WO2016059182A1 - Procédé d'analyse du contenu de gouttes et appareil associé - Google Patents

Procédé d'analyse du contenu de gouttes et appareil associé Download PDF

Info

Publication number
WO2016059182A1
WO2016059182A1 PCT/EP2015/073942 EP2015073942W WO2016059182A1 WO 2016059182 A1 WO2016059182 A1 WO 2016059182A1 EP 2015073942 W EP2015073942 W EP 2015073942W WO 2016059182 A1 WO2016059182 A1 WO 2016059182A1
Authority
WO
WIPO (PCT)
Prior art keywords
drops
drop
target element
entity
aggregate
Prior art date
Application number
PCT/EP2015/073942
Other languages
English (en)
Inventor
Andrew David Griffiths
Raphaël Clément Li-Ming DOINEAU
Clément NIZAK
Philippe Chi-Thanh NGHE
Jean Marie Pierre BAUDRY
Elodie Michèle Christine BRIENT-LITZLER
Original Assignee
Espci Innov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espci Innov filed Critical Espci Innov
Priority to EP15785075.1A priority Critical patent/EP3207373B1/fr
Priority to DK15785075.1T priority patent/DK3207373T3/da
Priority to US15/519,490 priority patent/US10416168B2/en
Priority to JP2017520426A priority patent/JP6775498B2/ja
Priority to CN201580063456.5A priority patent/CN107110854B/zh
Publication of WO2016059182A1 publication Critical patent/WO2016059182A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6846Common amplification features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/003Investigating dispersion of liquids in liquids, e.g. emulsion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0092Monitoring flocculation or agglomeration

Definitions

  • the present invention relates to a method for analyzing the content of drops comprising the following step:
  • Such a method is intended for example to carry out a screening of molecules of interest dispersed in the drops.
  • the method is intended to determine or to select drops comprising a particular target element, this target element may result from a chemical reaction or a biological reaction.
  • the measurement then the selection of the drops can be based on the concentration or the binding activity of a product.
  • WO 2009/01 1808 A1 describes a method for determining an activity for fixing a protein within a droplet.
  • a mouse hybridoma is encapsulated in a drop with a bead coated with anti-mouse antibodies.
  • the hybridoma secretes antibodies.
  • a secondary antibody coupled to a fluorophore reveals the presence of the secreted antibody.
  • the distribution of the secondary antibody is, in the absence of secreted antibody, homogeneous in the drop, but it relocates on the ball in the presence of antibodies.
  • the method is therefore very selective in determining the activity of a particular cell.
  • An object of the invention is to provide a more reliable and more sensitive analysis method than existing methods.
  • the subject of the invention is a method of the aforementioned type, characterized in that the method comprises a step of measuring a physical parameter characteristic of the fixing of the target element on the aggregate.
  • the particles are magnetic particles, advantageously paramagnetic, preferably superparamagnetic;
  • the step of supplying the drops comprises:
  • the dispersion of the mass of fluid in the form of drops the formation in each drop of at least one particle aggregate defining an elongate object along a main axis, the aggregate of particles being formed in each drop after the dispersion;
  • the target element is a member selected from the group consisting of a protein, an antibody, a peptide, a piece of DNA or RNA, a metabolite, an ion, a lipid and a biomolecule capable of being produced by a cell ;
  • At least some drops comprise a producing entity capable of producing the target element, the producing entity preferably being chosen from the group consisting of a cell and an in vitro expression system;
  • the measuring step comprises the measurement of the physical parameter locally at a plurality of points situated in the drop, the measuring step preferably comprising the determination of the integral of the measured values within the drop;
  • the method comprises, before the measuring step, a step of orienting the main axis of the aggregate along a detection axis;
  • the method comprises multiple measurement steps, with a step of orienting the main axis of the aggregate according to a different detection axis for each of the measurements;
  • the measuring step is carried out in a microfluidic chamber without circulation of the drops;
  • the process comprises:
  • Providing a device comprising a set of circulation of the drop and a detection zone; the transport of the drop towards the detection zone, the measurement within the drop being carried out in the detection zone;
  • the process comprises:
  • a device comprising a set of circulation of the drop and a plurality of filing zones, and a means of directing the drop or part of the drop selectively towards a filing zone
  • the decision to classify the drop or part of the drop the decision of selectively selecting a classification zone from the plurality of classification zones
  • At least one drop comprises at least one target element, at least one first signaling entity capable of forming a complex with the target element and at least one second distinct signaling entity able to form a complex with the target element, the method comprising measuring a signal indicating the concentration of each of the relocated signaling entities on the aggregate;
  • At least one drop comprises at least one target element, at least one signaling entity capable of forming a complex with the target element and at least one quantization entity able to form a complex with the target element, the method comprising:
  • the drops comprise a producing entity, the producing entity being a cell capable of producing at least one antibody being a target element, the method comprising a step of determining the affinity of the antibody produced by the producing entity for at least one antigen, the method preferably comprising a step of sorting the drop after the determining step;
  • At least one drop comprises at least two distinct signaling entities, each of the two signaling entities being capable of forming a complex with a distinct target element on the aggregate, the method comprising the measurement of a signal indicating the concentration of each relocated signaling entities; at least some drops comprise a producing entity, the producing entity being a cell capable of producing one or more types of proteins, each protein being a separate target element, the measurement of the signal indicating the concentration of each of the relocated signaling entities allowing a quantification of the type or types of proteins;
  • the measurement of a physical parameter is a fluorescence measurement
  • At least one of the drops comprises a cell capable of secreting the target element and the method comprises an incubation step during which the target element is secreted in the drop by the cell;
  • At least one of the drops comprises a cell and the method comprises a cell lysis step
  • At least one of the drops comprises an in vitro translation system capable of expressing the target element
  • the method comprises a step of measuring a physical parameter, locally at a first point located away from the aggregate in at least one of the drops and the same physical parameter, locally at a second point in the vicinity of the aggregate in the same drop;
  • the maximum dimension of the particles is less than 50% of the diameter of the drop
  • the drop contains at least one signaling entity, and the measurement of the physical parameter depends on the position of the signaling entity within the droplet or with respect to the aggregate;
  • the producing entity produces several target elements selected from the group consisting of a protein, a peptide, a piece of DNA or RNA, a metabolite, an ion, a lipid and a biomolecule capable of being produced by a cell ;
  • the method comprises a step of determining at least one characteristic of the producing entity
  • the classification decision step takes place after the measurement step
  • the drop contains superparamagnetic particles, the drop or part of the drop is directed towards the classification zone by a direction means selected from a magnetic force, an electric field, a dielectrophoresis, an electrocoalescence or a surface acoustic wave;
  • the subject of the invention is also an apparatus for analyzing the content of drops, comprising: a set of supplying a plurality of drops contained in a carrier fluid, at least one of the drops comprising at least one particle aggregate defining an elongate object along a main axis, characterized in that the apparatus comprises a measurement unit a physical parameter characteristic of the fixation of the target element on the aggregate,
  • the apparatus further comprising, preferably:
  • FIG. 1 is a schematic representation of the main elements of a first analysis apparatus according to the invention
  • FIG. 2 is a schematic representation of a method step with the first apparatus
  • FIGS. 3 to 6 are photographs of part of a second apparatus according to the invention during various process steps according to the invention.
  • FIG. 7 is a schematic representation of a third apparatus according to the invention.
  • FIG. 8 is a schematic representation of a fourth apparatus according to the invention.
  • FIG. 9 is a schematic representation of a method step with the first apparatus
  • FIG. 10 illustrates the determination of a dissociation coefficient Kd by the method
  • FIGS. 11 and 12 represent devices for generating drops
  • FIGS. 13 and 14 represent sets of spacings of drops and of measurement
  • FIGS. 15 and 16 represent reading sets in two dimensions
  • FIGS. 17, 18 and 19 illustrate example 3
  • FIGS. 20 and 21 illustrate example 4,
  • FIGS. 22 and 23 illustrate example 5
  • FIG. 24 is a schematic representation of a droplet during a step of implementing a method
  • FIG. 25 illustrates example 6
  • FIGS. 26, 27 and 28 illustrate example 7,
  • FIGS. 29 and 30 illustrate Example 8.
  • FIGS. 31 and 32 illustrate example 9,
  • FIG. 1 A first apparatus 1 for analyzing the content of drops according to the invention is shown in FIG.
  • the apparatus 1 comprises a supply assembly 4 of a plurality of drops 6 contained in a carrier fluid 8, at least a portion of the drops 6 comprising at least one aggregate 10 of particles 12 defining an elongate object along a main axis X.
  • the apparatus 1 further comprises a measuring assembly 14 of a physical parameter in the drop.
  • the measurement unit 14 is, for example, able to measure a physical parameter, locally at a first point 16 located away from the aggregate 10 in at least one of the drops and the same physical parameter locally. in a second point 18 in the vicinity of the aggregate 10 in the same drop.
  • the apparatus 1 also comprises a device 20 comprising a circulation assembly 22, a circulation conduit 24 and a detection zone 26.
  • the circulating assembly 22 is able to circulate each drop 6 in the carrier fluid 8 in the conduit 24 in the form of a train of successive drops.
  • the supply assembly 4 comprises a loading assembly 28 and an aggregation assembly 30.
  • the supply assembly 4 further comprises a spacer assembly 31.
  • the loading assembly 28 is capable of supplying a plurality of initial drops 32 comprising a dispersion of particles 12, at least one of the initial drops 32 further comprising at least one target element 37.
  • the spacing assembly 31 is able to space two successive drops 6 of the drop train, that is to say to increase the distance between two successive drops.
  • the spacer assembly 31 has a carrier fluid inlet 8. Examples of a set of spacings are shown in FIGS. 13 and 14.
  • the carrier fluid 8 is able to separate two successive drops 6 of the drop train to prevent their contact.
  • the separation of drops 6 is performed by a mechanical device.
  • the fluid forming the internal phase of the drops 6 and the carrier fluid 8 are substantially immiscible.
  • the drops 6 comprise an aqueous internal phase and the carrier fluid 8 is an organic or oily phase.
  • the carrier fluid 8 is advantageously a fluorinated oil.
  • the carrier fluid 8 or the fluid forming the internal phase of the drops advantageously comprises a surfactant capable of preventing the fusion of two drops 6 in contact, for example as described in US Patent 2010/01051 12 or surfactant EA from RainDance Technologies.
  • substantially immiscible is generally meant that the solubility of the fluid forming the drops in the carrier fluid 8, measured at 25 ° C and at ambient pressure, is less than 1%.
  • the size of the drops 6 is, for example, between 1 ⁇ and 1000 ⁇ .
  • the volume of the drops 6 is advantageously between 0.1 picoliters and 1 microliter.
  • the drops 6 provided are substantially monodisperse. This means that the polydispersity of the drops 6 is less than 5%.
  • the drops 6 are spherical.
  • the drops 6 are of elongate shape along the circulation axis Y of the duct 24.
  • the drops 6 are of flattened puck shape along an axis perpendicular to the circulation axis Y.
  • Each initial drop 32 comprises a base fluid, a dispersion of solid particles 12 in the base fluid and a plurality of signaling entities 34.
  • at least one initial drop 32 comprises at least one target element 37.
  • the particles 12 are intended to form the elongated aggregate 10.
  • the particles 12 are superparamagnetic particles that acquire a magnetic moment at the application of a magnetic field.
  • Superparamagnetism is a behavior of ferromagnetic or ferrimagnetic materials that occurs when they are in the form of small grains or nanoparticles. In grains of sufficiently small size, the magnetization can be reversed spontaneously under the influence of temperature.
  • the term "magnetic particles" in the text refers to superparamagnetic particles.
  • the magnetic particles 12 are, for example, chosen from particles provided by the company Dynal (Life Technologies) or Ademtech or Miltenyi.
  • the particles 12 are for example nanometric. Thus, their maximum dimension is less than 1 ⁇ and is for example between 50 nm and 1000 nm.
  • the particles 12 are advantageously substantially monodisperse. For example, the variation between the maximum particle size 12 is strictly less than 10%.
  • the size and number of particles 12 per drop 6 are chosen to form the desired number of aggregates.
  • the maximum particle size 12 is less than 50% of the diameter of the drop 6.
  • the concentration of particles 12 allows a colloidal stability.
  • the concentration of particles 12 by drops 6 is such that the particles 12 occupy between 0.1% and 5% of the volume of the drop 6, for example 1.7%.
  • each drop of 33 picoliters contains on average 500 particles 12 of 300 nm in diameter.
  • the particles 12 initially form a homogeneous dispersion in the initial drops 32. They are distributed substantially uniformly in the volume of the initial drop 32. Thus, the concentration of particles 12 is homogeneous over the entire initial drop 32.
  • the particles 12 advantageously have a surface for coupling biological molecules, consisting of a surface material.
  • the particles 12 are covered with a polymer having COOH or NH 2 functions .
  • this surface material also makes it possible to limit the spontaneous aggregation of the particles 12 in the drop.
  • the particles 12 are advantageously functionalized. This means in particular that the surface material of the particles 12 comprises functional elements.
  • the functional elements comprise a capture element 36.
  • the capture element 36 is, for example, able to capture the target element 37.
  • the capture element 36 is able to bind indirectly to the target element 37. signaling entity 34 via the target element 37.
  • the capture element is able to link directly to the signaling entity 34.
  • the capture element 36 on the particles 12 is a G protein
  • the target element 37 is an antibody capable of binding to the G protein
  • the signaling entity 34 is an antigen recognized by the antibody the antigen being able to bind to the antibody.
  • the aggregate assembly 30 is capable of generating an aggregation of the particles 12 along a main axis X.
  • the aggregation assembly 30 comprises, for example, two magnets 38 located on either side of the duct 24.
  • the magnetic field is non-parallel to the axis of circulation Y and advantageously perpendicular to the circulation axis Y.
  • the aggregate assembly 30 allows the formation of an elongated aggregate in each drop 6.
  • the magnets 38 are permanent.
  • Each aggregate 10 of particles 12 comprises for example a column oriented along a main axis X.
  • the height of the column is advantageously between 50% and 100% of the diameter of the drop 6. Its width is, for example, less than 60% of its height.
  • the aggregate assembly 30 is, for example, able to orient the aggregate along a preferred axis.
  • the axis X of the aggregate 12 is perpendicular to the circulation axis Y of the drops 6 in the circulation duct 24.
  • the measuring assembly 14 comprises for example a laser line capable of optically measuring the intensity of the fluorescence along a line extending along an axis X 'perpendicular or inclined with respect to the axis of circulation Y.
  • the axis X 'of the laser line is advantageously parallel to the axis of the aggregate X in the detection zone 26.
  • the measurement as a function of time of the signal obtained by the laser line corresponds to a spatial scan of the drop 6 passing in front of the laser line. This makes it possible to successively take several measurement points and in particular at least a first measurement point 16 located away from the aggregate 10 and a second measurement point 18 located closer to the aggregate 10, in the vicinity of the aggregate 10.
  • the signaling entity 34 is fluorescent.
  • the circulation duct 24 is intended to allow the circulation of the drops 6, 32 along the circulation axis Y in a direction of flow going from the supply assembly 4 to the measuring assembly 14.
  • the circulation duct 24 advantageously has an internal diameter less than or equal to 1 mm.
  • the circulation duct 24 is elongated along the circulation axis Y.
  • the circulation duct 24 has an inner cross section of rounded contour such as circular or elliptical, or of polygonal contour such as rectangular.
  • the circulation duct 24 is for example defined in a translucent material allowing measurement of optical parameters by the measuring assembly 14.
  • the circulation duct 24 defines at least one transparent measurement window in the detection zone 26.
  • the walls of the circulation duct 24 are sealed to the carrier fluid 8.
  • the set of circulation drops 22 is intended to move one by one the drops 6, 32 in the conduit 24 in the direction of circulation.
  • the circulation assembly 22 comprises, for example, a syringe driver making it possible to apply controlled flow rates to the carrier fluid 8.
  • the circulation assembly 22 comprises a pressure controller.
  • target elements 37 and signaling entities 34 are dispersed homogeneously in each initial drop 32.
  • bonds are formed between the elements having particular affinities.
  • the particles 12 are magnetic particles, they align along the main axis X during their passage opposite each magnet 38 of the aggregation assembly 30.
  • the drop 6 comprising the elongate object is led to the detection zone 26.
  • a physical parameter is measured locally by the measuring assembly 14 in at least a first point 16 in at least one of the drops 6.
  • a physical parameter is measured locally by the measuring assembly 14 in at least one first point 16 in at least one of the drops 6 and the same physical parameter is measured locally in at least one second point 18 at the neighborhood of the aggregate 10 in the same drop 6 by the measuring assembly 14.
  • FIG. 2 represents by way of illustration different measurements obtained for different drops 6.
  • the graph represents the fluorescence intensity measured by the laser line as a function of time.
  • the fluorescence intensity is measured in a wavelength range characteristic of the signaling entity 34.
  • the fluorescence intensity is furthermore measured in a wavelength range characteristic of the particles 12, the particles 12 being fluorescent.
  • the aggregate 10 is thus more easily identifiable.
  • the fluorescence intensity 40 corresponding to the fluorescence of the signaling entity 34 measured on the laser line is shown in dashed lines in FIG. 2 for different drops 6.
  • the fluorescence intensity 41 corresponding to the fluorescence of the particles 12 is presented in full lines in FIG. 2 for different drops 6.
  • the measuring step includes determining the physical parameter locally at a plurality of points in the drop. It also advantageously comprises an accumulation of the measured values in a plurality of points, for example the determination of the integral of the measured values within the drop 6.
  • the first drop 42 shown is a drop 6 in which the different signaling entities 34 have not been relocated to the particles 12.
  • the distribution of the signaling entities 34 is homogeneous within the drop 6.
  • a signal intensity of fluorescence in the form of a plate 44 is measured.
  • the second drop 48 shown is a drop 6 in which part of the signaling entities 34 has been relocated to the particles 12. Indeed, these signaling entities 34 are linked to a target element 37 captured by the capture element 36.
  • the fluorescence intensity in the vicinity of the aggregate 10 is therefore greater than in the rest of the drop 6.
  • a fluorescence intensity signal having a peak 50 in addition to a plateau 52 is measured.
  • the height of the plate 52 of the second drop 48 is smaller than the height of the plate 44 of the first drop 42 because fewer sign entities 34 are free from the aggregate 10.
  • the third drop 56 shown is a drop 6 in which a larger proportion of the signaling entities 34 has been relocated to the aggregate.
  • a fluorescence intensity signal having a peak 58 and a plateau 59.
  • the height of the peak 58 measured is greater than the height of the peak 50 measured in the second drop 48 because more signaling entities 34 are captured by the particles. 12 and are therefore located in the vicinity of the aggregate 10.
  • Figure 9 illustrates the choice of parameters useful for estimating the concentration of relocated signaling entities 34.
  • the useful parameter may be the maximum of the signal (indicated Max) where the integral of the signal with respect to a given threshold (Int).
  • a first method consists in estimating this concentration by the maximum value of the signal (Max) in each drop 6, that is to say the height of the signal peaks relocated on the aggregate.
  • a second, more precise method is to calculate the integral of the signals
  • Both of these signal processing methods can be performed in real time. Other methods, for example combining these approaches, could be applied, for example to measure both the relocated and non-relocated signaling entity 34.
  • the invention also makes it possible to measure the concentration of the target element 37 in the drop 6.
  • the concentration of the signaling entity 34 is greater than that of the target element 37 and the dissociation constant Kd between the signaling entity 34 and the target element 37 is lower than the concentration of the target element 37 advantageously by a factor greater than 10. This is typically the case when using optimized assay reagents such as subnanomolar Kd monoclonal antibodies, and it is desired to detect target element concentrations 37 greater than nanomolar, as illustrated. in Example 5.
  • nanomolar 1 nanomol / L.
  • each target element 37 gives rise to the formation of a capture element complex 36 - target element 37 - signaling entity 34.
  • the concentration of the target element 37 is therefore proportional to the signal of the target element 37.
  • the signaling entity 34 relocated on the aggregate 10.
  • Other conditions make it possible to perform this quantification and will be obvious to those skilled in the art by modifying the concentrations and affinities of the capture elements 36, or signaling entities 34 for the target element 37.
  • FIGS 3 to 6 illustrate a portion of a second apparatus 60 according to the invention.
  • This second apparatus 60 differs from the first apparatus 1 in that the device 20 comprises a chamber 62.
  • the chamber 62 comprises a plurality of circulation passages 64 and a plurality of separation pads 66.
  • chambers do not comprise separation pads as described in document PCT / FR2009 / 051396 and illustrated in FIGS. 15 and 16.
  • the chamber 62 is intended to store a plurality of drops 6 in a carrier fluid 8 during an aggregation step or an orientation step and during the measurement step.
  • the measuring assembly of the second apparatus 60 differs from the measuring assembly 14 of the first apparatus 1 in that it is able to measure the physical parameter simultaneously on several drops 6 present in the chamber 62.
  • FIG. 3 shows the chamber 62 containing initial drops 32 in a carrier fluid 8. The dispersion of the magnetic particles 12 is visible.
  • Figure 4 shows the same chamber 62 after the formation of the aggregates 10 in the drops. A plurality of elongated aggregates is formed in each drop 6.
  • Figure 5 shows in the same device 60 a plurality of drops 6 having elongate aggregates. The nature and amount of drops 6 have been adjusted so that only one elongate aggregate is present per drop. The presence of a single aggregate 10 per drop 6 facilitates the measurement.
  • FIG. 6 shows the same chamber 62 after a step of orienting the aggregates along the same detection axis D.
  • the analysis method according to the invention from this second apparatus 60 differs from the method previously described in that the measurement is performed on the plurality of drops 6 simultaneously, for example by measuring throughout the chamber 62 at the same time, and not by circulation of the drops 6 in front of a detector.
  • the method also differs in that it comprises, before the measuring step, a step of orienting the main axis X of the aggregate 10 along a detection axis D.
  • the detection axes it will be possible to multiply the detection axes, by applying magnetic fields of variable orientation.
  • This approach has the advantage of making it possible to discriminate the aggregate 10 from other non-magnetic droplet objects, or to reduce parasitic signals.
  • the background fluorescence can be reduced.
  • the detection along different axes makes it possible to distinguish a relocation of the signaling entity 34 to an aggregate 10 of a relocation of the signaling entity 34 to another object of the drop 6, for example on a cell.
  • An implementation of this idea consists in applying a magnetic field B1 to align the main axis X of the aggregate 10 in a first orientation D1, then to apply a magnetic field B2 perpendicular to B1 to align the main axis X of the aggregate 10 according to a second orientation D2 perpendicular to D1.
  • FIG. 1 A third apparatus 70 according to the invention is shown in FIG.
  • This third apparatus 70 differs from the first apparatus 1 in that it further comprises a grading unit 72.
  • the third apparatus 70 differs from the first apparatus 1 in that the loading assembly 28 includes an inlet zone 74 of the inner phase and an inlet region of the carrier fluid 76 and a junction zone 78. loading assembly 28 further comprises an incubation zone 79.
  • the input zone of the internal phase 74 comprises a first input duct 80, a second input duct 82 and a co-flow duct 84.
  • the first inlet duct 80 is intended for introducing the first mass of fluid 86 intended to form part of the internal phase of the drops.
  • the first internal fluid mass comprises the particles 12 and a plurality of signaling entities 34.
  • the second inlet duct 82 is intended for the entry of the second fluid mass 88 intended to form part of the internal phase of the drops.
  • the second internal fluid mass comprises a production entity suspension 90 of the target element 37.
  • the producing entities 90 are, for example, cells 90.
  • the cells 90 are advantageously cells capable of secreting a target element 37.
  • certain cells 90 are antibody-secreting cells such as hybridomas or plasma cells.
  • the secreted antibodies are recognized both by the capture elements 36 of the particles 12 and by the signaling entities 34.
  • the concentration of the cells 90 in the second mass of fluid is advantageously such that a large proportion of drops contain only one cell 90, for example more than 10% of the drops contains a cell 90.
  • the co-flow duct 84 allows a distribution of the two fluid masses 86, 88 intended to form the internal phase.
  • the inlet zone of the carrier fluid 76 is intended for the inlet of the carrier fluid 8.
  • the carrier fluid 8 enters through two inlet conduits 92.
  • junction zone 78 joins the inlet zone of the carrier fluid 76 and the inlet zone of the internal phase 74.
  • the junction zone joins the co-flow conduit 84 to the inlet conduits 92 of the fluid carrier.
  • the junction zone 78 is capable of forming the initial drops 32.
  • the junction zone 78 shown here is a hydrodynamic focusing junction. Examples of hydrodynamic focusing junctions are illustrated in FIGS. 11 and 12.
  • the initial drops 32 are formed in a T junction.
  • the initial drops 32 comprising a mixture of the two fluid masses 86
  • the initial drops 32 comprise a dispersion of particles 12 and signaling entities 34.
  • At least some initial drops 32 further comprise a cell 90.
  • the incubation zone 79 is situated downstream of the junction zone 78.
  • the incubation zone is intended to allow the secretion of the target element 37 by the cells 90.
  • the cells 90 are intended to be lysed. in the incubation zone 79 so that the target element 37 is released.
  • the third apparatus 70 also differs in that the device 20 further comprises a plurality of grading zones 94, 96 and a direction means 98 of the drop or part of the drop selectively to a grading zone 94, 96.
  • the classification zones 94, 96 are situated downstream of the detection zone 26.
  • the conduit 24 comprises a bifurcation 100 in two output conduits 102, 104.
  • the first classification zone 94 comprises the first output conduit 102 intended to receive a first group of drops 106.
  • the second classification zone 96 comprises the second outlet duct 104 intended to receive a second group of drops 108.
  • the device 20 comprises a larger number of classification zones 94, 96 depending on the number of sorting criteria.
  • the direction means 98 selectively drops is for example able to direct a drop 6 to a classification area 94, 96 by means of a magnetic force.
  • the drops 6 are directed by means of electrodes.
  • the drops are directed to a grading zone, by dielectrophoresis, by electrocoalescence with a current or by surface acoustic waves (SAW).
  • SAW surface acoustic waves
  • a suspension of magnetic particles 12 and signaling entities 34 is prepared and injected into the first inlet conduit 80.
  • a cell suspension 90 is prepared and injected into the second inlet conduit 82.
  • a carrier fluid 8 is supplied and injected into the carrier fluid inlet conduits 92.
  • the fluids 86, 88 are set in motion by means of the circulation sets 22.
  • the initial drops 32 are formed in the junction zone 78.
  • the method further includes an incubation step in which the compartmentalized cell 90 secretes the target element 37, for example, the protein to be analyzed.
  • the method comprises a cell lysis step allowing the release of the target element 37, for example, the protein to be analyzed out of the cytoplasm.
  • these steps are performed outside the device 20.
  • the steps of forming the aggregate and measuring are the same as for the analysis method with the first apparatus 1.
  • the method differs in that the measurement step is followed by an analysis step.
  • the analysis step makes it possible to determine which group 106, 108 belongs to a drop 6 following predetermined criteria and generating a drop classification decision 6 after the measuring step.
  • the drop 6 is directed towards one of the classification zones 94, 96 by the direction means 98.
  • the drops 106 in which the signal of high fluorescence intensity is located mainly in the vicinity of the aggregate 10 are directed into the first classification zone 94.
  • the drops of the first group 106 correspond by example to the third drops 56 of Figure 2.
  • These drops 106 contain, for example, cells 90 capable of generating a protein of interest.
  • the drops 106 are optionally recovered so that their contents are analyzed by other techniques or so that the cells 90 are put back into culture.
  • the drops 108 in which a different signal, in particular a substantially homogeneous signal on the drop 108, has been measured are directed towards another classification zone 96.
  • the second group of drops 108 comprises, for example, drops that do not comprise cells 90 and drops containing 90 cells that do not produce the protein in sufficient quantity or quality.
  • a fourth apparatus 120 according to the invention is shown in FIG. 8.
  • This apparatus 120 differs from the first apparatus 1 in that it further comprises an extraction unit 122.
  • the extraction assembly 122 is able to separate the drop 6 into two extracted drops 124, 126, a primary drop 124 and an auxiliary drop 126, the auxiliary drop 126 comprising the aggregate 10.
  • the particles 12 are magnetic and the extraction assembly 122 is able to apply a magnetic force to carry out the extraction.
  • the fourth apparatus 120 includes downstream of the extraction assembly
  • a grading assembly 72 similar to that of the third apparatus 70 according to the invention for separating the auxiliary drops 126 from the primary drops 124.
  • the classification and extraction sets are the same.
  • Such apparatus 120 is particularly useful for selective capture by means of the elongated aggregates.
  • the target elements 37 captured by the particles 12 are intended to be eluted after recovery of the selected drops.
  • a fifth apparatus differs from the first apparatus in that it comprises a complementary injection device and a second detection zone.
  • the complementary injection device is able to add elements in the drop after the detection.
  • the complementary injection device is for example a drop melting device or a pico-injection device.
  • the analysis method according to the invention from this fifth apparatus comprises an injection step after the measurement step, and a measurement step after the injection step.
  • the signaling entity 34 is fluorescent and an additional non-fluorescent entity is added in the complementary injection step.
  • the additional entity has the same characteristics as the signaling entity 34 except for its fluorescence.
  • the additional entity has the same affinity for the target element 37 as the signaling entity 34.
  • the capture rate of the fluorescent signaling entities 34 is determined. After the injection, the additional entities and the signaling entities 34 compete to bind to the target element 37 in the vicinity of the aggregate 10.
  • the second measurement is carried out after a certain time and makes it possible to determine the step-off rate of the fluorescent signaling entities 34 and thus to determine the dissociation constant k off of the link between the signaling entity 34 and the target element 37.
  • this method makes it possible to assay / quantify an analyte in the drop.
  • the formation of an elongated aggregate 10 provides a better signal-to-noise ratio and a larger dynamic range compared to the test described in Mazutis et al. (Nat prot 2013) where a single ball is encapsulated. Indeed the signal generated by the signaling entity 34 will be focused on a width smaller than that of a sphere of equal area. The height of the peak as shown in FIG. 2 will therefore be higher than in the case of a single ball for the same number of relocated signaling entities 34.
  • This method can be used in many biological analysis methods.
  • the method according to the invention can be applied to many types of analytes, biomolecules, polypeptides, proteins, metabolites, nucleic acids, cells, organelles, microparticles and nanoparticles, polymers , colloids, infectious agents, food compounds, environmental samples.
  • the apparatus according to the invention can be integrated as a technological brick in more complex devices, in particular in a high throughput screening device, in a lab on a chip, in a "point of care" device in laboratory instruments. , robots, or others.
  • the method according to the invention can be integrated into complex protocols for diagnosis, drug discovery, target discovery, drug evaluation.
  • microfluidic systems according to the invention and the methods according to the invention can be combined or included in other types of microfluidic components or for other microfluidic functions known in the state of the art.
  • the invention is particularly interesting for applications in cell assays, in particular for single cell screening and in digital biology.
  • biological or chemical objects any kind of molecular, supra-molecular, crystalline, colloidal, cellular or subcellular object including but not limited to cells, organelles, viruses, modified or artificial natural DNA, RNA or other nucleic acids, proteins, glycoproteins, phosphoproteins, artificial or natural proteins, lipids, phospholipids, organic molecules, organometallic molecules, macromolecules, isolated crystals, quantum dots or quantum dots, nanoparticles, vesicles, microcapsules, and others.
  • the invention may further be particularly useful in combination with various optical methods, including optical detection methods.
  • the method is applicable for example to determine the presence of a target element 37 in a solution, the concentration of a target element 37 in a solution which makes it possible to establish affinity characteristics of a target element 37 with a another species present on the particles 12 or in the drop 6.
  • the invention also makes it possible to measure the dissociation constant Kd between the target element 37 and a signaling entity 34.
  • the drop 6 further comprises quantization entities which has a different fluorescence from the signaling entity 34. More precisely, the definition of the dissociation constant Kd of the pair A: B between the element A (target element 37) and the element B (signaling entity 34) is:
  • [Aii b re] is the concentration of A not bound to B in solution
  • the total concentration of species A is:
  • the total concentration of species B is:
  • the concentration [B tota i] of the signaling entity 34 in the drop 6 is chosen by the user and known.
  • the invention makes it possible to measure the concentration of the complex [A: B] relocated on the aggregate 10 via the signal of the signaling entity 34.
  • This measurement can give access to an estimate of the dissociation constant Kd between A and B under conditions of controlled concentrations, where the quantification of A is carried out via a quantization entity which is another signaling entity 34.
  • the capture element 36 is in sufficient quantity and of sufficient affinity for the target element 37 to capture more than 90% of the target element 37, A on the aggregate 10, advantageously all,
  • the concentration of the signaling entity 34 is greater than that of the target element 37
  • the concentration of the quantization entity used to quantify A is greater than that of the target element 37 and the dissociation constant between the quantization entity and the target element 37 is less than the concentration of the target element 37, advantageously by a factor greater than 10.
  • each target element 37 gives rise to the formation of a complex capture element 36 - target element 37 - quantization entity and / or to the formation of a complex formed of the capture element Target element 37 - signaling entity 34.
  • the number of complex capture element 36 - target element 37 - signaling entity 34 is directly related to the Kd of the target element 37 for the signaling entity 34 by the following equation:
  • [A-B] ( A total + B tai + 3 ⁇ 4 - ( j * totai + B total 3 ⁇ 4) _ 4 * A totafi total) / 2
  • FIG. 10 represents simulations of the ratio [A: B] / A tota i as a function of log Kd for different values of ratio A tota i / B tota i.
  • This ratio can be acquired in real time on drops and be a criterion for sorting drops according to Kd.
  • the method is applicable for determining the specificity of the target element 37 to various signaling entity 34, or the specificity of a molecule or assembly of molecules attached by the capture element 36 to with respect to various signaling entities 34.
  • several signaling entities 34 for example molecules labeled with fluorophores of different colors, are injected into drop 6. Simultaneously, the signal generated for each signaling entity can be recorded simultaneously. 34, for example by acquiring fluorescence for different wavelengths. It will thus be possible to determine which signaling entities 34 are located on the aggregate 10 and to quantify them.
  • the capture element 36 is the G protein, which captures an antibody 37 secreted by a cell 90
  • the signaling entities 34 are homologous antigens in different animal species, each labeled with a different color fluorophore.
  • the simultaneous measurement of the signal for each signaling entity 34 makes it possible to know whether the target element 37 which is the antibody is specific for an animal species (peak observed on a single color) or not (peak observed on several colors).
  • the particles 12 are covered with a nucleotide sequence capable of capturing a sequence of complementary nucleotides.
  • the method further allows the sorting, capture and extraction of drops with interesting characteristics.
  • the method comprises forming a sandwich; the target element 37 being on the one hand linked to the capture element 36 of the particle 14 and on the other hand to the signaling entity 34, the signaling entity 34 being fluorescent.
  • capture element 36 is an antibody.
  • the signaling entity 34 is an antibody.
  • the target element 37 is a protein.
  • the target element 37 is an antibody or an antibody fragment.
  • the target element 37 is an antibody and the capture element 36 is a G protein, or a protein A or other protein binding the antibodies, such as an A / G protein or an L protein.
  • the target element 37 is an antibody and the capture element 36 is an antibody.
  • the target element 37 is an antibody and the capture element 36 is an antigen recognized by the antibody.
  • the target element 37 is an antibody and the signaling entity 34 is an antigen.
  • several pairs of capture element 36 - target element 37 or capture element triplets 36 - target element 37 - signaling entity 34 can be analyzed simultaneously, or to detect the presence of several target elements 37 of different molecular nature, or to detect and characterize the presence of different binding sites on the same target element 37.
  • the method makes it possible to select, according to the measured affinities, immortalized cells secreting antibodies. The selected cells are then returned to culture.
  • the method makes it possible to select, according to measured affinities, non-immortalized cells secreting antibodies before searching the antibody gene sequences.
  • the method allows quantification of cytokines secreted by different types of cells present in the blood.
  • the aggregation of particles 12 is reversible.
  • the presence of the target element 37 makes the aggregation non-reversible and consolidates the aggregate 10 during its formation in the aggregation set 30.
  • the aggregate 10 therefore pre-exists stably only in the drops 6 containing the target element 37.
  • the reversibility of the aggregation of the particles 12 dissolves the aggregate 10 as long as it does not enter the reading zone 26.
  • the aggregate 10 can be formed and orientated only in the presence of this pre-aggregation, which limits the peak acquisition according to FIG. 2 to the drops containing the target element 37 by another method than via the signaling entity 34.
  • the method is particularly applicable for screening antibody-producing cells by measuring the affinity of the antibodies produced. For example, if the cell is a B cell capable of producing antibodies, the affinity of this antibody for at least one antigen is determined by the process according to the invention. And the drops are sorted by the method according to the invention according to the determined affinity.
  • the method allows the analysis of the secretion of one or more cytokines by a heterogeneous population of white blood cells. For example, if the cell is a cell capable of producing one or more types of cytokines, the cytokines are quantified by the method according to the invention. The result of analysis constitutes information on the state of the cell, with a potential diagnostic value.
  • the protocol of the following examples includes:
  • Drops production is performed after mixing a reagent solution and an on-chip sample solution.
  • the reagent solution is drawn into a reservoir connected to a syringe
  • the samples to be screened are mixed with the working solution just before compartmentalization and then transferred to a glass vial previously filled with fluorinated oil (3M, NOVEC HFE-7500) and the vial is kept at 4 ° on ice.
  • fluorinated oil 3M, NOVEC HFE-7500
  • Capillaries advantageously made of PTFE of 0.3 mm internal diameter (sold by Fisher, 1919445) make it possible to connect the vial and the reservoir of the reagent solution to the device for forming drops.
  • the volume of the drops is chosen by the user from the flow rate of the fluorinated oil.
  • the volume of the drops is 33 picoliters.
  • the fluorinated oil is the carrier fluid 8. It constitutes the continuous phase of the emulsion comprising the drops.
  • Solutions of test reagents and samples to be screened are injected into the chip at the same flow rate, advantageously at 200 microliters / hour for each solution.
  • the flow rate is imposed by a standard syringe pump system for example a Cetoni neMESYS pump or by a pump controlling the pressure for example the system marketed by Fluigent.
  • the drops are generated at a hydrodynamic focusing junction as illustrated in FIGS. 11 and 12.
  • the external phase is here a fluorinated oil (3M, NOVEC HFE-7500) to which two% w / v surfactants have been added.
  • PFPE perfluoropolyether tails
  • PEG head -600 gmol
  • Fig. 11 and Fig. 12 show flow-focusing devices for mixing a flow containing the magnetic beads mixed with the other reagents and a flow containing the samples before the formation of drops at the hydrodynamic focusing junction located on the right.
  • the magnetic particles measure 500 nm in diameter and in FIG. 12 the magnetic particles measure 200 nm in diameter.
  • a second step is the collection stage.
  • a short capillary makes it possible to connect the flask to the chip.
  • the outlet capillary measures less than 20 cm, preferably 10 cm.
  • the drops are advantageously incubated at 37 ° C. for 20 to 90 minutes and under magnetic fields, the incubation time and temperature depending on the analysis carried out and on the type of production entity 90 and target element 37 studied. .
  • the vial containing the emulsion is transferred to 4 ° still maintained in a magnetic field.
  • the first type of device is a device according to the invention as described in FIG.
  • the vial containing the drops is connected to a chip for reinjection, the vial is on the one hand connected to the chip and on the other hand to a pressure system, a pressure pump or a syringe and its pump, constituting the circulation package 22.
  • the spacing assembly 31 comprises two oil inlets connected to the chip. These inputs are intended to inject oil advantageously fluorinated oil to space the drops of the emulsion as shown in Figure 13.
  • the flow rates of the spacer oil are advantageously each fixed at 300 microliters / hour and the flow rate of the circulating assembly is advantageously set at 50 microliters / hour and make it possible to adjust the flow rate and the drop feedback frequency so as to obtain a frequency of between 250 and 1000 Hz.
  • a pair of permanent magnets 38 advantageously provided by K & J Magnetics, # BC 14-N52, is placed on either side of the chip around the main channel 24. These magnets 38 are intended to generate and orient the bead aggregates. during the reinjection of the drops.
  • Equipment control software for example lasers or photomultipliers, is created to analyze and sort the drops.
  • the sorting system requires an FPGA card to perform a real-time analysis of the signal.
  • the measurement is made in the drops one by one after their passage through the spacer assembly and these drops can be sorted to a desired output after reading zone illustrated in FIG. 14.
  • the sorted drops and unsorted emulsions are collected on ice and the content of the drops is recovered from standard protocols.
  • Example 2 Device for measuring type 2 drops.
  • the second type of measuring device is a drop storage chamber produced in a 2-dimensional plane. This example presents two possible alternatives for making such rooms.
  • the first is a chamber made by conventional PDMS microfabrication, advantageously comprising pillars positioned in a regular manner to prevent collapse of the chamber as illustrated in Figures 3 to 6.
  • the second is a glass chamber according to the invention PCT / FR2009 / 051396 as illustrated in Figures 15 and 16.
  • this approach makes it possible to incubate the drops for long periods (> 1 H) without deformation of the drops.
  • the drops can therefore be collected directly in such a chamber after their formation.
  • FIG. 15 and FIG. 16 illustrate an example of a two-dimensional reading device according to the invention, here in a glass chamber, the magnetic field is generated by a permanent magnet situated on one side of the chamber
  • the elements included in this solution are advantageously inert to each other in order to avoid aggregations of reagents before the generation of drops.
  • This first aqueous solution contains:
  • particles 12 which are here colloidal magnetic particles, functionalized with a capture element 36, here a G protein, and
  • a signaling entity 34 which is here a fluorescently labeled antigen, for example an antigen labeled with the fluorophore Alexafluor488,
  • an antibody quantization entity which is fluorescent here, for example a fragment of monoclonal antibody, anti-mouse labeled with the fluorophore Alexafluor647,
  • working solution includes for example:
  • the volume of the working solution is supplemented with RPMI-1640 supplemented with Glutamax ® provided by Life Technologies to reach the final volume.
  • the magnetic colloidal particles 12 are treated before use.
  • the particles 12 are particles provided by Chemicell (ScreenMAG) or Ademtech (Bio Adembeads) in a storage solution. They are retained on a magnetic medium in order to remove the storage solution and then they are suspended in an excess of pluronic F-127 at 10% w / w (Sigma AIdrich), advantageously 10x the initial volume of particles, and incubated during thirty minutes at room temperature.
  • the particles 12 suspended in the working solution are subjected to sonication for ten minutes before the addition of the test reagents.
  • Fluorescent reagents are treated before use. Fluorescent reagents are, for example, the signaling element 34, the drop detection dye and the quantization reagent. Fluorescent reagents are centrifuged for five minutes at at least 12,000 g and at 4 ° C to remove traces of reagent aggregates.
  • the sample solution to be screened comprises:
  • a target element 37 capable of being captured by the capture element 36
  • This system can be for example a cell, or a DNA and an in vitro expression system.
  • the target element 37 does not pre-exist in the sample solution to be screened.
  • the concentration of cells to be used depends on the size desired for the drops.
  • the concentration of cells per drop is 0.3 cells per drop.
  • An emulsion with drops of 33 picoliters contains more than 30.10 6 drops per milliter.
  • drops of 33 picoliters to have 0.3 cells per drop, and it takes about 18.10 6 cells per milliliter of concentration in the sample solution to be screened (which is concentrated twice with respect to the drops).
  • the cell concentration in the sample solution to be screened is twice as great as the final concentration since the two aqueous solutions will be mixed in a drop with a 50/50 ratio.
  • the cell preparation protocol depends on the cell type and the purpose of the experiment.
  • the target element 37 is an antibody that is already contained in the solution to be screened, this example does not implement cells.
  • One purpose of this example is to demonstrate the possibility of a multi-color binding test. Another goal is to demonstrate the possibility of normalizing a relocation signal with another signal. This makes it possible to evaluate the K d from an antigen localization signal (signaling entity) by making it possible to normalize the signal of the light chain binding protein of the relocated antibody (quantification entity). .
  • the sample solution to be screened contains different concentrations of anti-hTNFa monoclonal antibodies (provided by Sigma Aldrich T6817) diluted in RPMI-1640 with 2 mM glutamax supplemented with 30% v / v percoll, 0.1% vv Pluronic F-68, 18 mM HEPES.
  • concentrations of anti-hTNFa monoclonal antibodies in the sample solution to be screened are as follows: 0 nM, 10 nM, 25 nM or 50 nM.
  • the reagent solution contains the following reagents:
  • the Fab-DL650 antibody fragment is prepared from Goat F (ab ') 2 anti-Mouse IgG (Fab') 2 conjugated with DyLight-650 (marketed by Abcam, ab98760), digested with Papain and purified on a G protein column
  • the drops are then analyzed by means of a type 1 device.
  • This experiment makes it possible to show the possibility of carrying out a binding test on magnetic particles in a column in the drops with two fluorescence readings of secondary reagents, as illustrated in FIG. 17.
  • this approach makes it possible to characterize the affinity binding by correlating the antigen binding signal with the amount of antibody involved in antigen capture. Indeed, a parameter independent of the antibody concentration can be extracted from the analysis.
  • FIG. 17 represents a real-time fluorescence measurement on a two-color drop train, one corresponding to the signaling entity 34 (complex AB, light gray in FIG. 17) and one corresponding to the quantization entity, (compound A, dark gray), and for increasing amounts of A from 0 to 25 nM.
  • Fig. 18 is a two-dimensional graph corresponding to this experiment, where each dot is a drop of abscissa the fluorescence maximum for the color of the quantization entity, and in ordinate the fluorescence maximum for the signaling entity 34.
  • FIG. 19 represents, for the same set of drops, a two-dimensional graph where each point has for abscissa the integral for the color of the quantization entity, and in ordinate the integral for the signaling entity 34.
  • the purpose of this experiment is to demonstrate the screening of antibody-producing cells according to the binding affinities of the secreted monoclonal antibodies by employing reagents and a procedure similar to Example 3.
  • the sample solution to be screened contains 13.5 ⁇ 10 6E10 hybridoma cells and 4.5 ⁇ 10 6 25H12 hybridoma cells suspended in the working solution described in Example 1.
  • the reagent solution contains the following reagents suspended in the working solution:
  • Fluorescence is measured for the different fluorescence channels, in the green for the antigen, and in the red for the quantization entity.
  • the signal considered in this example is the maximum of fluorescence. Drops with both a strong green and red fluorescence signal are sorted and collected.
  • RT-PCR is then performed on the cell solutions extracted from the sorted drops or the unsorted emulsion, and the PCR products are digested using two restriction enzymes.
  • the BamHI enzyme has a restriction site on cDNA from 9E10 cells and the KpnI enzyme has a cDNA restriction site from 25H12.
  • the digests are analyzed by electrophoresis. In FIGS. 20 and 21, it can be seen that the method allows an enrichment in 25H12 cells after the screening by the device.
  • the invention therefore allows specific high-throughput selection of single cells secreting antibodies recognizing the signaling entity.
  • FIG. 20 and Figure 21 illustrate hybridoma sorting according to the invention.
  • each dot is a drop of abscissa the fluorescence maximum for the color of the signaling entity, and in ordinate the fluorescence maximum for the quantization entity.
  • the black window indicates the range of values selected for sorting.
  • Figure 21 illustrates RT-PCR analysis and enzymatic digestion with BamHI
  • the particles are functionalized with streptavidin and the capture antibodies are biotinylated. Another method of coupling the capture antibody to the particles can be used.
  • the coupling method is covalent or non-covalent.
  • the important criterion is that the signaling entities are not captured directly on the surface of the particles.
  • IFNy interferon gamma
  • a biomarker cytokine in many cases of inflammation or infection, at the single cell level, according to the invention and with a device. measuring type 1.
  • Such a biological assay can be used to test the functioning of the immune system of patients in the context of functional immunology tests. In such tests the immune cells are stimulated and their cytokine secretion is measured.
  • this assay is intended to be used for individually encapsulated cells, and the general protocol for doing so is now described.
  • the sandwich is for example composed of magnetic fluorescent beads coated with streptavidin, biotinylated antibodies and fluorescent antibodies. Both kinds of antibodies are directed against two different epitopes of IFNy.
  • the working solution contains culture medium and cell activators
  • the emulsion is incubated. Under the action of the magnetic field, the particles are oriented within the drop and form a column.
  • the aggregation of the beads in a column is made irreversible by the bridging of the beads via multiple biotins located on the capture antibody.
  • the incubation allows the secretion and possibly the binding of the molecules together. After the incubation, the drops are analyzed using the device of type 1 according to the invention.
  • Drops comprising cells that do not respond to the activation signal and do not secrete interferon gamma, contain fluorescent antibodies within the entire drop. Drops secreting gamma interferons show biotinylated capture antibody sandwiches - IFNy - fluorescent detection antibodies that are relocated to the streptavidin surface of the beads. In these drops, therefore, a relocated fluorescence is measured at the level of the aggregate.
  • a device similar to that of Example 1 and 3 is used to generate the drops from the three solutions to be screened, by playing on the streams to obtain a different size for each concentration of IFNy (but always keeping the two streams injection of equal aqueous solutions to obtain the desired final concentration).
  • the drops are about 25 ⁇ L for OnM IFNy, 31 ⁇ L for 10nM final, and 38 ⁇ L for 100nM final.
  • These 3 populations of drops are mixed, incubated, and analyzed to measure the relocation of the orange detection antibody.
  • the identical protocol is that of Example 3.
  • the fluorescence is measured for 2 fluorescence channels: orange for the detection antibody (PMT3), red for the beads (PMT4).
  • the signal considered in this example is the maximum of fluorescence.
  • FIG. 22 and FIG. 23 illustrate detection and quantification of cytokine (interferon gamma, IFNy) in microfluidic drops according to the invention.
  • the three populations of drops containing 0, 10, or 100 nM of IFN ⁇ are represented according to their maximum fluorescence in the orange (PMT3), which corresponds to the detection antibody, with respect to their size (Width).
  • the three populations of drops are shown in Figure 23 according to their maximum fluorescence in the orange (PMT3), relative to their maximum fluorescence in the red (PMT4), which corresponds to the beads.
  • Example 6 Triaging of primary cells, more specifically of B cells (plasma cells), at the single cell level as a function of the binding activity of the antibodies they secrete.
  • the purpose of this experiment is to demonstrate the screening of antibody-producing primary cells as a function of the binding activity of secreted monoclonal antibodies using reagents and a procedure similar to Example 4.
  • B-lymphocytes can be differentiated and sorted according to the binding activity of the monoclonal antibodies they secrete.
  • the B cells were previously extracted from the spleen of a mouse and purified according to a standard procedure (Pan B kit II # 130-104-443, Miltenyi Biotec).
  • the work solution includes:
  • the volume of the working solution is supplemented with DMEM-F12 provided by Life Technologies to reach the final volume.
  • Two emulsions are produced and pooled after production and before analysis and screening.
  • the majority emulsion (-10 Million drops) consists of the cells to be screened as well as detection reagents.
  • the second emulsion, called negative control, comprising ⁇ 1 Million drops, consists only of detection reagents.
  • the two emulsions are differentiable thanks to the use of two different concentrations of an orange fluorophore, Sulforhodamine B.
  • the sample solution to be screened contains 6.6 ⁇ 10 6 purified primary cells suspended in a working solution as described in Example 1.
  • the reagent solution contains the following reagents suspended in the working solution:
  • Fluorescence is measured in red for the quantizing entity.
  • the signal considered in this example is the maximum of fluorescence. Drops with a large red fluorescence signal, having the right size and coming from of the emulsion of the primary cells (low orange fluorescence of sulforhodamine B) are sorted, collected and broken then the cells are recovered as in Example 4.
  • Fig. 25 shows a histogram of the number of drops counted for a fluorescence signal measured on the channel of the quantization entity.
  • the abscissa represents the fluorescence maximum for the color of the quantization entity, and the ordinate represents the base logarithm of the number of drops measured at this fluorescence value.
  • the values obtained for the emulsion of primary cells to be screened are drawn in black solid line.
  • the values obtained for the negative control emulsion are plotted and gray dotted line.
  • the vertical line of black round dots indicates the threshold value beyond which the drops are selected for sorting.
  • An ELISpot is then performed on the solutions of cells extracted from sorted drops or unsorted cells, that is to say after purification (Miltenyi kit) but before microfluidic screening.
  • the cells thus analyzed by ELISpot are tested both for the secretion of antibodies and for the secretion of an anti-TT antibody.
  • ELISpot analysis of sorted primary cells and purified but unsorted primary cells is performed.
  • the assay is performed on two markers using the procedures as described in the Mouse IgG ELISpot BASIC kit (Mabtech # 3825-2A).
  • the first, called IgG uses the procedure “Total Ig ELISpot” and can detect the number of cells secreting antibodies.
  • the second, called TT uses the procedure "Antigen-specific Ig ELISpot, PROTOCOL II" and allows to detect the number of cells secreting antibodies having a binding activity against the TT antigen.
  • the enrichment ⁇ is calculated according to the following formula, N + 0 being the number of positive cells before sorting, N +, i being the number of positive cells after sorting, ⁇ .
  • N are the respective values of negative cells before and after sorting.
  • 51 non-screened and 5149 negative cells were obtained for 5000 unsorted cells and 132 cells positive for TT and 868 negative cells were obtained for 1000 sorted cells.
  • the experiment demonstrates an enrichment, ⁇ , of a factor of about 15 in secretory cells having TT binding activity after sorting and these cells represent 93% of the detected antibody-secreting cells.
  • the ELISpot test makes it possible to show that the method allows enrichment in primary cells after screening by the device.
  • the invention thus allows high throughput specific selection of unique primary cells secreting antibodies recognizing the capture element.
  • Example 7 Quantification of a monoclonal antibody and detection of binding with its antigen in a 2D chamber
  • the target element 37 is an antibody that is already contained in the solution to be screened, this example does not implement cells.
  • the signaling entity is a fluorescent antigen, more specifically "TT-AF488" the Tetanus Toxoid protein previously functionalized with an AlexaFluor-488 fluorophore by means of a labeling procedure for a standard kit, for example provided by ThermoFisher.
  • the magnetic particles used to form the drop columns are saturated with the capture entity, here the "CaptureSelectTM Biotin Anti-LC-kappa (Murine) conjugate" (ThermoFisher # 7103152500).
  • the work solution includes:
  • the volume of the working solution is supplemented with DMEM-F12 free of phenol red provided by Life Technologies to reach the final volume.
  • the reagent solution contains the following reagents suspended in the working solution:
  • TT7 75 nM quantization entity (Rab.Fab'2, antiFCmouse AF647) and a range of concentration of a monoclonal antibody, having antigen binding activity (TT7), comprising the following values: 0; 4.2; 12.5; 20.8; 42 ( Figure S7b only); 62.5; 83.3; 125; 208; 250 ( Figure S7b only).
  • the anti-TT antibody, called TT7 was obtained by recombinant protein expression from the sequence published in the article written by Brandon J DeKosky et al., Titled High-throughput sequencing of the human immunoglobulin heavy pair. light chain directory "published in Nature Biotechnology Volume: 31, pages 166 to 169 in 2013.
  • the multiple measured emulsions are differentiable by the use of a range of concentrations of an orange fluorophore, Sulforhodamine B.
  • the measurements collected were not performed simultaneously.
  • Fig. 26 shows the type measuring device of the second apparatus 60 used in this example.
  • a chamber 40 ⁇ high is created between two glass slides.
  • An inlet and an outlet are made in the upper glass slide and each provided with a standard connector for connecting the connection capillaries.
  • Fig. 28 is a titration curve showing the ratio of the relocated and dispersed signals of the quantization (Fig. 28A) and signaling entities (Fig. 28B) as a function of the target element concentration (TT7 antibody) in nanomolar.
  • Example 7 This example is similar in all respects to Example 7 with the difference that several distinct target elements 37, representing an affinity range for the antigen, are measured.
  • One purpose of this example is to demonstrate the possibility of measuring the affinity of a monoclonal antibody for a given antigen in a type 60 device, that is, a chamber in which the drops are distributed in two dimensions in a single layer.
  • the dissociation constant Kd is evaluated by measuring the concentration of fluorescent antigen bound to the antibody immobilized on the column of beads and by simultaneously measuring the concentration of antibody captured on the column of beads.
  • TT4 The anti-TT antibodies used for this experiment, called TT4, TT7 and TT10, were obtained by expression of recombinant proteins from the sequences published in the article written by Brandon J DeKosky et al., Entitled “High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire "published in Nature Biotechnology Volume: 31, pages 166 to 169 in 2013.
  • Different concentrations of each of the three antibodies were used in several different emulsions in order to obtain, by linear regression, the ratio of the signaling entity signal to the quantization entity signal respectively for each of the three antibodies, specifically 0 nM, 5 nM and 10 nM for TT10, 0 nM, 2.5 nM and 10 nM for TT4 and 0 nM, 5 nM, 10 nM, 15 nM and 25 nM for TT7.
  • Fig. 29 is a graph showing the ratio of the relocated and scattered signals of quantization entities in abscissa and signaling in ordinate for the three monoclonal antibodies, TT4, TT7 and TT10 tested in this experiment.
  • Example 8 This example is similar in all respects to Example 8 with the difference that the target element 37 is a monoclonal antibody secreted by a primary cell and that this secretion is measured kinetically.
  • An object of this example is to demonstrate the possibility of simultaneously measuring the kinetics of secretion and the affinity, for a given antigen, of monoclonal antibodies generated by single primary cells isolated in drops in a type 60 device.
  • the B lymphocytes were previously extracted from the spleen of a mouse and purified according to a standard procedure (Pan B kit II # 130-104-443, Miltenyi Biotec).
  • Fig. 31 is a graph showing the evolution, at the single cell scale, of the ratio of the relocated signal of the magnetic bead line to the dispersed drop signal as a function of time (min).
  • the titration curve FIG. 28a of example 7
  • Figure 32 illustrates the heterogeneity of the primary cells.
  • Example 10 Number, geometry and stability of aggregates of magnetic beads in drop.
  • the target element 37 is a biotinylated fluorescent molecule, for example AF546-Biotin (ThermoFisher # S1 1225) which also has the role of signaling entity and which is already contained in the solution to be screened. This example does not implement cells.
  • An aim of this example is to demonstrate the possibility of stabilizing the magnetic bead aggregate lines and to ensure their singularities in drop, through the use of a cross-linking molecule.
  • a biotinylated protein Biotin-BSA (Sigma Aldrich # A8549) as a cross-linking molecule.
  • the Biotin-BSA used has between 8 and 16 moles of Biotin per mole of albumin.
  • the work solution includes:
  • the volume of the working solution is supplemented with DMEM-F12 provided by Life Technologies to reach the final volume.
  • the seven emulsions produced for this experiment contain the following reagents suspended in the working solution:
  • VHH lines A reference emulsion, called “VHH lines", is produced as described in Example "C".
  • the stabilization of the magnetic beads lines is obtained thanks to the transversal connection between the target elements (antibodies) and the capture entities ("CaptureSelectTM Biotin Anti-LC-kappa (Murine) conjugate ThermoFisher # 7103152500), because the same target element (antibody) can be linked to two capture entities.
  • Fig. 33 is a graph showing the format ratio of the magnetic bead line as a function of the different experimental conditions and illustrated in each case by a microscopy image.
  • Fig. 34 is a graph showing the singularity or plurality of the magnetic bead line as a function of the different experimental conditions.

Abstract

Procédé d'analyse du contenu de gouttes et appareil associé L'invention concerne un procédé d'analyse du contenu de gouttes, comprenant l'étape suivante : - fourniture d'une pluralité de gouttes contenues dans un fluide porteur, au moins une des gouttes comprenant au moins un agrégat de particules définissant un objet allongé selon un axe principal, au moins certaines gouttes contenant au moins un élément cible propre à se fixer sur l'agrégat. Le procédé comprend une étape de mesure d'un paramètre physique caractéristique de la fixation de l'élément cible sur l'agrégat.

Description

Procédé d'analyse du contenu de gouttes et appareil associé
La présente invention concerne un procédé d'analyse du contenu de gouttes comprenant l'étape suivante :
- fourniture d'une pluralité de gouttes contenues dans un fluide porteur, au moins une des gouttes comprenant au moins un agrégat de particules définissant un objet allongé selon un axe principal, au moins certaines gouttes contenant au moins un élément cible propre à se fixer sur l'agrégat.
Un tel procédé est destiné par exemple à effectuer un criblage de molécules d'intérêts dispersées dans les gouttes. En particulier, le procédé est destiné à déterminer voire à sélectionner des gouttes comprenant un élément cible particulier, cet élément cible pouvant résulter d'une réaction chimique ou d'une réaction biologique.
En particulier, la mesure puis la sélection des gouttes peut être basée sur la concentration ou l'activité de liaison d'un produit.
Le document WO 2009/01 1808 A1 décrit un procédé de détermination d'une activité de fixation d'une protéine au sein d'une goutte.
La publication « Single-cell analysis and sorting using droplet-based microfluidics », de Mazutis et al. publiée en ligne, le 4 avril 2013 dans la revue Nature Protocols illustre ce principe.
Un hybridome de souris est encapsulé dans une goutte avec une bille recouverte d'anticorps anti-souris. L'hybridome sécrète des anticorps. Un anticorps secondaire couplé à un fluorophore permet de révéler la présence de l'anticorps sécrété. La distribution de l'anticorps secondaire est, en l'absence d'anticorps sécrété, homogène dans la goutte, mais elle se relocalise sur la bille en présence d'anticorps.
Le procédé est donc très sélectif pour déterminer l'activité d'une cellule particulière.
Par contre, un tel procédé présente divers inconvénients. Le procédé de compartimentation des cellules et des billes est aléatoire. Le nombre de billes dans les gouttes peut être estimé par une loi de distribution de Poisson. De même, le nombre de cellules au sein des gouttes peut être estimé par une loi de distribution de Poisson indépendante. Les concentrations initiales en billes et en gouttes sont ajustées pour avoir en moyenne une cellule et une bille par goutte. Seule une partie des gouttes présente donc un intérêt pour l'analyse réalisée.
Par ailleurs, la présence d'une bille unique de taille significative par goutte n'est pas favorable à la résolution de la méthode. En effet, les anticorps secondaires se répartissent sur toute la surface de la bille. La gamme dynamique du procédé est donc limitée par la surface externe disponible par bille. Un but de l'invention est de fournir un procédé d'analyse plus fiable et plus sensible que les procédés existants.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que le procédé comprend une étape de mesure d'un paramètre physique caractéristique de la fixation de l'élément cible sur l'agrégat.
Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes combinaisons techniquement possibles :
- les particules sont des particules magnétiques, avantageusement paramagnétiques, de préférence superparamagnétiques ;
- l'étape de fourniture des gouttes comprend :
- la dispersion des particules dans une masse de fluide destinée à former les gouttes, puis
- la dispersion de la masse de fluide sous forme de gouttes, - la formation dans chaque goutte d'au moins un agrégat de particules définissant un objet allongé selon un axe principal, l'agrégat de particules étant formé dans chaque goutte après la dispersion ;
- l'élément cible est un élément choisi dans le groupe constitué par une protéine, un anticorps, un peptide, un morceau d'ADN ou d'ARN, un métabolite, un ion, un lipide et une biomolécule susceptible d'être produite par une cellule ;
- au moins certains gouttes comprennent une entité productrice susceptible de produire l'élément cible, l'entité productrice étant de préférence choisie dans le groupe constitué par une cellule et un système d'expression in vitro ;
- l'étape de mesure comporte la mesure du paramètre physique localement en une pluralité de points situés dans la goutte, l'étape de mesure comportant de préférence la détermination de l'intégrale des valeurs mesurées au sein de la goutte ;
- le procédé comprend avant l'étape de mesure, une étape d'orientation de l'axe principal de l'agrégat selon un axe de détection ;
- le procédé comprend de multiples étapes de mesure, avec une étape d'orientation de l'axe principal de l'agrégat selon un axe de détection différent pour chacune des mesures ;
- l'étape de mesure est effectuée dans une chambre microfluidique sans circulation des gouttes ;
- le procédé comprend :
- la fourniture d'un dispositif comprenant un ensemble de mise en circulation de la goutte et une zone de détection ; - le transport de la goutte vers la zone de détection, la mesure au sein de la goutte étant effectuée dans la zone de détection ;
- le procédé comprend :
- la fourniture d'un dispositif comprenant un ensemble de mise en circulation de la goutte et une pluralité de zones de classement, et un moyen de direction de la goutte ou d'une partie de la goutte sélectivement vers une zone de classement,
- la décision de classement de la goutte ou d'une partie de la goutte, la décision consistant à choisir sélectivement une zone de classement parmi la pluralité des zones de classement,
- le transport de la goutte, respectivement d'une partie de la goutte, vers la zone de classement de la goutte choisie lors de l'étape de décision ;
- au moins une goutte comprend au moins un élément cible, au moins une première entité de signalisation apte à former un complexe avec l'élément cible et au moins une seconde entité de signalisation distincte apte à former un complexe avec l'élément cible, le procédé comprenant la mesure d'un signal indiquant la concentration de chacune des entités de signalisation relocalisées sur l'agrégat ;
- au moins une goutte comprend au moins un élément cible, au moins une entité de signalisation apte à former un complexe avec l'élément cible et au moins une entité de quantification apte à former un complexe avec l'élément cible, le procédé comprenant :
- la mesure d'un signal représentatif de la concentration de l'entité de signalisation relocalisée sur l'agrégat,
- la mesure d'un signal représentatif de la concentration de l'entité de quantification relocalisée sur l'agrégat,
- la détermination de la constante de dissociation de l'élément cible avec l'entité de signalisation à partir du rapport du signal de l'entité de signalisation relocalisée sur le signal de l'entité de quantification relocalisée ;
- au moins certaines gouttes comprennent une entité productrice, l'entité productrice étant une cellule susceptible de produire au moins un anticorps étant un élément cible, le procédé comprenant une étape de détermination de l'affinité de l'anticorps produit par l'entité productrice pour au moins un antigène, le procédé comprenant de préférence une étape de tri de la goutte après l'étape de détermination ;
- au moins une goutte comprend au moins deux entités de signalisation distinctes, chacune des deux entités de signalisation étant apte à former un complexe avec un élément cible distinct sur l'agrégat, le procédé comprenant la mesure d'un signal indiquant la concentration de chacune des entités de signalisation relocalisée ; - au moins certaines gouttes comprennent une entité productrice, l'entité productrice étant une cellule susceptible de produire un ou plusieurs types de protéines, chaque protéine étant un élément cible distinct, la mesure du signal indiquant la concentration de chacune des entités de signalisation relocalisée permettant une quantification du ou des types de protéines ;
- la mesure d'un paramètre physique est une mesure de fluorescence ;
- Au moins une des gouttes comprend une cellule apte à sécréter l'élément cible et le procédé comprend une étape d'incubation au cours de laquelle l'élément cible est sécrété dans la goutte par la cellule ;
- Au moins une des gouttes comprend une cellule et le procédé comprend une étape de lyse cellulaire ;
- Au moins une des gouttes comprend un système de traduction in vitro apte à exprimer l'élément cible ;
- le procédé comprend une étape de mesure d'un paramètre physique, localement en un premier point situé à l'écart de l'agrégat dans au moins une des gouttes et du même paramètre physique, localement en un deuxième point au voisinage de l'agrégat dans la même goutte ;
- la dimension maximale des particules est inférieure à 50 % du diamètre de la goutte ;
- la goutte contient au moins une entité de signalisation, et la mesure du paramètre physique dépend de la position de l'entité de signalisation au sein de la goutte ou par rapport à l'agrégat ;
- l'entité productrice produit plusieurs éléments cibles choisis dans le groupe constitué par une protéine, un peptide, un morceau d'ADN ou d'ARN, un métabolite, un ion, un lipide et une biomolécule susceptible d'être produite par une cellule ;
- le procédé comporte une étape de détermination d'au moins une caractéristique de l'entité productrice ;
- l'étape de décision de classement a lieu après l'étape de mesure ;
- la goutte contient des particules superparamagnétiques, la goutte ou la partie de la goutte est dirigée vers la zone de classement par un moyen de direction choisi parmi une force magnétique, un champ électrique, une diélectrophorèse, une électrocoalescence ou une onde acoustique de surface ;
- une partie de la goutte est extraite au moyen de la force magnétique, la partie extraite formant une goutte auxiliaire et contenant l'agrégat.
L'invention a également pour objet un appareil d'analyse du contenu de gouttes comprenant : - un ensemble de fourniture d'une pluralité de gouttes contenues dans un fluide porteur, au moins une des gouttes comprenant au moins un agrégat de particules définissant un objet allongé selon un axe principal, caractérisé en ce que l'appareil comprend un ensemble de mesure d'un paramètre physique caractéristique de la fixation de l'élément cible sur l'agrégat,
l'appareil comprenant, en outre, de préférence :
- un ensemble mise en circulation de la goutte,
- un ensemble de décision de classement de la goutte,
- un ensemble de tri de la goutte selon la décision de classement.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est une représentation schématique des éléments principaux d'un premier appareil d'analyse selon l'invention,
- la figure 2 est une représentation schématique d'une étape de procédé avec le premier appareil,
- les figures 3 à 6 sont des photographies d'une partie d'un deuxième appareil suivant l'invention lors de différentes étapes de procédé suivant l'invention,
- la figure 7 est une représentation schématique d'un troisième appareil selon l'invention,
- la figure 8 est une représentation schématique d'un quatrième appareil selon l'invention,
- la figure 9 est une représentation schématique d'une étape de procédé avec le premier appareil,
- la figure 10 illustre la détermination d'un coefficient de dissociation Kd par le procédé,
- les figures 1 1 et 12 représentent des dispositifs de générations de gouttes,
- les figures 13 et 14 représentent des ensembles d'espacement de gouttes et de mesure,
- les figures 15 et 16 représentent des ensembles de lecture en deux dimensions,
- les figures 17, 18 et 19 illustrent l'exemple 3,
les figures 20 et 21 illustrent l'exemple 4,
- les figures 22 et 23 illustrent l'exemple 5,
- la figure 24 est une représentation schématique d'une goutte lors d'une étape de mise en œuvre d'un procédé, - la figure 25 illustre l'exemple 6,
- les figures 26, 27 et 28 illustrent l'exemple 7,
- les figures 29 et 30 illustrent l'exemple 8,
- les figures 31 et 32 illustrent l'exemple 9,
- les figures 33 et 34 illustrent l'exemple 10.
Un premier appareil d'analyse 1 du contenu de gouttes suivant l'invention est représenté sur la figure 1 .
L'appareil 1 comprend un ensemble de fourniture 4 d'une pluralité de gouttes 6 contenues dans un fluide porteur 8, au moins une partie des gouttes 6 comprenant au moins un agrégat 10 de particules 12 définissant un objet allongé selon un axe principal X.
L'appareil 1 comprend, en outre, un ensemble de mesure 14 d'un paramètre physique dans la goutte.
L'ensemble de mesure 14 est, par exemple, propre à effectuer la mesure d'un paramètre physique, localement en un premier point 16 situé à l'écart de l'agrégat 10 dans au moins une des gouttes et du même paramètre physique localement en un deuxième point 18 au voisinage de l'agrégat 10 dans la même goutte.
L'appareil 1 comporte également un dispositif 20 comprenant un ensemble de mise en circulation 22, un conduit de circulation 24 et une zone de détection 26.
L'ensemble de mise en circulation 22 est apte à faire circuler chaque goutte 6 dans le fluide porteur 8 dans le conduit 24 sous forme d'un train de gouttes successives.
L'ensemble de fourniture 4 comprend un ensemble de chargement 28 et un ensemble d'agrégation 30. L'ensemble de fourniture 4 comprend en outre un ensemble d'espacement 31 .
L'ensemble de chargement 28 est apte à fournir une pluralité de gouttes initiales 32 comprenant une dispersion de particules 12, au moins une des gouttes initiales 32 comprenant en outre au moins un élément cible 37.
L'ensemble d'espacement 31 est apte à espacer deux gouttes successives 6 du train de goutte, c'est-à-dire à augmenter la distance entre deux gouttes successives. Par exemple, l'ensemble d'espacement 31 comporte une entrée de fluide porteur 8. Des exemples d'ensemble d'espacements sont représentés sur les figures 13 et 14.
Le fluide porteur 8 est apte à séparer deux gouttes successives 6 du train de gouttes pour empêcher leur contact. En variante, la séparation des gouttes 6 est effectuée par un dispositif mécanique. Le fluide formant la phase interne des gouttes 6 et le fluide porteur 8 sont sensiblement immiscibles. Par exemple, les gouttes 6 comprennent une phase interne aqueuse et le fluide porteur 8 est une phase organique ou huileuse.
Le fluide porteur 8 est avantageusement une huile fluorée.
Le fluide porteur 8 ou le fluide formant la phase interne des gouttes comprend avantageusement un tensio-actif apte à empêcher la fusion de deux gouttes 6 en contact, comme par exemple tel que décrit dans le brevet US 2010/01051 12 ou encore le surfactant EA de la société RainDance Technologies.
Par « sensiblement immiscibles », on entend généralement que la solubilité du fluide formant les gouttes dans le fluide porteur 8, mesurée à 25°C et à pression ambiante, est inférieure à 1 %.
La taille des gouttes 6 est, par exemple, comprise entre 1 μηι et 1000 μηι.
Le volume des gouttes 6 est compris avantageusement entre 0.1 picolitres et 1 microlitre.
Les gouttes 6 fournies sont sensiblement monodisperses. Ceci signifie que la polydispersité des gouttes 6 est inférieure à 5 %.
Dans l'exemple représenté, les gouttes 6 sont sphériques. En variante, les gouttes 6 sont de forme allongée selon l'axe de circulation Y du conduit 24. En variante, les gouttes 6 sont de forme de palet aplati selon un axe perpendiculaire à l'axe de circulation Y.
Chaque goutte initiale 32 comprend un fluide de base, une dispersion de particules 12 solides dans le fluide de base et une pluralité d'entités de signalisation 34. En outre au moins une goutte initiale 32 comprend au moins un élément cible 37.
Les particules 12 sont destinées à former l'agrégat 10 de forme allongée. Par exemple, les particules 12 sont des particules superparamagnétiques qui acquièrent un moment magnétique à l'application d'un champ magnétique. Le superparamagnétisme est un comportement des matériaux ferromagnétiques ou ferrimagnétiques qui apparaît lorsqu'ils sont sous la forme de petits grains ou nanoparticules. Dans des grains de taille suffisamment petite, l'aimantation peut se renverser spontanément sous l'influence de la température. Le terme « particules magnétiques » dans le texte désigne des particules superparamagnétiques.
Les particules magnétiques 12 sont, par exemple, choisies parmi les particules fournies par la société Dynal (Life Technologies) ou Ademtech ou Miltenyi.
Les particules 12 sont par exemple nanométriques. Ainsi, leur dimension maximale est inférieure à 1 μηι et est par exemple comprise entre 50 nm et 1000 nm. Les particules 12 sont avantageusement sensiblement monodisperses. Par exemple, la variation entre les dimensions maximales des particules 12 est strictement inférieure à 10 %. La taille et le nombre de particules 12 par gouttes 6 sont choisies pour former le nombre désiré d'agrégat. La dimension maximale des particules 12 est inférieure à 50 % du diamètre de la goutte 6.
La concentration de particules 12 permet une stabilité colloïdale.
La concentration de particules 12 par gouttes 6 est telle que les particules 12 occupent entre 0,1 % et 5 % du volume de la goutte 6, par exemple 1 ,7 %.
Dans un exemple, chaque goutte 6 de 33 picolitres contient en moyenne 500 particules 12 de 300 nm de diamètres.
Les particules 12 forment initialement une dispersion homogène dans les gouttes initiales 32. Elles sont réparties sensiblement uniformément dans le volume de la goutte initiale 32. Ainsi, la concentration en particules 12 est homogène sur l'ensemble de la goutte initiale 32.
Les particules 12 possèdent avantageusement une surface permettant le couplage de molécules biologiques, constituée d'un matériau de surface. Par exemple les particules 12 sont couvertes d'un polymère présentant des fonctions COOH ou NH2.
Avantageusement, ce matériau de surface permet également de limiter l'agrégation spontanée des particules 12 dans la goutte.
De manière additionnelle, il peut avantageusement favoriser la stabilité de l'agrégat 10, par exemple, via des liaisons non spécifiques entre le matériau d'une bille et de sa voisine dans l'agrégat.
Les particules 12 sont avantageusement fonctionnalisées. Ceci signifie notamment que le matériau de surface des particules 12 comporte des éléments fonctionnels.
Dans l'exemple représenté, les éléments fonctionnels comportent un élément de capture 36. L'élément de capture 36 est, par exemple, apte à capture l'élément cible 37. L'élément de capture 36 est apte à se lier indirectement à l'entité de signalisation 34 par l'intermédiaire de l'élément cible 37. En variante, l'élément de capture est apte à se lier directement à l'entité de signalisation 34.
Par exemple, l'élément de capture 36 sur les particules 12 est une protéine G, l'élément cible 37 est un anticorps, apte à se lier à la protéine G et l'entité de signalisation 34 est un antigène reconnu par l'anticorps, l'antigène étant apte à se lier à l'anticorps.
L'ensemble d'agrégation 30 est apte à engendrer une agrégation des particules 12 selon un axe principal X.
L'ensemble d'agrégation 30 comporte, par exemple, deux aimants 38 situés de part et d'autre du conduit 24. Le champ magnétique est non parallèle à l'axe de circulation Y et avantageusement perpendiculaire à l'axe de circulation Y. L'ensemble d'agrégation 30 permet la formation d'un agrégat allongé dans chaque goutte 6.
Dans un mode de réalisation les aimants 38 sont permanents.
En variante, l'ensemble d'agrégation 30 comporte un aimant non-permanent. En variante, l'ensemble d'agrégation 30 est apte à basculer d'un mode actif à un mode inactif afin de générer des agrégats 10 allongés dans certaines gouttes seulement.
Chaque agrégat 10 de particules 12 comporte par exemple une colonne orientée suivant un axe principal X. La hauteur de la colonne est avantageusement comprise entre 50 % et 100 % du diamètre de la goutte 6. Sa largeur est, par exemple, inférieure à 60 % de sa hauteur.
De plus, l'ensemble d'agrégation 30 est, par exemple, apte à orienter l'agrégat suivant un axe préférentiel. Dans l'exemple représenté, l'axe X de l'agrégat 12 est perpendiculaire à l'axe de circulation Y des gouttes 6 dans le conduit de circulation 24.
L'ensemble de mesure 14 comprend par exemple une ligne laser apte à mesurer de manière optique l'intensité de la fluorescence selon une ligne s'étendant selon un axe X' perpendiculaire ou incliné par rapport à l'axe de circulation Y.
L'ensemble de mesure 14 est apte à effectuer la mesure au sein de la goutte dans la zone de détection 26.
L'axe X' de la ligne laser est avantageusement parallèle à l'axe de l'agrégat X dans la zone de détection 26.
Lorsque le débit du fluide porteur 8 est constant, la mesure en fonction du temps du signal obtenu par la ligne laser correspond à un balayage spatial de la goutte 6 passant devant la ligne laser. Ceci permet de prendre successivement plusieurs points de mesure et en particulier au moins un premier point 16 de mesure situé à l'écart de l'agrégat 10 et un deuxième point 18 de mesure situé plus proche de l'agrégat 10, au voisinage de l'agrégat 10.
En pratique, une pluralité de points de mesure successifs sont pris sur toute la dimension longitudinale de la goûte 6 lors de son passage progressif en regard de l'ensemble de mesure 14.
Dans l'exemple représenté sur les figures 1 et 2, l'entité de signalisation 34 est fluorescente.
Le conduit de circulation 24 est destiné à permettre la circulation des gouttes 6, 32 suivant l'axe de circulation Y dans un sens de circulation allant de l'ensemble de fourniture 4 vers l'ensemble de mesure 14.
Le conduit de circulation 24 présente avantageusement un diamètre intérieur inférieur ou égal à 1 mm. Le conduit de circulation 24 est allongé selon l'axe de circulation Y. Le conduit de circulation 24 présente une section transversale intérieure de contour arrondi tel que circulaire ou elliptique, ou de contour polygonal tel que rectangulaire.
Le conduit de circulation 24 est par exemple défini dans un matériau translucide permettant la mesure de paramètres optiques par l'ensemble de mesure 14. En variante, le conduit de circulation 24 définit au moins une fenêtre de mesure transparente dans la zone de détection 26.
Les parois du conduit de circulation 24 sont étanches au fluide porteur 8.
Par exemple, le conduit de circulation 24 est défini dans un tube capillaire de dimension interne avantageusement inférieure à 1 mm. En variante, le conduit de circulation 24 est défini dans une puce microfluidique.
L'ensemble de mise en circulation des gouttes 22 est destiné à déplacer une à une les gouttes 6, 32 dans le conduit 24 dans le sens de circulation.
L'ensemble de mise en circulation 22 comprend par exemple un pousse-seringue permettant d'appliquer des débits contrôlés au fluide porteur 8. En variante l'ensemble de mise en circulation 22 comprend un contrôleur de pression.
Un premier procédé d'analyse suivant l'invention mis en œuvre dans le premier appareil 1 va maintenant être décrit.
Un appareil 1 tel que précédemment décrit est fourni. Des gouttes initiales 32 telles que décrites plus haut sont préparées dans un fluide porteur 8.
De préférence, les particules 12 sont dispersées de manière homogène dans chaque goutte initiale 32. Compte tenu de la faible taille des particules 12 individuelles par rapport aux gouttes initiales 32, chaque goutte initiale 32 contient un nombre élevé de particules individuelles 12 par exemple supérieur à 10. La probabilité d'obtenir une goutte initiale 32 dépourvue de particules 12 est très faible, voire nulle.
De préférence, les éléments cibles 37 et les entités de signalisation 34 sont dispersés de manière homogène dans chaque goutte initiale 32.
Au sein de la goutte initiale 32, des liaisons se forment entre les éléments ayant des affinités particulières.
Dans un exemple, chaque élément cible 37 se lie à une entité de signalisation 34 et à un élément de capture 36. L'entité de signalisation 34 est ainsi relocalisée sur une particule 12.
Dans la suite, on entend par entités « relocalisées», les entités liées à l'agrégat 10. Les gouttes initiales 32 sont mises en circulation conjointement avec le fluide porteur 8 dans le conduit 24 par l'ensemble de mise en circulation 22. Au moins une goutte initiale 32 est conduite vers l'ensemble d'agrégation 30. Un agrégat 10 de particules 12 définissant un objet allongé selon un axe principal X est formé par l'ensemble d'agrégation 30 dans la goutte initiale 32.
De préférence, lorsque les particules 12 sont des particules magnétiques, elles s'alignent le long de l'axe principal X lors de leur passage en regard de chaque aimant 38 de l'ensemble d'agrégation 30.
La goutte 6 comprenant l'objet allongé est conduite vers la zone de détection 26. Un paramètre physique est mesuré localement par l'ensemble de mesure 14 en au moins un premier point 16 dans au moins une des gouttes 6.
Dans une mise en œuvre particulière, un paramètre physique est mesuré localement par l'ensemble de mesure 14 en au moins un premier point 16 dans au moins une des gouttes 6 et le même paramètre physique est mesuré localement en au moins un deuxième point 18 au voisinage de l'agrégat 10 dans la même goutte 6 par l'ensemble de mesure 14.
La figure 2 représente à titre illustratif différentes mesures obtenues pour différentes gouttes 6. Le graphique représente l'intensité de fluorescence mesurée par la ligne laser en fonction du temps.
L'intensité de fluorescence est mesurée dans une gamme de longueur d'onde caractéristique de l'entité de signalisation 34. Dans l'exemple, l'intensité de fluorescence est, en outre, mesurée dans une gamme de longueur d'onde caractéristique des particules 12, les particules 12 étant fluorescentes. L'agrégat 10 est ainsi plus facilement repérable.
L'intensité de fluorescence 40 correspondant à la fluorescence de l'entité de signalisation 34 mesurée sur la ligne laser est présentée en pointillés sur la figure 2 pour différentes gouttes 6.
L'intensité de fluorescence 41 correspondant à la fluorescence des particules 12 est présentée en traits pleins sur la figure 2 pour différentes gouttes 6.
L'étape de mesure comporte la détermination du paramètre physique localement en une pluralité de points situés dans la goutte. Elle comprend en outre avantageusement un cumul des valeurs mesurées en une pluralité de points, par exemple la détermination de l'intégrale des valeurs mesurées au sein de la goutte 6.
La première goutte 42 représentée est une goutte 6 dans laquelle les différentes entités de signalisation 34 n'ont pas été relocalisées sur les particules 12. La répartition des entités de signalisation 34 est homogène au sein de la goutte 6. Un signal d'intensité de fluorescence sous forme d'un plateau 44 est mesuré. La deuxième goutte 48 représentée est une goutte 6 dans laquelle une partie des entités de signalisation 34 a été relocalisé sur les particules 12. En effet, ces entités de signalisation 34 sont liées à un élément cible 37 capturé par l'élément de capture 36. L'intensité de fluorescence au voisinage de l'agrégat 10 est donc plus importante que dans le reste de la goutte 6. Un signal d'intensité de fluorescence présentant un pic 50 en plus d'un plateau 52 est mesuré.
La hauteur du plateau 52 de la deuxième goutte 48 est plus faible que la hauteur du plateau 44 de la première goutte 42 car moins d'entités de signalisations 34 sont libres à l'écart de l'agrégat 10.
La troisième goutte 56 représentée est une goutte 6 dans laquelle une proportion plus importante des entités de signalisation 34 a été relocalisée sur l'agrégat. Un signal d'intensité de fluorescence présentant un pic 58 et un plateau 59. La hauteur du pic 58 mesurée est plus importante que la hauteur du pic 50 mesurée dans la deuxième goutte 48 car plus d'entités de signalisation 34 sont capturées par les particules 12 et sont donc situées au voisinage de l'agrégat 10.
La figure 9 illustre le choix des paramètres utiles pour estimer la concentration d'entités de signalisation 34 relocalisées.
Sur la figure 9 qui représente le signal S au cours du temps t, on voit trois gouttes contenant un (à gauche et à droite) ou deux (agrégats) qui présentent un pic plus élevé de signal. Le paramètre utile peut-être le maximum du signal (indiqué Max) où l'intégrale du signal par rapport à un seuil donné (Int).
Une première méthode consiste à estimer cette concentration par la valeur maximale du signal (Max) dans chaque goutte 6, c'est-à-dire la hauteur des pics de signal relocalisés sur l'agrégat.
Une seconde méthode, plus précise, consiste à calculer l'intégrale des signaux
(Int) pour chaque goutte 6 au-delà d'un seuil fixé par l'utilisateur, comme représenté par exemple sur la figure 9. Cette méthode peut s'avérer plus intéressante pour limiter la dispersion du signal, comme cela sera illustré dans l'exemple 3.
Ces deux méthodes de traitement du signal peuvent être effectuées en temps réel. D'autres méthodes, par exemple combinant ces approches, pourraient être appliquées, par exemple pour mesurer à la fois l'entité de signalisation 34 relocalisée et non relocalisée.
L'invention permet, en outre, de mesurer la concentration de l'élément cible 37 dans la goutte 6.
Un cas simple pour ce faire est de se placer dans le cas où : - l'élément de capture 36 est en quantité suffisante et d'affinité suffisante pour l'élément cible 37 pour capturer au moins plus de 90 % de l'élément cible sur l'agrégat, avantageusement la totalité ;
- la concentration de l'entité de signalisation 34 est supérieure à celle de l'élément cible 37 et la constante de dissociation Kd entre l'entité de signalisation 34 et l'élément cible 37 est inférieure à la concentration de l'élément cible 37, avantageusement d'un facteur supérieur à 10. Ceci est typiquement le cas quand on utilise des réactifs de dosage optimisés comme des anticorps monoclonaux de Kd subnanomolaires, et qu'on veut détecter des concentrations d'élément cible 37 supérieures au nanomolaire, comme illustré dans l'Exemple 5.
On entend par « nanomolaire » égal à 1 nanomol/L.
Dans ces conditions particulière, la présence de chaque élément cible 37 donne lieu à la formation d'un complexe élément de capture 36 - élément cible 37 - entité de signalisation 34. La concentration de l'élément cible 37 est donc proportionnelle au signal de l'entité de signalisation 34 relocalisé sur l'agrégat 10. D'autres conditions permettent de réaliser cette quantification et seront évidentes à l'homme de l'art en modifiant les concentrations et les affinités des éléments de capture 36, ou des entités de signalisation 34 pour l'élément cible 37.
Les figures 3 à 6 illustrent une partie d'un deuxième appareil 60 suivant l'invention. Ce deuxième appareil 60 diffère du premier appareil 1 en ce que le dispositif 20 comporte une chambre 62. La chambre 62 comporte une pluralité de passages de circulation 64 et une pluralité de plots de séparation 66.
D'autres chambres sont possibles. Dans une variante, des chambres ne comprennent pas de plots de séparation tels que décrits dans le document PCT/FR2009/051396 et illustré sur les figures 15 et 16.
La chambre 62 est destinée à stocker une pluralité de gouttes 6 dans un fluide porteur 8 pendant une étape d'agrégation ou une étape d'orientation et pendant l'étape de mesure.
L'ensemble de mesure du deuxième appareil 60 diffère de l'ensemble de mesure 14 du premier appareil 1 en ce qu'il est apte à mesurer le paramètre physique simultanément sur plusieurs gouttes 6 présentes dans la chambre 62.
La figure 3 présente la chambre 62 contenant des gouttes initiales 32 dans un fluide porteur 8. La dispersion des particules 12 magnétique est visible.
La figure 4 présente la même chambre 62 après la formation des agrégats 10 dans les gouttes. Une pluralité d'agrégats allongés est formée dans chaque goutte 6. La figure 5 présente dans un même dispositif 60 une pluralité de gouttes 6 présentant des agrégats 10 allongés. La nature et la quantité de gouttes 6 ont été ajustées pour qu'un seul agrégat 10 allongé soit présent par goutte. La présence d'un unique agrégat 10 par goutte 6 facilite la mesure.
La figure 6 présente la même chambre 62 après une étape d'orientation des agrégats selon un même axe de détection D.
Le procédé d'analyse suivant l'invention à partir de ce deuxième appareil 60 diffère du procédé précédemment décrit en ce que la mesure est effectuée sur la pluralité de gouttes 6 simultanément, par exemple par mesure dans toute la chambre 62 en même temps, et non par circulation des gouttes 6 devant un détecteur.
Le procédé diffère également en ce qu'il comprend avant l'étape de mesure, une étape d'orientation de l'axe principal X de l'agrégat 10 selon un axe de détection D.
Avantageusement, on pourra multiplier les axes de détection, en appliquant des champs magnétiques d'orientation variable. Cette approche à l'avantage de permettre de discriminer l'agrégat 10 d'autres objets de la goutte non magnétiques, ou réduire les signaux parasites. Par exemple, le bruit de fond en fluorescence peut être réduit. Par exemple, la détection selon différents axes permet de distinguer une relocalisation de l'entité de signalisation 34 sur un agrégat 10 d'une relocalisation de l'entité de signalisation 34 sur un autre objet de la goutte 6, par exemple sur une cellule.
Une implémentation de cette idée consiste à appliquer un champ magnétique B1 pour aligner l'axe principal X de l'agrégat 10 selon une première orientation D1 , puis à appliquer un champ magnétique B2 perpendiculaire à B1 pour aligner l'axe principal X de l'agrégat 10 selon une deuxième orientation D2 perpendiculaire à D1 .
Un troisième appareil 70 suivant l'invention est représenté sur la figure 7.
Ce troisième appareil 70 diffère du premier appareil 1 en ce qu'il comporte en outre un ensemble de classement 72.
De plus, le troisième appareil 70 diffère du premier appareil 1 en ce que l'ensemble de chargement 28 comprend une zone d'entrée 74 de la phase interne et une zone d'entrée du fluide porteur 76 et une zone de jonction 78. L'ensemble de chargement 28 comprend en outre une zone d'incubation 79.
La zone d'entrée de la phase interne 74 comporte un premier conduit d'entrée 80, un deuxième conduit d'entrée 82 et un conduit de co-écoulement 84.
Le premier conduit d'entrée 80 est destiné à l'introduction de la première masse de fluide 86 destinée à former une partie de la phase interne des gouttes. Dans l'exemple, la première masse de fluide interne comporte les particules 12 et une pluralité d'entités de signalisation 34. Le deuxième conduit d'entrée 82 est destiné à l'entrée de la deuxième masse de fluide 88 destinée à former une partie de la phase interne des gouttes. Dans l'exemple, la deuxième masse de fluide interne comporte une suspension d'entité productrices 90 de l'élément cible 37. Les entités productrices 90 sont par exemples des cellules 90.
Les cellules 90 sont avantageusement des cellules aptes à sécréter un élément cible 37. En particulier, certaines cellules 90 sont des cellules sécrétant des anticorps comme des hybridomes ou des plasmocytes. Les anticorps sécrétés sont reconnus à la fois par les éléments de capture 36 des particules 12 et par les entités de signalisation 34.
La présence de ces éléments cibles 37 dans la goutte 6 permet la relocalisation des entités de signalisation 34 sur l'agrégat 10.
La concentration des cellules 90 dans la deuxième masse de fluide est avantageusement telle qu'une proportion importante de gouttes contiennent une cellule 90 seulement, par exemple plus de 10 % des gouttes contient une cellule 90.
Le conduit de co-écoulement 84 permet une répartition des deux masses de fluide 86, 88 destinée à former la phase interne.
La zone d'entrée du fluide porteur 76 est destinée à l'entrée du fluide porteur 8. Dans l'exemple représenté, le fluide porteur 8 entre par deux conduits d'entrées 92.
La zone de jonction 78 joint la zone d'entrée du fluide porteur 76 et la zone d'entrée de la phase interne 74. En particulier, la zone de jonction joint le conduit de co- écoulement 84 aux conduits d'entrées 92 du fluide porteur.
La zone de jonction 78 est apte à former les gouttes initiales 32. La zone de jonction 78 représentée ici est une jonction de focalisation hydrodynamique. Des exemples de jonctions de focalisation hydrodynamique sont illustrés sur les figures 1 1 et 12. En variante les gouttes initiales 32 sont formées dans une jonction T.
Les gouttes initiales 32 comprenant un mélange des deux masses de fluides 86,
88 sont formées. Les gouttes initiales 32 comprennent une dispersion de particules 12 et des entités de signalisation 34.
Au moins certaines gouttes initiales 32 comprennent en outre une cellule 90.
La zone d'incubation 79 est située en aval de la zone de jonction 78. La zone d'incubation est destinée à permettre la sécrétion de l'élément cible 37 par les cellules 90. En variante, les cellules 90 sont destinées à être lysées dans la zone d'incubation 79 de sorte que l'élément cible 37 soit libéré.
En variante, l'incubation est effectuée hors du dispositif 20.
Le troisième appareil 70 diffère également en ce que le dispositif 20 comprend en outre une pluralité de zones de classement 94, 96 et un moyen de direction 98 de la goutte ou une partie de la goutte sélectivement vers une zone de classement 94, 96. Les zones de classement 94, 96 sont situées en aval de la zone de détection 26. Le conduit 24 comporte une bifurcation 100 en deux conduits de sorties 102, 104. La première zone de classement 94 comporte le premier conduit de sortie 102 destiné à recevoir un premier groupe de gouttes 106. La deuxième zone de classement 96 comporte le deuxième conduit de sortie 104 destiné à recevoir un deuxième groupe de gouttes 108. En variante, le dispositif 20 comporte un nombre plus important de zones de classement 94, 96 suivant le nombre de critères de tri.
Le moyen de direction 98 des gouttes sélectivement est par exemple apte à diriger une goutte 6 vers une zone de classement 94, 96 au moyen d'une force magnétique.
En variante les gouttes 6 sont dirigées au moyen d'électrodes.
Par exemple, les gouttes sont dirigées vers une zone de classement, par diélectrophorèse, par électrocoalescence avec un courant ou par des ondes acoustiques de surface (SAW).
Le procédé d'analyse avec le troisième appareil 70 suivant l'invention va maintenant être décrit.
Un appareil 70 tel que précédemment décrit est fourni. Une suspension de particules 12 magnétiques et d'entités de signalisation 34 est préparée et injectée dans le premier conduit d'entrée 80.
Une suspension de cellules 90 est préparée et injectée dans le deuxième conduit d'entrée 82.
Un fluide porteur 8 est fourni et injecté dans les conduits d'entrées de fluide porteur 92.
Les fluides 86, 88 sont mis en mouvement au moyen des ensembles de mise en circulation 22. Les gouttes initiales 32 sont formées dans la zone de jonction 78.
Le procédé comporte, en outre, une étape d'incubation au cours de laquelle la cellule 90 compartimentée sécrète l'élément cible 37, par exemple, la protéine à analyser.
En variante le procédé comporte une étape de lyse cellulaire permettant la libération de l'élément cible 37, par exemple, la protéine à analyser hors du cytoplasme.
Ces étapes de lyses ou d'incubation sont réalisées dans la zone d'incubation 79 du dispositif 20.
En variante, ces étapes sont réalisées hors du dispositif 20.
Les étapes de formation de l'agrégat 10 et de mesure sont les mêmes que pour le procédé d'analyse avec le premier appareil 1 .
Le procédé diffère en ce que l'étape de mesure est suivie d'une étape d'analyse. L'étape d'analyse permet de déterminer à quel groupe 106, 108 appartient une goutte 6 suivant des critères prédéterminée et de générer une décision de classement par goutte 6 après l'étape de mesure.
Suivant la décision de classement, la goutte 6 est dirigée vers l'une des zones de classement 94, 96 par le moyen de direction 98.
Dans l'exemple représenté sur la figure 7, les gouttes 106 dans lequel le signal de forte intensité de fluorescence est localisé majoritairement au voisinage de l'agrégat 10 sont dirigées dans la première zone de classement 94. Les gouttes du premier groupe 106 correspondent par exemple aux troisièmes gouttes 56 de la figure 2.
Ces gouttes 106 contiennent par exemple les cellules 90 aptes à générer une protéine d'intérêt. Les gouttes 106 sont éventuellement récupérées pour que leur contenu soit analysé par d'autres techniques ou pour que les cellules 90 soient remises en culture.
Les gouttes 108 dans lequel un signal différent, notamment un signal sensiblement homogène sur la goutte 108, a été mesuré sont dirigées vers une autre zone de classement 96. Le deuxième groupe de gouttes 108 comporte par exemple des gouttes ne comprenant pas de cellules 90 et des gouttes contenant des cellules 90 ne produisant pas la protéine en quantité ou en qualité suffisante.
Un quatrième appareil 120 suivant l'invention est représenté sur la figure 8. Cet appareil 120 diffère du premier appareil 1 en ce qu'il comprend en outre un ensemble d'extraction 122.
L'ensemble d'extraction 122 est apte à séparer la goutte 6 en deux gouttes extraites 124, 126, une goutte primaire 124 et une goutte auxiliaire 126, la goutte auxiliaire 126 comprenant l'agrégat 10.
Avantageusement les particules 12 sont magnétiques et l'ensemble d'extraction 122 est apte à appliquer une force magnétique pour réaliser l'extraction.
En outre, le quatrième appareil 120 comprend en aval de l'ensemble d'extraction
122, un ensemble de classement 72 similaire à celui du troisième appareil 70 suivant l'invention permettant de séparer les gouttes auxiliaires 126 des gouttes primaires 124.
Dans une variante, les ensembles de classement et d'extraction sont les mêmes. Un tel appareil 120 est utile notamment pour réaliser de la capture sélective au moyen des agrégats 10 allongés. Les éléments cibles 37 capturés par les particules 12 sont destinées à être élués après récupération des gouttes sélectionnées.
Un cinquième appareil suivant l'invention diffère du premier appareil en ce qu'il comporte un dispositif d'injection complémentaire et une deuxième zone de détection. Le dispositif d'injection complémentaire est apte à ajouter des éléments dans la goutte après la détection. Le dispositif d'injection complémentaire est par exemple un dispositif de fusion de goutte ou un dispositif de pico-injection.
Le procédé d'analyse suivant l'invention à partir de ce cinquième appareil comporte une étape d'injection après l'étape de mesure, et une étape de mesure après l'étape d'injection.
Par exemple, l'entité de signalisation 34 est fluorescente et une entité supplémentaire non fluorescente est ajoutée lors de l'étape d'injection complémentaire. L'entité supplémentaire a les mêmes caractéristiques que l'entité de signalisation 34 excepté sa fluorescence. Par exemple, l'entité supplémentaire présente la même affinité pour l'élément cible 37 que l'entité de signalisation 34. Lors de la première étape de mesure, le taux de capture des entités de signalisation 34 fluorescentes est déterminé. Après l'injection, les entités supplémentaires et les entités de signalisation 34 sont en compétition pour se lier à l'élément cible 37 au voisinage de l'agrégat 10.
La deuxième mesure est effectuée après un certain temps et permet de déterminer le taux de décrochement des entités de signalisation 34 fluorescentes et donc de déterminer la constante de dissociation koff de la liaison entre l'entité de signalisation 34 et l'élément cible 37.
L'utilisation d'une dispersion de particules 12 de faibles tailles par rapport à la taille des gouttes assure une distribution homogène des particules 12 dans les gouttes 6, et donc la formation quasi certaine d'un agrégat 10 de taille significative dans chaque goutte 6.
Globalement, ce procédé permet de doser/quantifier un analyte dans la goutte. La formation d'un agrégat allongé 10 permet d'obtenir un meilleur rapport signal sur bruit et un intervalle dynamique plus important par rapport à l'essai décrit dans Mazutis et al. (Nat prot 2013) où une seule bille est encapsulée. En effet le signal généré par l'entité de signalisation 34 sera concentré sur une largeur plus petite que celle d'une sphère de surface égale. La hauteur du pic ainsi que présenté sur la Figure 2 sera donc plus élevée que dans le cas d'une seule bille pour un même nombre d'entité de signalisation 34 relocalisées.
Ce procédé est utilisable dans de nombreux procédés d'analyse biologique.
Le procédé selon l'invention peut s'appliquer à de nombreux types d'analytes, de biomolécules, de polypeptides, de protéines, de métabolites, d'acides nucléiques, de cellules, d'organelles, de microparticules et de nanoparticules, de polymères, de colloïdes, d'agents infectieux, de composés alimentaires, d'échantillons environnementaux. L'appareil selon l'invention peut être intégré comme une brique technologique dans des dispositifs plus complexes en particulier dans un dispositif de criblage à haut débit, dans un laboratoire sur puce, dans un dispositif de « point of care » dans des instruments de laboratoires, des robots, ou autres.
En outre, le procédé selon l'invention peut être intégré dans des protocoles complexes permettant le diagnostic, la découverte de médicaments, la découverte de cibles, l'évaluation d'un médicament.
De plus les systèmes microfluidiques selon l'invention et les procédés selon l'invention peuvent être combinés ou inclus dans d'autres types de composants micro fluidiques ou pour d'autres fonctions micro fluidiques connues dans l'état de l'art.
En outre, en raison de la petite taille des échantillons utilisés, l'invention est particulièrement intéressante pour des applications dans des essais cellulaires, en particulier pour le criblage de cellules uniques et en biologie digitale.
Par digitale, on entend que les opérations biologiques sont réalisées sur une seule copie de l'objet chimique ou biologique et que le résultat de l'opération de chacune des copies uniques peut être isolé, en opposition à des opérations réalisées sur un ensemble de tels objets biologiques.
Par objets biologiques ou chimiques, il est entendu toute sorte d'objet moléculaire, supra moléculaire, cristallin, colloïdal, cellulaire, subcellulaire incluant de manière non exhaustive les cellules, les organelles, les virus, de l'ADN naturelle modifiée ou artificielle, de l'ARN ou d'autres acides nucléiques, des protéines, des glycoprotéines, des phosphoprotéines, des protéines artificielles ou naturelles, des lipides, des phospholipides, des molécules organiques, des molécules organométalliques, des macromolécules, des cristaux isolés, des quantum dots ou points quantiques, des nanoparticules, des vésicules, des microcapsules, et autres.
L'invention peut, en outre, être particulièrement utile en combinaison avec des méthodes optiques diverses, notamment des méthodes de détection optique.
Le procédé est applicable par exemple pour déterminer la présence d'un élément cible 37 dans une solution, la concentration d'un élément cible 37 dans une solution ce qui permet d'établir des caractéristiques d'affinités d'un élément cible 37 avec une autre espèce présente sur les particules 12 ou dans la goutte 6.
L'invention permet également la mesure de la constante de dissociation Kd entre l'élément cible 37 et une entité de signalisation 34.
Dans ce cas, la goutte 6 comprend en outre des entités de quantification qui présente une fluorescence différente de l'entité de signalisation 34. Plus précisément, la définition de la constante de dissociation Kd du couple A :B entre l'élément A (élément cible 37) et l'élément B (entité de signalisation 34) est :
Kd=[Alibre][Blibre]/[A :B]
Où :
[Aiibre] est la concentration de A non fixé à B en solution,
[Biibre] est la concentration de B non fixé à A en solution,
[A :B] est la concentration du complexe A :B en solution, dans lequel A est fixé à B.
La concentration totale de l'espèce A est :
[Alibre]+ [A :B]
La concentration totale de l'espèce B est :
Figure imgf000022_0001
[Blibre]+ [A :B]
La concentration [Btotai] de l'entité de signalisation 34 dans la goutte 6 est choisie par l'utilisateur et connue.
La concentration [Atotai] peut ne pas être connue a priori, par exemple lorsque A est un élément cible 37 sécrété par une cellule 90 encapsulée dans la goutte 6.
L'invention permet de mesurer la concentration du complexe [A :B] relocalisé sur l'agrégat 10 via le signal de l'entité de signalisation 34.
Cette mesure peut donner accès à une estimation de la constante de dissociation Kd entre A et B dans des conditions de concentrations maîtrisées, où l'on réalise la quantification de A via une entité de quantification qui est une autre entité de signalisation 34.
Un cas simple pour ce faire est de se placer dans le cas où :
- l'élément de capture 36 est en quantité suffisante et d'affinité suffisante pour l'élément cible 37 pour capturer plus de 90 % de l'élément cible 37, A sur l'agrégat 10, avantageusement la totalité,
- la concentration de l'entité de signalisation 34 est supérieure à celle de l'élément cible 37,
- la concentration de l'entité de quantification utilisée pour quantifier A est supérieure à celle de l'élément cible 37 et la constante de dissociation entre l'entité de quantification et l'élément cible 37 est inférieure à la concentration de l'élément cible 37, avantageusement d'un facteur supérieur à 10.
Dans ces conditions particulières, la présence de chaque élément cible 37 donne lieu à la formation d'un complexe élément de capture 36 - élément cible 37 - entité de quantification ou/et à la formation d'un complexe formé de l'élément de capture 36 - élément cible 37 - entité de signalisation 34. Le nombre de complexe élément de capture 36 - élément cible 37 - entité de signalisation 34 est directement lié au Kd de l'élément cible 37 pour l'entité de signalisation 34 par l'équation suivante :
B
KA = A * = {Ato l - [A : B]) * (Btotel - [A: B})/[A B] Soit
[A- B] = (A total + B taï + ¾ - (j*totai + B total ¾) _ 4 * A totafi total)/2
Il existe un régime dans lequel, B,oCa; étant fixé, la variabilité de Atota. est négligeable, et la seule mesure du rapport [A :B]/Atotai permet d'inférer Kd. Ainsi lorsque A < Bta b [A :B]/Atotai est une excellente approximation de 1— .
La figure 10 représente des simulations du rapport [A :B] /Atotai en fonction du log Kd pour différentes valeurs de ratio Atotai /Btotai.
Cet accès au Kd via le rapport [A :B]/Atotai représente un avantage clair pour une mesure haut-débit, car on peut évaluer le rapport [A B] /At otai par le ratio du signal de l'entité de signalisation 34 qui correspond au complexe A:B sur le signal de l'entité de quantification qui correspond à Atotai dans le cas particulier précité.
Ce ratio peut-être acquis en temps réel sur les gouttes et constituer un critère de tri des gouttes selon le Kd.
Le procédé est applicable pour déterminer la spécificité de l'élément cible 37 vis-à- vis de diverses entité de signalisation 34, ou la spécificité d'une molécule ou d'un assemblage de molécules fixé par l'élément de capture 36 vis-à-vis de diverses entité de signalisation 34. Dans ce cas, plusieurs entités de signalisation 34 par exemple des molécules marquées avec des fluorophores de couleurs différentes sont injectées dans la goutte 6. On pourra enregistrer en simultané le signal généré pour chaque entité de signalisation 34, par exemple en acquérant la fluorescence pour différentes longueur d'ondes. Il sera ainsi possible de déterminé quelles entités de signalisation 34 sont localisées sur l'agrégat 10 et de les quantifier.
Par exemple, l'élément de capture 36 est la protéine G, qui capture un anticorps 37 sécrété par une cellule 90, et les entités de signalisation 34 sont des antigènes homologues chez différentes espèces animale, chacun marqué par un fluorophore de couleur différente. Dans cet exemple, la mesure simultanée du signal pour chaque entité de signalisation 34 permet de savoir si l'élément cible 37 qu'est l'anticorps est spécifique d'une espèce animale (pic observé sur une seule couleur) ou non (pic observé sur plusieurs couleurs). Dans un autre exemple, les particules 12 sont recouvertes d'une séquence de nucléotides propre à capturer une séquence de nucléotides complémentaires.
En variante, l'élément cible 37 est une protéine produite dans une goutte 6 ne comprenant pas de cellules mais un système de translation in vitro.
Le procédé est utile pour réaliser des analyses d'affinité et des quantifications de produits marqués. Par exemple, lorsque l'élément cible est une protéine fusion comprenant une protéine fluorescente comme la GFP.
Le procédé permet de plus le tri, la capture et l'extraction des gouttes présentant des caractéristiques intéressantes.
Dans un exemple, le procédé comprend la formation d'un sandwich; l'élément cible 37 étant d'une part lié à l'élément de capture 36 de la particule 14 et d'autre part à l'entité de signalisation 34, l'entité de signalisation 34 étant fluorescente.
Dans un exemple, l'élément de capture 36 est un anticorps.
Dans un exemple, l'entité de signalisation 34 est un anticorps.
Dans un exemple, l'élément cible 37 est une protéine.
En variante, l'élément cible 37 est un anticorps ou un fragment d'anticorps.
Dans un exemple particulier, l'élément cible 37 est un anticorps et l'élément de capture 36 est une protéine G, ou une protéine A ou une autre protéine fixant les anticorps, tel qu'une protéine A/G ou une protéine L.
Dans un exemple particulier, l'élément cible 37 est un anticorps et l'élément de capture 36 est un anticorps.
Dans un exemple, l'élément cible 37 est un anticorps et l'élément de capture 36 est un antigène reconnu par l'anticorps.
Dans un autre exemple, l'élément cible 37 est un anticorps et l'entité de signalisation 34 est un antigène.
Dans un autre exemple, l'élément de capture 36 est composée d'une pluralité de molécules de captures non identiques les unes aux autres et l'entité cible 37 est composée d'une pluralité de molécules non identiques les unes aux autres.
Dans un autre exemple, plusieurs paires élément de capture 36 - élément cible 37 ou triplets élément de capture 36 - élément cible 37 -entité de signalisation 34 peuvent être analysé simultanément, soit pour détecter la présence de plusieurs éléments cibles 37 de nature moléculaire différente, soit pour détecter et caractériser la présence de différents sites de fixation sur un même élément cible 37.
Par exemple, tel que représentée dans la goutte sur la figure 24, une goutte comprend plusieurs éléments cibles 37a, 37b de nature différente et plusieurs entités de signalisations 34a, 34b chacune étant apte à former un complexe avec un des éléments cibles 37a, 37b. Certaines particules 12 de l'agrégat 10 comprennent un élément de capture 36a adapté à la capture d'un premier élément cible 37a, d'autres particules comprennent un autre élément de capture 36b adapté à la capture d'un deuxième élément cible 37b.
Dans un exemple, le procédé permet de sélectionner selon les affinités mesurées des cellules immortalisées sécrétant des anticorps. Les cellules sélectionnées sont ensuite remises en culture.
Dans un autre exemple, le procédé permet de sélectionner selon les affinités mesurées des cellules non-immortalisées sécrétant des anticorps avant de rechercher les séquences de gènes des anticorps.
Dans un autre exemple, le procédé permet la quantification de cytokines sécrétées par différents types de cellules présentes dans le sang.
Dans certaines applications, l'agrégation des particules 12 est réversible.
Dans certains cas, la présence de l'élément cible 37 rend l'agrégation non réversible et consolide l'agrégat 10 lors de sa formation dans l'ensemble d'agrégation 30. L'agrégat 10 pré-existe donc de manière stable uniquement dans les gouttes 6 contenant l'élément cible 37. Dans les gouttes ne contenant pas l'élément cible 37, la réversibilité de l'agrégation des particules 12 dissous l'agrégat 10 tant qu'il ne rentre pas dans la zone de lecture 26. Dans un régime choisi d'aimantation et de fluidique, l'agrégat 10 ne peut se former et s'orienter qu'en présence de cette pré-agrégation, ce qui limite l'acquisition de pic selon la figure 2 aux gouttes contenant l'élément cible 37 par une autre méthode que via l'entité de signalisation 34.
Le procédé est notamment applicable pour cribler des cellules productrices d'anticorps en effectuant une mesure de l'affinité des anticorps produits. Par exemple si la cellule est une cellule B susceptible de produire des anticorps, l'affinité de cet anticorps pour au moins un antigène est déterminée par le procédé selon l'invention. Et les gouttes sont triées par le procédé selon l'invention selon, l'affinité déterminée.
Dans une autre application, le procédé permet l'analyse de la sécrétion d'une ou plusieurs cytokines par une population hétérogène de globules blancs. Par exemple si la cellule est une cellule susceptible de produire un ou plusieurs types de cytokines, les cytokines sont quantifiées par le procédé selon l'invention. Le résultat d'analyse constitue une information sur l'état de la cellule, avec une valeur diagnostique potentielle.
Des exemples de mise en œuvre du procédé vont maintenant être décrits.
Le protocole des exemples suivants comprend :
- la préparation de plusieurs solutions aqueuses, contenant les particules 12, l'entité de signalisation 34 et l'élément cible ou avantageusement un système capable de le produire dans les gouttes l'injection des solutions aqueuses en entrée d'une puce de génération de gouttes,
- la génération de gouttes comprenant tous les réactifs de l'essai
- l'incubation de la solution contenant les gouttes,
- l'injection des gouttes dans un dispositif selon l'invention (deux types de dispositifs sont décrits ci-dessous dans les Exemple 1 et 2),
- la mesure des résultats de l'essai
- éventuellement un tri des gouttes en fonction de la mesure.
Exemple 1 : dispositif de génération de gouttes et de mesure des gouttes de type 1
La production des gouttes, autrement appelée compartimentation est réalisée après avoir mélangé une solution de réactifs et une solution d'échantillon sur puce.
Les solutions sont gardées sur la glace jusqu'à la compartimentation afin d'éviter toute dégradation des réactifs et échantillons.
La solution de réactifs est aspirée dans un réservoir connecté à une seringue
Hamilton d'1 mL remplie d'huile minérale (Sigma Aldrich, #330760) juste avant le démarrage de la compartimentation.
Les échantillons à cribler sont mélangés à la solution de travail juste avant la compartimentation puis transférés dans une fiole en verre préalablement remplis d'huile fluorée (3M, NOVEC HFE-7500) et la fiole est maintenue à 4° sur glace.
Des capillaires, avantageusement en PTFE de diamètre interne 0.3mm (vendu par Fischer, #1 1919445) permettent de relier la fiole et le réservoir de la solution de réactifs au dispositif de formation de gouttes.
Ces deux solutions sont injectées sur une puce de formation de gouttes qui permet de générer des gouttes comprenant un volume égal de chacune des deux solutions.
Le volume des gouttes est choisi par l'utilisateur à partir du débit de l'huile fluorée. Avantageusement le volume des gouttes est de 33 picolitres. L'huile fluorée est le fluide porteur 8. Elle constitue la phase continue de l'émulsion comprenant les gouttes.
Les solutions de réactifs d'essais et d'échantillons à cribler sont injectées dans la puce au même débit, avantageusement à 200 microlitres/heure pour chaque solution. Le débit est imposé par un système standard de pompe de seringue par exemple une pompe neMESYS de Cetoni ou par une pompe contrôlant la pression par exemple le système commercialisé par Fluigent.
Les gouttes sont générées à une jonction de focalisation hydrodynamique telle qu'illustrée sur les figures 1 1 et 12. La phase externe est ici une huile fluorée (3M, NOVEC HFE-7500) à laquelle a été ajouté deux % poids/volume de tensioactifs (par exemple un copolymère tribloc comprenant deux queues perfluoropolyether (PFPE) (de poids moléculaire environ -6,000 g/mol) et une tête PEG (-600 gmol)).
La figure 1 1 et la figure 12 représentent des dispositifs de flow-focusing permettant de mélanger un flux contenant les billes magnétiques mélangées aux autres réactifs et un flux contenant les échantillons avant la formation de gouttes au niveau de la jonction de focalisation hydrodynamique située à droite. Sur la figure 1 1 , les particules magnétiques mesurent 500 nm de diamètre et sur la figure 12 les particules magnétiques mesurent 200 nm de diamètre.
Une deuxième étape est l'étape de collection. Une fiole maintenue à 4° sous le champ magnétique, avantageusement généré par un aimant en anneau (Amazing magnet H250H-DM), permet la collection des gouttes. Un capillaire court permet de connecter la fiole à la puce. Dans l'idéal, le capillaire de sortie mesure moins de 20 cm, avantageusement 10 cm.
Les gouttes sont mises à incuber avantageusement à 37°C pendant 20 à 90 minutes et sous champs magnétique, le temps et la température d'incubation dépendant de l'analyse effectuée et du type d'entité productrice 90 et d'élément cible 37 étudiée.
A la suite de l'incubation, la fiole contenant l'émulsion est transférée à 4° toujours maintenue sous champ magnétique.
Le premier type de dispositif, est un dispositif suivant l'invention tel que décrit sur la Figure 1 .
La fiole contenant les gouttes est connectée à une puce pour une réinjection, la fiole est d'une part connectée à la puce et d'autre part à un système de pression, une pompe de pression ou une seringue et sa pompe, constituant l'ensemble de mise en circulation 22.
L'ensemble d'espacement 31 comprend deux entrées d'huiles connectées à la puce. Ces entrées sont destinées à injecter de l'huile avantageusement de l'huile fluorée permettant d'espacer les gouttes de l'émulsion telle qu'illustrée sur la figure 13.
Les débits de l'huile d'espacement sont avantageusement fixés chacun à 300 microlitres/heure ainsi que le débit de l'ensemble de mise en circulation est avantageusement fixé à 50 microlitres/heure et permettent d'ajuster le débit et la fréquence de réinjection de gouttes de façon à obtenir une fréquence comprise entre 250 et 1000 Hz.
Une paire d'aimants permanents 38 avantageusement fournie par K&J Magnetics, # BC 14-N52, est placée de part et d'autre de la puce autour du canal principal 24. Ces aimants 38 sont destinés à générer et à orienter les agrégats de billes pendant la réinjection des gouttes.
Un logiciel de contrôle de l'équipement, par exemple des lasers ou des photomultiplicateurs, est créé pour analyser et trier les gouttes. Le système de tri nécessite une carte FPGA pour réaliser une analyse en temps réel du signal.
La mesure est effectuée dans les gouttes une à une après leur passage dans l'ensemble d'espacement et ces gouttes peuvent être triées vers une sortie désirée après à zone de lecture illustrée sur la figure 14.
Lorsqu'un tri et une récupération sont désirés, les gouttes triées et les émulsions non triées sont recueillies sur glace et le contenu des gouttes est récupéré à partir de protocoles standards.
Exemple 2 : dispositif de mesure de gouttes de type 2.
Le deuxième type de dispositif de mesure est une chambre de stockage des gouttes produite dans un plan à 2 dimensions. Cet exemple présente deux alternatives possibles pour réaliser de telles chambres.
La première est une chambre fabriquée par microfabrication classique en PDMS, comprenant avantageusement des piliers positionnés de manière régulière pour éviter l'effondrement de la chambre telle qu'illustrée sur les figures 3 à 6.
La seconde est une chambre en verre selon l'invention PCT/FR2009/051396 telle qu'illustrée sur les figures 15 et 16. Avantageusement, cette approche permet de réaliser une incubation des gouttes sur de longues durées (>1 H) sans déformation des gouttes.
Les gouttes peuvent donc être collectées directement dans une telle chambre après leur formation.
La figure 15 et la figure 16 illustrent un exemple de dispositif de lecture à deux dimensions selon l'invention, ici dans une chambre en verre, le champ magnétique est généré par un aimant permanent situé sur un côté de la chambre
Généralités pour les Exemples suivants
Dans les exemples suivants, la préparation des gouttes comprend : - la préparation de deux solutions aqueuses, appelées « solution de réactifs » contenant les particules 12, l'entité de signalisation 34 et « solution d'échantillon à cribler » contenant l'élément cible dans les exemples ci- dessous,
- l'injection des deux solutions aqueuses en entrée de la puce de génération de gouttes,
- la génération de gouttes comprenant un volume égale de chacune des deux solutions,
- la mesure des gouttes dans un dispositif de type 1
- éventuellement le tri des gouttes (Exemple 4).
La préparation des deux solutions aqueuses va être décrite de manière générale et les différences par rapport à ce protocole standard seront mentionnées dans les Exemples le cas échéant.
a) Préparation de la Solution de réactifs
Les éléments compris dans cette solution sont avantageusement inertes les uns vis-à-vis des autres afin d'éviter les agrégations de réactifs avant la génération des gouttes.
Cette première solution aqueuse contient :
- des particules 12 qui sont ici des particules magnétiques colloïdales, fonctionnalisées avec un élément de capture 36, ici une protéine G, et
- un entité de signalisation 34 qui est ici un antigène marqué en fluorescence, par exemple un antigène marqué par le fluorophore Alexafluor488,
- un colorant permettant la détection des gouttes 6 par exemple la sulforhodamine
B,
- un entité de quantification d'anticorps, qui est ici fluorescente, par exemple un fragment d'anticorps monoclonal, anti-souris marqué par le fluorophore Alexafluor647,
- une solution de travail.
Les concentrations de chaque réactif seront détaillées en regard de chaque exemple.
Ces réactifs sont dilués dans une solution appelée solution de travail. La solution de travail comprend par exemple:
- 30%v/v percoll (fourni par Sigma Aldrich),
- 50 mM de NaCI,
- 25 mM de tampon HEPES à pH 7,4,
- 0,1 % v/v pluronic F-68 fourni par Life Technologies, - 5%-v/v Sérum Super low IgG de Thermo Scientific.
Le volume de la solution de travail est complété avec du RPMI-1640 complémenté de Glutamax ® fourni par Life Technologies pour atteindre le volume final.
Les particules 12 colloïdales magnétiques sont traitées avant usage. Les particules 12 sont des particules fournies par Chemicell (ScreenMAG) ou Ademtech (Bio Adembeads) dans une solution de stockage. Elles sont retenues sur un support magnétique afin de supprimer la solution de stockage puis elles sont mises en suspension dans un excès de pluronic F-127 à 10% poids/poids (Sigma AIdrich), avantageusement 10x le volume initiale de particules, et incubées pendant trente minutes à température ambiante.
Après ce traitement les particules 12 colloïdales magnétiques sont lavées deux fois dans du PBS et mises en suspension dans la solution de travail.
Avantageusement, les particules 12 en suspension dans la solution de travail sont soumises à une sonication pendant dix minutes avant l'ajout des réactifs d'essais.
Les réactifs fluorescents sont traités avant usage. Les réactifs fluorescents sont par exemple, l'élément de signalisation 34, le colorant de détection de goutte et le réactif de quantification. Les réactifs fluorescents sont centrifugés pendant cinq minutes à au moins 12.000 g et à 4°C afin de supprimer les traces d'agrégats de réactifs.
b) Préparation de la Solution d'échantillon à cribler
La solution d'échantillon à cribler comprend :
- un élément cible 37 propre à être capturée par l'élément de capture 36
- ou une entité productrice 90 pouvant synthétiser cet élément cible 37 dans la goutte pendant une phase d'incubation. Ce système peut être par exemple une cellule, ou un ADN et un système d'expression in vitro. Dans ce cas, l'élément cible 37 ne préexiste pas dans la solution d'échantillon à cribler.
- une solution de travail.
La concentration de cellules à utiliser dépend de la taille souhaitée pour les gouttes. Avantageusement, la concentration de cellules par goutte est de 0,3 cellules par goutte. Une émulsion avec des gouttes de 33 picolitres contient plus de 30.106 gouttes par millitres. Pour des gouttes de 33 picolitres, pour avoir 0,3 cellules par goutte, et il faut environ 18.106 cellules par millilitre de concentration dans la solution d'échantillon à cribler (qui est concentrée deux fois par rapport aux gouttes).
Il convient de noter que la concentration en cellule dans la solution d'échantillon à cribler est deux fois plus importante que la concentration finale puisque les deux solutions aqueuses seront mixées dans une goutte avec un ratio 50/50. Le protocole de préparation des cellules dépend du type cellulaire et de l'objectif de l'expérience.
Exemple 3 : Quantification et mesure d'affinité d'un anticorps monoclonal pour son antigène.
Dans cet exemple, l'élément cible 37 est un anticorps qui est déjà contenu dans la solution à cribler, cet exemple ne met pas en œuvre des cellules.
Un but de cet exemple est de démontrer la possibilité d'un test de liaison à plusieurs couleurs. Un autre but est de démontrer la possibilité de normaliser un signal de relocalisation avec un autre signal. Cela permet d'évaluer le Kd à partir d'un signal de localisation d'un antigène (entité de signalisation) en permettant de normaliser par le signal de la protéine de liaison à chaîne légère de l'anticorps relocalisé (entité de quantification).
Dans cette expérience les gouttes mesurent 33 picolitres.
La solution d'échantillon à cribler contient différentes concentrations d'anticorps monoclonaux anti-hTNFa (fournis par Sigma Aldrich T6817) dilués dans du RPMI-1640 avec 2 mM de glutamax complémentés avec 30% v/v percoll, 0,1 % v-v Pluronic F-68, 18 mM HEPES.
Les concentrations d'anticorps monoclonaux anti-hTNFa dans la solution d'échantillon à cribler sont les suivantes : 0 nM, 10 nM, 25 nM ou 50 nM.
La solution de réactifs contient les réactifs suivants :
- 8,33 % v/v de particules magnétiques (Ademtech #0433)
- 200 nM de Fab-DL650anti-Mouse Fab'2 (entité de quantification),
- 100 nM de hTNFa-AF488 (entité de signalisation),
- 1 μΜ de sulforhodamine B (pour le marquage des gouttes),
Le fragment d'anticorps Fab-DL650 est préparé à partir de Goat F(ab')2 anti- Mouse IgG (Fab')2 conjugated with DyLight-650 (commercialisé par Abcam, ab98760), digéré par la Papaïne et purifié sur une colonne de protéine G.
Cette solution est complétée de RPMI-1640 + 2mM Glutamax complémenté avec
30% v/v percoll, 0,1 % v/v pluronic F-68 et 18 mM HEPES.
Cela permet d'obtenir quatre émulsions différentes avec 50 nM antigène-AF488, 100 nM de Fab-DL650 et respectivement 0 nM, 5 nM, 12,5 nM ou 25 nM d'anticorps monoclonaux dirigés contre l'antigène.
Les gouttes sont ensuite analysées au moyen d'un dispositif de type 1 . Cette expérience permet de montrer la possibilité de réaliser un test de liaison sur des particules magnétiques en colonne dans les gouttes avec deux lectures de fluorescence de réactifs secondaires, comme cela est illustré par la figure 17. De plus cette approche permet de caractériser l'affinité de liaison en corrélant le signal de liaison de l'antigène à la quantité d'anticorps impliqués dans la capture de l'antigène. En effet un paramètre indépendant de la concentration d'anticorps peut être extrait de l'analyse.
La figure 17 représente une mesure de fluorescence en temps réel sur un train de gouttes pour deux couleurs, une correspondant à l'entité de signalisation 34 (complexe AB, gris clair sur la figure 17) et une correspondant à l'entité de quantification, (composé A, gris foncé), et pour des quantités croissantes de A de 0 à 25 nM. La figure 18 est un graphique en deux dimensions correspondant à cette expérience, où chaque point est une goutte d'abscisse le maximum de fluorescence pour la couleur de l'entité de quantification, et en ordonnée le maximum de fluorescence pour l'entité de signalisation 34. La figure 19 représente pour le même jeu de gouttes un graphique en deux dimensions où chaque point a pour abscisse l'intégrale pour la couleur de l'entité de quantification, et en ordonnée l'intégrale pour l'entité de signalisation 34.
Nous constatons que la relation entre les signaux « maximum » est globalement linéaire malgré une dispersion des points de données (comme le suggère la régression linéaire avec R2=0.79), due entre autres aux fluctuations de forme et de position de l'agrégat sur l'ensemble des gouttes. Nous constatons que la relation entre les signaux « intégrale » est caractérisée par une régression linéaire avec un meilleur R2 (R2=0.90), la dispersion des points est nettement plus faible et permet d'estimer le Kd à partir du rapport AB/A comme précédemment expliqué. Exemple 4 : Tri d'hybridomes à l'échelle de la cellule unique en fonction de l'affinité des anticorps qu'ils sécrètent
Le but de cette expérience est de démontrer le criblage de cellules productrices d'anticorps en fonction des affinités de liaison des anticorps monoclonaux sécrétés en employant des réactifs et une démarche similaire à l'Exemple 3. En particulier, on montre qu'on peut différentier et trier deux hybridomes : un hybridome sécrétant un anticorps anti TNF alpha (lignée 25H12) et un hybridome sécrétant un anticorps anti c-Myc (lignée 9E10).
Dans cet exemple non seulement l'affinité est estimée mais en plus les cellules sont triées selon leur affinité.
Dans l'expérience les gouttes mesurent 33 picolitres. La solution d'échantillon à cribler contient 13,5.106 cellules d'hybridomes 9E10 et 4,5.106 cellules d'hybridomes 25H12 mises en suspension dans la solution de travail décrite dans l'exemple 1 .
La solution de réactifs contient les réactifs suivants mis en suspension dans la solution de travail :
- 8,33 % v-v magnetic particles (Ademtech #0433),
100 nM de fragments d'anticorps-DL650 anti-Mouse Fab'2 (entité de quantification),
- 100 nM de hTNFa-AF 488 (entité de signalisation),
- 2 μΜ de sulforhodamine B.
Cela aboutit à une émulsion avec de 50 nM hTNFa-AF488, 50 nM de Fab-DL650 et des cellules d'hybridomes uniques sécrétant des anticorps dirigées soit contre l'hTNFa pour les hybridomes 25H12 soit contre le c-Myc pour les hybridomes 9E10. Les cellules 25H12 représentent 25% des cellules et les cellules 9E10 représentent 75% des cellules.
La fluorescence est mesurée pour les différents canaux de fluorescence, dans le vert pour l'antigène, et dans le rouge pour l'entité de quantification. Le signal considéré dans cet exemple est le maximum de fluorescence. Les gouttes présentant à la fois un signal de fluorescence vert et rouge important sont triées et recueillies.
Les gouttes triées et recueillies sont brisées et les cellules sont récupérées tel que décrit dans Mazutis et al. {Nat prot 2013).
Une RT-PCR est ensuite réalisée sur les solutions de cellules extraites des gouttes triées ou de l'émulsion non triée, et les produits de PCR sont digérés en utilisant deux enzymes de restriction. L'enzyme BamHI a un site de restriction sur le cDNA provenant des cellules 9E10 et l'enzyme Kpnl a un site de restriction sur le cDNA provenant de 25H12. Les produits de digestions sont analysés par électrophorèse. Sur les figures 20 et 21 on voit que le procédé permet un enrichissement en cellules 25H12 après le criblage par le dispositif.
L'invention permet donc une sélection spécifique à haut débit de cellules uniques sécrétant des anticorps reconnaissant l'entité de signalisation.
La figure 20 et la figure 21 illustrent un tri d'hybridomes selon l'invention. La figure
20 représente un graphique en deux dimensions où chaque point est une goutte d'abscisse le maximum de fluorescence pour la couleur de l'entité de signalisation, et en ordonnée le maximum de fluorescence pour l'entité de quantification. La fenêtre en noir indique la gamme de valeur sélectionnée pour effectuer le tri.
La figure 21 illustre une analyse par RT-PCR et digestion enzymatique par BamHI
(sur la série de quatre colonnes de gauche) ou Kpnl (sur la série de quatre colonnes de droite) de l'ADN des hybridomes 25H12 (anti TNF alpha) et 9E10 (anti cMyc) purs (sur les deux premières colonnes de chaque série), ou dans un mélange 25/75 ( sur la troisième colonne de chaque série) et enfin après enrichissement de ce mélange selon l'invention avec un bio-essai de reconnaissance du TNF alpha (sur la quatrième colonne de chaque série). Il y a un enrichissement d'un facteur d'environ 20 en cellules 25H12 après le tri.
Exemple 5 : Quantification de cytokine sécrétée à l'échelle de la cellule unique Le but de cet exemple est de démontrer la possibilité de détecter et quantifier une cytokine sécrétée à l'échelle de la cellule unique avec une approche générique de tests immunologiques en sandwich. Dans cet exemple l'élément de capture 36 est un anticorps biotinylé fixé à la streptavidine et l'entité de signalisation 34 est un anticorps de détection fluorescent.
Les particules sont fonctionnalisées avec de la streptavidine et les anticorps de capture sont biotinylés. Il est possible d'utiliser une autre méthode de couplage de l'anticorps de capture sur les particules.
La méthode de couplage est covalente ou non covalente. Le critère important est que les entités de signalisation ne soient pas capturées directement à la surface des particules.
Il est présenté ici une méthode pour quantifier la sécrétion d'interféron gamma (IFNy), une cytokine biomarqueur dans de nombreux cas d'inflammation ou d'infection, à l'échelle de la cellule unique, selon l'invention et avec un dispositif de mesure de type 1 . Un tel dosage biologique peut être utilisé pour tester le fonctionnement du système immunitaire de patients dans le cadre de tests d'immunologie fonctionnelle. Dans de tels tests les cellules immunitaires sont stimulées et leur sécrétion en cytokine est mesurée.
Dans cet exemple, nous avons démontré la possibilité de doser l'IFNy recombinant dans des gouttes mesurant 25 à 40 pL de volume.
Mais in fine, ce dosage a pour vocation d'être utilisé pour des cellules encapsulées individuellement, et le protocole général pour ce faire est maintenant décrit.
Chaque goutte contient tous les éléments nécessaires au système d'immuno- sandwich : le sandwich est par exemple composé de billes fluorescentes magnétiques recouvertes de streptavidine, d'anticorps biotinylés et d'anticorps fluorescents. Les deux sortes d'anticorps sont dirigées contre deux différents épitopes de l'IFNy.
La solution de travail contient du milieu de culture et des activateurs de cellules
(par exemple des mitogènes, des antigènes). Une fois que les cellules et le système du sandwich d'immuno-essai sont encapsulés dans les gouttes, l'émulsion est incubée. Sous l'action du champ magnétique, les particules s'orientent au sein de la goutte et forment une colonne. Dans le cas d'un couplage non covalent de l'anticorps de capture par un système streptavidine-biotine, l'agrégation des billes en colonne est rendue irréversible par le pontage des billes via de multiples biotines situées sur l'anticorps de capture.
L'incubation permet la sécrétion et éventuellement la liaison des molécules entre elles. Après l'incubation, les gouttes sont analysées à l'aide du dispositif de type 1 selon l'invention.
Les gouttes comprenant des cellules ne répondant pas au signal d'activation et ne sécrétant pas d'interféron gamma, comportent des anticorps fluorescents au sein de toute la goutte. Les gouttes sécrétant des interférons gamma présentent des sandwiches anticorps de capture biotinylés - IFNy - anticorps de détection fluorescent qui sont relocalisés sur la surface streptavidine des billes. On mesure donc dans ces gouttes une fluorescence relocalisée au niveau de l'agrégat.
Plus d'interférons gamma sont sécrétés, plus la fluorescence est sur la ligne de particules et plus le pic de fluorescence et/ou l'intégrale du signal de fluorescence sont élevés. Ceci permet donc une quantification des interférons gamma sécrétés par les cellules stimulées.
Dans cet exemple, nous avons montré qu'il est possible de réaliser un test de détection et quantification de l'interféron gamma selon l'invention en utilisant les réactifs suivants :
Solution de réactifs :
- Anticorps de capture biotinylé (Mabtech 7-B6-1 ) à 200 nM
- Anticorps de détection marqué par la phycoérythrine (PE) (Miltenyi 45-15) à
200 nM (entité de signalisation)
- Solution de travail : 30% percoll (Sigma) / 1 % Pluronic F-68 (LifeTech) / 69% PBS (Sigma)
Solutions à cribler :
- 0 ou 20 ou 200 nM d'IFNy 1 B recombinant (Miltenyi)
Billes magnétiques screenMAG/R Streptavidine 0.5μηι (Chemicell) (20μΙ pour 120μΙ d'émulsion)
Un dispositif semblable à celui de l'Exemple 1 et 3 est utilisé pour générer les gouttes à partir des trois solutions à cribler, en jouant sur les flux pour obtenir une taille différente pour chaque concentration d'IFNy (mais toujours en gardant les deux flux d'injection des solutions aqueuses égales pour obtenir la concentration finale souhaitée). Les gouttes font environ 25pL pour OnM d'IFNy, 31 pL pour 10nM final, et 38pL pour 100nM final. Ces 3 populations de gouttes sont mélangées, incubées, et analysées pour mesurer la relocalisation de l'anticorps de détection orange. Le protocole identique est à celui de l'Exemple 3. La fluorescence est mesurée pour 2 canaux de fluorescence : orange pour l'anticorps de détection (PMT3), rouge pour les billes (PMT4). Le signal considéré dans cet exemple est le maximum de fluorescence.
Nous avons éliminé de l'analyse les gouttes pour lesquelles les valeurs sur le PMT4 (billes) sont faibles (PMT4<0.34), ce qui correspond au cas où la ligne de billes magnétiques est mal formée ou orientée.
L'analyse des gouttes restantes montre qu'il est possible de discriminer les 3 populations de gouttes en taille et en signal d'anticorps de détection (PMT3), ce qui démontre la possibilité de quantifier l'IFNy dans les gouttes comme illustré par la figure 22 et par la figure 23.
Elle montre aussi une relation linéaire entre le signal sur PMT3 et PMT4, ce qui suggère que la quantité d'anticorps de détection par bille magnétique est constante et que la variation du signal de l'entité de signalisation (PMT3) est corrélée directement à la variation de la forme de l'agrégat.
La figure 22 et la figure 23 illustrent une détection et quantification de cytokine (Interféron gamma, IFNy) dans des gouttes microfluidiques selon l'invention. Sur la figure 22, les trois populations de gouttes contenant 0, 10, ou 100nM d'IFNy sont représentées selon leur fluorescence maximale dans le orange (PMT3), qui correspond à l'anticorps de détection, par rapport à leur taille (Width). Les trois populations de gouttes sont représentées sur la figure 23 selon leur fluorescence maximale dans le orange (PMT3), par rapport à leur fluorescence maximale dans le rouge (PMT4), qui correspond aux billes.
Exemple 6 : Tri de cellules primaires, plus précisément de lymphocytes B (cellules plasma), à l'échelle de la cellule unique en fonction de l'activité de liaison des anticorps qu'elles sécrètent.
Le but de cette expérience est de démontrer le criblage de cellules primaires productrices d'anticorps en fonction de l'activité de liaison des anticorps monoclonaux sécrétés en employant des réactifs et une démarche similaire à l'Exemple 4. En particulier, on montre qu'on peut différentier et trier des lymphocytes B en fonction l'activité de liaison des anticorps monoclonaux qu'ils sécrètent. Les lymphocytes B ayant été préalablement extraits de la rate d'une souris et purifiés suivant une procédure standard (Pan B kit II #130-104-443, Miltenyi Biotec). Dans cet exemple, l'élément de capture 36 est un antigène biotinylé, plus précisément « TTbiotin » la protéine Tetanus Toxoid préalablement fonctionnalisé avec une biotine grâce à une procédure de marquage d'un kit standard par exemple fourni par ThermoFisher. Dans cet exemple, seule l'activité de liaison de l'anticorps à l'antigène cible est observé mais en plus les cellules sont triées selon leur activité de liaison.
Dans l'expérience les gouttes mesurent 40 picolitres.
Dans cet exemple la solution de travail comprend :
- 5%-v/v Sérum Super low IgG (#SH30898.03, Thermo Thermo Scientific,
- 25 mM de tampon HEPES à pH 7,4,
- 0,1 % v/v pluronic F-68 fourni par Life Technologies,
1 % v-v Antibiotic-Antimycotic (#15240, ThermoFisher)
Le volume de la solution de travail est complété avec du DMEM-F12 fourni par Life Technologies pour atteindre le volume final.
Deux émulsion sont produites et mise en commun après production et avant l'analyse et le criblage. L'émulsion majoritaire (-10 Million de gouttes) est constituée des cellules à cribler ainsi que des réactifs de détection. La seconde émulsion, dites de control négatif, comprenant ~1 Million de gouttes, n'est constitué que des réactifs de détection. Les deux émulsions sont différentiable grâce l'utilisation de deux concentrations différentes d'un fluorophore orange, la Sulforhodamine B.
La solution d'échantillon à cribler contient 6,6.106 cellules primaires purifiées mises en suspension dans une solution de travail tel que décrite dans l'exemple 1 .
La solution de réactifs contient les réactifs suivants mis en suspension dans la solution de travail :
- 33,33 % v-v de particules magnétique Streptavidine (Ademtech #0433),
- 200 nM de Rabbit Fab'2 anti-FCmouse AF647, JacksonIR #315-606-146 (entité de quantification),
100 nM de TTbiotin (élément de capture 36),
- 0,8 ou 1 ,6 ou 2,4 μΜ de Sulforhodamine B (Sigma Aldrich #S1402).
Cela aboutit à une émulsion avec de 50 nM d'antigen biotinylé (TTbiotin), 100 nM de Rab.Fab'2.antiFCmouse AF647 et des cellules primaires uniques sécrétant, ou non, des anticorps dirigés contre l'antigen (Tetanus Toxoid).
La fluorescence est mesurée dans le rouge pour l'entité de quantification. Le signal considéré dans cet exemple est le maximum de fluorescence. Les gouttes présentant un signal de fluorescence rouge important, ayant la bonne taille et provenant de l'émulsion des cellules primaires (faible fluorescence orange de la sulforhodamine B) sont triées, recueillies et brisées puis les cellules sont récupérées comme dans l'exemple 4.
La figure 25 représente un histogramme du nombre de gouttes comptées pour un signal de fluorescence mesuré sur le canal de l'entité de quantification. L'abscisse représente le maximum de fluorescence pour la couleur de l'entité de quantification, et l'ordonnée représente le logarithme en base 10 du nombre de gouttes mesurée à cette valeur de fluorescence. Les valeurs obtenues pour l'émulsion de cellules primaires à cribler sont tracées en trait continu noir. Les valeurs obtenues pour l'émulsion de contrôle négatif sont tracées et trait pointillé gris. La ligne verticale de points ronds noirs indique la valeur seuil au-delà de laquelle les gouttes sont sélectionnées pour le tri.
Un ELISpot est ensuite réalisé sur les solutions de cellules extraites des gouttes triées ou de cellules non triées, c'est-à-dire après purification (kit Miltenyi) mais avant criblage microfluidique. Les cellules ainsi analysées par ELISpot sont testées à la fois pour la sécrétion d'anticorps et pour la sécrétion d'un anticorps anti-TT.
Une analyse par ELISpot de cellules primaires triées et de cellules primaires purifiés mais non-triées est réalisée. L'analyse est effectuée sur deux marqueurs en utilisant les procédures tel que décrites dans le kit Mouse IgG ELISpotBASIC (Mabtech #3825-2A). Le premier, dit IgG, utilise la procédure « Total Ig ELISpot » et permet de détecter le nombre de cellules sécrétant des anticorps. Le second, dit TT, utilise la procédure « Antigen-specific Ig ELISpot, PROTOCOL II » et permet de détecter le nombre de cellules sécrétant des anticorps ayant une activité de liaison contre l'antigène TT.
L'enrichissement η est calculé selon la formule qui suit, N+ 0 étant le nombre de cellules positives avant tri, N+,i étant le nombre de cellules positives après tri, Ν.,ο et N. étant les valeurs respectives de cellules négatives avant et après tri.
Figure imgf000038_0001
Dans une expérience, on obtient pour 5000 cellules non triés 51 cellules positives à TT et 4949 cellules négatives et on obtient pour 1000 cellules triées, 132 cellules positives à TT et 868 cellules négatives.
L'expérience met en évidence un enrichissement, η, d'un facteur d'environ 15 en cellules sécrétrices ayant une activité de liaison à TT après le tri et ces cellules représentent 93% des cellules sécrétrices d'anticorps détectées. Le test ELISpot permet de montrer que le procédé permet un enrichissement en cellules primaires après le criblage par le dispositif.
L'invention permet donc une sélection spécifique à haut débit de cellules primaires uniques sécrétant des anticorps reconnaissant l'élément de capture.
Exemple 7 : Quantification d'un anticorps monoclonal et détection de liaison avec son antigène en chambre 2D
Dans cet exemple, l'élément cible 37 est un anticorps qui est déjà contenu dans la solution à cribler, cet exemple ne met pas en œuvre des cellules.
Un but de cet exemple est de démontrer la possibilité de mesurer une réponse quantitative en fonction de la concentration d'un anticorps monoclonal pour un antigène donné dans un dispositif de type 60, c'est-à-dire une chambre dans laquelle les gouttes sont réparties en deux dimensions dans une couche unique. Dans cet exemple l'entité de signalisation est un antigène fluorescent, plus précisément « TT-AF488 » la protéine Tetanus Toxoid préalablement fonctionnalisé avec un fluorophore AlexaFluor-488 grâce à une procédure de marquage d'un kit standard par exemple fourni par ThermoFisher. Dans cet exemple les particules magnétiques utilisées pour former les colonnes en gouttes sont marqué à saturation avec l'entité de capture, ici le « CaptureSelectTM Biotin Anti-LC- kappa (Murine) conjugate » (ThermoFisher #7103152500).
Dans cette expérience les gouttes mesurent 40 picolitres.
Dans cet exemple la solution de travail comprend :
- 5%-v/v Sérum Super low IgG (#SH30898.03, Thermo Thermo Scientific,
- 25 mM de tampon HEPES à pH 7,4,
- 0,1 % v/v pluronic F-68 fourni par Life Technologies,
Le volume de la solution de travail est complété avec du DMEM-F12 dépourvu de rouge de phénol fourni par Life Technologies pour atteindre le volume final.
La solution de réactifs contient les réactifs suivants mis en suspension dans la solution de travail :
- 33,33 % v-v de particules magnétique Streptavidine (Ademtech #0433), préalablement marqué à saturation avec l'entité de capture
- 150 nM de Rabbit Fab'2 anti-FCmouse AF647, JacksonIR #315-606-146 (entité de quantification),
- 50 nM de TT-AF488 (entité de capture),
- 0,8 ou 1 ,6 ou 2,4 μΜ de Sulforhodamine B (Sigma Aldrich #S1402).
Cela aboutit à une émulsion avec de 25 nM d'antigène fluorescent (TT-AF488),
75 nM d'entité de quantification (Rab. Fab'2. antiFCmouse AF647) et une gamme de concentration d'un anticorps monoclonal, ayant une activité de liaison contre l'antigène (TT7), comprenant les valeurs suivantes : 0 ; 4,2 ; 12,5 ; 20,8 ; 42 (figure S7b seulement) ; 62,5 ; 83,3 ; 125 ; 208 ; 250 (figure S7b seulement). L'anticorps anti-TT, dit TT7, a été obtenu par expression de protéine recombinante à partir de la séquence publiée dans l'article écrit par Brandon J DeKosky et al., intitulé « High-throughput sequencing of the paired human immunoglobulin heavy and light chain répertoire » paru dans Nature Biotechnology Volume:31 , pages 166 à 169 en 2013.
Les multiples émulsions mesurées sont différentiables grâce l'utilisation d'une gamme de concentrations d'un fluorophore orange, la Sulforhodamine B. Les mesures collectées n'ont pas été réalisées simultanément.
La figure 26 représente le dispositif de mesure du type du deuxième appareil 60 utilisé dans cet exemple. Une chambre de 40 μηι de hauteur est créée entre deux lames de verre. Une entrée et une sortie sont réalisées dans la lame de verre supérieur et munis chacun de connecteur standard pour y connecter les capillaires de connexion.
Cette expérience permet de montrer la possibilité de réaliser un test de liaison sur des particules magnétiques en colonne dans les gouttes avec deux lectures de fluorescence de réactifs secondaires comme cela est illustré par la figure 27. En absence d'anticorps monoclonal on observe une fluorescence dispersée de l'entité de signalisation (figure 27 A) et de l'entité de quantification (figure 27 B). A l'inverse, en présence de 50nM d'un anticorps monoclonal ayant une activité de liaison contre l'antigène (TT7) on observe une relocalisation de fluorescence de l'entité de signalisation (Figure 27 C) et de l'entité de quantification (Figure 27 D).
La figure 28 est une courbe de titration représentant le ratio des signaux relocalisé et dispersé des entités de quantification (figure 28 A) et de signalisation (figure 28 B) en fonction de la concentration d'élément cible (anticorps TT7) en nanomolaire.
Exemple 8 : Mesure de l'affinité d'un anticorps monoclonal pour son antigène en chambre 2D
Cet exemple est similaire en tout point à l'exemple 7 à la différence que plusieurs éléments cibles 37 distincts, représentant une gamme d'affinité pour l'antigène, sont mesurés.
Un but de cet exemple est de démontrer la possibilité de mesuré l'affinité d'un anticorps monoclonal pour un antigène donné dans un dispositif de type 60, c'est-à-dire une chambre dans laquelle les gouttes sont réparties en deux dimensions dans une couche unique. La constante de dissociation Kd est évaluée à partir de la mesure de concentration d'antigène fluorescent lié à l'anticorps immobilisé sur la colonne de billes et de la mesure simultanée de la concentration d'anticorps capturée sur la colonne de billes.
Les anticorps anti-TT utilisé pour cette expérience, dit TT4, TT7 et TT10, ont été obtenus par expression de protéines recombinantes à partir des séquences publiées dans l'article écrit par Brandon J DeKosky et al., intitulé « High-throughput sequencing of the paired human immunoglobulin heavy and light chain répertoire » paru dans Nature Biotechnology Volume:31 , pages 166 à 169 en 2013.
Différentes concentrations de chacun des trois anticorps ont été utilisées dans plusieurs émulsions distinctes afin d'obtenir par régression linéaire le ratio du signal de l'entité de signalisation sur le signal de l'entité de quantification respectivement pour chacun des trois anticorps, plus précisément 0 nM, 5 nM et 10 nM pour l'anticorps TT10, 0 nM, 2,5 nM et 10 nM pour l'anticorps TT4 et 0 nM, 5 nM, 10 nM, 15 nM et 25 nM pour l'anticorps TT7.
Cette expérience permet de montrer la possibilité de corréler le ratio du signal de l'entité de signalisation sur le signal de l'entité de quantification à la constante de dissociation de l'élément cible choisi comme cela est illustré par la figure 29 et 30.
La figure 29 est un graphique représentant le ratio des signaux relocalisé et dispersé des entités de quantification en abscisse et de signalisation en ordonnée pour les trois anticorps monoclonaux, TT4, TT7 et TT10 testés dans cette expérience.
La figure 30 est un graphique représentant en abscisse la constante de dissociation des trois anticorps monoclonaux obtenue par résonnance plasmonique de surface (SPR) et en ordonné leur ratio du signal de l'entité de signalisation sur le signal de l'entité de quantification.
Exemple 9 : Mesure cinétique et quantitative de la sécrétion d'un anticorps monoclonal par des cellules primaires en chambre 2D
Cet exemple est similaire en tout point à l'exemple 8 à la différence que l'élément cible 37, est un anticorps monoclonal sécrété par une cellule primaire et que cette sécrétion est mesurée de façon cinétique.
Un but de cet exemple est de démontrer la possibilité de mesuré simultanément la cinétique de sécrétion et l'affinité, pour un antigène donné, d'anticorps monoclonaux générés par des cellules primaires unique isolées en gouttes dans un dispositif de type 60. Comme pour l'exemple 6, les lymphocytes B ont été préalablement extraits de la rate d'une souris et purifiés suivant une procédure standard (Pan B kit II #130-104-443, Miltenyi Biotec).
La figure 31 est un graphique représentant l'évolution, à l'échelle de la cellule unique, du ratio du signal relocalisé de la ligne de billes magnétiques sur le signal dispersé de la goutte en fonction du temps (min). De plus, grâce à la courbe de titration (Figure 28a de l'exemple 7), il est possible de corréler le signal mesuré à une concentration d'anticorps monoclonal. Cette concentration est notée sur la figure 30.
La figure 32 est un graphique représentant l'évolution, à l'échelle de la cellule unique, du ratio du signal relocalisé de la ligne de billes magnétiques sur le signal dispersé de la goutte en fonction du temps (min) pour n = 25 cellules primaires distinctes. La figure 32 illustre l'hétérogénéité des cellules primaires.
Exemple 10 : Nombre, géométrie et stabilité des agrégats de billes magnétiques en goutte.
Dans cet exemple, l'élément cible 37 est une molécule fluorescente biotinylé, par exemple AF546-Biotin (ThermoFisher #S1 1225) qui a aussi le rôle d'entité de signalisation et qui est déjà contenu dans la solution à cribler. Cet exemple ne met pas en œuvre des cellules.
Un but de cet exemple est de démontrer la possibilité de stabiliser les lignes d'agrégats de billes magnétiques et d'assurer leurs singularités en goutte, grâce à l'utilisation d'une molécule de liaison transversale. Dans le cas de cette expérience nous montrons l'utilisation de différentes concentrations d'une protéine multiplement biotinylé, la Biotin-BSA (Sigma Aldrich #A8549) comme molécule de liaison transversale. La Biotin- BSA utilisé présente entre 8 et 16 mol de Biotine par mol d'Albumine.
Dans cette expérience les gouttes mesurent 40 picolitres.
Dans cet exemple la solution de travail comprend :
- 5%-v/v Sérum Super low IgG (#SH30898.03, Thermo Thermo Scientific,
- 25 mM de tampon HEPES à pH 7,4,
- 0,1 % v/v pluronic F-68 fourni par Life Technologies,
1 % v-v Antibiotic-Antimycotic (#15240, ThermoFisher)
Le volume de la solution de travail est complété avec du DMEM-F12 fourni par Life Technologies pour atteindre le volume final.
Les sept émulsions produites pour cette expérience, contiennent les réactifs suivants mis en suspension dans la solution de travail :
- 100 nM final d'AF546-Biotin (entité de signalisation) 1 fois, 2 fois ou 3 fois la quantité standard de 33,33 % v-v de particules magnétique Streptavidine (Ademtech #0433),
- 50, 100, 200, 400, 800 ou 1600 nM de Dy-649 (Dyomics)
Un ratio variable de Biotin-BSA, bille magnétique, de 0 pour 1 , 5 pour 1 , 25 pour 1 ou 100 pour 1 , c'est-à-dire une concentration de Biotin-BSA de 0, 0.5, 2.5, 5 ou 15 nM.
Une émulsion de référence, dites « VHH lines », est produit comme décrit dans l'exemple « C ». Dans le cas de l'émulsion « VHH lines » la stabilisation des lignes de billes magnétique est obtenue grâce à la liaison transversale entre les éléments cible (anticorps) et les entités de capture (« CaptureSelectTM Biotin Anti-LC-kappa (Murine) conjugate » ThermoFisher #7103152500), parce qu'un même élément cible (anticorps) peut être lié à deux entités de capture.
La figure 33 est un graphique représentant le rapport de format de la ligne de billes magnétiques en fonction des différentes conditions expérimentales et illustré dans chaque cas par une image de microscopie.
La figure 34 est un graphique représentant la singularité ou pluralité de la ligne de billes magnétiques en fonction des différentes conditions expérimentales.
Cette expérience permet de montrer la possibilité de stabiliser le nombre et la géométrie des lignes de billes magnétiques par goutte comme cela est illustré par les figures 33 et 34.

Claims

REVENDICATIONS
1 .- Procédé d'analyse du contenu de gouttes, comprenant l'étape suivante :
- fourniture d'une pluralité de gouttes (6) contenues dans un fluide porteur (8), au moins une des gouttes (6) comprenant au moins un agrégat (10) de particules (12) définissant un objet allongé selon un axe principal (X), au moins certaines gouttes (6) contenant au moins un élément cible (37) propre à se fixer sur l'agrégat (10),
caractérisé en ce que le procédé comprend une étape de mesure d'un paramètre physique caractéristique de la fixation de l'élément cible (37) sur l'agrégat (10).
2.- Procédé selon la revendication 1 , dans lequel les particules (12) sont des particules superparamagnétiques.
3. - Procédé selon l'une des revendications 1 ou 2, dans lequel l'étape de fourniture des gouttes (6) comprend :
- la dispersion des particules (12) dans une masse de fluide (86) destinée à former les gouttes (6), puis
- la dispersion de la masse de fluide (86) sous forme de gouttes (32),
- la formation dans chaque goutte (6) d'au moins un agrégat (10) de particules (12) définissant un objet allongé selon un axe principal, l'agrégat (10) de particules (12) étant formé dans chaque goutte (6) après la dispersion.
4. - Procédé selon l'une quelconque des revendications précédentes, dans lequel l'élément cible (37) est un élément choisi dans le groupe constitué par une protéine, un anticorps, un peptide, un morceau d'ADN ou d'ARN, un métabolite, un ion, un lipide et une biomolécule susceptible d'être produite par une cellule.
5. - Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins certains gouttes (6) comprennent une entité productrice (90) susceptible de produire l'élément cible (37), l'entité productrice (90) étant de préférence choisie dans le groupe constitué par une cellule et un système d'expression in vitro.
6. - Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de mesure comporte la mesure du paramètre physique localement en une pluralité de points situés dans la goutte (6), l'étape de mesure comportant de préférence la détermination de l'intégrale des valeurs mesurées au sein de la goutte (6).
7. - Procédé selon l'une quelconque des revendications précédentes, comprenant avant l'étape de mesure, une étape d'orientation de l'axe principal (X) de l'agrégat selon un axe de détection (D).
8. - Procédé selon l'une quelconque des revendications précédentes, comprenant de multiples étapes de mesure, avec une étape d'orientation de l'axe principal (X) de l'agrégat selon un axe de détection différent pour chacune des mesures.
9.- Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de mesure est effectuée dans une chambre microfluidique sans circulation des gouttes.
10. - Procédé selon l'une quelconque des revendications précédentes, comprenant :
- la fourniture d'un dispositif comprenant un ensemble de mise en circulation (22) de la goutte et une zone de détection (26),
- le transport de la goutte vers la zone de détection (26), la mesure au sein de la goutte (6) étant effectuée dans la zone de détection (26).
1 1 . - Procédé selon l'une quelconque des revendications précédentes, comprenant :
- la fourniture d'un dispositif comprenant un ensemble de mise en circulation (22) de la goutte et une pluralité de zones de classement (94, 96), et un moyen de direction (98) de la goutte ou d'une partie de la goutte sélectivement vers une zone de classement (94, 96),
- la décision de classement de la goutte (6) ou d'une partie de la goutte, la décision consistant à choisir sélectivement une zone de classement parmi la pluralité des zones de classement (94, 96),
- le transport de la goutte (6), respectivement d'une partie de la goutte, vers la zone de classement de la goutte (6) choisie lors de l'étape de décision.
12. - Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une goutte comprend au moins un élément cible (37), au moins une première entité de signalisation (34) apte à former un complexe avec l'élément cible (37) et au moins une seconde entité de signalisation (34) distincte apte à former un complexe avec l'élément cible (37), le procédé comprenant la mesure d'un signal indiquant la concentration de chacune des entités de signalisation (34) relocalisées sur l'agrégat (10).
13. - Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une goutte comprend au moins un élément cible (37), au moins une entité de signalisation (34) apte à former un complexe avec l'élément cible (37) et au moins une entité de quantification apte à former un complexe avec l'élément cible (37) , le procédé comprenant :
- la mesure d'un signal représentatif de la concentration de l'entité de signalisation (34) relocalisée sur l'agrégat (10),
- la mesure d'un signal représentatif de la concentration de l'entité de quantification relocalisée sur l'agrégat (10),
- la détermination de la constante de dissociation de l'élément cible (37) avec l'entité de signalisation (34) à partir du rapport du signal de l'entité de signalisation (34) relocalisée sur le signal de l'entité de quantification relocalisée.
14. - Procédé selon la revendication 13, dans lequel au moins certaines gouttes (6) comprennent une entité productrice (90), l'entité productrice (90) étant une cellule susceptible de produire au moins un anticorps étant un élément cible (37), le procédé comprenant une étape de détermination de l'affinité de l'anticorps produit par l'entité productrice (90) pour au moins un antigène, le procédé comprenant de préférence une étape de tri de la goutte après l'étape de détermination.
15. - Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une goutte comprend au moins deux entités de signalisation (34) distinctes, chacune des deux entités de signalisation (34) étant apte à former un complexe avec un élément cible distinct (37) sur l'agrégat (10), le procédé comprenant la mesure d'un signal indiquant la concentration de chacune des entités de signalisation (34) relocalisée.
16.- Procédé selon la revendication 15, dans lequel au moins certaines gouttes (6) comprennent une entité productrice (90), l'entité productrice (90) étant une cellule susceptible de produire un ou plusieurs types de protéines, chaque protéine étant un élément cible distinct (37), la mesure du signal indiquant la concentration de chacune des entités de signalisation (34) relocalisée permettant une quantification du ou des types de protéines.
17.- Appareil d'analyse du contenu de gouttes comprenant :
- un ensemble de fourniture d'une pluralité de gouttes (6) contenues dans un fluide porteur (8), au moins une des gouttes (6) comprenant au moins un agrégat (10) de particules (12) définissant un objet allongé selon un axe principal (X),
caractérisé en ce que l'appareil comprend un ensemble de mesure d'un paramètre physique caractéristique de la fixation d'un élément cible (37) sur l'agrégat, (10), l'appareil comprenant, en outre, de préférence :
- un ensemble mise en circulation de la goutte (22),
- un ensemble de décision de classement de la goutte,
- un ensemble de tri de la goutte selon la décision de classement.
PCT/EP2015/073942 2014-10-15 2015-10-15 Procédé d'analyse du contenu de gouttes et appareil associé WO2016059182A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15785075.1A EP3207373B1 (fr) 2014-10-15 2015-10-15 Procédé d'analyse du contenu de gouttes et appareil associé
DK15785075.1T DK3207373T3 (da) 2014-10-15 2015-10-15 Fremgangsmåde til analyse af indholdet af dråber og tilhørende indretning
US15/519,490 US10416168B2 (en) 2014-10-15 2015-10-15 Method of analyzing the content of drops and associated apparatus
JP2017520426A JP6775498B2 (ja) 2014-10-15 2015-10-15 液滴の内容物を分析する方法及び関連装置
CN201580063456.5A CN107110854B (zh) 2014-10-15 2015-10-15 分析液滴内容物的方法及相关装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459903 2014-10-15
FR1459903A FR3027396B1 (fr) 2014-10-15 2014-10-15 Procede d'analyse du contenu de gouttes et appareil associe

Publications (1)

Publication Number Publication Date
WO2016059182A1 true WO2016059182A1 (fr) 2016-04-21

Family

ID=52684324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/073942 WO2016059182A1 (fr) 2014-10-15 2015-10-15 Procédé d'analyse du contenu de gouttes et appareil associé

Country Status (7)

Country Link
US (1) US10416168B2 (fr)
EP (1) EP3207373B1 (fr)
JP (2) JP6775498B2 (fr)
CN (1) CN107110854B (fr)
DK (1) DK3207373T3 (fr)
FR (1) FR3027396B1 (fr)
WO (1) WO2016059182A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178662A1 (fr) * 2016-04-15 2017-10-19 Chu Montpellier Procédé de détection et/ou de caractérisation de cellules tumorales et appareil associé
KR20180032165A (ko) * 2016-09-21 2018-03-29 고려대학교 산학협력단 미세조류 균주 선별용 마이크로 장치
EP3351926A1 (fr) * 2017-01-18 2018-07-25 Hifibio Procédé d'analyse et de sélection d'une gouttelette spécifique parmi une pluralité de gouttelettes et appareil associé
EP3375889A1 (fr) 2017-03-17 2018-09-19 Hifibio Analyse de cellule unique
EP3556466A1 (fr) 2018-04-18 2019-10-23 HiFiBiO SAS Procédé microfluidique pour analyse de cellule unique
EP3629020A1 (fr) 2018-09-25 2020-04-01 bioMérieux Procédé et appareil de dosage de gouttelettes microfluidiques
EP3289362B1 (fr) 2015-04-30 2022-04-13 European Molecular Biology Laboratory Détection de gouttelette microfluidique et triage

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018200520A1 (de) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Lösung der Substanz in einer mikrofluidischen Vorrichtung
CN111630364A (zh) * 2018-01-29 2020-09-04 惠普发展公司,有限责任合伙企业 颗粒分类
EP3543351B1 (fr) 2018-03-19 2022-08-10 Ricoh Company, Ltd. Récipient contenant un échantillon d'acide nucléique, procédé de production d'un récipient contenant un échantillon d'acide nucléique et échantillon d'acide nucléique
JP7326778B2 (ja) * 2018-03-19 2023-08-16 株式会社リコー 核酸試料含有容器、核酸試料含有容器の製造方法、核酸試料含有容器の製造装置及び核酸試料含有容器の製造プログラム、並びに、核酸試料
WO2020049524A1 (fr) * 2018-09-06 2020-03-12 Nicoya Lifesciences, Inc. Système et instrument à résonance plasmonique (pr), cartouche microfluidique numérique (dmf), et procédés d'utilisation de résonance plasmonique de surface localisée (lspr) pour l'analyse d'analytes
CN109647550B (zh) * 2018-12-20 2020-04-17 北京交通大学 一种用于精准控制液滴融合的磁性液体液滴实验芯片
CN109865542B (zh) 2019-03-25 2020-05-22 浙江大学 基于弧形斜指换能器的微颗粒多通道分时分离装置及方法
CN111733138B (zh) * 2020-07-30 2021-03-30 首都医科大学附属北京友谊医院 一种循环肿瘤细胞高通量磁力分选方法
JP7322858B2 (ja) * 2020-11-02 2023-08-08 株式会社三洋物産 遊技機
JP7322857B2 (ja) * 2020-11-02 2023-08-08 株式会社三洋物産 遊技機
KR102394807B1 (ko) * 2021-10-20 2022-05-06 비테스코 테크놀로지스 게엠베하 하이사이드 스위치의 고장 진단 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011808A1 (fr) 2007-07-13 2009-01-22 President And Fellows Of Harvard College Sélection basée sur des gouttelettes
US20100105112A1 (en) 2006-08-07 2010-04-29 Christian Holtze Fluorocarbon emulsion stabilizing surfactants
WO2013041983A1 (fr) * 2011-09-19 2013-03-28 Centre National De La Recherche Scientifique Système micro-fluidique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551337B (zh) 2001-02-07 2013-06-19 麻省理工学院 光电子探测系统
US7629124B2 (en) * 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
CA2669999C (fr) * 2006-11-20 2015-10-27 Ludwig-Maximilians-Universitat Munchen Rapide caracterisation thermo-optique de particules
JP5550182B2 (ja) 2008-01-07 2014-07-16 ルミネックス コーポレーション 複合試料マトリクスからの細胞の単離および計数の方法
US20110275063A1 (en) * 2008-07-11 2011-11-10 President And Fellows Of Harvard College Systems and methods of droplet-based selection
FR2934050B1 (fr) 2008-07-15 2016-01-29 Univ Paris Curie Procede et dispositif de lecture d'une emulsion
JP5791621B2 (ja) 2009-10-27 2015-10-07 プレジデント アンド フェローズ オブ ハーバード カレッジ 液滴生成技術
US9604214B2 (en) * 2013-10-01 2017-03-28 Owl biomedical, Inc. Cell sorting system using microfabricated components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100105112A1 (en) 2006-08-07 2010-04-29 Christian Holtze Fluorocarbon emulsion stabilizing surfactants
WO2009011808A1 (fr) 2007-07-13 2009-01-22 President And Fellows Of Harvard College Sélection basée sur des gouttelettes
WO2013041983A1 (fr) * 2011-09-19 2013-03-28 Centre National De La Recherche Scientifique Système micro-fluidique

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRANDON J DEKOSKY ET AL.: "High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 166 - 169, XP055054081, DOI: doi:10.1038/nbt.2492
BRUNO TESTE ET AL: "A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets", LAB ON A CHIP, vol. 13, no. 12, 26 March 2013 (2013-03-26), pages 2344 - 2349, XP055202306, ISSN: 1473-0197, DOI: 10.1039/c3lc50353d *
MAZUTIS ET AL., NAT PROT, 2013
MAZUTIS ET AL., SINGLE-CELL ANALYSIS AND SORTING USING DROPLET-BASED MICROFLUIDICS, 4 April 2013 (2013-04-04)
TSUCHIYA ET AL: "On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system", SENSORS AND ACTUATORS B: CHEMICAL: INTERNATIONAL JOURNAL DEVOTED TO RESEARCH AND DEVELOPMENT OF PHYSICAL AND CHEMICAL TRANSDUCERS, ELSEVIER S.A, CH, vol. 130, no. 2, 18 October 2007 (2007-10-18), pages 583 - 588, XP022550371, ISSN: 0925-4005 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289362B1 (fr) 2015-04-30 2022-04-13 European Molecular Biology Laboratory Détection de gouttelette microfluidique et triage
FR3050212A1 (fr) * 2016-04-15 2017-10-20 Chu Montpellier Procede de detection et/ou de caracterisation de cellules tumorales et appareil associe
WO2017178662A1 (fr) * 2016-04-15 2017-10-19 Chu Montpellier Procédé de détection et/ou de caractérisation de cellules tumorales et appareil associé
KR102009557B1 (ko) 2016-09-21 2019-08-09 고려대학교 산학협력단 미세조류 균주 선별용 마이크로 장치
KR20180032165A (ko) * 2016-09-21 2018-03-29 고려대학교 산학협력단 미세조류 균주 선별용 마이크로 장치
CN110312926A (zh) * 2017-01-18 2019-10-08 高济生物医药科技(上海)有限公司 分析多个液滴并从中选择特定液滴的方法和相关装置
EP3351926A1 (fr) * 2017-01-18 2018-07-25 Hifibio Procédé d'analyse et de sélection d'une gouttelette spécifique parmi une pluralité de gouttelettes et appareil associé
WO2018134323A1 (fr) * 2017-01-18 2018-07-26 Hifibio, Paris Procédé d'analyse et de sélection d'une gouttelette spécifique parmi une pluralité de gouttelettes et appareil associé
EP4219009A1 (fr) * 2017-01-18 2023-08-02 Hifibio, Paris Procédé d'analyse et de sélection d'une gouttelette spécifique parmi une pluralité de gouttelettes et appareil associé
JP2020507065A (ja) * 2017-01-18 2020-03-05 ハイファイバイオ, パリス 複数の液滴のうち特定の液滴を分析および選択する方法および関係がある器具
US11592367B2 (en) * 2017-01-18 2023-02-28 Hifibio Sas Method for analyzing and selecting a specific droplet among a plurality of droplets and associated apparatus
AU2018209203B2 (en) * 2017-01-18 2023-01-05 Hifibio, Paris Method for analyzing and selecting a specific droplet among a plurality of droplets and associated apparatus
JP6995861B2 (ja) 2017-01-18 2022-01-17 ハイファイバイオ, パリス 複数の液滴のうち特定の液滴を分析および選択する方法および関係がある器具
EP3375889A1 (fr) 2017-03-17 2018-09-19 Hifibio Analyse de cellule unique
WO2018167218A1 (fr) 2017-03-17 2018-09-20 Hifibio Sas Hig Fidelity Biology Analyse de cellules uniques
EP3556466A1 (fr) 2018-04-18 2019-10-23 HiFiBiO SAS Procédé microfluidique pour analyse de cellule unique
WO2019202135A1 (fr) 2018-04-18 2019-10-24 Hifibio Sas Procédé microfluidique pour analyse de cellule unique
WO2020064626A1 (fr) 2018-09-25 2020-04-02 bioMérieux Méthode et appareil de dosage fondé sur des gouttelettes microfluidiques
EP3629020A1 (fr) 2018-09-25 2020-04-01 bioMérieux Procédé et appareil de dosage de gouttelettes microfluidiques

Also Published As

Publication number Publication date
JP2020183966A (ja) 2020-11-12
CN107110854A (zh) 2017-08-29
FR3027396B1 (fr) 2016-11-25
FR3027396A1 (fr) 2016-04-22
US20170307626A1 (en) 2017-10-26
EP3207373B1 (fr) 2019-02-27
US10416168B2 (en) 2019-09-17
EP3207373A1 (fr) 2017-08-23
JP6775498B2 (ja) 2020-10-28
CN107110854B (zh) 2019-07-26
DK3207373T3 (da) 2019-06-03
JP2017532560A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
EP3207373B1 (fr) Procédé d&#39;analyse du contenu de gouttes et appareil associé
US11059044B2 (en) Microfluidic determination of low abundance events
Cretich et al. Digital detection of biomarkers assisted by nanoparticles: application to diagnostics
WO2017178662A1 (fr) Procédé de détection et/ou de caractérisation de cellules tumorales et appareil associé
EP1963859B1 (fr) Methode de discrimination d&#39;au moins deux populations cellulaires et application
FR2832507A1 (fr) Methode de detection d&#39;analyte(s) a l&#39;aide de particules magnetiques colloidales
EP3265809B1 (fr) Procédé et dispositif pour détecter en temps réel un composé sécrété et la cible sécrétrice ainsi que leurs utilisations
Wei et al. Biochemical analysis based on optical detection integrated microfluidic chip
US20230390772A1 (en) Microfluidic determination of heterogeneous objects
CA3020960C (fr) Procede et systeme de recuperation de produits d&#39;une emulsion
CA3020964C (fr) Procede de detection et/ou de caracterisation de cellules tumorales et appareil associe
US20210322988A1 (en) Microfluidic droplet-based assay process and apparatus
KR20240019077A (ko) 나노규모 반응 챔버 및 이를 사용하는 방법
JP2024517624A (ja) ナノスケール反応チャンバー、およびその使用方法
Chen et al. Application in Single-cell Functional Analysis
WO2024019988A1 (fr) Dispositifs pour analyse biologique
WO2023141319A1 (fr) Méthodes de détection d&#39;autoassociation d&#39;anticorps
Rogacs et al. Particle Tracking and Multispectral Collocation Method for Particle-to-Particle Binding Assays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520426

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015785075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15519490

Country of ref document: US

Ref document number: 2015785075

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE