WO2016059262A1 - Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados - Google Patents

Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados Download PDF

Info

Publication number
WO2016059262A1
WO2016059262A1 PCT/ES2014/070780 ES2014070780W WO2016059262A1 WO 2016059262 A1 WO2016059262 A1 WO 2016059262A1 ES 2014070780 W ES2014070780 W ES 2014070780W WO 2016059262 A1 WO2016059262 A1 WO 2016059262A1
Authority
WO
WIPO (PCT)
Prior art keywords
dha
solution
biomass
microalgae
fatty acids
Prior art date
Application number
PCT/ES2014/070780
Other languages
English (en)
French (fr)
Inventor
Ana María OTERO CASAL
Isabel FREIRE FONTÁNS
Hugo Alexandre MILHAZES DA CUNHA
María SEGURA FORNIELES
Juan Pablo JIMÉNEZ MARTÍN
Original Assignee
Universidade De Santiago De Compostela
Algaenergy, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela, Algaenergy, S.A. filed Critical Universidade De Santiago De Compostela
Priority to PCT/ES2014/070780 priority Critical patent/WO2016059262A1/es
Priority to US15/515,718 priority patent/US10351884B2/en
Priority to EP14903872.1A priority patent/EP3109315B1/en
Priority to ES14903872T priority patent/ES2712298T3/es
Publication of WO2016059262A1 publication Critical patent/WO2016059262A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a process for the enrichment of microalgae biomass in long chain polyunsaturated fatty acids. More specifically, it refers to microalgae of the genus Nannochloropsis. It also refers to the products obtained through this procedure and its uses. BACKGROUND OF THE INVENTION
  • Nannochloropsis belongs to the Eustigmatophyta Division, Eustigmatophyceae Class, Eustigmatales Order, Monodopsiadaceae Family (Hibberd, 1981, Bot J Linnean Society 82: 93-1 19).
  • the class was separated from the Xantophyceae based on their structure, cytology and subsequently by their pigment composition, lacking chlorophyll b (Hibberd & Leedale, 1972, Annals of Botany 36: 49-71; Whittle & Casselton, 1975, British Phycological Journal 10: 179-191).
  • Nannochloropsis cells are cocoids, with an approximate diameter of 2-4 pm, lack flagella and have no mobile states. They have a green-yellow color, so they can be confused with Chlorophyta (Santos, 1996, Beiheft Nova Hedwigia 1 12: 391-405) which has led to the existence of various publications in which Chiorella marina is called species of Nannochloropsis (Maruyama et al., 1986, Jap. J. Phycol. 34: 319-325; Watanabe et al. 1983, Aquaculture 34: 1 15-143).
  • both groups present important differences in the acid profile fatty, since while chlorophytes do not contain acids fatty acids of more than 18 carbon atoms, the species of the genus Nanochloropsis have a high percentage of polyunsaturated fatty acid of the omega-3 eicosapentaenoic series (20: 5 n-3, EPA) (Ferreira et al.
  • Nannochloropsis limnetica in the year 2000 (Krienitz et al., 2000, Phycologia 39: 219-227).
  • the fatty acid composition of N. limnetica is similar to those of marine species, with an EPA content that can reach 24% of the total fatty acids (Freiré et al. 2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - November, 2013, Gran Canana (Spain); Krienitz et al. 2006; Phycologia 39: 219-227).
  • microalgae of the genus Nannochloropsis produce better growth and biochemical composition of the rotifer than Saccharomyces cerevisiae yeast, which can also be used as food for rotifer (Luzbens et al., 1995, Aquaculture 133: 295-309) or other artificial diets (Aragáo et al., 2004, Aquaculture 234: 429-445; Srivastava et al. 2006, Aquaculture 254: 534-543; Koiso et al. 2009, Nippon Suisan Gakk 75: 828-833).
  • PUFAs long chain polyunsaturated fatty acids
  • Nannochloropsis The high content of long chain polyunsaturated fatty acids (PUFAs), especially in EPA, of the species of the genus Nannochloropsis has been identified as the cause of its high nutritional value for aquaculture, both in the case of the Brachionus plicatilis rotifer fed with marine species of this genus (Watanabe et al.
  • Nannochloropsis limnetica can be used with excellent results for the cultivation of Brachionus plicatilis in seawater (Freiré et al., 2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - November, 2013, Gran Canana (Spain)).
  • Chlorella freshwater microalgae concentrates are also being used successfully for the maintenance of dense crops of the Brachionus sp. Rotifer, although marine species of the genus Nannochloropsis produce equal or higher growth rates (Hirayama & Nakamura, 1976, Aquaculture 8 : 301-307; Maruyama et al., 1997; Kobayashi et al., 2008).
  • Nannochloropsis over other species of unicellular algae, and more specifically over Chlorella species, is its high content of Eicosapentaenoic acid (EPA, 20: 5 (n-3)), which is transferred through rotifers to fish larvae, for whose development it is essential, being absent in the species of the genus Chlorella.
  • Eicosapentaenoic acid EPA, 20: 5 (n-3)
  • EPA Eicosapentaenoic acid
  • n-3 Eicosapentaenoic acid
  • Chlorella SV-12 Pacific Tading Co., Ltd, Chlorella Industry Co., Ltd. http://www.pacific-trading.co.jp/en/product/01 -2.html
  • Chlorella concentrate approximately 135% dry weight
  • DHA docosahexaenoic long chain fatty acid
  • Chlorella enrichment procedure in DHA has been previously described for use in the cultivation of rotifers (Hayashi et al., 2001, Blosci. Biotechnol. Blochem. 65: 202-204).
  • Chlorella cells were cultured heterotrophically with glucose by adding tuna oil (0.5%) with a content of 26.8% of DHA or free fatty acids obtained from the hydrolyzate of the same oil for 24 hours.
  • tuna oil 0.5%) with a content of 26.8% of DHA or free fatty acids obtained from the hydrolyzate of the same oil for 24 hours.
  • Chlorella containing omega-3 fatty acids including eicosapentaenoic acids (EPA) and Docosahexaenoic acids (DHA), comprising the addition of EPA and DHA monoglycerides to the culture medium at the end of fermentation.
  • EPA eicosapentaenoic acids
  • DHA Docosahexaenoic acids
  • Chlorella production containing highly unsaturated fatty acids comprises the cultivation of Chlorella in medium with DHA and other highly unsaturated fatty acids in the form of free acid or its corresponding salt.
  • N. limnetica was enriched with pure EPA or DHA separately or with an extract of the isocrhysis aff microalgae. galbana (Clone T-ISO) rich in DHA.
  • This last species contains high values of DHA, which however were transferred with little efficiency to N. limnetica, with a final ratio of 1 part of DHA for every 40 parts of EPA (weight: weight ratio) in enriched biomass.
  • Nannochloropsis In addition to aquaculture applications, species of the genus Nannochloropsis have been studied extensively as a source of EPA for human and animal nutritional applications (Sukenik 1998, Cohen, Z. (Ed.), Chemicals from Microalgae. Taylor and Francis, London, p 41-56; Chini Zitelli et al., 1999, Journal of Biotechnology 70: 299-312) and more recently, have focused great interest due to the potential of these species for biodiesel production (Rodolfi et al., 2008, Journal of Biotechnology 70: 299-312; Doan, et al., 201 1, Biomass and Bioenergy 35: 2534-2544; San Pedro et al.
  • DHA is one of the main components of fish oil and in addition to being fundamental in the development of marine species, it is very abundant in the phospholipids of mammalian brains. It has been suggested that DHA is necessary for neuronal development and synaptic plasticity. The content of DHA in brain phospholipids is also lower in patients with Aizheimer. In addition, the high content of DHA in human breast milk has been related to the development of the central nervous system in children, leading to the recommendation of the supplementation of the infant formula in this compound.
  • DHA anticancer activity
  • psoriasis etc.
  • DHA is an important component for the maintenance and improvement of brain functions in aged animals.
  • DHA for use in human nutrition is produced from fish oil or from the heterotrophic dinoflagellate Crypthecodinium cohnii (Mendes et al., 2008, Journal of Applied Phycology 21: 199-214).
  • the use of DHA of C. cohnii for food enrichment, particularly in the field of aquaculture, is disclosed in the patent (Gladue et al., 2002, US 6372460 B1).
  • microalgae biomass belongs to the genus Nannochloropsis.
  • An advantage of the invention is that the ratio between EPA and DHA is greater than 0.5 parts of DHA per 10 parts of EPA, and a ratio of 2.4 parts of DHA per 1 part of EPA can be achieved, and the percentage being EPA at least 10% of total biomass fatty acids.
  • microalgae biomass obtained also has a high content of other polyunsaturated acids, such as 22: 5 polyunsaturated acid as shown in Figures 5 and 6, which exceeds 10% by weight. to the weight of the biomass concentrate.
  • the ratio of EPA and DHA obtained by applying the process of this invention is much higher than any other previously described, and thus the authors of the present invention obtained a ratio of up to 2.4 parts. of DHA for each part of EPA in presence of the emulsifier and 0.6 parts of DHA for each part of EPA in the absence thereof.
  • the invention is directed to a process for the enrichment of microalgae biomass of the genus Nannochloropsis in polyunsaturated acids, comprising:
  • the invention is directed to a microalgae biomass of the genus Nannochloropsis, characterized in that it comprises eicosapentaenoic acid (20: 5n-3) (EPA) and docosahexaenoic acid (22: 6n-3) (DHA) in a weight ratio of DHA equal to or greater than 1 part of DHA per 10 parts of EPA and contains a proportion of eicosapentaenoic acid (20: 5n-3) (EPA) of at least 10% with respect to total biomass fatty acids.
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • the invention is directed to a microalgae biomass of the genus Nannochloropsis, obtainable by the method described above.
  • the invention is directed to the use of the microalgae biomass of the genus Nannochloropsis described above, which has application in aquaculture, in animal husbandry for the improvement of fatty acid profile of consumer products (meat, eggs, milk , etc.) and in the cosmetics sector.
  • the invention is directed to the use of the microalgae biomass of the genus Nannochloropsis described above for the preparation of a nutraceutical.
  • the nutraceutical of the present invention is applicable in cases of infertility, diseases of the nervous system and circulatory system diseases, in addition to serving as a food supplement.
  • the present invention characterizes the fact of using a concentrated biomass in the process instead of diluted cultures, the exposure times and conditions of the biomass, the possibility of using emulsifier, the modification of the biomass ratio and lipid concentration, as well as the use of an oil as a source of fatty acids.
  • Figure 1 shows the fatty acid profile, measured by gas chromatography, of a cellular concentrate of the freshwater microalgae N. limnetica (biomass concentration 10% weight / volume) enriched with a pure DHA emulsion (2.5 mg / mL) for 6 hours in EXAMPLE 1.
  • These conditions which resemble those described in the literature (Wacker et al., 2002) did not allow the enrichment of biomass in DHA, since the EPA peak is clearly observed in minute 45, present in the biomass of all Nannochloropsis species, while the DHA peak, which appears in the 51st minute, is virtually negligible. Nor was enrichment achieved with DHA-rich oil at any of the concentrations tested.
  • Figure 2 shows the fatty acid profile, measured by gas chromatography, of a concentrate of N. limnetica (biomass concentration 1% dry weight / volume) not enriched, from the experiment described in EXAMPLE 2, in which only the characteristic EPA peak of the Nannochloropsis species appears.
  • Figure 3 shows the fatty acid profile, measured by gas chromatography, of a concentrate of N. limnetica (biomass concentration 1% dry weight / volume) enriched with a pure DHA emulsion (2.5 mg / mL) for 24 hours from the experiment described in EXAMPLE 2. The existence of the peak corresponding to DHA is clearly observed in minute 51, which in this case is higher than the EPA peak, which appears in minute 45.
  • Figure 4 shows enrichment chromatogram of Nannochloropsis limnetica under the same conditions as Figure 3, in which enrichment is performed using an oil rich in DHA (content greater than 10%) in which the peak corresponding to DHA is observed in minute 51, in addition to gold peaks between the EPA (minute 45) and DHA corresponding to the incorporation of other polyunsaturated fatty acids, among which is 22: 5.
  • Figure 5 shows the% of total fatty acids in N. limnetica concentrates enriched for 24 hours with pure DHA or with DHA-rich oil, both at a concentration of 2.5 mg / mL and in the presence of emulsifier, following the procedure described in EXAMPLE 2.
  • Figure 6 shows the% of fatty acids with respect to the total in N. limnetica concentrates enriched with oil rich in DHA at a concentration of 2.5 mg / mL for 24 hours in the presence of emulsifier and in the absence thereof, following the procedure described in EXAMPLE 2.
  • Figure 7 shows a chromatogram of the fatty acid profile of the marine microalgae Nannochloropsis gaditana not enriched (control), corresponding to the experiment described in EXAMPLE 3, in which the characteristic EPA peak at 45 minutes is observed for all species of this genre. As expected in an unenriched biomass, no peak is observed in the retention time 51 minutes, corresponding to DHA.
  • Figure 8 shows a chromatogram of the fatty acid profile of the Nannochloropsis gaditana marine microalgae enriched with an oil emulsion rich in DHA, (EPADHAX, which contains a percentage of this fatty acid of 10-18%), corresponding to the experiment described in EXAMPLE 3.
  • the biomass was enriched for 24 hours in the presence of light with an oil concentration of 2.5 mg / mL. The appearance of a peak in minute 51 corresponding to the DHA incorporated by the microalgae is observed.
  • Figure 9 shows a chromatogram of the fatty acid profile of the Nannochloropsis gaditana marine microalgae enriched with an oil emulsion rich in DHA, (Menhaden Oil, Sigma, CAS 8002/50/4, containing a percentage of this fatty acid of 1 1.9%), corresponding to the experiment described in EXAMPLE 3.
  • the biomass was enriched for 24 hours in the presence of light with an oil concentration of 2.5 mg / mL. The appearance of a peak in minute 51 corresponding to the DHA incorporated by the microalgae is observed.
  • the invention is directed to a process for the enrichment of microalgae biomass of the genus Nannochloropsis in polyunsaturated acids, comprising:
  • the microalgae of the genus Nannochloropsis comprise both freshwater species, such as Nannochloropsis limnetica, and marine water species, such as Nannochloropsis gaditana, also includes species of the same genus as for example Nannochloropsis atomus, N. coccoides, N. maculata, N. oculata, N. granulata, N. oceanic and N. salina.
  • the fatty acid solution or emulsion of step a) has a concentration between 10 mg / mL and 100 mg / mL. More particularly, it has a concentration of 50 mg / mL.
  • the process further comprises adding in step a) an emulsifier solution.
  • the emulsifier is selected from bovine serum albumin, sodium dodecyl sulfate, polyethoxylated fatty alcohols, quaternary ammonium alkyl salts, alkyl betaines, soy and egg lecithins, guar gum, garrofin gum, alginates, phosphoric acid, phosphate salts, sodium citrate, phosphate salts, pectin, sucrose esters, sorbitan esters, cellulose and its derivatives, polyethylene glycol, and mixtures thereof.
  • the emulsifier solution has a concentration between 10 mg / mL and 100 mg / mL. More particularly, it has a concentration of 50 mg / mL.
  • the volumetric ratio between the fatty acid solution of step a) i) and the emulsifier solution is between 1: 1 and 1: 4. In another particular embodiment, the ratio is 1: 2.
  • the microalgae dry weight ratio of step a) is between 0.8% and 15%.
  • the microalgae biomass suspension and the fatty acid solution or emulsion are mixed in step a) in a ratio of between 1: 1 and 10: 1. More particularly, the ratio is 6: 1 (volume: volume).
  • step b) comprises a cycle of at least 12 hours of light.
  • the invention relates to a process for the enrichment of microalgae biomass of the genus Nannochloropsis in different polyunsaturated fatty acids, mainly docosahexaenoic acid (22: 6n-3, DHA).
  • a suspension or emulsion of fatty acids is used.
  • Said suspension or emulsion may be an oil.
  • the suspension or emulsion of fatty acids of step a) is a suspension or emulsion of an oil or a mixture of oils.
  • oil means a liquid comprising a mixture of triglycerides and free fatty acids, so that the total weight of free fatty acids is less than 10%.
  • the enrichment of the microalgae biomass of the genus Nannochloropsis can be carried out by means of any oil or extract rich in long-chain polyunsaturated fatty acids, of animal or microbial origin.
  • the oil is selected from oils with a percentage of DHA greater than 5% by weight with respect to total fatty acids, such as fish oil, such as herring oil, cod liver oil or hydrolyzed derivatives. In a particular embodiment, the oil is selected from oils obtained from marine microalgae with a DHA content greater than 5%.
  • the oil is selected from herring oil, cod liver oil, oil obtained from marine microalgae, or mixtures thereof.
  • the invention relates to a method for the enrichment of microalgae biomass of the genus Nannochloropsis in polyunsaturated acids, comprising:
  • the invention relates to a process for the enrichment of microalgae biomass of the genus Nannochloropsis in polyunsaturated acids, comprising:
  • the emulsions, solutions and suspensions of the process are prepared using water, alcoholic solvents, glycolic solvents, or mixtures thereof. In a particular embodiment, ethanol is used.
  • Nannochloropsis microalgae biomass once enriched can have different forms of presentation: refrigerated concentrate or frozen, dried biomass, lyophilized or preserved by any other method, as well as derived extracts.
  • the invention is directed to a solution, composition or lyophilisate comprising the biomass of the invention.
  • Nannochloropsis biomass enriched in DHA and other polyunsaturated fatty acids preferably EPA are: animal nutrition in the field of aquaculture and others such as poultry farming, cattle, sheep, sheep, pigs, etc. without restricting them, as well as a nutritional supplement in feed for pets, as well as having applications in the cosmetics sector.
  • the invention in another aspect relates to a nutritional supplement or functional ingredient comprising the biomass of the present invention.
  • microalgal concentrates of 1% weight / volume ratio are used, while in the literature the concentrate used for enrichment with pure fatty acids is 50 times more diluted (0.01% weight of carbon, which would be equivalent to 0.02% weight / volume, (Wacker et al. 2002, Limnol. Oceanogr. 47: 1242-1248).
  • - Modification of the time and exposure conditions of biomass In the present invention the mixture is exposed for a minimum of 24 hours under lighting conditions, the presence of lighting being a key factor for enrichment, while in the literature the exposure time is 4 hours without specifying the presence or not of lighting.
  • - Modification of the concentrated ratio / lipid dilution in ethanol In the invention, aqueous / lipid concentrate ratios in an ethanolic solution of 6: 1 (one part of ethanolic solution per six of aqueous microalgal concentrate) are used, while in the literature much lower proportions of ethanolic solution are used (100: 1, that is, 1 part of ethanol per 100 parts of aqueous microalgal concentrate)
  • Emulsifier is used in the literature at a concentration of 0.5 mg per milliliter of the mixture. In this procedure a concentration of 5 mg per milliliter of mixture is used, enrichment is also achieved in the absence thereof.
  • the method comprises the steps of:
  • BSA bovine serum albumin
  • Nannochloropsis biomass in DHA and other polyunsaturated fatty acids using oils instead of free fatty acids. Enrichment is also achieved in the absence of the emulsifier, although its presence increases effectiveness.
  • EXAMPLE 1 In this example, conditions similar to those described in the literature for the enrichment of N. limnetica were tested, using pure DHA and a fish oil with a high DHA content, without enrichment of the microalgae concentrated biomass in DHA. ; which demonstrates that the simple modification of the existing conditions in the literature does not allow enrichment.
  • a concentrate of the freshwater microalgae N. limnetica obtained by centrifugation was prepared as described in Freiré et al. (2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - November, 2013, Gran Canana (Spain)).
  • the cells were resuspended in distilled water to reach a concentration of approximately 12.3x10 9 cells / mL and a carbon concentration of 50 mg / mL (equivalent to 100 mg / mL or 10% in weight / volume ratio, taking into account a carbon content of biomass of 50%).
  • the biomass was mixed with a solution of pure DHA in ethanol at two concentrations: 250 and 2500 micrograms / mL and fish oil with high Omega 3 content (DHA 20-26% EPA 7-12%), refined EPADHAX obtained from the company Epadhax SLU (Boiro, A Coru ⁇ a, http://www.epadhax.eu/epadhax-omega-3-activo.php) at a concentration of 25 and 250 micrograms / mL.
  • Epadhax SLU Billoiro, A Coru ⁇ a, http://www.epadhax.eu/epadhax-omega-3-activo.php
  • the lipids were emulsified with BSA.
  • the mixtures were incubated for 6 hours with the lipid emulsion under stirring at a temperature of 22 ° C.
  • EXAMPLE 2 In this experiment, factors such as biomass concentration and exposure time were varied with respect to the conditions described in Example 1, achieving the incorporation of DHA, both with the use of pure DHA and with the use of DHA-rich oil With and without emulsifier.
  • a microalgal concentrate of N. limnetica obtained by centrifugation was used as indicated in Example 1. On this occasion the cells were resuspended in distilled water to reach a concentration of 10 mg / mL weight / volume (1% weight: volume ratio, equivalent to approx. 1, 23 * 10 9 cells / mL).
  • the microalgae concentrate was mixed with DHA or with DHA-rich oil at a concentration of 2.5 mg of lipid / mL emulsified with BSA.
  • the emulsion was prepared by mixing 50 microliters of an ethanol dilution of the lipid, at a concentration of 50 mg / ml with 100 microliters of an aqueous solution of BSA at a concentration of 50 mg / mL. The mixture was stirred to form the emulsion and added to 850 microliters of microalgal concentrate.
  • oil the direct addition of the oil solution in ethanol (50 microliters) to the concentrated, without prior mixing with the emulsifier.
  • FIG. 1 shows the chromatogram of N. Ilimnetica not enriched (control), in which only EPA appears, whose peak is identified at 45 minutes, with absence, as expected in this concentrated control, of the DHA peak .
  • Table 1 shows the fatty acid profile of N. limnetica concentrate enriched with DHA pure for 24 and 48 hours, and with oil rich in DHA (EPADHAX) with and without emulsifier (BSA in this example) for 24 hours.
  • EXAMPLE 3 In this experiment the efficiency of the enrichment procedure was tested with two different species: the freshwater species Nannochloropsis limnetica and the marine species Nanochloropsis gaditana. Concentrates were prepared by centrifuging the cells by the methodology described in Examples 1 and 2. The cells of N. limnetica and N. gaditana were resuspended in distilled water or seawater respectively at a concentration of 1% weight / volume.
  • Example 2 The enrichment, following the procedure and concentrations described in Example 2, was performed with a BSA emulsion of two types of DHA-rich oils: EPADHAX oil, used in example 2 (oil 1) and herring oil (Menhaden Oil, Sigma, CAS 8002/50/4) with a final concentration of 2.5 mg / mL (oil 2). Both oils are characterized by having DHA percentages of 10-18% in the case of EPADHAX and 8-15% in the case of herring oil. The content of free fatty acids in oil 1 is around 14 mg per gram of oil, while the values described in the literature for oil 2 are lower, about 5.5 mg per gram.
  • a preferred but not limiting procedure of microalgae biomass thinning of the genus Nannochloropsis in different fatty acids, mainly EPA, and DHA comprises the steps of:
  • lipid stock which may be preferably EpaDhax 150 or DHA, Sigma D-2534 or other oil rich in DHA
  • ethanol at a concentration of 50 Mg pL.
  • BSA stock which may preferably be Sigma A4503, or other emulsifier in distilled H 2 0 at a concentration of 50 mg / ml_.
  • Preparation of the biomass concentrate by centrifugation or other concentration procedure such as sedimentation, flocculation, tangential filtration, etc., to obtain a final concentration of 10 mg / ml_ or greater, to which the previously prepared emulsion is added.
  • concentration procedure can be carried out with different biomass concentrations
  • lipids + emulsifier lipids + emulsifier
  • 50 ⁇ _ of a lipid solution in ethanol would be added to 950 ⁇ _ of microalgal concentrate, which represents an approximate ratio of 1: 20, or any volumetric combination that maintains that proportion.
  • the constant stirring time of the mixture can be with a cycle of 12h of light, 12h of darkness.
  • Chlorella containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), comprising adding EPA and DHA monoglycendes to the culture medium at the end of fermentaron.
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Chlorella containing highly unsaturated fatty acids comprises culture of Chlorella in medium containing DHA and other highly unsaturated fatty acids in free acid or salt form. JP10276684-A; KR98080312-A; JP3096654-B2; KR428732-B; KR423876-B.
  • Nannochloropsis limnetica a new freshwater microalgal species for marine aquaculture. Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - November, 2013, Gran Canana (Spain).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Husbandry (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Insects & Arthropods (AREA)
  • Sustainable Development (AREA)
  • Birds (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

Procedimiento de enriquecimiento de biomasa de microalgas en particular del género Nannochloropsis en distintos ácidos grasos poliinsaturados, principalmente ácido docosahexaenoico (22:6n-3, DHA), utilizando aceites ricos en éstos ácidos grasos. El procedimiento comprende las etapas de: - Preparación de una solución o emulsión de lípidos + emulsionante (BSA,) - Preparación del concentrado de biomasa para obtener una concentración final de 10 mg/mL o mayor - Enriquecimiento del concentrado de biomasa mediante el añadido del lípido o su emulsión al concentrado de microalgas - Dejar la mezcla en agitación constante durante un tiempo al menos de 24 horas en condiciones de iluminación. El procedimiento permite el enriquecimiento de biomasa microalgal del género Nannochloropsis, simultáneo en ácido eicosapentaenoico (20:5n-3) (EPA) y ácido docosahexaenoico (22:6n-3) (DHA), alcanzándose como mínimo una relación en peso 10:1 entre el EPA y el DHA, con un contenido en EPA de al menos el 10% de los ácidos grasos totales.

Description

PROCEDIMIENTO DE ENRIQUECIMIENTO DE BIOMASA DE
MICROALGAS EN ACIDOS GRASOS POLIINSATURADOS
DESCRIPCIÓN
SECTOR DE LA TÉCNICA
La presente invención se refiere a un procedimiento para el enriquecimiento de biomasa de microalgas en ácidos grasos poliinsaturados de cadena larga. Más concretamente, se refiere a microalgas del género Nannochloropsis. También se refiere a los productos obtenidos mediante ese procedimiento y sus usos. ANTECEDENTES DE LA INVENCIÓN
Las especies del género Nannochloropsis pertenecen a la División Eustigmatophyta, Clase Eustigmatophyceae, Orden Eustigmatales, Familia Monodopsiadaceae (Hibberd, 1981 , Bot J Linnean Society 82:93-1 19). La clase se separó de las Xantophyceae en base a su estructura, citología y posteriormente por su composición de pigmentos, al carecer de clorofila b (Hibberd & Leedale, 1972, Annals of Botany 36:49-71 ; Whittle & Casselton, 1975, British Phycological Journal 10:179-191 ).
Las células de Nannochloropsis son cocoides, con un diámetro aproximado de 2-4 pm, carecen de flagelos y no presentan estados móviles. Presentan color verde-amarillo, por lo que pueden ser confundidas con las Chlorophyta (Santos, 1996, Beiheft Nova Hedwigia 1 12:391 -405) lo que ha llevado a que existan diversas publicaciones en las que se denomina Chiorella marina a las especies de Nannochloropsis (Maruyama et al., 1986, Jap. J. Phycol. 34:319-325; Watanabe et al. 1983, Aquaculture 34: 1 15-143). Además de las diferencias morfológicas y en la composición de pigmentos, ya que las Chlorophyta presentan clorofilas a y b, mientras que las Eustigmatophyceae presentan solamente clorofila a, además de diversos carotenoides, que pueden ser utilizados como carácter taxonómico (Jeffrey & Vesk, 1997, Phytoplankton pigments in oceanography. S.W. Jeffrey, R.F.C. Mantoura, S.W: Wright (eds). UNESCO Publishing Paris, pp 37-84; Lubian & Establier, 1982, Investigación Pesquera 46:379-389), ambos grupos presentan importantes diferencias en el perfil de ácidos grasos, ya que mientras que las clorófitas no contienen ácidos grasos de más de 18 átomos de carbono, las especies del género Nanochloropsis presentan un elevado porcentaje del ácido graso poliinsaturado de la serie omega-3 eicosapentaenoico (20:5 n-3, EPA) (Ferreira et al. 2009. Mar Biotechnol 1 1 :585-595; Sukenik et al. 1993, Cohén, Z. (Ed.), Chemicals from Microalgae. Taylor and Francis, London, p 41 -56) que puede llegar a representar el 25% de los ácidos grasos de este grupo y que además de ser esencial para su aplicación en acuicultura, posee diversas propiedades funcionales en animales y humanos (Siriwardhana et al. 2012, Se-Kwon Kim, Editor(s), Advances in Food and Nutrition Research, Academic Press, 2012, Volume 65, Pages 21 1 -222), lo que hace importante este género desde el punto de vista biotecnológico y farmacológico. La mayor parte de las especies descritas pertenecen a hábitats marinos o salobres, describiéndose la primera especie de agua dulce, Nannochloropsis limnetica en el año 2000 (Krienitz et al., 2000, Phycologia 39:219-227). La composición de ácidos grasos de N. limnetica es similar a las de las especies marinas, con un contenido de EPA que pueda alcanzar el 24% del total de ácidos grasos (Freiré et al. 2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - Noviembre, 2013, Gran Canana (España); Krienitz et al. 2006; Phycologia 39:219-227).
Diversas especies marinas del género Nannochloropsis son cultivadas en todo el mundo para ser utilizadas en la cadena de alimento vivo para el cultivo larvario de peces marinos, siendo de las especies más comúnmente utilizadas en ma cultura. La principal aplicación de las especies marinas del género Nannocloropsis es el cultivo de rotíferos del género Brachionus que son utilizados como alimento vivo para las larvas de peces marinos. El cultivo de rotíferos es un proceso que requiere elevadas cantidades de microalgas, ya que éstas constituyen la única dieta que permite producciones sostenidas y estables en cultivo continuo, con densidades elevadas (Yoshimura et al. 2003, Aquaculture 227: 165-172; Bentley et al. 2008, J World Aquac Soc 39:625- 635). Además, las microalgas del género Nannochloropsis producen un mejor crecimiento y composición bioquímica del rotífero que la levadura Saccharomyces cerevisiae, que puede también utilizarse como alimento para el rotífero (Luzbens et al., 1995, Aquaculture 133:295-309) o que otras dietas artificiales (Aragáo et al., 2004, Aquaculture 234: 429-445; Srivastava et al. 2006, Aquaculture 254:534-543; Koiso et al. 2009, Nippon Suisan Gakk 75:828-833). El elevado contenido en ácidos grasos poliinsaturados de cadena larga (PUFAs), especialmente en EPA, de las especies del género Nannochloropsis ha sido identificado como la causa de su elevado valor nutritivo para acuicultura, tanto en el caso del rotífero Brachionus plicatilis alimentado con especies marinas de este género (Watanabe et al. 1983, Aquaculture 34: 1 15-143), como en el caso del mejillón cebra (Dreissena polymorpha), la pulga de agua Daphnia magna o la almeja de agua dulce Corbicula fluminea alimentados con al especie de agua dulce Nannochloropsis limnetica (Wacker & von Elert 2003, Oecologia 135:332-338; Wacker et al., 2002, Limnol. Oceanogr. 47: 1242-1248; Basen et al., 2012, Oecologia 170:57- 64; Wacker & Martin-Creuzburg, 2007, Functional ecology 21 :738-747). Recientemente se ha descrito que la especie de agua dulce Nannochloropsis limnetica puede ser utilizada con excelentes resultados para el cultivo de Brachionus plicatilis en agua de mar (Freiré et al., 2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - Noviembre, 2013, Gran Canana (España)).
Concentrados de la microalga de agua dulce Chlorella también se están utilizando con éxito para el mantenimiento de cultivos densos del rotífero Brachionus sp., aunque las especies marinas del género Nannochloropsis producen tasas de crecimiento ¡guales o mayores (Hirayama & Nakamura, 1976, Aquaculture 8:301 -307; Maruyama et al., 1997; Kobayashi et al., 2008). Debido a que la biomasa de Chlorella producida industhalmente en condiciones mixotróficas o heterotróficas es deficiente en vitamina B12, indispensable para el crecimiento del rotífero, los productos comerciales de esta microalga de agua dulce para su uso en acuicultura están enriquecidos en esta vitamina, que generalmente es añadida directamente en el medio de cultivo (Maruyama et al, 1989, Nippon Suisan Gakkaishi 55: 1785-1790; Maruyama & Hirayama, 1993, Journal of the World Aquaculture Society 24:194-198). En el caso de las especies marinas de Nannochloropsis, que son cultivadas autotróficamente, no es necesaria la adición de esta vitamina en el medio de cultivo ni su enriquecimiento posterior para la obtención de tasas máximas de crecimiento en el rotífero. Además, la principal ventaja de Nannochloropsis sobre otras especies de algas unicelulares, y más específicamente sobre las especies de Chlorella, , es su elevado contenido en ácido Eicosapentaenoico (EPA, 20:5(n- 3)), que es transferido a través de los rotíferos a las larvas de peces, para cuyo desarrollo es esencial, estando ausente en las especies del género Chlorella. Actualmente, existen distintos productos comerciales refrigerados, congelados, condensados o liofilizados basados en especies marinas de Nannochloropsis que producen buenos resultados para el crecimiento del rotífero (Luzbens et al., 1995, Aquaculture 133:295-309; Navarro et al., 2001 , Hydrobiologia 452: 69-77). Estos productos compiten con un producto comercial denominado Chlorella SV-12 (Pacific Tading Co., Ltd, Chlorella Industry Co., Ltd. http://www.pacific-trading.co.jp/en/product/01 -2.html) que consiste en un concentrado de Chlorella (aprox 13,5% de peso seco) que ha sido enriquecido artificialmente para contener un 17% del ácido graso de cadena larga docosahexaenoico (22:6(n-3), DHA). Según reporta el prospecto técnico de este producto que se adjunta, esta biomasa contiene solamente un 2% de EPA (relación ΕΡΑ ΗΑ 1 :8,5).
El procedimiento de enriquecimiento de Chlorella en DHA ha sido descrito con anterioridad para su utilización en el cultivo de rotíferos (Hayashi et al., 2001 , Blosci. Biotechnol. Blochem. 65:202-204). Las células de Chlorella fueron cultivadas heterotróficamente con glucosa añadiéndose aceite de atún (0,5%) con un contenido del 26,8% de DHA o ácidos grasos libres obtenidos del hidrolizado del mismo aceite durante 24 horas. Estos autores no pudieron conseguir enriquecimiento utilizando aceites y solo mediante la utilización de ácidos grasos libres pudieron conseguir el enriquecimiento de distintas especies de Chlorella, alcanzando un 16,9% del total de ácidos grasos (Hayashi et al. 2001 , Blosci. Biotechnol. Blochem. 65:202-204), no siendo efectiva la utilización de aceites no hidrolizados. Un procedimiento similar fue aplicado para la producción de un extracto lipídico de Chlorella enriquecido en DHA que contuvo un 20% de DHA (Sugimoto et al 2002,. Biol. Pharm. Bull 25: 1090-1092). En éste caso el porcentaje de EPA fue ligeramente superior al 3%. Este procedimiento, asociado al ya descrito para el enriquecimiento en vitamina B12 es la base utilizada para el producto comercial SUPER FRESH CHLORELLA SV-12 de Pacific Trading Co. Ltd.,
Las familias de patentes que describen el enriquecimiento de Chlorella en ácidos grasos poliinsaturados, que utilizan en todos los casos ácidos grasos libres o sus sales correspondientes, son: - KR2005015233-A ; KR768757-B1 : Proceso para la producción de
Chlorella que contiene ácidos grasos omega-3, incluidos los ácidos eicosapentaenoico (EPA) y Docosahexaenoico (DHA), que comprende la adición de monoglicéridos de EPA y DHA al medio de cultivo al final de la fermentación.
- JP10276684-A ; KR98080312-A ; JP3096654-B2 ; KR428732-B ;
KR423876-B. Producción de Chlorella que contiene ácidos grasos altamente insaturados- comprende el cultivo de Chlorella en medio con DHA y otros ácidos grasos altamente insaturados en forma de ácido libre o su correspondiente sal.
Por otra parte, existe una única referencia, hasta donde el solicitante tiene conocimiento, en la que se describe el enriquecimiento de una especie de Nannochloropsis en DHA (Wacker et al., 2002, Limnol. Oceanogr. 47: 1242- 1248). En esta referencia la especie de agua dulce N. limnetica fue enriquecida con EPA o DHA puros por separado o con un extracto de la microalga Isocrhysis aff. galbana (Clon T-ISO) rico en DHA. Esta última especie contiene valores elevados de DHA, que sin embargo fueron transferidos con poca eficiencia a N. limnetica, con una relación final de 1 parte de DHA por cada 40 partes de EPA (relación peso: peso) en la biomasa enriquecida. Estos autores demuestran además claramente los beneficios del enriquecimiento de DHA para la dieta del mejillón D. polymorpha, a pesar de los bajos niveles de enriquecimiento logrados con su metodología (Wacker et al., 2002, Limnol. Oceanogr. 47: 1242-1248). El papel crucial de los ácidos grasos poliinsaturados de cadena larga para el cultivo de diversas especies marinas ha sido documentado de forma extensiva (Watanabe et al. 1983, Aquaculture 34: 1 15-143, Izquierdo, 1996. Aquaculture Nutrition, 2: 183-191 ; Tocher, 2010, Aquaculture research 41 :717-732), aunque también en los ambientes dulceacuícolas la presencia de éstos ácidos grasos ha sido identificada como un factor fundamental que controla las interacciones en la cadena nutricional (Müller-Navarra et al. 2000, Nature 403, 74-77). Además de las aplicaciones en acuicultura, especies del género Nannochloropsis han sido estudiadas de forma extensiva como fuente de EPA para aplicaciones nutricionales humanas y animales (Sukenik 1998, Cohén, Z. (Ed.), Chemicals from Microalgae. Taylor and Francis, London, p 41 -56; Chini Zitelli et al., 1999, Journal of Biotechnology 70: 299-312) y más recientemente, han centrado un gran interés debido al potencial de estas especies para la producción de biodiesel (Rodolfi et al., 2008, Journal of Biotechnology 70: 299- 312; Doan, et al., 201 1 , Biomass and Bioenergy 35: 2534-2544; San Pedro et al. 2013, Bioresource Technology 134:353-361 ). Además de las aplicaciones en acuicultura, las diversas propiedades del EPA lo convierten en un compuesto de elevado interés biotecnológico y farmacológico, de ahí el interés de la utilización de la biomasa de especies del género Nannochloropsis, ricas en este ácido graso insaturado, en el campo de la nutrición humana y animal. Se ha demostrado que los ácidos grasos poliinsaturados de la serie n-3 EPA y DHA presentan una serie de beneficios para la salud, siendo efectivos en e! tratamiento de enfermedades cardiovasculares, incluyendo efectos bien documentados hipo-triglicémicos y anti-infiamatorios. Así mismo, varios estudios indican efectos prometedores antihipertensivos, anticancerígeno, anti-depresión, antienvejecimiento y aníi- artríticos. También se ha descrito efecto anííinfiamatorio y sensibilizador a la insulina en desordenes metabóiicos. De forma más específica, diversos estudios indican que el EPA puede ser beneficioso en procesos de inflamación, esquizofrenia, depresión, síndrome de fatiga crónica, disfunción hepática, síndrome de atención deficiente e hiperactividad, etc, además de mejorar la eficiencia de la quimioterapia en procesos cancerígenos (Siriwardhana et al. 2012, Se-Kwon Kim, Editor(s), Advances in Food and Nutrition Research, Academic Press, 2012, Volume 65, Pages 21 1 -222). En sistemas de experimentación animal se ha demostrado que la inclusión de biomasa de Nannochloropsis rica en EPA produce una mayor proporción de DHA en los lípidos cerebrales de la progenie de ratas y también un mejor aspecto y contenido en DHA de huevos de gallinas alimentados con la biomasa de esta especie (Sukenik, 1999, Cohén, Z. (Ed.), Chemicals from Microaigae. Taylor and Francis, London, p 41 -56).
Además el enorme interés de la biomasa microalgal rica en EPA para su aplicación en el campo de la acuicultura, cría animal y tratamiento de enfermedades en humanos, derivado de las propiedades antes citadas, reviste aún mayor interés la obtención de biomasa enriquecida también en DHA. El DHA es uno de los componentes principales del aceite de pescado y además de ser fundamental en el desarrollo de especies marinas, es muy abundante en los fosfolípidos del cerebro de los mamíferos. Se ha sugerido que el DHA es necesario para el desarrollo neuronal y la plasticidad sináptica. El contenido de DHA en los fosfolípidos cerebrales también es menor en pacientes con Aizheimer. Además, el elevado contenido de DHA en la leche materna humana ha sido relacionado con el desarrollo del sistema nervioso central en niños, llevando a la recomendación de la suplementación de las leches maternizadas en este compuesto. Otras posibles aplicaciones del DHA incluyen actividad anticancerígena, psoriasis, etc. Existen además numerosos estudios que sugieren que el DHA es un componente importante para el mantenimiento y mejora de las funciones cerebrales en animales envejecidos (Sugimoto et al., 2002, Biol. Pharm. Bull 25:1090-1092). Comercialmente el DHA para uso en nutrición humana se produce a partir de aceite de pescado o del dinoflagelado heterótrofo Crypthecodinium cohnii (Mendes et al., 2008, Journal of Applied Phycology 21 : 199-214). La utilización de DHA de C. cohnii para el enriquecimiento de alimento, particularmente en el campo de la acuicultura, está divulgado en la patente (Gladue et al., 2002, US 6372460 B1 ). Aunque existen microalgas ricas en DHA, presentando un contenido que puede variar entre el 10 y el 20% (Volkman et al. 1989, Journal of Experimental Marine Biology and Ecology, 128: 219-240), las especies que presentan un elevado contenido de éste ácido graso presentan bajos niveles de EPA.
Por lo tanto, tanto en el campo de la acuicultura como en el campo de la nutrición animal y humana, es de gran interés la disponibilidad de biomasa microalgal enriquecida simultáneamente en EPA y DHA. Un producto con estas características no ha sido descrito en la bibliografía ni se encuentra en el mercado, por lo que continúa siendo un reto la obtención de una microalga enriquecida simultáneamente en EPA y DHA.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han desarrollado un procedimiento de enriquecimiento que permite obtener biomasa de microalgas con un elevado contenido simultáneo en ácido eicosapentaenoico (20:5n-3) (EPA) y ácido docosahexaenoico (22:6n-3) (DHA). En particular, la biomasa de microalgas pertenece al género Nannochloropsis. Una ventaja de la invención es que la relación entre EPA y DHA es superior a 0,5 partes de DHA por cada 10 partes de EPA, pudiéndose alcanzar una relación de 2,4 partes de DHA por 1 parte de EPA, y siendo el porcentaje de EPA al menos un 10% del total de los ácidos grasos de la biomasa. Una ventaja adicional de la invención es que la biomasa de microalgas obtenida tiene además un contenido elevado en otros ácidos poliinsaturados, como por ejemplo el ácido poliinsaturado 22:5 como se muestra en las figuras 5 y 6, que supera el 10% en peso respecto al peso del concentrado de biomasa. Como se puede comprobar en los ejemplos y figuras, la relación de EPA y DHA obtenida al aplicar el procedimiento de esta invención es muy superior a cualquier otra descrita previamente, y así los autores de la presente invención obtuvieron una relación de hasta 2,4 partes de DHA por cada parte de EPA en presencia del emulsionante y 0,6 partes de DHA por cada parte de EPA en ausencia del mismo.
Así, en un aspecto la invención se dirige a un procedimiento para el enriquecimiento de biomasa de microalgas del género Nannochloropsis en ácidos poliinsaturados, que comprende:
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de ácidos grasos que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, y b) mantener la mezcla resultante durante al menos 24 horas.
En otro aspecto, la invención se dirige a una biomasa de microalgas del género Nannochloropsis, caracterizada porque comprende ácido eicosapentaenoico (20:5n-3) (EPA) y ácido docosahexaenoico (22:6n-3) (DHA) en una relación en peso de DHA igual o superior a 1 parte de DHA por cada 10 partes de EPA y contiene una proporción de ácido eicosapentaenoico (20:5n-3) (EPA) de al menos un 10% respecto al total de los ácidos grasos de la biomasa.
En otro aspecto, la invención se dirige a una biomasa de microalgas del género Nannochloropsis, obtenible mediante el procedimiento descrito anteriormente.
En otro aspecto, la invención se dirige al uso de la biomasa de microalgas del género Nannochloropsis descrita anteriormente, que tiene aplicación en la acuicultura, en la cría animal para la mejora de perfil de ácidos grasos de productos de consumo (carne, huevos, leche, etc) y en el sector de la cosmética. En otro aspecto la invención se dirige al uso de la biomasa de microalgas del género Nannochloropsis descrita anteriormente para la preparación de un nutracéutico. En particular, el nutracéutico de la presente invención es de aplicación en casos de infertilidad, enfermedades del sistema nervioso y enfermedades del sistema circulatorio, además de servir como complemento alimenticio.
Caracteriza a la presente invención el hecho de emplear en el procedimiento una biomasa concentrada en vez de cultivos diluidos, los tiempos y condiciones de exposición de la biomasa, la posibilidad de utilización de emulsionante, la modificación de la relación de biomasa y concentración de lípidos, así como el empleo de un aceite como fuente de ácidos grasos. DESCRIPCIÓN DE LAS FIGURAS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente.
La Figura 1 muestra el perfil de ácidos grasos, medido mediante cromatografía de gases, de un concentrado celular de la microalga de agua dulce N. limnetica (concentración de biomasa 10% peso/volumen) enriquecida con una emulsión de DHA puro (2,5 mg/mL) durante 6 horas en el EJEMPLO 1 . Estas condiciones, que asemejan a las descritas en la bibliografía (Wacker et al., 2002) no permitieron el enriquecimiento de la biomasa en DHA, ya que se observa claramente el pico de EPA en el minuto 45, presente en la biomasa de todas las especies de Nannochloropsis, mientras que el pico de DHA, que aparece en el minuto 51 , es prácticamente inapreciable. Tampoco se logró enriquecimiento con el aceite rico en DHA en ninguna de las concentraciones probadas.
La Figura 2 muestra el perfil de ácidos grasos, medido mediante cromatografía de gases, de un concentrado de N. limnetica (concentración de biomasa 1 % peso seco/volumen) no enriquecido, procedente del experimento descrito en el EJEMPLO 2, en el que solo aparece el pico de EPA característico de las especies de Nannochloropsis. La Figura 3 muestra el perfil de ácidos grasos, medido mediante cromatografía de gases, de un concentrado de N. limnetica (concentración de biomasa 1 % peso seco/volumen) enriquecida con una emulsión de DHA puro (2. ,5 mg/mL) durante 24 horas procedente del experimento descrito en el EJEMPLO 2. Se observa claramente la existencia del pico correspondiente al DHA en el minuto 51 , que en este caso es superior al pico del EPA, que aparece en el minuto 45.
La Figura 4 muestra cromatograma de enriquecimiento de Nannochloropsis limnetica en las mismas condiciones que la Figura 3, en el que el enriquecimiento se realiza utilizando un aceite rico en DHA (contenido mayor del 10%) en el que se observa el pico correspondiente al DHA en el minuto 51 , además de oros picos entre el EPA (minuto 45) y el DHA que corresponden a la incorporación de otros ácidos grasos poliinsaturados, entre los que se encuentra el 22:5.
La Figura 5 muestra el % de ácidos grasos del total en concentrados de N. limnetica enriquecida durante 24 horas con DHA puro o con aceite rico en DHA, ambos a una concentración de 2,5 mg/mL y en presencia de emulsionante, siguiendo el procedimiento descrito en el EJEMPLO 2.
La Figura 6 muestra el % de ácidos grasos respecto del total en concentrados de N. limnetica enriquecida con aceite rico en DHA a una concentración de 2,5 mg/mL durante 24 horas en presencia de emulsionante y en ausencia del mismo, siguiendo el procedimiento descrito en el EJEMPLO 2.
La Figura 7 muestra un cromatograma del perfil de ácidos grasos de la microalga marina Nannochloropsis gaditana no enriquecida (control), correspondiente al experimento descrito en el EJEMPLO 3, en el que se observa el pico de EPA a los 45 minutos característico de todas las especies de este género. Como era de esperar en una biomasa no enriquecida, no se aprecia pico alguno en el tiempo de retención 51 minutos, correspondiente al DHA. La Figura 8 muestra un cromatograma del perfil de ácidos grasos de la microalga marina Nannochloropsis gaditana enriquecida con una emulsión de aceite rico en DHA, (EPADHAX, que contiene un porcentaje de este ácido graso del 10-18%), correspondiente al experimento descrito en el EJEMPLO 3. La biomasa se enriqueció durante 24 horas en presencia de luz con una concentración de aceite de 2,5 mg/mL. Se observa la aparición de un pico en el minuto 51 que corresponde al DHA incorporado por la microalga. La Figura 9 muestra un cromatograma del perfil de ácidos grasos de la microalga marina Nannochloropsis gaditana enriquecida con una emulsión de aceite rico en DHA, (Menhaden Oil, Sigma, CAS 8002/50/4, que contiene un porcentaje de este ácido graso del 1 1 ,9%), correspondiente al experimento descrito en el EJEMPLO 3. La biomasa se enriqueció durante 24 horas en presencia de luz con una concentración de aceite de 2,5 mg/mL. Se observa la aparición de un pico en el minuto 51 que corresponde al DHA incorporado por la microalga.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En un aspecto la invención se dirige a un procedimiento para el enriquecimiento de biomasa de microalgas del género Nannochloropsis en ácidos poliinsaturados, que comprende:
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de ácidos grasos que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, y b) mantener la mezcla resultante durante al menos 24 horas. Para la presente invención, las microalgas del género Nannochloropsis comprenden tanto especies de agua dulce, como por ejemplo Nannochloropsis limnetica, como especies de agua marina, como por ejemplo Nannochloropsis gaditana, además también comprende las especies del mismo género como por ejemplo Nannochloropsis atomus, N. coccoides, N. maculata, N. oculata, N. granulata, N. oceánica y N. salina.
En otra realización particular, la solución o emulsión de ácidos grasos de la etapa a) tiene una concentración de entre 10 mg/mL y 100 mg/mL. Más en particular, tiene una concentración de 50 mg/mL.
En una realización particular, el procedimiento comprende además añadir en la etapa a) una solución de emulsionante.
En una realización más particular, el emulsionante se selecciona de entre albúmina de suero bovino, dodecil sulfato de sodio, alcoholes grasos polietoxilados, sales alquílicas de amonio cuaternarias, alquil-betaínas, lecitinas de soja y huevo, goma guar, goma garrofín, alginatos, ácido fosfórico, sales de fosfato, citrato de sodio, sales de fosfato, pectina, ésteres de sacarosa, ésteres de sorbitano, celulosa y sus derivados, polientilenglicol, y mezclas de los mismos.
En otra realización particular, la solución de emulsionante tiene una concentración de entre 10 mg/mL y 100 mg/mL. Más en particular, tiene una concentración de 50 mg/mL.
En otra realización particular, la relación volumétrica entre la solución de ácidos grasos de la etapa a) ¡i) y la solución del emulsionante está entre 1 : 1 y 1 :4. En otra realización particular, la relación es 1 :2.
En otra realización particular, la relación de peso seco de microalgas de la etapa a) es de entre el 0,8% y el 15%. En otra realización particular, la suspensión de biomasa de microalgas y la solución o emulsión de ácidos grasos se mezclan en la etapa a) en una proporción de entre 1 : 1 y 10: 1 . Más en particular la proporción es de 6:1 (volumen:volumen). En otra realización particular, la etapa b) comprende un ciclo de al menos 12 horas de luz.
Como se ha comentado anteriormente, la invención se refiere a un procedimiento para el enriquecimiento de biomasa de microalgas del género Nannochloropsis en distintos ácidos grasos poliinsaturados, principalmente ácido docosahexaenoico (22:6n-3, DHA). Para ello se emplea una suspensión o emulsión de ácidos grasos. Dicha suspensión o emulsión puede ser un aceite. Así en una realización particular, la suspensión o emulsión de ácidos grasos de la etapa a) es una suspensión o emulsión de un aceite o de una mezcla de aceites.
Para la presente invención se entiende por "aceite" un líquido que comprende una mezcla de triglicéridos y ácidos grasos libres, de manera que el peso total de ácidos grasos libres es inferior al 10%.
En el procedimiento de la presente invención, el enriquecimiento de la biomasa de microalgas del género Nannochloropsis se puede llevar a cabo por medio de cualquier aceite o extracto rico en ácidos grasos poliinsaturados de cadena larga, de origen animal o microbiano.
En una realización particular, el aceite se selecciona de entre aceites con un porcentaje de DHA superior al 5% en peso respecto al total de ácidos grasos, como por ejemplo aceite de pescado, como por ejemplo el aceite de arenque, aceite de hígado de bacalao o derivados hidrolizados. En una realización particular, el aceite se selecciona de aceites obtenidos de microalgas marinas con un contenido de DHA superior al 5%.
En una realización particular, el aceite se selecciona de entre aceite de arenque, aceite de hígado de bacalao, aceite obtenido de microalgas marinas, o mezclas de los mismos. En una realización particular, la invención se refiere a un procedimiento para el enriquecimiento de biomasa de microalgas del género Nannochloropsis en ácidos poliinsaturados, que comprende:
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de aceite que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, y con i¡¡) una solución de emulsionante, y
b) mantener la mezcla resultante durante al menos 24 horas.
En una realización más particular, la invención se refiere a un procedimiento para el enriquecimiento de biomasa de microalgas del género Nannochloropsis en ácidos poliinsaturados, que comprende:
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de aceite que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, a una concentración de entre 10 mg/ml_ y 100 mg/ml_, y con i¡¡) una solución de emulsionante a una concentración de entre 10 mg/ml_ y 100 mg/ml_, con la condición de que la solución o emulsión ¡i) y la solución i¡¡) están en una proporción de entre 1 : 1 y 1 : 10, y
b) mantener la mezcla resultante durante al menos 24 horas, en las que al menos 12 horas son de iluminación.
En una realización particular, las emulsiones, soluciones y suspensiones del procedimiento se preparan empleando agua, disolventes alcohólicos, disolventes glicólicos, o mezclas de los mismos. En una realización particular, se emplea etanol.
La biomasa de microalgas de Nannochloropsis una vez enriquecida puede tener diferentes formas de presentaciones: concentrado refrigerado o congelado, biomasa seca, liofilizada o preservada por cualquier otro método, así como los extractos derivados.
Así, en una realización particular la invención se dirige a una solución, composición o liofilizado que comprende la biomasa de la invención.
Las aplicaciones de la biomasa de Nannochloropsis enriquecida en DHA y otros ácidos grasos poliinsaturados, preferentemente EPA son: nutrición animal en el campo de la acuicultura y otros como avicultura, ganado bovino, ovino, porcino, etc. sin restringirse a éstos, así como suplemento nutritivo en piensos para animales de compañía, además de tener aplicaciones en el sector de la cosmética.
En otro aspecto la invención se refiere a un complemento nutricional o ingrediente funcional que comprende la biomasa de la presente invención.
Con el procedimiento objeto de la invención se mejoran los índices de enriquecimiento de DHA establecidos para Chlorella y N. limnetica, manteniendo un elevado enriquecimiento en EPA. Para el establecimiento de la metodología se estudiaron las siguientes variables:
- Utilización de biomasa concentrada en vez de los cultivos diluidos utilizados en otras metodologías. En los ejemplos de enriquecimiento exitoso que se muestran se utilizan concentrados microalgales de 1 % de relación peso/volumen, mientras que en la bibliografía el concentrado utilizado para el enriquecimiento con ácidos grasos puros es 50 veces más diluido (0,01 % de peso de carbono, lo que equivaldría a 0,02% peso/volumen, (Wacker et al. 2002, Limnol. Oceanogr. 47: 1242-1248).
- Modificación del tiempo y condiciones de exposición de la biomasa. En la presente invención se expone la mezcla durante un mínimo de 24 horas en condiciones de iluminación, siendo la presencia de iluminación un factor clave para el enriquecimiento, mientras que en la bibliografía el tiempo de exposición es de 4 horas sin especificar la presencia o no de iluminación. - Modificación de la relación concentrado/dilución lipídica en etanol. En la invención se utilizan relaciones concentrado acuoso/lípido en solución etanólica de 6:1 (una parte de solución etanólica por cada seis de concentrado microalgal acuoso), mientras que en la bibliografía se utilizan proporciones de solución etanólica mucho menores (100: 1 , es decir, 1 parte de etanol por cada 100 partes de concentrado microalgal acuoso)
- Modificación de la relación biomasa de microalga: concentración de lípidos. Se obtienen enriquecimientos con una concentración de aceite de 2.5 mg por mililitro de mezcla, mientras que en la bibliografía se utilizan 0.025 mg de lípido por mililitro de mezcla (Wacker et al., 2002, Limnol. Oceanogr. 47:1242-1248)
- Modificación de la presencia de emulsionante. En la bibliografía se utiliza emulsionante en una concentración 0.5 mg por mililitro de la mezcla. En este procedimiento se utiliza una concentración de 5 mg por mililitro de mezcla, consiguiéndose también enriquecimiento en ausencia del mismo.
- Modificación de la fuente de ácido graso utilizada. En la bibliografía el enriquecimiento significativo se consigue con ácidos grasos puros o sus sales (Hayashi et al., 2001 , Blosci. Biotechnol.
Blochem. 65:202-204; Wacker et al., 2002, Limnol. Oceanogr. 47: 1242-1248) mientras que en la presente invención se utilizan aceites. En una realización preferente de la invención, el procedimiento comprende las etapas de:
- preparación de una solución de lípidos en etanol o de una emulsión lípidos junto con el emulsionante, que en el ejemplo que se cita es albúmina de suero bovino (BSA) que comprende las etapas de:
- Preparar una solución madre o stock de lípido con aceite ricos en DHA en etanol, - Preparar una solución madre o stock de emulsionante en H20,
- Formar una emulsión mediante mezcla de la solución madre o stock de lípido y la solución de emulsionante en una proporción 1 :2, agitando hasta que se forme una emulsión,
- preparación de la biomasa concentrada mediante centrifugado,
- enriquecimiento de la biomasa concentrada añadiendo la solución etanólica del aceite o su emulsión a la biomasa concentrada,
- dejar la mezcla expuesta durante al menos 24 horas con iluminación.
Gracias al procedimiento descrito se consigue:
• Un enriquecimiento de la biomasa de Nannochloropsis en DHA y otros ácidos grasos poliinsaturados utilizando aceites en vez de ácidos grasos libres. El enriquecimiento se consigue también en ausencia del emulsionante, aunque la presencia del mismo aumenta la efectividad.
• Mejora los índices de enriquecimiento de DHA establecidos para Chlorella, manteniendo un elevado contenido en EPA, ya presente de forma natural en la biomasa de las microalgas del género Nannochloropsis, modificando variables como concentración de biomasa del concentrado microalgal, tiempo de exposición, relación biomasa:ácido graso, suministro de iluminación y relación concentrado microalgal acuoso: solución lipídica etanólica
• Se obtiene una biomasa enriquecida de forma simultánea en EPA y DHA, a diferencia del procedimiento descrito por Wacker et al., (2002, Limnol. Oceanogr. 47: 1242-1248) obteniendo relaciones EPA: DHA mayores de 10: 1 (1 parte de DHA por cada 10 partes de EPA) en peso en todos los casos y alcanzándose relaciones
1 :2,4 (2,4 partes de DHA por cada parte de EPA)
• El proceso de enriquecimiento es viable para especies de Nannochloropsis agua dulce y agua marina A lo largo de la descripción y de las reivindicaciones la palabra "comprende" y sus vanantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
EJEMPLOS
EJEMPLO 1. En este ejemplo se probaron condiciones semejantes a las descritas en la bibliografía para el enriquecimiento de N. limnetica, utilizando DHA puro y un aceite de pescado con elevado contenido en DHA, no consiguiéndose enriquecimiento de la biomasa concentrada de la microalga en DHA; lo que demuestra que la modificación simple de las condiciones existentes en la bibliografía no permite el enriquecimiento.
Para la realización del experimento se preparó un concentrado de la microalga de agua dulce N. limnetica obtenido por centrifugación como se describe en Freiré et al. (2013, Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - Noviembre, 2013, Gran Canana (España)). Las células se resuspendieron en agua destilada para alcanzar una concentración de aproximadamente de 12,3x109 celulas/mL y una concentración de carbono de 50 mg/mL (equivalente a 100 mg/mL o 10% en relación peso/volumen, teniendo en cuenta un contenido de carbono de la biomasa del 50%). La biomasa se mezcló con una solución de DHA puro en etanol a dos concentraciones: 250 y 2500 microgramos/mL y aceite de pescado con alto contenido en Omega 3 (DHA 20-26% EPA 7-12%), refinado EPADHAX obtenido de la empresa Epadhax S.L.U (Boiro, A Coruña, http://www.epadhax.eu/epadhax-omega-3-activo.php) a una concentración de 25 y 250 microgramos/mL. En todos los casos los lípidos se emulsionaron con BSA. Las mezclas se incubaron durante 6 horas con la emulsión lipídica en agitación a una temperatura de 22°C. Para la evaluación del grado de enriquecimiento de las pastas, una vez finalizado el periodo de incubación se centrifugó la biomasa y se realizaron dos lavados con agua destilada para eliminar cualquier resto de lípido emulsionado que no hubiese sido incorporado por las células. Los lípidos totales fueron extraídos siguiendo el método propuesto por Bligh & Dyer (1959, Can J Biochem Physiol 37: 91 1 -917). Los ácidos grasos fueron analizados mediante transmetilación con HCI y CH30H (Sato & Murata 1988, Beiheft Nova Hedwigia 1 12:391 -405). La cuantificación e identificación se realizó mediante cromatografía de gases.
Los resultados de este primer experimento fueron negativos, no lográndose obtener enriquecimiento en DHA de la biomasa (Figura 1 ). En esta figura 1 , correspondiente al concentrado incubado con la emulsión de DHA puro a una concentración de 250 microgramos/mL, se observa el pico correspondiente al EPA, que aparece en el cromatrograma a los 45 minutos, y es característico de las especies de Nannochloropsis. Mientras que el pico de DHA, que aparece con tiempo de retención aproximado de 51 minutos, es prácticamente inapreciable, no habiéndose logrado por lo tanto enriquecimiento.
EJEMPLO 2. En este experimento se variaron factores como concentración de biomasa y tiempo de exposición con respecto a las condiciones descritas en el Ejemplo 1 , lográndose la incorporación de DHA, tanto con la utilización de DHA puro como con la utilización del aceite rico en DHA con y sin emulsionante. Para la realización del experimento se utilizó un concentrado microalgal de N. limnetica obtenido por centrifugación tal y como se indica en el Ejemplo 1 . En esta ocasión las células se resuspendieron en agua destilada para alcanzar una concentración de 10 mg/mL peso/volumen (1 % de relación peso:volumen, equivalente a aprox. 1 ,23*109 células/mL). El concentrado de microalgas se mezcló con DHA o con aceite rico en DHA a una concentración de 2,5 mg de lípido/mL emulsionados con BSA. La emulsión se preparó mezclando 50 microlitros de una dilución en etanol del lipido, a una concentración de 50 mg/ml con 100 microlitros de una solución acuosa de BSA a una concentración de 50 mg/mL. La mezcla se agito para formar la emulsión y se añadió a 850 microlitros de concentrado microalgal. En el caso del aceite, se probó también la adición directa de la solución de aceite en etanol (50 microlitros) al concentrado, sin la mezcla previa con el emulsionante. La mezcla lípido/concentrado microalgal se incubó en agitación en presencia de luz durante 24 horas. En el caso del DHA puro, se incubó también una mezcla durante 48 horas para comprobar el efecto del enriquecimiento durante periodos aún más prolongados. Una vez finalizado el periodo de enriquecimiento la biomasa se centrifugó y lavó 2 veces, analizándose por cromatografía de gases el perfil de ácidos grasos del extracto lipídico, según la metodología descrita en el ejemplo 1 . En la Figura 2 se muestra el cromatograma de N. Ilimnetica no enriquecida (control), en la que solo aparece EPA, cuyo pico se identifica a los 45 minutos, con ausencia, como era de esperar en este concentrado control, del pico de DHA. Por el contrario, la adición de 2,5 mg/ml_ de la emulsión de DHA puro (Figura 3) o de la emulsión de aceite rico en DHA (Figura 4) produce la incorporación del DHA, con la aparición de un pico característico a los 51 minutos. Además, cuando se utiliza el aceite rico en DHA, a mayores de cantidades elevadas de EPA y DHA, se detectan otros picos correspondientes a otros ácidos grasos poliinsaturados entre el EPA y el DHA, que no aparecen ni en el control ni en la muestra enriquecida con DHA puro.
Los valores obtenidos como % de los ácidos grasos totales y como contenido celular en peso (pg por célula), con los distintos protocolos de enriquecimiento se muestran en la Tabla 1 que muestra el perfil de ácidos grasos de concentrado de N. limnetica enriquecida con DHA puro durante 24 y 48 horas, y con aceite rico en DHA (EPADHAX) con y sin emulsionante (BSA en este ejemplo) durante 24 horas.
Tabla 1 . Perfil de ácidos grasos de la biomasa de Nannochloropsis limnetica no enriquecida (control) o enriquecida con DHA puro y aceite rico en DHA (EPADHAX) a una concentración de 2,5 mg/mL, en ambos casos emulsionados con BSA. El enriquecimiento se realizó durante 24 y 48 horas en el caso del DHA, y durante 24 horas en el caso de los enriquecimientos con el aceite. En este último caso se probó también el efecto de retirar el BSA como emulsionante (Aceite1 -BSA).
Figure imgf000023_0001
ACEITE 1 + ACEITE 1 - BSA BSA
Acidos
grasos % pg/cel % pg/cel
14:0 2,41 0,03 3,99 0,04
16:0 13,26 0,17 22,65 0,22
16:1 8,44 0,11 13,20 0,13
18:0 1,31 0,02 2,90 0,03
18:ln9c 5,00 0,06 11,38 0,11
18:ln9t 0,00 0,00 0,00 0,00
18:2n6 2,12 0,03 3,62 0,04 18:4n3 0,00 0,00 0,00 0,00
20:3n3 7,40 0,10 5,36 0,05
20:5n3 13,42 0,17 22,65 0,22
24:0 0,00 0,00 0,00 0,00
22:5 12,73 0,16 0,61 0,01
22:6n3 33,92 0,44 13,65 0,13
EPA/DHA 0,40 1,66
La comparación de los enriquecimientos de 24 horas con DHA puro y con aceite rico en DHA (EPADHAX) (Tabla 1 , Figura 5) muestra un mayor porcentaje de DHA cuando éste se adiciona puro (56,6%) frente al aceite de poliinsaturados (33,9%). Sin embargo, en la muestra enriquecida con el aceite (Tabla 1 Figura 6) se encuentra un elevado porcentaje de otros ácidos grasos poliinsaturados, como el ácido graso 22:5 (12,7%). Estos valores de contenido de DHA por célula equivalen a 80,70 microgramos de DHA por mg de peso seco en el caso del enriquecimiento con DHA puro y a 52 microgramos de DHA por miligramo de peso seco en el caso del EPADHAX. Estos valores son significativamente más altos que los obtenidos por Wacker et al. (Wacker et al. 2012, Limnol. Oceanogr. 47: 1242-1248), que reporta unos 1 1 ,6 microgramos de DHA por miligramo de biomasa. El tiempo de enriquecimiento óptimo se estableció en 24 horas, ya que el análisis de las muestras enriquecidas con DHA puro reveló que los enriquecimientos de 48 horas no mejoraron los niveles de EPA o DHA (Tabla 1 ).
El análisis del perfil de ácidos grasos de las muestras enriquecidas con DHA puro demuestran que éste alcanza el 56% del total de ácidos grasos con 24 horas de enriquecimiento, no mejorando este valor con enriquecimiento de 48 horas (Tabla 1 ).
La presencia del emulsionante mejora claramente la incorporación del DHA y otros ácidos grasos poliinsaturados presentes en el aceite (Tabla 1 , Figura 6), pero aún en ausencia del emulsionante el DHA alcanza el 13,65% del total de los ácidos grasos, con una relación 1 ,66 EPA/DHA (Tabla 1 ).
EJEMPLO 3. En este experimento se probó la eficiencia del procedimiento de enriquecimiento con dos especies distintas: la especie de agua dulce Nannochloropsis limnetica y la especie marina Nanochloropsis gaditana. Se prepararon concentrados mediante centrifugación de las células mediante la metodología descrita en los Ejemplos 1 y 2. Las células de N. limnetica y N. gaditana se resuspendieron en agua destilada o agua de mar respectivamente a una concentración del 1 % peso/volumen. El enriquecimiento, siguiendo el procedimiento y concentraciones descritas en el Ejemplo 2, se realizó con una emulsión en BSA de dos tipos de aceites ricos de DHA: aceite EPADHAX, utilizado en el ejemplo 2 (aceite 1 ) y aceite de arenque (Menhaden Oil, Sigma, CAS 8002/50/4) con una concentración final de 2,5 mg/mL (aceite 2). Ambos aceites se caracterizan por poseer porcentajes de DHA del 10-18% en el caso del EPADHAX y 8-15% en el caso del aceite de arenque. El contenido de ácidos grasos libres en el aceite 1 ronda los 14 mg por gramo de aceite, mientras que los valores descritos en la bibliografía para el aceite 2 son menores, alrededor de 5,5 mg por gramo. Es importante hacer notar que debido a el origen natural de estos aceites, la composición de ácidos grasos y el porcentaje de ácidos grasos libres puede variar entre distintas partidas. Los enriquecimientos se llevaron a cabo por triplicado. Una vez finalizadas las 24 horas de exposición, las células se concentraron por centrifugación, se lavaron dos veces con agua destilada y se analizaron mediante la metodología descrita en los ejemplos 1 y 2.
El perfil de ácidos grasos de las células de N. limnetica y N. gaditana no enriquecidas y enriquecidas con los dos aceites ricons en DHA (aceite 1 y aceite 2) se muestran en las Tablas 2 y 3 respectivamente. En este experimento se han logrado alcanzar contenidos de DHA de entre el 1 ,5 y el 2,8% de los ácidos grasos totales de la biomasa, independientemente de la especie y del aceite utilizado. En todos los casos hay una relación mínima de 1 parte de DHA por cada 10 partes de EPA. Las figuras 7, 8 y 9 muestran los perfiles cromatográficos de N. gaditana no enriquecida (Figura 7) y enriquecida con los dos tipos de aceites ricos en DHA. En estas dos últimas figuras se aprecia claramente el pico de DHA a los 51 minutos, resultante de la incorporación de los aceites..
Tabla 2. Perfil de ácidos grasos de la especie de agua dulce N. limnetica no enriquecida (Control) y enriquecida durante 24 horas con dos tipos de aceites ricos en ácidos grasos poliinsaturados añadidos al concentrado celular en forma de emulsión a una concentración de 2,5 mg/mL.
Figure imgf000026_0001
Tabla 3. Perfil de ácidos grasos de la especie de agua dulce N. gaditana no enriquecida (Control) y enriquecida durante 24 horas con dos tipos de aceites ricos en ácidos grasos poliinsaturados añadidos al concentrado celular en forma de emulsión a una concentración de 2,5 mg/mL. Control Aceite 1 Aceite 2
% pg/célula % pg/célula % pg/célula
6,17 + 0,03 + 6,05 + 0,07 +
14:0 4,08 0,02 1,24 0,02 3,16 0,05
29,02 + 0,12 + 31,54 + 0,50 +
16:0 23,99 0,14 5,26 0,06 3,73 0,37
14,02 + 0,05 + 16,29 + 0,24 +
16: 1 19,46 0,11 2,03 0,02 7,98 0,17
2,81 + 0,01 + 2,50 + 0,04 +
18:0 1,38 0,01 0,67 0,00 0,71 0,03
12,58 + 0,05 + 11,54 + 0,17 +
18: ln9 0,00 0,00 1,79 0,03 1,50 0,11
3,12 + 0,01 + 2,92 + 0,05 +
18:2n6 5,57 0,03 0,45 0,01 0,50 0,04
1,51 + 0,01 + 0,58 + 0,01 +
20: ln9 0,00 0,00 0,54 0.00 0,22 0,01
4,20 + 0,02 + 4,27 + 0,07 +
20:3n3 7,69 0,04 0,86 0.01 0,79 0,06
21,23 + 0,09 + 19,00 + 0,31 +
20:5n3(EPA) 36,57 0,21 6,60 0,04 3,65 0,26
2,80 + 0,01 + 1,88 + 0,03 +
22:6n3 (DHA) 0,00 0,00 1,14 0,00 0,75 0,03
EPA/DHA 7,59 10,11
Como resultado de todas las experimentaciones mostradas, se considera que un procedimiento preferente pero no limitativo de enrequecimiento de biomasa de microalgas del género Nannochloropsis en distintos ácidos grasos, principalmente EPA, y DHA comprende las etapas de:
- Preparación de una suspensión etanólica de lípidos o ácidos grasos o de una emulsión lípidos o ácidos grasos + emulsionante (BSA , bovine serum albumin u otro) que comprende a su vez:
- Preparar una solución madre o stock de lípido (que puede ser preferentemente EpaDhax150 o DHA, Sigma D-2534 u otro aceite rico en DHA) en etanol, a una concentración de 50 Mg pL. - Preparar una solución madre stock de BSA, que preferentemente puede ser Sigma A4503, u otro emulsionante en H20 destilada, a una concentración de 50 mg/ml_.
- preparar una mezcla madre o stock de lípido / ácido graso puro y BSA en una proporción 1 :2. Agitar hasta que se forme la emulsión.
Preparación del concentrado de biomasa mediante centrifugado u otro procedimiento de concentración como por ejemplo sedimentación, floculación, filtración tangencial, etc., para obtener una concentración final de 10 mg/ml_ o mayor, a la que se añade la emulsión previamente preparada. El procedimiento se puede llevar a cabo con diferentes concentraciones de biomasa
Enriquecimiento del concentrado de biomasa mediante el añadido directo de la solución madre de lípidos en etanol o de la emulsión lípido+ emulsionante (BSA u otro) al concentrado de microalgas
Dejar la mezcla en agitación constante durante 24 horas en presencia de luz. En una posible forma de realización se podría añadir 150 μΙ_ de emulsión (lípidos+ emulsionante) a 850 μΙ_ de concentrado microalgal, lo que representa una proporción aproximada de 1 :6, o cualquier combinación volumétrica que mantenga esa proporción. En otra posible forma de realización se añadirían 50 μΙ_ de una solución lipídica en etanol a 950 μΙ_ de concentrado microalgal, lo que representa una proporción aproximada de 1 :20, o cualquier combinación volumétrica que mantenga esa proporción. El tiempo de agitación constante de la mezcla puede ser con un ciclo de 12h de luz, 12h de oscuridad. Gracias al procedimiento descrito y a los ensayos realizados se pone de manifiesto que la aplicación de las condiciones descritas en la bilbiografía no resulta efectiva para la obtención de enriquecimiento en las suspensiones concentradas de microalgas, independientemente de la fuente de ácido graso utilizada, que solo puede ser conseguido mediante las condiciones y compuestos descritos en la invención.
Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, se hace constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a título de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba, siempre que no altere, cambie o modifique su principio fundamental.
Referencias
Ahn, Y.J., Kim, G.J., Kim, J.E., Kim, Y.H., Ko, M.S. Yun, S.Y. 2005.
Process for producing Chlorella containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), comprises adding EPA and DHA monoglycendes to the culture médium at the end of fermentaron. KR2005015233-A ; KR768757-B1
Aragáo C, Conceigáo L.E.C., Dinis M.T., Fyhn H-J. 2004. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture 234: 429-445.
Basen, T., Rothhaupt, K.-O., Martin-Creuzburg, D. 2012. Absence of sterols constrains food quality of cyanobactena for an invasive freshwater bivalve. Oecologia 170:57-64.
Bentley CD, Carroll PM, Watanabe WO 2008 Intensive rotifer culture in a pilot-scale continuous recirculating system using nonviable microalgae and an ammonia neutralizer. J World Aquac Soc 39:625-635
Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purificaron. Can J Biochem Physiol 37: 91 1 -917.
Chini Zittelli, G. Lavista, F., Bastianini, A., Rodolfi, L, Vincenzini, M. , Tredici, M.R.. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. Journal of Biotechnology 70: 299-312
CHLORELLA KOGYO CO. LTD. 1999. Production of Chlorella containing highly unsaturated fatty acids - comprises culture of Chlorella in médium containing DHA and other highly unsaturated fatty acids in free acid or salt form. JP10276684-A ; KR98080312-A ; JP3096654-B2 ; KR428732-B ; KR423876-B.
Doan T.T.Y., Sivaloganathan B., Obbard J.P. 201 1 . Screening of marine microalgae for biodiesel feedstock. Biomass and Bioenergy 35: 2534-2544.
Ferreira, M., Coitinho, P., Seixas, P., Fábregas, J., Otero, A. 2009. Enriching rotifers with "premium" microalgae. Nannochloropsis gaditana. Mar Biotechnol 1 1 :585-595.
Freiré, I,. Cortina, A., Barreiro, P., Llamas B., Otero, A. 2013. Nannochloropsis limnetica: a new freshwater microalgal species for marine aquaculture. Aquaculture Conference 2013: Celebrating 40 Years of Aquaculture - Noviembre, 2013, Gran Canana (España).
Gladue, R.M., Behrens, P.W. 2002. DHA-containing nut tional compositions and methods for their production. US 6372460B1.
Hayashi, M., Yukino, T. Maruyama, I., Kido, S., Kitaoka, S. 2001 . Uptake and accumulation of exogenous docosahexaenoic acid by Chlorella. Blosci. Biotechnol. Blochem. 65:202-204.
Hibberd, D.J. 1981 . Notes of the taxonomy and nomenclatures of the algal clases Eustigmatophyceae and Trbophyceae (synom Xanthophyceae). Bot J Linnean Society 82:93-1 19.
Hibberd, D.J. Leedale G.F. 1972. Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Annals of Botany 36:49-71 .
Hirayama, K., Nakamura, K. 1976. Fundamental studies on the physiology of rotifers in mass culture- V. Dry Chlorella poder as a food for rotifers. Aquaculture 8:301 -307.
Izquierdo, M.S. 1996 Essential fatty acid requirements of cultured marine fish larvae. Aquaculture Nut tion, 2: 183-191 .
Jeffrey, S.W., Vesk, M. 1997. INtroduciton to marine phytoplankton and their pigment signatures. En: Phytoplankton pigments in oceanography. S.W. Jeffrey, R.F.C. Mantoura, S.W: Wright (eds). UNESCO Publishing Paris, pp 37- 84.
Kobayashi, T., Nagase, T., Hiño, A., Takeuchi, T. 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fisheries Sci 74:649-656.
Koiso M, Yoshikawa M, Kuwada H, Hagiwara A (2009) Effect of maternal diet on survival and life history parameters of next generations in the rotifers Brachionus plicatilis sp. complex. Nippon Suisan Gakk 75:828-833
Krienitz, L, Hepperle, D., Stich, H.-B. Weiler, W. 2000. Nannochloropsis limnetica {Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219-227.
Krienitz, L, Manfred, W. 2006. The high contení of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquacultulture and biotechnology. Limnología 36:204-210.
Lubian, L.M., Establier, R. 1982. Estudio comparativo de la composición de pigmentos de varias cepas de Nannochloropsis (Eustigmatophyceae). Investigación Pesquera 46:379-389.
Luzbens, E., Gibson, O., Zmora, O., Sukenik, A. 1995. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295-309.
Maruyama, I, Nakamura, T., Matsubayashi, T., Ando, Y., Maeda, T. 1986. Identification of the alga known as "marine Chlorella" as a member of the Eustigmatophyceae. Jap. J. Phycol. 34:319-325.
Maruyama, I., Ando, Y., Maeda, T., Hirayama, K. 1989. Uptake of vitamin B12 by various strains of unicellular algae Chlorella. Nippon Suisan Gakkaishi 55: 1785-1790.
Maruyama, I., Hirayama, K. 1993. The culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing Vitamin B12 in its cells. Journal of the World Aquaculture Society 24: 194-198. Maruyama, I., Nakao, I., Shigueno, Y., Ando, Y., Hirayama, K., 1997. Application of uniceiiuiar algae Chlorella vulgaris for the mass culture of marine rotifer Brachionus. Hydrobiologia 358: 133-138.
Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., Lopes da Silva, T. 2008. Crypthecodinium cohnü with emphasis on DHA production: a review. Journal of Applied Phycology 21 : 199-214.
Müller-Navarra, D. C, Brett, M. T., Listón, A. M and Goldman, C. R. 2000. A highiy unsaturated fatty acid predicts carbón transfer berween pnmary producers and consumers. Nature 403, 74-77.
Nuria Navarro, N., Yúfera, M. García-Gallego, M. 2001 . Use of freeze- dried microalgae for rearing gilthead seabream, Sparus aurata L., larvae. II. Biochemical composition. Hydrobiologia 452: 69-77
Rodolfi, L., Chini Zitelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R. 2008. Microalgae for oil: strain selection, induction of lipids synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102: 100-1 12.
San Pedro, A., González-López, C.V., Acién, F.G., Molina-Grima, E. 2013. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresource Technology 134:353-361 .
Santos, L.M. 1996. The Eustigmatophyceae: actual knowledge and
Research perspectives. Beiheft Nova Hedwigia 1 12:391 -405.
Sato N., Murata. 1988. Membrane lipids. In: Packer L, Glazer A.N. (Eds) Methods Enzimol. Vol. 167. Academic Press, New York, 251 -259.
Si wardhana, N. Kalupahana, N.S., Moustaid-Moussa, N. 2012. Health Benefits of n-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid, In: Se-Kwon Kim, Editor(s), Advances in Food and Nutrition Research, Academic Press, 2012, Volume 65, Pages 21 1 -222.
Srivastava A, Hamre K, Stoss J, Chakrabarti R, Tonheim SK (2006) Protein contení and amino acid composition of the live feed rotifer (Brachionus plicatilis): with emphasis on the water soluble fraction. Aquaculture 254:534- 543
Sugimoto, Y., Taga, C, Nlshiga, M., Fujiwara, M., Konishi, F., Tanaka, K., Kamei, C. 2002. Effect of docosahexaenoic acid-fortified Chlorella vulgaris strain CK22 on the radial maze performance in aged mice. Biol. Pharm. Bull 25: 1090-1092.
Sukenik, A., 1999. Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis sp. In: Cohén, Z. (Ed.), Chemicals from Microalgae. Taylor and Francis, London, p 41 -56
Sukenik, A., Zmora, O., Carmeli, Y. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 1 17:313-326.
Tocher, D.R. 2010. Fatty acid requirements on ontonegy of marine and freshwater fish. Aquaculture research 41 :717-732.
Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G. I., Garland, C.D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture, Journal of Experimental Marine Biology and Ecology, 128: 219-240.
Wacker, A., Becher, P., von Elert, E. 2002. Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha. Limnol. Oceanogr. 47: 1242-1248.
Wacker, A., Martin-Creuzburg, M. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Functional ecology 21 :738-747.
Wacker, A., von Elert, E. 2003. Food quality controls reproduction of the zebra mussel (Dreissena polymorpha). Oecologia 135:332-338.
Watanabe, T., Kitayama, C, Fujita, S. 1983. Nutritional valúes of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 1 15-143.
Whittle, S.J., Casselton, P.J. 1975. The chloroplast pigments of the algal clases Eustigmatophyceae and Xantophyceae. I. Eustigmatophyceae. British Phycological Journal 10: 179-191.
Yoshimura K, Tanaka K, Yoshimatsu T. 2003. A novel culture system for the ultra-high-density production of the rotifer, Brachionus rotundiformis— a preliminary report. Aquaculture 227: 165-172.

Claims

REIVINDICACIONES
1 .- Procedimiento para el enriquecimiento de biomasa de microalgas en ácidos grasos poliinsaturados del género Nannochloropsis que comprende
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de ácidos grasos que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, y b) mantener la mezcla resultante durante al menos 24 horas.
2 - Procedimiento según la reivindicación 1 , donde la solución o emulsión de ácidos grasos de la etapa a) tiene una concentración de entre 10 mg/ml_ y 100 mg/ml_.
3.- Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende además añadir en la etapa a) una solución de emulsionante.
4. - Procedimiento según la reivindicación 3, donde el emulsionante se selecciona de entre albúmina de suero bovino, dodecil sulfato de sodio, alcoholes grasos polietoxilados, sales alquílicas de amonio cuaternarias, alquil- betaínas, lecitinas de soja y huevo, goma guar, goma garrofín, alginatos, ácido fosfórico, sales de fosfato, citrato de sodio, sales de fosfato, pectina, ésteres de sacarosa, ésteres de sorbitano, celulosa y sus derivados, polientilenglicol, y mezclas de los mismos.
5. - Procedimiento según las reivindicaciones 3 o 4, donde la solución de emulsionante tiene una concentración de entre 10 mg/ml_ y 100 mg/ml_.
6.- Procedimiento según cualquiera de las reivindicaciones 3 a 5, donde la relación entre la solución o emulsión de los ácidos grasos de la etapa a) ¡i) y la solución del emulsionante está entre 1 : 1 y 1 :4.
7.- Procedimiento según cualquiera de las reivindicaciones anteriores, donde la relación de peso seco de microalgas de la etapa a) es de entre el 0,8% y el 15%.
8. Procedimiento según cualquiera de las reivindicaciones anteriores, donde la suspensión de biomasa de microalgas y la solución o emulsión de ácidos grasos se mezclan en la etapa a) en una proporción de entre 1 : 1 y 10: 1 .
9. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde la etapa b) comprende un ciclo de al menos 12 horas de luz.
10. - Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende:
a) mezclar i) una suspensión de biomasa de microalgas vivas del género Nannochloropsis en la que la relación de peso seco de microalgas es de entre el 0, 1 % y el 20% con respecto al volumen total de la suspensión, con ¡i) una solución o emulsión de aceite que comprende una cantidad de ácido docosahexaenoico superior al 5% en peso respecto al total de ácidos grasos, a una concentración de entre 10 mg/ml_ y 100 mg/ml_, y con i¡¡) una solución de emulsionante a una concentración de entre 10 mg/ml_ y 100 mg/ml_, con la condición de que la solución o emulsión ¡i) y la solución i¡¡) están en una proporción de entre 1 : 1 y 1 : 10, y
b) mantener la mezcla resultante durante al menos 24 horas, en las que al menos 12 horas son de iluminación.
1 1. - Procedimiento según la reivindicación 10 caracterizado porque:
- la emulsión o solución de aceite es una solución de lípido en etanol, a una concentración de 50 pg/pL, donde la solución de lípido puede ser EpaDhax150 o DHA, Sigma D-2534 u otro aceite rico en DHA
- la solución de emulsionante es una solución madre stock de BSA - ambos elementos, es decir la solución de lípido / ácido graso puro y solución madre de stock de BSA, se mezclan en una proporción 1 :2. agitando hasta que se forme la emulsión.
12.- Procedimiento según la reivindicación 10 caracterizado porque la suspensión de biomasa de microalgas vivas se realiza mediante centrifugado u otro procedimiento de concentración como por ejemplo sedimentación, floculación, filtración tangencial.
13.- Biomasa de microalgas del género Nannochloropsis caracterizada porque comprende ácido eicosapentaenoico (20:5n-3)(EPA) y ácido docosahexaenoico (22:6n-3) (DHA) en una relación en peso igual o supenor a 1 parte de DHA por cada 10 partes de EPA y contiene una proporción de ácido eicosapentaenoico (20:5n-3) (EPA) de al menos un 10% respecto al total de los ácidos grasos de la biomasa.
14.- Biomasa de microalgas del género Nannochloropsis obtenible por el procedimiento según cualquiera de las reivindicaciones 1 -10.
15.- Uso de la biomasa de microalgas del género Nannochloropsis según las reivindicaciones 13 ó 14, para acuicultura, en la cría animal para la mejora de perfil de ácidos grasos de productos de consumo.
16. - Uso de la biomasa de microalgas del género Nannochloropsis según las reivindicaciones 13 ó 14 para la preparación de un nutracéutico.
17. - Solución, composición o liofilizado que comprende la biomasa según cualquiera de las reivindicaciones 13 ó 14.
18.- Complemento nut cional o ingrediente funcional que comprende la biomasa según cualquiera de las reivindicaciones 13 ó 14.
PCT/ES2014/070780 2014-10-15 2014-10-15 Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados WO2016059262A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/ES2014/070780 WO2016059262A1 (es) 2014-10-15 2014-10-15 Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados
US15/515,718 US10351884B2 (en) 2014-10-15 2014-10-15 Method for the enrichment of microalgae biomass in polyunsaturated fatty acids
EP14903872.1A EP3109315B1 (en) 2014-10-15 2014-10-15 Method for the enrichment of microalgae biomass in polyunsaturated fatty acids
ES14903872T ES2712298T3 (es) 2014-10-15 2014-10-15 Procedimiento de enriquecimiento de biomasa de microalgas en ácidos grasos poliinsaturados

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2014/070780 WO2016059262A1 (es) 2014-10-15 2014-10-15 Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados

Publications (1)

Publication Number Publication Date
WO2016059262A1 true WO2016059262A1 (es) 2016-04-21

Family

ID=55746167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070780 WO2016059262A1 (es) 2014-10-15 2014-10-15 Procedimiento de enriquecimiento de biomasa de microalgas en acidos grasos poliinsaturados

Country Status (4)

Country Link
US (1) US10351884B2 (es)
EP (1) EP3109315B1 (es)
ES (1) ES2712298T3 (es)
WO (1) WO2016059262A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351884B2 (en) 2014-10-15 2019-07-16 Algaenergy, S.A. Method for the enrichment of microalgae biomass in polyunsaturated fatty acids
ES2728088A1 (es) * 2018-04-19 2019-10-22 Neoalgae Micro Seaweeds Products S L Procedimiento de microencapsulacion de aceites en microorganismos, producto obtenido por ese procedimiento y usos del mismo
WO2020053375A1 (fr) 2018-09-14 2020-03-19 Fermentalg Procede d'extraction d'une huile riche en acides gras polyunsatures (agpi)
CN112513247A (zh) * 2018-06-29 2021-03-16 Cj第一制糖株式会社 新型破囊壶菌属菌株及使用其生产多不饱和脂肪酸的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3935958A1 (en) 2020-07-08 2022-01-12 Neoalgae Micro Seaweeds Products, S.L. Encapsulated oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239981A (ja) * 1986-04-11 1987-10-20 Kurorera Kogyo Kk エイコサペンタエン酸高含有藻体の製造方法
JPH09252761A (ja) * 1996-03-22 1997-09-30 Yoshio Tanaka エイコサペンタエン酸を増産させるナンノクロロプシス藻類の培養法
CN103627623A (zh) * 2013-12-04 2014-03-12 山东省淡水渔业研究院 高epa产率的微拟球藻培养系统及培养方法
WO2014146098A1 (en) * 2013-03-15 2014-09-18 Aurora Algae, Inc. Compositions of crude algal oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040009160A1 (en) 2001-06-22 2004-01-15 Villamar Daniel F Bioactive food complex, method for making bioactive food complex product and method for controlling disease
BR112015008824B1 (pt) * 2012-10-19 2022-11-29 Indian Oil Corporation Limited Processo de melhoria de biomassa e teor de lipídios de microalgas
US10351884B2 (en) 2014-10-15 2019-07-16 Algaenergy, S.A. Method for the enrichment of microalgae biomass in polyunsaturated fatty acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239981A (ja) * 1986-04-11 1987-10-20 Kurorera Kogyo Kk エイコサペンタエン酸高含有藻体の製造方法
JPH09252761A (ja) * 1996-03-22 1997-09-30 Yoshio Tanaka エイコサペンタエン酸を増産させるナンノクロロプシス藻類の培養法
WO2014146098A1 (en) * 2013-03-15 2014-09-18 Aurora Algae, Inc. Compositions of crude algal oil
CN103627623A (zh) * 2013-12-04 2014-03-12 山东省淡水渔业研究院 高epa产率的微拟球藻培养系统及培养方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CAMACHO-RODRÍGUEZ J ET AL.: "A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture", BIORESOURCE TECHNOLOGY, vol. 144, 2013, pages 57 - 66, XP055356790 *
FERREIRA M ET AL.: "Enriching Rotifers with ''Premium'' Microalgae.Nannochloropsis gaditana", MAR BIOTECHNOL, vol. 11, 2009, pages 585 - 595, XP019725140, DOI: doi:10.1007/s10126-008-9174-x *
FREDRIKSSON SOFIA ET AL.: "Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens.", FOOD CHEMISTRY, vol. 99, no. 3, 30 November 2005 (2005-11-30), pages 530 - 537, XP027989450, ISSN: 0308-8146 *
GONZÁLEZ-LÓPEZ CV ET AL.: "Medium recycling for Nannochloropsis gaditana cultures for aquaculture", BIORESOURCE TECHNOLOGY, vol. 129, 2013, pages 430 - 438, XP028977049 *
SÁNCHEZ- TORRES H ET AL.: "PRODUCCIÓN DE LA MICROALGA Nannochloropsis oculata (Droop) Hibberd EN MEDIOS ENRIQUECIDOS CON ENSILADO BIOLÓGICO DE PESCADO", ECOLOGÍA APLICADA, vol. 7, no. 1,2, 2008, pages 149 - 158., XP055356786, ISSN: 1726-2216 *
See also references of EP3109315A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351884B2 (en) 2014-10-15 2019-07-16 Algaenergy, S.A. Method for the enrichment of microalgae biomass in polyunsaturated fatty acids
ES2728088A1 (es) * 2018-04-19 2019-10-22 Neoalgae Micro Seaweeds Products S L Procedimiento de microencapsulacion de aceites en microorganismos, producto obtenido por ese procedimiento y usos del mismo
CN112513247A (zh) * 2018-06-29 2021-03-16 Cj第一制糖株式会社 新型破囊壶菌属菌株及使用其生产多不饱和脂肪酸的方法
CN112513247B (zh) * 2018-06-29 2023-11-14 Cj第一制糖株式会社 破囊壶菌属的新型微藻菌株及使用其生产多不饱和脂肪酸的方法
WO2020053375A1 (fr) 2018-09-14 2020-03-19 Fermentalg Procede d'extraction d'une huile riche en acides gras polyunsatures (agpi)
FR3085962A1 (fr) 2018-09-14 2020-03-20 Fermentalg Procede d'extracton d'une huile riche en pufa

Also Published As

Publication number Publication date
EP3109315B1 (en) 2018-11-28
US20170306364A1 (en) 2017-10-26
EP3109315A4 (en) 2017-07-26
US10351884B2 (en) 2019-07-16
ES2712298T3 (es) 2019-05-10
EP3109315A1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Świątkiewicz et al. Application of microalgae biomass in poultry nutrition
Saadaoui et al. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production
Langdon et al. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat
Becker Microalgae for aquaculture: the nutritional value of microalgae for aquaculture
Becker Microalgae for aquaculture: nutritional aspects
Yaakob et al. An overview: biomolecules from microalgae for animal feed and aquaculture
Hemaiswarya et al. Microalgae: a sustainable feed source for aquaculture
Muller‐Feuga Microalgae for aquaculture: the current global situation and future trends
Kovač et al. Algae in food and feed
Shields et al. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids
ES2320851T3 (es) Composicion lipidica marina para alimentar organismos acuaticos.
US20060130162A1 (en) Shrimp and the production thereof
ES2712298T3 (es) Procedimiento de enriquecimiento de biomasa de microalgas en ácidos grasos poliinsaturados
Dararat et al. Biochemical composition of three species of fairy shrimp (Branchiopoda: Anostraca) from Thailand
Stoyneva-Gärtner et al. Current bioeconomical interest in stramenopilic Eustigmatophyceae: a review
Masuda The critical role of docosahexaenoic acid in marine and terrestrial ecosystems: from bacteria to human behavior
Fleurence Microalgae: From future food to cellular factory
Roychoudhury et al. Role of algal mixture in food intake of Macrobrachium rosenbergii during larval development
JPH03277241A (ja) ワムシの栄養強化飼料
CN100379356C (zh) 利用富含dha的可捕食生物的水生物种养殖
Flórez-Miranda et al. Microalgae in livestock nutrition
Kumar et al. Microalgal product basket: Portfolio positioning across food, feed and fuel segments with industrial growth projections
Dinesh et al. Comparative analysis of Nannochloropsis oculata, Dunaliella salina, and Tetraselmis gracilis as feed sources for rotifer, Brachionus plicatilis: Effects on population dynamics, biochemical composition, and fatty acid profile
Barad et al. Live feed-Importance, constrains and future prospects in aquaculture production system
Dianratri et al. Potency of microalgae for animal feed and aquaculture feed: A short review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903872

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014903872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15515718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE