受電電流値Iaが目標電流値Itを越えると、PCS1は供給電力Wsを抑制すべく供給電流Isを減少させる。時点t5及びt6のようにIa>Itの状態が継続すると、PCS1は供給電流Isをさらに減少させる。時点t7にて受電電流値Iaが目標電流値It未満になると、PCS1は供給電力Wsの抑制を軽減すべく供給電流Isを増加させる。時点t8にて、受電電流値Iaが再び目標電流値Itを越えると、PCS1は供給電力Wsを抑制すべく供給電流Isを減少させる。以降の時点t9~t11では同様の比例制御が行われ、受電電力Waは受電電流値Iaが目標電流値It付近を推移又は目標電流値Itに収束するように制御される。 When the received current value Ia exceeds the target current value It at time t4, the PCS 1 decreases the supply current Is to suppress the supply power Ws. If the state of Ia> It continues at time t5 and t6, the PCS1 further decreases the supply current Is. When the received current value Ia becomes less than the target current value It at time t7, the PCS 1 increases the supply current Is in order to reduce the suppression of the supply power Ws. When the received current value Ia again exceeds the target current value It at time t8, the PCS 1 decreases the supply current Is in order to suppress the supply power Ws. From time t9 to t11 thereafter, similar proportional control is performed, and the received power Wa is controlled so that the received current value Ia changes in the vicinity of the target current value It or converges to the target current value It.
 以上、本実施形態によれば、電力制御装置1は、遮断電流値Ic以上の電流が流れると通電路P1を遮断する回路遮断器103を介して電力源Eから受電する受電電力Waを分電する分電部102から出力される電力を用いて電力負荷L1に供給電力Wsを供給する電力制御装置1であって、電流計測部101により計測される受電電力Waの電流値Iaは遮断電流値Ic未満の目標電流値Itを越えるか否かを判定する判定部151と、判定部151にて電流値Iaが目標電流値Itを越えると判定される場合に供給電力Wsを抑制する電力調整部152と、を備える構成とされる。 As described above, according to the present embodiment, the power control device 1 distributes the received power Wa received from the power source E via the circuit breaker 103 that cuts off the energization path P1 when a current greater than or equal to the cutoff current value Ic flows. The power control device 1 supplies the supply power Ws to the power load L1 using the power output from the power distribution unit 102, and the current value Ia of the received power Wa measured by the current measurement unit 101 is the cutoff current value A determination unit 151 that determines whether or not a target current value It that is less than Ic is exceeded, and a power adjustment unit that suppresses the supplied power Ws when the determination unit 151 determines that the current value Ia exceeds the target current value It. 152.
 また、本実施形態によれば、電力制御システム100は、遮断電流値Ic以上の電流が流れると通電路P1を遮断する回路遮断器103と、回路遮断器103を介して電力源Eから受電する受電電力Waを分電する分電部102と、電力負荷L1と、分電部102から出力される電力を用いて電力負荷L1に供給電力Wsを供給する電力制御装置1と、受電電力Waの電流値Iaを計測する電流計測部101と、を備え、受電電力Waの電流値Iaが遮断電流値Ic未満の目標電流値Itを越えると、電力制御装置1は供給電力Wsを抑制する構成とされる。 In addition, according to the present embodiment, the power control system 100 receives power from the power source E via the circuit breaker 103 and the circuit breaker 103 that breaks the energization path P <b> 1 when a current greater than or equal to the breaking current value Ic flows. The power distribution unit 102 that divides the received power Wa, the power load L1, the power control device 1 that supplies the supplied power Ws to the power load L1 using the power output from the power distribution unit 102, and the received power Wa A current measuring unit 101 that measures the current value Ia, and when the current value Ia of the received power Wa exceeds a target current value It that is less than the cutoff current value Ic, the power control device 1 suppresses the supplied power Ws. Is done.
 これらの構成によれば、受電電力Waの電流値Iaが目標電流値Itを越えると、電力負荷L1に供給される供給電力Wsが抑制される。そのため、受電電力Waの電流値Iaを低減して遮断電流値Icを越えないようにすることができる。或いは、電流値Iaが遮断電流値Icを越える電流超過時間を極力小さくすることができる。従って、回路遮断器103の遮断動作を抑制又は防止することができる。また、このような電力調整は受電電力Waの電流値Iaに基づいて行われるため、電力源Eが電圧変動したり受電電力Waの力率が低くなったりしても、電力調整が電力値に基づいて行われる場合と比べてより正確に回路遮断器103の遮断を抑制又は防止することができる。よって、回路遮断器103が受電電力Waを遮断する頻度を十分に低減することができる。 According to these configurations, when the current value Ia of the received power Wa exceeds the target current value It, the supplied power Ws supplied to the power load L1 is suppressed. Therefore, the current value Ia of the received power Wa can be reduced so as not to exceed the cutoff current value Ic. Alternatively, the current excess time during which the current value Ia exceeds the breaking current value Ic can be minimized. Therefore, the breaking operation of the circuit breaker 103 can be suppressed or prevented. In addition, since such power adjustment is performed based on the current value Ia of the received power Wa, even if the power source E fluctuates in voltage or the power factor of the received power Wa decreases, the power adjustment becomes the power value. It is possible to suppress or prevent the circuit breaker 103 from being interrupted more accurately than in the case where it is performed based on the above. Therefore, the frequency with which the circuit breaker 103 interrupts the received power Wa can be sufficiently reduced.
 さらに、電力制御装置1は、HEMS(Home Energy Management System)などを介することなく、最短の経路で受電電力Waの電流値Iaを取得して供給電力Wsを抑制できる。そのため、電流値Iaの取得から供給電力Wsの抑制までの応答時間を極力短くすることができる。 Furthermore, the power control apparatus 1 can suppress the supplied power Ws by acquiring the current value Ia of the received power Wa through the shortest path without using a HEMS (Home Energy Management System) or the like. Therefore, the response time from the acquisition of the current value Ia to the suppression of the supplied power Ws can be shortened as much as possible.
 上記の電力制御装置1において、電力調整部152は、供給電力Wsの抑制により受電電力Waの電流値Iaを遮断電流値Ic未満の所定値Itに向かって変化させる構成としてもよい。 In the power control device 1 described above, the power adjustment unit 152 may be configured to change the current value Ia of the received power Wa toward the predetermined value It less than the cut-off current value Ic by suppressing the supplied power Ws.
 この構成によれば、受電電力Waの電流値Iaが所定値It付近を推移又は該所定値Itに収束するように制御して遮断電流値Icを越えないようにすることができる。また、受電電力Waの電流値Iaのハンチングを抑制して滑らかに変化させることもできる。 According to this configuration, it is possible to prevent the current value Ia of the received power Wa from changing over the vicinity of the predetermined value It or to converge to the predetermined value It so as not to exceed the cut-off current value Ic. In addition, hunting of the current value Ia of the received power Wa can be suppressed and smoothly changed.
(第1実施形態の第1変形例)
 なお、PCS1による電力制御処理は、目標電流値Itと、該目標電流値Itよりも大きく且つ遮断電流値Ic以下に設定された電流値Iuとを用いて行われてもよい。なお、以下ではこの電流値Iuを上限設定値Iuと呼ぶ。すなわち、この電力制御処理は、受電電流値Iaと目標電流値It及び上限設定値Iuとの比較結果に応じて行われてもよい。この場合、上限設定値Iuは、遮断電流値Icに第2安全係数S2(S1<S2<1)を掛けた値に設定される。或いは、契約電力に応じた電流値(すなわち主幹ブレーカ103の遮断電流値Icであり、S2=1.0の場合)であってよい。
(First modification of the first embodiment)
Note that the power control process by the PCS 1 may be performed using the target current value It and a current value Iu that is set to be larger than the target current value It and equal to or less than the cutoff current value Ic. Hereinafter, this current value Iu is referred to as an upper limit set value Iu. That is, this power control process may be performed according to a comparison result between the received current value Ia, the target current value It, and the upper limit set value Iu. In this case, the upper limit set value Iu is set to a value obtained by multiplying the breaking current value Ic by the second safety coefficient S2 (S1 <S2 <1). Alternatively, it may be a current value corresponding to the contract power (that is, the cutoff current value Ic of the main breaker 103 and S2 = 1.0).
 図4は、第1実施形態の第1変形例におけるPCS1の電力制御方法の一例を説明するためのフローチャートである。なお、図4において、図3と同様の処理については同じ符号を付し、その説明を省略することがある。 FIG. 4 is a flowchart for explaining an example of the power control method of the PCS 1 in the first modification of the first embodiment. In FIG. 4, the same processes as those in FIG. 3 are denoted by the same reference numerals, and the description thereof may be omitted.
 図4において、電流センサ101により計測された受電電流値Iaが目標電流値Itを越えると判定される場合(ステップS102でYES)、受電電流値Iaが上限設定値Iuを越えるか否かが判定される(ステップS103)、受電電流値Iaが上限設定値Iuを越えると判定されない場合(ステップS103でNO)、EV L1への供給電流Isを減少させて受電電流Iaを比例制御する(ステップS104)。そして、処理はステップS101に戻る。 In FIG. 4, when it is determined that the received current value Ia measured by the current sensor 101 exceeds the target current value It (YES in step S102), it is determined whether the received current value Ia exceeds the upper limit set value Iu. If it is not determined that the received current value Ia exceeds the upper limit set value Iu (NO in step S103), the supply current Is to the EV L1 is decreased to proportionally control the received current Ia (step S104). ). Then, the process returns to step S101.
 一方、受電電流値Iaが上限設定値Iuを越えると判定される場合(ステップS103でYES)、供給電流Isが0に設定される(ステップS107)。そして、処理はステップS101に戻る。 On the other hand, when it is determined that the received current value Ia exceeds the upper limit set value Iu (YES in step S103), the supply current Is is set to 0 (step S107). Then, the process returns to step S101.
 次に、図4の処理に従う電力制御例を説明する。図5は、第1実施形態の第1変形例における電力制御の一例を示すグラフである。図5では、電力消費負荷L2の消費電力は、時点t1から時点t6迄の間では増加している。時点t4にて受電電流値Iaが上限設定値Iuを越えると、PCS1は供給電流Isを0に設定して供給電力Wsを0にする。時点t5及びt6のようにIa<Itになると、PCS1は供給電力Wsの抑制を軽減すべく供給電流Isを増加させる。時点t7にて、受電電流値Iaが目標電流値Itを越えると、PCS1は供給電力Wsを抑制すべく供給電流Isを減少させる。以降の時点t8~t11では同様の電力制御が行われ、受電電力Waは受電電流値Iaが目標電流値It付近を推移又は目標電流値Itに収束するように制御される。 Next, an example of power control according to the process of FIG. 4 will be described. FIG. 5 is a graph illustrating an example of power control in the first modification of the first embodiment. In FIG. 5, the power consumption of the power consumption load L2 increases from the time point t1 to the time point t6. When the received current value Ia exceeds the upper limit set value Iu at time t4, the PCS 1 sets the supply current Is to 0 and sets the supply power Ws to 0. When Ia <It as at time points t5 and t6, the PCS1 increases the supply current Is in order to reduce the suppression of the supply power Ws. When the received current value Ia exceeds the target current value It at time t7, the PCS 1 decreases the supply current Is to suppress the supply power Ws. Similar power control is performed at subsequent times t8 to t11, and the received power Wa is controlled so that the received current value Ia changes in the vicinity of the target current value It or converges to the target current value It.
 なお、受電電流値Iaが上限設定値Iuを越える場合に供給電流Isから減じられる電流調整量(すなわち電流抑制量)は、図4のステップS107及び図5の時点t5では供給電流Isと同じ電流削減量ΔIu(=Is)に設定されているが、電流削減量ΔIuはこの例示に限定されない。電流削減量ΔIuは、0より大きく供給電流Is未満の電流削減量(すなわち0<ΔIu<Is)に設定されてもよい。さらに、この電流削減量ΔIuは、It<Ia<Iuである場合の電流調整量よりも大きい。こうすれば、受電電流値Iaが上限設定値Iuを越える場合に供給電流Isをより大幅に抑制できる。従って、受電電流値Iaが遮断電流値Icを越えることをより確実に抑制又は防止することができる。 Note that the current adjustment amount (that is, the current suppression amount) subtracted from the supply current Is when the power reception current value Ia exceeds the upper limit set value Iu is the same current as the supply current Is at step S107 in FIG. 4 and time t5 in FIG. Although the reduction amount ΔIu (= Is) is set, the current reduction amount ΔIu is not limited to this example. The current reduction amount ΔIu may be set to a current reduction amount that is greater than 0 and less than the supply current Is (that is, 0 <ΔIu <Is). Further, the current reduction amount ΔIu is larger than the current adjustment amount in the case of It <Ia <Iu. In this way, when the power reception current value Ia exceeds the upper limit set value Iu, the supply current Is can be more significantly suppressed. Therefore, it is possible to more reliably suppress or prevent the power reception current value Ia from exceeding the cutoff current value Ic.
 図6は、第1実施形態の第1変形例におけるPCS1の電力制御方法の他の一例を説明するためのフローチャートである。なお、図6において、図3又は図4と同様の処理については同じ符号を付し、その説明を省略することがある。 FIG. 6 is a flowchart for explaining another example of the power control method of the PCS 1 in the first modification of the first embodiment. In FIG. 6, the same processes as those in FIG. 3 or FIG. 4 are denoted by the same reference numerals, and the description thereof may be omitted.
 図6において、受電電流値Iaが上限設定値Iuを越えると判定される場合(ステップS103でYES)、電流削減量ΔIuに応じて供給電流Isは減少され(ステップS108)、処理はステップS101に戻る。 In FIG. 6, when it is determined that the received current value Ia exceeds the upper limit set value Iu (YES in step S103), the supply current Is is decreased according to the current reduction amount ΔIu (step S108), and the process proceeds to step S101. Return.
 以上の第1変形例によれば、電力制御装置1は、電流値Iaが目標電流値Itよりも大きく且つ遮断電流値Ic以下の上限設定値Iuを越える場合、電力調整部152は該電流値Iaが上限設定値Iu以下である場合よりも大幅に供給電力Wsを抑制する構成としてもよい。或いは、電力調整部152は供給電力Wsを0にする構成としてもよい。 According to the first modification described above, when the current value Ia exceeds the upper limit set value Iu that is larger than the target current value It and less than or equal to the cut-off current value Ic, the power control unit 152 It is good also as a structure which suppresses supply electric power Ws significantly compared with the case where Ia is below upper limit setting value Iu. Alternatively, the power adjustment unit 152 may be configured to reduce the supplied power Ws to zero.
 この構成によれば、目標電流値Itを越えた受電電力Waの電流値Iaがさらに上限設定値Iuを越えて遮断電流値Icに近づく場合には、供給電力Wsをさらに低減又は0にして、受電電力Waの電流値Iaを大幅に低下させることができる。従って、回路遮断器103が受電電力Waを遮断する頻度をより低減することができる。 According to this configuration, when the current value Ia of the received power Wa exceeding the target current value It further exceeds the upper limit set value Iu and approaches the cutoff current value Ic, the supply power Ws is further reduced or reduced to 0, The current value Ia of the received power Wa can be greatly reduced. Therefore, the frequency with which the circuit breaker 103 interrupts the received power Wa can be further reduced.
(第1実施形態の第2変形例)
 PCS1による供給電力Wsの抑制は、第1変形例では受電電力Iaの電流値が上限設定値Iuを越えると直ちに行われている。すなわち、該抑制は、受電電流値Iaが上限設定値Iuを越える超過回数nが1回になると行われているが、超過回数nが複数回になると行われてもよい。図7は、第1実施形態の第2変形例におけるPCS1の電力制御方法の一例を説明するためのフローチャートである。なお、図7の開始時において超過回数nは0に設定されている。また、図7において、図3又は図4若しくは図6と同様の処理については同じ符号を付し、その説明を省略することがある。
(Second modification of the first embodiment)
In the first modified example, suppression of the supplied power Ws by the PCS 1 is performed immediately when the current value of the received power Ia exceeds the upper limit set value Iu. In other words, the suppression is performed when the excess number n in which the power receiving current value Ia exceeds the upper limit set value Iu is one, but may be performed when the excess number n is a plurality of times. FIG. 7 is a flowchart for explaining an example of the power control method of the PCS 1 in the second modification of the first embodiment. The excess number n is set to 0 at the start of FIG. In FIG. 7, the same processing as that in FIG. 3, FIG. 4, or FIG.
 図7において、電流センサ101により計測された受電電流値Iaが上限設定値Iuを越えると判定される場合(ステップS103でYES)、超過回数nに1が加算され(ステップS105)、超過回数nが予め設定された設定回数m(mは2以上の整数)に達したか否かが判定される(ステップS106)。超過回数nが設定回数mに達したと判定されない場合(ステップS106でNO)、ステップS104が行われた後、処理はステップS101に戻る。 In FIG. 7, when it is determined that the received current value Ia measured by the current sensor 101 exceeds the upper limit set value Iu (YES in step S103), 1 is added to the excess number n (step S105), and the excess number n Whether or not has reached a preset number of times m (m is an integer of 2 or more) is determined (step S106). If it is not determined that the excess number n has reached the set number m (NO in step S106), the process returns to step S101 after step S104 is performed.
 一方、超過回数nが設定回数mに達したと判定される場合(ステップS106でYES)、ステップS107において供給電流Isが0に設定される。なお、ステップS107に代えて、図6のステップS108と同様の処理がIa<Iuとなるまで行われてもよい。その後に、超過回数nがリセットされて0に設定され(ステップS109)、処理はステップS101に戻る。 On the other hand, when it is determined that the excess number n has reached the set number m (YES in step S106), the supply current Is is set to 0 in step S107. Instead of step S107, the same processing as step S108 in FIG. 6 may be performed until Ia <Iu. Thereafter, the excess number n is reset and set to 0 (step S109), and the process returns to step S101.
 以上の第2変形例によれば、電力制御装置1において、電力調整部152は、電流値Iaが目標電流値Itを越えると判定される超過回数nが設定回数mを越えると、供給電力Wsを抑制する構成としてもよい。 According to the second modification described above, in the power control apparatus 1, the power adjustment unit 152 causes the supplied power Ws to be supplied when the excess number n determined that the current value Ia exceeds the target current value It exceeds the set number m. It is good also as a structure which suppresses.
 この構成によれば、設定回数mの数値の増加に応じて、回路遮断器103が受電電力Waを遮断する可能性は高くなるが、供給電力Wsが抑制される頻度を低減することができる。従って、受電電力Waの遮断を抑制しつつ、電力可変負荷L1に安定した電力を供給することができる。 According to this configuration, the possibility that the circuit breaker 103 cuts off the received power Wa increases with an increase in the numerical value of the set number m, but the frequency at which the supplied power Ws is suppressed can be reduced. Therefore, stable power can be supplied to the power variable load L1 while suppressing interruption of the received power Wa.
<第2実施形態>
 次に、第2実施形態について説明する。第2実施形態では、V2Hシステム100は主幹ブレーカ103の温度を検出する温度センサ105をさらに備える。そして、温度センサ105の検出結果に基づいて供給電力Wsの電力制御条件(PCS1による供給電流Isの調整条件)が決定される。これ以外は、第1実施形態と同様である。以下では、第1実施形態と異なる構成について説明する。また、第1実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
Second Embodiment
Next, a second embodiment will be described. In the second embodiment, the V2H system 100 further includes a temperature sensor 105 that detects the temperature of the main breaker 103. Based on the detection result of the temperature sensor 105, the power control condition of the supply power Ws (adjustment condition of the supply current Is by the PCS 1) is determined. The rest is the same as in the first embodiment. Hereinafter, a configuration different from the first embodiment will be described. Moreover, the same code | symbol is attached | subjected to the structure part similar to 1st Embodiment, and the description may be abbreviate | omitted.
 図8は、第2実施形態に係るV2Hシステム100の一例を示す概略構成図である。このV2Hシステム100では、分電盤102の内部において主幹ブレーカ103の筐体(不図示)又はその周辺に温度センサ105が配置される。この温度センサ105は、主幹ブレーカ103の温度を検出する温度検出部であり、その検出結果を温度検出信号としてPCS1に出力する。 FIG. 8 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the second embodiment. In the V2H system 100, a temperature sensor 105 is arranged in the casing (not shown) of the main breaker 103 or in the vicinity thereof inside the distribution board 102. The temperature sensor 105 is a temperature detection unit that detects the temperature of the main breaker 103, and outputs the detection result to the PCS 1 as a temperature detection signal.
 また、メモリ14は供給電力Wsの調整条件が主幹ブレーカ103の温度毎に設定されたデータテーブルを格納し、PCS1の制御ユニット15はその機能的要素として条件設定部153を含んでいる。条件設定部153は温度検出信号及びデータテーブルに基づいて供給電力Wsの調整条件を決定する。条件設定部153により決定される調整条件は、温度検出信号が示す検出温度が高くなるほど厳格化される。 Further, the memory 14 stores a data table in which the adjustment condition of the supplied power Ws is set for each temperature of the main breaker 103, and the control unit 15 of the PCS 1 includes a condition setting unit 153 as a functional element. The condition setting unit 153 determines an adjustment condition for the supplied power Ws based on the temperature detection signal and the data table. The adjustment condition determined by the condition setting unit 153 becomes stricter as the detected temperature indicated by the temperature detection signal becomes higher.
 なお、主幹ブレーカ103の遮断動作の動作特性は温度変化の影響により引外し装置の構造に応じて変化する。たとえば、引き外し装置が熱動式であれば、主幹ブレーカ103の遮断閾値Icは、周囲温度が高くなるほど減少し、周囲温度が低くなるほど増加する。また、引き外し装置が電磁式であれば、受電電流Iaが遮断閾値Icを超えた時点から引外し装置が受電電流Iaを遮断する時点までの動作時間は、周囲温度が高くなるほど短くなり、周囲温度が低くなるほど長くなる。また、半導体式の引き外し装置では、熱動式及び電磁式と比べて温度変化の影響は少ないが、装置内の回路構成に応じて遮断閾値Ic及び動作時間が変化する。このような主幹ブレーカ103の動作特性の変化に対応するため、供給電力Wsの電力制御条件(調整条件)は温度センサ105の検出結果に応じて変更される。 Note that the operating characteristics of the shut-off operation of the main breaker 103 change according to the structure of the trip device due to the influence of temperature change. For example, if the tripping device is a thermal type, the cutoff threshold value Ic of the main breaker 103 decreases as the ambient temperature increases and increases as the ambient temperature decreases. If the tripping device is electromagnetic, the operation time from the time when the receiving current Ia exceeds the cutoff threshold Ic to the time when the tripping device cuts off the receiving current Ia becomes shorter as the ambient temperature becomes higher. The lower the temperature, the longer. Further, in the semiconductor tripping device, the influence of the temperature change is less than that in the thermal type and the electromagnetic type, but the cutoff threshold value Ic and the operation time change according to the circuit configuration in the device. In order to cope with such a change in operating characteristics of the main breaker 103, the power control condition (adjustment condition) of the supplied power Ws is changed according to the detection result of the temperature sensor 105.
 たとえば、目標電流値Itは主幹ブレーカ103の温度上昇に応じて低く設定される。図9Aは、第3実施形態において検出温度が10℃である場合の電力制御の一例を示すグラフである。また、図9Bは、第3実施形態において検出温度が40℃である場合の電力制御の一例を示すグラフである。受電電流値Iaは、図9Aでは55[A]に設定された目標電流値It1付近を推移又は収束するように制御され、図9Bでは45[A]に設定された目標電流値It2付近を推移又は収束するように制御されている。すなわち、主幹ブレーカ103の温度が上昇すると、遮断電流値Ic及び目標電流値Itの差は拡張されるが、図9A及び図9Bに示すように、受電電流値Iaはより低い電流値付近を推移又はより低い電流値に収束する。従って、主幹ブレーカ103の温度が高いほど、受電電流値Iaは主幹ブレーカ103の遮断電流値Icを越えにくくなる。 For example, the target current value It is set low as the temperature of the main breaker 103 increases. FIG. 9A is a graph showing an example of power control when the detected temperature is 10 ° C. in the third embodiment. FIG. 9B is a graph showing an example of power control when the detected temperature is 40 ° C. in the third embodiment. The received current value Ia is controlled so as to shift or converge around the target current value It1 set to 55 [A] in FIG. 9A, and transition around the target current value It2 set to 45 [A] in FIG. 9B. Or it is controlled to converge. That is, when the temperature of the main breaker 103 rises, the difference between the cut-off current value Ic and the target current value It is expanded, but as shown in FIGS. 9A and 9B, the received current value Ia changes around a lower current value. Or it converges to a lower current value. Therefore, the higher the temperature of the main breaker 103, the more difficult the received current value Ia exceeds the cutoff current value Ic of the main breaker 103.
 なお、図9A及び図9Bでは温度変化に応じて目標電流値Itが変更されるが、変更される調整条件はこの例示に限定されない。たとえば、温度上昇に応じて、供給電流Isの1回の電流調整量を増加させてもよい。又は、上限設定値Iuが設定される場合には、上限設定値Iuが温度上昇に応じて低くなるように設定されてもよい。超過回数nが複数回に達すると供給電力Wsの電力制御を開始する場合には、温度上昇に応じて超過回数nの閾値mが少なくなるように設定されてもよい。なお、これらの調整条件は、いずれかを選択又は組み合わせて設定できる。 9A and 9B, the target current value It is changed according to the temperature change, but the adjustment condition to be changed is not limited to this example. For example, the current adjustment amount for one time of the supply current Is may be increased in accordance with the temperature rise. Alternatively, when the upper limit set value Iu is set, the upper limit set value Iu may be set so as to decrease as the temperature rises. When the power control of the supplied power Ws is started when the excess number n reaches a plurality of times, the threshold value m for the excess number n may be set to decrease as the temperature rises. Note that any of these adjustment conditions can be selected or combined.
 以上、本実施形態によれば、電力制御装置1は、回路遮断器103の温度を検出する温度検出部105をさらに備え、電力調整部152はさらに温度検出部105の検出結果に基づいて供給電力Wsを抑制する構成とされる。 As described above, according to the present embodiment, the power control device 1 further includes the temperature detection unit 105 that detects the temperature of the circuit breaker 103, and the power adjustment unit 152 further supplies power based on the detection result of the temperature detection unit 105. It is set as the structure which suppresses Ws.
 この構成によれば、温度上昇に応じた動作特性の変化に起因する回路遮断器103の遮断頻度を低下させることができる。回路遮断器103又はその周囲の温度が上昇すると、回路遮断器103の種類に応じて遮断時間、遮断電流値Icなどの動作特性が変化する。そのため、回路遮断器103の温度上昇に応じて、供給電力Wsをより厳格な条件で抑制することにより動作特性の変化に起因する回路遮断器103の遮断を抑制又は防止することができる。 According to this configuration, it is possible to reduce the breaking frequency of the circuit breaker 103 due to the change in the operating characteristics according to the temperature rise. When the temperature of the circuit breaker 103 or its surroundings increases, the operating characteristics such as the breaking time and the breaking current value Ic change according to the type of the circuit breaker 103. Therefore, it is possible to suppress or prevent the circuit breaker 103 from being interrupted due to a change in operating characteristics by suppressing the supply power Ws under more severe conditions in accordance with the temperature rise of the circuit breaker 103.
 上記の電力制御装置1において、供給電力Wsの調整条件を設定する条件設定部153をさらに備え、条件設定部153は回路遮断器103の温度上昇に応じて目標電流値Itを低くする構成としてもよい。また、条件設定部153は回路遮断器103の温度上昇に応じて設定回数mを小さくする構成としてもよい。また、条件設定部153は回路遮断器103の温度上昇に応じて供給電力Wsの抑制量を増大させる構成としてもよい。 The power control apparatus 1 may further include a condition setting unit 153 that sets an adjustment condition for the supplied power Ws, and the condition setting unit 153 may be configured to reduce the target current value It according to the temperature rise of the circuit breaker 103. Good. Further, the condition setting unit 153 may be configured to reduce the set number m in accordance with the temperature rise of the circuit breaker 103. In addition, the condition setting unit 153 may be configured to increase the suppression amount of the supplied power Ws according to the temperature rise of the circuit breaker 103.
 これらの構成によれば、回路遮断器103の温度上昇に応じて、目標電流値Itを低くしたり、設定回数mを小さくしたり、供給電力Wsの抑制量を増大させたりすることができる。 According to these configurations, the target current value It can be lowered, the set number m can be reduced, or the amount of suppression of the supplied power Ws can be increased in accordance with the temperature rise of the circuit breaker 103.
<第3実施形態>
 次に、第3実施形態について説明する。第3実施形態では、主幹ブレーカ103の遮断が発生する回数に応じて供給電力Wsの電力制御条件(PCS1による供給電流Isの調整条件)が決定される。これ以外は、第1実施形態と同様である。以下では、第1実施形態と異なる構成について説明する。また、第1及び第2実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Third Embodiment>
Next, a third embodiment will be described. In the third embodiment, the power control condition of the supply power Ws (adjustment condition of the supply current Is by the PCS 1) is determined according to the number of times that the main breaker 103 is interrupted. The rest is the same as in the first embodiment. Hereinafter, a configuration different from the first embodiment will be described. Moreover, the same code | symbol is attached | subjected to the component similar to 1st and 2nd embodiment, and the description may be abbreviate | omitted.
 図10は、第3実施形態に係るV2Hシステム100の一例を示す概略構成図である。このV2Hシステム100では主幹通電路P1において、受電電力Waの受電状態を監視する受電監視部106が主幹ブレーカ103の前段に配置される。また、PCS1にはタイマ16が設けられる。タイマ16は所定の時点からの経過時間及び現在時刻などを計時する計時部である。 FIG. 10 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the third embodiment. In the V2H system 100, a power reception monitoring unit 106 that monitors the power reception state of the received power Wa is arranged in the front stage of the main circuit breaker 103 in the main power supply path P <b> 1. The PCS 1 is provided with a timer 16. The timer 16 is a time measuring unit that measures an elapsed time from a predetermined time, a current time, and the like.
 受電監視部106は、商用電力系統Eの停電(瞬停を含む)を検知して、その検知結果を示す停電検出信号をPCS1に出力する。この受電監視部106は、停電検知器であってもよいし、受電点の電位を検出する電圧計であってもよい。また、受電監視部106は、図10のようにPCS1に外付けされていてもよいし、PCS1に内蔵されていてもよい。 The power reception monitoring unit 106 detects a power failure (including a momentary power failure) in the commercial power system E, and outputs a power failure detection signal indicating the detection result to the PCS 1. The power reception monitoring unit 106 may be a power failure detector or a voltmeter that detects the potential of a power reception point. Further, the power reception monitoring unit 106 may be externally attached to the PCS 1 as illustrated in FIG. 10 or may be incorporated in the PCS 1.
 PCS1の判定部151は、停電検出信号及び電流計測信号に基づいて主幹ブレーカ103が受電電力Waの遮断動作をしたか否かを判定する。たとえば、停電検出信号が停電を示さず且つ電流計測信号が0でない場合、判定部151は主幹ブレーカ103が遮断動作をしていないと判定する。また、停電検出信号が停電を示さず且つ電流計測信号が0である場合、判定部151は主幹ブレーカ103が遮断動作をしていると判定する。なお、停電検出信号が停電を示す場合、判定部151は商用電力系統Eが停電していると判定する。 The determination unit 151 of the PCS 1 determines whether or not the main breaker 103 has performed the operation of cutting off the received power Wa based on the power failure detection signal and the current measurement signal. For example, when the power failure detection signal does not indicate a power failure and the current measurement signal is not 0, the determination unit 151 determines that the main breaker 103 is not performing a cutoff operation. Moreover, when the power failure detection signal does not indicate a power failure and the current measurement signal is 0, the determination unit 151 determines that the main breaker 103 is performing a shut-off operation. When the power failure detection signal indicates a power failure, the determination unit 151 determines that the commercial power system E has a power failure.
 なお、受電電力Waの受電状態を監視する構成は、図10の例示に限定されない。図11A及び図11Bは、第3実施形態に係るV2Hシステム100の他の一例を示す概略構成図である。たとえば、図11Aに示すように受電監視部106が主幹ブレーカ103の前段及び後段に接続されていてもよいし、主幹ブレーカ103の前段及び後段のそれぞれに個別の受電監視部106が設けられていてもよい。こうすれば、主幹ブレーカ103に入力される受電電力Waに加えて、主幹ブレーカ103から出力される受電電力Waも監視できる。或いは、図11Bに示すように、V2Hシステム100は、主幹ブレーカ103の遮断動作を監視する遮断監視部107を備えていてもよい。遮断監視部107は引外し装置と連動する補助接点ユニット(不図示)を有し、補助接点ユニットの状態(導通状態であるか否かなど)に基づいて主幹ブレーカ103の遮断動作を判別してその判別結果をPCS1に出力する。また、遮断監視部107は、図11BのようにPCS1に外付けされていてもよいし、PCS1に内蔵されていてもよい。こうすれば、V2Hシステム100(特に主幹通電路P1)に太陽光発電ユニット及びガス発電ユニットなどの他の電力源(不図示)が接続されていても、商用電力系統Eの停電(瞬停を含む)をより確実に検知できる。従って、商用電力系統Eの停電の有無に関わらず、主幹ブレーカ103が遮断動作をしたか否かをより正確に判定することができる。 Note that the configuration for monitoring the power receiving state of the received power Wa is not limited to the example shown in FIG. 11A and 11B are schematic configuration diagrams illustrating another example of the V2H system 100 according to the third embodiment. For example, as shown in FIG. 11A, the power reception monitoring unit 106 may be connected to the front stage and the rear stage of the main breaker 103, and the individual power reception monitoring unit 106 is provided in each of the front stage and the rear stage of the main breaker 103. Also good. In this way, in addition to the received power Wa input to the main breaker 103, the received power Wa output from the main breaker 103 can also be monitored. Alternatively, as illustrated in FIG. 11B, the V2H system 100 may include a cutoff monitoring unit 107 that monitors the cutoff operation of the main breaker 103. The interruption monitoring unit 107 has an auxiliary contact unit (not shown) linked to the tripping device, and determines the interruption operation of the main breaker 103 based on the state of the auxiliary contact unit (whether it is in a conductive state or the like). The discrimination result is output to PCS1. Moreover, the interruption | blocking monitoring part 107 may be externally attached to PCS1 like FIG. 11B, and may be incorporated in PCS1. In this way, even if other power sources (not shown) such as a solar power generation unit and a gas power generation unit are connected to the V2H system 100 (particularly the main power supply path P1), a power failure (instantaneous power failure) of the commercial power system E can be achieved. Can be detected more reliably. Therefore, it can be more accurately determined whether or not the main breaker 103 has performed the shut-off operation regardless of whether or not the commercial power system E has a power failure.
 次に、PCS1の制御ユニット15はその機能的要素として条件設定部153と履歴格納部154とを含んでいる。履歴格納部154は、判定部151にて主幹ブレーカ103が遮断動作をしたと判定されると、主幹ブレーカ103の遮断履歴情報をメモリ14に格納する。この遮断履歴情報には、主幹ブレーカ103の遮断時点の日時と、V2Hシステム100の状態(たとえば、目標電流値It及び上限設定値Iuなどの供給電力Wsの調整条件、主幹ブレーカ103の温度)とが遮断時点毎に記録される。 Next, the control unit 15 of the PCS 1 includes a condition setting unit 153 and a history storage unit 154 as functional elements. When the determination unit 151 determines that the main breaker 103 has performed a blocking operation, the history storage unit 154 stores the blocking history information of the main breaker 103 in the memory 14. The shut-off history information includes the date and time when the main breaker 103 is shut off, the state of the V2H system 100 (for example, the adjustment conditions of the supplied power Ws such as the target current value It and the upper limit set value Iu, and the temperature of the main breaker 103). Is recorded at each shut-off time.
 主幹ブレーカ103が復旧して受電電力Waの受電が再び開始されると、条件設定部153は遮断履歴情報に基づいて供給電力Wsの調整条件(たとえば目標電流値It)を再設定する。図12は、直近の単位時間内の遮断回数に対して設定される目標電流値Itを示すグラフである。なお、単位時間は特に限定されず、たとえば1年、1ヶ月、1週間などに設定できる。図12では単位時間を1年に設定し、主幹ブレーカ103の直近の遮断時点から1年以内の遮断回数に応じて受電電流値Iaの目標電流値Itを設定している。図12に示すように、目標電流値Itは、遮断回数が多いほどより低く設定され、遮断回数が少ないほどより高く設定される。 When the main breaker 103 is restored and the reception of the received power Wa is started again, the condition setting unit 153 resets the adjustment condition (for example, the target current value It) of the supplied power Ws based on the cutoff history information. FIG. 12 is a graph showing the target current value It set for the number of interruptions within the latest unit time. The unit time is not particularly limited, and can be set to one year, one month, one week, etc., for example. In FIG. 12, the unit time is set to one year, and the target current value It of the receiving current value Ia is set according to the number of times of interruption within one year from the most recent interruption time of the main breaker 103. As shown in FIG. 12, the target current value It is set lower as the number of interruptions is larger, and is set higher as the number of interruptions is smaller.
 目標電流値Itが低く設定されるほど、受電電流値Iaがより低い値を推移又は収束するように供給電力Wsが制御される。従って、遮断回数の増加に応じて目標電流値Itを低く再設定すれば、受電電流値Iaが主幹ブレーカ103の遮断電流値Icを越えにくくなるため、主幹ブレーカ103による受電電力Waの遮断を抑制することができる。 As the target current value It is set lower, the supplied power Ws is controlled so that the received current value Ia changes or converges to a lower value. Therefore, if the target current value It is reset to a lower value as the number of interruptions increases, the reception current value Ia will not easily exceed the interruption current value Ic of the main breaker 103, so that the interruption of the incoming electric power Wa by the main breaker 103 is suppressed. can do.
 また、目標電流値Itが高く設定されるほど、受電電流値Iaがより高い値を推移又は収束するように供給電力Wsが制御される。従って、遮断回数の減少に応じて目標電流値Itを高く再設定すれば、主幹ブレーカ103が遮断動作を行う可能性は高くなるが、V2Hシステム100内で受電して使用できる受電電力Waを契約電力に近づけて増加させることができる。 Further, as the target current value It is set higher, the supplied power Ws is controlled so that the received current value Ia changes or converges to a higher value. Accordingly, if the target current value It is reset to a higher value in accordance with the decrease in the number of interruptions, the possibility of the main breaker 103 performing the interruption operation is increased, but the received electric power Wa that can be received and used in the V2H system 100 is contracted. It can be increased closer to the power.
 なお、再設定の内容は、図12の例示に限定されない。たとえば、供給電力Wsの調整条件(電力制御条件)は、直近の遮断時点からその前の時点までの時間間隔の長さに応じて再設定されてもよい。また、再設定される供給電力Wsの調整条件は、上限設定値Iuであってもよいし、1回の電流調整値であってもよいし、供給電力Wsの電力制御処理が開始される超過回数nの閾値mであってもよい。なお、これらの条件は、いずれかを選択又は組み合わせて再設定できる。 Note that the content of the resetting is not limited to the example of FIG. For example, the adjustment condition (power control condition) of the supplied power Ws may be reset according to the length of the time interval from the most recent interruption time point to the previous time point. Further, the adjustment condition of the supplied power Ws to be reset may be the upper limit set value Iu, a single current adjustment value, or the excess of the power control process for the supplied power Ws being started. It may be a threshold value m of the number of times n. These conditions can be reset by selecting or combining any of these conditions.
 以上、本実施形態によれば、電力制御装置1は、回路遮断器103が受電電力Waを遮断する毎に供給電力Wsの抑制に関する条件を記録する遮断履歴情報を記憶部14に格納する履歴格納部154をさらに備え、電力調整部152はさらに遮断履歴情報に基づいて供給電力Wsを抑制する構成とされる。 As described above, according to the present embodiment, the power control device 1 stores the history information for storing the interruption history information that records the conditions regarding the suppression of the supplied power Ws every time the circuit breaker 103 interrupts the received power Wa in the storage unit 14. The power adjustment unit 152 is further configured to suppress the supplied power Ws based on the cutoff history information.
 この構成によれば、電力需要家毎に異なる環境の差異の影響をあまり受けることなく、回路遮断器103の遮断頻度を低下させることができる。たとえば、回路遮断器103及び電力可変負荷L1の仕様及び使用環境は電力需要家毎に異なる。そのため、供給電力Wsの抑制条件に対する回路遮断器103の遮断特性(たとえば遮断動作の発生し易さ)は一様ではない。従って、遮断履歴情報に基づいて回路遮断器103の遮断特性に応じた供給電力Wsを抑制することにより、回路遮断器103の遮断頻度をより効果的に低減することができる。 According to this configuration, it is possible to reduce the breaking frequency of the circuit breaker 103 without being greatly affected by the difference in environment that differs for each power consumer. For example, the specifications and usage environment of the circuit breaker 103 and the variable power load L1 are different for each power consumer. For this reason, the circuit breaker 103 has a non-uniform shut-off characteristic (for example, the ease of occurrence of a shut-off operation) with respect to the suppression condition of the supplied power Ws. Therefore, the frequency of interruption of the circuit breaker 103 can be more effectively reduced by suppressing the supplied power Ws corresponding to the interruption characteristic of the circuit breaker 103 based on the interruption history information.
 上記の電力制御装置1において、遮断履歴情報は回路遮断器103が受電電力Waを遮断した遮断日時を記録し、電力調整部152はさらに遮断日時に基づいて供給電力Wsを抑制する構成としてもよい。 In the power control apparatus 1 described above, the interruption history information may record the cutoff date and time when the circuit breaker 103 cuts off the received power Wa, and the power adjustment unit 152 may further suppress the supplied power Ws based on the cutoff date and time. .
 この構成によれば、たとえば直近の単位時間以内の遮断回数、又は、直近の遮断日時の時間間隔などに基づいて、供給電力Wsを抑制することができる。 According to this configuration, the supplied power Ws can be suppressed based on, for example, the number of interruptions within the latest unit time or the time interval of the most recent interruption date and time.
<第4実施形態>
 次に、第4実施形態について説明する。第4実施形態では、V2Hシステム100に互いに通信可能なPCS1と該PCS1により電力制御される電力可変負荷とが複数配置される。これ以外は、第1実施形態と同様である。以下では、第1~第3実施形態と異なる構成について説明する。また、第1~第3実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Fourth embodiment>
Next, a fourth embodiment will be described. In the fourth embodiment, a plurality of PCSs 1 capable of communicating with each other and a variable power load controlled by the PCS 1 are arranged in the V2H system 100. The rest is the same as in the first embodiment. Hereinafter, a configuration different from the first to third embodiments will be described. The same components as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
 図13は、第4実施形態に係るV2Hシステム100の一例を示す概略構成図である。このV2Hシステム100には2つのPCS1a、1bが配置され、各PCS1a、1bにはそれぞれ互いに有線通信又は無線通信を行う通信部17が備えられている。また、各PCS1a、1bには順位が設定され、各PCS1a、1bはこの順位に応じて供給電力Wsの調整条件を決定する。たとえば図13では、EV L1が接続されたPCS1aが最上位(1st)に設定され、電力の蓄放電機能を有する蓄電ユニットL3が接続されたPCS1bがその次の位(2nd)に設定されている。2ndのPCS1bには1stのPCS1aよりも厳格な調整条件が適用される。 FIG. 13 is a schematic configuration diagram illustrating an example of the V2H system 100 according to the fourth embodiment. Two PCSs 1a and 1b are arranged in the V2H system 100, and each PCS 1a and 1b is provided with a communication unit 17 that performs wired communication or wireless communication with each other. In addition, ranks are set for the PCSs 1a and 1b, and the PCSs 1a and 1b determine the adjustment condition of the supplied power Ws according to the ranks. For example, in FIG. 13, the PCS 1a to which the EV L1 is connected is set to the top (1st), and the PCS 1b to which the power storage unit L3 having a power storage / discharge function is connected is set to the next (2nd). . Stricter adjustment conditions are applied to the 2nd PCS 1b than to the 1st PCS 1a.
 図14は、第4実施形態における電力制御の一例を示すグラフである。図14では、PCS1bの目標電流値Itb(45[A])はPCS1aの目標電流値Ita(55[A])よりも小さい値に設定されている。また、電力消費負荷L2の消費電力は、時点t1~t6では増加しているが、時点t6~t11ではあまり変動していない。 FIG. 14 is a graph showing an example of power control in the fourth embodiment. In FIG. 14, the target current value Itb (45 [A]) of the PCS 1 b is set to a value smaller than the target current value Ita (55 [A]) of the PCS 1 a. In addition, the power consumption of the power consumption load L2 increases from time t1 to t6, but does not vary much from time t6 to t11.
 まず、時点t1では、受電電流値Iaが目標電流値Ita、Itbを越えない。そのため、各PCS1a、1bは、供給電力Wsを制限することなく電力可変負荷(EV L1、蓄電ユニットL3に供給できる。従って、これらへの供給電流Isはそれぞれ調整されずに電力可変負荷L1,L3の各許容供給電力値に応じた電流値となっている。 First, at time t1, the received current value Ia does not exceed the target current values Ita and Itb. Therefore, each PCS 1a, 1b can be supplied to the variable power load (EV L1, power storage unit L3 without limiting the supplied power Ws. Therefore, the supply current Is to these is not adjusted, and the variable power loads L1, L3 are not adjusted respectively. The current value corresponds to each allowable supply power value.
 時点t2~t4では受電電流値Iaは目標電流値Ita未満であり、時点t5でIa>Itaとなる。従って、PCS1aは時点t2~t5の間では、供給電力Wsを制限することなくEV L1に供給できるので、供給電流Isを調整しない。一方、PCS1bは、時点t2にて受電電流値Iaが目標電流値Itbを越えるため、蓄電ユニットL3への供給電力Wsの制限を開始し、その供給電流Isを減少させる。時点t3のようにItb<Ia<Itaの状態が継続される場合、PCS1bは蓄電ユニットL3への供給電流Isをさらに減少させる。時点t4のように受電電流値Iaが目標電流値Itb以下になると、時点t5のようにPCS1bは供給電流Isを増加させる。 From time t2 to t4, the received current value Ia is less than the target current value Ita, and Ia> Ita at time t5. Therefore, since the PCS 1a can supply the EV L1 without limiting the supply power Ws between the time points t2 and t5, the supply current Is is not adjusted. On the other hand, since the received current value Ia exceeds the target current value Itb at the time point t2, the PCS 1b starts limiting the supply power Ws to the power storage unit L3 and decreases the supply current Is. When the state of Itb <Ia <It is continued at time t3, the PCS 1b further reduces the supply current Is to the power storage unit L3. When the received current value Ia becomes equal to or less than the target current value Itb at time t4, the PCS 1b increases the supply current Is at time t5.
 さらに時点t5では、電力消費負荷L2の消費電力及び蓄電ユニットL3の供給電流Isの増加によりIa>Itaとなるため、PCS1aは供給電力Wsの抑制を開始する。 Further, at time t5, since Ia> Ita is satisfied due to the increase in the power consumption of the power consumption load L2 and the supply current Is of the power storage unit L3, the PCS 1a starts suppressing the supply power Ws.
 時点t6では、各PCS1a、1bが各供給電流Isを減少させることにより、Itb<Ia<Itaとなる。従って、時点t7では、PCS1aは供給電流Isを増加させ、PCS1bは供給電流Isを減少させる。時点t7のようにItb<Ia<Itaの状態が継続される場合、PCS1aは供給電流Isをさらに増加させ、PCS1bは供給電流Isをさらに減少させる。時点t8では、Ia>Ita>Itbとなるため、各PCS1a、1bが各供給電流Isを減少させる。 At time t6, the PCSs 1a and 1b decrease the supply current Is, whereby Itb <Ia <It. Accordingly, at time t7, the PCS 1a increases the supply current Is, and the PCS 1b decreases the supply current Is. When the state of Itb <Ia <Ita continues at time t7, PCS1a further increases the supply current Is and PCS1b further decreases the supply current Is. At time t8, since Ia> Ita> Itb, each PCS 1a, 1b decreases each supply current Is.
 時点t9~t11では、Itb<Ia<Itaとなるため、PCS1aは供給電流Isをさらに増加させてEV L1への供給電力Wsの抑制を軽減し、PCS1bは供給電流Isをさらに減少させる。 From time t9 to t11, Itb <Ia <Ita, so the PCS 1a further increases the supply current Is to reduce the suppression of the supply power Ws to the EV L1, and the PCS 1b further decreases the supply current Is.
 上述のように各PCS1a、1bに順位を設定すると、V2Hシステム100に配置される複数の電力可変負荷(EV L1、蓄電ユニットL3)はそれぞれ、自身に接続されるPCS1の順位に応じて優先順位付けされる。たとえば、図14では、EV L1は1stに順位付けされ、蓄電ユニットL3は2ndに順位付けされる。従って、各電力可変負荷L1、L3は自身の優先順位に応じた順番で電力制御される。よって、V2Hシステム100は安定した動作を実現することができる。一方、たとえば各PCS1a、1bに順位を設定しなければ、各PCS1a、1bの目標電流値Itが同じになる場合がある。この場合、各PCS1a、1bは同時に電力制御を行うため、受電電流値Iaの調整量は倍化して増大する。従ってV2Hシステム100の電力制御が不安定になるという問題が生じる。 As described above, when ranks are set for the PCSs 1a and 1b, a plurality of variable power loads (EV L1 and power storage units L3) arranged in the V2H system 100 are prioritized according to the ranks of the PCSs 1 connected to the PCSs 1a and 1b. Attached. For example, in FIG. 14, EV L1 is ranked 1st, and power storage unit L3 is ranked 2nd. Accordingly, each of the variable power loads L1 and L3 is subjected to power control in an order corresponding to its own priority. Therefore, the V2H system 100 can realize a stable operation. On the other hand, for example, if no order is set for each of the PCSs 1a and 1b, the target current values It may be the same for the PCSs 1a and 1b. In this case, since the PCSs 1a and 1b perform power control at the same time, the adjustment amount of the received current value Ia is doubled and increased. Therefore, there arises a problem that the power control of the V2H system 100 becomes unstable.
 なお、図14では供給電力Wsの目標電流値Itを再設定しているが、再設定される条件はこれらの例示に限定されない。たとえば、再設定される条件は、上限設定値Iu(図5参照)であってもよいし、電流調整値の大きさであってもよい。これらの条件は、いずれかを選択又は組み合わせて再設定できる。 In FIG. 14, the target current value It of the supplied power Ws is reset, but the resetting conditions are not limited to these examples. For example, the reset condition may be the upper limit set value Iu (see FIG. 5) or the magnitude of the current adjustment value. These conditions can be reset by selecting or combining any of them.
 以上、本実施形態によれば、電力制御システム100において、電力制御装置1a、1bと該電力制御装置1a、1bにより供給電力Wsが調整される電力可変負荷L1、L3とはそれぞれ複数であって、電力制御装置1a、1b毎に供給電力Wsの調整条件が異なる構成とされる。 As described above, according to the present embodiment, in the power control system 100, the power control apparatuses 1a and 1b and the power variable loads L1 and L3 whose supply power Ws is adjusted by the power control apparatuses 1a and 1b are plural. The adjustment conditions for the supplied power Ws are different for each of the power control devices 1a and 1b.
 この構成によれば、複数の電力可変負荷L1、L3を配置しても、各電力可変負荷L1、L3は、自身に接続される電力制御装置1a、1b毎に異なる条件で調整される。従って、各電力可変負荷L1、L3は安定した動作を実現することができる。また、調整条件の厳格な電力制御装置1ほど早期に供給電力Wsを調整するため、供給電力Wsが調整される電力可変負荷L1、L3の優先順位付けをすることができる。 According to this configuration, even if a plurality of variable power loads L1 and L3 are arranged, each variable power load L1 and L3 is adjusted under different conditions for each power control device 1a and 1b connected to itself. Therefore, each power variable load L1, L3 can realize a stable operation. In addition, since the power control device 1 with stricter adjustment conditions adjusts the supply power Ws earlier, it is possible to prioritize the power variable loads L1 and L3 whose supply power Ws is adjusted.
 以上、本発明の実施形態について説明した。なお、上述の実施形態は例示であり、その各構成要素及び各処理の組み合わせに色々な変形が可能であり、本発明の範囲にあることは当業者に理解されるところである。 The embodiment of the present invention has been described above. The above-described embodiment is an exemplification, and various modifications can be made to the combination of each component and each process, and it will be understood by those skilled in the art that it is within the scope of the present invention.
 たとえば、上述の第1~第4実施形態では、電力可変負荷の一例として蓄電装置を備えるEV L1を挙げているが、本発明はこの例示に限定されない。電力可変負荷は消費電力が可変に設定できる装置であればよい。また、電力可変負荷は蓄放電機能を有していなくてもよい。 For example, in the above-described first to fourth embodiments, the EV L1 including the power storage device is cited as an example of the variable power load, but the present invention is not limited to this example. The power variable load may be any device that can variably set the power consumption. Moreover, the power variable load may not have a storage / discharge function.
 また、上述の第1~第4実施形態では、受電電流値Ia及び供給電流Isの制御例として比例制御を挙げているが、本発明はこの例示に限定されない。受電電流値Ia及び供給電流Isの制御は、所定値(たとえば受電電流値Iaであれば目標電流値It又は上限設定値Iuなど)付近を推移、又は該所定値に収束する制御であればよく、たとえば微分制御、積分制御などを含むPID(Proportional-Integral-Derivative)制御であってもよい。受電電流値IaをPID制御すると、制御後の受電電流値Ia及び上記の所定値の偏差、積分、及び微分に基づいて受電電流値Iaが変化する。このようにしても、受電電流値Ia及び供給電流Isを上記所定値に向かって変化させることができる。従って、上記所定値付近を推移又は上記所定値に収束するように制御して受電電流値Iaが遮断電流値Icを越えないようにすることができる。また、受電電力Waの電流値Iaのハンチングを抑制して滑らかに変化させることもできる。 In the first to fourth embodiments described above, proportional control is cited as an example of control of the received current value Ia and the supply current Is, but the present invention is not limited to this example. The control of the received current value Ia and the supply current Is may be a control that changes around or converges to a predetermined value (for example, the target current value It or the upper limit set value Iu in the case of the received current value Ia). For example, PID (Proportional-Integral-Derivative) control including differential control and integral control may be used. When the received current value Ia is PID-controlled, the received current value Ia changes based on the received current value Ia after control and the deviation, integration, and differentiation of the predetermined value. Even in this case, the power reception current value Ia and the supply current Is can be changed toward the predetermined value. Therefore, it is possible to prevent the received current value Ia from exceeding the breaking current value Ic by controlling the vicinity of the predetermined value so as to change or converge to the predetermined value. In addition, hunting of the current value Ia of the received power Wa can be suppressed and smoothly changed.
 また、上述の第1~第4実施形態において、制御ユニット15の機能的な構成要素のうちの少なくとも一部又は全部は、物理的な構成要素(たとえば電気回路、素子、装置など)で実現されていてもよい。 In the first to fourth embodiments described above, at least some or all of the functional components of the control unit 15 are realized by physical components (for example, electric circuits, elements, devices, etc.). It may be.
 また、上述の第3実施形態において、遮断履歴情報はPCS1に内蔵されるメモリ14に格納されているが、本発明はこの例示に限定されない。遮断履歴情報はPCS1に外付けされた非一過性の記憶媒体に格納されてもよい。 Further, in the third embodiment described above, the cutoff history information is stored in the memory 14 built in the PCS 1, but the present invention is not limited to this example. The blocking history information may be stored in a non-transitory storage medium externally attached to the PCS 1.
 また、上述の第1~第4実施形態では、本発明をV2Hシステム100のPCS1に適用しているが、本発明はこの例示に限定されない。本発明はV2Hシステム100以外の蓄電システムなどにも適用可能であり、たとえば、EV充電器、PHEV充電器、急速充電器などを含むシステム、定置型リチウムイオン蓄電池システムに適用してもよい。また、家庭用などの電気機器(特に電力消費が調整可能な電気機器全般)への供給電力Wsを調整するシステムに適用してもよい。或いは、回路遮断器が接続された電気機器全般にも適用可能である。 In the first to fourth embodiments described above, the present invention is applied to the PCS 1 of the V2H system 100, but the present invention is not limited to this example. The present invention can be applied to power storage systems other than the V2H system 100, and may be applied to, for example, a system including an EV charger, a PHEV charger, a quick charger, and the like, and a stationary lithium ion storage battery system. Further, the present invention may be applied to a system that adjusts the power supply Ws supplied to electric appliances for home use (especially electric appliances that can adjust power consumption). Or it is applicable also to the electric equipment in general with which the circuit breaker was connected.
 100      V2Hシステム
 101       電流センサ
 102       分電盤
 103        主幹ブレーカ
 104        分岐ブレーカ
 105       温度センサ
 106       受電監視部
 107       遮断監視部
 1、1a、1b   パワーコンディショナ
 11         双方向インバータ
 12         双方向DC/DCコンバータ
 13         入力部
 14         メモリ
 15         制御ユニット
 151         判定部
 152         電力調整部
 153         条件設定部
 154         履歴格納部
 16         タイマ
 17         通信部
 P1        主幹通電路
 P2        分岐通電路
 L         電力負荷
 L1         EV
 L2         電力消費負荷
 L3         蓄電ユニット
 BL        バスライン
 E         商用電力系統
 Ia        受電電流値
 Ic        遮断電流値
 It        目標電流値
 Iu        上限設定値
DESCRIPTION OF SYMBOLS 100 V2H system 101 Current sensor 102 Distribution board 103 Main breaker 104 Branch breaker 105 Temperature sensor 106 Power receiving monitoring part 107 Interruption monitoring part 1, 1a, 1b Power conditioner 11 Bidirectional inverter 12 Bidirectional DC / DC converter 13 Input part 14 Memory 15 Control unit 151 Determination unit 152 Power adjustment unit 153 Condition setting unit 154 History storage unit 16 Timer 17 Communication unit P1 Main energization path P2 Branch energization path L Power load L1 EV
L2 Power consumption load L3 Power storage unit BL Bus line E Commercial power system Ia Receiving current value Ic Breaking current value It Target current value Iu Upper limit set value

Claims (5)

  1.  遮断電流値以上の電流が流れると通電路を遮断する回路遮断器を介して電力源から受電する受電電力を分電する分電部から出力される電力を用いて電力負荷に供給電力を供給する電力制御装置であって、
     電流計測部により計測される前記受電電力の電流値は前記遮断電流値未満の目標電流値を越えるか否かを判定する判定部と、
     前記判定部にて前記電流値が前記目標電流値を越えると判定される場合に前記供給電力を抑制する電力調整部と、
    を備える電力制御装置。
    Supplying supply power to the power load using the power output from the power distribution unit that divides the received power received from the power source via the circuit breaker that cuts off the energization path when a current greater than the cutoff current value flows A power control device,
    A determination unit that determines whether or not the current value of the received power measured by a current measurement unit exceeds a target current value less than the breaking current value;
    A power adjustment unit that suppresses the supplied power when the determination unit determines that the current value exceeds the target current value;
    A power control apparatus comprising:
  2.  前記回路遮断器の温度を検出する温度検出部をさらに備え、
     前記電力調整部はさらに前記温度検出部の検出結果に基づいて前記供給電力を抑制する請求項1に記載の電力制御装置。
    A temperature detection unit for detecting the temperature of the circuit breaker;
    The power control apparatus according to claim 1, wherein the power adjustment unit further suppresses the supplied power based on a detection result of the temperature detection unit.
  3.  前記回路遮断器が前記受電電力を遮断する毎に前記供給電力の抑制に関する条件を記録する遮断履歴情報を記憶部に格納する履歴格納部をさらに備え、
     前記電力調整部はさらに遮断履歴情報に基づいて前記供給電力を抑制する請求項1又は請求項2に記載の電力制御装置。
    Each time the circuit breaker cuts off the received power, it further comprises a history storage unit that stores interruption history information that records conditions relating to suppression of the supplied power in a storage unit,
    The power control apparatus according to claim 1, wherein the power adjustment unit further suppresses the supplied power based on cutoff history information.
  4.  遮断電流値以上の電流が流れると通電路を遮断する回路遮断器と、
     前記回路遮断器を介して電力源から受電する受電電力を分電する分電部と、
     電力負荷と、
     前記分電部から出力される電力を用いて前記電力負荷に供給電力を供給する電力制御装置と、
     前記受電電力の電流値を計測する電流計測部と、
    を備え、
     前記受電電力の前記電流値が前記遮断電流値未満の目標電流値を越える場合に前記電力制御装置は前記供給電力を抑制する電力制御システム。
    A circuit breaker that shuts off the energization path when a current greater than the breaking current value flows;
    A power distribution unit that distributes received power received from a power source via the circuit breaker;
    Power load,
    A power control device that supplies power to the power load using power output from the power distribution unit;
    A current measuring unit for measuring a current value of the received power;
    With
    The power control system, wherein the power control device suppresses the supplied power when the current value of the received power exceeds a target current value less than the cut-off current value.
  5.  前記電力制御装置と該電力制御装置により前記供給電力が調整される前記電力負荷とはそれぞれ複数であって、
     前記電力制御装置毎に前記供給電力の調整条件が異なる請求項4に記載の電力制御システム。
    Each of the power control device and the power load to which the power supply is adjusted by the power control device are plural,
    The power control system according to claim 4, wherein an adjustment condition of the supplied power is different for each power control device.
PCT/JP2015/072165 2014-10-17 2015-08-05 Power control device and power control system provided with same WO2016059853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553993A JP6386579B2 (en) 2014-10-17 2015-08-05 Power control apparatus and power control system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212181 2014-10-17
JP2014-212181 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016059853A1 true WO2016059853A1 (en) 2016-04-21

Family

ID=55746401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072165 WO2016059853A1 (en) 2014-10-17 2015-08-05 Power control device and power control system provided with same

Country Status (2)

Country Link
JP (1) JP6386579B2 (en)
WO (1) WO2016059853A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046738A (en) * 2016-09-12 2018-03-22 積水化学工業株式会社 Power supply system
JP2018085855A (en) * 2016-11-24 2018-05-31 ニチコン株式会社 Power conditioner and power storage system with power conditioner
JP2019066446A (en) * 2017-10-05 2019-04-25 ミサワホーム株式会社 Power management system
JP2022019926A (en) * 2017-10-05 2022-01-27 ミサワホーム株式会社 Power management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538050A (en) * 1991-07-24 1993-02-12 Ricoh Co Ltd Controller for image forming apparatus
JPH07193975A (en) * 1993-12-28 1995-07-28 Tokyo Gas Co Ltd Power interruption system
JPH10191566A (en) * 1998-01-21 1998-07-21 Mitsubishi Electric Corp Power current controlling device
JP2009011100A (en) * 2007-06-28 2009-01-15 Mitsubishi Electric Corp Current limiting system
JP2012005325A (en) * 2010-06-21 2012-01-05 Kawamura Electric Inc Electric vehicle charging system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125091A (en) * 2010-12-10 2012-06-28 Toshiba Lighting & Technology Corp Distribution board apparatus
JP2013138535A (en) * 2011-12-28 2013-07-11 Panasonic Corp Charge control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538050A (en) * 1991-07-24 1993-02-12 Ricoh Co Ltd Controller for image forming apparatus
JPH07193975A (en) * 1993-12-28 1995-07-28 Tokyo Gas Co Ltd Power interruption system
JPH10191566A (en) * 1998-01-21 1998-07-21 Mitsubishi Electric Corp Power current controlling device
JP2009011100A (en) * 2007-06-28 2009-01-15 Mitsubishi Electric Corp Current limiting system
JP2012005325A (en) * 2010-06-21 2012-01-05 Kawamura Electric Inc Electric vehicle charging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046738A (en) * 2016-09-12 2018-03-22 積水化学工業株式会社 Power supply system
JP7044500B2 (en) 2016-09-12 2022-03-30 積水化学工業株式会社 Power supply system
JP2018085855A (en) * 2016-11-24 2018-05-31 ニチコン株式会社 Power conditioner and power storage system with power conditioner
JP2019066446A (en) * 2017-10-05 2019-04-25 ミサワホーム株式会社 Power management system
JP2022019926A (en) * 2017-10-05 2022-01-27 ミサワホーム株式会社 Power management system
JP7267388B2 (en) 2017-10-05 2023-05-01 ミサワホーム株式会社 power management system

Also Published As

Publication number Publication date
JPWO2016059853A1 (en) 2017-05-18
JP6386579B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
CN107943130B (en) Control device with current protection solid state relay
JP6386579B2 (en) Power control apparatus and power control system including the same
EP1796238B1 (en) DC arc fault detection and protection
WO2012049965A1 (en) Power management system
US20160214488A1 (en) Wireless power supply system and power transmission device
EP2804278B1 (en) Self-power circuit for protecting relay
JP5781494B2 (en) Information equipment and battery charging circuit
WO2015056634A1 (en) Electricity storage system
KR101382478B1 (en) Adaptive protection overcurrent control system and method for responding the change of power system
JP5296966B2 (en) Power supply equipment
JP2010231939A (en) Auxiliary power system and protection method of auxiliary power system
WO2012049955A1 (en) Power management system
EP2782202B1 (en) Protection method of electronic device and electronic device
WO2013176087A1 (en) Battery-state determination method, battery control device, and battery pack
JP2011199957A (en) Power storage control apparatus
US20150185750A1 (en) Method and Apparatus for monitoring an energy feed-in point of an energy supply grid
JP2009194980A (en) Secondary battery device
JP6982820B2 (en) Control command system and power conversion system
JP5496246B2 (en) Power storage control system and power storage control method
KR101517388B1 (en) Current path changing Device of fuse circuit by load status
JP5970216B2 (en) Converter device
JP2007305451A (en) Secondary battery pack with overcharge protection function
JP5638894B2 (en) Power converter and DC power supply system
KR20170049196A (en) Programmable battery management system
JP6454929B2 (en) Storage battery control system, storage battery control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851425

Country of ref document: EP

Kind code of ref document: A1