WO2018179855A1 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
WO2018179855A1
WO2018179855A1 PCT/JP2018/003905 JP2018003905W WO2018179855A1 WO 2018179855 A1 WO2018179855 A1 WO 2018179855A1 JP 2018003905 W JP2018003905 W JP 2018003905W WO 2018179855 A1 WO2018179855 A1 WO 2018179855A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
temperature
upper limit
control unit
Prior art date
Application number
PCT/JP2018/003905
Other languages
French (fr)
Japanese (ja)
Inventor
晋 山内
啓 坂部
ファニー マテ
大輝 小松
石津 竹規
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018179855A1 publication Critical patent/WO2018179855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery control device.
  • Lithium ion secondary batteries are used for in-vehicle batteries mounted on these vehicles.
  • the spread of electric traveling vehicles is required to reduce the price of lithium ion secondary batteries, and natural air cooling is required as a means for this.
  • lithium ion secondary batteries have a temperature range that is used for safety protection and prevention of deterioration, and the temperature change of the battery due to heat generation due to charge / discharge must be controlled to an appropriate usage range. In the case of natural air cooling, this is achieved by controlling the current.
  • Patent Document 1 discloses a method of controlling the charging / discharging current by measuring the temperature of a battery by a temperature measuring means, calculating an allowable current so that the measured temperature does not exceed the upper limit temperature.
  • Patent Document 1 Since the technology described in Patent Document 1 simply suppresses the current uniformly according to the temperature, it also suppresses a short-time current that does not increase in temperature, leading to deterioration in fuel consumption and drivability of the electric vehicle. is there.
  • the battery control device is a battery control device including a control unit that controls a charge / discharge current of a storage battery, wherein the control unit predicts a temperature increase of the storage battery based on a battery temperature and a charge / discharge current amount. And the value of one upper limit charging / discharging current is selected from the value of several upper limit charging / discharging current so that it may not exceed the upper limit temperature of the said storage battery using the prediction result of a temperature rise, and charging / discharging current is controlled.
  • the battery control device of the present invention appropriate temperature control is possible, and charge / discharge control can be performed without impairing the fuel efficiency and driving performance of the electric vehicle.
  • FIG. 1 is an example of the configuration of the battery system 100 according to the present embodiment. Since the output voltage of the battery system 100 is a DC voltage that varies depending on the remaining capacity of the battery, the output current, and the like, it may not be suitable for supplying power directly to the load 111. Therefore, in this embodiment, the inverter 110 controlled by the host controller 112 converts the output voltage of the battery system 100 into a three-phase alternating current and supplies it to the load 111. The same configuration is used when a DC voltage or other multiphase AC or single phase AC is supplied to the load 111.
  • the electric power output from the load 111 can be stored in the battery system 100 by using the inverter 110 as a bidirectional inverter. Further, by connecting the charging system to the battery system 100 in parallel with the inverter 110, the battery system 100 can be charged as necessary.
  • the battery system 100 informs the host controller 112 of information related to the battery state such as the maximum charge current, discharge current (allowable current), battery temperature, battery abnormality, etc. that can be used for controlling the inverter 110 and the load 111. Send.
  • the host controller 112 performs energy management, abnormality detection, and the like based on this information.
  • the host controller 112 determines that the battery system 100 should be disconnected from the inverter 110 or the load 111, the host controller 112 transmits a disconnection instruction to the battery system 100.
  • the battery system 100 includes one or more battery modules 105 including a plurality of batteries, a battery control device 103 that monitors, estimates, and controls the state of the battery system 100, a relay 106 that intermittently outputs the battery system 100, and a battery.
  • a current sensor 108 that measures the flowing current, a voltage sensor 202 that measures the battery voltage, a leakage sensor 203 that measures an insulation resistance between the battery system 100 and, for example, the ground, and a cutoff provided according to the output voltage of the battery system
  • the device 107 is configured.
  • the battery module 105 has a plurality of unit cells, measures the temperature inside the battery module 105 and the voltage of each battery, and performs charge / discharge in units of single cells as necessary. As a result, voltage monitoring and voltage adjustment can be performed in units of single cells, and temperature information necessary for estimating the state of the battery whose characteristics change according to temperature can be measured. Details will be described later.
  • a current sensor 108 and a relay 106 are connected to the battery module 105 in series with the battery module 105. As a result, a current value necessary for monitoring and estimating the state of the battery module 105 can be measured, and the output of the battery system 100 can be interrupted based on a command from the host controller 112.
  • a circuit breaker 107 for manually interrupting power input / output to the battery system 100 may be added. By forcibly shutting off using the circuit breaker 107, it is possible to prevent an electric shock accident or a short-circuit accident when assembling or disassembling the battery system 100 or when dealing with an accident of a device equipped with the battery system 100. It becomes.
  • a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in each row, or the relay 106, circuit breaker only at the output portion of the battery system 100. 107 and a current sensor 108 may be provided. Moreover, the relay 106, the circuit breaker 107, and the current sensor 108 may be provided in both of each column and the output unit of the battery system 100.
  • the relay 106 may be configured by one relay, or may be configured by a set of a main relay, a precharge relay, and a resistor. In the latter configuration, a resistor is arranged in series with the precharge relay, and these are connected in parallel with the main relay.
  • a precharge relay When connecting the relay 106, first a precharge relay is connected. Since the current flowing through the precharge relay is limited by the resistance connected in series, the inrush current that can occur in the former configuration can be limited. Then, after the current flowing through the precharge relay becomes sufficiently small, the main relay is connected.
  • the timing of main relay connection may be based on the current flowing through the precharge relay, or may be based on the voltage applied to the resistor or the voltage across the terminals of the main relay, or the time elapsed since the precharge relay was connected. May be used as a reference.
  • the voltage sensor 202 is connected in parallel to one or a plurality of battery modules 105 or one series of each of the battery modules 105, and measures a voltage value necessary for monitoring and estimating the state of the battery module 105.
  • a leakage sensor 203 is connected to the battery module 105 to detect a state where a leakage can occur before the leakage occurs, that is, a state where the insulation resistance is reduced, thereby preventing an accident from occurring.
  • the values measured by the battery module 105, the current sensor 108, the voltage sensor 202, and the leakage sensor 203 are transmitted to the battery control device 103, and the battery control device 103 performs battery state monitoring, estimation, and control based on the values.
  • the control includes, for example, charge / discharge of each unit battery for equalizing the voltage of each unit battery, power control of each sensor, addressing of the sensor, control of the relay 106 connected to the battery control device 103, and the like. Point to.
  • the CPU 201 performs calculations necessary for battery state monitoring, estimation, and control.
  • the battery control device 103 may incorporate a voltage sensor 202 or a leakage sensor 203.
  • the number of harnesses can be reduced as compared with the case where individual sensors are prepared, and the labor for sensor installation can also be reduced.
  • the scale (maximum output voltage, current, etc.) of the battery system 100 that can be handled by the battery control device 103 is limited by incorporating the sensor, the voltage sensor 202 and the leakage sensor 203 are intentionally different from the battery control device 103. You may give freedom by making it another part.
  • temperature sensors or thermistors for measuring the temperature of the battery and the temperature of the outside air are built in the battery modules 105 and 106.
  • FIG. 2 is a functional block diagram for realizing an upper limit current selection function for determining the upper limit value of the charge / discharge current of the battery system in the CPU 201 that performs various calculations in the battery control apparatus 103.
  • Each function shown in this functional block diagram is realized by the CPU 201 and its software.
  • the temperature-corresponding current control unit 204 obtains the upper limit value of the current by predicting the temperature change of the battery system and the charge / discharge current from information such as the battery temperature, the outside air temperature, and the SOC indicating the battery charge state.
  • the upper / lower limit voltage-corresponding current control unit 205 calculates an upper limit value of the current by calculating a maximum current kept within the upper / lower limit voltage range from information such as the battery voltage, battery temperature, and SOC.
  • the upper limit current selection unit 206 selects the upper limit current based on the upper limit value of the temperature corresponding current control unit 204 or the upper limit value of the upper / lower limit voltage corresponding current control unit 205 based on the charge / discharge current that is actually charged / discharged.
  • FIG. 3 shows an example of a method for determining the upper limit current in the temperature corresponding current control unit 204.
  • FIG. 3A the reached temperatures ahead of the times ⁇ t1, ⁇ tl, ⁇ tq when the predetermined currents i1, il, iq are supplied from the current time t are predicted.
  • FIG. 3B shows the next control cycle of FIG.
  • the current i1 when the current i1 is passed, if the temperature is expected to exceed the upper limit within ⁇ t1, the current is switched to the upper limit current predicted after ⁇ tl seconds.
  • FIG. 3C as well, when the temperature is expected to exceed the upper limit value within ⁇ tl, the current value is changed to iq. In this way, the temperature reached by the battery ahead of a specific time is predicted, and the current is controlled so as not to exceed the upper limit temperature.
  • the upper / lower limit voltage-corresponding current control unit 205 controls the current so as to maintain the upper / lower limit voltage range in the lithium battery, and this technique is a known technique, and is realized by using this technique in the present embodiment.
  • the horizontal axis represents the upper limit value by the temperature-corresponding current control unit 204
  • the vertical axis represents the charge / discharge current at which the battery is actually charged / discharged.
  • the broken line in the figure indicates that the upper limit value by the temperature-corresponding current control unit 204 and the charge / discharge current match. For this reason, the region above the broken line indicates that a current larger than the upper limit value by the temperature corresponding current control unit 204 is charged / discharged, and the current lower than the upper limit value is charged / discharged in the lower region. Has been.
  • the battery temperature tends to reach the upper limit temperature or the margin for the upper limit temperature of the current temperature tends to decrease.
  • the upper limit value by the current control unit 204 is selected.
  • the battery temperature tends to decrease or the margin for the upper limit temperature tends to increase, so the upper limit value by the upper / lower limit voltage corresponding current control unit 205 is selected. To do.
  • FIG. 5 is a flowchart showing the operation of the battery control device 103.
  • the control process related to this embodiment starts in S500, the battery voltage, charge / discharge current, and battery temperature necessary for the control process are detected in S501.
  • the information to detect is an example, In addition to these parameters, parameters that can estimate information on the voltage, current, and temperature of the battery may be used.
  • the upper limit value of the current by the temperature corresponding current control unit 204 and the upper limit value of the current by the upper / lower limit voltage corresponding current control unit 205 are calculated from the detected data.
  • the upper limit value of the upper / lower limit voltage corresponding current control unit 205 is set as the initial value of the upper limit value.
  • the initial value is not limited to this value, and an arbitrary value may be set.
  • the charge / discharge current that is actually charged / discharged is compared with the upper limit value of the charge / discharge current by the temperature corresponding current control unit 204. If the charge / discharge current is larger, the process proceeds to S505, and the upper limit value by the temperature-corresponding current control unit 204 is given priority as the upper limit value of this control. If the charge / discharge current is smaller, the process proceeds to S506, and the upper and lower limits The charging / discharging current is controlled by giving priority to the upper limit value by the voltage corresponding current control unit 205.
  • the battery control device 103 includes a control unit that controls the charge / discharge current of the storage battery 105, and the control unit predicts the temperature increase of the storage battery 105 based on the battery temperature and the amount of charge / discharge current, and the temperature rise
  • the value of one upper limit charge / discharge current is selected from the values of the plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery 105 using the predicted result, and the charge / discharge current is controlled.
  • appropriate temperature control becomes possible, and charge / discharge control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
  • the control unit of the battery control device 103 includes a temperature-corresponding current control unit 204 that controls current in a range in which the temperature of the storage battery 105 does not exceed the upper limit temperature, and a range in which the voltage of the storage battery 105 does not exceed the upper and lower limit voltage range.
  • An upper / lower limit voltage-corresponding current control unit 205 that controls the current, and the control unit further determines the upper limit charge / discharge current value by the temperature-corresponding current control unit 204 based on the charge / discharge current flowing through the storage battery 105, or the upper limit
  • the priority order is determined so that one of the values of the upper limit charge / discharge current by the lower limit voltage corresponding current control unit 205 is set as the upper limit charge / discharge current.
  • the control unit of the battery control device 103 determines the priority order based on a comparison between the value of the upper limit charge / discharge current obtained by the temperature corresponding current control unit 204 and the charge / discharge current that the storage battery 105 is actually charging / discharging. To do. Thereby, an upper limit charging / discharging current is determined appropriately, and charging / discharging control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
  • the control unit of the battery control device 103 compares the value of the upper limit charge / discharge current by the temperature-corresponding current control unit 204 with the charge / discharge current flowing through the storage battery 105, and the charge / discharge current flowing through the storage battery 105 is controlled by temperature-corresponding current control.
  • the upper limit charging / discharging current value of the temperature-corresponding current control unit 204 is given priority.
  • the value of the upper limit charge / discharge current of the current control unit 205 is prioritized. Thereby, an upper limit charging / discharging current is determined appropriately, and charging / discharging control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
  • the temperature-corresponding current control unit 204 calculates the temperature rise prediction of the storage battery 105 based on the temperature of the storage battery 105 and the amount of charge / discharge current, and the temperature that does not exceed the upper limit temperature of the storage battery 105
  • the upper limit charge / discharge current is controlled on the basis of the conditions for predicting the increase. As a result, the upper limit charge / discharge current can be appropriately controlled, and charge / discharge control can be performed without impairing the fuel efficiency or driving performance of the electric vehicle.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .

Abstract

A disadvantage in a conventional technique is that, since current is uniformly suppressed simply according to temperature, short-time current that does not cause a temperature rise is also suppressed, which leads to the deterioration of fuel efficiency and the lowering of drivability in an electric vehicle. A battery control device is provided with a control unit for controlling the charging/discharging current of a storage battery, wherein said control unit estimates the temperature rise of the storage battery on the basis of a battery temperature and a charging/discharging current amount and controls the charging/discharging current by selecting, using the estimation result of the temperature rise, one upper limit charging/discharging current value from among a plurality of upper limit charging/discharging current values so as not to exceed the upper limit temperature of the storage battery.

Description

電池制御装置Battery control device
 本発明は、電池制御装置に関する。 The present invention relates to a battery control device.
 世界各地で燃費規制が強化される中、HEV(ハイブリッド自動車)やPHEV(プラグインハイブリッド自動車)やEV(電池自動車)など電動走行車両の市場が拡大しつつある。これらの車両に搭載される車載用電池には、リチウムイオン二次電池が使用されている。今後の電動走行車両の普及拡大には、リチウムイオン二次電池の低価格化が求められており、その手段として自然空冷化が求められている。一方で、リチウムイオン二次電池は安全保護や劣化防止のために使用する温度範囲が決められており、充放電による発熱に伴う電池の温度変化を適切な使用範囲に制御しなくてはならず、自然空冷化する場合は、電流を制御することでそれを実現する。 As fuel efficiency regulations are tightened around the world, the market for electric vehicles such as HEVs (hybrid vehicles), PHEVs (plug-in hybrid vehicles) and EVs (battery vehicles) is expanding. Lithium ion secondary batteries are used for in-vehicle batteries mounted on these vehicles. In the future, the spread of electric traveling vehicles is required to reduce the price of lithium ion secondary batteries, and natural air cooling is required as a means for this. On the other hand, lithium ion secondary batteries have a temperature range that is used for safety protection and prevention of deterioration, and the temperature change of the battery due to heat generation due to charge / discharge must be controlled to an appropriate usage range. In the case of natural air cooling, this is achieved by controlling the current.
 電池の充放電電流の制御の際には、電池が過放電や過充電にならないよう守るべき上下限電圧、電池システムに使用する部品の定格電流など、温度以外にも考慮すべきことがあ。また、電池の温度は、電池の発熱量によって変化するため、大きな電流であっても短時間であれば温度上昇はしないか、温度上昇は微小である。 When controlling the charge / discharge current of a battery, there are other things to consider in addition to temperature, such as the upper and lower limit voltages that should be protected to prevent the battery from being overdischarged or overcharged, and the rated current of the parts used in the battery system. Further, since the temperature of the battery changes depending on the amount of heat generated by the battery, the temperature does not increase for a short time even if the current is large, or the temperature increase is small.
 特許文献1には、電池の温度を温度計測手段により計測し、計測された温度が上限温度を越えないように許容電流を演算して、充放電電流を制御する手法が開示されている。 Patent Document 1 discloses a method of controlling the charging / discharging current by measuring the temperature of a battery by a temperature measuring means, calculating an allowable current so that the measured temperature does not exceed the upper limit temperature.
特開2012-096712号公報JP 2012-096712 A
 特許文献1に記載の技術は、単純に温度によって一律に電流を抑制しているので、温度上昇しない短時間の電流も抑制してしまい、電動自動車の燃費悪化や運転性の低下に繋がる欠点がある。 Since the technology described in Patent Document 1 simply suppresses the current uniformly according to the temperature, it also suppresses a short-time current that does not increase in temperature, leading to deterioration in fuel consumption and drivability of the electric vehicle. is there.
 本発明による電池制御装置は、蓄電池の充放電電流を制御する制御部を備えた電池制御装置において、前記制御部は、電池温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて前記蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する。 The battery control device according to the present invention is a battery control device including a control unit that controls a charge / discharge current of a storage battery, wherein the control unit predicts a temperature increase of the storage battery based on a battery temperature and a charge / discharge current amount. And the value of one upper limit charging / discharging current is selected from the value of several upper limit charging / discharging current so that it may not exceed the upper limit temperature of the said storage battery using the prediction result of a temperature rise, and charging / discharging current is controlled.
 本発明の電池制御装置によれば、適切な温度制御が可能になり、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。 According to the battery control device of the present invention, appropriate temperature control is possible, and charge / discharge control can be performed without impairing the fuel efficiency and driving performance of the electric vehicle.
電池システムの構成図である。It is a block diagram of a battery system. 電池制御装置の機能ブロック図である。It is a functional block diagram of a battery control apparatus. 温度対応電流制御部による上限電流を示す図である。It is a figure which shows the upper limit electric current by a temperature corresponding | compatible electric current control part. 上限電流選択部による上限電流の選択を示す図である。It is a figure which shows selection of the upper limit electric current by an upper limit electric current selection part. 電池制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a battery control apparatus.
 以下、本発明の実施形態について図面を参照して説明する。図1は本実施形態による電池システム100の構成の一例である。電池システム100の出力電圧は、電池の残容量や出力電流等により変動する直流電圧のため、負荷111に直接電力を供給するには適さない場合がある。そこで本実施形態では上位コントローラ112により制御されるインバータ110により電池システム100の出力電圧を三相交流に変換し負荷111に供給している。負荷111に直流電圧や他の多相交流、単相交流を供給する場合も同様の構成となる。また、負荷111が電力を出力する場合はインバータ110を双方向インバータとすることにより、負荷111が出力した電力を電池システム100に蓄えることができる。また、インバータ110と並列に充電システムを電池システム100に接続することで、必要に応じ電池システム100を充電することも可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an example of the configuration of the battery system 100 according to the present embodiment. Since the output voltage of the battery system 100 is a DC voltage that varies depending on the remaining capacity of the battery, the output current, and the like, it may not be suitable for supplying power directly to the load 111. Therefore, in this embodiment, the inverter 110 controlled by the host controller 112 converts the output voltage of the battery system 100 into a three-phase alternating current and supplies it to the load 111. The same configuration is used when a DC voltage or other multiphase AC or single phase AC is supplied to the load 111. Moreover, when the load 111 outputs electric power, the electric power output from the load 111 can be stored in the battery system 100 by using the inverter 110 as a bidirectional inverter. Further, by connecting the charging system to the battery system 100 in parallel with the inverter 110, the battery system 100 can be charged as necessary.
 電池システム100はインバータ110や負荷111の制御に有用なSOCやSOH流すことのできる最大充電電流、放電電流(許容電流)、電池温度、電池異常の有無等の電池状態に関する情報を上位コントローラ112に送信する。上位コントローラ112はこれらの情報に基づき、エネルギーマネージメントや異常検知等を行う。また上位コントローラ112は電池システム100をインバータ110または負荷111から切り離すべきと判断した場合は切断指示を電池システム100に対し送信する。 The battery system 100 informs the host controller 112 of information related to the battery state such as the maximum charge current, discharge current (allowable current), battery temperature, battery abnormality, etc. that can be used for controlling the inverter 110 and the load 111. Send. The host controller 112 performs energy management, abnormality detection, and the like based on this information. When the host controller 112 determines that the battery system 100 should be disconnected from the inverter 110 or the load 111, the host controller 112 transmits a disconnection instruction to the battery system 100.
 電池システム100は複数個の電池からなる1台以上の電池モジュール105と、電池システム100の状態を監視、推定、および制御する電池制御装置103、電池システム100の出力を断続するリレー106、電池に流れた電流を計測する電流センサ108、電池電圧を計測する電圧センサ202、電池システム100と、例えばアースとの間の絶縁抵抗を計測する漏電センサ203、そして電池システムの出力電圧に応じ設けられる遮断器107から構成される。 The battery system 100 includes one or more battery modules 105 including a plurality of batteries, a battery control device 103 that monitors, estimates, and controls the state of the battery system 100, a relay 106 that intermittently outputs the battery system 100, and a battery. A current sensor 108 that measures the flowing current, a voltage sensor 202 that measures the battery voltage, a leakage sensor 203 that measures an insulation resistance between the battery system 100 and, for example, the ground, and a cutoff provided according to the output voltage of the battery system The device 107 is configured.
 電池モジュール105は複数個の単位電池を有し、電池モジュール105内部の温度や各電池の電圧を計測し、また必要に応じ単電池単位での充放電を行う。これにより単電池単位での電圧監視や電圧調整が可能となり、また温度に応じて特性が変化する電池の状態推定に必要な温度情報を計測可能となる。詳細は後述する。 The battery module 105 has a plurality of unit cells, measures the temperature inside the battery module 105 and the voltage of each battery, and performs charge / discharge in units of single cells as necessary. As a result, voltage monitoring and voltage adjustment can be performed in units of single cells, and temperature information necessary for estimating the state of the battery whose characteristics change according to temperature can be measured. Details will be described later.
 電池モジュール105には電流センサ108とリレー106を電池モジュール105に直列に接続する。これにより電池モジュール105の状態を監視、および推定するために必要な電流値が計測可能となり、また電池システム100の出力を上位コントローラ112の指令に基づき断続可能となる。電池モジュール105が、例えば100V以上の高電圧となる場合は、手動により電池システム100への電力入出力を遮断するための遮断器107を追加することがある。遮断器107を用いて強制的に遮断を行うことで、電池システム100の組み立て時や解体時や、電池システム100を搭載した装置の事故対応時に、感電事故や短絡事故の発生を防ぐことが可能となる。なお、電池モジュール105が複数台並列に接続されている場合は、各列にリレー106、遮断器107、電流センサ108を設けてもよいし、電池システム100の出力部分にのみリレー106、遮断器107、電流センサ108を設けてもよい。また、各列および電池システム100の出力部の両方にリレー106、遮断器107、電流センサ108を設けてもよい。 A current sensor 108 and a relay 106 are connected to the battery module 105 in series with the battery module 105. As a result, a current value necessary for monitoring and estimating the state of the battery module 105 can be measured, and the output of the battery system 100 can be interrupted based on a command from the host controller 112. When the battery module 105 has a high voltage of, for example, 100 V or higher, a circuit breaker 107 for manually interrupting power input / output to the battery system 100 may be added. By forcibly shutting off using the circuit breaker 107, it is possible to prevent an electric shock accident or a short-circuit accident when assembling or disassembling the battery system 100 or when dealing with an accident of a device equipped with the battery system 100. It becomes. When a plurality of battery modules 105 are connected in parallel, a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in each row, or the relay 106, circuit breaker only at the output portion of the battery system 100. 107 and a current sensor 108 may be provided. Moreover, the relay 106, the circuit breaker 107, and the current sensor 108 may be provided in both of each column and the output unit of the battery system 100.
 リレー106は1台のリレーで構成してもよいし、メインリレーとプリチャージリレー、抵抗の組で構成してもよい。後者の構成ではプリチャージリレーと直列に抵抗を配置し、これらをメインリレーと並列接続する。そしてリレー106を接続する場合、まずプリチャージリレーを接続する。プリチャージリレーを流れる電流は直列接続した抵抗により制限されるため、前者の構成で生じうる突入電流を制限することができる。そしてプリチャージリレーを流れる電流が十分小さくなったのちにメインリレーを接続する。メインリレー接続のタイミングはプリチャージリレーを流れる電流を基準にしてもよいし、抵抗にかかる電圧やメインリレーの端子間電圧を基準にしてもよく、またプリチャージリレーを接続してから経過した時間を基準にしてもよい。 The relay 106 may be configured by one relay, or may be configured by a set of a main relay, a precharge relay, and a resistor. In the latter configuration, a resistor is arranged in series with the precharge relay, and these are connected in parallel with the main relay. When connecting the relay 106, first a precharge relay is connected. Since the current flowing through the precharge relay is limited by the resistance connected in series, the inrush current that can occur in the former configuration can be limited. Then, after the current flowing through the precharge relay becomes sufficiently small, the main relay is connected. The timing of main relay connection may be based on the current flowing through the precharge relay, or may be based on the voltage applied to the resistor or the voltage across the terminals of the main relay, or the time elapsed since the precharge relay was connected. May be used as a reference.
 電圧センサ202は、1台または複数台の電池モジュール105、または電池モジュール105の各1直列に対し並列に接続され、電池モジュール105の状態監視、および推定に必要な電圧値を計測する。また、電池モジュール105には漏電センサ203が接続され、漏電が生じる前に漏電が生じうる状態、すなわち絶縁抵抗が低下した状態を検知し、事故の発生を予防可能とする。 The voltage sensor 202 is connected in parallel to one or a plurality of battery modules 105 or one series of each of the battery modules 105, and measures a voltage value necessary for monitoring and estimating the state of the battery module 105. In addition, a leakage sensor 203 is connected to the battery module 105 to detect a state where a leakage can occur before the leakage occurs, that is, a state where the insulation resistance is reduced, thereby preventing an accident from occurring.
 電池モジュール105、電流センサ108、電圧センサ202、漏電センサ203が計測した値は、電池制御装置103に送信され、電池制御装置103はこれを元に電池の状態監視や推定、および制御を行う。ここで制御とは、例えば各単位電池の電圧を均等化るための単位電池毎の充放電や、各センサの電源制御、センサのアドレッシング、電池制御装置103に接続されたリレー106の制御等を指す。電池の状態監視や推定、および制御に必要な演算はCPU201が行う。電池制御装置103は電圧センサ202や漏電センサ203を内蔵してもよい。このようにすることで個別のセンサを用意する場合にくらべハーネス本数を減らし、センサ取り付けの手間も削減できる。ただしセンサを内蔵することで電池制御装置103が対応可能な電池システム100の規模(最大出力電圧、電流等)が限定されてしまうため、あえて電圧センサ202や漏電センサ203を電池制御装置103とは別部品とすることで自由度を持たせてもよい。また、図1には記載はしないが、電池モジュール105および106内には電池の温度や外気の温度を計測する温度センサまたはサーミスタが内蔵されている。 The values measured by the battery module 105, the current sensor 108, the voltage sensor 202, and the leakage sensor 203 are transmitted to the battery control device 103, and the battery control device 103 performs battery state monitoring, estimation, and control based on the values. Here, the control includes, for example, charge / discharge of each unit battery for equalizing the voltage of each unit battery, power control of each sensor, addressing of the sensor, control of the relay 106 connected to the battery control device 103, and the like. Point to. The CPU 201 performs calculations necessary for battery state monitoring, estimation, and control. The battery control device 103 may incorporate a voltage sensor 202 or a leakage sensor 203. By doing in this way, the number of harnesses can be reduced as compared with the case where individual sensors are prepared, and the labor for sensor installation can also be reduced. However, since the scale (maximum output voltage, current, etc.) of the battery system 100 that can be handled by the battery control device 103 is limited by incorporating the sensor, the voltage sensor 202 and the leakage sensor 203 are intentionally different from the battery control device 103. You may give freedom by making it another part. Although not shown in FIG. 1, temperature sensors or thermistors for measuring the temperature of the battery and the temperature of the outside air are built in the battery modules 105 and 106.
 図2は電池制御装置103内で各種演算を実施するCPU201において、電池システムの充放電電流の上限値を決定する上限電流選択の機能を実現する機能ブロック図である。この機能ブロック図で示す各機能はCPU201とそのソフトウエアにより実現される。温度対応電流制御部204は、電池温度や外気温度、電池充電状態を示すSOCなどの情報から、電池システムの温度と充放電電流による温度変化を予測して電流の上限値を求める。上下限電圧対応電流制御部205は、電池の電圧、電池温度、SOCなどの情報から上下限電圧の範囲内に留められる最大電流を演算して電流の上限値を求める。上限電流選択部206は、実際に充放電されている充放電電流に基づいて、温度対応電流制御部204の上限値、または上下限電圧対応電流制御部205の上限値による上限電流を選択する。 FIG. 2 is a functional block diagram for realizing an upper limit current selection function for determining the upper limit value of the charge / discharge current of the battery system in the CPU 201 that performs various calculations in the battery control apparatus 103. Each function shown in this functional block diagram is realized by the CPU 201 and its software. The temperature-corresponding current control unit 204 obtains the upper limit value of the current by predicting the temperature change of the battery system and the charge / discharge current from information such as the battery temperature, the outside air temperature, and the SOC indicating the battery charge state. The upper / lower limit voltage-corresponding current control unit 205 calculates an upper limit value of the current by calculating a maximum current kept within the upper / lower limit voltage range from information such as the battery voltage, battery temperature, and SOC. The upper limit current selection unit 206 selects the upper limit current based on the upper limit value of the temperature corresponding current control unit 204 or the upper limit value of the upper / lower limit voltage corresponding current control unit 205 based on the charge / discharge current that is actually charged / discharged.
 図3に、温度対応電流制御部204での上限電流の決定方法の一例を示す。図3(a)では、現時点tから所定の電流i1、il、iqを流した際の時刻Δt1、Δtl、Δtq先の到達温度を予測する。図3(b)は図3(a)の次の制御周期を示している。例えば、図3(b)で、i1の電流を流した際にΔt1以内に温度が上限値を超えることが予想される場合は、Δtl秒後を予測した上限電流に切り替える。さらに図3(c)でも同様に、Δtl以内に温度が上限値を超えることが予想された場合には、iqに電流値を変化させる。このように特定時間先の電池の到達温度を予測し、上限温度を超えないように電流を制御する。 FIG. 3 shows an example of a method for determining the upper limit current in the temperature corresponding current control unit 204. In FIG. 3A, the reached temperatures ahead of the times Δt1, Δtl, Δtq when the predetermined currents i1, il, iq are supplied from the current time t are predicted. FIG. 3B shows the next control cycle of FIG. For example, in FIG. 3B, when the current i1 is passed, if the temperature is expected to exceed the upper limit within Δt1, the current is switched to the upper limit current predicted after Δtl seconds. Further, in FIG. 3C as well, when the temperature is expected to exceed the upper limit value within Δtl, the current value is changed to iq. In this way, the temperature reached by the battery ahead of a specific time is predicted, and the current is controlled so as not to exceed the upper limit temperature.
 上下限電圧対応電流制御部205は、リチウム電池では上下限電圧範囲を維持するよう電流を制御するものであり、この技術は公知技術であり、本実施形態ではこの技術を用いることで実現する。 The upper / lower limit voltage-corresponding current control unit 205 controls the current so as to maintain the upper / lower limit voltage range in the lithium battery, and this technique is a known technique, and is realized by using this technique in the present embodiment.
 次に、上限電流選択部206での上限電流の選択の一例について、図4を用いて説明する。横軸は温度対応電流制御部204による上限値、縦軸は実際に電池が充放電している充放電電流を示している。図中の破線は温度対応電流制御部204による上限値と充放電電流が一致している点を示している。このため、破線よりも上の領域では、温度対応電流制御部204による上限値よりも大きな電流が充放電されていることを示しており、下の領域では同上限値よりも小さな電流が充放電されている。従って、破線よりも上の領域で充放電された場合は、電池温度が上限温度に到達または、現在の温度の上限温度に対する余裕が小さくなっていく傾向となるため、このような領域では温度対応電流制御部204による上限値を選択する。一方、破線よりも下の領域で使用されている場合には、電池温度が低下または、上限温度に対する余裕が大きくなっていく傾向となるため、上下限電圧対応電流制御部205による上限値を選択する。 Next, an example of selection of the upper limit current in the upper limit current selection unit 206 will be described with reference to FIG. The horizontal axis represents the upper limit value by the temperature-corresponding current control unit 204, and the vertical axis represents the charge / discharge current at which the battery is actually charged / discharged. The broken line in the figure indicates that the upper limit value by the temperature-corresponding current control unit 204 and the charge / discharge current match. For this reason, the region above the broken line indicates that a current larger than the upper limit value by the temperature corresponding current control unit 204 is charged / discharged, and the current lower than the upper limit value is charged / discharged in the lower region. Has been. Therefore, when charging / discharging in the area above the broken line, the battery temperature tends to reach the upper limit temperature or the margin for the upper limit temperature of the current temperature tends to decrease. The upper limit value by the current control unit 204 is selected. On the other hand, when used in an area below the broken line, the battery temperature tends to decrease or the margin for the upper limit temperature tends to increase, so the upper limit value by the upper / lower limit voltage corresponding current control unit 205 is selected. To do.
 図5は、電池制御装置103の動作を示すフローチャートである。S500で本実施形態に関する制御処理がスタートすると、S501で制御処理に必要な電池電圧、充放電電流、電池温度を検出する。なお、検出する情報は一例であり、これらのパラメータの他にも、電池の電圧、電流、温度に関する情報を推定できるパラメータを使用しても良い。S502では、検出されたデータから、それぞれ温度対応電流制御部204による電流の上限値、および上下限電圧対応電流制御部205による電流の上限値を演算する。S503では、上限値の初期値として上下限電圧対応電流制御部205の上限値を設定する。なお、初期値の値はこの値に限定するものではなく、任意の値を設定して良い。S504では実際に充放電されている充放電電流と、温度対応電流制御部204による充放電電流の上限値を比較する。充放電電流の方が大きい場合はS505へ進み、温度対応電流制御部204による上限値を優先して本制御の上限値として採用し、充放電電流の方が小さい場合はS506へ進み、上下限電圧対応電流制御部205による上限値を優先して採用して充放電電流を制御する。さらに、S507では電池制御装置のシャットダウン処理など、本制御処理に関する終了信号の有無を確認し、信号が無い場合はS504からS507を繰り返し、終了信号があれば本制御を終了する。 FIG. 5 is a flowchart showing the operation of the battery control device 103. When the control process related to this embodiment starts in S500, the battery voltage, charge / discharge current, and battery temperature necessary for the control process are detected in S501. In addition, the information to detect is an example, In addition to these parameters, parameters that can estimate information on the voltage, current, and temperature of the battery may be used. In S502, the upper limit value of the current by the temperature corresponding current control unit 204 and the upper limit value of the current by the upper / lower limit voltage corresponding current control unit 205 are calculated from the detected data. In S503, the upper limit value of the upper / lower limit voltage corresponding current control unit 205 is set as the initial value of the upper limit value. The initial value is not limited to this value, and an arbitrary value may be set. In S504, the charge / discharge current that is actually charged / discharged is compared with the upper limit value of the charge / discharge current by the temperature corresponding current control unit 204. If the charge / discharge current is larger, the process proceeds to S505, and the upper limit value by the temperature-corresponding current control unit 204 is given priority as the upper limit value of this control. If the charge / discharge current is smaller, the process proceeds to S506, and the upper and lower limits The charging / discharging current is controlled by giving priority to the upper limit value by the voltage corresponding current control unit 205. Further, in S507, the presence / absence of an end signal related to this control process such as a shutdown process of the battery control device is confirmed. If there is no signal, S504 to S507 are repeated, and if there is an end signal, this control is ended.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電池制御装置103は、蓄電池105の充放電電流を制御する制御部を備え、制御部は、電池温度、及び充放電電流量に基づいて、蓄電池105の温度上昇を予測し、温度上昇の予測結果を用いて蓄電池105の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する。これにより、適切な温度制御が可能になり、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(2)電池制御装置103の制御部は、蓄電池105の温度が上限温度を超えない範囲で電流を制御する温度対応電流制御部204と、蓄電池105の電圧が上下限電圧範囲を超えない範囲で電流を制御する上下限電圧対応電流制御部205とを有し、制御部は、さらに、蓄電池105に流れる充放電電流に基づいて、温度対応電流制御部204による上限充放電電流の値、または上下限電圧対応電流制御部205による上限充放電電流の値のいずれかを上限充放電電流とするよう優先順位を決定する。これにより、上限充放電電流を決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(3)電池制御装置103の制御部は、優先順位を、温度対応電流制御部204で求めた上限充放電電流の値と実際に蓄電池105が充放電している充放電電流の比較に基づき決定する。これにより、上限充放電電流を適切に決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(4)電池制御装置103の制御部は、温度対応電流制御部204による上限充放電電流の値と、蓄電池105に流れる充放電電流を比較し、蓄電池105に流れる充放電電流が温度対応電流制御部204による上限充放電電流の値よりも大きい場合は温度対応電流制御部204の上限充放電電流の値を優先し、温度対応電流制御部204の上限値よりも小さい場合は、上下限電圧対応電流制御部205の上限充放電電流の値を優先する。これにより、上限充放電電流を適切に決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(5)電池制御装置103において、温度対応電流制御部204は、蓄電池105の温度、及び充放電電流量に基づいて、蓄電池105の温度上昇予測を算出し、蓄電池105の上限温度を超えない温度上昇予測の条件に基づいて上限充放電電流を制御する。これにより、上限充放電電流を適切に制御し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The battery control device 103 includes a control unit that controls the charge / discharge current of the storage battery 105, and the control unit predicts the temperature increase of the storage battery 105 based on the battery temperature and the amount of charge / discharge current, and the temperature rise The value of one upper limit charge / discharge current is selected from the values of the plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery 105 using the predicted result, and the charge / discharge current is controlled. Thereby, appropriate temperature control becomes possible, and charge / discharge control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
(2) The control unit of the battery control device 103 includes a temperature-corresponding current control unit 204 that controls current in a range in which the temperature of the storage battery 105 does not exceed the upper limit temperature, and a range in which the voltage of the storage battery 105 does not exceed the upper and lower limit voltage range. An upper / lower limit voltage-corresponding current control unit 205 that controls the current, and the control unit further determines the upper limit charge / discharge current value by the temperature-corresponding current control unit 204 based on the charge / discharge current flowing through the storage battery 105, or the upper limit The priority order is determined so that one of the values of the upper limit charge / discharge current by the lower limit voltage corresponding current control unit 205 is set as the upper limit charge / discharge current. Thereby, an upper limit charging / discharging current is determined, and charging / discharging control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
(3) The control unit of the battery control device 103 determines the priority order based on a comparison between the value of the upper limit charge / discharge current obtained by the temperature corresponding current control unit 204 and the charge / discharge current that the storage battery 105 is actually charging / discharging. To do. Thereby, an upper limit charging / discharging current is determined appropriately, and charging / discharging control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
(4) The control unit of the battery control device 103 compares the value of the upper limit charge / discharge current by the temperature-corresponding current control unit 204 with the charge / discharge current flowing through the storage battery 105, and the charge / discharge current flowing through the storage battery 105 is controlled by temperature-corresponding current control. When the value is larger than the upper limit charging / discharging current value by the unit 204, the upper limit charging / discharging current value of the temperature-corresponding current control unit 204 is given priority. The value of the upper limit charge / discharge current of the current control unit 205 is prioritized. Thereby, an upper limit charging / discharging current is determined appropriately, and charging / discharging control can be performed without impairing the fuel consumption performance and driving performance of the electric vehicle.
(5) In the battery control device 103, the temperature-corresponding current control unit 204 calculates the temperature rise prediction of the storage battery 105 based on the temperature of the storage battery 105 and the amount of charge / discharge current, and the temperature that does not exceed the upper limit temperature of the storage battery 105 The upper limit charge / discharge current is controlled on the basis of the conditions for predicting the increase. As a result, the upper limit charge / discharge current can be appropriately controlled, and charge / discharge control can be performed without impairing the fuel efficiency or driving performance of the electric vehicle.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .
100 電池システム
103 電池制御装置
105 電池モジュール
106 リレー
107 遮断器
108 電流センサ
110 インバータ
111 負荷
112 上位コントローラ
201 CPU
202 電圧センサ
203 漏電センサ
DESCRIPTION OF SYMBOLS 100 Battery system 103 Battery control apparatus 105 Battery module 106 Relay 107 Circuit breaker 108 Current sensor 110 Inverter 111 Load 112 Host controller 201 CPU
202 Voltage sensor 203 Earth leakage sensor

Claims (5)

  1.  蓄電池の充放電電流を制御する制御部を備えた電池制御装置において、
     前記制御部は、電池温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて前記蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する電池制御装置。
    In the battery control device comprising a control unit for controlling the charge / discharge current of the storage battery,
    The control unit predicts a temperature rise of the storage battery based on a battery temperature and a charge / discharge current amount, and uses a prediction result of the temperature rise so as not to exceed the upper limit temperature of the storage battery. The battery control apparatus which selects the value of one upper limit charging / discharging current from the value of, and controls charging / discharging current.
  2.  請求項1に記載の電池制御装置において、
     前記制御部は、前記蓄電池の温度が上限温度を超えない範囲で電流を制御する温度対応電流制御部と、前記蓄電池の電圧が上下限電圧範囲を超えない範囲で電流を制御する上下限電圧対応電流制御部とを有し、
     前記制御部は、さらに、前記蓄電池に流れる充放電電流に基づいて、前記温度対応電流制御部による上限充放電電流の値、または前記上下限電圧対応電流制御部による上限充放電電流の値のいずれかを上限充放電電流とするよう優先順位を決定する電池制御装置。
    The battery control device according to claim 1,
    The control unit corresponds to a temperature corresponding current control unit that controls a current in a range where the temperature of the storage battery does not exceed an upper limit temperature, and corresponds to an upper / lower limit voltage that controls a current in a range where the voltage of the storage battery does not exceed an upper / lower limit voltage range A current control unit,
    The control unit is further configured based on a charge / discharge current flowing through the storage battery, either an upper limit charge / discharge current value by the temperature corresponding current control unit or an upper limit charge / discharge current value by the upper / lower limit voltage corresponding current control unit. The battery control apparatus which determines a priority so that it may be set as upper limit charging / discharging electric current.
  3.  請求項2に記載の電池制御装置において、
     前記制御部は、前記優先順位を、前記温度対応電流制御部で求めた上限充放電電流の値と実際に蓄電池が充放電している充放電電流の比較に基づき決定する電池制御装置。
    The battery control device according to claim 2,
    The said control part is a battery control apparatus which determines the said priority based on the comparison of the value of the upper limit charging / discharging current calculated | required in the said temperature corresponding | compatible current control part, and the charging / discharging current which the storage battery is actually charging / discharging.
  4.  請求項2に記載の電池制御装置において、
     前記制御部は、前記温度対応電流制御部による上限充放電電流の値と、前記蓄電池に流れる充放電電流を比較し、前記蓄電池に流れる充放電電流が前記温度対応電流制御部による上限充放電電流の値よりも大きい場合は前記温度対応電流制御部の上限充放電電流の値を優先し、前記温度対応電流制御部の上限値よりも小さい場合は、前記上下限電圧対応電流制御部の上限充放電電流の値を優先する電池制御装置。
    The battery control device according to claim 2,
    The controller compares the value of the upper limit charge / discharge current by the temperature corresponding current control unit with the charge / discharge current flowing through the storage battery, and the charge / discharge current flowing through the storage battery is the upper limit charge / discharge current by the temperature corresponding current control unit. Is greater than the upper limit charging / discharging current value of the temperature-corresponding current control unit, and smaller than the upper limit value of the temperature-corresponding current control unit, A battery control device that prioritizes the value of discharge current.
  5.  請求項2から請求項4までのいずれか一項に記載の電池制御装置において、
     前記温度対応電流制御部は、前記蓄電池の温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇予測を算出し、前記蓄電池の上限温度を超えない温度上昇予測の条件に基づいて上限充放電電流を制御する電池制御装置。
    In the battery control device according to any one of claims 2 to 4,
    The temperature-corresponding current control unit calculates a temperature rise prediction of the storage battery based on the temperature of the storage battery and a charge / discharge current amount, and performs upper limit charge based on a temperature rise prediction condition that does not exceed the upper limit temperature of the storage battery. Battery control device for controlling discharge current.
PCT/JP2018/003905 2017-03-30 2018-02-06 Battery control device WO2018179855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067877A JP6827355B2 (en) 2017-03-30 2017-03-30 Battery control device
JP2017-067877 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179855A1 true WO2018179855A1 (en) 2018-10-04

Family

ID=63675062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003905 WO2018179855A1 (en) 2017-03-30 2018-02-06 Battery control device

Country Status (2)

Country Link
JP (1) JP6827355B2 (en)
WO (1) WO2018179855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040567A4 (en) * 2019-10-02 2022-11-23 Denso Corporation Charging control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251357B2 (en) * 2019-06-28 2023-04-04 株式会社デンソー Control device for in-vehicle power supply
WO2022269835A1 (en) * 2021-06-23 2022-12-29 株式会社EViP Battery power supply circuit
KR102604792B1 (en) * 2021-12-21 2023-11-20 세메스 주식회사 Article transport vehicle with power operation funtion, article transport system and method for operation of article transport vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304572A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Charging device
JP2009148046A (en) * 2007-12-12 2009-07-02 Sanyo Electric Co Ltd Charging method
WO2013061412A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Apparatus for controlling electric vehicle
WO2015098012A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Control system and vehicle power supply
US20160226291A1 (en) * 2015-01-29 2016-08-04 Man Truck & Bus Ag Method and device for limiting the current in a temperature-dependent manner of an energy storage device for electrical energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304572A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Charging device
JP2009148046A (en) * 2007-12-12 2009-07-02 Sanyo Electric Co Ltd Charging method
WO2013061412A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Apparatus for controlling electric vehicle
WO2015098012A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Control system and vehicle power supply
US20160226291A1 (en) * 2015-01-29 2016-08-04 Man Truck & Bus Ag Method and device for limiting the current in a temperature-dependent manner of an energy storage device for electrical energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040567A4 (en) * 2019-10-02 2022-11-23 Denso Corporation Charging control device

Also Published As

Publication number Publication date
JP6827355B2 (en) 2021-02-10
JP2018170904A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US10358047B2 (en) Electric power storage system
US9933491B2 (en) Electric storage system
JP6228666B2 (en) Battery system
JP5683710B2 (en) Battery system monitoring device
EP1914559B1 (en) Battery management system (BMS) and driving method thereof
WO2018179855A1 (en) Battery control device
US20140103859A1 (en) Electric storage system
JP5105031B2 (en) Power storage system
US11532841B2 (en) Storage battery control device
EP2509186B1 (en) Power supply apparatus and method of controlling the same
JP2013145175A (en) Battery system and short circuit detection method
JP2006073364A (en) Capacity adjustment device of battery pack and capacity adjustment method of battery pack
JP2011061886A (en) Power unit and vehicle including the same
KR101624644B1 (en) System and method for derating a power limit associated with a battery pack
JP2003291754A (en) Electric power source for vehicle
JP6752286B2 (en) Battery system
WO2013176087A1 (en) Battery-state determination method, battery control device, and battery pack
JP5818947B1 (en) Vehicle power supply
JP2014087243A (en) Power storage system
JP5975925B2 (en) Battery control device, power storage device
JP2018057115A (en) Power supply controller and electrical power system
JP5978144B2 (en) Battery system
JP2011223839A (en) Power supply unit for vehicle
JP2024039528A (en) Battery control method and battery control device
JP5978145B2 (en) Battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774936

Country of ref document: EP

Kind code of ref document: A1