JP2013138535A - Charge control system - Google Patents

Charge control system Download PDF

Info

Publication number
JP2013138535A
JP2013138535A JP2011287282A JP2011287282A JP2013138535A JP 2013138535 A JP2013138535 A JP 2013138535A JP 2011287282 A JP2011287282 A JP 2011287282A JP 2011287282 A JP2011287282 A JP 2011287282A JP 2013138535 A JP2013138535 A JP 2013138535A
Authority
JP
Japan
Prior art keywords
current
charging
breaker
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011287282A
Other languages
Japanese (ja)
Inventor
Yoji Mizuno
洋二 水野
Yoshito Mutsuno
慶人 陸野
Hiromichi Inoue
浩道 井上
Kengo Miyamoto
賢吾 宮本
Takahiro Yoshimatsu
昴洋 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011287282A priority Critical patent/JP2013138535A/en
Publication of JP2013138535A publication Critical patent/JP2013138535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To adjust charging current to an appropriate value while avoiding a trip of a breaker.SOLUTION: If a control unit 20 of a power monitoring device 2 periodically transmits an adjustment command to a charge controller 1 at a shorter cycle than a tripping operation time, charging current can be adjusted to an appropriate value while avoiding the trip of a trunk breaker 40 and a limiter. In addition, in a period from a time point when an entire consumption current passed a regulation value to a time when the tripping operation time passes, the adjustment command to lower the upper limit value of the charging current will be transmitted a plurality of times from the power monitoring device 2. Therefore, a possibility that a communication control unit 14 of the charge controller 1 will fail to receive the adjustment command due to an impact of noise will reduce and the trip of the trunk breaker 40 and the limiter can be surely avoided.

Description

本発明は、電気自動車などの電気車両の充電を制御する充電制御システムに関する。   The present invention relates to a charging control system that controls charging of an electric vehicle such as an electric vehicle.

従来例として、例えば、特許文献1に記載されている充電制御システムがある。この充電制御システムは複数の充電装置からなる。各充電装置は、バッテリ式フォークリフトを充電するためのものであり、ブレーカを介して工場内の設備電源に接続された電源コンセントに接続される電源コードを有している。また、充電装置には通信機能が搭載されており、設備電源に接続する他の充電装置との間で通信線を介して充電状態に関する情報を送受している。   As a conventional example, for example, there is a charge control system described in Patent Document 1. This charging control system includes a plurality of charging devices. Each charging device is for charging a battery-type forklift, and has a power cord connected to a power outlet connected to a facility power source in the factory via a breaker. In addition, the charging device is equipped with a communication function, and transmits / receives information regarding the charging state to / from other charging devices connected to the facility power supply via a communication line.

この従来例では、設備電源に繋がれる充電装置全体で用いることが可能な電流値であるトータル電流制限値を任意の電流値に設定し、この値を基に各充電装置で使用する電流は各々の充電装置が自動的に、他の充電装置の充電状況を確認したうえで設定するようになっている。このため、電気車両(バッテリ式フォークリフト)の充電時に充電装置で消費される電力が、充電装置に電源供給を行う設備電源の電源容量を考慮することなく、適切に設定される。故に、使用者は、設備電源の電源容量を増設することなく、また電源に繋がれる充電装置で使用中の電流量を気にすることなく、電気車両への充電を良好に行うことが可能となる。   In this conventional example, the total current limit value, which is a current value that can be used by the entire charging device connected to the facility power supply, is set to an arbitrary current value, and the current used in each charging device is based on this value. The charging device is automatically set after confirming the charging status of other charging devices. For this reason, the power consumed by the charging device when charging the electric vehicle (battery-type forklift) is appropriately set without considering the power capacity of the facility power source that supplies power to the charging device. Therefore, the user can charge the electric vehicle satisfactorily without increasing the power capacity of the equipment power source and without worrying about the amount of current in use with the charging device connected to the power source. Become.

特開2003−333706号公報JP 2003-333706 A

ところで、ブレーカは、通常、過負荷電流(<短絡電流)が流れると直ちにトリップ(引き外し動作)するのではなく、過負荷電流が継続して所定時間(引き外し動作時間)以上流れ続けた場合にトリップするように構成されている。したがって、特許文献1記載の従来例のように、トータルの電流値が常時制限値を越えないように制御することは、ブレーカをトリップさせないための必須条件ではない。   By the way, when the overload current (<short circuit current) flows, the breaker normally does not trip immediately (tripping operation), but the overload current continues to flow for a predetermined time (tripping operation time) or longer. Is configured to trip. Therefore, as in the conventional example described in Patent Document 1, it is not an indispensable condition for preventing the breaker from tripping, so that the total current value does not always exceed the limit value.

つまり、引き外し動作時間未満であれば、過負荷電流が流れてもブレーカはトリップしないので、過負荷電流が流れた時点から引き外し動作時間が経過するまでに充電電流を減らせば、ブレーカのトリップを回避することができる。   In other words, if it is less than the trip operation time, the breaker will not trip even if overload current flows, so if the charge current is reduced from the time when the overload current flows until the trip operation time elapses, the breaker trips Can be avoided.

本発明は、上記課題に鑑みて為されたものであり、ブレーカのトリップを回避しつつ充電電流を適切な値に調整することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to adjust a charging current to an appropriate value while avoiding a trip of a breaker.

本発明の充電制御システムは、ブレーカと電気車両との間に挿入され、前記電気車両に対して充電電流の上限値を指示する充電制御装置と、前記ブレーカに流れる電流を監視し、前記電流が前記ブレーカの定格電流を越えないように前記充電制御装置に対して前記上限値を調整させる電力監視装置とを有し、前記電力監視装置は、前記上限値を調整させるための指令を、前記ブレーカの引き外し動作時間よりも短い周期で前記充電制御装置に定期的に送信することを特徴とする。   A charge control system of the present invention is inserted between a breaker and an electric vehicle, and monitors a current flowing through the breaker, a charge control device that instructs an upper limit value of a charge current to the electric vehicle, and the current is A power monitoring device that causes the charge control device to adjust the upper limit value so as not to exceed a rated current of the breaker, and the power monitoring device sends a command for adjusting the upper limit value to the breaker. Is periodically transmitted to the charging control device at a cycle shorter than the tripping operation time.

本発明の充電制御システムは、ブレーカのトリップを回避しつつ充電電流を適切な値に調整することができるという効果がある。   The charging control system of the present invention has an effect that the charging current can be adjusted to an appropriate value while avoiding the trip of the breaker.

本発明に係る充電制御システムの実施形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of a charge control system concerning the present invention. 同上における充電制御装置の基本的な充電制御動作を説明するためのタイムチャートである。It is a time chart for demonstrating the basic charge control operation | movement of the charge control apparatus same as the above.

以下、戸建の住宅に設置され、電力系統から供給される電力を利用した電気自動車の充電を制御する充電制御装置及び充電制御システムに本発明の技術思想を適用した実施形態について、図面を参照して詳細に説明する。ただし、充電制御の対象となる電気車両は電気自動車に限定されず、電気自動車以外の電気車両、例えば、従来技術で説明したバッテリ式フォークリフトなどであっても構わない。   Hereinafter, referring to the drawings, an embodiment in which the technical idea of the present invention is applied to a charge control device and a charge control system that are installed in a detached house and control charging of an electric vehicle using electric power supplied from an electric power system. And will be described in detail. However, the electric vehicle subject to charge control is not limited to an electric vehicle, and may be an electric vehicle other than an electric vehicle, for example, a battery-type forklift described in the related art.

図1に示すように、住宅には電力系統100から単相3線式の交流電力が住宅用分電盤(住宅盤)4を介して供給される。住宅盤4は1次側が電力系統100と接続される主幹ブレーカ40と、主幹ブレーカ40の2次側に分岐接続される複数の分岐ブレーカ41とを有している。ただし、主幹ブレーカ40の1次側にリミッタ(電流制限器あるいは契約ブレーカとも呼ばれる。)が挿入される場合もある。なお、図示は省略するが、各分岐ブレーカ41の2次側に屋内配線を介してコンセントや負荷(照明器具や電磁調理器など)が接続される。   As shown in FIG. 1, single-phase, three-wire AC power is supplied from a power system 100 to a house through a residential distribution board (housing board) 4. The housing board 4 has a main breaker 40 whose primary side is connected to the power system 100, and a plurality of branch breakers 41 branched and connected to the secondary side of the main breaker 40. However, a limiter (also called a current limiter or a contract breaker) may be inserted on the primary side of the main breaker 40. In addition, although illustration is abbreviate | omitted, an outlet and load (a lighting fixture, an electromagnetic cooker, etc.) are connected to the secondary side of each branch breaker 41 via indoor wiring.

本実施形態の充電制御装置1は、図1に示すように電力監視装置2及び報知装置3とともに充電制御システムを構成している。   The charge control device 1 of this embodiment constitutes a charge control system together with the power monitoring device 2 and the notification device 3 as shown in FIG.

電力監視装置2は、制御部20、電流計測部21、信号伝送部22、通信部23などを備える。電流計測部21は、主幹ブレーカ40の1次側に接続される3本の電灯線のうちの中性線以外の2本の電灯線に流れる電流をそれぞれ電流センサ210,211を用いて計測し、それぞれの計測値を制御部20に出力する。制御部20はマイクロコンピュータを主構成要素とし、電流計測部21で計測される電流値と主幹ブレーカ40の1次側電圧(入力電圧)の計測値(電圧値)とに基づいて、電力系統100から供給される電力(供給電力)の瞬時値や積算値などを演算している。信号伝送部22は報知装置3との間で信号伝送を行うものである。また通信部23は充電制御装置1との間で通信線24を介した通信を行うものであって、例えば、RS485規格に準拠したシリアル通信を行う。ただし、通信部23の通信方式はRS485規格に限定されるものではない。   The power monitoring device 2 includes a control unit 20, a current measurement unit 21, a signal transmission unit 22, a communication unit 23, and the like. The current measuring unit 21 measures the currents flowing in the two power lines other than the neutral line among the three power lines connected to the primary side of the main breaker 40 using current sensors 210 and 211, respectively. Each measurement value is output to the control unit 20. The control unit 20 has a microcomputer as a main component, and is based on the current value measured by the current measurement unit 21 and the measured value (voltage value) of the primary side voltage (input voltage) of the main breaker 40. The instantaneous value or integrated value of the power supplied from (the supplied power) is calculated. The signal transmission unit 22 performs signal transmission with the notification device 3. The communication unit 23 performs communication with the charging control apparatus 1 via the communication line 24, and performs serial communication based on the RS485 standard, for example. However, the communication method of the communication unit 23 is not limited to the RS485 standard.

充電制御装置1は、信号処理部10、零相変流器11、漏電検出部12、開閉部13、通信制御部14、充電ケーブル15、充電コネクタ16、電流制御部17などを備える。また充電制御装置1は、電気自動車200の駐車スペース(車庫)に近い場所に設置され、住宅盤4の分岐ブレーカ41で分岐された分岐回路の一つ(図1では下段右端の分岐ブレーカ41)に接続される。充電ケーブル15は、電気自動車200への供給電流(充電電流)が流れる給電線150と、後述するパイロット信号が伝送される伝送線151とが絶縁シースで被覆されてなり、先端部分に充電コネクタ16が設けられている。充電コネクタ16は、電気自動車200の車体に設けられている差込口(インレット)に挿抜自在に差込接続される。そして、充電コネクタ16が差込口に差込接続されると、電力系統100から住宅盤4及び充電制御装置1を介した電力(充電電力)の供給と、充電制御装置1の信号処理部10と電気自動車200の充電用ECU(電子制御ユニット)との間のパイロット信号の伝送とが可能になる。   The charging control device 1 includes a signal processing unit 10, a zero-phase current transformer 11, a leakage detection unit 12, an opening / closing unit 13, a communication control unit 14, a charging cable 15, a charging connector 16, a current control unit 17, and the like. The charging control device 1 is installed near a parking space (garage) of the electric vehicle 200 and is one of the branch circuits branched by the branch breaker 41 of the housing board 4 (the branch breaker 41 at the lower right end in FIG. 1). Connected to. The charging cable 15 is formed by covering a power supply line 150 through which a supply current (charging current) to the electric vehicle 200 flows and a transmission line 151 through which a pilot signal, which will be described later, is transmitted, with an insulating sheath, and a charging connector 16 at the tip portion. Is provided. The charging connector 16 is inserted and connected so as to be freely inserted into and removed from an insertion port (inlet) provided in the vehicle body of the electric vehicle 200. When the charging connector 16 is plugged into the insertion port, power (charging power) is supplied from the power system 100 via the housing panel 4 and the charging control device 1, and the signal processing unit 10 of the charging control device 1. And a pilot signal can be transmitted between the electric vehicle 200 and a charging ECU (electronic control unit).

開閉部13は、分岐ブレーカ41から給電線150までの給電路に挿入される電磁リレー(図示せず)を有し、電流制御部17からの指示に応じて電磁リレーをオン・オフすることで前記給電路を開閉する。漏電検出部12は、給電路に流れる不平衡電流を零相変流器11で検出し、当該不平衡電流の検出レベルがしきい値を超えた場合に漏電が生じていると判断し、開閉部13を制御して給電路を開成させる。通信制御部14は、電力監視装置2の通信部23との間で通信(RS485規格のシリアル通信)を行う。電流制御部17は、後述するように電力監視装置2から送られてくる充電制御情報に応じて電気自動車200に供給される充電電流を調整する。信号処理部10は、伝送線151を介してパイロット信号を伝送する。なお、電力監視装置2では、充電制御装置1を介して電気自動車200に供給される電流(充電電流)を電流センサ212で計測している。   The open / close unit 13 has an electromagnetic relay (not shown) inserted into the power supply path from the branch breaker 41 to the power supply line 150, and turns on / off the electromagnetic relay according to an instruction from the current control unit 17. Open and close the feeding path. The leakage detector 12 detects the unbalanced current flowing in the power supply path with the zero-phase current transformer 11, and determines that a leakage has occurred when the detected level of the unbalanced current exceeds the threshold value. The unit 13 is controlled to open the power supply path. The communication control unit 14 performs communication (RS485 standard serial communication) with the communication unit 23 of the power monitoring device 2. As will be described later, the current control unit 17 adjusts the charging current supplied to the electric vehicle 200 according to the charging control information sent from the power monitoring device 2. The signal processing unit 10 transmits a pilot signal via the transmission line 151. In the power monitoring device 2, the current (charge current) supplied to the electric vehicle 200 via the charge control device 1 is measured by the current sensor 212.

報知装置3は、制御部30、信号伝送部31、表示部32、音響部33、操作入力部34などを有している。信号伝送部31は電力監視装置2の信号伝送部22との間で信号伝送を行う。表示部32は、発光ダイオードからなる表示素子と、制御部30に制御されて表示素子を発光させる発光回路とを有している。ただし、発光ダイオードの代わりに液晶ディスプレイや有機ELディスプレイなどの2次元の表示デバイスが用いられてもよい。音響部33はスピーカとスピーカを駆動する駆動回路を有している。操作入力部34は押釦スイッチを有し、押釦スイッチが押操作された場合に操作信号を出力する。   The notification device 3 includes a control unit 30, a signal transmission unit 31, a display unit 32, an acoustic unit 33, an operation input unit 34, and the like. The signal transmission unit 31 performs signal transmission with the signal transmission unit 22 of the power monitoring device 2. The display unit 32 includes a display element formed of a light emitting diode and a light emitting circuit that is controlled by the control unit 30 to cause the display element to emit light. However, a two-dimensional display device such as a liquid crystal display or an organic EL display may be used instead of the light emitting diode. The acoustic unit 33 includes a speaker and a drive circuit that drives the speaker. The operation input unit 34 includes a push button switch, and outputs an operation signal when the push button switch is pressed.

制御部30はマイクロコンピュータを主構成要素とし、信号伝送部31を介して電力監視装置2から受け取る監視情報を、表示部32や音響部33を制御して利用者(住人)に報知する報知機能を有している。また制御部30は、操作入力部34から出力される操作信号に応じた制御指令を信号伝送部31を介して電力監視装置2に伝送する制御機能も有している。   The control unit 30 includes a microcomputer as a main component, and notifies the user (resident) of monitoring information received from the power monitoring device 2 via the signal transmission unit 31 by controlling the display unit 32 and the sound unit 33. have. The control unit 30 also has a control function of transmitting a control command corresponding to the operation signal output from the operation input unit 34 to the power monitoring device 2 via the signal transmission unit 31.

ここで、図2のタイムチャートを参照して充電制御装置1の基本的な充電制御動作を説明する。まず、時刻t0に充電コネクタ16が電気自動車200の差込口に接続されると、信号処理部10から所定の電圧V1(例えば、V1=12ボルト)が伝送線151に印加される。そして、伝送線151に印加される電圧がコントロールパイロット(CPLT)信号(以下、パイロット信号と略す。)の伝送媒体となり、その電圧レベル及びデューティ比に応じて、後述するように充電用ECUと信号処理部10との間で種々の情報が授受される。   Here, the basic charge control operation of the charge control device 1 will be described with reference to the time chart of FIG. First, when the charging connector 16 is connected to the insertion port of the electric vehicle 200 at time t0, a predetermined voltage V1 (for example, V1 = 12 volts) is applied from the signal processing unit 10 to the transmission line 151. The voltage applied to the transmission line 151 serves as a transmission medium for a control pilot (CPLT) signal (hereinafter abbreviated as a pilot signal). Depending on the voltage level and the duty ratio, the charging ECU and the signal will be described later. Various information is exchanged with the processing unit 10.

充電用ECUは、電圧V1のパイロット信号を検知すると、パイロット信号の電圧レベルをV1からV2(例えば、V2=9ボルト)に降圧する(時刻t1〜t2)。信号処理部10は、パイロット信号がV1からV2に低下したことを検出すると、所定周波数(例えば1キロヘルツ)のパルス状のパイロット信号を出力する(時刻t2〜)。当該パイロット信号の信号レベルは±V1であるが、上限レベルはV2に降圧されている。パイロット信号のデューティ比は、充電電流の上限値(充電制御装置1の電流容量)を示し、充電制御装置1毎に予め設定されている。例えば、電流容量が12アンペアの場合にはデューティ比が20%、電流容量が30アンペアの場合にはデューティ比が50%に設定される。充電用ECUは、パイロット信号のデューティ比を検知して電流容量を認識すると、パイロット信号の電圧レベルをV2からV3(例えば、6V)に降圧する(時刻t3)。信号処理部10は、パイロット信号の信号レベルがV2からV3に低下したことを検知して電流制御部17に通知する。通知された電流制御部17は、開閉部13を閉成して充電電力の供給を開始する。   When the charging ECU detects the pilot signal of voltage V1, it lowers the voltage level of the pilot signal from V1 to V2 (for example, V2 = 9 volts) (time t1 to t2). When the signal processing unit 10 detects that the pilot signal has decreased from V1 to V2, the signal processing unit 10 outputs a pulsed pilot signal having a predetermined frequency (for example, 1 kilohertz) (from time t2). The signal level of the pilot signal is ± V1, but the upper limit level is stepped down to V2. The duty ratio of the pilot signal indicates an upper limit value of the charging current (current capacity of the charging control device 1), and is set in advance for each charging control device 1. For example, when the current capacity is 12 amperes, the duty ratio is set to 20%, and when the current capacity is 30 amperes, the duty ratio is set to 50%. When the charging ECU detects the duty ratio of the pilot signal and recognizes the current capacity, it lowers the voltage level of the pilot signal from V2 to V3 (for example, 6V) (time t3). The signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, and notifies the current control unit 17 of it. The notified current control unit 17 closes the opening / closing unit 13 and starts supplying charging power.

充電用ECUは電流容量に基づいて蓄電池の充電レベルを目標レベルまで充電するための電流値(≦電流容量)を設定し、電気自動車200に搭載されている充電器(図示せず)に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した電流値を超えないように充電電流を調整しながら蓄電池を充電する(時刻t3〜)。充電用ECUは、蓄電池の充電レベルが目標レベルに達すると、充電器に充電終了指令を出力して蓄電池への充電を終了し、パイロット信号の電圧レベルをV3からV2に復帰させる(時刻t4)。充電器は、充電終了指令を受信すると蓄電池の充電を終了する。   The charging ECU sets the current value (≦ current capacity) for charging the storage battery to the target level based on the current capacity, and commands the charger (not shown) installed in the electric vehicle 200 to charge Is output. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the current value set by the charging ECU (from time t3). When the charge level of the storage battery reaches the target level, the charging ECU outputs a charge end command to the charger to finish charging the storage battery, and returns the voltage level of the pilot signal from V3 to V2 (time t4) . When the charger receives the charging end command, the charger ends the charging of the storage battery.

信号処理部10は、パイロット信号がV3からV2に変化したことを検知して電流制御部17に通知する。通知された電流制御部17は、開閉部13を開成して交流電力の供給を停止する。充電用ECUは、パイロット信号の電圧レベルを当初のV1に復帰させる(時刻t5)。信号処理部10は、パイロット信号の電圧レベルがV1に復帰すると、所定周波数の発振を停止してパイロット信号の電圧レベルをV1に維持して待機状態に戻る(時刻t6)。   The signal processing unit 10 detects that the pilot signal has changed from V3 to V2, and notifies the current control unit 17 of the change. The notified current control unit 17 opens the opening / closing unit 13 and stops the supply of AC power. The charging ECU restores the voltage level of the pilot signal to the original V1 (time t5). When the voltage level of the pilot signal returns to V1, the signal processing unit 10 stops oscillation at a predetermined frequency, maintains the voltage level of the pilot signal at V1, and returns to the standby state (time t6).

上述のように充電制御装置1は、電気自動車200への充電電力の供給を入切するとともに電気自動車200の充電用ECUに対して充電電流の上限値を指示することで電気自動車200に搭載されている蓄電池の充電を制御している。   As described above, the charging control device 1 is mounted on the electric vehicle 200 by turning on / off the supply of charging power to the electric vehicle 200 and instructing the charging ECU of the electric vehicle 200 to the upper limit value of the charging current. It controls the charging of the storage battery.

ところで、電気自動車200の充電には、通常、十数アンペア〜数十アンペア程度の大きな充電電流が必要とされる。一方、通常の住宅では、主幹ブレーカ40(リミッタが設置されている場合はリミッタと主幹ブレーカ40)の定格電流が30アンペア〜60アンペア程度に設定されている。したがって、電磁調理器やエアコンディショナのように消費電流の大きい負荷機器が使用されているときに電気自動車200を充電する場合、充電制御装置1に予め設定されている上限値まで充電電流が流れると、主幹ブレーカ40やリミッタがトリップしてしまう虞がある。   By the way, charging of the electric vehicle 200 usually requires a large charging current of about several tens of amperes to several tens of amperes. On the other hand, in a normal house, the rated current of the main breaker 40 (limiter and main breaker 40 when the limiter is installed) is set to about 30 amperes to 60 amperes. Therefore, when the electric vehicle 200 is charged when a load device with large current consumption such as an electromagnetic cooker or an air conditioner is used, the charging current flows up to an upper limit value set in advance in the charge control device 1. Then, the main breaker 40 and the limiter may trip.

そこで電力監視装置2の制御部20は、主幹ブレーカ40に流れる電流(全消費電流)が規制値を超えた場合、充電電流の上限値を、現在の充電電流の電流値から全消費電流と規制値の差を差し引いた電流値とする指令(調整指令)を通信部22から送信させる。なお、全消費電流は、充電電流と負荷機器の消費電流(負荷消費電流)の総和である。また規制値は、例えば、主幹ブレーカ40の定格電流の80%、あるいはリミッタの定格電流の90%の値に設定される。   Therefore, when the current flowing through the main breaker 40 (total current consumption) exceeds the regulation value, the control unit 20 of the power monitoring device 2 sets the upper limit value of the charging current from the current charging current value to the total current consumption. A command (adjustment command) for current value obtained by subtracting the difference between the values is transmitted from the communication unit 22. The total consumption current is the sum of the charging current and the consumption current of the load device (load consumption current). Further, the regulation value is set to, for example, a value of 80% of the rated current of the main breaker 40 or 90% of the rated current of the limiter.

充電制御装置1においては、電力監視装置2から送信される調整指令を通信制御部14で受信して電流制御部17に渡す。電流制御部17は、信号処理部10に対して充電電流の上限値を調整指令で指示された上限値以下とするように指示する。そして、信号処理部10は電流制御部17からの指示を受けると、パイロット信号のオンデューティ比を減少させる。例えば、充電ケーブル15の電流容量が20アンペアである場合、当初50%であったオンデューティ比が40%〜20%に減少され、結果的に充電電流の上限値が当初の20アンペアよりも低い値(例えば、10アンペア)に調整されることになる。   In the charging control device 1, the adjustment command transmitted from the power monitoring device 2 is received by the communication control unit 14 and passed to the current control unit 17. The current control unit 17 instructs the signal processing unit 10 to set the upper limit value of the charging current to be equal to or less than the upper limit value specified by the adjustment command. When the signal processing unit 10 receives an instruction from the current control unit 17, it reduces the on-duty ratio of the pilot signal. For example, when the current capacity of the charging cable 15 is 20 amperes, the on-duty ratio, which was 50% at the beginning, is reduced to 40% to 20%, and as a result, the upper limit value of the charging current is lower than the original 20 amperes. Will be adjusted to a value (eg, 10 amps).

電気自動車200の充電用ECUは、調整後の上限値に基づいて再度充電電流の電流値を設定して充電器に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した新たな電流値を超えないように充電電流を調整しながら蓄電池を充電する。その結果、電気自動車200に供給される充電電流が減少するので、全消費電流が主幹ブレーカ40の定格電流を超えてしまうことが回避できる。   The charging ECU of the electric vehicle 200 sets the current value of the charging current again based on the adjusted upper limit value and outputs a charging command to the charger. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. As a result, since the charging current supplied to the electric vehicle 200 decreases, it can be avoided that the total current consumption exceeds the rated current of the main breaker 40.

ところで、上述した上限値の調整は、主幹ブレーカ40(あるいはリミッタ)の引き外し動作時間未満の時間内で行われる必要がある。なお、主幹ブレーカ及びリミッタの引き外し動作時間は、本発明者らの調査によると、おおよそ4秒以下に設定されていると考えられる。したがって、全消費電流が規制値を超えた時点から4秒未満の間に、充電電流の上限値が小さくなるように調整されれば、主幹ブレーカ40やリミッタのトリップ(引き外し)を回避することができる。   By the way, the above-described adjustment of the upper limit value needs to be performed within a time shorter than the tripping operation time of the main breaker 40 (or limiter). The tripping time of the main breaker and limiter is considered to be set to approximately 4 seconds or less according to the investigation by the present inventors. Therefore, if the upper limit value of the charging current is adjusted to be smaller in less than 4 seconds after the total current consumption exceeds the regulation value, the trip (tripping) of the main breaker 40 and limiter should be avoided. Can do.

そこで、電力監視装置2の制御部20は、主幹ブレーカ40(あるいはリミッタ)の引き外し動作時間よりも短い周期(例えば、1秒周期)で、通信部23より充電制御装置1へ定期的に調整指令を送信することが好ましい。電流計測部21は、1秒未満の周期(サンプリング周期)で電流値を計測して制御部20に出力する。制御部20は、電流計測部21の計測値から全消費電流を演算し、全消費電流と制限値を比較して充電電流の上限値を決定し、決定した上限値を含む調整指令を通信部23から送信させる。ただし、全消費電流が制限値を超えていない間は同一の上限値となり、全消費電流が制限値を越えた場合に上限値がそれまでの値よりも小さい値に調整される。   Therefore, the control unit 20 of the power monitoring device 2 periodically adjusts the charging control device 1 from the communication unit 23 with a cycle shorter than the tripping operation time of the main breaker 40 (or limiter) (for example, 1 second cycle). Preferably, the command is transmitted. The current measuring unit 21 measures a current value at a cycle (sampling cycle) of less than 1 second and outputs it to the control unit 20. The control unit 20 calculates the total consumption current from the measurement value of the current measurement unit 21, compares the total consumption current with the limit value, determines the upper limit value of the charging current, and sends an adjustment command including the determined upper limit value to the communication unit Send from 23. However, while the total current consumption does not exceed the limit value, the same upper limit value is set, and when the total current consumption exceeds the limit value, the upper limit value is adjusted to a value smaller than the previous value.

上述のように電力監視装置2の制御部20が引き外し動作時間よりも短い周期で充電制御装置1へ定期的に調整指令を送信すれば、主幹ブレーカ40やリミッタのトリップを回避しつつ充電電流を適切な値に調整することができる。また、全消費電流が規制値を超えた時点から引き外し動作時間が経過するまでの間に、充電電流の上限値を下げる調整指令が電力監視装置2から複数回送信されることになる。そのため、ノイズの影響によって充電制御装置1の通信制御部14が調整指令の受信に失敗する可能性が低くなり、主幹ブレーカ40やリミッタのトリップを確実に回避することができる。   As described above, if the control unit 20 of the power monitoring device 2 periodically sends an adjustment command to the charging control device 1 at a cycle shorter than the tripping operation time, the charging current is avoided while avoiding tripping of the main breaker 40 and the limiter. Can be adjusted to an appropriate value. In addition, an adjustment command for lowering the upper limit value of the charging current is transmitted from the power monitoring device 2 a plurality of times during the period from when the total consumption current exceeds the regulation value until the tripping operation time elapses. Therefore, the possibility that the communication control unit 14 of the charging control device 1 fails to receive the adjustment command due to the influence of noise is reduced, and tripping of the main breaker 40 and the limiter can be reliably avoided.

1 充電制御装置
2 電力監視装置
40 主幹ブレーカ
200 電気自動車(電気車両)
1 Charging control device 2 Power monitoring device
40 Main breaker
200 Electric vehicle (electric vehicle)

Claims (1)

ブレーカと電気車両との間に挿入され、前記電気車両に対して充電電流の上限値を指示する充電制御装置と、前記ブレーカに流れる電流を監視し、前記電流が前記ブレーカの定格電流を越えないように前記充電制御装置に対して前記上限値を調整させる電力監視装置とを有し、前記電力監視装置は、前記上限値を調整させるための指令を、前記ブレーカの引き外し動作時間よりも短い周期で前記充電制御装置に定期的に送信することを特徴とする充電制御システム。   A charge control device that is inserted between the breaker and the electric vehicle and instructs the electric vehicle to specify an upper limit value of the charging current; and the current flowing through the breaker is monitored, and the current does not exceed the rated current of the breaker In this way, the charging control device adjusts the upper limit value, and the power monitoring device has a command for adjusting the upper limit value shorter than the tripping time of the breaker. A charge control system characterized by periodically transmitting to the charge control device in a cycle.
JP2011287282A 2011-12-28 2011-12-28 Charge control system Pending JP2013138535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287282A JP2013138535A (en) 2011-12-28 2011-12-28 Charge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287282A JP2013138535A (en) 2011-12-28 2011-12-28 Charge control system

Publications (1)

Publication Number Publication Date
JP2013138535A true JP2013138535A (en) 2013-07-11

Family

ID=48913816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287282A Pending JP2013138535A (en) 2011-12-28 2011-12-28 Charge control system

Country Status (1)

Country Link
JP (1) JP2013138535A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189898A1 (en) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 Battery system
JP2016111720A (en) * 2014-12-02 2016-06-20 株式会社寺田電機製作所 Charge management device
JPWO2016059853A1 (en) * 2014-10-17 2017-05-18 シャープ株式会社 Power control apparatus and power control system including the same
JP2021078310A (en) * 2019-11-13 2021-05-20 東京電力ホールディングス株式会社 Power cable and charge control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333706A (en) * 2002-05-10 2003-11-21 Sumitomonacco Materials Handling Co Ltd System and apparatus for charging battery of vehicle
JP2010166768A (en) * 2009-01-19 2010-07-29 Fujitsu Ten Ltd Controller, control system and control method
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333706A (en) * 2002-05-10 2003-11-21 Sumitomonacco Materials Handling Co Ltd System and apparatus for charging battery of vehicle
JP2010166768A (en) * 2009-01-19 2010-07-29 Fujitsu Ten Ltd Controller, control system and control method
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189898A1 (en) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 Battery system
JPWO2015189898A1 (en) * 2014-06-09 2017-04-20 日立オートモティブシステムズ株式会社 Battery system
JPWO2016059853A1 (en) * 2014-10-17 2017-05-18 シャープ株式会社 Power control apparatus and power control system including the same
JP2016111720A (en) * 2014-12-02 2016-06-20 株式会社寺田電機製作所 Charge management device
JP2021078310A (en) * 2019-11-13 2021-05-20 東京電力ホールディングス株式会社 Power cable and charge control method
JP7272240B2 (en) 2019-11-13 2023-05-12 東京電力ホールディングス株式会社 Power cable and charging control method

Similar Documents

Publication Publication Date Title
JP6012144B2 (en) Charge control system
TWI429546B (en) Electrical power feeding system for electrical vehicle
JP5793672B2 (en) Electric vehicle charging device and electric vehicle charging system
JP6083553B2 (en) Electric vehicle charging device
CN102163872B (en) Method and apparatus for providing uninterruptible power
JP5877370B2 (en) Electric vehicle charging device and electric vehicle charging system
KR101214693B1 (en) Monitoring apparatus of power
KR101928829B1 (en) Light system having an uninterruptible power supply
JP2013225971A (en) Charge controller and vehicle charging system
JP6098334B2 (en) Power supply device, power supply system, and control method for power supply device
JP2013138535A (en) Charge control system
JP5755191B2 (en) Inverter system
US20120236455A1 (en) Power distribution system for building and protection method for main line thereof
JP5834245B2 (en) Charge control device and charge control system
EP3796504A1 (en) Electrical system and method of operating such a system
JP5906471B2 (en) Power monitoring apparatus and charging control system
JP5647024B2 (en) Outlet and power supply system
JP2012084481A (en) Dc outlet
JP2017506496A (en) Standby power cut-off electrical device and method using voice recognition
CN211427161U (en) Flow automatic controller control device
WO2015071819A1 (en) Automatic supply devices
AU2015285887B2 (en) Residual current protection device and residual current protection system
KR101185484B1 (en) Apparatus for blocking standby power having a function for connecting normal power on emergency
JP2010086791A (en) Wiring apparatus
JP2011101530A (en) Distribution system for building and method of protecting trunk line in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117