WO2013176087A1 - Battery-state determination method, battery control device, and battery pack - Google Patents

Battery-state determination method, battery control device, and battery pack Download PDF

Info

Publication number
WO2013176087A1
WO2013176087A1 PCT/JP2013/063956 JP2013063956W WO2013176087A1 WO 2013176087 A1 WO2013176087 A1 WO 2013176087A1 JP 2013063956 W JP2013063956 W JP 2013063956W WO 2013176087 A1 WO2013176087 A1 WO 2013176087A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
value
current value
time differential
Prior art date
Application number
PCT/JP2013/063956
Other languages
French (fr)
Japanese (ja)
Inventor
博之 野村
守 倉石
宏昌 吉澤
隆広 都竹
正清 松井
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013176087A1 publication Critical patent/WO2013176087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for using a battery equipped with a current interruption mechanism.
  • Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, in the battery which needs to generate a higher voltage, the structure which connected in series the battery which is a battery used as a component is employ
  • the current interrupting mechanism is a safety device that operates, for example, due to an increase in pressure inside the battery, and interrupts the current due to an increase in internal pressure. For this reason, at a high temperature at which the internal pressure increases, for example, at the time of overcharging or when an overcurrent is generated, the supply of current to the battery and the supply of current from the battery can be interrupted by the current interruption mechanism. Thereby, when a battery equipped with a current interruption mechanism is used, higher safety can be ensured.
  • JP-A-8-191544 Japanese Patent Laid-Open No. 10-270091 JP 2011-200071 A JP 2000-236247 A
  • An object of the present invention is to provide a technique for detecting (determining) the operation of a current interruption mechanism mounted on a battery with high accuracy.
  • One aspect of the present invention is a method for determining a state of a battery in which charging / discharging is performed by a computer, detecting a current value flowing through the battery, and using the detected current value, a time of the current value The differential value is calculated, and based on the time differential value obtained by the calculation, it is determined as a battery state whether or not the current interruption mechanism mounted on the battery is operating.
  • Another aspect of the present invention is a battery control device that controls a plurality of batteries to be charged / discharged, and obtains a current value flowing through a first battery that is a battery having a current interrupting mechanism. Based on the current value acquisition means, the current value detected by the current value acquisition means, a time differential value of the current value, and a time differential value calculated by the calculation means. State determination means for determining whether or not the current interruption mechanism is operating.
  • Still another aspect of the present invention is a battery pack including a plurality of connected batteries and a battery to be charged / discharged, and detecting a current value flowing through a first battery that is a battery including a current interrupting mechanism. Based on the current value detection means, the current value detected by the current value detection means, the time differential value of the current value, the calculation means for calculating the time differential value of the current value of the first battery State determination means for determining whether or not the current interrupting mechanism is operating, and a path provided for charging to the current and discharging from the battery, and the current flowing through the path can be turned on / off And a relay unit, and a control unit that controls the relay unit to turn off the current flowing through the path when the state determination unit determines that the current interrupting mechanism is operating.
  • the operation of the current interrupt mechanism mounted on the battery can be detected (determined) with high accuracy.
  • FIG. 1 is a diagram illustrating a configuration example of a battery pack according to the present embodiment.
  • the battery pack 1 is assumed to be mounted on a vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV). As shown in FIG. 1, the battery pack 1 includes a battery control ECU (Electronic Control Unit) 11, a plurality of batteries 120, a battery 12 connected in series, an SMR (System Main Relay) 13, a current sensor 14, and a temperature sensor. 15 is provided.
  • ECU Electronic Control Unit
  • SMR System Main Relay
  • the vehicle on which the battery pack 1 is mounted is provided with an ECU (noted as “HV / PHV ECU” in FIG. 1; hereinafter referred to as “vehicle ECU”) 2 that controls the entire vehicle system.
  • the battery control ECU 11 of the battery pack 1 becomes communicable with the vehicle ECU 2, and power is supplied to the battery control ECU 11 from, for example, the power supply 3 of the vehicle body. With this power supply, the battery control ECU 11 becomes operable and performs an operation in accordance with an instruction from the vehicle ECU 2.
  • the power supply to the battery control ECU 11 may be performed from one or more than the power source 3.
  • the type and number of power supplies that supply power to the battery control ECU 11 are not particularly limited.
  • the battery control ECU 11 is, for example, a computer (data processing apparatus) including a CPU (Central Processing Unit), a memory, a recording medium storing a program (firmware) executed by the CPU, and a plurality of interfaces.
  • the battery control device according to the present embodiment is realized by being mounted on the battery control ECU 11.
  • the battery state determination method according to the present embodiment is also executed by the battery control ECU 11.
  • Each battery 120 constituting the battery 12 includes a battery main body 121 and a current interruption mechanism (CID) 122, as shown in FIG.
  • the current interruption mechanism 122 is a safety device that forcibly disconnects the electrical connection due to, for example, an increase in the internal pressure of the battery body 121.
  • the internal pressure increases as the temperature increases.
  • the current interruption mechanism 122 suppresses a decrease in safety due to such a cause.
  • Each battery 120 is provided with a voltage sensor 16 for detecting a voltage value between its terminals.
  • This voltage sensor 16 is a voltage value detection means for detecting the voltage value between the terminals of each battery 120. In addition to the determination of the operation of the current interruption mechanism 122, overdischarge and overcharge are prevented, It is also used for applications such as balancing battery capacity between batteries 120.
  • the battery 12 has a configuration in which a plurality of the batteries 120 including the current interrupting mechanism 122 are connected in series, but may have a different configuration. That is, the battery 12 may have a configuration in which, for example, a plurality of batteries 120 including the current interrupting mechanism 122 and a plurality of battery modules connected in series are connected in parallel. In the case where the arrangement of the battery 120 that is difficult to deteriorate in characteristics is known in advance, the battery 120 that does not include the current interruption mechanism 122 may be used as the battery 120. For this reason, the battery 12 mounted on the battery pack 1 is not limited to the one shown in FIG.
  • the battery 12 is used for power supply to a motor (not shown).
  • the rated voltage of the battery 12 is lower than the rated voltage of the motor. For this reason, the electric power generated by the discharge from the battery 12 is supplied to a step-up converter (not shown) via the SMR 13.
  • the motor is a generator that generates electric power when charging.
  • the electric power generated by the motor is stepped down by, for example, a step-up converter and supplied to the battery 12 for charging via the SMR 13.
  • the SMR 13 functions as a relay unit that can turn on / off a current provided on a path for discharging from the battery 12 and charging the battery 12.
  • the battery control ECU 11 is assumed to have a function of switching current on / off in the SMR 13 as necessary.
  • the current sensor 14 is a current value detection means for detecting a current value supplied to the battery 12 or a current value supplied from the battery 12.
  • the temperature sensor 15 is temperature detection means for detecting the temperature in the battery pack 1.
  • the current value detected by the current sensor 14 and the temperature detected by the temperature sensor 15 are input to the battery control ECU 11 and processed in the same manner as the voltage value detected by the voltage sensor 16 of each battery 120.
  • the current value and voltage value input to the battery control ECU 11 are used to determine whether or not the current interruption mechanism 122 of the battery 120 is operating.
  • the battery control ECU 11 is activated by the current value acquisition means for acquiring the current value detected by the current sensor 14, the voltage value acquisition means for acquiring the voltage value detected by each voltage sensor 16, and the current interruption mechanism 122. It functions as a state determination means for determining whether or not there is.
  • FIG. 2 is a diagram for explaining the time change (a) of the voltage value and the time change (b) of the current value accompanying the operation of the current interrupt mechanism.
  • (A) shows an example of the time change of the voltage value detected by the voltage sensor 16 of the battery 120 in which the current interrupting mechanism (CID) 122 is operated, and (b) shows the current value detected by the current sensor 14. An example of time change is shown.
  • the current interruption mechanism 122 is activated at time t1.
  • the voltage value detected by the voltage sensor 16 becomes indefinite after time t1 with the stop of the current flow accompanying the operation of the current interrupt mechanism 122. In other words, the value is not reliable. However, the current value detected by the current sensor 14 suddenly decreases from the previous value to 0 as the current flow is stopped due to the operation of the current interrupt mechanism 122.
  • the current interrupt mechanism 122 operates when the pressure inside the battery body 121 rises. In a situation where a current for charging or discharging is flowing, the current sensor 14 shifts from a state in which the current is detected to a state in which the current cannot be detected in a short time with the operation of the current cutoff mechanism 122. Become.
  • the time differential value of the current value detected by the current sensor 14 for example, the difference value between the current value detected by the current sensor 14 and the current value detected this time is calculated. It is determined whether or not the current interruption mechanism 122 has been operated using the difference value. Thereby, for example, when the absolute value of the calculated difference value is larger than a predetermined threshold value, the battery control ECU 11 considers that the current interrupt mechanism 122 may have been activated.
  • the difference value (time differential value) to be calculated is hereinafter referred to as “current change value”.
  • the battery control ECU 11 functions as a calculation unit that calculates a current change value (time differential value).
  • the direction of the current flowing through the battery 12 is different between discharging and charging. This is why the absolute value of the difference value is compared with a threshold value.
  • the time change (b) of the current value shown in FIG. 2 corresponds to an example of the time change of the current value detected by the current sensor 14 during discharging.
  • the battery control ECU 11 performs control by voltage monitoring. Therefore, normally, the current interrupt mechanism 122 does not operate. Accordingly, it is considered that the current interruption mechanism 122 is likely to be caused by the deterioration of the characteristics of the battery main body 121 unless the temperature detected by the temperature sensor 15 is high. From this, in this embodiment, when the difference value is larger than the threshold value, the internal resistance value of the battery 120 is estimated using the voltage value detected by the temperature sensor 16 and the current value detected by the current sensor 14, It is further confirmed whether or not the estimated internal resistance value is within a predetermined range.
  • the current interrupting mechanism 122 is activated. I try to see it.
  • the operation of the current interrupt mechanism 122 is determined through a two-stage comparison. As a result, even if the current value detected by the current sensor 14 is temporarily relatively fluctuated, it is possible to suppress erroneous determination that the current interrupt mechanism 122 has been activated. For this reason, the operation of the current interrupt mechanism 122 can be determined with higher accuracy. Since the current change value is used for the operation determination of the current interrupt mechanism 122, the determination can be made quickly.
  • the current interrupt mechanism 122 may not be performed using the estimation result of the internal resistance value. For example, when the current interrupting mechanism 122 is activated, the absolute value of the current value detected by the current sensor 14 is close to 0. Therefore, the current interrupting mechanism 122 indicates that the absolute value of the current value is equal to or less than a predetermined threshold value. It may be one of the conditions for determining the operation.
  • a straight line 21 shown in the time variation (b) of the current value in FIG. 2 is an example of the current value as the threshold value.
  • the current interrupt mechanism 122 may be determined to be activated when it is confirmed that the current change value is larger than the larger threshold value. If the current change value is equal to or smaller than the larger threshold value and larger than the smaller threshold value, it is determined whether the current interrupting mechanism 122 is further operated using the estimated value of the internal resistance value or the absolute value of the current value. It may be determined.
  • FIG. 3 is a flowchart of the CID operation determination process.
  • This determination process is a process for the battery control ECU 11 to detect that the current interruption mechanism 122 of any one of the batteries 120 is activated.
  • the battery control ECU 11 is a constant determined from the sampling time for the current sensor 14 to sample the current value. Executed whenever time passes.
  • the process executed by the battery control ECU 11 to determine the operation of the current interrupt mechanism 122 as described above will be described in detail with reference to FIG.
  • the battery control ECU 11 acquires a current value from the current sensor 14, and calculates a current change value using the acquired current value and a current value acquired in the past.
  • the battery control ECU 11 determines whether or not the absolute value of the calculated current change value is larger than the threshold value. If the absolute value of the current change value is larger than the threshold value, the determination in S2 is Y (Yes), and the process proceeds to S3. If the absolute value of the current change value is equal to or smaller than the threshold value, the determination in S2 is N (No), and it is determined that there is no possibility that the current interrupting mechanism 122 has been operated.
  • the battery control ECU 11 extracts the maximum voltage value from the voltage values acquired immediately before from each voltage sensor 16, and divides the extracted voltage value by the current value acquired immediately before. Estimate the resistance value.
  • the battery control ECU 11 determines whether or not the estimated value of the internal resistance value is within a predetermined range. When the estimated value of the internal resistance value is within the range, that is, the estimated value is larger than the lower limit of the range (indicated as “internal resistance value lower limit” in FIG. 3) and the upper limit of the range (in FIG.
  • the determination in S4 is Y, and it is determined that the current interrupt mechanism 122 is not operating, and the CID operation determining process is terminated here. If the estimated value of the internal resistance value is not within the range, that is, if the estimated value is equal to or less than the lower limit of the internal resistance value or equal to or greater than the upper limit of the internal resistance value, the determination in S4 is N and the process proceeds to S5. To do.
  • the above range may be stored in the battery control ECU 11 as data in advance, but the battery control ECU 11 may estimate the internal resistance value of the battery 120, and the battery control ECU 11 may set the range based on the estimation result. good.
  • the battery control ECU 11 may acquire data representing a range from an external device such as the vehicle ECU 2.
  • the battery control ECU 11 determines that the current blocking mechanism 122 of the battery 120 whose internal resistance value has been estimated is in operation, and performs control for blocking the connection by the SMR 13, notification of the determination result to the vehicle ECU 2, and the like. . Thereafter, the CID operation determination process ends.
  • the battery control ECU 11 functions as a control unit that cuts off the connection of the path used for charging the battery 12 and discharging from the battery 12.
  • the battery control device 11 is mounted on the battery control ECU 11 in the battery pack 1.
  • the battery control device may be mounted on a data processing device outside the battery pack 1.
  • the battery pack 1 is assumed to be mounted on a vehicle, the battery pack 1 may be mounted on a device other than the vehicle.
  • the alternative function may be operated in cooperation with the battery pack 1 and a device that controls the alternative function. In some cases, various modifications can be made.

Abstract

A battery pack has a plurality of batteries installed therein which are connected in series and equipped with a current-interrupting mechanism and a battery body. A battery-control ECU calculates a time derivative (S1) by using a current value detected by a current sensor, and determines whether the absolute value of the time derivative is larger than a prescribed threshold (S2). When the absolute value is determined to be larger than the threshold (Y at S2), an estimation of the internal-resistance value of the battery is made (S3), and it is determined whether the estimated value falls within a prescribed range (S4). As a result, when the time derivative is larger than the threshold and the estimated value of the internal-resistance value falls outside the prescribed range (Y at S4), the battery-control ECU determines the current-interrupting mechanism is operating (S5).

Description

電池状態判定方法、電池制御装置、及び電池パックBattery state determination method, battery control device, and battery pack
 本発明は、電流遮断機構を搭載した電池を用いるための技術に関する。 The present invention relates to a technique for using a battery equipped with a current interruption mechanism.
 充電可能な電池(二次電池)は現在、広く用いられている。1つの電池の端子間に得られる電圧は、比較的に小さいのが実情である。このため、より高い電圧を発生させる必要のある電池では、構成要素となる電池である電池を複数、直列に接続した構成が採用される。 Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, in the battery which needs to generate a higher voltage, the structure which connected in series the battery which is a battery used as a component is employ | adopted.
 二次電池では、過放電、過充電により特性の劣化が大きくなる。電池間の電池容量のアンバランス化は、電池全体の電池容量の低下を招く。このこともあり、電池を直列に接続した構成の電池を用いる装置では、電池毎に、電圧監視を行い、監視結果を放電、及び充電の各制御に反映させることにより、過放電、或いは過充電による特性の劣化を抑えるようになっている。 In secondary batteries, deterioration of characteristics increases due to overdischarge and overcharge. Unbalanced battery capacity between batteries leads to a reduction in battery capacity of the entire battery. For this reason, in an apparatus using a battery having a configuration in which batteries are connected in series, overdischarge or overcharge is performed by monitoring the voltage for each battery and reflecting the monitoring result in each control of discharge and charge. It is designed to suppress the deterioration of the characteristics due to.
 電圧監視による放電、及び充電の制御を行っても、何らかの理由によってその制御を適切に行えない可能性が考えられる。このことから、電池には、電流遮断機構(CID:Current Interrupt Device)が搭載されることが多くなっている。 Even if discharge and charge are controlled by voltage monitoring, there is a possibility that the control cannot be performed properly for some reason. For this reason, batteries are often equipped with a current interruption mechanism (CID: Current Interrupt Device).
 電流遮断機構は、例えば、電池内部の圧力上昇等によって作動する安全装置であり、内圧上昇等によって電流を遮断する。そのため、内圧が上昇する高温時、例えば過充電時、或いは過電流発生時には、電流遮断機構により、電池への電流の供給、及び電池からの電流の供給を遮断することができる。それにより、電流遮断機構を搭載した電池を用いた場合、より高い安全性を確保することができる。 The current interrupting mechanism is a safety device that operates, for example, due to an increase in pressure inside the battery, and interrupts the current due to an increase in internal pressure. For this reason, at a high temperature at which the internal pressure increases, for example, at the time of overcharging or when an overcurrent is generated, the supply of current to the battery and the supply of current from the battery can be interrupted by the current interruption mechanism. Thereby, when a battery equipped with a current interruption mechanism is used, higher safety can be ensured.
 電圧監視による充電制御は、電流遮断機構が作動しないように、つまり電流が遮断されないように行われるのが普通である。このため、電流遮断機能の作動には、充電制御が適切に行えない状態となっている可能性の他に、何れかの電池の状態が非常に悪化、例えばその特性が著しく劣化している可能性も考えられる。何れの可能性も、安全性を考慮すれば非常に望ましくない。このことから、電流遮断機構の作動を高精度に検出することが重要と思われる。 Charge control by voltage monitoring is usually performed so that the current interrupt mechanism does not operate, that is, the current is not interrupted. For this reason, in the operation of the current interruption function, in addition to the possibility that charge control cannot be performed properly, the state of any battery may be extremely deteriorated, for example, its characteristics may be significantly deteriorated. Sex is also conceivable. Either possibility is highly undesirable considering safety. Therefore, it seems important to detect the operation of the current interruption mechanism with high accuracy.
特開平8-191544号公報JP-A-8-191544 特開平10-270091号公報Japanese Patent Laid-Open No. 10-270091 特開2011-200071号公報JP 2011-200071 A 特開2000-236247号公報JP 2000-236247 A
 本発明は、電池に搭載された電流遮断機構の作動を高精度に検出(判定)するための技術を提供することを目的とする。 An object of the present invention is to provide a technique for detecting (determining) the operation of a current interruption mechanism mounted on a battery with high accuracy.
 本発明の1態様は、充放電が行われる電池の状態をコンピュータにより判定するための方法であって、電池を流れる電流値を検出し、該検出した電流値を用いて、該電流値の時間微分値を演算し、該演算により得られた時間微分値を基に、電池の状態として、該電池に搭載された電流遮断機構が作動しているか否かを判定する。 One aspect of the present invention is a method for determining a state of a battery in which charging / discharging is performed by a computer, detecting a current value flowing through the battery, and using the detected current value, a time of the current value The differential value is calculated, and based on the time differential value obtained by the calculation, it is determined as a battery state whether or not the current interruption mechanism mounted on the battery is operating.
 本発明の他の1態様は、充放電される電池が複数、接続された電池を制御する電池制御装置であり、電流遮断機構を備えた電池である第1の電池に流れる電流値を取得する電流値取得手段と、電流値取得手段が検出した電流値を用いて、該電流値の時間微分値を演算する演算手段と、演算手段が演算した時間微分値に基づいて、第1の電池の電流遮断機構が作動しているか否かを判定する状態判定手段と、を具備する。 Another aspect of the present invention is a battery control device that controls a plurality of batteries to be charged / discharged, and obtains a current value flowing through a first battery that is a battery having a current interrupting mechanism. Based on the current value acquisition means, the current value detected by the current value acquisition means, a time differential value of the current value, and a time differential value calculated by the calculation means. State determination means for determining whether or not the current interruption mechanism is operating.
 本発明の更に他の1態様は、充放電される電池が複数、接続された電池を備えた電池パックであり、電流遮断機構を備えた電池である第1の電池に流れる電流値を検出する電流値検出手段と、電流値検出手段が検出した電流値を用いて、該電流値の時間微分値を演算する演算手段と、演算手段が演算した時間微分値に基づいて、第1の電池の電流遮断機構が作動しているか否かを判定する状態判定手段と、電流への充電、及び該電池からの放電に用いられる経路上に設けられ、該経路を流れる電流のオン/オフが可能なリレー手段と、電流遮断機構が作動していると状態判定手段が判定した場合に、リレー手段を制御して、経路を流れる電流をオフさせる制御手段と、を具備する。 Still another aspect of the present invention is a battery pack including a plurality of connected batteries and a battery to be charged / discharged, and detecting a current value flowing through a first battery that is a battery including a current interrupting mechanism. Based on the current value detection means, the current value detected by the current value detection means, the time differential value of the current value, the calculation means for calculating the time differential value of the current value of the first battery State determination means for determining whether or not the current interrupting mechanism is operating, and a path provided for charging to the current and discharging from the battery, and the current flowing through the path can be turned on / off And a relay unit, and a control unit that controls the relay unit to turn off the current flowing through the path when the state determination unit determines that the current interrupting mechanism is operating.
 本発明では、電池に搭載された電流遮断機構の作動を高精度に検出(判定)することができる。 In the present invention, the operation of the current interrupt mechanism mounted on the battery can be detected (determined) with high accuracy.
本実施形態による電池パックの構成例を説明する図である。It is a figure explaining the structural example of the battery pack by this embodiment. 電流遮断機構の作動に伴う電圧値、及び電流値の時間変化を説明する図である。It is a figure explaining the voltage value accompanying the action | operation of an electric current interruption mechanism, and the time change of an electric current value. CID作動判定処理のフローチャートである。It is a flowchart of a CID operation determination process.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態による電池パックの構成例を説明する図である。 FIG. 1 is a diagram illustrating a configuration example of a battery pack according to the present embodiment.
 この電池パック1は、例えば電気自動車(EV)、或いはプラグインハイブリッド自動車(PHV)等の車両に搭載されることを想定したものである。図1に示すように、電池パック1は、電池制御ECU(Electronic Control Unit)11、電池120が複数、直列に接続された電池12、SMR(System Main Relay)13、電流センサ14、及び温度センサ15を備えている。 The battery pack 1 is assumed to be mounted on a vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV). As shown in FIG. 1, the battery pack 1 includes a battery control ECU (Electronic Control Unit) 11, a plurality of batteries 120, a battery 12 connected in series, an SMR (System Main Relay) 13, a current sensor 14, and a temperature sensor. 15 is provided.
 電池パック1が搭載される車両には、車両システム全体を制御するECU(図1中「HV/PHV ECU」と表記。ここでは以降「車両ECU」と呼ぶことにする)2が備えられている。電池パック1が車両に搭載された場合、その電池パック1の電池制御ECU11は車両ECU2と通信可能な状態となり、その電池制御ECU11には、例えば車両本体の電源3から電力が供給される。その電力供給によって、電池制御ECU11は動作可能となり、車両ECU2からの指示に従った動作を行う。なお、電池制御ECU11への電力供給は、電源3以外の1つ以上のものから行えるようになっていても良い。電池制御ECU11に電力を供給する電源の種類やその数は特に限定されない。 The vehicle on which the battery pack 1 is mounted is provided with an ECU (noted as “HV / PHV ECU” in FIG. 1; hereinafter referred to as “vehicle ECU”) 2 that controls the entire vehicle system. . When the battery pack 1 is mounted on a vehicle, the battery control ECU 11 of the battery pack 1 becomes communicable with the vehicle ECU 2, and power is supplied to the battery control ECU 11 from, for example, the power supply 3 of the vehicle body. With this power supply, the battery control ECU 11 becomes operable and performs an operation in accordance with an instruction from the vehicle ECU 2. The power supply to the battery control ECU 11 may be performed from one or more than the power source 3. The type and number of power supplies that supply power to the battery control ECU 11 are not particularly limited.
 上記電池制御ECU11は、例えばCPU(Central Processing Unit)、メモリ、CPUが実行するプログラム(ファームウェア)が格納された記録媒体、及び複数のインターフェースを備えたコンピュータ(データ処理装置)である。本実施形態による電池制御装置は、この電池制御ECU11に搭載される形で実現されている。本実施形態による電池状態判定方法も、この電池制御ECU11によって実行される。 The battery control ECU 11 is, for example, a computer (data processing apparatus) including a CPU (Central Processing Unit), a memory, a recording medium storing a program (firmware) executed by the CPU, and a plurality of interfaces. The battery control device according to the present embodiment is realized by being mounted on the battery control ECU 11. The battery state determination method according to the present embodiment is also executed by the battery control ECU 11.
 電池12を構成する各電池120は、図1に表すように、電池本体121と、電流遮断機構(CID)122とを備える。電流遮断機構122は、例えば電池本体121の内圧上昇により、電気的な接続を強制的に切断する安全装置である。内圧は、温度の上昇に伴い上昇する。温度は、発熱体からの熱伝達による加熱、過充電、過放電、或いは過電流発生(例えば短絡)等が原因となって上昇する。電流遮断機構122は、そのような原因による安全性の低下を抑える。 Each battery 120 constituting the battery 12 includes a battery main body 121 and a current interruption mechanism (CID) 122, as shown in FIG. The current interruption mechanism 122 is a safety device that forcibly disconnects the electrical connection due to, for example, an increase in the internal pressure of the battery body 121. The internal pressure increases as the temperature increases. The temperature rises due to heating by heat transfer from the heating element, overcharge, overdischarge, or overcurrent generation (for example, short circuit). The current interruption mechanism 122 suppresses a decrease in safety due to such a cause.
 各電池120には、その端子間の電圧値を検出するための電圧センサ16が設けられている。この電圧センサ16は、各電池120の端子間の電圧値を検出するための電圧値検出手段であり、電流遮断機構122の作動の判定の他に、過放電、及び過充電の防止、更には電池120間における電池容量のバランス化といった用途にも用いられる。 Each battery 120 is provided with a voltage sensor 16 for detecting a voltage value between its terminals. This voltage sensor 16 is a voltage value detection means for detecting the voltage value between the terminals of each battery 120. In addition to the determination of the operation of the current interruption mechanism 122, overdischarge and overcharge are prevented, It is also used for applications such as balancing battery capacity between batteries 120.
 なお、本実施形態では、電池12は、電流遮断機構122を備えた電池120を複数、直列に接続した構成となっているが、それとは異なる構成であっても良い。つまり電池12は、例えば電流遮断機構122を備えた電池120を複数、直列に接続した電池モジュールを複数、並列に接続した構成であっても良い。特性の劣化がし難い電池120の配置等が予め判明しているような場合、電池120として、電流遮断機構122を備えていない電池120を用いても良い。このようなことから、電池パック1に搭載させる電池12は、図1に表すようなものに限定されない。 In the present embodiment, the battery 12 has a configuration in which a plurality of the batteries 120 including the current interrupting mechanism 122 are connected in series, but may have a different configuration. That is, the battery 12 may have a configuration in which, for example, a plurality of batteries 120 including the current interrupting mechanism 122 and a plurality of battery modules connected in series are connected in parallel. In the case where the arrangement of the battery 120 that is difficult to deteriorate in characteristics is known in advance, the battery 120 that does not include the current interruption mechanism 122 may be used as the battery 120. For this reason, the battery 12 mounted on the battery pack 1 is not limited to the one shown in FIG.
 電池12は、不図示のモータへの電力供給に用いられる。電池12の定格電圧は、そのモータの定格電圧よりも低い。このことから、電池12からの放電による電力は、SMR13を介して、不図示の昇圧コンバータに供給されるようになっている。 The battery 12 is used for power supply to a motor (not shown). The rated voltage of the battery 12 is lower than the rated voltage of the motor. For this reason, the electric power generated by the discharge from the battery 12 is supplied to a step-up converter (not shown) via the SMR 13.
 モータは、充電時には電力を発生する発電機となる。そのモータが発生した電力は、例えば昇圧コンバータにより降圧され、SMR13を介して電池12に充電用に供給される。それにより、SMR13は、電池12からの放電、及び電池12への充電のための経路上に設けられた電流のオン/オフを行うことが可能なリレー手段として機能する。電池制御ECU11は、必要に応じてSMR13における電流のオン/オフの切り換えを行う機能を有するものとする。 The motor is a generator that generates electric power when charging. The electric power generated by the motor is stepped down by, for example, a step-up converter and supplied to the battery 12 for charging via the SMR 13. Accordingly, the SMR 13 functions as a relay unit that can turn on / off a current provided on a path for discharging from the battery 12 and charging the battery 12. The battery control ECU 11 is assumed to have a function of switching current on / off in the SMR 13 as necessary.
 電流センサ14は、電池12に供給される電流値、或いは電池12から供給される電流値を検出するための電流値検出手段である。温度センサ15は、電池パック1内の温度を検出するための温度検出手段である。電流センサ14が検出した電流値、温度センサ15が検出した温度は、各電池120の電圧センサ16が検出した電圧値と同様に、電池制御ECU11に入力され、処理される。電池制御ECU11に入力された電流値、及び電圧値は、電池120の電流遮断機構122が作動しているか否かの判定に用いられる。それにより、電池制御ECU11は、電流センサ14が検出した電流値を取得する電流値取得手段、各電圧センサ16が検出した電圧値を取得する電圧値取得手段、及び電流遮断機構122が作動しているか否かを判定する状態判定手段として機能する。 The current sensor 14 is a current value detection means for detecting a current value supplied to the battery 12 or a current value supplied from the battery 12. The temperature sensor 15 is temperature detection means for detecting the temperature in the battery pack 1. The current value detected by the current sensor 14 and the temperature detected by the temperature sensor 15 are input to the battery control ECU 11 and processed in the same manner as the voltage value detected by the voltage sensor 16 of each battery 120. The current value and voltage value input to the battery control ECU 11 are used to determine whether or not the current interruption mechanism 122 of the battery 120 is operating. As a result, the battery control ECU 11 is activated by the current value acquisition means for acquiring the current value detected by the current sensor 14, the voltage value acquisition means for acquiring the voltage value detected by each voltage sensor 16, and the current interruption mechanism 122. It functions as a state determination means for determining whether or not there is.
 図2は、電流遮断機構の作動に伴う電圧値の時間変化(a)、及び電流値の時間変化(b)を説明する図である。(a)は、電流遮断機構(CID)122が作動した電池120の電圧センサ16によって検出された電圧値の時間変化の例を表し、(b)は、電流センサ14によって検出された電流値の時間変化の例を表している。電流遮断機構122が作動したのは時刻t1である。 FIG. 2 is a diagram for explaining the time change (a) of the voltage value and the time change (b) of the current value accompanying the operation of the current interrupt mechanism. (A) shows an example of the time change of the voltage value detected by the voltage sensor 16 of the battery 120 in which the current interrupting mechanism (CID) 122 is operated, and (b) shows the current value detected by the current sensor 14. An example of time change is shown. The current interruption mechanism 122 is activated at time t1.
 電圧センサ16によって検出される電圧値は、電流遮断機構122の作動に伴う電流の流れの停止に伴い、時刻t1以降、不定となる。つまり信頼できない値となる。しかし、電流センサ14によって検出される電流値は、電流遮断機構122の作動に伴う電流の流れの停止に伴い、それまでの値から0に急激に低下することになる。電流遮断機構122が作動するのは、電池本体121内部の圧力が上昇した場合である。充電、或いは放電のための電流が流れている状況では、電流遮断機構122の作動に伴い、電流センサ14は、電流を検出している状態から電流を検出できない状態に短時間に移行することになる。 The voltage value detected by the voltage sensor 16 becomes indefinite after time t1 with the stop of the current flow accompanying the operation of the current interrupt mechanism 122. In other words, the value is not reliable. However, the current value detected by the current sensor 14 suddenly decreases from the previous value to 0 as the current flow is stopped due to the operation of the current interrupt mechanism 122. The current interrupt mechanism 122 operates when the pressure inside the battery body 121 rises. In a situation where a current for charging or discharging is flowing, the current sensor 14 shifts from a state in which the current is detected to a state in which the current cannot be detected in a short time with the operation of the current cutoff mechanism 122. Become.
 本実施形態では、このことに着目し、電流センサ14が検出した電流値の時間微分値、例えば電流センサ14が前回、検出した電流値と今回、検出した電流値の差分値を計算し、計算した差分値を用いて、電流遮断機構122が作動したか否かを判定する。それにより、電池制御ECU11は、例えば計算した差分値の絶対値が予め定めた閾値より大きい場合、電流遮断機構122が作動した可能性があると見なす。計算する差分値(時間微分値)については以降「電流変化値」と表記する。電池制御ECU11は、電流変化値(時間微分値)を計算する演算手段として機能する。 In the present embodiment, paying attention to this, the time differential value of the current value detected by the current sensor 14, for example, the difference value between the current value detected by the current sensor 14 and the current value detected this time is calculated. It is determined whether or not the current interruption mechanism 122 has been operated using the difference value. Thereby, for example, when the absolute value of the calculated difference value is larger than a predetermined threshold value, the battery control ECU 11 considers that the current interrupt mechanism 122 may have been activated. The difference value (time differential value) to be calculated is hereinafter referred to as “current change value”. The battery control ECU 11 functions as a calculation unit that calculates a current change value (time differential value).
 電池12に流れる電流の向きは、放電時と充電時とで異なる。差分値の絶対値を閾値と比較するのは、このためである。図2に表す電流値の時間変化(b)は、放電時に電流センサ14によって検出される電流値の時間変化の例に相当する。 The direction of the current flowing through the battery 12 is different between discharging and charging. This is why the absolute value of the difference value is compared with a threshold value. The time change (b) of the current value shown in FIG. 2 corresponds to an example of the time change of the current value detected by the current sensor 14 during discharging.
 電池制御ECU11は、電圧監視による制御を行う。そのため、通常、電流遮断機構122は作動しない。それにより、電流遮断機構122が作動するのは、温度センサ15が検出する温度が高温でなければ、電池本体121の特性の劣化が原因となっている可能性が高いと考えられる。このことから、本実施形態では、差分値が閾値より大きい場合、温度センサ16が検出した電圧値、及び電流センサ14が検出した電流値を用いて、電池120の内部抵抗値の推定を行い、推定した内部抵抗値が予め定めた範囲内か否かの確認を更に行うようにしている。その確認を行うことにより、本実施形態では、差分値が閾値より大きく、且つ推定した内部抵抗値が予め定めた範囲内となっていない電池120が存在する場合、電流遮断機構122が作動したと見なすようにしている。内部抵抗値の推定は、例えば電圧値を電流値で割ること(内部抵抗値の推定値=電圧値/電流値)で行うことができる。内部抵抗値の推定を行うことから、電池制御ECU11は、抵抗値推定手段として機能する。 The battery control ECU 11 performs control by voltage monitoring. Therefore, normally, the current interrupt mechanism 122 does not operate. Accordingly, it is considered that the current interruption mechanism 122 is likely to be caused by the deterioration of the characteristics of the battery main body 121 unless the temperature detected by the temperature sensor 15 is high. From this, in this embodiment, when the difference value is larger than the threshold value, the internal resistance value of the battery 120 is estimated using the voltage value detected by the temperature sensor 16 and the current value detected by the current sensor 14, It is further confirmed whether or not the estimated internal resistance value is within a predetermined range. By performing the confirmation, in the present embodiment, when there is a battery 120 in which the difference value is larger than the threshold and the estimated internal resistance value is not within the predetermined range, the current interrupting mechanism 122 is activated. I try to see it. The internal resistance value can be estimated by, for example, dividing the voltage value by the current value (estimated value of internal resistance value = voltage value / current value). Since the internal resistance value is estimated, the battery control ECU 11 functions as a resistance value estimating means.
 このようにして本実施形態では、2段階の比較を通して、電流遮断機構122の作動の判定を行う。それにより、電流センサ14が検出する電流値が一時的に比較的に大きく変動したとしても、電流遮断機構122が作動したと誤って判定するのを抑えることができる。このため、電流遮断機構122の作動はより高精度に判定することができる。電流遮断機構122の作動判定に電流変化値を用いているため、その判定も迅速に行うことができる。 Thus, in this embodiment, the operation of the current interrupt mechanism 122 is determined through a two-stage comparison. As a result, even if the current value detected by the current sensor 14 is temporarily relatively fluctuated, it is possible to suppress erroneous determination that the current interrupt mechanism 122 has been activated. For this reason, the operation of the current interrupt mechanism 122 can be determined with higher accuracy. Since the current change value is used for the operation determination of the current interrupt mechanism 122, the determination can be made quickly.
 なお、内部抵抗値の推定は、差分値が閾値より大きいことが確認された状況より前に電圧センサ16が検出した電圧値を用いて行うことが望ましい。これは、電流の遮断によって電圧センサ16が検出する電圧値は不定となるからである。内部抵抗値を推定する電池120としては、電圧センサ16によって検出された電圧値が最も高い電池120を選択すれば良い。また、電流遮断機構122の作動の判定は、内部抵抗値の推定結果を用いて行わなくとも良い。例えば電流遮断機構122が作動した場合、電流センサ14が検出する電流値の絶対値は0に近い値となるから、その電流値の絶対値が予め定めた閾値以下となることを電流遮断機構122の作動と判定する条件の一つとしても良い。図2の電流値の時間変化(b)に表す直線21は、その閾値とする電流値の例である。 Note that it is desirable to estimate the internal resistance value using the voltage value detected by the voltage sensor 16 before the situation where the difference value is confirmed to be larger than the threshold value. This is because the voltage value detected by the voltage sensor 16 is indefinite when the current is interrupted. As the battery 120 for estimating the internal resistance value, the battery 120 having the highest voltage value detected by the voltage sensor 16 may be selected. The determination of the operation of the current interrupt mechanism 122 may not be performed using the estimation result of the internal resistance value. For example, when the current interrupting mechanism 122 is activated, the absolute value of the current value detected by the current sensor 14 is close to 0. Therefore, the current interrupting mechanism 122 indicates that the absolute value of the current value is equal to or less than a predetermined threshold value. It may be one of the conditions for determining the operation. A straight line 21 shown in the time variation (b) of the current value in FIG. 2 is an example of the current value as the threshold value.
 本実施形態では、電流変化値と比較する閾値は1種類のみとしているが、閾値を複種類、用意しても良い。例えば2種類の閾値を用意する場合、電流変化値が大きい方の閾値よりも大きいことが確認できた時点で電流遮断機構122が作動と判定すれば良い。電流変化値が大きい方の閾値以下であり、且つ小さい方の閾値より大きければ、内部抵抗値の推定値、或いは電流値の絶対値を用いて更に電流遮断機構122が作動しているか否かを判定するようにすれば良い。 In this embodiment, only one type of threshold value is compared with the current change value, but multiple types of threshold values may be prepared. For example, when two types of threshold values are prepared, the current interrupt mechanism 122 may be determined to be activated when it is confirmed that the current change value is larger than the larger threshold value. If the current change value is equal to or smaller than the larger threshold value and larger than the smaller threshold value, it is determined whether the current interrupting mechanism 122 is further operated using the estimated value of the internal resistance value or the absolute value of the current value. It may be determined.
 図3は、CID作動判定処理のフローチャートである。この判定処理は、電池制御ECU11が、何れかの電池120の電流遮断機構122が作動したことを検出するための処理であり、例えば電流センサ14が電流値をサンプリングするサンプリング時間から定められた一定時間が経過する度に実行される。次に図3を参照し、上記のように電流遮断機構122の作動を判定するために電池制御ECU11が実行する処理について、詳細に説明する。 FIG. 3 is a flowchart of the CID operation determination process. This determination process is a process for the battery control ECU 11 to detect that the current interruption mechanism 122 of any one of the batteries 120 is activated. For example, the battery control ECU 11 is a constant determined from the sampling time for the current sensor 14 to sample the current value. Executed whenever time passes. Next, the process executed by the battery control ECU 11 to determine the operation of the current interrupt mechanism 122 as described above will be described in detail with reference to FIG.
 先ず、S1では、電池制御ECU11は、電流センサ14から電流値を取り込み、取り込んだ電流値、及び過去に取り込んだ電流値を用いて電流変化値を算出する。図3では、電流変化値の算出式として「電流変化値=d(電流値)dt」と表記している。次のS2では、電池制御ECU11は、算出した電流変化値の絶対値が上記閾値より大きいか否か判定する。電流変化値の絶対値が閾値より大きい場合、S2の判定はY(Yes)となってS3に移行する。その電流変化値の絶対値が閾値以下の場合、S2の判定はN(No)となり、電流遮断機構122が作動した可能性はないとして、ここでCID作動判定処理を終了する。 First, in S1, the battery control ECU 11 acquires a current value from the current sensor 14, and calculates a current change value using the acquired current value and a current value acquired in the past. In FIG. 3, “current change value = d (current value) dt” is expressed as a formula for calculating the current change value. In next S2, the battery control ECU 11 determines whether or not the absolute value of the calculated current change value is larger than the threshold value. If the absolute value of the current change value is larger than the threshold value, the determination in S2 is Y (Yes), and the process proceeds to S3. If the absolute value of the current change value is equal to or smaller than the threshold value, the determination in S2 is N (No), and it is determined that there is no possibility that the current interrupting mechanism 122 has been operated.
 S3では、電池制御ECU11は、各電圧センサ16から直前に取り込んだ電圧値のなかで最大の電圧値を抽出し、抽出した電圧値を直前に取り込んだ電流値で割ることにより、電圧120の内部抵抗値の推定を行う。続くS4では、電池制御ECU11は、内部抵抗値の推定値が予め定めた範囲内か否か判定する。内部抵抗値の推定値がその範囲内であった場合、つまりその推定値が、その範囲の下限(図3中「内部抵抗値下限」と表記)より大きく、且つその範囲の上限(図3中「内部抵抗値上限」と表記)より小さい場合、S4の判定はYとなり、電流遮断機構122が作動していないとして、ここでCID作動判定処理を終了する。内部抵抗値の推定値がその範囲内でなかった場合、つまり、その推定値が、内部抵抗値下限以下か、或いは内部抵抗値上限以上であった場合、S4の判定はNとなり、S5に移行する。 In S <b> 3, the battery control ECU 11 extracts the maximum voltage value from the voltage values acquired immediately before from each voltage sensor 16, and divides the extracted voltage value by the current value acquired immediately before. Estimate the resistance value. In subsequent S4, the battery control ECU 11 determines whether or not the estimated value of the internal resistance value is within a predetermined range. When the estimated value of the internal resistance value is within the range, that is, the estimated value is larger than the lower limit of the range (indicated as “internal resistance value lower limit” in FIG. 3) and the upper limit of the range (in FIG. 3) If it is smaller than “internal resistance value upper limit”), the determination in S4 is Y, and it is determined that the current interrupt mechanism 122 is not operating, and the CID operation determining process is terminated here. If the estimated value of the internal resistance value is not within the range, that is, if the estimated value is equal to or less than the lower limit of the internal resistance value or equal to or greater than the upper limit of the internal resistance value, the determination in S4 is N and the process proceeds to S5. To do.
 上記範囲は、予めデータとして電池制御ECU11に保持させても良いが、電池制御ECU11に電池120の内部抵抗値の推測を行わせ、その推測結果から範囲を電池制御ECU11に設定させるようにしても良い。車両ECU2等の外部装置から、範囲を表すデータを電池制御ECU11が取得するようにしても良い。 The above range may be stored in the battery control ECU 11 as data in advance, but the battery control ECU 11 may estimate the internal resistance value of the battery 120, and the battery control ECU 11 may set the range based on the estimation result. good. The battery control ECU 11 may acquire data representing a range from an external device such as the vehicle ECU 2.
 S5では、電池制御ECU11は、内部抵抗値を推定した電池120の電流遮断機構122が作動していると判定し、SMR13による接続を遮断させる制御、その判定結果の車両ECU2への通知等を行う。その後、CID作動判定処理を終了する。 In S5, the battery control ECU 11 determines that the current blocking mechanism 122 of the battery 120 whose internal resistance value has been estimated is in operation, and performs control for blocking the connection by the SMR 13, notification of the determination result to the vehicle ECU 2, and the like. . Thereafter, the CID operation determination process ends.
 SMR13による接続を遮断させることにより、電池12からの放電、及び電池12への充電の何れも行えなくなる。このため、SMR13による接続を遮断させることにより、電池12からの放電、或いは電池12への充電により電流遮断機構122が作動した電池120の状態がより悪化するのを抑えることができる。電流遮断機構122の作動を車両ECU2に通知することにより、車両ECU2に電流遮断機構122の作動への対応を行わせることができる。例えば車両ECU2の制御により、電池12に緊急性の高い問題が発生していることをユーザに通知する、車両を安全な場所に止めて降りるのを求める、といったことを不図示の表示装置、或いは音声出力装置を用いて行うことができる。このようなこともあり、ユーザの安全性をより確実に確保できるようになる。SMR13による接続を遮断させることから、電池制御ECU11は、電池12への充電、及びその電池12からの放電に用いられる経路の接続を遮断する制御手段として機能する。 By disconnecting the connection by the SMR 13, neither discharging from the battery 12 nor charging to the battery 12 can be performed. For this reason, by cutting off the connection by the SMR 13, it is possible to suppress further deterioration of the state of the battery 120 in which the current interruption mechanism 122 is activated by discharging from the battery 12 or charging the battery 12. By notifying the vehicle ECU 2 of the operation of the current interruption mechanism 122, it is possible to cause the vehicle ECU 2 to respond to the operation of the current interruption mechanism 122. For example, a display device (not shown) that informs the user that a highly urgent problem has occurred in the battery 12 under the control of the vehicle ECU 2 or requests that the vehicle is stopped at a safe place, or This can be done using an audio output device. In some cases, the safety of the user can be ensured more reliably. Since the connection by the SMR 13 is cut off, the battery control ECU 11 functions as a control unit that cuts off the connection of the path used for charging the battery 12 and discharging from the battery 12.
 なお、本実施形態では、電池パック1内の電池制御ECU11に電池制御装置を搭載させているが、その電池制御装置は、電池パック1外のデータ処理装置上に搭載させても良い。電池パック1は、車両に搭載されることを想定しているが、電池パック1は車両以外の装置に搭載されるものであっても良い。また、SMR13に代わる代替機能が電池パック1外に存在する場合、電池パック1とその代替機能を制御する装置との連携により、その代替機能を動作させるようにしても良い。このようなこともあり、様々な変形を行うことができる。 In the present embodiment, the battery control device 11 is mounted on the battery control ECU 11 in the battery pack 1. However, the battery control device may be mounted on a data processing device outside the battery pack 1. Although the battery pack 1 is assumed to be mounted on a vehicle, the battery pack 1 may be mounted on a device other than the vehicle. In addition, when an alternative function that replaces the SMR 13 exists outside the battery pack 1, the alternative function may be operated in cooperation with the battery pack 1 and a device that controls the alternative function. In some cases, various modifications can be made.

Claims (10)

  1.  充放電が行われる電池の状態をコンピュータにより判定するための方法であって、
     前記電池を流れる電流値を検出し、
     該検出した電流値を用いて、該電流値の時間微分値を演算し、
     該演算により得られた時間微分値を基に、前記電池の状態として、該電池に搭載された電流遮断機構が作動しているか否かを判定する、
     ことを特徴とする電池状態判定方法。
    A method for determining by a computer the state of a battery that is charged and discharged,
    Detecting a current value flowing through the battery;
    Using the detected current value, the time differential value of the current value is calculated,
    Based on the time differential value obtained by the calculation, as a state of the battery, it is determined whether or not a current interruption mechanism mounted on the battery is operating,
    The battery state determination method characterized by the above-mentioned.
  2.  前記電流遮断機構が作動しているとの判定は、前記時間微分値の絶対値が予め定めた閾値より大きい場合に行う、
     ことを特徴とする請求項1記載の電池状態判定方法。
    The determination that the current interrupting mechanism is operating is performed when the absolute value of the time differential value is greater than a predetermined threshold value.
    The battery state determination method according to claim 1.
  3.  前記電流遮断機構が作動しているか否かの判定は、前記時間微分値の他に、前記検出した電流値、及び前記電池の推測される内部抵抗値のうちの少なくとも一方を用いて行う、
     ことを特徴とする請求項2記載の電池状態判定方法。
    Determination of whether or not the current interruption mechanism is operating is performed using at least one of the detected current value and the estimated internal resistance value of the battery in addition to the time differential value.
    The battery state determination method according to claim 2.
  4.  前記電流遮断機構が作動しているとの判定した場合に、前記電池への充電、及び該電池からの放電に用いられる経路の接続を遮断する、
     ことを特徴とする請求項1~3の何れか1項に記載の電池状態判定方法。
    When it is determined that the current interrupting mechanism is operating, the connection to the path used for charging the battery and discharging from the battery is interrupted.
    The battery state determination method according to any one of claims 1 to 3, wherein:
  5.  充放電される電池が複数、接続された電池を制御する電池制御装置において、
     電流遮断機構を備えた電池である第1の電池に流れる電流値を取得する電流値取得手段と、
     前記電流値取得手段が取得した電流値を用いて、該電流値の時間微分値を演算する演算手段と、
     前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動しているか否かを判定する状態判定手段と、
     を具備することを特徴とする電池制御装置。
    In a battery control device that controls a plurality of batteries to be charged / discharged,
    Current value acquisition means for acquiring a current value flowing in the first battery, which is a battery provided with a current interruption mechanism;
    Using the current value acquired by the current value acquisition means, calculating means for calculating a time differential value of the current value;
    State determining means for determining whether or not the current interrupting mechanism of the first battery is operating based on the time differential value calculated by the calculating means;
    A battery control device comprising:
  6.  前記電流遮断機構が作動していると前記状態判定手段が判定した場合に、前記電池への充電、及び該電池からの放電に用いられる経路の接続を遮断する制御手段、
     を更に具備することを特徴とする請求項5記載の電池制御装置。
    Control means for interrupting connection of a path used for charging to the battery and discharging from the battery when the state determination means determines that the current interruption mechanism is operating;
    The battery control device according to claim 5, further comprising:
  7.  前記第1の電池毎に、該第1の電池の端子間の電圧値を取得する電圧値取得手段と、
     前記電圧値取得手段が取得した電圧値、及び前記電流値取得手段が取得した電流値を用いて、前記第1の電池の内部抵抗値を推定する抵抗値推定手段と、を更に具備し、
     前記状態判定手段は、前記時間微分値、及び前記抵抗値推定手段が推定した内部抵抗値を用いて、前記電流遮断機構が作動しているか否かを判定する、
     ことを特徴とする請求項5、または6記載の電池制御装置。
    Voltage value acquisition means for acquiring a voltage value between terminals of the first battery for each first battery;
    Using the voltage value acquired by the voltage value acquisition means and the current value acquired by the current value acquisition means, further comprising resistance value estimation means for estimating the internal resistance value of the first battery,
    The state determination means determines whether or not the current interrupting mechanism is operating using the time differential value and the internal resistance value estimated by the resistance value estimation means.
    The battery control device according to claim 5 or 6,
  8.  前記状態判定手段は、前記時間微分値が予め定めた閾値より大きく、且つ前記内部抵抗値が所定の範囲外となっている場合に、前記第1の電池に搭載された電流遮断機構が作動していると判定する、
     ことを特徴とする請求項7記載の電池制御装置。
    The state determination means operates when a current interruption mechanism mounted on the first battery is activated when the time differential value is larger than a predetermined threshold value and the internal resistance value is outside a predetermined range. It is determined that
    The battery control device according to claim 7.
  9.  前記状態判定手段は、前記時間微分値、及び前記電流値検出手段が検出した電流値を用いて、前記電流遮断機構が作動しているか否かを判定する、
     ことを特徴とする請求項5、または6記載の電池制御装置。
    The state determination means determines whether or not the current interrupting mechanism is operating using the time differential value and the current value detected by the current value detection means.
    The battery control device according to claim 5 or 6,
  10.  充放電される電池が複数、接続された電池を備えた電池パックにおいて、
     電流遮断機構を備えた電池である第1の電池に流れる電流値を検出する電流値検出手段と、
     前記電流値検出手段が検出した電流値を用いて、該電流値の時間微分値を演算する演算手段と、
     前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動しているか否かを判定する状態判定手段と、
     前記電流への充電、及び該電池からの放電に用いられる経路上に設けられ、該経路を流れる電流のオン/オフが可能なリレー手段と、
     前記電流遮断機構が作動していると前記状態判定手段が判定した場合に、前記リレー手段を制御して、前記経路を流れる電流をオフさせる制御手段と、
     を具備することを特徴とする電池パック。
    In a battery pack provided with a plurality of batteries to be charged / discharged,
    A current value detecting means for detecting a current value flowing in the first battery which is a battery provided with a current interrupting mechanism;
    Using the current value detected by the current value detection means, a calculation means for calculating a time differential value of the current value;
    State determining means for determining whether or not the current interrupting mechanism of the first battery is operating based on the time differential value calculated by the calculating means;
    Relay means provided on a path used for charging to the current and discharging from the battery, and capable of turning on / off the current flowing through the path;
    Control means for controlling the relay means to turn off the current flowing through the path when the state determination means determines that the current interrupting mechanism is operating;
    A battery pack comprising:
PCT/JP2013/063956 2012-05-22 2013-05-20 Battery-state determination method, battery control device, and battery pack WO2013176087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-116496 2012-05-22
JP2012116496A JP5949146B2 (en) 2012-05-22 2012-05-22 Battery state determination method, battery control device, and battery pack

Publications (1)

Publication Number Publication Date
WO2013176087A1 true WO2013176087A1 (en) 2013-11-28

Family

ID=49623777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063956 WO2013176087A1 (en) 2012-05-22 2013-05-20 Battery-state determination method, battery control device, and battery pack

Country Status (2)

Country Link
JP (1) JP5949146B2 (en)
WO (1) WO2013176087A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101713A1 (en) * 2015-06-02 2016-12-07 Samsung SDI Co., Ltd. Overcurrent protection device
EP3252914A4 (en) * 2015-01-28 2018-10-17 LG Chem, Ltd. Apparatus and method for sensing opening of current interrupt device of battery unit
FR3101199A1 (en) * 2019-09-25 2021-03-26 Renault S.A.S. Protection system of a variable internal resistance device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210039705A (en) * 2019-10-02 2021-04-12 주식회사 엘지화학 Method and system for detecting connection failure in parallel connection cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732977A (en) * 1993-07-21 1995-02-03 Honda Motor Co Ltd Vehicular heating window
JP2012085455A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Battery fault determination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840154B2 (en) * 2007-01-23 2011-12-21 パナソニック株式会社 Power supply equipment
JP2012060786A (en) * 2010-09-09 2012-03-22 Toyota Motor Corp Device and method for controlling vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732977A (en) * 1993-07-21 1995-02-03 Honda Motor Co Ltd Vehicular heating window
JP2012085455A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Battery fault determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252914A4 (en) * 2015-01-28 2018-10-17 LG Chem, Ltd. Apparatus and method for sensing opening of current interrupt device of battery unit
US10365307B2 (en) 2015-01-28 2019-07-30 Lg Chem, Ltd. Apparatus and method for sensing opening of current interrupt device of battery unit
EP3101713A1 (en) * 2015-06-02 2016-12-07 Samsung SDI Co., Ltd. Overcurrent protection device
FR3101199A1 (en) * 2019-09-25 2021-03-26 Renault S.A.S. Protection system of a variable internal resistance device
WO2021058278A1 (en) * 2019-09-25 2021-04-01 Renault S.A.S System for protecting a device having variable internal resistance

Also Published As

Publication number Publication date
JP2013243880A (en) 2013-12-05
JP5949146B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US9941712B2 (en) Electrical storage system
JP4311363B2 (en) Power storage system and storage system abnormality processing method
EP2693592A1 (en) Power supply system, vehicle mounted therewith, and method of controlling power supply system
JP5728877B2 (en) Battery failure judgment device
WO2013176085A1 (en) Battery-state determination method, battery control device, and battery pack
JP2008043188A (en) Input/output electric power control device and method for secondary battery
JP2008099541A (en) Battery management system, and drive method therefor
JP2011101589A (en) Battery pack and controlling method
US9598031B2 (en) Vehicle
JP2013145175A (en) Battery system and short circuit detection method
WO2013176087A1 (en) Battery-state determination method, battery control device, and battery pack
JP2018148726A (en) Protection circuit for on-vehicle battery
WO2018179855A1 (en) Battery control device
WO2016143296A1 (en) Electricity storage control system and charge/discharge control method
JP5626190B2 (en) Power storage system
JP6386579B2 (en) Power control apparatus and power control system including the same
JP5626195B2 (en) Power storage system
JP5794205B2 (en) Power storage system and disconnection determination method
JP2015061505A (en) Power storage system
JP5472472B2 (en) Power storage system and method for determining state of power storage block
JP2016067077A (en) Electric power storage system
KR20160043736A (en) Power supply aparatus for electric vehicle and power supply method using it
JP5870907B2 (en) Power storage system
WO2014174762A1 (en) Power conversion system and connector
JP5678879B2 (en) Power storage system and abnormality determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794567

Country of ref document: EP

Kind code of ref document: A1