WO2013176085A1 - Battery-state determination method, battery control device, and battery pack - Google Patents

Battery-state determination method, battery control device, and battery pack Download PDF

Info

Publication number
WO2013176085A1
WO2013176085A1 PCT/JP2013/063951 JP2013063951W WO2013176085A1 WO 2013176085 A1 WO2013176085 A1 WO 2013176085A1 JP 2013063951 W JP2013063951 W JP 2013063951W WO 2013176085 A1 WO2013176085 A1 WO 2013176085A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage value
current
value
voltage
Prior art date
Application number
PCT/JP2013/063951
Other languages
French (fr)
Japanese (ja)
Inventor
博之 野村
守 倉石
宏昌 吉澤
隆広 都竹
正清 松井
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013176085A1 publication Critical patent/WO2013176085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for using a battery (cell) equipped with a current interruption mechanism.
  • Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, in the battery which needs to generate a higher voltage, the structure which connected the some battery used as a component in series is employ
  • the current interrupting mechanism is a safety device that operates, for example, due to an increase in pressure inside the battery, and interrupts the current due to an increase in internal pressure. For this reason, at a high temperature at which the internal pressure increases, for example, at the time of overcharging or when an overcurrent is generated, the supply of current to the battery and the supply of current from the battery can be interrupted by the current interruption mechanism. Thereby, when a battery equipped with a current interruption mechanism is used, higher safety can be ensured.
  • the charge control by voltage monitoring is usually performed so that the current interrupt mechanism does not operate, that is, the current is not interrupted. For this reason, there is a possibility that charge control cannot be performed properly in the operation of the current interrupt function. Accordingly, in a device equipped with a battery, when a current interrupting mechanism is activated, it is common to disconnect the path used for discharging from the battery and charging the battery. The activated current interrupting mechanism is automatically deactivated, for example, when the internal pressure is lowered. By releasing the operation, the battery returns to a state in which a current can flow and can be used. In a device equipped with a battery, it is possible to remove a restriction (for example, a restriction that the device cannot be used) due to the operation of the current interrupt mechanism. From this, it seems important to detect the release of the operation of the current interruption mechanism with high accuracy.
  • a restriction for example, a restriction that the device cannot be used
  • JP-A-8-191544 Japanese Patent Laid-Open No. 10-270091 JP 2011-200071 A JP 2000-236247 A
  • An object of the present invention is to provide a technique for detecting (determining) the operation release of a current interrupt mechanism mounted on a battery with high accuracy.
  • One aspect of the present invention is a method for determining a state of a battery in which charging / discharging is performed by a computer, the computer detects a voltage value between terminals of the battery, and uses the detected voltage value, A time differential value of the voltage value is calculated, and based on the time differential value obtained by the calculation, it is determined as a state of the battery whether or not a current interrupting mechanism mounted on the battery has been deactivated.
  • Another aspect of the present invention is a battery control apparatus that controls a plurality of batteries to be charged / discharged and connected to each of the first batteries each having a current interrupting mechanism.
  • Voltage value acquisition means for acquiring a voltage value between the terminals of the battery
  • calculation means for calculating a time differential value of the voltage value using the voltage value acquired by the voltage value acquisition means
  • calculation by the calculation means State determination means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value.
  • Still another embodiment of the present invention is a battery pack including a plurality of batteries to be charged / discharged and connected to each of the first batteries each having a current interrupting mechanism.
  • a voltage value detecting means for detecting a voltage value between terminals of the battery, a calculating means for calculating a time differential value of the voltage value using the voltage value detected by the voltage value detecting means, and the calculating means State determining means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value.
  • FIG. 1 is a diagram illustrating a configuration example of a battery pack according to the present embodiment.
  • the battery pack 1 is assumed to be mounted on a vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV). As shown in FIG. 1, the battery pack 1 includes a battery control ECU (Electronic Control Unit) 11, a plurality of batteries 120, a battery pack 12 connected in series, an SMR (System Main Relay) 13, a current sensor 14, and a temperature. A sensor 15 is provided.
  • ECU Electronic Control Unit
  • SMR System Main Relay
  • the vehicle on which the battery pack 1 is mounted is provided with an ECU (noted as “HV / PHV ECU” in FIG. 1; hereinafter referred to as “vehicle ECU”) 2 that controls the entire vehicle system.
  • the battery control ECU 11 of the battery pack 1 becomes communicable with the vehicle ECU 2, and power is supplied to the battery control ECU 11 from, for example, the power supply 3 of the vehicle body. With this power supply, the battery control ECU 11 becomes operable and performs an operation in accordance with an instruction from the vehicle ECU 2.
  • the power supply to the battery control ECU 11 may be performed from one or more than the power source 3.
  • the type and number of power supplies that supply power to the battery control ECU 11 are not particularly limited.
  • the battery control ECU 11 is, for example, a computer (data processing apparatus) including a CPU (Central Processing Unit), a memory, a recording medium storing a program (firmware) executed by the CPU, and a plurality of interfaces.
  • the battery control device according to the present embodiment is realized by being mounted on the battery control ECU 11.
  • the battery state determination method according to the present embodiment is also executed by the battery control ECU 11.
  • each battery 120 constituting the assembled battery 12 includes a battery main body 121 and a current interrupt mechanism (CID) 122.
  • the current interruption mechanism 122 is a safety device that forcibly disconnects the electrical connection due to, for example, an increase in the internal pressure of the battery body 121.
  • the internal pressure increases as the temperature increases.
  • the current interruption mechanism 122 suppresses a decrease in safety due to such a cause.
  • Each battery 120 is provided with a voltage sensor 16 for detecting a voltage value between its terminals.
  • This voltage sensor 16 is a voltage value detection means for detecting the voltage value between the terminals of each battery 120. In addition to the determination of the release of the operation of the current interrupt mechanism 122, the overdischarge and overcharge are further prevented. Is also used for balancing battery capacity among batteries 120.
  • the assembled battery 12 has a configuration in which a plurality of batteries 120 including the current interrupting mechanism 122 are connected in series, but may have a different configuration. That is, the assembled battery 12 may have a configuration in which, for example, a plurality of batteries 120 including the current interrupting mechanism 122 and a plurality of battery modules connected in series are connected in parallel. In the case where the arrangement of the battery 120 that is difficult to deteriorate in characteristics is known in advance, the battery 120 that does not include the current interruption mechanism 122 may be used as the battery 120. For this reason, the assembled battery 12 mounted on the battery pack 1 is not limited to the one shown in FIG.
  • the assembled battery 12 is used to supply power to a motor (not shown).
  • the rated voltage of the assembled battery 12 is lower than the rated voltage of the motor. For this reason, the electric power generated by the discharge from the assembled battery 12 is supplied to a boost converter (not shown) via the SMR 13.
  • the motor is a generator that generates electric power when charging.
  • the electric power generated by the motor is stepped down by, for example, a step-up converter and supplied to the assembled battery 12 for charging via the SMR 13.
  • the SMR 13 functions as a relay unit that can turn on / off a current provided on a path for discharging from the assembled battery 12 and charging the assembled battery 12.
  • the battery control ECU 11 functions as a control unit that switches current on and off in the SMR 13 as necessary.
  • the current sensor 14 is a current value detection means for detecting a current value supplied to the assembled battery 12 or a current value supplied from the assembled battery 12.
  • the temperature sensor 15 is temperature detection means for detecting the temperature in the battery pack 1.
  • the current value detected by the current sensor 14 and the temperature detected by the temperature sensor 15 are input to the battery control ECU 11 and processed in the same manner as the voltage value detected by the voltage sensor 16 of each battery 120. Thereby, the battery control ECU 11 functions as current value acquisition means for acquiring the current value detected by the current sensor 14 and voltage value acquisition means for acquiring the voltage value detected by each voltage sensor 16.
  • the direction of the current flowing through the assembled battery 12 is different between discharging and charging. Thereby, the sign of the current value detected by the current sensor 14 changes depending on the direction of the current.
  • the current interrupting mechanism 122 When the current interrupting mechanism 122 is activated, no current flows through the battery pack 12, so that the current value detected by the current sensor 14 is 0 or a value close to 0.
  • the increase in the internal pressure of the battery main body 121 that operates the current interrupting mechanism 122 is usually caused by the current flowing through the battery main body 121 unless it is heated by heat transfer from some heating element.
  • the battery control ECU 11 can recognize a situation in which a current flows through the assembled battery 12 based on a notification or instruction from the vehicle ECU 2.
  • the battery control ECU 11 determines that the current interrupting mechanism 122 has been activated when the current value detected by the current sensor 14 becomes 0 or a value close to 0 when a current flows through the assembled battery 12. Then, the SMR 13 is turned off, that is, the connection by the SMR 13 is cut off, and the determination result is notified to the vehicle ECU 2.
  • the vehicle ECU 2 that is notified of the operation of the current interrupt mechanism 122 can perform control so that no current flows through the assembled battery 12. For this reason, in this embodiment, it is determined to cancel the operation of the current interrupt mechanism 122 using the voltage value detected by the voltage sensor 16 provided for each battery 120. Accordingly, the battery control ECU 11 functions as a state determination unit that determines whether to release the operation of the current interruption mechanism 122 of the assembled battery 12 (battery 120). A method for determining the release of the operation of the current interrupt mechanism 122 will be specifically described with reference to FIG.
  • FIG. 2 is a diagram for explaining the time change of the voltage value and the current value associated with the operation of the current interruption mechanism and the cancellation of the operation.
  • (A) shows an example of the time change of the voltage value detected by the voltage sensor 16 of the battery 120 in which the current interrupting mechanism (CID) 122 is operated, and (b) shows the current value detected by the current sensor 14. An example of time change is shown.
  • the current interrupting mechanism 122 was activated at time t1, and the operation was released at time t2. The release of the operation of the current interrupt mechanism 122 is described as “CID re-conduction”.
  • the voltage value detected by the voltage sensor 16 becomes indefinite after time t1 with the stop of the current flow accompanying the operation of the current interrupt mechanism 122. In other words, the value is not reliable. On the other hand, the current value detected by the current sensor 14 rapidly decreases from the previous value to 0 as the current flow is stopped due to the operation of the current interrupt mechanism 122.
  • the current value detected by the current sensor 14 remains 0 because the SMR 13 is off.
  • the voltage value detected by the voltage sensor 16 is a value representing the voltage between the terminals of the battery 120 because a voltage is generated between the terminals of the battery 120 as the operation of the current interrupt mechanism 122 is released. For this reason, even if the voltage value detected by the voltage sensor 16 is an unreliable value due to the cessation of the current flow accompanying the operation of the current interruption mechanism 122, the voltage sensor 16 immediately before the operation of the current interruption mechanism 122 is released.
  • the battery control ECU 11 determines a time differential value of the voltage value detected by the voltage sensor 16, for example, the voltage value detected last time by the voltage sensor 16 and the voltage value detected this time in order to determine the release of the operation of the current interrupt mechanism 122. Calculate the difference value. Thereby, battery control ECU11 functions as a calculating means which calculates a time differential value.
  • the battery control ECU 11 compares the absolute value of the calculated difference value with a predetermined threshold value, and if the absolute value is larger than the threshold value, it is considered that the current interrupting mechanism 122 may have been deactivated.
  • the reason why the absolute value is compared with the threshold value is that the voltage value detected by the voltage sensor 16 becomes indefinite when the flow of current stops with the operation of the current interrupt mechanism 122.
  • the portion where the voltage value is indefinite is represented by changing from a solid line to a broken line.
  • the change in the voltage value represented by the broken line is an example, and is detected during an indefinite period.
  • the voltage value does not necessarily have a downward trend. Thereby, the sign of the difference value can be either positive or negative.
  • the difference value (time differential value) is hereinafter referred to as “voltage change value”.
  • the voltage value detected by the temperature sensor 16 of the battery 120 in which the current interruption mechanism 122 is activated is indefinite, and the battery 120 in which the current interruption mechanism 122 has been activated can be identified.
  • the identification can be performed by extracting the battery 120 in which the voltage value detected by the voltage sensor 16 changes unnaturally. This is because, in a situation where no current flows through the assembled battery 12, it is unlikely that the detected voltage value will change relatively large other than the battery 120 in which the current interrupting mechanism 122 is operating. From this, the determination of the release of the operation of the current interrupt mechanism 122 may be performed only for the specified battery 120, that is, the battery 120 that may be considered to be operating the current interrupt mechanism 122. Since it is possible to identify the battery 120 that is considered to have the possibility that the current interrupting mechanism 122 is operating as described above, it is assumed that the battery 120 that should be determined to release the operation of the current interrupting mechanism 122 is known.
  • this range is, for example, a range from a voltage value at which discharge of the battery 120 is stopped (hereinafter referred to as “normal lower limit threshold”) to a rated voltage value of the battery 120 (hereinafter referred to as “normal upper limit threshold”).
  • normal lower limit threshold a voltage value at which discharge of the battery 120 is stopped
  • normal upper limit threshold a rated voltage value of the battery 120
  • the operation cancellation of the current interrupt mechanism 122 is determined through a two-stage comparison. Thereby, even if the voltage value detected by the voltage sensor 16 temporarily fluctuates relatively greatly, it is possible to suppress erroneous determination that the current interrupt mechanism 122 has been deactivated. For this reason, the operation release of the current interrupt mechanism 122 can be determined with higher accuracy. Since the voltage change value is used for the operation release determination of the current interrupt mechanism 122, the determination can be performed quickly.
  • the use of the assembled battery 12 in a usable state can be restarted in a timely manner while ensuring safety.
  • the battery control ECU 11 can shift to a state in which the battery pack 12 can be discharged or the battery pack 12 can be charged by switching the SMR 13 from off to on.
  • the vehicle ECU 2 has issued a warning or speed limit by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11, the vehicle ECU 2 cancels the operation by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11. be able to. For this reason, the user can use the vehicle more comfortably while ensuring safety.
  • the detected voltage value does not necessarily have to be used for determining whether to release the operation of the current interrupt mechanism 122.
  • the voltage value of the battery 120 in which the current interruption mechanism 122 is activated is determined when the current interruption mechanism 122 is deactivated unless the temperature detected by the temperature sensor 15 is increased. It is unlikely that it is rising. This is because if the temperature detected by the temperature sensor 15 is not increased, the internal pressure of the battery main body 121 is considered to have decreased due to the temperature decrease. If the temperature is lowered, the voltage value between the terminals of the battery 120 is usually small.
  • the operation of the current interrupting mechanism 122 is canceled when the voltage value changes relatively large in the increasing direction. May be determined. That is, two threshold values are prepared, and it may be determined that the current interrupt mechanism 122 is deactivated when it is confirmed that the voltage change value is larger than the larger threshold value. If the voltage change value is less than or equal to the larger threshold value and greater than the smaller threshold value, it may be determined whether or not the current interrupting mechanism 122 is further deactivated using the detected voltage value. .
  • FIG. 3 is a flowchart of the CID operation release determination process.
  • This determination process is a process for the battery control ECU 11 to detect the release of the operation of the current interruption mechanism 122 operated by the battery 120. For example, a certain time determined from the sampling time for the voltage sensor 16 to sample the voltage value. It is executed every time. Next, the process executed by the battery control ECU 11 to determine the release of the operation of the current interrupt mechanism 122 as described above will be described in detail with reference to FIG.
  • the battery 120 that should be determined to release the operation of the current interrupt mechanism 122 can be specified in advance.
  • the number of specified batteries 120 is not necessarily one. However, in FIG. 3, for the sake of convenience, it is assumed that the number of specified batteries 120 is only one, and the flow of processing is shown.
  • the battery control ECU 11 determines whether or not the current interruption mechanism 122 of any battery 120 is operating. When the battery control ECU 11 determines that the current interrupting mechanism 122 has been activated, the battery control ECU 11 saves this as a history in a memory (not shown), and identifies the battery 120 that may have the possibility of the current interrupting mechanism 122 being activated. Thus, identification information representing the specified battery 120 is stored in the memory. Recording to the memory that the current interruption mechanism 122 has been deactivated is performed when it is confirmed that the current interruption mechanism 122 has been deactivated in all of the batteries 120 represented by the stored identification information.
  • the determination of S1 is Y (Yes). To S2.
  • the determination of S1 is N (No). In this case, since it is not necessary to determine whether to release the operation of the current interrupt mechanism 122, the CID operation release determination process ends here.
  • the battery control ECU 11 takes in a voltage value from each voltage sensor 16, and calculates a voltage change value for each battery 120 in which the identification number is stored. The calculation of the voltage change value is performed by subtracting the previously acquired voltage value from the currently acquired voltage value.
  • the battery control ECU 11 determines whether or not the absolute value of the voltage change value is larger than a threshold value (denoted as “CID reconducting threshold value” in FIG. 3). If the voltage change value is larger than the threshold value, the determination in S3 is Y and the process proceeds to S4. If the voltage change value is less than or equal to the threshold value, the determination in S3 is N, and the CID operation release determination process ends here.
  • a threshold value denoted as “CID reconducting threshold value” in FIG. 3
  • the battery control ECU 11 determines whether or not the voltage value acquired this time is within a range limited by the normal lower limit threshold and the normal upper limit threshold. If the acquired voltage value is equal to or lower than the normal lower limit threshold or equal to or higher than the normal upper limit threshold, the determination in S4 is N, and the CID operation release determination process ends here. On the other hand, if the acquired voltage value is greater than the normal lower limit threshold and less than the normal upper limit threshold, the determination in S4 is Y, and the process proceeds to S5.
  • the battery control ECU 11 records the fact as a history in the memory, and notifies the vehicle ECU 2 of the determination result, etc., assuming that the operated current interrupt mechanism 122 has been released. Thereafter, the CID operation release determination process ends.
  • the vehicle ECU 2 when the vehicle ECU 2 has issued a warning or a speed limit by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11, the vehicle ECU 2 receives an operation canceling notification of the current interrupting mechanism 122 from the battery control ECU 11. Let them be lifted. Thereby, it is possible for the user to use the vehicle more comfortably while ensuring safety.
  • the battery control device 11 is mounted on the battery control ECU 11 in the battery pack 1, but the battery control device may be mounted on a data processing device outside the battery pack 1.
  • the battery pack 1 is assumed to be mounted on a vehicle, the battery pack 1 may be mounted on a device other than the vehicle. In some cases, various modifications can be made.

Abstract

A battery pack has a battery assembly installed therein which is obtained by connecting, in series, a plurality of batteries equipped with a current-interrupting mechanism and a battery body. When a battery in which the current-interrupting mechanism is operating is present (Y at S1), a battery-control ECU calculates a time derivative (S2) by using a voltage value detected by a voltage sensor, and determines whether the absolute value of the time derivative is larger than a prescribed threshold (S3). When the absolute value is determined to be larger than the threshold (Y at S3), it is also determined whether the detected voltage value falls within a prescribed range (S4). As a result, when the time derivative is larger than the threshold and the detected voltage value falls within the prescribed range (Y at S4), the battery-control ECU determines the current-interrupting mechanism has stopped operating (S5).

Description

電池状態判定方法、電池制御装置、及び電池パックBattery state determination method, battery control device, and battery pack
 本発明は、電流遮断機構を搭載した電池(セル)を用いるための技術に関する。 The present invention relates to a technique for using a battery (cell) equipped with a current interruption mechanism.
 充電可能な電池(二次電池)は現在、広く用いられている。1つの電池の端子間に得られる電圧は、比較的に小さいのが実情である。このため、より高い電圧を発生させる必要のある電池では、構成要素となる電池を複数、直列に接続した構成が採用される。 Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, in the battery which needs to generate a higher voltage, the structure which connected the some battery used as a component in series is employ | adopted.
 二次電池では、過放電、過充電により特性の劣化が大きくなる。電池間の電池容量のアンバランス化は、組電池全体の電池容量の低下を招く。このこともあり、電池を直列に接続した構成の組電池を用いる装置では、電池毎に、電圧監視を行い、監視結果を放電、及び充電の各制御に反映させることにより、過放電、或いは過充電による特性の劣化を抑えるようになっている。 In secondary batteries, deterioration of characteristics increases due to overdischarge and overcharge. The unbalanced battery capacity between the batteries leads to a decrease in the battery capacity of the entire assembled battery. For this reason, in an apparatus using an assembled battery in which batteries are connected in series, voltage monitoring is performed for each battery, and the monitoring result is reflected in each control of discharging and charging. The characteristic deterioration due to charging is suppressed.
 電圧監視による放電、及び充電の制御を行っても、何らかの理由によってその制御を適切に行えない可能性が考えられる。このことから、電池には、電流遮断機構(CID:Current Interrupt Device)が搭載されることが多くなっている。 Even if discharge and charge are controlled by voltage monitoring, there is a possibility that the control cannot be performed properly for some reason. For this reason, batteries are often equipped with a current interruption mechanism (CID: Current Interrupt Device).
 電流遮断機構は、例えば、電池内部の圧力上昇等によって作動する安全装置であり、内圧上昇等によって電流を遮断する。そのため、内圧が上昇する高温時、例えば過充電時、或いは過電流発生時には、電流遮断機構により、電池への電流の供給、及び電池からの電流の供給を遮断することができる。それにより、電流遮断機構を搭載した電池を用いた場合、より高い安全性を確保することができる。 The current interrupting mechanism is a safety device that operates, for example, due to an increase in pressure inside the battery, and interrupts the current due to an increase in internal pressure. For this reason, at a high temperature at which the internal pressure increases, for example, at the time of overcharging or when an overcurrent is generated, the supply of current to the battery and the supply of current from the battery can be interrupted by the current interruption mechanism. Thereby, when a battery equipped with a current interruption mechanism is used, higher safety can be ensured.
 電圧監視による充電制御は、電流遮断機構が作動しないように、つまり電流が遮断されないように行われるのが普通である。このため、電流遮断機能の作動には、充電制御が適切に行えない状態となっている可能性が考えられる。それにより、電池を搭載した装置では、電流遮断機構が作動した場合、電池からの放電、及び電池への充電に用いられる経路の接続を切断するようにしているのが普通である。
作動した電流遮断機構は、例えば、内圧の下降等により、自動的に作動解除する。その作動解除により、電池は電流が流れることが可能な状態に復帰し、使用可能となる。電池を搭載した装置では、電流遮断機構の作動による制限(例えば装置を使用できないようにするといった制限)を解除が可能となる。このことから、電流遮断機構の作動解除を高精度に検出することが重要と思われる。
The charge control by voltage monitoring is usually performed so that the current interrupt mechanism does not operate, that is, the current is not interrupted. For this reason, there is a possibility that charge control cannot be performed properly in the operation of the current interrupt function. Accordingly, in a device equipped with a battery, when a current interrupting mechanism is activated, it is common to disconnect the path used for discharging from the battery and charging the battery.
The activated current interrupting mechanism is automatically deactivated, for example, when the internal pressure is lowered. By releasing the operation, the battery returns to a state in which a current can flow and can be used. In a device equipped with a battery, it is possible to remove a restriction (for example, a restriction that the device cannot be used) due to the operation of the current interrupt mechanism. From this, it seems important to detect the release of the operation of the current interruption mechanism with high accuracy.
特開平8-191544号公報JP-A-8-191544 特開平10-270091号公報Japanese Patent Laid-Open No. 10-270091 特開2011-200071号公報JP 2011-200071 A 特開2000-236247号公報JP 2000-236247 A
 本発明は、電池に搭載された電流遮断機構の作動解除を高精度に検出(判定)するための技術を提供することを目的とする。 An object of the present invention is to provide a technique for detecting (determining) the operation release of a current interrupt mechanism mounted on a battery with high accuracy.
 本発明の1態様は、充放電が行われる電池の状態をコンピュータにより判定するための方法であり、コンピュータは、前記電池の端子間の電圧値を検出し、該検出した電圧値を用いて、該電圧値の時間微分値を演算し、該演算により得られた時間微分値を基に、前記電池の状態として、該電池に搭載された電流遮断機構が作動解除したか否かを判定する。 One aspect of the present invention is a method for determining a state of a battery in which charging / discharging is performed by a computer, the computer detects a voltage value between terminals of the battery, and uses the detected voltage value, A time differential value of the voltage value is calculated, and based on the time differential value obtained by the calculation, it is determined as a state of the battery whether or not a current interrupting mechanism mounted on the battery has been deactivated.
 本発明の他の1態様は、充放電される電池が複数、接続された組電池を制御する電池制御装置であり、電流遮断機構を備えた電池である第1の電池毎に、該第1の電池の端子間の電圧値を取得する電圧値取得手段と、前記電圧値取得手段が取得した電圧値を用いて、該電圧値の時間微分値を演算する演算手段と、前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動解除したか否かを判定する状態判定手段と、を具備する。 Another aspect of the present invention is a battery control apparatus that controls a plurality of batteries to be charged / discharged and connected to each of the first batteries each having a current interrupting mechanism. Voltage value acquisition means for acquiring a voltage value between the terminals of the battery, calculation means for calculating a time differential value of the voltage value using the voltage value acquired by the voltage value acquisition means, and calculation by the calculation means State determination means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value.
 本発明の更に他の1態様は、充放電される電池が複数、接続された組電池を備えた電池パックであり、電流遮断機構を備えた電池である第1の電池毎に、該第1の電池の端子間の電圧値を検出する電圧値検出手段と、前記電圧値検出手段が検出した電圧値を用いて、該電圧値の時間微分値を演算する演算手段と、前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動解除したか否かを判定する状態判定手段と、を具備する。 Still another embodiment of the present invention is a battery pack including a plurality of batteries to be charged / discharged and connected to each of the first batteries each having a current interrupting mechanism. A voltage value detecting means for detecting a voltage value between terminals of the battery, a calculating means for calculating a time differential value of the voltage value using the voltage value detected by the voltage value detecting means, and the calculating means State determining means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value.
 本発明では、組電池、或いは電池に搭載された電流遮断機構の作動解除を高精度に検出(判定)することができる。 In the present invention, it is possible to detect (determine) the assembled battery or the release of the operation of the current interruption mechanism mounted on the battery with high accuracy.
本実施形態による電池パックの構成例を説明する図である。It is a figure explaining the structural example of the battery pack by this embodiment. 電流遮断機構の作動、及び作動解除に伴う電圧値、及び電流値の時間変化を説明する図である。It is a figure explaining the time change of the voltage value accompanying an action | operation of an electric current interruption | blocking mechanism, and action | operation cancellation | release, and an electric current value. CID作動解除判定処理のフローチャートである。It is a flowchart of a CID operation release determination process.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態による電池パックの構成例を説明する図である。 FIG. 1 is a diagram illustrating a configuration example of a battery pack according to the present embodiment.
 この電池パック1は、例えば電気自動車(EV)、或いはプラグインハイブリッド自動車(PHV)等の車両に搭載されることを想定したものである。図1に示すように、電池パック1は、電池制御ECU(Electronic Control Unit)11、電池120が複数、直列に接続された組電池12、SMR(System Main Relay)13、電流センサ14、及び温度センサ15を備えている。 The battery pack 1 is assumed to be mounted on a vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV). As shown in FIG. 1, the battery pack 1 includes a battery control ECU (Electronic Control Unit) 11, a plurality of batteries 120, a battery pack 12 connected in series, an SMR (System Main Relay) 13, a current sensor 14, and a temperature. A sensor 15 is provided.
 電池パック1が搭載される車両には、車両システム全体を制御するECU(図1中「HV/PHV ECU」と表記。ここでは以降「車両ECU」と呼ぶことにする)2が備えられている。電池パック1が車両に搭載された場合、その電池パック1の電池制御ECU11は車両ECU2と通信可能な状態となり、その電池制御ECU11には、例えば車両本体の電源3から電力が供給される。その電力供給によって、電池制御ECU11は動作可能となり、車両ECU2からの指示に従った動作を行う。なお、電池制御ECU11への電力供給は、電源3以外の1つ以上のものから行えるようになっていても良い。電池制御ECU11に電力を供給する電源の種類やその数は特に限定されない。 The vehicle on which the battery pack 1 is mounted is provided with an ECU (noted as “HV / PHV ECU” in FIG. 1; hereinafter referred to as “vehicle ECU”) 2 that controls the entire vehicle system. . When the battery pack 1 is mounted on a vehicle, the battery control ECU 11 of the battery pack 1 becomes communicable with the vehicle ECU 2, and power is supplied to the battery control ECU 11 from, for example, the power supply 3 of the vehicle body. With this power supply, the battery control ECU 11 becomes operable and performs an operation in accordance with an instruction from the vehicle ECU 2. The power supply to the battery control ECU 11 may be performed from one or more than the power source 3. The type and number of power supplies that supply power to the battery control ECU 11 are not particularly limited.
 上記電池制御ECU11は、例えばCPU(Central Processing Unit)、メモリ、CPUが実行するプログラム(ファームウェア)が格納された記録媒体、及び複数のインターフェースを備えたコンピュータ(データ処理装置)である。本実施形態による電池制御装置は、この電池制御ECU11に搭載される形で実現されている。本実施形態による電池状態判定方法も、この電池制御ECU11によって実行される。 The battery control ECU 11 is, for example, a computer (data processing apparatus) including a CPU (Central Processing Unit), a memory, a recording medium storing a program (firmware) executed by the CPU, and a plurality of interfaces. The battery control device according to the present embodiment is realized by being mounted on the battery control ECU 11. The battery state determination method according to the present embodiment is also executed by the battery control ECU 11.
 組電池12を構成する各電池120は、図1に表すように、電池本体121と、電流遮断機構(CID)122とを備える。電流遮断機構122は、例えば、電池本体121の内圧上昇により、電気的な接続を強制的に切断する安全装置である。内圧は、温度の上昇に伴い上昇する。温度は、発熱体からの熱伝達による加熱、過充電、過放電、或いは過電流発生(例えば短絡)等が原因となって上昇する。電流遮断機構122は、そのような原因による安全性の低下を抑える。 As shown in FIG. 1, each battery 120 constituting the assembled battery 12 includes a battery main body 121 and a current interrupt mechanism (CID) 122. The current interruption mechanism 122 is a safety device that forcibly disconnects the electrical connection due to, for example, an increase in the internal pressure of the battery body 121. The internal pressure increases as the temperature increases. The temperature rises due to heating by heat transfer from the heating element, overcharge, overdischarge, or overcurrent generation (for example, short circuit). The current interruption mechanism 122 suppresses a decrease in safety due to such a cause.
 各電池120には、その端子間の電圧値を検出するための電圧センサ16が設けられている。この電圧センサ16は、各電池120の端子間の電圧値を検出するための電圧値検出手段であり、電流遮断機構122の作動解除の判定の他に、過放電、及び過充電の防止、更には電池120間における電池容量のバランス化といった用途にも用いられる。 Each battery 120 is provided with a voltage sensor 16 for detecting a voltage value between its terminals. This voltage sensor 16 is a voltage value detection means for detecting the voltage value between the terminals of each battery 120. In addition to the determination of the release of the operation of the current interrupt mechanism 122, the overdischarge and overcharge are further prevented. Is also used for balancing battery capacity among batteries 120.
 なお、本実施形態では、組電池12は、電流遮断機構122を備えた電池120を複数、直列に接続した構成となっているが、それとは異なる構成であっても良い。つまり組電池12は、例えば電流遮断機構122を備えた電池120を複数、直列に接続した電池モジュールを複数、並列に接続した構成であっても良い。特性の劣化がし難い電池120の配置等が予め判明しているような場合、電池120として、電流遮断機構122を備えていない電池120を用いても良い。このようなことから、電池パック1に搭載させる組電池12は、図1に表すようなものに限定されない。 In the present embodiment, the assembled battery 12 has a configuration in which a plurality of batteries 120 including the current interrupting mechanism 122 are connected in series, but may have a different configuration. That is, the assembled battery 12 may have a configuration in which, for example, a plurality of batteries 120 including the current interrupting mechanism 122 and a plurality of battery modules connected in series are connected in parallel. In the case where the arrangement of the battery 120 that is difficult to deteriorate in characteristics is known in advance, the battery 120 that does not include the current interruption mechanism 122 may be used as the battery 120. For this reason, the assembled battery 12 mounted on the battery pack 1 is not limited to the one shown in FIG.
 組電池12は、不図示のモータへの電力供給に用いられる。組電池12の定格電圧は、そのモータの定格電圧よりも低い。このことから、組電池12からの放電による電力は、SMR13を介して、不図示の昇圧コンバータに供給されるようになっている。 The assembled battery 12 is used to supply power to a motor (not shown). The rated voltage of the assembled battery 12 is lower than the rated voltage of the motor. For this reason, the electric power generated by the discharge from the assembled battery 12 is supplied to a boost converter (not shown) via the SMR 13.
 モータは、充電時には電力を発生する発電機となる。そのモータが発生した電力は、例えば昇圧コンバータにより降圧され、SMR13を介して組電池12に充電用に供給される。それにより、SMR13は、組電池12からの放電、及び組電池12への充電のための経路上に設けられた電流のオン/オフを行うことが可能なリレー手段として機能する。電池制御ECU11は、必要に応じてSMR13における電流のオン/オフの切り換えを行う制御手段として機能する。 The motor is a generator that generates electric power when charging. The electric power generated by the motor is stepped down by, for example, a step-up converter and supplied to the assembled battery 12 for charging via the SMR 13. Accordingly, the SMR 13 functions as a relay unit that can turn on / off a current provided on a path for discharging from the assembled battery 12 and charging the assembled battery 12. The battery control ECU 11 functions as a control unit that switches current on and off in the SMR 13 as necessary.
 電流センサ14は、組電池12に供給される電流値、或いは組電池12から供給される電流値を検出するための電流値検出手段である。温度センサ15は、電池パック1内の温度を検出するための温度検出手段である。電流センサ14が検出した電流値、温度センサ15が検出した温度は、各電池120の電圧センサ16が検出した電圧値と同様に、電池制御ECU11に入力され、処理される。それにより、電池制御ECU11は、電流センサ14が検出した電流値を取得する電流値取得手段、及び各電圧センサ16が検出した電圧値を取得する電圧値取得手段として機能する。 The current sensor 14 is a current value detection means for detecting a current value supplied to the assembled battery 12 or a current value supplied from the assembled battery 12. The temperature sensor 15 is temperature detection means for detecting the temperature in the battery pack 1. The current value detected by the current sensor 14 and the temperature detected by the temperature sensor 15 are input to the battery control ECU 11 and processed in the same manner as the voltage value detected by the voltage sensor 16 of each battery 120. Thereby, the battery control ECU 11 functions as current value acquisition means for acquiring the current value detected by the current sensor 14 and voltage value acquisition means for acquiring the voltage value detected by each voltage sensor 16.
 組電池12に流れる電流の向きは、放電時と充電時とで異なる。それにより、電流センサ14が検出する電流値の符号は、その電流の向きによって変化する。電流遮断機構122の作動時は、組電池12に電流は流れなくなることから、電流センサ14によって検出される電流値は0か、或いは0近傍の値となる。電流遮断機構122を作動させる電池本体121の内圧の上昇は、何らかの発熱体からの熱伝達による加熱でない限り、その電池本体121に流れる電流によって生じるのが普通である。電池制御ECU11は、車両ECU2からの通知、或いは指示により、組電池12に電流が流れる状況を認識することができる。このことから、電池制御ECU11は、組電池12に電流が流れる状況時に、電流センサ14が検出する電流値が0、或いは0近傍の値となった場合に、電流遮断機構122が作動したと判定し、SMR13をオフ、つまりSMR13による接続を遮断させ、その判定結果を車両ECU2に通知する。 The direction of the current flowing through the assembled battery 12 is different between discharging and charging. Thereby, the sign of the current value detected by the current sensor 14 changes depending on the direction of the current. When the current interrupting mechanism 122 is activated, no current flows through the battery pack 12, so that the current value detected by the current sensor 14 is 0 or a value close to 0. The increase in the internal pressure of the battery main body 121 that operates the current interrupting mechanism 122 is usually caused by the current flowing through the battery main body 121 unless it is heated by heat transfer from some heating element. The battery control ECU 11 can recognize a situation in which a current flows through the assembled battery 12 based on a notification or instruction from the vehicle ECU 2. From this, the battery control ECU 11 determines that the current interrupting mechanism 122 has been activated when the current value detected by the current sensor 14 becomes 0 or a value close to 0 when a current flows through the assembled battery 12. Then, the SMR 13 is turned off, that is, the connection by the SMR 13 is cut off, and the determination result is notified to the vehicle ECU 2.
 SMR13をオフさせた場合、電流遮断機構122が作動解除しても組電池12に電流は流れない。また、電流遮断機構122の作動を通知された車両ECU2は、組電池12に電流が流れないように制御を行うことが可能である。このようなことから、本実施形態では、電池120毎に設けられた電圧センサ16が検出する電圧値を用いて、電流遮断機構122の作動解除の判定を行うようにしている。それにより、電池制御ECU11は、組電池12(電池120)の電流遮断機構122の作動解除を判定する状態判定手段として機能する。電流遮断機構122の作動解除の判定方法について、図2を参照して具体的に説明する。 When the SMR 13 is turned off, no current flows through the assembled battery 12 even if the current interrupt mechanism 122 is deactivated. In addition, the vehicle ECU 2 that is notified of the operation of the current interrupt mechanism 122 can perform control so that no current flows through the assembled battery 12. For this reason, in this embodiment, it is determined to cancel the operation of the current interrupt mechanism 122 using the voltage value detected by the voltage sensor 16 provided for each battery 120. Accordingly, the battery control ECU 11 functions as a state determination unit that determines whether to release the operation of the current interruption mechanism 122 of the assembled battery 12 (battery 120). A method for determining the release of the operation of the current interrupt mechanism 122 will be specifically described with reference to FIG.
 図2は、電流遮断機構の作動、及び作動解除に伴う電圧値、及び電流値の時間変化を説明する図である。(a)は、電流遮断機構(CID)122が作動した電池120の電圧センサ16によって検出された電圧値の時間変化の例を表し、(b)は、電流センサ14によって検出された電流値の時間変化の例を表している。電流遮断機構122が作動したのは時刻t1であり、作動解除したのは時刻t2である。電流遮断機構122の作動解除は「CID再導通」と表記している。 FIG. 2 is a diagram for explaining the time change of the voltage value and the current value associated with the operation of the current interruption mechanism and the cancellation of the operation. (A) shows an example of the time change of the voltage value detected by the voltage sensor 16 of the battery 120 in which the current interrupting mechanism (CID) 122 is operated, and (b) shows the current value detected by the current sensor 14. An example of time change is shown. The current interrupting mechanism 122 was activated at time t1, and the operation was released at time t2. The release of the operation of the current interrupt mechanism 122 is described as “CID re-conduction”.
 電圧センサ16によって検出される電圧値は、電流遮断機構122の作動に伴う電流の流れの停止に伴い、時刻t1以降、不定となる。つまり信頼できない値となる。一方、電流センサ14によって検出される電流値は、電流遮断機構122の作動に伴う電流の流れの停止に伴い、それまでの値から0に急激に低下する。 The voltage value detected by the voltage sensor 16 becomes indefinite after time t1 with the stop of the current flow accompanying the operation of the current interrupt mechanism 122. In other words, the value is not reliable. On the other hand, the current value detected by the current sensor 14 rapidly decreases from the previous value to 0 as the current flow is stopped due to the operation of the current interrupt mechanism 122.
 電流遮断機構122の作動が外部からの熱伝達により発生していない場合、電流の遮断によってジュール熱の発生は停止し、電流遮断機構122が作動した電池本体121の内圧は下降する。それにより、作動した電流遮断機構122は、時刻t2に作動解除する。 When the operation of the current interrupting mechanism 122 is not generated by heat transfer from the outside, the generation of Joule heat is stopped by interrupting the current, and the internal pressure of the battery main body 121 in which the current interrupting mechanism 122 is operated decreases. As a result, the activated current interrupting mechanism 122 is deactivated at time t2.
 電流遮断機構122が作動解除しても、SMR13はオフされていることから、電流センサ14が検出する電流値は0を維持する。しかし、電圧センサ16が検出する電圧値は、電流遮断機構122の作動解除に伴い、電池120の端子間に電圧が発生するため、その端子間の電圧を表す値となる。このため、電流遮断機構122の作動に伴う電流の流れの停止によって電圧センサ16の検出する電圧値がそれまで信頼できない値であったとしても、電流遮断機構122の作動解除の直前に電圧センサ16の検出する電圧値が適切な値でない限り、電流遮断機構122の作動解除の前後に電圧センサ16が検出する電圧値には比較的に大きな差が発生することになる。本実施形態は、このことに着目し、電流遮断機構122の作動解除を判定する。 Even if the current interruption mechanism 122 is deactivated, the current value detected by the current sensor 14 remains 0 because the SMR 13 is off. However, the voltage value detected by the voltage sensor 16 is a value representing the voltage between the terminals of the battery 120 because a voltage is generated between the terminals of the battery 120 as the operation of the current interrupt mechanism 122 is released. For this reason, even if the voltage value detected by the voltage sensor 16 is an unreliable value due to the cessation of the current flow accompanying the operation of the current interruption mechanism 122, the voltage sensor 16 immediately before the operation of the current interruption mechanism 122 is released. As long as the voltage value detected by is not an appropriate value, a relatively large difference occurs in the voltage value detected by the voltage sensor 16 before and after the operation of the current interrupting mechanism 122 is released. This embodiment pays attention to this, and determines the release of the operation of the current interrupt mechanism 122.
 電池制御ECU11は、電流遮断機構122の作動解除を判定するために、電圧センサ16が検出した電圧値の時間微分値、例えば電圧センサ16が前回、検出した電圧値と今回、検出した電圧値の差分値を計算する。それにより、電池制御ECU11は、時間微分値を計算する演算手段として機能する。 The battery control ECU 11 determines a time differential value of the voltage value detected by the voltage sensor 16, for example, the voltage value detected last time by the voltage sensor 16 and the voltage value detected this time in order to determine the release of the operation of the current interrupt mechanism 122. Calculate the difference value. Thereby, battery control ECU11 functions as a calculating means which calculates a time differential value.
 電池制御ECU11は、計算した差分値の絶対値を予め定めた閾値と比較し、その絶対値がその閾値より大きい場合、電流遮断機構122が作動解除した可能性があると見なす。絶対値を閾値と比較するのは、電流遮断機構122の作動に伴い電流の流れが停止した場合、電圧センサ16によって検出される電圧値は不定となるからである。図2の(a)では、電圧値が不定の部分を実線から破線に変えて表しているが、その破線で表す電圧値の変化は1例であり、不定となっている期間、検出される電圧値が下降傾向にあるとは限らない。それにより、差分値の符号は正負の何れも有り得ることになる。差分値(時間微分値)は以降「電圧変化値」と表記する。 The battery control ECU 11 compares the absolute value of the calculated difference value with a predetermined threshold value, and if the absolute value is larger than the threshold value, it is considered that the current interrupting mechanism 122 may have been deactivated. The reason why the absolute value is compared with the threshold value is that the voltage value detected by the voltage sensor 16 becomes indefinite when the flow of current stops with the operation of the current interrupt mechanism 122. In FIG. 2A, the portion where the voltage value is indefinite is represented by changing from a solid line to a broken line. However, the change in the voltage value represented by the broken line is an example, and is detected during an indefinite period. The voltage value does not necessarily have a downward trend. Thereby, the sign of the difference value can be either positive or negative. The difference value (time differential value) is hereinafter referred to as “voltage change value”.
 電流遮断機構122が作動した電池120の温度センサ16が検出する電圧値は不定となることに着目し、電流遮断機構122が作動した電池120を特定することができる。その特定は、電圧センサ16が検出する電圧値が不自然に変化する電池120を抽出することで行うことができる。これは、組電池12に電流が流れていない状況では、電流遮断機構122が作動している電池120以外に、検出される電圧値が比較的に大きく変化するとは考え難いからである。このことから、電流遮断機構122の作動解除の判定は、特定した電池120、つまり電流遮断機構122が作動している可能性が考えられる電池120のみを対象に行えば良い。このように電流遮断機構122が作動している可能性が考えられる電池120を特定できることから、電流遮断機構122の作動解除の判定を行うべき電池120は判明していると想定する。 Note that the voltage value detected by the temperature sensor 16 of the battery 120 in which the current interruption mechanism 122 is activated is indefinite, and the battery 120 in which the current interruption mechanism 122 has been activated can be identified. The identification can be performed by extracting the battery 120 in which the voltage value detected by the voltage sensor 16 changes unnaturally. This is because, in a situation where no current flows through the assembled battery 12, it is unlikely that the detected voltage value will change relatively large other than the battery 120 in which the current interrupting mechanism 122 is operating. From this, the determination of the release of the operation of the current interrupt mechanism 122 may be performed only for the specified battery 120, that is, the battery 120 that may be considered to be operating the current interrupt mechanism 122. Since it is possible to identify the battery 120 that is considered to have the possibility that the current interrupting mechanism 122 is operating as described above, it is assumed that the battery 120 that should be determined to release the operation of the current interrupting mechanism 122 is known.
 本実施形態では、電流遮断機構122の作動解除をより高精度に判定するために、電圧変化値の絶対値が上記閾値より大きい場合、検出された電圧値が所定の範囲内か否かの確認を行うようにしている。この範囲とは、例えば電池120の放電を停止させる電圧値(以降「正常下限閾値」と表記)から電池120の定格電圧値(以降「正常上限閾値」と表記)までの範囲である。それにより、電流遮断機構122の作動解除の判定は、電圧変化値の絶対値が上記閾値より大きく、且つ、検出された電圧値がその範囲内であった場合に行われる。 In the present embodiment, in order to determine the cancellation of the operation of the current interrupt mechanism 122 with higher accuracy, when the absolute value of the voltage change value is larger than the threshold value, it is confirmed whether or not the detected voltage value is within a predetermined range. Like to do. This range is, for example, a range from a voltage value at which discharge of the battery 120 is stopped (hereinafter referred to as “normal lower limit threshold”) to a rated voltage value of the battery 120 (hereinafter referred to as “normal upper limit threshold”). Thereby, the determination of the release of the operation of the current interruption mechanism 122 is performed when the absolute value of the voltage change value is larger than the threshold value and the detected voltage value is within the range.
 このようにして本実施形態では、2段階の比較を通して、電流遮断機構122の作動解除の判定を行う。それにより、電圧センサ16が検出する電圧値が一時的に比較的に大きく変動したとしても、電流遮断機構122が作動解除したと誤って判定するのを抑えることができる。このため、電流遮断機構122の作動解除はより高精度に判定することができる。電流遮断機構122の作動解除判定に電圧変化値を用いているため、その判定も迅速に行うことができる。 In this way, in this embodiment, the operation cancellation of the current interrupt mechanism 122 is determined through a two-stage comparison. Thereby, even if the voltage value detected by the voltage sensor 16 temporarily fluctuates relatively greatly, it is possible to suppress erroneous determination that the current interrupt mechanism 122 has been deactivated. For this reason, the operation release of the current interrupt mechanism 122 can be determined with higher accuracy. Since the voltage change value is used for the operation release determination of the current interrupt mechanism 122, the determination can be performed quickly.
 電流遮断機構122の作動解除を高精度に判定(検出)することで、安全性を確保しつつ、使用可能な状態となった組電池12の使用をタイムリに再開させることができる。電池制御ECU11は、SMR13をオフからオンに切り換えることにより、組電池12からの放電、或いは組電池12への充電を行える状態に移行させることができる。車両ECU2は、電池制御ECU11からの電流遮断機構122の作動の通知により警告、或いは速度制限等を行っていた場合、電池制御ECU11からの電流遮断機構122の作動解除の通知により、それらを解除させることができる。このようなことから、ユーザにとっては、安全性が確保されつつ、車両をより快適に利用できることとなる。 By determining (detecting) the operation release of the current interrupt mechanism 122 with high accuracy, the use of the assembled battery 12 in a usable state can be restarted in a timely manner while ensuring safety. The battery control ECU 11 can shift to a state in which the battery pack 12 can be discharged or the battery pack 12 can be charged by switching the SMR 13 from off to on. When the vehicle ECU 2 has issued a warning or speed limit by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11, the vehicle ECU 2 cancels the operation by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11. be able to. For this reason, the user can use the vehicle more comfortably while ensuring safety.
 なお、電流遮断機構122の作動解除の判定には、検出された電圧値を必ず用いる必要はない。例えば組電池12に電流が流れていない状況では、電流遮断機構122が作動した電池120の電圧値は、温度センサ15が検出する温度が上昇していない限り、その電流遮断機構122の作動解除時に上昇しているとは考えにくい。これは、温度センサ15が検出する温度が上昇していないのであれば、電池本体121の内圧は温度低下により下降したと考えられるからである。温度が低下していれば、電池120の端子間の電圧値も小さくなっているのが普通である。また、電流の遮断時に電圧センサ16が検出する電圧値も、不定であっても上昇する方向に急激に変化することは起こりにくい。このようなことから、電圧センサ16が検出する電圧値が変化する方向、及びその変化量を考慮し、その電圧値が上昇する方向に比較的に大きく変化した場合、電流遮断機構122の作動解除と判定しても良い。つまり2つの閾値を用意し、電圧変化値が大きい方の閾値よりも大きいことが確認できた時点で電流遮断機構122が作動解除と判定しても良い。電圧変化値が大きい方の閾値以下であり、且つ小さい方の閾値より大きければ、検出された電圧値を用いて更に電流遮断機構122が作動解除しているか否かを判定するようにすれば良い。 It should be noted that the detected voltage value does not necessarily have to be used for determining whether to release the operation of the current interrupt mechanism 122. For example, in a situation where no current flows through the assembled battery 12, the voltage value of the battery 120 in which the current interruption mechanism 122 is activated is determined when the current interruption mechanism 122 is deactivated unless the temperature detected by the temperature sensor 15 is increased. It is unlikely that it is rising. This is because if the temperature detected by the temperature sensor 15 is not increased, the internal pressure of the battery main body 121 is considered to have decreased due to the temperature decrease. If the temperature is lowered, the voltage value between the terminals of the battery 120 is usually small. In addition, the voltage value detected by the voltage sensor 16 when the current is interrupted is unlikely to rapidly change in an increasing direction even if it is indefinite. Therefore, in consideration of the direction in which the voltage value detected by the voltage sensor 16 changes and the amount of the change, the operation of the current interrupting mechanism 122 is canceled when the voltage value changes relatively large in the increasing direction. May be determined. That is, two threshold values are prepared, and it may be determined that the current interrupt mechanism 122 is deactivated when it is confirmed that the voltage change value is larger than the larger threshold value. If the voltage change value is less than or equal to the larger threshold value and greater than the smaller threshold value, it may be determined whether or not the current interrupting mechanism 122 is further deactivated using the detected voltage value. .
 図3は、CID作動解除判定処理のフローチャートである。この判定処理は、電池制御ECU11が、電池120で作動した電流遮断機構122の作動解除を検出するための処理であり、例えば電圧センサ16が電圧値をサンプリングするサンプリング時間から定められた一定時間が経過する度に実行される。次に図3を参照し、上記のように電流遮断機構122の作動解除を判定するために電池制御ECU11が実行する処理について、詳細に説明する。 FIG. 3 is a flowchart of the CID operation release determination process. This determination process is a process for the battery control ECU 11 to detect the release of the operation of the current interruption mechanism 122 operated by the battery 120. For example, a certain time determined from the sampling time for the voltage sensor 16 to sample the voltage value. It is executed every time. Next, the process executed by the battery control ECU 11 to determine the release of the operation of the current interrupt mechanism 122 as described above will be described in detail with reference to FIG.
 上記のように、電流遮断機構122の作動解除の判定を行うべき電池120は予め特定することができる。特定される電池120の数は1つであるとは限らない。しかし、図3では便宜的に、特定される電池120の数は1つのみと想定し、処理の流れを表している。 As described above, the battery 120 that should be determined to release the operation of the current interrupt mechanism 122 can be specified in advance. The number of specified batteries 120 is not necessarily one. However, in FIG. 3, for the sake of convenience, it is assumed that the number of specified batteries 120 is only one, and the flow of processing is shown.
 先ず、S1では、電池制御ECU11は、何れかの電池120の電流遮断機構122が作動しているか否か判定する。電池制御ECU11は、電流遮断機構122が作動したと判定した場合、そのことを履歴として不図示のメモリに保存すると共に、電流遮断機構122が作動している可能性が考えられる電池120を特定して、特定した電池120を表す識別情報をそのメモリに保存する。電流遮断機構122が作動解除した旨のメモリへの記録は、保存された識別情報が表す電池120の全てで電流遮断機構122の作動解除が確認された場合に行われる。このことから、直前に保存された電流遮断機構122の作動した旨の記録の後、電流遮断機構122の作動解除した旨の記録が行われていない場合、S1の判定はY(Yes)となってS2に移行する。その電流遮断機構122の作動解除した旨の記録が行われていた場合、S1の判定はN(No)となる。その場合、電流遮断機構122の作動解除の判定を行う必要はないことから、ここでCID作動解除判定処理が終了する。 First, in S1, the battery control ECU 11 determines whether or not the current interruption mechanism 122 of any battery 120 is operating. When the battery control ECU 11 determines that the current interrupting mechanism 122 has been activated, the battery control ECU 11 saves this as a history in a memory (not shown), and identifies the battery 120 that may have the possibility of the current interrupting mechanism 122 being activated. Thus, identification information representing the specified battery 120 is stored in the memory. Recording to the memory that the current interruption mechanism 122 has been deactivated is performed when it is confirmed that the current interruption mechanism 122 has been deactivated in all of the batteries 120 represented by the stored identification information. From this, if the recording that the current interrupting mechanism 122 has been released is not recorded after the recording that the current interrupting mechanism 122 that was stored immediately before is activated, the determination of S1 is Y (Yes). To S2. When the recording that the operation of the current interrupting mechanism 122 has been released has been performed, the determination of S1 is N (No). In this case, since it is not necessary to determine whether to release the operation of the current interrupt mechanism 122, the CID operation release determination process ends here.
 S2では、電池制御ECU11は、各電圧センサ16から電圧値を取り込み、識別番号が保存された電池120毎に、電圧変化値を算出する。この電圧変化値の算出は、今回、取り込んだ電圧値から、前回、取り込んだ電圧値を減算することで行われる。図3では、電圧変化値の算出式として「電圧変化値=d(電圧値)dt」と表記している。 In S2, the battery control ECU 11 takes in a voltage value from each voltage sensor 16, and calculates a voltage change value for each battery 120 in which the identification number is stored. The calculation of the voltage change value is performed by subtracting the previously acquired voltage value from the currently acquired voltage value. In FIG. 3, “voltage change value = d (voltage value) dt” is expressed as a formula for calculating the voltage change value.
 S2に続くS3では、電池制御ECU11は、電圧変化値の絶対値が閾値(図3中「CID再導通閾値」と表記)より大きいか否か判定する。電圧変化値がその閾値より大きい場合、S3の判定はYとなってS4に移行する。電圧変化値がその閾値以下であった場合、S3の判定はNとなり、ここでCID作動解除判定処理が終了する。 In S3 following S2, the battery control ECU 11 determines whether or not the absolute value of the voltage change value is larger than a threshold value (denoted as “CID reconducting threshold value” in FIG. 3). If the voltage change value is larger than the threshold value, the determination in S3 is Y and the process proceeds to S4. If the voltage change value is less than or equal to the threshold value, the determination in S3 is N, and the CID operation release determination process ends here.
 S4では、電池制御ECU11は、今回、取り込んだ電圧値が、正常下限閾値と正常上限閾値とによって制限される範囲内か否か判定する。取り込んだ電圧値が、正常下限閾値以下、或いは正常上限閾値以上であった場合、S4の判定はNとなり、ここでCID作動解除判定処理が終了する。一方、取り込んだ電圧値が、正常下限閾値より大きく、且つ正常上限閾値未満であった場合、S4の判定はYとなり、S5に移行する。 In S4, the battery control ECU 11 determines whether or not the voltage value acquired this time is within a range limited by the normal lower limit threshold and the normal upper limit threshold. If the acquired voltage value is equal to or lower than the normal lower limit threshold or equal to or higher than the normal upper limit threshold, the determination in S4 is N, and the CID operation release determination process ends here. On the other hand, if the acquired voltage value is greater than the normal lower limit threshold and less than the normal upper limit threshold, the determination in S4 is Y, and the process proceeds to S5.
 S5では、電池制御ECU11は、作動していた電流遮断機構122が作動解除したとして、その旨を履歴としてメモリに記録すると共に、その判定結果の車両ECU2への通知等を行う。その後、CID作動解除判定処理を終了する。 In S5, the battery control ECU 11 records the fact as a history in the memory, and notifies the vehicle ECU 2 of the determination result, etc., assuming that the operated current interrupt mechanism 122 has been released. Thereafter, the CID operation release determination process ends.
 上記のように、車両ECU2は、電池制御ECU11からの電流遮断機構122の作動の通知により警告、或いは速度制限等を行っていた場合、電池制御ECU11からの電流遮断機構122の作動解除の通知により、それらを解除させる。それにより、ユーザにとっては、安全性が確保されつつ、車両をより快適に利用することができる。 As described above, when the vehicle ECU 2 has issued a warning or a speed limit by notifying the operation of the current interrupting mechanism 122 from the battery control ECU 11, the vehicle ECU 2 receives an operation canceling notification of the current interrupting mechanism 122 from the battery control ECU 11. Let them be lifted. Thereby, it is possible for the user to use the vehicle more comfortably while ensuring safety.
 なお、本実施形態では、電池パック1内の電池制御ECU11に電池制御装置を搭載させているが、その電池制御装置は、電池パック1外のデータ処理装置上に搭載させても良い。電池パック1は、車両に搭載されることを想定しているが、電池パック1は車両以外の装置に搭載されるものであっても良い。このようなこともあり、様々な変形を行うことができる。
 
In the present embodiment, the battery control device 11 is mounted on the battery control ECU 11 in the battery pack 1, but the battery control device may be mounted on a data processing device outside the battery pack 1. Although the battery pack 1 is assumed to be mounted on a vehicle, the battery pack 1 may be mounted on a device other than the vehicle. In some cases, various modifications can be made.

Claims (6)

  1.  充放電が行われる電池の状態をコンピュータにより判定するための方法であって、
     前記電池の端子間の電圧値を検出し、
     該検出した電圧値を用いて、該電圧値の時間微分値を演算し、
     該演算により得られた時間微分値を基に、前記電池の状態として、該電池に搭載された電流遮断機構が作動解除したか否かを判定する、
     ことを特徴とする電池状態判定方法。
    A method for determining by a computer the state of a battery that is charged and discharged,
    Detecting a voltage value between terminals of the battery;
    Using the detected voltage value, the time differential value of the voltage value is calculated,
    Based on the time differential value obtained by the calculation, as the state of the battery, it is determined whether or not the current interruption mechanism mounted on the battery has been released.
    The battery state determination method characterized by the above-mentioned.
  2.  前記電流遮断機構が作動解除したとの判定は、前記時間微分値の絶対値が予め定めた閾値より大きい場合に行う、
     ことを特徴とする請求項1記載の電池状態判定方法。
    The determination that the current interrupting mechanism is released is performed when the absolute value of the time differential value is greater than a predetermined threshold value.
    The battery state determination method according to claim 1.
  3.  前記電流遮断機構が作動解除したか否かの判定は、前記時間微分値の他に、前記検出した電圧値を用いて行う、
     ことを特徴とする請求項2記載の電池状態判定方法。
    The determination as to whether or not the current interrupt mechanism has been released is performed using the detected voltage value in addition to the time differential value.
    The battery state determination method according to claim 2.
  4.  充放電される電池が複数、接続された組電池を制御する電池制御装置において、
     電流遮断機構を備えた電池である第1の電池毎に、該第1の電池の端子間の電圧値を取得する電圧値取得手段と、
     前記電圧値取得手段が取得した電圧値を用いて、該電圧値の時間微分値を演算する演算手段と、
     前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動解除したか否かを判定する状態判定手段と、
     を具備することを特徴とする電池制御装置。
    In a battery control apparatus that controls a plurality of batteries to be charged / discharged and connected assembled batteries,
    Voltage value acquisition means for acquiring a voltage value between terminals of the first battery for each first battery that is a battery provided with a current interruption mechanism;
    Using the voltage value acquired by the voltage value acquisition means, a calculation means for calculating a time differential value of the voltage value;
    State determining means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value calculated by the calculating means;
    A battery control device comprising:
  5.  前記状態判定手段は、前記時間微分値、及び前記電圧値取得手段が取得した電圧値を用いて、前記電流遮断機構が作動解除したか否かを判定する、
     ことを特徴とする請求項4記載の電池制御装置。
    The state determination means determines whether or not the current interrupting mechanism has been deactivated using the time differential value and the voltage value acquired by the voltage value acquisition means.
    The battery control device according to claim 4.
  6.  充放電される電池が複数、接続された組電池を備えた電池パックにおいて、
     電流遮断機構を備えた電池である第1の電池毎に、該第1の電池の端子間の電圧値を検出する電圧値検出手段と、
     前記電圧値検出手段が検出した電圧値を用いて、該電圧値の時間微分値を演算する演算手段と、
     前記演算手段が演算した時間微分値に基づいて、前記第1の電池の前記電流遮断機構が作動解除したか否かを判定する状態判定手段と、
     を具備することを特徴とする電池パック。
    In a battery pack including a plurality of batteries to be charged / discharged and connected assembled batteries,
    Voltage value detection means for detecting a voltage value between terminals of the first battery for each first battery which is a battery provided with a current interruption mechanism;
    Using the voltage value detected by the voltage value detection means, a calculation means for calculating a time differential value of the voltage value;
    State determining means for determining whether or not the current interrupting mechanism of the first battery is released based on the time differential value calculated by the calculating means;
    A battery pack comprising:
PCT/JP2013/063951 2012-05-22 2013-05-20 Battery-state determination method, battery control device, and battery pack WO2013176085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116497A JP5949147B2 (en) 2012-05-22 2012-05-22 Battery state determination method, battery control device, and battery pack
JP2012-116497 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013176085A1 true WO2013176085A1 (en) 2013-11-28

Family

ID=49623775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063951 WO2013176085A1 (en) 2012-05-22 2013-05-20 Battery-state determination method, battery control device, and battery pack

Country Status (2)

Country Link
JP (1) JP5949147B2 (en)
WO (1) WO2013176085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252914A4 (en) * 2015-01-28 2018-10-17 LG Chem, Ltd. Apparatus and method for sensing opening of current interrupt device of battery unit
US10710526B2 (en) 2016-02-02 2020-07-14 Gs Yuasa International Ltd. Battery apparatus, vehicle, and automatic vehicle
CN113131028A (en) * 2021-04-20 2021-07-16 上海理工大学 Method for detecting over-discharge of lithium ion battery based on mechanical pressure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6309479B2 (en) * 2015-03-31 2018-04-11 プライムアースEvエナジー株式会社 Charge control device and charge control method
US20190267605A1 (en) * 2016-11-15 2019-08-29 Keihin Corporation Power supply device
KR20210039706A (en) * 2019-10-02 2021-04-12 주식회사 엘지화학 Method and system for detecting connection failure in parallel connection cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245776A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Power output device, vehicle therewith, and method for controlling power output device
JP2011135657A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Battery system and vehicle with the same, and method for detecting current limit state of the battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245776A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Power output device, vehicle therewith, and method for controlling power output device
JP2011135657A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Battery system and vehicle with the same, and method for detecting current limit state of the battery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252914A4 (en) * 2015-01-28 2018-10-17 LG Chem, Ltd. Apparatus and method for sensing opening of current interrupt device of battery unit
US10710526B2 (en) 2016-02-02 2020-07-14 Gs Yuasa International Ltd. Battery apparatus, vehicle, and automatic vehicle
CN113131028A (en) * 2021-04-20 2021-07-16 上海理工大学 Method for detecting over-discharge of lithium ion battery based on mechanical pressure

Also Published As

Publication number Publication date
JP5949147B2 (en) 2016-07-06
JP2013243881A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
US9933491B2 (en) Electric storage system
JP4311363B2 (en) Power storage system and storage system abnormality processing method
JP6228666B2 (en) Battery system
WO2013176085A1 (en) Battery-state determination method, battery control device, and battery pack
JP4840154B2 (en) Power supply equipment
US9941712B2 (en) Electrical storage system
JP2011135657A (en) Battery system and vehicle with the same, and method for detecting current limit state of the battery system
EP2693592A1 (en) Power supply system, vehicle mounted therewith, and method of controlling power supply system
WO2014111784A1 (en) Electricity storage system
US20160043583A1 (en) Battery pack, mobile body, and control method thereof
JP7334734B2 (en) Failure diagnosis method, storage device management device and system
JP2013145175A (en) Battery system and short circuit detection method
JP4618024B2 (en) Failure detection device for battery abnormality detection circuit
JP2011155774A (en) Control device of power storage element
JP5949146B2 (en) Battery state determination method, battery control device, and battery pack
WO2016143296A1 (en) Electricity storage control system and charge/discharge control method
JP5626190B2 (en) Power storage system
JP5626195B2 (en) Power storage system
JP2016201956A (en) Battery control device
JP2015061505A (en) Power storage system
JP5472472B2 (en) Power storage system and method for determining state of power storage block
JP5794205B2 (en) Power storage system and disconnection determination method
JP6017790B2 (en) Power storage system
JP2009261246A (en) Battery system
JP2014048281A (en) Electric power unit and failure detection circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794048

Country of ref document: EP

Kind code of ref document: A1