WO2015056634A1 - Electricity storage system - Google Patents

Electricity storage system Download PDF

Info

Publication number
WO2015056634A1
WO2015056634A1 PCT/JP2014/077113 JP2014077113W WO2015056634A1 WO 2015056634 A1 WO2015056634 A1 WO 2015056634A1 JP 2014077113 W JP2014077113 W JP 2014077113W WO 2015056634 A1 WO2015056634 A1 WO 2015056634A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
value
load
soc
Prior art date
Application number
PCT/JP2014/077113
Other languages
French (fr)
Japanese (ja)
Inventor
田中 融
二見 基生
松井 拓也
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2015542595A priority Critical patent/JPWO2015056634A1/en
Publication of WO2015056634A1 publication Critical patent/WO2015056634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a technology of a power storage system including a storage battery.
  • the present invention also relates to control of power peak cut and peak shift.
  • Facilities such as offices, factories, and buildings operate in the daytime when people work and stop at night, so there is a difference in power consumption during the daytime. Eliminating this disparity in power consumption, that is, reducing or leveling the power load, is an important issue as an element for improving industrial competitiveness.
  • the electric power load there are a peak cut operation and a peak shift operation by controlling charging / discharging to a plurality of storage batteries by the power storage system.
  • the peak cut operation suppresses the peak load power of the load facility by covering with the charge / discharge power of the storage battery.
  • the peak shift operation the storage battery is charged in a predetermined time zone where the power demand is low, and the load power is leveled by discharging the storage battery in a predetermined time zone where the power demand is high.
  • Patent Document 1 sets a load follow-up threshold for each time period in advance as an operation method of the power storage system, and controls charge / discharge based on a difference between the received power and the load follow-up threshold as a power load situation. , Is described.
  • the peak cut and peak shift operations in the above power storage system are automatic operations that are assumed to be performed continuously for a long time. Moreover, the magnitude of the load power of the load facility to which the power storage system supplies power is not necessarily constant. Therefore, the automatic operation of the power storage system tends to cause the storage battery to be overdischarged or overcharged, resulting in a short life of the storage battery.
  • An object of the present invention is to provide a technique capable of suppressing the shortening of the life of a storage battery by reducing the loss by suitable control of operation such as peak cut in the power storage system.
  • a representative embodiment of the present invention is a power storage system having the following configuration.
  • An electric storage system includes a control device connected to an electric power system and a load facility, and a plurality of storage batteries connected to the control device, and the control device is controlled based on a user operation.
  • a setting unit that sets a value of a setting item for, a measuring unit that measures a value including a received power from the power system, a load power of the load facility, a voltage, a current, and a temperature of the storage battery; and
  • a charge / discharge control unit that controls charging and discharging of the plurality of storage batteries, including control of peak cut operation that suppresses the peak of load power of the load facility by charging and discharging of the plurality of storage batteries, and the setting
  • the unit sets a value of a setting item including a start time, an end time, a first load power, and a second load power of the peak cut operation, and the charge / discharge control unit sets the set peak cut operation At the start of When the load power is equal to or higher than the first load power, the storage battery is discharged so that
  • FIG. 3 is a diagram illustrating a functional block configuration of the power storage system according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a flow of control processing of the power storage system according to Embodiment 1.
  • FIG. It is a figure which shows the peak cut driving
  • 3 is a diagram illustrating a setting example regarding the SOC of the storage battery of the power storage system according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an operation example of peak cut operation of the power storage system according to Embodiment 1.
  • FIG. 3 is a diagram showing a storage battery model and an SOC-OCV characteristic table of the power storage system of Embodiment 1.
  • FIG. 3 is a diagram illustrating a screen example for setting the power storage system according to Embodiment 1.
  • FIG. It is a figure which shows the comparison with the outline
  • Embodiment 1 A power storage system according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the power storage system of Embodiment 1 has a control function of peak cut operation.
  • the power storage system of Embodiment 1 has a function of reducing loss by suitable control of operation such as peak cut in consideration of the life of the storage battery group.
  • This function controls the charging and discharging of the storage battery group so as to correspond to the SOC range with less loss in consideration of the SOC of the storage battery (State Of Charge: referred to as a charging state or charging rate) during operation.
  • This function controls charging and discharging of the storage battery group so that the load power falls within the range of the peak cut load and the reverse power load during a predetermined time as control of the peak cut operation.
  • This function measures the closed circuit voltage (CCV), current, temperature, etc. of the storage battery, calculates the open circuit voltage (OCV) using the measured value and the previous SOC value, and opens the circuit voltage (OCV).
  • the latest SOC value is calculated using the SOC-OCV characteristic information of the storage battery and the like. This function controls charging and discharging of the battery group using the latest SOC value with high accuracy.
  • This function charges the storage battery in advance before the start time so that the SOC value becomes a predetermined SOC value at the start time of peak cut operation as control of protection of the storage battery.
  • This function is set to protect and start the discharge of the storage battery group when the latest SOC value is equal to or higher than the set first SOC value during peak cut operation as control of protection of the storage battery. When it is below the second SOC value, charging of the storage battery group is started and protected.
  • This function provides the user with a screen that serves as an interface that allows the setting items such as the SOC value range for each control to be set.
  • FIG. 1 shows a configuration of a system including a power storage system 1 according to the first embodiment.
  • the power storage system 1 is connected to the power system 2, the load facility 3, the solar power generation system 4, and the like.
  • the power storage system 1 includes a control panel housing part 71 and a storage battery board housing part 72.
  • the control panel accommodating part 71 accommodates the control panel and connects the storage battery panel accommodating part 72.
  • the storage battery board accommodating part 72 accommodates a storage battery board.
  • the storage battery panel connects a plurality of storage batteries in parallel and in series.
  • the storage battery is, for example, a lithium ion secondary battery.
  • the control panel has power control functions including peak cut operation control and storage battery management.
  • the power control function of the control panel controls the plurality of storage battery panels connected to the lower level, controls charging and discharging of the storage battery group, and manages the power constituted by the storage battery group.
  • the power control function of the control panel includes a function of converting direct current (DC) and alternating current (AC) power.
  • the power measurement 50 indicates power measurement by the power storage system 1.
  • the power measurement 50 includes measurement of received power 52 of the power system 2, measurement of load power 53 that is a load output of the load facility 3, measurement of generated power 54 of the solar power generation system 4, and the like.
  • the power measurement 50 may use the information when information is obtained from the target.
  • Reference numeral 62 indicates charging of the storage battery of the power storage system 1 by the received power 52 from the power system 2.
  • Reference numeral 63 denotes an operation such as a peak cut including power feeding to the load facility 3 due to discharge of the storage battery of the power storage system 1.
  • Reference numeral 64 denotes charging of the storage battery of the power storage system 1 by the generated power 54 from the solar power generation system 4.
  • Reference numeral 65 denotes power feeding from the power system 3 to the load facility 3.
  • 66 indicates the reverse power flow from the power storage system 1 or the photovoltaic power generation system 4 to the power system 2.
  • the system in FIG. 1 is in the form of grid connection. That is, the power storage system 1 and the solar power generation system 4 are connected to the power system 2, and a reverse power flow in which the power from the power storage system 1 and the solar power generation system 4 is supplied to the power system 2 occurs depending on the situation.
  • the power storage system 1 charges the storage battery group with the received power 52 and the generated power 54, and discharges the storage battery group to supply power to the load facility 3 when the load facility 3 has a large load power. In a situation where the load power of the load facility 3 is small, the power storage system 1 generates a reverse power flow in which power from the discharge of the storage battery is supplied to the power system 2. In order to protect the power storage system 1 from overcharging and overdischarging due to the continuation of charging and discharging, control and the like using a threshold range of load power described later is performed.
  • the outline of control related to the peak cut operation of the electricity storage system 1 is as follows.
  • load power, an SOC threshold value, and the like are set according to a user's operation as a set value for controlling peak cut operation.
  • the power storage system 1 measures the received power 52 from the power system 2 and the load power 53 of the load facility 3, and measures the state of the storage battery group such as the voltage.
  • the power storage system 1 calculates the SOC values of the storage battery and the storage battery group using the measured value and the storage battery characteristic information.
  • the power storage system 1 suitably controls charging / discharging of the storage battery group based on the set value, load power, and SOC value during peak cut operation.
  • electric power is configured in units of a group of predetermined plural storage batteries, and charging / discharging is controlled in the units.
  • the SOC of each storage battery in the unit is controlled to be a value within a predetermined accuracy range.
  • FIG. 2 shows a functional block configuration of the power storage system 1.
  • the power storage system 1 includes a control unit 101, a storage unit 102, and an input / output unit 103.
  • the control unit 101 includes a setting unit 10, a first measurement unit 11, a second measurement unit 12, an SOC calculation unit 13, and a charge / discharge control unit 14.
  • the charge / discharge control unit 14 includes a peak cut control unit 15, a first protection control unit 16, and a second protection control unit 17.
  • the storage unit 102 stores setting information 20, measurement information 21, storage battery characteristic information 22, SOC information 23, and the like.
  • the storage battery characteristic information 22 includes information such as the SOC-OCV characteristic table 25.
  • the input / output unit 103 processes electrical connection and communication with each system such as the power system 2 in FIG. 1 and input / output of information to / from the user.
  • the setting unit 10 provides a setting screen as shown in FIG. 8, which will be described later, as a setting interface for the user, and performs setting processing for control setting values (step S1 in FIG. 3, which will be described later).
  • the setting unit 10 displays information on each setting item for control on the screen, enables setting by the user, and stores the set setting value in the setting information 20.
  • the first measurement unit 11 measures the received power 52 from the power system 2, the load output 53 of the load facility 3, the generated power 54 of the solar power generation system 4 and the like corresponding to the power measurement 50 described above, and the measured value Is stored in the measurement information 21 (S2 described later).
  • the control panel has a measurement function corresponding to the first measurement unit 11.
  • the 2nd measurement part 12 performs the process (S3 mentioned later) which measures the value of states, such as closed circuit voltage (CCV) of a storage battery group, an electric current, and temperature, and stores a measured value in the measurement information 21.
  • FIG. This measurement means is realized by a measurement and monitoring function provided in at least one of the control panel and the storage battery panel.
  • each storage battery panel includes a storage battery monitoring unit, and the storage battery monitoring unit monitors and measures the value of the state including the closed circuit voltage, current, temperature, etc. of the storage battery, and the signal of the state and value based on this is transmitted to the control panel. Send.
  • the control panel recognizes and determines the state of the storage battery group based on a signal from the storage battery panel.
  • the SOC calculation unit 13 uses the measurement information 21, the storage battery characteristic information 22, and the SOC information 23 to calculate the latest SOC value and store it in the SOC information 23 according to a CCV verification method described later (S4 described later). )I do.
  • the charging / discharging control part 14 performs the process (S5 mentioned later) which controls charging / discharging of a storage battery group including control of peak cut operation.
  • the peak cut control unit 15 performs a later-described load fluctuation range control process (described later in S5-1) in the peak cut operation using a predetermined set value (described later, A1 to A4).
  • the first protection control unit 16 performs a first storage battery protection control process (S5-2, which will be described later) using a predetermined set value (B1, which will be described later).
  • the second protection control unit 17 performs a second storage battery protection control process (described later, S5-3) using a predetermined set value (described later, B2 to B5).
  • a plurality of types of setting items in power storage system 1 of the first embodiment are as follows.
  • A1 Peak cut load [W] A2: Reverse power load [W] A3: Peak cut start time A4: Peak cut end time B1: Start SOC value [%] B2: Discharge start SOC value [%] B3: Discharge stop SOC value [%] B4: Charging start SOC value [%] B5: Charging stop SOC value [%].
  • A1 etc. show the code
  • the setting value of each setting item is displayed on the setting screen of FIG. 8 described later, and can be set by the user.
  • the peak cut load A1 and the reverse power load A2 are threshold values of the load power range related to the control of the peak cut operation.
  • the peak cut load A1 is the first load power that is the upper limit
  • the reverse flow load A2 is the second load power that is the lower limit.
  • the peak cut load A1 indicates a target level for suppressing the peak load power in the peak cut operation.
  • the unit of load power is W (watt) or the like.
  • the reverse power load A2 indicates a target level for suppressing the power of the reverse power flow in the peak cut operation.
  • the reverse tide load A2 is a value of 0 or less.
  • the peak cut start time A3 and peak cut end time A4 define the time for peak cut, reverse power flow reduction and charge / discharge in peak cut operation.
  • the peak cut start time A3 is the start time of the peak cut operation in one day
  • the peak cut end time A4 is the end time of the operation from the peak cut start time A3.
  • the load power 53 is monitored within the peak cut operation time of A3 to A4.
  • the power storage system 1 supplies power to the load facility 3 by discharging the storage battery when the load power 53 is greater than or equal to the peak cut load A1 within the time period A3 to A4. As a result, the peak of the load power 53 is suppressed so that it falls within the peak cut load A1.
  • the power storage system 1 supplies power to the load facility 3 by charging the storage battery when the load power 53 is equal to or lower than the reverse power load A2 within the time period A3 to A4. Thereby, the power of the reverse power flow is reduced.
  • the start SOC value B1 is the SOC target value at the peak cut start time A3.
  • the power storage system 1 charges the storage battery from the peak cut end time A4 to the next peak cut start time A3 until the SOC value reaches the start SOC value B1.
  • the SOC value may not be the same value as the start SOC value B1, but a corresponding effect can be obtained by becoming a value close to the start SOC value B1.
  • the power storage system 1 brings the SOC value close to the start SOC value B1 by charging the storage battery in advance, for example, immediately after the peak cut end time A4, outside the time period A3 to A4.
  • a setting item for setting a charging time may be provided for the control using the start SOC value B1.
  • the charging time may be defined so as to be included in the time period A3 to A4.
  • the discharge start SOC value B2 is an SOC value for starting discharge for storage battery protection.
  • the discharge stop SOC value B3 is an SOC value for stopping the discharge.
  • the power storage system 1 starts discharging when the SOC value is equal to or higher than the discharge start SOC value B2, and stops discharging when equal to or lower than the discharge stop SOC value B3.
  • the charging start SOC value B4 is an SOC value for starting charging.
  • the charge stop SOC value B5 is an SOC value for stopping the charge.
  • the power storage system 1 starts charging when the SOC value is equal to or higher than the charging start SOC value B4, and stops charging when the SOC value is equal to or lower than the charging stop SOC value B5.
  • the storage system 1 controls the storage battery protection when the SOC value of the storage battery reaches the discharge start SOC value B2 by charging within the time A3 to A4, or when the load power is not equal to or higher than the peak cut load A1. As long as the discharge starts.
  • the power storage system 1 is not less than the reverse power load A2 Only start charging.
  • FIG. 3 shows a flow of control processing including control of peak cut operation by the control unit 101 of the power storage system 1.
  • S1 and the like indicate processing and operation steps.
  • step S1 the setting unit 10 displays a setting screen as shown in FIG. 8 to the user, accepts settings of various setting items by the user's operation on the screen, and sets the setting value. Is stored in the setting information 20. The user inputs or confirms setting values of setting items such as A1 to A4 and B1 to B5 on the screen. After the set value is set in S1 and the execution of control is instructed, the peak cut operation is automatically controlled according to the set value.
  • step S2 the first measuring unit 11 measures the value of the received power 52 from the power system 2 and stores it in the measurement information 21.
  • the first measurement unit 11 measures the value of the load power 53 of the load facility 3 and stores the value in the measurement information 21.
  • the first measuring unit 11 always measures the received power 52 and the load power 53.
  • step S3 the second measurement unit 12 measures the value of the state including the closed circuit voltage (CCV), the current (i), and the temperature (K), which is the voltage of the storage battery, and the measurement.
  • the value is stored in the measurement information 21.
  • the second measuring unit 11 performs the above measurement at a set constant period (denoted as ⁇ T).
  • step S4 the SOC calculation unit 13 performs the SOC calculation process at a predetermined cycle ( ⁇ T) corresponding to the measurement cycle of S3, and continues to acquire the calculated value in real time for each cycle.
  • the SOC calculation unit 13 uses the previous SOC value 301 included in the measurement information 21 and the SOC information 23 by S2 and S3, and the current SOC value that is the latest SOC value by the recurrence formula 300 based on the storage battery model described later and CCV verification.
  • An SOC value 302 is calculated.
  • the CCV verification is an estimation of voltage and SOC using the SOC-OCV characteristic table 25.
  • the SOC information 23 is time-series information including the previous SOC value and the current SOC value. Details of the process of S4 will be described later.
  • step S5 the charge / discharge control unit 14 always performs the charge / discharge control process including the peak cut operation control shown in S5-1 to S5-3 according to the set value.
  • the charge / discharge control unit 14 charges or discharges the storage battery at a predetermined time according to the current SOC value 302 that is the latest SOC value obtained in S4 and the setting information 20.
  • step S5-1 the charge / discharge control unit 14 performs peak cut as a control process for the peak cut operation during the period from the peak cut start time A3 to the peak cut end time A4.
  • the storage battery group is charged and discharged so as to keep it within the range between the load A1 and the reverse power load A2.
  • the charge / discharge control unit 14 supplies power to the load facility 3 by discharging the storage battery when the current load power value is equal to or higher than the peak cut load A1.
  • the SOC value of the storage battery decreases due to discharge.
  • the charge / discharge control part 14 charges a storage battery with the received electric power 52 or the generated electric power 54, when the value of the present load electric power is below the reverse power load A2. Thereby, the electric power of a reverse power flow is reduced and the SOC value of the storage battery is increased.
  • step S5-2 the charge / discharge control unit 14 performs the following control using the set values of A1 to A4 as the first storage battery protection control process.
  • the charge / discharge control unit 14 prepares for the next peak cut start time A3 in advance at a time outside the peak cut end time A4 to the peak cut end time A4, for example, immediately after the peak cut end time A4.
  • the storage battery group is charged so that the SOC value becomes the same value as the starting SOC value B1 or a value as close as possible.
  • the power storage system 1 stops charging and waits until the next peak cut start time A3, and after A3, the peak cut operation is performed again. Start the main operation.
  • step S5-3 the charge / discharge control unit 14 performs the following control using the set values of B2 to B5 as the second storage battery protection control process. 1stly, the charge / discharge control part 14 starts discharge of a storage battery, when the newest SOC value becomes more than discharge start SOC value B2. This reduces the SOC value. And the charge / discharge control part 14 stops discharge of a storage battery, when the newest SOC value becomes below discharge stop SOC value B3.
  • the charge / discharge control unit 14 starts charging the storage battery when the latest SOC value becomes equal to or lower than the charge start SOC value B4. This increases the SOC value. And the charge / discharge control part 14 stops charge of a storage battery, when the newest SOC value becomes more than charge stop SOC value B5.
  • the charge / discharge control unit 14 executes the control of S5-1 with the first priority and executes the control of S5-3 with the second priority. That is, as described above, the charging / discharging control unit 14 performs the charging / discharging of S5-1 when the condition of S5-1 is met within the time period A3 to A4, and meets the condition of S5-1. If the condition of S5-3 is satisfied, the charging / discharging of S5-3 is executed.
  • FIG. 4 shows an operation of peak cut operation in the conventional power storage system.
  • the power storage system 1 of the present embodiment performs specific control based on this conventional peak cut operation.
  • the horizontal axis represents time
  • the vertical axis represents the load power of the load facility (unit: W).
  • 401 indicates a set value of the peak cut load, and indicates a target level for suppressing the peak of the load power by the peak cut operation.
  • Reference numeral 402 denotes a time and load power at a location where the load power exceeds the set value 401.
  • Reference numeral 403 denotes the time at the location 402.
  • the load power peaks beyond the set value 401 during the time from 15:00 to 17:00 of 403.
  • the peak cut operation suppresses the power at a peak such as 402 exceeding the set value of the peak cut load 401 based on the monitoring of the load power.
  • Reference numeral 411 denotes charging of the storage battery by the received power from the power system in the night time zone.
  • Reference numeral 412 indicates the discharge of the storage battery corresponding to the peak position 402 and the time 403 in the daytime time zone. In FIG. 4B, charging is shown as positive (+) and discharging is shown as negative ( ⁇ ).
  • (C) in FIG. 4 corresponds to (a) and (b) in FIG. 4, the horizontal axis indicates time, and the vertical axis indicates received power from the power system.
  • Reference numeral 421 indicates that the peak load power is suppressed to the set value 401 by allocating the power from the charge 411 to the peak load power 402 by the discharge 412.
  • FIG. 5 shows an example of setting values of setting items (B1 to B5) related to the SOC of the storage battery in the first embodiment.
  • the set values in FIG. 5 are examples, and differ depending on the characteristics of the storage battery used.
  • the power storage system 1 controls the load fluctuation range using the peak cut load A1 and the reverse power load A2 described above, and the SOC value is a range of SOC values corresponding to the load power, for example 511. It is limited to the range of ⁇ 513. Accordingly, the power storage system 1 protects the SOC value of the storage battery from entering the deterioration area 512 or the area 514.
  • 501 indicates 75% as an example of the start SOC value B1.
  • Reference numeral 502 denotes 90% as an example of the discharge start SOC value B2.
  • Reference numeral 503 denotes 85% as an example of the discharge stop SOC value B3.
  • Reference numeral 504 denotes 60% as an example of the charge start SOC value B4.
  • 505 indicates 65% as an example of the charge stop SOC value B5.
  • Reference numeral 510 denotes a range in which a discharge start SOC value B2 of 502 is an upper threshold value and a charge start SOC value B4 of 504 is a lower threshold value.
  • the power storage system 1 performs storage battery protection control processing using the above 510 range and threshold values (B2 to B4) in addition to load fluctuation range control using A1 to A4.
  • FIG. 6 shows an operation example of peak cut operation by the power storage system 1 of the first embodiment.
  • the horizontal axis corresponds to time (from 0:00 to 23:00).
  • the peak cut start time A3 is, for example, 4 o'clock, and the peak cut end time A4 is, for example, about 19:30.
  • FIG. 6 is charging / discharging electric power whose vertical axis is a storage battery output.
  • charging is shown as positive (+) and discharging is shown as negative ( ⁇ ).
  • the shaded area indicates an example corresponding to the main operation of the peak cut operation control (S5-1), and the dotted area indicates an example corresponding to the operation of the storage battery protection control (S5-2, S5-3). Show.
  • the vertical axis represents the SOC value of the storage battery, and ranges from 0% to 611.
  • Reference numeral 611 denotes a system failure stop SOC value, for example, 100%.
  • B1 to B5 are the set values described above.
  • the vertical axis represents the load power 53 of the load facility 3.
  • the set value of the aforementioned peak cut load A1 and the set value of the reverse power load A2 are shown.
  • the value of the reverse tide load A2 is negative.
  • FIG. 6 illustrates an example of the daily peak cut operation along the time axis.
  • the main operation of the peak cut operation is started at 4:00, which is the peak cut start time A3.
  • the SOC value is adjusted to the above-described start SOC value B1.
  • the SOC value rises from the starting SOC value B1.
  • the SOC value exceeds the discharge start SOC value B2 around 8 o'clock indicated by tx. Thereby, the electrical storage system 1 starts the discharge 602 as the operation of the storage battery protection, and the discharge 602 is performed for a time from 9:00 to 10:00. Due to the discharge 602, the SOC value reaches the discharge stop SOC value B3 around 10:00. Thereby, the electrical storage system 1 stops the discharge 602, and after the stop, the SOC value is maintained constant.
  • the load power increases and exceeds the peak cut load A1, and the discharge 603 is performed as an operation of the peak cut operation.
  • the SOC value decreases during the time.
  • the discharge 605 is performed as the operation of the peak cut operation. As a result, the SOC value is lowered.
  • the SOC value Due to the discharge 605, the SOC value is lower than the charging start SOC value B4 around 15:00 indicated by ty. Thereby, the electrical storage system 1 starts charge 606 as operation
  • the SOC value increases due to the charging 606, and the SOC value reaches the charging stop SOC value B5 around 16:30. Thereby, the power storage system 1 stops the charging 606. After stopping, the SOC value is kept constant.
  • the main operation of the peak cut operation ends at around 19:30, which is the peak cut end time A4.
  • the power storage system 1 starts charging 607 because the SOC value is lower than the start SOC value B1 as an operation for protecting the storage battery.
  • charging 607 is performed from about 19:30 to about 21:30, whereby the SOC value reaches the start SOC value B1.
  • the SOC value is maintained at the start SOC value B1 until the peak cut start time A3 of the next day.
  • the power storage system 1 of the first embodiment performs the SOC calculation using CCV verification as in S4. Thereby, there is no accumulation and increase of errors due to the operation time as described above. Therefore, an accurate or highly accurate SOC value can be calculated.
  • the power storage system 1 can control peak cut operation and storage battery protection to realize low loss by using this SOC value.
  • the SOC calculation unit 13 calculates an open circuit voltage OCV that is a voltage obtained by compensating the internal resistance and polarization component of the storage battery based on the current i, the temperature K, and the previous SOC value 301 with respect to the measured closed circuit voltage CCV. calculate.
  • the SOC calculation unit 13 calculates the open circuit voltage OCV by the recurrence formula 300 based on the storage battery model of FIG.
  • the SOC calculation unit 13 calculates the current SOC value 302, which is the latest SOC value, using the SOC-OCV characteristic table 25 corresponding to the temperature K with respect to the open circuit voltage OCV calculated using the above recurrence formula 300. To do.
  • FIG. 7 shows a storage battery model used for measurement by the power storage system 1 and calculation of the SOC value of S4.
  • the lower side of FIG. 7 shows an example of the SOC-OCV characteristic table 25 of a certain storage battery 5.
  • the storage battery 5 has R1 as an internal resistance, and has, as polarization components, a resistance R2 and a time constant ⁇ 2 that are first polarization components, and a resistance R3 and a time constant ⁇ 3 that are second polarization components.
  • V1 is a voltage due to the internal resistance R1 of the storage battery 5.
  • V2 is a voltage due to the first polarization component.
  • V2 is calculated from the internal resistance R2 and the time constant ⁇ 2.
  • V3 is a voltage due to the second polarization component.
  • V3 is calculated from the internal resistance R3 and the time constant ⁇ 3.
  • the storage system 1 uses the previous SOC value 301 and the temperature K, and from the table (not shown) included in the storage battery characteristic information 22, the internal resistances R2, R3 of the storage battery 5, time constants ⁇ 2, ⁇ 3, etc. Read or calculate the information.
  • the storage battery characteristic information 22 includes, for example, a table in which values such as internal resistance corresponding to the temperature K are described.
  • the closed circuit voltage is generally a voltage including a voltage due to an internal resistance of the storage battery in a state where a load is connected to the storage battery and a current flows.
  • V CCV is the voltage of the storage battery measured during charging / discharging.
  • An open circuit voltage is generally a voltage between both terminals of a storage battery in a state where no load is connected to the storage battery and no current is passed.
  • the open circuit voltage OCV V OCV in FIG. 7 is a voltage applied to the storage battery 5 calculated by compensating the internal resistance and the polarization component, that is, removing the influence.
  • the recurrence formula 300 is as shown in the following formulas 1 to 4. Note that n indicates the number of times of calculation in the recurrence formula. n-1 indicates the previous value, and n indicates the current value. ⁇ T is a calculation cycle.
  • V OCV V OCV
  • V CCV V1 + V2 + V3
  • V1 R1 ⁇ i Equation 2
  • V2 n V2 n ⁇ 1 (1 ⁇ T / ⁇ 2) + i ⁇ R2 ( ⁇ T / ⁇ 2) Equation 3
  • V3 n V3 n ⁇ 1 (1 ⁇ T / ⁇ 3) + i ⁇ R3 ( ⁇ T / ⁇ 3) Equation 4
  • the SOC-OCV characteristic table 25 is a two-dimensional table having information on the open circuit voltage OCV and the temperature K.
  • One SOC-OCV characteristic table 25 corresponding to the temperature K of a certain storage battery 5 shows the characteristic of the relationship between the SOC value and the open circuit voltage OCV at a certain temperature K.
  • the horizontal axis represents the open circuit voltage OCV
  • the vertical axis represents the SOC value.
  • the SOC increases with a high slope in the region where the OCV is low
  • the SOC increases with a constant or gentle slope in the region where the OCV is medium
  • the SOC increases again with a high slope in the region where the OCV is high.
  • FIG. 8 shows an example of a setting screen in the first embodiment.
  • reference numeral 801 denotes an item that allows the user to select one of a plurality of setting modes.
  • the user can use a plurality of setting modes separately for each application target.
  • the setting mode a user can set a name, an application target, and the like.
  • FIG. 802 shows a table that displays the contents of various setting items that are the contents of the setting mode selected in 801.
  • the setting items A1 to A4 and B1 to B5 are displayed.
  • a description of the contents and the current setting value are displayed.
  • a value can be input or selected by the user in a setting value field indicated by 803.
  • Reference numeral 804 denotes a button for executing setting and setting change in the state of the setting value 803 in the table 802.
  • screens can be set with a setting mode to be applied to a calendar date or the like as an operation schedule.
  • the operation is automatically executed according to the set schedule.
  • the setting item setting interface is not limited to the screen example of FIG.
  • another example of the screen may display an indicator related to the SOC as in FIG. 6, and each setting value may be set by a vertical slide.
  • a graph of transition of values on the time axis may be displayed, and setting values in the graph may be settable.
  • the screen may be displayed on an operation panel of a control panel constituting the power storage system 1 or may be displayed on an information processing apparatus connected to the control panel.
  • the control of the load fluctuation range of the power storage system 1 according to the first embodiment of FIG. 9A is performed so that the actual load power and the corresponding SOC are within the load power threshold value (A1, A2) range 900.
  • This is a method for controlling charging and discharging.
  • Reference numeral 901 denotes a set value corresponding to the above-described peak cut load A1 as the upper limit threshold of the range 900.
  • Reference numeral 902 denotes a setting value corresponding to the above-described reverse power load A2 as a lower limit threshold value of the range 900.
  • Reference numeral 911 denotes a location where the load power exceeds the upper limit threshold value 901, and discharge is performed at this location 911.
  • Reference numeral 912 denotes a portion where the load power exceeds the lower limit threshold value 902, and charging is performed at this portion 912.
  • 9B is a method of controlling charging / discharging so that the load power follows the single threshold value 920 related to the load power.
  • 921 exceeds the threshold value 920
  • 922 indicates when the threshold value 920 is below.
  • control is performed so that the load power follows the threshold 920.
  • the actual load power and the corresponding SOC fluctuate, they cannot be maintained at the same value as the threshold 920. That is, in the control of the conventional example, the state where charging or discharging is almost always continued.
  • control is performed so as to suppress the threshold value to 900, so that loss due to charging and discharging is small, which is advantageous with respect to the life of the storage battery. Since the conventional example is not controlled within the range of the threshold as shown in (B), the loss due to charging / discharging is large, which is disadvantageous with respect to the life of the storage battery.
  • the power storage system 1 of the first embodiment it is possible to suppress the shortening of the life of the storage battery by reducing the loss by suitable control of the peak cut operation.
  • the power storage system 1 of the first embodiment since the capacity is adjusted by the discharge start SOC value and the charge start SOC value, the number of storage batteries can be reduced or the capacity of the storage battery can be reduced during system construction. Overall, a low-cost system can be realized.
  • the user can set a control setting value on the screen.
  • a power storage system 1 according to the second embodiment will be described.
  • the power storage system 1 of the second embodiment has a function related to control of peak shift operation in addition to the function related to control of peak cut operation of the first embodiment.
  • the power storage system 1 according to the second embodiment performs switching to the selected mode between the peak cut operation mode and the peak shift operation mode based on the selection and setting by the user.
  • a configuration different from the first embodiment in the second embodiment will be described.
  • FIG. 10 shows an operation of peak shift operation in the conventional power storage system.
  • the peak shift operation of power storage system 1 of the second embodiment is based on the peak shift operation of this conventional example.
  • peak shift operation load power is not monitored, and charging and discharging are performed at different predetermined time zones. That is, in the peak shift operation, charging is performed during a predetermined nighttime period when the power demand is low, and discharging is performed during a predetermined daytime period when the power demand is high.
  • Reference numeral 501 denotes a set value of the peak shift load. This set value 501 indicates a reference level for suppressing load power by peak shift operation.
  • Reference numeral 502 denotes a location including a peak where the load power exceeds the set value 501 and a location where the power demand is high.
  • Reference numeral 503 denotes a time zone including a portion 502 where the load power exceeds the set value 501.
  • the load power includes a portion where the load power exceeds the set value 501 in the time zone from 14:00 to 18:00 of 503, and the load power fluctuates for each individual time.
  • Reference numeral 10B corresponds to FIG. 10A, the horizontal axis indicates time, and the vertical axis indicates electric power due to charging / discharging of the storage battery by the power storage system.
  • Reference numeral 511 denotes charging of the storage battery with a constant output by the received power from the power system in a predetermined night time zone set for peak shift and having a low power demand.
  • Reference numeral 512 denotes power supply to the load facility by discharging the storage battery with a constant output in a predetermined daytime time zone that is set for peak shift corresponding to the time zone 503 and has a large power demand.
  • (C) in FIG. 10 corresponds to (a) and (b) in FIG. 10, and the horizontal axis represents time and the vertical axis represents received power from the power system.
  • Reference numeral 521 indicates that the load power is suppressed to a set value 501 or less by applying the power of the charge 511 to the time zone 503 by the discharge 512. The same power is allocated at each time in the 503 time zone. As described above, the load power in the time zone 503 including the peak is reduced by the peak shift operation, and the received power is adjusted to be close between the time zone of the charge 511 and the time zone of the discharge 512.
  • the power storage system 1 of Embodiment 2 further includes a peak shift control unit in addition to the charge / discharge control unit 14 of FIG.
  • the peak shift control unit controls the peak shift operation using the set value of the setting item for controlling the peak shift operation.
  • the power storage system 1 according to the second embodiment further includes a peak shift operation control process step by a peak shift control unit in the control process flow of FIG. Although not shown, this is step S6.
  • S1 a value of a setting item for controlling peak shift operation is set, and execution of the peak shift operation is instructed.
  • step S6 of charge / discharge control processing for additional peak shift operation is performed instead of S5.
  • This additional step S6 includes step S6-1 of the peak shift operation control process instead of S5-1, and step S6-2 of the first storage battery protection control process instead of S5-2.
  • the power storage system 1 of the second embodiment has the following C1 to C6 as setting items to be added to the setting items of the first embodiment regarding the control of the peak shift operation.
  • C1 Charging start time
  • C2 Charging end time
  • C3 Charging output [W]
  • C4 Discharge start time
  • C5 Discharge end time
  • C6 Discharge output [W].
  • the charge start time C1 is a start time of a predetermined time zone for charging at a constant output
  • the charge end time C2 is an end time of the time zone.
  • the charging output C3 is a constant output power in the time zone.
  • the discharge start time C4 is a start time of a predetermined time period for discharging at a constant output
  • the discharge end time C5 is an end time of the time period.
  • the discharge output C6 is constant output power in the time zone.
  • step S6-1 of the peak shift operation control process the power storage system 1 of the second embodiment charges the storage battery group with a constant output during a predetermined charging time period according to the setting items C1 to C3, and sets the setting item C4.
  • the storage battery group is discharged at a constant output during a predetermined discharge time zone.
  • the power storage system 1 of the second embodiment applies the same load fluctuation range control as that of the first embodiment during the peak shift operation during the predetermined charging time zone and the predetermined discharging time zone. That is, the power storage system 1 of the second embodiment discharges when the load power is equal to or higher than the peak cut load A1 within a predetermined charging time zone, and the reverse power load A2 within the predetermined discharging time zone. If it is below, charge. This prevents the load power from exceeding the peak cut load A1 or the reverse power load A2.
  • the power storage system 1 of the second embodiment uses a set value similar to the start SOC value B1 of the first embodiment as a step S6-2 of the first storage battery protection control process, and uses a predetermined discharge time zone (C4 The charging is performed in advance so that the SOC value approaches the starting SOC value B1 under the condition that the load is low during the time until the start of the predetermined charging time period (C1 to C2) after the end of .about.C5). Do. For example, immediately after the discharge end time C5, the power storage system 1 starts charging according to the situation, and stops charging when the SOC value reaches the start SOC value B1.
  • FIG. 11 shows an example of a setting screen relating to peak shift operation control by the setting unit 10 according to the second embodiment.
  • reference numeral 1101 denotes an item that allows the user to select one of a plurality of setting modes.
  • a table 1102 displays the contents of various setting items, which are the contents of the setting mode selected in 1101.
  • the setting items C1 to C6 described above are displayed as shown in rows # 1 to # 6.
  • a value can be input or selected by the user in the setting value field 1103.
  • Reference numeral 1104 denotes a button for executing setting and setting change in the state of the setting value 1103 in the table 1102.
  • the life of the storage battery can be shortened by reducing the loss by suitable control. Can be suppressed.
  • the present invention can be used as a power storage system for various load facilities including offices and factories.
  • SYMBOLS 1 Power storage system, 2 ... Electric power system, 3 ... Load facilities, 4 ... Solar power generation system, 5 ... Storage battery, 10 ... Setting part, 11 ... 1st measurement part, 12 ... 2nd measurement part, 13 ... SOC calculating part , 14 ... charge / discharge control unit, 15 ... peak cut control unit, 16 ... first protection control unit, 17 ... second protection control unit, 20 ... setting information, 21 ... measurement information, 22 ... storage battery characteristic information, 23 ... SOC Information, 25 ... SOC-OCV characteristic table, 50 ... Power measurement, 52 ... Received power, 53 ... Load power, 54 ... Generated power, 62 ... Charge, 63 ...
  • Discharge 64 ... Charge, 65 ... Power supply, 66 ... Reverse power flow , 71 ... control panel housing part, 72 ... storage battery panel housing part, 101 ... control part, 102 ... storage part, 103 ... input / output part.

Abstract

 Provided is a technique relating to an electricity storage system that makes it possible to minimize any decrease in the life of a storage battery by reducing loss through suitable control of an operation such as peak cutting. The electricity storage system performs: a process in which the value of a settable item for controlling a peak cutting operation is set by a user; a process for measuring status values including power received from a power system, load power from a load facility, and the voltage, current, and temperature of the storage battery; a process for calculating the SOC value using the measurement value; and a process for controlling charging and discharging of a plurality of storage batteries, including controlling peak cut operation, using the SOC value and the setting values. During peak cut operation, the electricity storage system discharges the storage battery when the load power is at a first load power or more, and charges the storage power when the load power is at a second load power or less, so that the load power is kept within the range from the first load power to the second load power.

Description

蓄電システムPower storage system
 本発明は、蓄電池を備える蓄電システムの技術に関する。また本発明は、電力のピークカットやピークシフトの制御に関する。 The present invention relates to a technology of a power storage system including a storage battery. The present invention also relates to control of power peak cut and peak shift.
 事務所や工場やビル等の施設は、人が働く時間帯である昼間に稼働し、夜間に停止するため、昼夜間の消費電力に格差がある。この消費電力の格差の解消、即ち電力負荷の低減や平準化は、産業競争力を向上させる要素として重要な課題である。 Facilities such as offices, factories, and buildings operate in the daytime when people work and stop at night, so there is a difference in power consumption during the daytime. Eliminating this disparity in power consumption, that is, reducing or leveling the power load, is an important issue as an element for improving industrial competitiveness.
 電力負荷の低減や平準化の手段として、蓄電システムによる複数の蓄電池への充放電の制御によるピークカット運転やピークシフト運転が挙げられる。ピークカット運転は、負荷施設のピークの負荷電力を、蓄電池の充放電の電力により賄うことで抑える。ピークシフト運転は、電力需要の少ない所定の時間帯に蓄電池を充電し、電力需要の多い所定の時間帯に蓄電池を放電することで負荷電力を平準化する。 As a means for reducing or leveling the electric power load, there are a peak cut operation and a peak shift operation by controlling charging / discharging to a plurality of storage batteries by the power storage system. The peak cut operation suppresses the peak load power of the load facility by covering with the charge / discharge power of the storage battery. In the peak shift operation, the storage battery is charged in a predetermined time zone where the power demand is low, and the load power is leveled by discharging the storage battery in a predetermined time zone where the power demand is high.
 蓄電システムに関する先行技術例として、特開2006-109621号公報(特許文献1)が挙げられる。特許文献1は、電力貯蔵システムの運転方法として、予め時間帯ごごとに負荷追従閾値を設定し、電力負荷状況として、受電電力と負荷追従閾値との差に基づいて、充放電を制御すること、が記載されている。 JP, 2006-109621, A (patent documents 1) is mentioned as a prior art example about an electrical storage system. Patent Document 1 sets a load follow-up threshold for each time period in advance as an operation method of the power storage system, and controls charge / discharge based on a difference between the received power and the load follow-up threshold as a power load situation. , Is described.
特開2006-109621号公報JP 2006-109621 A
 上記蓄電システムにおけるピークカットやピークシフトの運転は、長時間継続的に行うことが想定される自動運転である。また、蓄電システムが電力を供給する負荷施設の負荷電力の大きさは一定であるとは限らない。そのため、上記蓄電システムの自動運転により、蓄電池が過放電や過充電に陥りやすく、その結果、蓄電池が短寿命になる。 The peak cut and peak shift operations in the above power storage system are automatic operations that are assumed to be performed continuously for a long time. Moreover, the magnitude of the load power of the load facility to which the power storage system supplies power is not necessarily constant. Therefore, the automatic operation of the power storage system tends to cause the storage battery to be overdischarged or overcharged, resulting in a short life of the storage battery.
 本発明の目的は、上記蓄電システムに関して、ピークカット等の運転の好適な制御による低損失化により、蓄電池の短寿命化を抑制することができる技術を提供することである。 An object of the present invention is to provide a technique capable of suppressing the shortening of the life of a storage battery by reducing the loss by suitable control of operation such as peak cut in the power storage system.
 本発明のうち代表的な実施の形態は、蓄電システムであって、以下に示す構成を有することを特徴とする。 A representative embodiment of the present invention is a power storage system having the following configuration.
 一実施の形態の蓄電システムは、電力系統及び負荷施設に接続される制御装置と、前記制御装置に接続される複数の蓄電池と、を備え、前記制御装置は、利用者の操作に基づいて制御用の設定項目の値を設定する設定部と、前記電力系統からの受電電力、前記負荷施設の負荷電力、前記蓄電池の電圧、電流、及び温度を含む状態の値を計測する計測部と、前記負荷施設の負荷電力のピークを前記複数の蓄電池の充電及び放電により抑えるピークカット運転の制御を含む、前記複数の蓄電池の充電及び放電の制御を行う充放電制御部と、を有し、前記設定部は、前記ピークカット運転の開始時刻、終了時刻、第1の負荷電力、及び第2の負荷電力を含む設定項目の値を設定し、前記充放電制御部は、前記設定されたピークカット運転の開始時刻から終了時刻までの時間において、前記負荷電力が前記第1の負荷電力と第2の負荷電力との範囲に収まるように、前記負荷電力が前記第1の負荷電力以上の場合は前記蓄電池を放電して前記負荷施設に給電し、前記負荷電力が前記第2の負荷電力以下の場合は前記蓄電池を充電する。 An electric storage system according to an embodiment includes a control device connected to an electric power system and a load facility, and a plurality of storage batteries connected to the control device, and the control device is controlled based on a user operation. A setting unit that sets a value of a setting item for, a measuring unit that measures a value including a received power from the power system, a load power of the load facility, a voltage, a current, and a temperature of the storage battery; and A charge / discharge control unit that controls charging and discharging of the plurality of storage batteries, including control of peak cut operation that suppresses the peak of load power of the load facility by charging and discharging of the plurality of storage batteries, and the setting The unit sets a value of a setting item including a start time, an end time, a first load power, and a second load power of the peak cut operation, and the charge / discharge control unit sets the set peak cut operation At the start of When the load power is equal to or higher than the first load power, the storage battery is discharged so that the load power falls within the range between the first load power and the second load power in the time from the end time to the end time. Then, power is supplied to the load facility, and the storage battery is charged when the load power is equal to or lower than the second load power.
 本発明のうち代表的な実施の形態によれば、上記蓄電システムに関して、ピークカット等の運転の好適な制御による低損失化により、蓄電池の短寿命化を抑制することができる。 According to a typical embodiment of the present invention, it is possible to suppress the shortening of the life of the storage battery by reducing the loss by suitable control of operation such as peak cut in the power storage system.
本発明の実施の形態1の蓄電システムの構成を示す図である。It is a figure which shows the structure of the electrical storage system of Embodiment 1 of this invention. 実施の形態1の蓄電システムの機能ブロック構成を示す図である。3 is a diagram illustrating a functional block configuration of the power storage system according to Embodiment 1. FIG. 実施の形態1の蓄電システムの制御処理のフローを示す図である。3 is a diagram illustrating a flow of control processing of the power storage system according to Embodiment 1. FIG. 前提の従来例の蓄電システムのピークカット運転を示す図である。It is a figure which shows the peak cut driving | operation of the electrical storage system of a premise conventional example. 実施の形態1の蓄電システムの蓄電池のSOCに関する設定例を示す図である。3 is a diagram illustrating a setting example regarding the SOC of the storage battery of the power storage system according to Embodiment 1. FIG. 実施の形態1の蓄電システムのピークカット運転の動作例を示す図である。6 is a diagram illustrating an operation example of peak cut operation of the power storage system according to Embodiment 1. FIG. 実施の形態1の蓄電システムの蓄電池モデル及びSOC-OCV特性テーブルを示す図である。3 is a diagram showing a storage battery model and an SOC-OCV characteristic table of the power storage system of Embodiment 1. FIG. 実施の形態1の蓄電システムの設定の画面例を示す図である。3 is a diagram illustrating a screen example for setting the power storage system according to Embodiment 1. FIG. 実施の形態1の蓄電システムの制御の概要と、従来例の蓄電システムの制御の概要との比較を示す図である。It is a figure which shows the comparison with the outline | summary of control of the electrical storage system of Embodiment 1, and the outline | summary of control of the electrical storage system of a prior art example. 前提の従来例の蓄電システムのピークシフト運転を示す図である。It is a figure which shows the peak shift driving | operation of the electrical storage system of a premise conventional example. 本発明の実施の形態2の蓄電システムの設定の画面例を示す図である。It is a figure which shows the example of a screen of the setting of the electrical storage system of Embodiment 2 of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 <実施の形態1>
 図1~図9を用いて、本発明の実施の形態1の蓄電システムについて説明する。実施の形態1の蓄電システムは、ピークカット運転の制御機能を有する。
<Embodiment 1>
A power storage system according to Embodiment 1 of the present invention will be described with reference to FIGS. The power storage system of Embodiment 1 has a control function of peak cut operation.
 実施の形態1の蓄電システムは、蓄電池群の寿命に配慮したピークカット等の運転の好適な制御による低損失化を図る機能を有する。この機能は、運転の際、蓄電池のSOC(State Of Charge:充電状態または充電率と呼ばれる)を考慮し、損失の少ないSOCの範囲に対応させるように、蓄電池群の充電及び放電を制御する。この機能は、ピークカット運転の制御として、所定の時間において、負荷電力がピークカット負荷と逆潮負荷との範囲に収まるように、蓄電池群の充電及び放電を制御する。 The power storage system of Embodiment 1 has a function of reducing loss by suitable control of operation such as peak cut in consideration of the life of the storage battery group. This function controls the charging and discharging of the storage battery group so as to correspond to the SOC range with less loss in consideration of the SOC of the storage battery (State Of Charge: referred to as a charging state or charging rate) during operation. This function controls charging and discharging of the storage battery group so that the load power falls within the range of the peak cut load and the reverse power load during a predetermined time as control of the peak cut operation.
 この機能は、蓄電池の閉路電圧(CCV)、電流、及び温度等の値を計測し、当該計測値、及び前回のSOC値を用いて、開路電圧(OCV)を算出し、開路電圧(OCV)及び蓄電池のSOC-OCV特性情報等を用いて、最新のSOC値を算出する。この機能は、高精度な最新のSOC値を用いて、蓄電池群の充電及び放電を制御する。 This function measures the closed circuit voltage (CCV), current, temperature, etc. of the storage battery, calculates the open circuit voltage (OCV) using the measured value and the previous SOC value, and opens the circuit voltage (OCV). The latest SOC value is calculated using the SOC-OCV characteristic information of the storage battery and the like. This function controls charging and discharging of the battery group using the latest SOC value with high accuracy.
 この機能は、蓄電池の保護の制御として、ピークカット運転の開始時刻にSOC値が所定のSOC値になるように、当該開始時刻よりも前に予め蓄電池を充電する。 This function charges the storage battery in advance before the start time so that the SOC value becomes a predetermined SOC value at the start time of peak cut operation as control of protection of the storage battery.
 この機能は、蓄電池の保護の制御として、ピークカット運転の際、最新のSOC値が、設定された第1のSOC値以上である場合、蓄電池群の放電を開始して保護し、設定された第2のSOC値以下である場合、蓄電池群の充電を開始して保護する。 This function is set to protect and start the discharge of the storage battery group when the latest SOC value is equal to or higher than the set first SOC value during peak cut operation as control of protection of the storage battery. When it is below the second SOC value, charging of the storage battery group is started and protected.
 この機能は、上記各制御用のSOC値の範囲等の設定項目の値を設定可能とするインタフェースとなる画面等を利用者に提供する。 This function provides the user with a screen that serves as an interface that allows the setting items such as the SOC value range for each control to be set.
 [蓄電システム]
 図1は、実施の形態1の蓄電システム1を含むシステムの構成を示す。蓄電システム1は、電力系統2、負荷施設3、及び太陽光発電システム4等に接続される。
[Power storage system]
FIG. 1 shows a configuration of a system including a power storage system 1 according to the first embodiment. The power storage system 1 is connected to the power system 2, the load facility 3, the solar power generation system 4, and the like.
 蓄電システム1は、制御盤収容部71と、蓄電池盤収容部72とを含む構成である。制御盤収容部71は、制御盤を収容し、蓄電池盤収容部72を接続する。蓄電池盤収容部72は、蓄電池盤を収容する。蓄電池盤は、複数の蓄電池を並列及び直列で接続する。蓄電池は例えばリチウムイオン二次電池である。 The power storage system 1 includes a control panel housing part 71 and a storage battery board housing part 72. The control panel accommodating part 71 accommodates the control panel and connects the storage battery panel accommodating part 72. The storage battery board accommodating part 72 accommodates a storage battery board. The storage battery panel connects a plurality of storage batteries in parallel and in series. The storage battery is, for example, a lithium ion secondary battery.
 制御盤は、ピークカット運転の制御及び蓄電池管理を含む電力制御機能を有する。制御盤の電力制御機能は、下位に接続される複数の蓄電池盤を統括制御し、蓄電池群に対する充電及び放電を制御し、蓄電池群により構成される電力を管理する。制御盤の電力制御機能は、直流(DC)及び交流(AC)の電力を変換する機能等を有する。 The control panel has power control functions including peak cut operation control and storage battery management. The power control function of the control panel controls the plurality of storage battery panels connected to the lower level, controls charging and discharging of the storage battery group, and manages the power constituted by the storage battery group. The power control function of the control panel includes a function of converting direct current (DC) and alternating current (AC) power.
 50は、蓄電システム1による電力計測を示す。電力計測50は、電力系統2の受電電力52の計測、負荷施設3の負荷出力である負荷電力53の計測、太陽光発電システム4の発電電力54の計測、等を含む。なお電力計測50は、対象から情報が得られる場合、当該情報を利用すればよい。 50 indicates power measurement by the power storage system 1. The power measurement 50 includes measurement of received power 52 of the power system 2, measurement of load power 53 that is a load output of the load facility 3, measurement of generated power 54 of the solar power generation system 4, and the like. The power measurement 50 may use the information when information is obtained from the target.
 62は、電力系統2からの受電電力52による蓄電システム1の蓄電池の充電を示す。63は、蓄電システム1の蓄電池の放電による負荷施設3への給電を含む、ピークカット等の運転を示す。64は、太陽光発電システム4からの発電電力54による蓄電システム1の蓄電池の充電を示す。65は、電力系統3から負荷施設3への給電を示す。66は、蓄電システム1や太陽光発電システム4からの電力系統2への電力の逆潮流を示す。 62 indicates charging of the storage battery of the power storage system 1 by the received power 52 from the power system 2. Reference numeral 63 denotes an operation such as a peak cut including power feeding to the load facility 3 due to discharge of the storage battery of the power storage system 1. Reference numeral 64 denotes charging of the storage battery of the power storage system 1 by the generated power 54 from the solar power generation system 4. Reference numeral 65 denotes power feeding from the power system 3 to the load facility 3. 66 indicates the reverse power flow from the power storage system 1 or the photovoltaic power generation system 4 to the power system 2.
 図1のシステムは、系統連系の形態である。即ち、蓄電システム1や太陽光発電システム4は、電力系統2へ接続され、状況に応じて、蓄電システム1や太陽光発電システム4からの電力が電力系統2へ供給される逆潮流が生じる。 1 The system in FIG. 1 is in the form of grid connection. That is, the power storage system 1 and the solar power generation system 4 are connected to the power system 2, and a reverse power flow in which the power from the power storage system 1 and the solar power generation system 4 is supplied to the power system 2 occurs depending on the situation.
 蓄電システム1は、ピークカット運転において、受電電力52や発電電力54により蓄電池群を充電し、負荷施設3の負荷電力が多い状況では、蓄電池群を放電して負荷施設3へ給電する。蓄電システム1は、負荷施設3の負荷電力が少ない状況では、蓄電池の放電による電力が電力系統2へ供給される逆潮流が生じる。蓄電システム1は、上記充電や放電の継続による過充電や過放電から保護するため、後述の負荷電力の閾値の範囲を用いた制御等を行う。 In the peak cut operation, the power storage system 1 charges the storage battery group with the received power 52 and the generated power 54, and discharges the storage battery group to supply power to the load facility 3 when the load facility 3 has a large load power. In a situation where the load power of the load facility 3 is small, the power storage system 1 generates a reverse power flow in which power from the discharge of the storage battery is supplied to the power system 2. In order to protect the power storage system 1 from overcharging and overdischarging due to the continuation of charging and discharging, control and the like using a threshold range of load power described later is performed.
 蓄電システム1のピークカット運転に関する制御概要は以下である。蓄電システム1は、ピークカット運転の制御用の設定値として、負荷電力やSOCの閾値等が、利用者の操作に従い設定される。蓄電システム1は、電力系統2からの受電電力52及び負荷施設3の負荷電力53を計測し、また蓄電池群の電圧等の状態を計測する。蓄電システム1は、計測値及び蓄電池特性情報を用いて、蓄電池及び蓄電池群のSOC値を演算する。蓄電システム1は、ピークカット運転の際、設定値、負荷電力及びSOC値に基づいて、蓄電池群の充放電を好適に制御する。 The outline of control related to the peak cut operation of the electricity storage system 1 is as follows. In the power storage system 1, load power, an SOC threshold value, and the like are set according to a user's operation as a set value for controlling peak cut operation. The power storage system 1 measures the received power 52 from the power system 2 and the load power 53 of the load facility 3, and measures the state of the storage battery group such as the voltage. The power storage system 1 calculates the SOC values of the storage battery and the storage battery group using the measured value and the storage battery characteristic information. The power storage system 1 suitably controls charging / discharging of the storage battery group based on the set value, load power, and SOC value during peak cut operation.
 なお蓄電システム1において、所定の複数の蓄電池の集まりの単位で電力が構成され、当該単位で充放電が制御される。当該単位における各蓄電池のSOCは、所定の精度の範囲内の値になるように制御される。 In the power storage system 1, electric power is configured in units of a group of predetermined plural storage batteries, and charging / discharging is controlled in the units. The SOC of each storage battery in the unit is controlled to be a value within a predetermined accuracy range.
 [機能ブロック構成]
 図2は、蓄電システム1の機能ブロック構成を示す。蓄電システム1は、制御部101、記憶部102、及び入出力部103を備える。制御部101は、設定部10、第1計測部11、第2計測部12、SOC演算部13、及び充放電制御部14を含む。充放電制御部14は、ピークカット制御部15、第1保護制御部16、及び第2保護制御部17を含む。記憶部102は、設定情報20、計測情報21、蓄電池特性情報22、及びSOC情報23等を格納する。蓄電池特性情報22は、SOC-OCV特性テーブル25等の情報を含む。入出力部103は、図1の電力系統2等の各システムとの電気的な接続や通信、並びに利用者に対する情報の入出力等を処理する。
[Function block configuration]
FIG. 2 shows a functional block configuration of the power storage system 1. The power storage system 1 includes a control unit 101, a storage unit 102, and an input / output unit 103. The control unit 101 includes a setting unit 10, a first measurement unit 11, a second measurement unit 12, an SOC calculation unit 13, and a charge / discharge control unit 14. The charge / discharge control unit 14 includes a peak cut control unit 15, a first protection control unit 16, and a second protection control unit 17. The storage unit 102 stores setting information 20, measurement information 21, storage battery characteristic information 22, SOC information 23, and the like. The storage battery characteristic information 22 includes information such as the SOC-OCV characteristic table 25. The input / output unit 103 processes electrical connection and communication with each system such as the power system 2 in FIG. 1 and input / output of information to / from the user.
 設定部10は、利用者に対する設定インタフェースとして、後述の図8のような設定の画面等を提供し、制御用の設定値の設定処理(後述の図3のステップS1)を行う。設定部10は、当該画面で、制御用の各設定項目の情報を表示し、利用者により設定可能とし、設定された設定値を設定情報20に格納する。 The setting unit 10 provides a setting screen as shown in FIG. 8, which will be described later, as a setting interface for the user, and performs setting processing for control setting values (step S1 in FIG. 3, which will be described later). The setting unit 10 displays information on each setting item for control on the screen, enables setting by the user, and stores the set setting value in the setting information 20.
 第1計測部11は、前述の電力計測50に対応して、電力系統2からの受電電力52、負荷施設3の負荷出力53、太陽光発電システム4の発電電力54等を計測し、計測値を計測情報21に格納する処理(後述のS2)を行う。制御盤は、第1計測部11に対応する計測機能を備える。 The first measurement unit 11 measures the received power 52 from the power system 2, the load output 53 of the load facility 3, the generated power 54 of the solar power generation system 4 and the like corresponding to the power measurement 50 described above, and the measured value Is stored in the measurement information 21 (S2 described later). The control panel has a measurement function corresponding to the first measurement unit 11.
 第2計測部12は、蓄電池群の閉路電圧(CCV)、電流、及び温度等の状態の値を計測し、計測値を計測情報21に格納する処理(後述のS3)を行う。この計測の手段は、制御盤または蓄電池盤の少なくとも一方に備える計測及び監視の機能により実現される。例えば、各蓄電池盤は、蓄電池監視部を備え、蓄電池監視部により、蓄電池の閉路電圧、電流、及び温度等を含む状態の値を監視及び計測し、これによる状態や値の信号を制御盤に送信する。制御盤は、蓄電池盤からの信号により蓄電池群の状態を認識及び判断する。 The 2nd measurement part 12 performs the process (S3 mentioned later) which measures the value of states, such as closed circuit voltage (CCV) of a storage battery group, an electric current, and temperature, and stores a measured value in the measurement information 21. FIG. This measurement means is realized by a measurement and monitoring function provided in at least one of the control panel and the storage battery panel. For example, each storage battery panel includes a storage battery monitoring unit, and the storage battery monitoring unit monitors and measures the value of the state including the closed circuit voltage, current, temperature, etc. of the storage battery, and the signal of the state and value based on this is transmitted to the control panel. Send. The control panel recognizes and determines the state of the storage battery group based on a signal from the storage battery panel.
 SOC演算部13は、計測情報21、蓄電池特性情報22、及びSOC情報23を用いて、後述のCCV照合の方式により、最新のSOC値を演算し、SOC情報23に格納する処理(後述のS4)を行う。 The SOC calculation unit 13 uses the measurement information 21, the storage battery characteristic information 22, and the SOC information 23 to calculate the latest SOC value and store it in the SOC information 23 according to a CCV verification method described later (S4 described later). )I do.
 充放電制御部14は、ピークカット運転の制御を含む、蓄電池群の充放電を制御する処理(後述のS5)を行う。ピークカット制御部15は、所定の設定値(後述のA1~A4)を用いて、ピークカット運転における後述の負荷変動範囲の制御処理(後述のS5-1)を行う。第1保護制御部16は、所定の設定値(後述のB1)を用いて、第1の蓄電池保護の制御処理(後述のS5-2)を行う。第2保護制御部17は、所定の設定値(後述のB2~B5)を用いて、第2の蓄電池保護の制御処理(後述のS5-3)を行う。 The charging / discharging control part 14 performs the process (S5 mentioned later) which controls charging / discharging of a storage battery group including control of peak cut operation. The peak cut control unit 15 performs a later-described load fluctuation range control process (described later in S5-1) in the peak cut operation using a predetermined set value (described later, A1 to A4). The first protection control unit 16 performs a first storage battery protection control process (S5-2, which will be described later) using a predetermined set value (B1, which will be described later). The second protection control unit 17 performs a second storage battery protection control process (described later, S5-3) using a predetermined set value (described later, B2 to B5).
 [設定項目]
 実施の形態1の蓄電システム1における複数の種類の設定項目は以下である。
[Setting items]
A plurality of types of setting items in power storage system 1 of the first embodiment are as follows.
 A1:ピークカット負荷[W]
 A2:逆潮負荷[W]
 A3:ピークカット開始時刻
 A4:ピークカット終了時刻
 B1:開始SOC値[%]
 B2:放電開始SOC値[%]
 B3:放電停止SOC値[%]
 B4:充電開始SOC値[%]
 B5:充電停止SOC値[%]。
A1: Peak cut load [W]
A2: Reverse power load [W]
A3: Peak cut start time A4: Peak cut end time B1: Start SOC value [%]
B2: Discharge start SOC value [%]
B3: Discharge stop SOC value [%]
B4: Charging start SOC value [%]
B5: Charging stop SOC value [%].
 なおA1等は、説明上わかりやすいように、各設定項目を識別する符号を示す。後述の図8の設定の画面で、各設定項目の設定値を表示し、利用者により設定可能である。 In addition, A1 etc. show the code | symbol which identifies each setting item so that it may be easy to understand on description. The setting value of each setting item is displayed on the setting screen of FIG. 8 described later, and can be set by the user.
 (1) ピークカット負荷A1及び逆潮負荷A2は、ピークカット運転の制御に関する負荷電力の範囲の閾値である。ピークカット負荷A1は、上限である第1の負荷電力、逆潮負荷A2は、下限である第2の負荷電力である。ピークカット負荷A1は、ピークカット運転におけるピークの負荷電力を抑える目標のレベルを示す。負荷電力の単位はW(ワット)等である。逆潮負荷A2は、ピークカット運転における逆潮流の電力を抑える目標のレベルを示す。逆潮負荷A2は、0以下の値である。 (1) The peak cut load A1 and the reverse power load A2 are threshold values of the load power range related to the control of the peak cut operation. The peak cut load A1 is the first load power that is the upper limit, and the reverse flow load A2 is the second load power that is the lower limit. The peak cut load A1 indicates a target level for suppressing the peak load power in the peak cut operation. The unit of load power is W (watt) or the like. The reverse power load A2 indicates a target level for suppressing the power of the reverse power flow in the peak cut operation. The reverse tide load A2 is a value of 0 or less.
 ピークカット開始時刻A3及びピークカット終了時刻A4は、ピークカット運転におけるピークカット、逆潮流低減、及びその充放電の対象となる時間を規定する。ピークカット開始時刻A3は、1日におけるピークカット運転の開始時刻であり、ピークカット終了時刻A4は、ピークカット開始時刻A3からの運転の終了時刻である。A3~A4のピークカット運転の時間内では負荷電力53が監視される。 The peak cut start time A3 and peak cut end time A4 define the time for peak cut, reverse power flow reduction and charge / discharge in peak cut operation. The peak cut start time A3 is the start time of the peak cut operation in one day, and the peak cut end time A4 is the end time of the operation from the peak cut start time A3. The load power 53 is monitored within the peak cut operation time of A3 to A4.
 蓄電システム1は、A3~A4の時間内で、負荷電力53が、ピークカット負荷A1以上である場合、蓄電池の放電により負荷施設3に給電する。これにより、負荷電力53のピークを抑え、ピークカット負荷A1以下に収まるようにする。蓄電システム1は、A3~A4の時間内で、負荷電力53が、逆潮負荷A2以下である場合、蓄電池の充電により負荷施設3に給電する。これにより、逆潮流の電力が低減されるようにする。 The power storage system 1 supplies power to the load facility 3 by discharging the storage battery when the load power 53 is greater than or equal to the peak cut load A1 within the time period A3 to A4. As a result, the peak of the load power 53 is suppressed so that it falls within the peak cut load A1. The power storage system 1 supplies power to the load facility 3 by charging the storage battery when the load power 53 is equal to or lower than the reverse power load A2 within the time period A3 to A4. Thereby, the power of the reverse power flow is reduced.
 (2) 開始SOC値B1は、ピークカット開始時刻A3におけるSOC目標値である。蓄電システム1は、ピークカット終了時刻A4から次のピークカット開始時刻A3までの間、SOC値が開始SOC値B1になるまで蓄電池を充電する。状況に応じてSOC値が開始SOC値B1と同じ値にならない場合もあるが、開始SOC値B1に近い値になることで相応の効果が得られる。蓄電システム1は、A3~A4の時間外で、例えばピークカット終了時刻A4の直後から、予め蓄電池の充電を行うことにより、SOC値を開始SOC値B1に近付ける。 (2) The start SOC value B1 is the SOC target value at the peak cut start time A3. The power storage system 1 charges the storage battery from the peak cut end time A4 to the next peak cut start time A3 until the SOC value reaches the start SOC value B1. Depending on the situation, the SOC value may not be the same value as the start SOC value B1, but a corresponding effect can be obtained by becoming a value close to the start SOC value B1. The power storage system 1 brings the SOC value close to the start SOC value B1 by charging the storage battery in advance, for example, immediately after the peak cut end time A4, outside the time period A3 to A4.
 なお上記開始SOC値B1を用いた制御のために、充電を行う時間を設定する設定項目を設けてもよい。またこの充電の時間は、A3~A4の時間内に含まれるように定義されてもよい。 Note that a setting item for setting a charging time may be provided for the control using the start SOC value B1. The charging time may be defined so as to be included in the time period A3 to A4.
 (3) 放電開始SOC値B2は、蓄電池保護のために放電を開始させるSOC値である。放電停止SOC値B3は、上記放電を停止させるSOC値である。蓄電システム1は、SOC値が放電開始SOC値B2以上の場合に放電を開始させ、放電停止SOC値B3以下の場合に放電を停止させる。 (3) The discharge start SOC value B2 is an SOC value for starting discharge for storage battery protection. The discharge stop SOC value B3 is an SOC value for stopping the discharge. The power storage system 1 starts discharging when the SOC value is equal to or higher than the discharge start SOC value B2, and stops discharging when equal to or lower than the discharge stop SOC value B3.
 充電開始SOC値B4は、充電を開始させるSOC値である。充電停止SOC値B5は、充電を停止させるSOC値である。蓄電システム1は、SOC値が充電開始SOC値B4以上の場合に充電を開始させ、充電停止SOC値B5以下の場合に充電を停止させる。 The charging start SOC value B4 is an SOC value for starting charging. The charge stop SOC value B5 is an SOC value for stopping the charge. The power storage system 1 starts charging when the SOC value is equal to or higher than the charging start SOC value B4, and stops charging when the SOC value is equal to or lower than the charging stop SOC value B5.
 蓄電システム1は、蓄電池保護の制御として、A3~A4の時間内での充電により、蓄電池のSOC値が、放電開始SOC値B2に到達した場合、負荷電力がピークカット負荷A1以上ではない場合に限り、放電を開始する。また、蓄電システム1は、蓄電池保護の制御として、A3~A4の時間内での放電により、蓄電池のSOC値が、充電開始SOC値B4に到達した場合、負荷電力が逆潮負荷A2以下ではない場合に限り、充電を開始する。 The storage system 1 controls the storage battery protection when the SOC value of the storage battery reaches the discharge start SOC value B2 by charging within the time A3 to A4, or when the load power is not equal to or higher than the peak cut load A1. As long as the discharge starts. In addition, as a storage battery protection control, when the SOC value of the storage battery reaches the charge start SOC value B4 due to discharge within the time period A3 to A4, the power storage system 1 is not less than the reverse power load A2 Only start charging.
 [制御処理]
 図3は、蓄電システム1の制御部101によるピークカット運転の制御を含む制御処理のフローを示す。S1等は処理や動作のステップを示す。
[Control processing]
FIG. 3 shows a flow of control processing including control of peak cut operation by the control unit 101 of the power storage system 1. S1 and the like indicate processing and operation steps.
 (S1) ステップS1では、設定部10は、利用者に対して図8のような設定用の画面を表示し、画面での利用者の操作による各種の設定項目の設定を受け付け、当該設定値を設定情報20に格納する処理を行う。利用者は、画面で、A1~A4,B1~B5等の設定項目の設定値を入力または確認する。S1で設定値が設定され、制御の実行が指示された後は、当該設定値に従い、自動的にピークカット運転の制御が実行される。 (S1) In step S1, the setting unit 10 displays a setting screen as shown in FIG. 8 to the user, accepts settings of various setting items by the user's operation on the screen, and sets the setting value. Is stored in the setting information 20. The user inputs or confirms setting values of setting items such as A1 to A4 and B1 to B5 on the screen. After the set value is set in S1 and the execution of control is instructed, the peak cut operation is automatically controlled according to the set value.
 (S2) ステップS2では、第1計測部11は、電力系統2からの受電電力52の値を計測し、計測情報21に格納する。また第1計測部11は、負荷施設3の負荷電力53の値を計測し、計測情報21に格納する。第1計測部11は、上記受電電力52及び負荷電力53の計測を常時に行う。 (S2) In step S2, the first measuring unit 11 measures the value of the received power 52 from the power system 2 and stores it in the measurement information 21. The first measurement unit 11 measures the value of the load power 53 of the load facility 3 and stores the value in the measurement information 21. The first measuring unit 11 always measures the received power 52 and the load power 53.
 (S3) ステップS3では、第2計測部12は、蓄電池の電圧である閉路電圧(CCV)、電流(iとする)、及び温度(Kとする)を含む状態の値を計測し、その計測値を計測情報21に格納する。第2計測部11は、上記計測を、設定された一定の周期(ΔTとする)で行う。 (S3) In step S3, the second measurement unit 12 measures the value of the state including the closed circuit voltage (CCV), the current (i), and the temperature (K), which is the voltage of the storage battery, and the measurement. The value is stored in the measurement information 21. The second measuring unit 11 performs the above measurement at a set constant period (denoted as ΔT).
 (S4) ステップS4では、SOC演算部13は、S3の計測の周期に応じた所定の周期(ΔT)で、SOC演算処理を行い、当該周期ごとにリアルタイムで算出値を取得し続ける。SOC演算部13は、S2,S3による計測情報21、SOC情報23に含まれる前回SOC値301を用いて、後述の蓄電池モデルに基づく漸化式300並びにCCV照合により、最新のSOC値である今回SOC値302を算出する。CCV照合は、SOC-OCV特性テーブル25を用いた電圧及びSOCの推定である。SOC情報23は、前回SOC値及び今回SOC値を含む時系列の情報である。S4の処理の詳細については後述する。 (S4) In step S4, the SOC calculation unit 13 performs the SOC calculation process at a predetermined cycle (ΔT) corresponding to the measurement cycle of S3, and continues to acquire the calculated value in real time for each cycle. The SOC calculation unit 13 uses the previous SOC value 301 included in the measurement information 21 and the SOC information 23 by S2 and S3, and the current SOC value that is the latest SOC value by the recurrence formula 300 based on the storage battery model described later and CCV verification. An SOC value 302 is calculated. The CCV verification is an estimation of voltage and SOC using the SOC-OCV characteristic table 25. The SOC information 23 is time-series information including the previous SOC value and the current SOC value. Details of the process of S4 will be described later.
 (S5) ステップS5では、充放電制御部14は、S5-1~S5-3に示す、ピークカット運転の制御を含む充放電の制御処理を、設定値に従い常時に行う。充放電制御部14は、S4で得た最新のSOC値である今回SOC値302及び設定情報20に応じて、所定の時間に蓄電池の充電または放電を行う。 (S5) In step S5, the charge / discharge control unit 14 always performs the charge / discharge control process including the peak cut operation control shown in S5-1 to S5-3 according to the set value. The charge / discharge control unit 14 charges or discharges the storage battery at a predetermined time according to the current SOC value 302 that is the latest SOC value obtained in S4 and the setting information 20.
 (S5-1) ステップS5-1では、充放電制御部14は、ピークカット運転の制御処理として、ピークカット開始時刻A3からピークカット終了時刻A4までの時間に、負荷電力の変動を、ピークカット負荷A1と逆潮負荷A2との範囲内になるべく抑えるように、蓄電池群の充放電を行う。 (S5-1) In step S5-1, the charge / discharge control unit 14 performs peak cut as a control process for the peak cut operation during the period from the peak cut start time A3 to the peak cut end time A4. The storage battery group is charged and discharged so as to keep it within the range between the load A1 and the reverse power load A2.
 充放電制御部14は、現在の負荷電力の値がピークカット負荷A1以上である場合、蓄電池の放電により負荷施設3へ給電する。蓄電池は、放電によりSOC値が減少する。充放電制御部14は、現在の負荷電力の値が逆潮負荷A2以下である場合、受電電力52や発電電力54により蓄電池を充電する。これにより、逆潮流の電力を低下させ、蓄電池のSOC値を増加させる。 The charge / discharge control unit 14 supplies power to the load facility 3 by discharging the storage battery when the current load power value is equal to or higher than the peak cut load A1. The SOC value of the storage battery decreases due to discharge. The charge / discharge control part 14 charges a storage battery with the received electric power 52 or the generated electric power 54, when the value of the present load electric power is below the reverse power load A2. Thereby, the electric power of a reverse power flow is reduced and the SOC value of the storage battery is increased.
 (S5-2) ステップS5-2では、充放電制御部14は、第1の蓄電池保護制御処理として、A1~A4の設定値を用いて、以下のような制御を行う。充放電制御部14は、ピークカット開始時刻A3からピークカット終了時刻A4の時間外の時間、例えばピークカット終了時刻A4の直後の時間に、予め、次のピークカット開始時刻A3に備えて、最新のSOC値が開始SOC値B1と同じ値またはそれになるべく近い値になるように、蓄電池群を充電する。蓄電システム1は、A3~A4の時間内で、SOC値が開始SOC値B1に到達した場合、充電を停止し、次のピークカット開始時刻A3になるまで待機し、A3以降、再びピークカット運転の主要な動作を開始する。 (S5-2) In step S5-2, the charge / discharge control unit 14 performs the following control using the set values of A1 to A4 as the first storage battery protection control process. The charge / discharge control unit 14 prepares for the next peak cut start time A3 in advance at a time outside the peak cut end time A4 to the peak cut end time A4, for example, immediately after the peak cut end time A4. The storage battery group is charged so that the SOC value becomes the same value as the starting SOC value B1 or a value as close as possible. When the SOC value reaches the start SOC value B1 within the time period A3 to A4, the power storage system 1 stops charging and waits until the next peak cut start time A3, and after A3, the peak cut operation is performed again. Start the main operation.
 (S5-3) ステップS5-3では、充放電制御部14は、第2の蓄電池保護制御処理として、B2~B5の設定値を用いて、以下のような制御を行う。第1に、充放電制御部14は、最新のSOC値が放電開始SOC値B2以上になった場合に、蓄電池の放電を開始する。これによりSOC値を減少させる。そして、充放電制御部14は、最新のSOC値が放電停止SOC値B3以下になった場合に、蓄電池の放電を停止する。 (S5-3) In step S5-3, the charge / discharge control unit 14 performs the following control using the set values of B2 to B5 as the second storage battery protection control process. 1stly, the charge / discharge control part 14 starts discharge of a storage battery, when the newest SOC value becomes more than discharge start SOC value B2. This reduces the SOC value. And the charge / discharge control part 14 stops discharge of a storage battery, when the newest SOC value becomes below discharge stop SOC value B3.
 第2に、充放電制御部14は、最新のSOC値が充電開始SOC値B4以下になった場合に、蓄電池の充電を開始する。これによりSOC値を増加させる。そして、充放電制御部14は、最新のSOC値が充電停止SOC値B5以上になった場合に、蓄電池の充電を停止する。 Second, the charge / discharge control unit 14 starts charging the storage battery when the latest SOC value becomes equal to or lower than the charge start SOC value B4. This increases the SOC value. And the charge / discharge control part 14 stops charge of a storage battery, when the newest SOC value becomes more than charge stop SOC value B5.
 充放電制御部14は、S5-1の制御を第1の優先で実行し、S5-3の制御を第2の優先で実行する。即ち、前述のように、充放電制御部14は、A3~A4の時間内で、S5-1の条件に該当する場合にはS5-1の充放電を実行し、S5-1の条件に該当せず、S5-3の条件に該当する場合にはS5-3の充放電を実行する。 The charge / discharge control unit 14 executes the control of S5-1 with the first priority and executes the control of S5-3 with the second priority. That is, as described above, the charging / discharging control unit 14 performs the charging / discharging of S5-1 when the condition of S5-1 is met within the time period A3 to A4, and meets the condition of S5-1. If the condition of S5-3 is satisfied, the charging / discharging of S5-3 is executed.
 [ピークカット運転]
 図4は、従来例の蓄電システムにおけるピークカット運転の動作を示す。本実施の形態の蓄電システム1は、この従来例のピークカット運転を基本として、特有の制御を行う。
[Peak cut operation]
FIG. 4 shows an operation of peak cut operation in the conventional power storage system. The power storage system 1 of the present embodiment performs specific control based on this conventional peak cut operation.
 図4の(a)は、横軸が時間を示し、縦軸が負荷施設の負荷電力(単位はW)を示す。401は、ピークカット負荷の設定値を示し、ピークカット運転により負荷電力のピークを抑える目標のレベルを示す。402は、負荷電力が設定値401を超える箇所の時間及び負荷電力を示す。403は、402の箇所の時間を示す。図4の例では、403の15時~17時頃の時間に、負荷電力が設定値401を超えてピークとなっている。ピークカット運転は、負荷電力の監視に基づいて、401のピークカット負荷の設定値を超える402のようなピークの電力を抑える。 4 (a), the horizontal axis represents time, and the vertical axis represents the load power of the load facility (unit: W). 401 indicates a set value of the peak cut load, and indicates a target level for suppressing the peak of the load power by the peak cut operation. Reference numeral 402 denotes a time and load power at a location where the load power exceeds the set value 401. Reference numeral 403 denotes the time at the location 402. In the example of FIG. 4, the load power peaks beyond the set value 401 during the time from 15:00 to 17:00 of 403. The peak cut operation suppresses the power at a peak such as 402 exceeding the set value of the peak cut load 401 based on the monitoring of the load power.
 図4の(b)は、図4の(a)に対応して、横軸が時間、縦軸が蓄電システムによる蓄電池の充放電による電力を示す。411は、夜間の時間帯における電力系統からの受電電力による蓄電池の充電を示す。412は、昼間の時間帯における402のピークの箇所及び403の時間に対応した蓄電池の放電を示す。なお図4の(b)では、充電を正(+)、放電を負(-)として示している。 4 (b), corresponding to FIG. 4 (a), the horizontal axis indicates time, and the vertical axis indicates the electric power generated by charging and discharging the storage battery by the power storage system. Reference numeral 411 denotes charging of the storage battery by the received power from the power system in the night time zone. Reference numeral 412 indicates the discharge of the storage battery corresponding to the peak position 402 and the time 403 in the daytime time zone. In FIG. 4B, charging is shown as positive (+) and discharging is shown as negative (−).
 図4の(c)は、図4の(a)及び(b)に対応して、横軸が時間、縦軸が電力系統からの受電電力を示す。421は、充電411による電力を、放電412により、402のピークの負荷電力に充てることにより、ピークの負荷電力を設定値401に抑えることを示す。 (C) in FIG. 4 corresponds to (a) and (b) in FIG. 4, the horizontal axis indicates time, and the vertical axis indicates received power from the power system. Reference numeral 421 indicates that the peak load power is suppressed to the set value 401 by allocating the power from the charge 411 to the peak load power 402 by the discharge 412.
 [SOC]
 図5は、実施の形態1における蓄電池のSOCに関する設定項目(B1~B5)の設定値の例をイメージで示す。図5の設定値は、一例であり、使用される蓄電池の特性等に応じて異なる。SOC値の単位は%である。ある蓄電池において、SOC=0%~100%の範囲を示す。511は、SOC=5%を示す。512は、SOC=0%~5%の範囲を示し、蓄電池の劣化が著しい領域に相当する。513は、SOC=95%を示す。514は、SOC=95%~100%の範囲を示し、蓄電池の劣化が著しい領域に相当する。
[SOC]
FIG. 5 shows an example of setting values of setting items (B1 to B5) related to the SOC of the storage battery in the first embodiment. The set values in FIG. 5 are examples, and differ depending on the characteristics of the storage battery used. The unit of the SOC value is%. In a certain storage battery, SOC is in a range of 0% to 100%. 511 indicates SOC = 5%. 512 indicates a range of SOC = 0% to 5%, which corresponds to a region where the deterioration of the storage battery is remarkable. 513 indicates SOC = 95%. Reference numeral 514 denotes a range of SOC = 95% to 100%, which corresponds to a region where the deterioration of the storage battery is remarkable.
 蓄電システム1は、ピークカット運転に伴い、前述のピークカット負荷A1及び逆潮負荷A2を用いた負荷変動範囲の制御により、SOC値を、当該負荷電力に対応したSOC値の範囲である例えば511~513の範囲に抑える。これにより、蓄電システム1は、蓄電池のSOC値が劣化の領域512や領域514に入らないように保護する。 With the peak cut operation, the power storage system 1 controls the load fluctuation range using the peak cut load A1 and the reverse power load A2 described above, and the SOC value is a range of SOC values corresponding to the load power, for example 511. It is limited to the range of ˜513. Accordingly, the power storage system 1 protects the SOC value of the storage battery from entering the deterioration area 512 or the area 514.
 501は、開始SOC値B1の例として75%を示す。502は、放電開始SOC値B2の例として90%を示す。503は、放電停止SOC値B3の例として85%を示す。504は、充電開始SOC値B4の例として60%を示す。505は、充電停止SOC値B5の例として65%を示す。510は、502の放電開始SOC値B2を上限の閾値、504の充電開始SOC値B4を下限の閾値とした範囲である。 501 indicates 75% as an example of the start SOC value B1. Reference numeral 502 denotes 90% as an example of the discharge start SOC value B2. Reference numeral 503 denotes 85% as an example of the discharge stop SOC value B3. Reference numeral 504 denotes 60% as an example of the charge start SOC value B4. 505 indicates 65% as an example of the charge stop SOC value B5. Reference numeral 510 denotes a range in which a discharge start SOC value B2 of 502 is an upper threshold value and a charge start SOC value B4 of 504 is a lower threshold value.
 蓄電システム1は、ピークカット運転に伴い、A1~A4を用いた負荷変動範囲制御に加えて、上記510の範囲及び閾値(B2~B4)を用いた蓄電池保護制御処理を行う。 In accompaniment with peak cut operation, the power storage system 1 performs storage battery protection control processing using the above 510 range and threshold values (B2 to B4) in addition to load fluctuation range control using A1 to A4.
 [ピークカット運転の動作例]
 図6は、実施の形態1の蓄電システム1によるピークカット運転の動作例を示す。図6の(A),(B),(C)は、横軸が時間(0時~23時)で対応している。ピークカット開始時刻A3として例えば4時であり、ピークカット終了時刻A4として例えば19時30分頃である。
[Example of peak cut operation]
FIG. 6 shows an operation example of peak cut operation by the power storage system 1 of the first embodiment. In FIGS. 6A, 6B, and 6C, the horizontal axis corresponds to time (from 0:00 to 23:00). The peak cut start time A3 is, for example, 4 o'clock, and the peak cut end time A4 is, for example, about 19:30.
 図6の(A)は、縦軸が蓄電池出力である充放電電力である。図6では、充電を正(+)、放電を負(-)として示す。斜線の領域は、ピークカット運転の制御(S5-1)の主な動作に対応した例を示し、点々の領域は、蓄電池保護制御(S5-2,S5-3)の動作に対応した例を示す。 (A) of FIG. 6 is charging / discharging electric power whose vertical axis is a storage battery output. In FIG. 6, charging is shown as positive (+) and discharging is shown as negative (−). The shaded area indicates an example corresponding to the main operation of the peak cut operation control (S5-1), and the dotted area indicates an example corresponding to the operation of the storage battery protection control (S5-2, S5-3). Show.
 図6の(B)は、縦軸が蓄電池のSOC値であり、0%から611までの範囲である。611は、システム故障停止SOC値であり、例えば100%である。B1~B5は前述の設定値である。 6 (B), the vertical axis represents the SOC value of the storage battery, and ranges from 0% to 611. Reference numeral 611 denotes a system failure stop SOC value, for example, 100%. B1 to B5 are the set values described above.
 図6の(C)は、縦軸が負荷施設3の負荷電力53である。前述のピークカット負荷A1の設定値及び逆潮負荷A2の設定値を示す。逆潮負荷A2の値は負である。 6 (C), the vertical axis represents the load power 53 of the load facility 3. The set value of the aforementioned peak cut load A1 and the set value of the reverse power load A2 are shown. The value of the reverse tide load A2 is negative.
 図6で、時間軸に沿って1日のピークカット運転の動作例を説明する。ピークカット開始時刻A3である4時にピークカット運転の主な動作が開始される。A3の時点ではSOC値が前述の開始SOC値B1に調整されている。5時から8時までの時間は、電力需要が少なく負荷電力が逆潮負荷A2を下回っており、ピークカット運転の動作として充電601が行われている。これによりSOC値が開始SOC値B1から上昇する。 FIG. 6 illustrates an example of the daily peak cut operation along the time axis. The main operation of the peak cut operation is started at 4:00, which is the peak cut start time A3. At the time of A3, the SOC value is adjusted to the above-described start SOC value B1. During the time from 5 o'clock to 8 o'clock, there is little power demand and the load power is lower than the reverse power load A2, and charging 601 is performed as an operation of peak cut operation. As a result, the SOC value rises from the starting SOC value B1.
 充電601により、txで示す8時前頃に、SOC値が放電開始SOC値B2を上回って超えている。これにより、蓄電システム1は、蓄電池保護の動作として、放電602を開始し、9時から10時までの時間、放電602が行われている。放電602により、10時頃に、SOC値が放電停止SOC値B3に達している。これにより、蓄電システム1は、放電602を停止し、停止後、SOC値が一定に維持されている。 Due to the charging 601, the SOC value exceeds the discharge start SOC value B2 around 8 o'clock indicated by tx. Thereby, the electrical storage system 1 starts the discharge 602 as the operation of the storage battery protection, and the discharge 602 is performed for a time from 9:00 to 10:00. Due to the discharge 602, the SOC value reaches the discharge stop SOC value B3 around 10:00. Thereby, the electrical storage system 1 stops the discharge 602, and after the stop, the SOC value is maintained constant.
 次に、11時頃から12時までの時間は、負荷電力が大きくなり、ピークカット負荷A1を上回っており、ピークカット運転の動作として放電603が行われている。これにより、当該時間ではSOC値が低下している。 Next, during the period from about 11:00 to 12:00, the load power increases and exceeds the peak cut load A1, and the discharge 603 is performed as an operation of the peak cut operation. As a result, the SOC value decreases during the time.
 12時から13時までの時間は、昼休み等で負荷需要が少なく、この時間は、負荷電力が逆潮負荷A2を下回っており、ピークカット運転の動作として充電604が行われている。これにより、当該時間ではSOC値が上昇している。 During the period from 12:00 to 13:00, there is little load demand during lunch breaks, etc., and during this time, the load power is lower than the reverse power load A2, and charging 604 is performed as an operation of peak cut operation. As a result, the SOC value increases during the time.
 次に、13時から15時までの時間は、負荷電力がピークカット負荷A1を上回っているので、ピークカット運転の動作として、放電605が行われている。これによりSOC値が低下している。 Next, since the load power exceeds the peak cut load A1 from 13:00 to 15:00, the discharge 605 is performed as the operation of the peak cut operation. As a result, the SOC value is lowered.
 放電605により、tyで示す15時前頃に、SOC値が、充電開始SOC値B4を下回っている。これにより、蓄電システム1は、蓄電池保護の動作として、充電606を開始する。充電606により、SOC値が上昇し、16時半頃に、SOC値が充電停止SOC値B5に達している。これにより、蓄電システム1は、充電606を停止する。停止後、SOC値が一定に維持されている。 Due to the discharge 605, the SOC value is lower than the charging start SOC value B4 around 15:00 indicated by ty. Thereby, the electrical storage system 1 starts charge 606 as operation | movement of storage battery protection. The SOC value increases due to the charging 606, and the SOC value reaches the charging stop SOC value B5 around 16:30. Thereby, the power storage system 1 stops the charging 606. After stopping, the SOC value is kept constant.
 ピークカット終了時刻A4である19時半頃に、ピークカット運転の主な動作が終了する。ピークカット終了時刻A4の直後、蓄電システム1は、蓄電池保護の動作として、SOC値が開始SOC値B1よりも低い状態であるため、充電607を開始する。例えば19時半頃から21時半頃までの時間、充電607が行われ、これにより、SOC値が開始SOC値B1に達している。その後、次の日のピークカット開始時刻A3まで、SOC値が開始SOC値B1の状態で維持される。 The main operation of the peak cut operation ends at around 19:30, which is the peak cut end time A4. Immediately after the peak cut end time A4, the power storage system 1 starts charging 607 because the SOC value is lower than the start SOC value B1 as an operation for protecting the storage battery. For example, charging 607 is performed from about 19:30 to about 21:30, whereby the SOC value reaches the start SOC value B1. Thereafter, the SOC value is maintained at the start SOC value B1 until the peak cut start time A3 of the next day.
 [SOC演算処理]
 ステップS4のSOC演算処理の詳細について以下に説明する。まず従来例の蓄電システムにおけるSOC演算においては、ピークカット等の運転中のSOC演算を、電流積算の方式により行っている。SOC演算の方式が電流積算である場合、積算充電量及び積算放電量を算出する際、電流検出器の測定誤差等が累積される。そのため、自動運転による長期間のSOC演算の過程において、誤差が増大する可能性が大きく、正確または高精度のSOC値の算出は難しい。
[SOC calculation processing]
Details of the SOC calculation processing in step S4 will be described below. First, in the SOC calculation in the conventional power storage system, the SOC calculation during operation such as peak cut is performed by a current integration method. When the SOC calculation method is current integration, measurement errors and the like of the current detector are accumulated when calculating the integrated charge amount and the integrated discharge amount. Therefore, in the process of SOC calculation for a long period of time by automatic operation, there is a high possibility that errors will increase, and it is difficult to calculate an accurate or highly accurate SOC value.
 実施の形態1の蓄電システム1は、S4のように、CCV照合を採用してSOC演算を行う。これにより、上記のような運転時間による誤差の累積及び増大が無い。そのため、正確または高精度のSOC値が算出できる。蓄電システム1は、このSOC値を用いて、低損失を実現するピークカット運転や蓄電池保護の制御が可能である。 The power storage system 1 of the first embodiment performs the SOC calculation using CCV verification as in S4. Thereby, there is no accumulation and increase of errors due to the operation time as described above. Therefore, an accurate or highly accurate SOC value can be calculated. The power storage system 1 can control peak cut operation and storage battery protection to realize low loss by using this SOC value.
 S4において、SOC演算部13は、計測による閉路電圧CCVに対して、電流i、温度K、及び前回SOC値301に基づいて、蓄電池の内部抵抗及び分極成分を補償した電圧である開路電圧OCVを算出する。SOC演算部13は、下記の図7の蓄電池モデルに基づく漸化式300により、上記開路電圧OCVを算出する。SOC演算部13は、上記漸化式300を用いて算出した開路電圧OCVに対して、温度Kに応じたSOC-OCV特性テーブル25を用いて、最新のSOC値である今回SOC値302を算出する。 In S4, the SOC calculation unit 13 calculates an open circuit voltage OCV that is a voltage obtained by compensating the internal resistance and polarization component of the storage battery based on the current i, the temperature K, and the previous SOC value 301 with respect to the measured closed circuit voltage CCV. calculate. The SOC calculation unit 13 calculates the open circuit voltage OCV by the recurrence formula 300 based on the storage battery model of FIG. The SOC calculation unit 13 calculates the current SOC value 302, which is the latest SOC value, using the SOC-OCV characteristic table 25 corresponding to the temperature K with respect to the open circuit voltage OCV calculated using the above recurrence formula 300. To do.
 [蓄電池モデル及びSOC-OCV特性テーブル]
 図7の上側は、蓄電システム1による計測及びS4のSOC値の演算の際に用いる蓄電池モデルを示す。図7の下側は、ある蓄電池5のSOC-OCV特性テーブル25の例を示す。図7の上側の蓄電池モデルにおいて、1つの蓄電池5と、その内部抵抗及び分極成分とを示す。蓄電池5の内部抵抗としてR1を有し、分極成分として、第1分極成分である抵抗R2及び時定数τ2と、第2分極成分である抵抗R3及び時定数τ3とを有する。
[Storage battery model and SOC-OCV characteristics table]
The upper side of FIG. 7 shows a storage battery model used for measurement by the power storage system 1 and calculation of the SOC value of S4. The lower side of FIG. 7 shows an example of the SOC-OCV characteristic table 25 of a certain storage battery 5. In the upper storage battery model of FIG. 7, one storage battery 5 and its internal resistance and polarization component are shown. The storage battery 5 has R1 as an internal resistance, and has, as polarization components, a resistance R2 and a time constant τ2 that are first polarization components, and a resistance R3 and a time constant τ3 that are second polarization components.
 V1は、蓄電池5の内部抵抗R1による電圧である。V2は、第1分極成分による電圧である。V2は、内部抵抗R2と時定数τ2とから算出される。V3は、第2分極成分による電圧である。V3は、内部抵抗R3と時定数τ3とから算出される。 V1 is a voltage due to the internal resistance R1 of the storage battery 5. V2 is a voltage due to the first polarization component. V2 is calculated from the internal resistance R2 and the time constant τ2. V3 is a voltage due to the second polarization component. V3 is calculated from the internal resistance R3 and the time constant τ3.
 蓄電システム1は、前回SOC値301と温度Kとを用いて、蓄電池特性情報22の中に含まれている、図示しないテーブルから、蓄電池5の内部抵抗R2,R3、及び時定数τ2,τ3等の情報を読み出す、または算出する。蓄電池特性情報22は、例えば温度Kに応じた内部抵抗等の値が記載されたテーブルを含む。 The storage system 1 uses the previous SOC value 301 and the temperature K, and from the table (not shown) included in the storage battery characteristic information 22, the internal resistances R2, R3 of the storage battery 5, time constants τ2, τ3, etc. Read or calculate the information. The storage battery characteristic information 22 includes, for example, a table in which values such as internal resistance corresponding to the temperature K are described.
 閉路電圧(CCV:Closed Circuit Voltage)は、一般に、蓄電池に負荷が接続され電流が流される状態での蓄電池の内部抵抗等による電圧を含む電圧である。図7の閉路電圧CCV=VCCVは、開路電圧OCV=VOCVに加えV1~V3を含む電圧である。VCCVは、充放電中に計測された蓄電池の電圧である。 The closed circuit voltage (CCV) is generally a voltage including a voltage due to an internal resistance of the storage battery in a state where a load is connected to the storage battery and a current flows. The closed circuit voltage CCV = V CCV in FIG. 7 is a voltage including V1 to V3 in addition to the open circuit voltage OCV = V OCV . V CCV is the voltage of the storage battery measured during charging / discharging.
 開路電圧(OCV:Open Circuit Voltage)は、一般に、蓄電池に負荷が接続されず電流が流されない状態での蓄電池の両端子間の電圧である。図7の開路電圧OCV=VOCVは、内部抵抗及び分極成分を補償即ち影響を取り除いて計算した、蓄電池5にかかる電圧である。 An open circuit voltage (OCV) is generally a voltage between both terminals of a storage battery in a state where no load is connected to the storage battery and no current is passed. The open circuit voltage OCV = V OCV in FIG. 7 is a voltage applied to the storage battery 5 calculated by compensating the internal resistance and the polarization component, that is, removing the influence.
 漸化式300は、以下の式1~式4の通りである。なおnは漸化式における演算の周期ごとの回を示す。n-1は前回の値、nは今回の値を示す。ΔTは、演算の周期である。 The recurrence formula 300 is as shown in the following formulas 1 to 4. Note that n indicates the number of times of calculation in the recurrence formula. n-1 indicates the previous value, and n indicates the current value. ΔT is a calculation cycle.
 OCV(=VOCV)=CCV(=VCCV)+V1+V2+V3   ・・・式1
 V1=R1×i                       ・・・式2
 V2=V2n-1(1-ΔT/τ2)+i×R2(ΔT/τ2)  ・・・式3
 V3=V3n-1(1-ΔT/τ3)+i×R3(ΔT/τ3)  ・・・式4
 SOC-OCV特性テーブル25は、開路電圧OCV及び温度Kの情報を持つ2次元のテーブルである。ある蓄電池5の温度Kに応じた1つのSOC-OCV特性テーブル25は、ある温度KにおけるSOC値と開路電圧OCVとの関係の特性を示す。図7のSOC-OCV特性テーブル25は、横軸が開路電圧OCV、縦軸がSOC値である。図7の例の曲線では、OCVが低い領域ではSOCが高い傾きで増加し、OCVが中程度の領域ではSOCが一定または緩やかな傾きで増加し、OCVが高い領域では再びSOCが高い傾きで増加する。
OCV (= V OCV ) = CCV (= V CCV ) + V1 + V2 + V3 Expression 1
V1 = R1 × i Equation 2
V2 n = V2 n−1 (1−ΔT / τ2) + i × R2 (ΔT / τ2) Equation 3
V3 n = V3 n−1 (1−ΔT / τ3) + i × R3 (ΔT / τ3) Equation 4
The SOC-OCV characteristic table 25 is a two-dimensional table having information on the open circuit voltage OCV and the temperature K. One SOC-OCV characteristic table 25 corresponding to the temperature K of a certain storage battery 5 shows the characteristic of the relationship between the SOC value and the open circuit voltage OCV at a certain temperature K. In the SOC-OCV characteristic table 25 of FIG. 7, the horizontal axis represents the open circuit voltage OCV, and the vertical axis represents the SOC value. In the curve of the example of FIG. 7, the SOC increases with a high slope in the region where the OCV is low, the SOC increases with a constant or gentle slope in the region where the OCV is medium, and the SOC increases again with a high slope in the region where the OCV is high. To increase.
 [設定画面例]
 図8は、実施の形態1における設定の画面例を示す。本画面において、801は、複数の設定の状態であるモードのうち1つを利用者により選択可能とする項目を示す。利用者は、複数の設定のモードを適用対象ごとに使い分けて利用することができる。設定のモードは、利用者により名称や適用対象等を設定可能である。
[Setting screen example]
FIG. 8 shows an example of a setting screen in the first embodiment. In this screen, reference numeral 801 denotes an item that allows the user to select one of a plurality of setting modes. The user can use a plurality of setting modes separately for each application target. In the setting mode, a user can set a name, an application target, and the like.
 802は、801で選択された設定のモードの内容である各種の設定項目の内容を表示する表を示す。802の表で、#1~#9の行に示すように、前述のA1~A4、及びB1~B5の各設定項目を表示する。A1等の設定項目ごとに、内容の説明や、現在の設定値を表示する。またA1等の設定項目ごとに、803で示す設定値の欄で、利用者により値を入力または選択することができる。804は、802の表の設定値803の状態での設定及び設定変更を実行する場合のボタンである。 802 shows a table that displays the contents of various setting items that are the contents of the setting mode selected in 801. In the table 802, as shown in rows # 1 to # 9, the setting items A1 to A4 and B1 to B5 are displayed. For each setting item such as A1, a description of the contents and the current setting value are displayed. In addition, for each setting item such as A1, a value can be input or selected by the user in a setting value field indicated by 803. Reference numeral 804 denotes a button for executing setting and setting change in the state of the setting value 803 in the table 802.
 また図示しない他の画面は、運転のスケジュールとして、カレンダーの日付等に対して、適用する設定のモードを設定可能である。当該設定されたスケジュールに従い、自動的に運転が実行される。 In addition, other screens (not shown) can be set with a setting mode to be applied to a calendar date or the like as an operation schedule. The operation is automatically executed according to the set schedule.
 設定項目の設定のインタフェースは、図8の画面例に限らず可能である。例えば、別の画面例は、図6と同様に、SOCに関するインジケータを表示し、各設定値を上下のスライドで設定可能としてもよい。また別の画面例は、図4や図6と同様に、時間軸での値の推移のグラフを表示し、当該グラフ中の設定値を設定可能としてもよい。また画面は、蓄電システム1を構成する制御盤の操作パネルで表示されてもよいし、制御盤に接続される情報処理装置に表示されてもよい。 The setting item setting interface is not limited to the screen example of FIG. For example, another example of the screen may display an indicator related to the SOC as in FIG. 6, and each setting value may be set by a vertical slide. As another example of the screen, similarly to FIG. 4 and FIG. 6, a graph of transition of values on the time axis may be displayed, and setting values in the graph may be settable. The screen may be displayed on an operation panel of a control panel constituting the power storage system 1 or may be displayed on an information processing apparatus connected to the control panel.
 [制御方式の比較]
 図9は、補足として、(A)が実施の形態1の蓄電システムによる前述のピークカット運転での負荷変動範囲の制御の概略を示し、(B)が従来例の蓄電システムによる負荷変動の制御の概略を示す。
[Comparison of control methods]
9A and 9B supplementarily show (A) the outline of control of the load fluctuation range in the above-described peak cut operation by the power storage system of the first embodiment, and (B) the control of load fluctuation by the conventional power storage system. The outline of is shown.
 図9の(A)の実施の形態1の蓄電システム1の負荷変動範囲の制御は、負荷電力の閾値(A1,A2)の範囲900に、実際の負荷電力及び対応するSOCが収まるように、充放電を制御する方式である。901は、範囲900の上限の閾値として、前述のピークカット負荷A1に対応した設定値である。902は、範囲900の下限の閾値として、前述の逆潮負荷A2に対応した設定値である。911は、負荷電力が上限の閾値901を超えた箇所を示し、この箇所911で放電が行われる。912は、負荷電力が下限の閾値902を超えた箇所を示し、この箇所912で充電が行われる。 The control of the load fluctuation range of the power storage system 1 according to the first embodiment of FIG. 9A is performed so that the actual load power and the corresponding SOC are within the load power threshold value (A1, A2) range 900. This is a method for controlling charging and discharging. Reference numeral 901 denotes a set value corresponding to the above-described peak cut load A1 as the upper limit threshold of the range 900. Reference numeral 902 denotes a setting value corresponding to the above-described reverse power load A2 as a lower limit threshold value of the range 900. Reference numeral 911 denotes a location where the load power exceeds the upper limit threshold value 901, and discharge is performed at this location 911. Reference numeral 912 denotes a portion where the load power exceeds the lower limit threshold value 902, and charging is performed at this portion 912.
 図9の(B)の従来例の蓄電システムの制御は、負荷電力に関する1つの閾値920に負荷電力を追従させるように、充放電を制御する方式である。921は、閾値920を上回る場合、922は、閾値920を下回る場合を示す。従来例の制御では、閾値920に負荷電力を追従させるように制御しようとするが、実際の負荷電力及び対応するSOCは変動するので、閾値920と同じ値には維持できない。即ち、従来例の制御では、ほぼ常に、充電または放電が行われる状態が続く。 9B is a method of controlling charging / discharging so that the load power follows the single threshold value 920 related to the load power. When 921 exceeds the threshold value 920, 922 indicates when the threshold value 920 is below. In the control of the conventional example, control is performed so that the load power follows the threshold 920. However, since the actual load power and the corresponding SOC fluctuate, they cannot be maintained at the same value as the threshold 920. That is, in the control of the conventional example, the state where charging or discharging is almost always continued.
 実施の形態1の蓄電システムでは、(A)のように、閾値の範囲900に抑えるように制御するので、充放電による損失が小さく、蓄電池の寿命に関して有利である。従来例は、(B)のように、閾値の範囲では制御していないので、充放電による損失が大きく、蓄電池の寿命に関して不利である。 In the power storage system of the first embodiment, as shown in (A), control is performed so as to suppress the threshold value to 900, so that loss due to charging and discharging is small, which is advantageous with respect to the life of the storage battery. Since the conventional example is not controlled within the range of the threshold as shown in (B), the loss due to charging / discharging is large, which is disadvantageous with respect to the life of the storage battery.
 [効果等]
 以上説明したように、実施の形態1の蓄電システム1によれば、ピークカット運転の好適な制御による低損失化により、蓄電池の短寿命化を抑制することができる。実施の形態1の蓄電システム1によれば、放電開始SOC値及び充電開始SOC値により容量調整するため、システム構築の際に蓄電池の個数を少なくすること、もしくは蓄電池の容量を小さくすることができ、全体的に低コストのシステムを実現することができる。また利用者は、画面で制御の設定値を設定することができる。
[Effects]
As described above, according to the power storage system 1 of the first embodiment, it is possible to suppress the shortening of the life of the storage battery by reducing the loss by suitable control of the peak cut operation. According to the power storage system 1 of the first embodiment, since the capacity is adjusted by the discharge start SOC value and the charge start SOC value, the number of storage batteries can be reduced or the capacity of the storage battery can be reduced during system construction. Overall, a low-cost system can be realized. In addition, the user can set a control setting value on the screen.
 <実施の形態2>
 実施の形態2の蓄電システム1について説明する。実施の形態2の蓄電システム1は、実施の形態1のピークカット運転の制御に関する機能に加えて、ピークシフト運転の制御に関する機能を有する。実施の形態2の蓄電システム1は、利用者による選択及び設定に基づいて、ピークカット運転のモードとピークシフト運転のモードとで、選択されたモードに切り替えて実行する。以下、実施の形態2における実施の形態1とは異なる構成について説明する。
<Embodiment 2>
A power storage system 1 according to the second embodiment will be described. The power storage system 1 of the second embodiment has a function related to control of peak shift operation in addition to the function related to control of peak cut operation of the first embodiment. The power storage system 1 according to the second embodiment performs switching to the selected mode between the peak cut operation mode and the peak shift operation mode based on the selection and setting by the user. Hereinafter, a configuration different from the first embodiment in the second embodiment will be described.
 [ピークシフト運転]
 図10は、従来例の蓄電システムにおけるピークシフト運転の動作を示す。実施の形態2の蓄電システム1のピークシフト運転は、この従来例のピークシフト運転を基本とする。ピークシフト運転は、負荷電力の監視はせず、予め決めた異なる時間帯に充電及び放電を行う。即ちピークシフト運転は、電力需要が少ない所定の夜間の時間帯に充電し、電力需要が多い所定の昼間の時間帯に放電する。
[Peak shift operation]
FIG. 10 shows an operation of peak shift operation in the conventional power storage system. The peak shift operation of power storage system 1 of the second embodiment is based on the peak shift operation of this conventional example. In peak shift operation, load power is not monitored, and charging and discharging are performed at different predetermined time zones. That is, in the peak shift operation, charging is performed during a predetermined nighttime period when the power demand is low, and discharging is performed during a predetermined daytime period when the power demand is high.
 図10の(a)は、横軸が時間を示し、縦軸が負荷施設の負荷電力(単位はW)を示す。501は、ピークシフト負荷の設定値を示す。この設定値501は、ピークシフト運転により負荷電力を抑える基準のレベルを示す。502は、負荷電力が設定値501を超えるピークを含む箇所、電力需要の多い箇所を示す。503は、負荷電力が設定値501を超える箇所502を含む時間帯を示す。図10の例では、503の14時~18時頃の時間帯に、負荷電力が設定値501を超える部分を含み、そのうちの個々の時間ごとに負荷電力が上下している。 10A, the horizontal axis represents time, and the vertical axis represents the load power of the load facility (unit: W). Reference numeral 501 denotes a set value of the peak shift load. This set value 501 indicates a reference level for suppressing load power by peak shift operation. Reference numeral 502 denotes a location including a peak where the load power exceeds the set value 501 and a location where the power demand is high. Reference numeral 503 denotes a time zone including a portion 502 where the load power exceeds the set value 501. In the example of FIG. 10, the load power includes a portion where the load power exceeds the set value 501 in the time zone from 14:00 to 18:00 of 503, and the load power fluctuates for each individual time.
 図10の(b)は、図10の(a)に対応して、横軸が時間、縦軸が蓄電システムによる蓄電池の充放電による電力を示す。511は、ピークシフト用に設定された、電力需要が少ない所定の夜間の時間帯における、電力系統からの受電電力による一定出力による蓄電池の充電を示す。512は、503の時間帯に対応してピークシフト用に設定された、電力需要が多い所定の昼間の時間帯における、一定出力による蓄電池の放電による負荷施設への給電を示す。 10B corresponds to FIG. 10A, the horizontal axis indicates time, and the vertical axis indicates electric power due to charging / discharging of the storage battery by the power storage system. Reference numeral 511 denotes charging of the storage battery with a constant output by the received power from the power system in a predetermined night time zone set for peak shift and having a low power demand. Reference numeral 512 denotes power supply to the load facility by discharging the storage battery with a constant output in a predetermined daytime time zone that is set for peak shift corresponding to the time zone 503 and has a large power demand.
 図10の(c)は、図10の(a)及び(b)に対応して、横軸が時間、縦軸が電力系統からの受電電力を示す。521は、充電511の電力を、放電512により、503の時間帯に充てることにより、負荷電力を設定値501以下に抑えることを示す。503の時間帯における個々の時間では、同じ電力が配分される。上記のように、ピークシフト運転により、ピークを含む503の時間帯の負荷電力を減らし、充電511の時間帯と放電512の時間帯とで受電電力が近くなるように調整している。 (C) in FIG. 10 corresponds to (a) and (b) in FIG. 10, and the horizontal axis represents time and the vertical axis represents received power from the power system. Reference numeral 521 indicates that the load power is suppressed to a set value 501 or less by applying the power of the charge 511 to the time zone 503 by the discharge 512. The same power is allocated at each time in the 503 time zone. As described above, the load power in the time zone 503 including the peak is reduced by the peak shift operation, and the received power is adjusted to be close between the time zone of the charge 511 and the time zone of the discharge 512.
 [ピークシフト運転の制御機能及び設定項目]
 実施の形態2の蓄電システム1は、図2の充放電制御部14に、更に、ピークシフト制御部を備える。ピークシフト制御部は、ピークシフト運転の制御用の設定項目の設定値を用いて、ピークシフト運転の制御を行う。実施の形態2の蓄電システム1は、図3の制御処理のフローに、更に、ピークシフト制御部によるピークシフト運転の制御処理のステップが追加される。図示しないがこれをステップS6とする。S1は、ピークシフト運転の制御用の設定項目の値が設定され、ピークシフト運転の実行が指示される。ピークシフト運転のモードでの制御の実行の場合、S5の代わりに、追加のピークシフト運転の充放電制御処理のステップS6が行われる。この追加のステップS6は、S5-1の代わりに、ピークシフト運転の制御処理のステップS6-1と、S5-2の代わりに、第1の蓄電池保護制御処理のステップS6-2とを含む。
[Control functions and setting items for peak shift operation]
The power storage system 1 of Embodiment 2 further includes a peak shift control unit in addition to the charge / discharge control unit 14 of FIG. The peak shift control unit controls the peak shift operation using the set value of the setting item for controlling the peak shift operation. The power storage system 1 according to the second embodiment further includes a peak shift operation control process step by a peak shift control unit in the control process flow of FIG. Although not shown, this is step S6. In S1, a value of a setting item for controlling peak shift operation is set, and execution of the peak shift operation is instructed. In the case of executing control in the peak shift operation mode, step S6 of charge / discharge control processing for additional peak shift operation is performed instead of S5. This additional step S6 includes step S6-1 of the peak shift operation control process instead of S5-1, and step S6-2 of the first storage battery protection control process instead of S5-2.
 実施の形態2の蓄電システム1は、ピークシフト運転の制御に関して、実施の形態1の設定項目に追加する設定項目として、以下のC1~C6を有する。 The power storage system 1 of the second embodiment has the following C1 to C6 as setting items to be added to the setting items of the first embodiment regarding the control of the peak shift operation.
 C1:充電開始時刻
 C2:充電終了時刻
 C3:充電出力[W]
 C4:放電開始時刻
 C5:放電終了時刻
 C6:放電出力[W]。
C1: Charging start time C2: Charging end time C3: Charging output [W]
C4: Discharge start time C5: Discharge end time C6: Discharge output [W].
 充電開始時刻C1は、一定出力で充電する所定の時間帯の開始時刻であり、充電終了時刻C2は、当該時間帯の終了時刻である。充電出力C3は、当該時間帯での一定出力電力である。放電開始時刻C4は、一定出力で放電する所定の時間帯の開始時刻であり、放電終了時刻C5は、当該時間帯の終了時刻である。放電出力C6は、当該時間帯での一定出力電力である。 The charge start time C1 is a start time of a predetermined time zone for charging at a constant output, and the charge end time C2 is an end time of the time zone. The charging output C3 is a constant output power in the time zone. The discharge start time C4 is a start time of a predetermined time period for discharging at a constant output, and the discharge end time C5 is an end time of the time period. The discharge output C6 is constant output power in the time zone.
 実施の形態2の蓄電システム1は、ピークシフト運転の制御処理のステップS6-1として、設定項目のC1~C3により、所定の充電時間帯に蓄電池群を一定出力で充電し、設定項目のC4~C6により、所定の放電時間帯に蓄電池群を一定出力で放電する。実施の形態2の蓄電システム1は、ピークシフト運転の実行中、所定の充電時間帯、及び所定の放電時間帯の中で、実施の形態1と同様の負荷変動範囲の制御を適用する。即ち、実施の形態2の蓄電システム1は、所定の充電時間帯の中で、負荷電力がピークカット負荷A1以上である場合は放電を行い、所定の放電時間帯の中で、逆潮負荷A2以下である場合は充電を行う。これにより、負荷電力がピークカット負荷A1や逆潮負荷A2を超えないようにする。 In step S6-1 of the peak shift operation control process, the power storage system 1 of the second embodiment charges the storage battery group with a constant output during a predetermined charging time period according to the setting items C1 to C3, and sets the setting item C4. Through C6, the storage battery group is discharged at a constant output during a predetermined discharge time zone. The power storage system 1 of the second embodiment applies the same load fluctuation range control as that of the first embodiment during the peak shift operation during the predetermined charging time zone and the predetermined discharging time zone. That is, the power storage system 1 of the second embodiment discharges when the load power is equal to or higher than the peak cut load A1 within a predetermined charging time zone, and the reverse power load A2 within the predetermined discharging time zone. If it is below, charge. This prevents the load power from exceeding the peak cut load A1 or the reverse power load A2.
 実施の形態2の蓄電システム1は、第1の蓄電池保護の制御処理のステップS6-2として、実施の形態1の開始SOC値B1と同様の設定値を用いて、所定の放電時間帯(C4~C5)の終了後、所定の充電時間帯(C1~C2)の開始になるまでの時間に、負荷が少ない状況である条件で、SOC値が開始SOC値B1に近付くように、予め充電を行う。例えば、蓄電システム1は、放電終了時刻C5の直後、状況に応じて、充電を開始し、SOC値が開始SOC値B1に到達したら充電を停止する。 The power storage system 1 of the second embodiment uses a set value similar to the start SOC value B1 of the first embodiment as a step S6-2 of the first storage battery protection control process, and uses a predetermined discharge time zone (C4 The charging is performed in advance so that the SOC value approaches the starting SOC value B1 under the condition that the load is low during the time until the start of the predetermined charging time period (C1 to C2) after the end of .about.C5). Do. For example, immediately after the discharge end time C5, the power storage system 1 starts charging according to the situation, and stops charging when the SOC value reaches the start SOC value B1.
 図11は、実施の形態2の設定部10によるピークシフト運転の制御に関する設定の画面例を示す。本画面において、1101は、複数の設定の状態であるモードのうち1つを利用者により選択可能とする項目を示す。1102は、1101で選択された設定のモードの内容である各種の設定項目の内容を表示する表を示す。1102の表で、#1~#6の行に示すように、前述のC1~C6の各設定項目を表示する。また図示しないが、前述のA1,A2,B1等と同様の設定項目を表示する。1103で示す設定値の欄で、利用者により値を入力または選択することができる。1104は、1102の表の設定値1103の状態での設定及び設定変更を実行する場合のボタンである。 FIG. 11 shows an example of a setting screen relating to peak shift operation control by the setting unit 10 according to the second embodiment. In this screen, reference numeral 1101 denotes an item that allows the user to select one of a plurality of setting modes. A table 1102 displays the contents of various setting items, which are the contents of the setting mode selected in 1101. In the table 1102, the setting items C1 to C6 described above are displayed as shown in rows # 1 to # 6. Although not shown, the same setting items as the above-described A1, A2, B1, etc. are displayed. A value can be input or selected by the user in the setting value field 1103. Reference numeral 1104 denotes a button for executing setting and setting change in the state of the setting value 1103 in the table 1102.
 以上のように、実施の形態2によれば、ピークシフト運転の場合についても、実施の形態1のピークカット運転の制御と同様に、好適な制御による低損失化により、蓄電池の短寿命化を抑制することができる。 As described above, according to the second embodiment, also in the case of the peak shift operation, similarly to the control of the peak cut operation of the first embodiment, the life of the storage battery can be shortened by reducing the loss by suitable control. Can be suppressed.
 以上、本発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As described above, the present invention has been specifically described based on the embodiment. However, the present invention is not limited to the above-described embodiment, and needless to say, various modifications can be made without departing from the scope of the invention.
 本発明は、事務所や工場等を含む各種の負荷施設の蓄電システムとして利用可能である。 The present invention can be used as a power storage system for various load facilities including offices and factories.
 1…蓄電システム、2…電力系統、3…負荷施設、4…太陽光発電システム、5…蓄電池、10…設定部、11…第1計測部、12…第2計測部、13…SOC演算部、14…充放電制御部、15…ピークカット制御部、16…第1保護制御部、17…第2保護制御部、20…設定情報、21…計測情報、22…蓄電池特性情報、23…SOC情報、25…SOC-OCV特性テーブル、50…電力計測、52…受電電力、53…負荷電力、54…発電電力、62…充電、63…放電、64…充電、65…給電、66…逆潮流、71…制御盤収容部、72…蓄電池盤収容部、101…制御部、102…記憶部、103…入出力部。 DESCRIPTION OF SYMBOLS 1 ... Power storage system, 2 ... Electric power system, 3 ... Load facilities, 4 ... Solar power generation system, 5 ... Storage battery, 10 ... Setting part, 11 ... 1st measurement part, 12 ... 2nd measurement part, 13 ... SOC calculating part , 14 ... charge / discharge control unit, 15 ... peak cut control unit, 16 ... first protection control unit, 17 ... second protection control unit, 20 ... setting information, 21 ... measurement information, 22 ... storage battery characteristic information, 23 ... SOC Information, 25 ... SOC-OCV characteristic table, 50 ... Power measurement, 52 ... Received power, 53 ... Load power, 54 ... Generated power, 62 ... Charge, 63 ... Discharge, 64 ... Charge, 65 ... Power supply, 66 ... Reverse power flow , 71 ... control panel housing part, 72 ... storage battery panel housing part, 101 ... control part, 102 ... storage part, 103 ... input / output part.

Claims (7)

  1.  電力系統及び負荷施設に接続される制御装置と、前記制御装置に接続される複数の蓄電池と、を備え、
     前記制御装置は、
     利用者の操作に基づいて制御用の設定項目の値を設定する設定部と、
     前記電力系統からの受電電力、前記負荷施設の負荷電力、前記蓄電池の電圧、電流、及び温度を含む状態の値を計測する計測部と、
     前記負荷施設の負荷電力のピークを前記複数の蓄電池の充電及び放電により抑えるピークカット運転の制御を含む、前記複数の蓄電池の充電及び放電の制御を行う充放電制御部と、を有し、
     前記設定部は、前記ピークカット運転の開始時刻、終了時刻、第1の負荷電力、及び第2の負荷電力を含む設定項目の値を設定し、
     前記充放電制御部は、前記設定されたピークカット運転の開始時刻から終了時刻までの時間において、前記負荷電力が前記第1の負荷電力と第2の負荷電力との範囲に収まるように、前記負荷電力が前記第1の負荷電力以上の場合は前記蓄電池を放電して前記負荷施設に給電し、前記負荷電力が前記第2の負荷電力以下の場合は前記蓄電池を充電する、蓄電システム。
    A control device connected to the power system and the load facility, and a plurality of storage batteries connected to the control device,
    The controller is
    A setting unit that sets the value of a setting item for control based on a user's operation;
    A measuring unit that measures a value including a received power from the power system, a load power of the load facility, a voltage, a current, and a temperature of the storage battery, and
    A charge / discharge control unit that controls charging and discharging of the plurality of storage batteries, including control of peak cut operation that suppresses the peak of load power of the load facility by charging and discharging the plurality of storage batteries, and
    The setting unit sets a value of a setting item including a start time, an end time, a first load power, and a second load power of the peak cut operation,
    The charge / discharge control unit is configured so that the load power falls within a range between the first load power and the second load power in a time from the start time to the end time of the set peak cut operation. A storage system that discharges the storage battery to supply power to the load facility when load power is equal to or higher than the first load power, and charges the storage battery when load power is equal to or lower than the second load power.
  2.  請求項1記載の蓄電システムにおいて、
     前記制御装置は、
     前記蓄電池の状態の計測値を用いて前記蓄電池の充電及び放電に応じた前記蓄電池の最新の充電率であるSOC値を演算するSOC演算部を有し、
     前記設定部は、前記設定項目として開始SOC値を設定し、
     前記充放電制御部は、前記SOC値に応じて、前記設定されたピークカット運転の開始時刻に前記SOC値が前記開始SOC値と同じになるまたは近付くように、当該開始時刻よりも前に予め前記蓄電池を充電する、蓄電システム。
    The power storage system according to claim 1,
    The controller is
    An SOC calculation unit that calculates an SOC value that is the latest charging rate of the storage battery according to charging and discharging of the storage battery using a measured value of the state of the storage battery,
    The setting unit sets a start SOC value as the setting item,
    In accordance with the SOC value, the charge / discharge control unit is configured in advance before the start time so that the SOC value becomes equal to or approaches the start SOC value at the set peak cut operation start time. A power storage system for charging the storage battery.
  3.  請求項1記載の蓄電システムにおいて、
     前記制御装置は、
     前記蓄電池の状態の計測値を用いて前記蓄電池の充電及び放電に応じた前記蓄電池の最新の充電率であるSOC値を演算するSOC演算部を有し、
     前記設定部は、前記設定項目として、放電開始SOC値及び放電停止SOC値を設定し、
     前記充放電制御部は、前記ピークカット運転の時間の中において、前記SOC値が、前記放電開始SOC値以上になった場合、前記蓄電池の放電を開始し、前記SOC値が、前記放電停止SOC値以下になった場合、前記蓄電池の放電を停止する、蓄電システム。
    The power storage system according to claim 1,
    The controller is
    An SOC calculation unit that calculates an SOC value that is the latest charging rate of the storage battery according to charging and discharging of the storage battery using a measured value of the state of the storage battery,
    The setting unit sets a discharge start SOC value and a discharge stop SOC value as the setting items,
    The charge / discharge control unit starts discharging the storage battery when the SOC value becomes equal to or higher than the discharge start SOC value during the peak cut operation time, and the SOC value is set to the discharge stop SOC. An electricity storage system that stops discharging the storage battery when the value becomes lower than or equal to the value.
  4.  請求項1記載の蓄電システムにおいて、
     前記制御装置は、
     前記蓄電池の状態の計測値を用いて前記蓄電池の充電及び放電に応じた前記蓄電池の最新の充電率であるSOC値を演算するSOC演算部を有し、
     前記設定部は、前記設定項目として、充電開始SOC値及び充電停止SOC値を設定し、
     前記充放電制御部は、前記ピークカット運転の時間の中において、前記SOC値が、前記充電開始SOC値以下になった場合、前記蓄電池の充電を開始し、前記SOC値が、前記充電停止SOC値以上になった場合、前記蓄電池の充電を停止する、蓄電システム。
    The power storage system according to claim 1,
    The controller is
    An SOC calculation unit that calculates an SOC value that is the latest charging rate of the storage battery according to charging and discharging of the storage battery using a measured value of the state of the storage battery,
    The setting unit sets a charge start SOC value and a charge stop SOC value as the setting items,
    The charge / discharge control unit starts charging the storage battery when the SOC value is equal to or lower than the charge start SOC value during the peak cut operation time, and the SOC value is the charge stop SOC. A power storage system that stops charging the storage battery when the value exceeds the value.
  5.  電力系統及び負荷施設に接続される制御装置と、前記制御装置に接続される複数の蓄電池と、を備え、
     前記制御装置は、
     利用者の操作に基づいて制御用の設定項目の値を設定する設定部と、
     前記電力系統からの受電電力、前記負荷施設の負荷電力、前記蓄電池の電圧、電流、及び温度を含む状態の値を計測する計測部と、
     前記負荷施設の負荷電力のピークを所定の時間帯での前記複数の蓄電池の充電及び放電により抑えるピークシフト運転の制御を含む、前記複数の蓄電池の充電及び放電の制御を行う充放電制御部と、を有し、
     前記設定部は、前記ピークシフト運転における、充電の時間帯の開始時刻、終了時刻、及び一定出力電力と、放電の時間帯の開始時刻、終了時刻、及び一定出力電力と、第1の負荷電力及び第2の負荷電力と、を含む設定項目の値を設定し、
     前記充放電制御部は、前記ピークシフト運転の制御として、前記充電の時間帯及び前記放電の時間帯において、前記負荷電力が前記第1の負荷電力と第2の負荷電力との範囲に収まるように、前記負荷電力が前記第1の負荷電力以上の場合は前記蓄電池を放電して前記負荷施設に給電し、前記負荷電力が前記第2の負荷電力以下の場合は前記蓄電池を充電する、蓄電システム。
    A control device connected to the power system and the load facility, and a plurality of storage batteries connected to the control device,
    The controller is
    A setting unit that sets the value of a setting item for control based on a user's operation;
    A measuring unit that measures a value including a received power from the power system, a load power of the load facility, a voltage, a current, and a temperature of the storage battery, and
    A charge / discharge control unit that controls charging and discharging of the plurality of storage batteries, including control of peak shift operation that suppresses the peak of load power of the load facility by charging and discharging the plurality of storage batteries in a predetermined time zone; Have
    The setting unit includes a charge time zone start time, end time, and constant output power, a discharge time zone start time, end time, constant output power, and first load power in the peak shift operation. And setting the value of the setting item including the second load power,
    The charge / discharge control unit is configured to control the peak shift operation so that the load power falls within a range between the first load power and the second load power in the charge time zone and the discharge time zone. In addition, when the load power is greater than or equal to the first load power, the storage battery is discharged to supply power to the load facility, and when the load power is less than or equal to the second load power, the storage battery is charged. system.
  6.  請求項5記載の蓄電システムにおいて、
     前記制御装置は、
     前記蓄電池の状態の計測値を用いて前記蓄電池の充電及び放電に応じた前記蓄電池の最新の充電率であるSOC値を演算するSOC演算部を有し、
     前記設定部は、前記設定項目として開始SOC値を設定し、
     前記充放電制御部は、前記SOC値に応じて、前記設定されたピークシフト運転の前記充電の時間帯の開始時刻に前記SOC値が前記開始SOC値と同じになるまたは近付くように、前記放電の時間帯の終了時刻よりも後で前記充電の時間帯の開始時刻よりも前に、予め前記蓄電池を充電する、蓄電システム。
    The power storage system according to claim 5, wherein
    The controller is
    An SOC calculation unit that calculates an SOC value that is the latest charging rate of the storage battery according to charging and discharging of the storage battery using a measured value of the state of the storage battery,
    The setting unit sets a start SOC value as the setting item,
    In accordance with the SOC value, the charge / discharge control unit is configured to discharge the discharge so that the SOC value becomes equal to or approaches the start SOC value at a start time of the charging time zone of the set peak shift operation. A storage system in which the storage battery is charged in advance after the end time of the time period and before the start time of the charging time period.
  7.  請求項2~4,6のいずれか一項に記載の蓄電システムにおいて、
     前記蓄電池の特性を示す情報として、前記蓄電池の温度に応じたSOCと開路電圧との関係を示す情報を記憶する蓄電池情報記憶部を有し、
     前記計測部は、所定の周期で前記蓄電池の閉路電圧、電流、及び温度を含む状態の値を計測し、
     前記SOC演算部は、前記蓄電池の閉路電圧及び電流と前回のSOC値とを用いて、前記蓄電池の開路電圧を算出し、前記開路電圧と、前記温度に応じたSOCと開路電圧との関係を示す情報とを用いて、今回のSOC値を算出する、蓄電システム。
    The power storage system according to any one of claims 2 to 4 and 6,
    As information indicating the characteristics of the storage battery, a storage battery information storage unit that stores information indicating the relationship between the SOC and the open circuit voltage according to the temperature of the storage battery,
    The measurement unit measures the value of the state including the closed circuit voltage, current, and temperature of the storage battery at a predetermined cycle,
    The SOC calculation unit calculates the open circuit voltage of the storage battery using the closed circuit voltage and current of the storage battery and the previous SOC value, and determines the relationship between the open circuit voltage and the SOC and the open circuit voltage according to the temperature. The power storage system that calculates the current SOC value using the information shown.
PCT/JP2014/077113 2013-10-17 2014-10-09 Electricity storage system WO2015056634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542595A JPWO2015056634A1 (en) 2013-10-17 2014-10-09 Power storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-216659 2013-10-17
JP2013216659 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056634A1 true WO2015056634A1 (en) 2015-04-23

Family

ID=52828079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077113 WO2015056634A1 (en) 2013-10-17 2014-10-09 Electricity storage system

Country Status (2)

Country Link
JP (1) JPWO2015056634A1 (en)
WO (1) WO2015056634A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552963A (en) * 2016-02-04 2016-05-04 苏州高创特新能源发展股份有限公司 Photovoltaic power generation grid-connected system based on lithium ion battery energy storage
CN106394317A (en) * 2016-11-10 2017-02-15 中广核太阳能开发有限公司 Energy-efficient railway traction power supply system
CN106411144A (en) * 2016-11-10 2017-02-15 西南交通大学 Photovoltaic power generation-based railway traction power supply system
WO2017195651A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 System for regulating power supply and demand, electric utility equipment for regulating power supply and demand, customer equipment for regulating power supply and demand, and method for regulating power supply and demand
JP2018074726A (en) * 2016-10-28 2018-05-10 株式会社デンソー Charge/discharge device
US20220407329A1 (en) * 2021-06-16 2022-12-22 Hewlett-Packard Development Company, L.P. Battery charge regulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696699B2 (en) * 2017-11-15 2020-05-20 株式会社東芝 Power control device, power control method, and power control program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2002199588A (en) * 2000-12-27 2002-07-12 Hitachi Ltd Power supply system
JP2002271994A (en) * 2001-03-13 2002-09-20 Toshiba Corp Power peak cutting power device
JP2003244840A (en) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The Load-leveling device
JP2005130572A (en) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd Distributed power generating system
JP2006320099A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Electric power storage system
WO2008075586A1 (en) * 2006-12-19 2008-06-26 Panasonic Corporation Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
JP2012130126A (en) * 2010-12-14 2012-07-05 Panasonic Corp Power supply control device and power supply system using the same
JP2013017268A (en) * 2011-07-01 2013-01-24 Panasonic Corp Power management system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2002199588A (en) * 2000-12-27 2002-07-12 Hitachi Ltd Power supply system
JP2002271994A (en) * 2001-03-13 2002-09-20 Toshiba Corp Power peak cutting power device
JP2003244840A (en) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The Load-leveling device
JP2005130572A (en) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd Distributed power generating system
JP2006320099A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Electric power storage system
WO2008075586A1 (en) * 2006-12-19 2008-06-26 Panasonic Corporation Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
JP2012130126A (en) * 2010-12-14 2012-07-05 Panasonic Corp Power supply control device and power supply system using the same
JP2013017268A (en) * 2011-07-01 2013-01-24 Panasonic Corp Power management system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552963A (en) * 2016-02-04 2016-05-04 苏州高创特新能源发展股份有限公司 Photovoltaic power generation grid-connected system based on lithium ion battery energy storage
WO2017195651A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 System for regulating power supply and demand, electric utility equipment for regulating power supply and demand, customer equipment for regulating power supply and demand, and method for regulating power supply and demand
JPWO2017195651A1 (en) * 2016-05-09 2018-09-20 三菱電機株式会社 A system for adjusting power supply and demand, an electric utility facility for adjusting power supply and demand, a customer facility for adjusting power supply and demand, and a method for adjusting power supply and demand
JP2018074726A (en) * 2016-10-28 2018-05-10 株式会社デンソー Charge/discharge device
CN106394317A (en) * 2016-11-10 2017-02-15 中广核太阳能开发有限公司 Energy-efficient railway traction power supply system
CN106411144A (en) * 2016-11-10 2017-02-15 西南交通大学 Photovoltaic power generation-based railway traction power supply system
CN106411144B (en) * 2016-11-10 2018-07-17 西南交通大学 A kind of railway traction power supply system based on photovoltaic generation
US20220407329A1 (en) * 2021-06-16 2022-12-22 Hewlett-Packard Development Company, L.P. Battery charge regulation

Also Published As

Publication number Publication date
JPWO2015056634A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015056634A1 (en) Electricity storage system
JP5857247B2 (en) Power management system
JP6067619B2 (en) Energy storage system for uninterruptible power supply with battery and operation method thereof
JP5132158B2 (en) Power supply system, power supply control method for power supply system, and power supply control program therefor
JP7066390B2 (en) Economic efficiency estimation device and economic efficiency estimation method for storage batteries
EP2690743B1 (en) Energy storage system and rechargeable battery control method
US20120176095A1 (en) Electric power management system
EP2447729A1 (en) Battery control apparatus and battery control method
WO2012132246A1 (en) Battery power supply apparatus and battery power supply system
WO2018008469A1 (en) Electricity storage device, electricity storage system, and power supply system
JP4691140B2 (en) Charge / discharge system and portable computer
JP6991247B2 (en) Power storage device, power storage system, power supply system, and control method of power storage device
CN107076800B (en) Battery capacity monitor
US11862978B2 (en) Power supply system, control system and power control method for power supply system
JP2009050085A (en) Secondary battery pack
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
WO2017026175A1 (en) Power storage system and method for managing same
JP6172868B2 (en) Power supply
JP5964668B2 (en) Backup power supply system
JP2011182479A (en) System and method for charging lithium ion battery pack
WO2012049973A1 (en) Power management system
JP6447093B2 (en) Power management system
JP2018038229A (en) Power storage system
WO2018105645A1 (en) Operation control system, and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015542595

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14853901

Country of ref document: EP

Kind code of ref document: A1