WO2016056521A1 - 燃焼器、ガスタービン - Google Patents

燃焼器、ガスタービン Download PDF

Info

Publication number
WO2016056521A1
WO2016056521A1 PCT/JP2015/078253 JP2015078253W WO2016056521A1 WO 2016056521 A1 WO2016056521 A1 WO 2016056521A1 JP 2015078253 W JP2015078253 W JP 2015078253W WO 2016056521 A1 WO2016056521 A1 WO 2016056521A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
combustor
axis
air
downstream side
Prior art date
Application number
PCT/JP2015/078253
Other languages
English (en)
French (fr)
Inventor
直樹 角田
智志 瀧口
赤松 真児
拓 江川
健太 谷口
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020177008068A priority Critical patent/KR101906080B1/ko
Priority to JP2016553100A priority patent/JP6271029B2/ja
Priority to CN201580049730.3A priority patent/CN106687747B/zh
Priority to US15/511,814 priority patent/US10920986B2/en
Priority to DE112015004573.2T priority patent/DE112015004573B4/de
Publication of WO2016056521A1 publication Critical patent/WO2016056521A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment

Definitions

  • the present invention relates to a combustor and a gas turbine including the combustor.
  • This application claims priority based on Japanese Patent Application No. 2014-205824 and Japanese Patent Application No. 2014-205825 for which it applied on October 6, 2014, and uses the description.
  • a premixed combustion method is widely used in which fuel is mixed in advance with compressed air (combustion air) sent from a compressor to generate a mixture, and the mixture is burned. It has been.
  • compressed air combustion air
  • this type of combustor one having a second burner provided on the axis of the combustor and a plurality of first burners arranged in parallel to the second burner is known. And the 2nd burner and the 1st burner are being fixed to the main part of a combustor by being supported by the substrate in which the support opening corresponding to these diameters was formed.
  • this substrate is provided with an elliptical cylindrical extension pipe disposed so as to cover the main nozzle from the outside in the radial direction. That is, the substrate surface is divided into a plurality of sections by the extension tube.
  • the first burner having such a structure generates a premixed gas by mixing fuel and air therein, and forms a flame extending downstream from the tip of the extension pipe by burning the premixed gas. To do.
  • a phenomenon called backfire which occurs when a flame flows backward in the flow direction of the mixture in a region where the flow rate of the mixture is low (low speed region). It has been.
  • the substrate air only flows toward the downstream side, and further toward a position away from the combustor axis.
  • a frictional resistance with the inner cylinder of the combustor or the like occurs, so that the loss of the substrate air flow rate becomes large.
  • the possibility that the premixed gas is caught from the inside of the extension pipe to the outside and flows backward toward the substrate is increased. That is, there is a high possibility of backfire occurring in a low speed region formed between the extension pipes.
  • Patent Document 1 a technique described in Patent Document 1 is known as a technique for reducing the possibility of backfire occurring near the extension pipe.
  • the area of the region formed between adjacent extension pipes is reduced by bringing the cross-sectional shape at the outlet of the extension pipes closer to a rectangular shape from an ellipse. . That is, the possibility of backfire is reduced by reducing the low speed region formed in the region.
  • the combustor and gas turbine of the present invention propose the following means.
  • the combustor includes a first burner extending along the axis and arranged in a plurality at intervals in the circumferential direction, and a support opening for supporting the plurality of first burners.
  • the substrate air guide portion is provided on the downstream side of the substrate so that the substrate air ejected from the through hole flows toward a desired region on the downstream side of the substrate. I can guide you. Thereby, the flow distribution of the substrate air can be optimized.
  • the substrate air guide portion directs the substrate air ejected from the through hole further downstream than the substrate. It may be formed by a substrate air extension that guides and ejects.
  • the substrate air ejected from the through hole can be guided further downstream than the substrate. Therefore, the possibility that the flame formed by the premixed gas ejected from the extension pipe will flow backward toward the upstream substrate can be reduced.
  • the substrate air extension portion corresponds to at least a part of the plurality of through holes formed in the substrate. It may be formed by the pipe body provided in and extending toward the downstream side.
  • a tube provided so as to correspond to the through hole is used as the substrate air extension. Furthermore, the tubular body extends toward the downstream side from the substrate. Thereby, the substrate air ejected from the through hole can be guided and ejected more reliably toward the downstream side of the substrate.
  • a plurality of the tube bodies are provided, and the inner diameters of the plurality of tube bodies are at positions spaced from the axis.
  • the tube may be set smaller.
  • the higher the distance from the axis on the substrate the higher the speed loss of the premixed gas, and thus the higher the possibility of backfire.
  • the inner diameter of the tube body that is located away from the axis is smaller. Therefore, the flow rate of the substrate air flowing through the tubular body can be increased as the distance from the axis is increased.
  • the dimensions of the plurality of tubular bodies in the axial direction are at positions separated from the axial line. You may set large as it becomes a certain said tubular body.
  • the dimension in the axial direction is set to be larger as the tubular body is located farther from the axial line. Accordingly, the tube body located at a position away from the axis on the substrate can guide the substrate air toward the downstream side. Thereby, the possibility of backfire can be further reduced.
  • the combustor may further include a thick portion that fills the gaps between the plurality of tubes.
  • the gap formed between the plurality of tube bodies is filled with the thick portion. Therefore, the premixed gas does not flow backward toward the gap between the tubes. Thereby, the possibility of backfire can be further reduced.
  • the substrate air guide portion defines the direction of at least a part of the substrate air ejected from the through hole. It may be formed by a substrate air turning portion that turns on the downstream side of the substrate.
  • the substrate air turning section is provided on the downstream side of the substrate, so that the substrate air ejected from the through hole flows toward a desired region on the downstream side of the substrate. Can turn to. Thereby, the flow distribution of the substrate air can be optimized.
  • the substrate air turning section may be formed by a partition plate extending from the substrate toward the downstream side.
  • the partition plate extending from the substrate toward the downstream side is provided as the substrate air turning portion. Further, the partition plate is formed so that the downstream surface of the substrate is divided into a plurality of sections. Accordingly, the substrate air ejected from the through hole can be divided into a plurality of flows by the partition plate and can be changed in a desired direction.
  • the plurality of partition plates gradually move away from the axis as they go downstream from the substrate. You may form so that it may curve.
  • the higher the distance from the axis on the substrate the higher the speed loss of the premixed gas, and thus the higher the possibility of backfire.
  • the velocity loss of the premixed gas can be compensated by changing the direction in which the substrate air flows in the direction away from the axis by the partition plate.
  • the partition plate is configured to divide the substrate along the radial direction, thereby dividing the plurality of compartments.
  • the number of the through holes may be increased as the section located at a position away from the axis.
  • a larger number of through holes are formed in a section located at a position away from the axis. Therefore, as the section is located farther from the axis on the substrate, more substrate air can be ejected toward the downstream side to reduce the possibility of backfire.
  • the partition plate divides the substrate along a radial direction so that the plurality of the plurality of the partition plates are divided. While the partition is formed, the opening diameter of the through hole may be smaller as the partition is located away from the axis.
  • the through hole located at a position away from the axis is formed so that the opening diameter thereof becomes smaller. Therefore, the possibility of backfire can be reduced by increasing the flow rate of the substrate air ejected from the through-hole located at a position away from the axis.
  • the plurality of first burners are surrounded from the radially outer side of the axis.
  • a second burner disposed along the axis may be further provided.
  • the first burner can be ignited more easily by providing the second burner.
  • a gas turbine according to a thirteenth aspect of the present invention includes a combustor according to any one of the first to twelfth aspects, a compressor that supplies compressed air to the combustor, and the combustor. And a turbine to which a combustion gas generated by burning the premixed gas is supplied.
  • the possibility of backfire can be further reduced.
  • FIG. 1 is a schematic view of a gas turbine according to a first embodiment of the present invention. It is the cross-sectional schematic seen from the direction orthogonal to the axis line of the combustor which concerns on 1st embodiment of this invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2. It is a principal part enlarged view of the combustor which concerns on 1st embodiment of this invention. It is a principal part enlarged view which shows the modification of the combustor which concerns on 1st embodiment of this invention. It is a principal part enlarged view of the combustor which concerns on 2nd embodiment of this invention.
  • FIG. 9 is a sectional view taken along line XX in FIG. It is a principal part enlarged view of the combustor which concerns on 3rd embodiment of this invention. It is a principal part enlarged view which shows the modification of the combustor which concerns on 3rd embodiment of this invention.
  • the gas turbine 1 mixes fuel with a compressor 2 that takes in a large amount of air and compresses the compressed air A and is compressed by the compressor 2.
  • a combustor 3 for combusting, and a turbine 4 for converting thermal energy of the combustion gas G introduced from the combustor 3 into rotational energy are provided.
  • the compressor 2 and the turbine 4 include a rotor 5 connected so as to rotate integrally with each other, and a stator 6 that surrounds the outer peripheral side of the rotor 5.
  • the rotor 5 includes a rotating shaft 7 and a plurality of annular blade groups 8 fixed at intervals in the direction of the axis O.
  • Each annular moving blade group 8 is configured to have a plurality of moving blades fixed on the outer periphery of the rotating shaft 7 at intervals in the circumferential direction.
  • the stator 6 includes a casing 9 and a plurality of annular stator blade groups 10 fixed in the casing 9 at intervals in the direction of the axis O.
  • the annular stationary blade group 10 has a plurality of stationary blades fixed to the inner surface of each casing 9 at intervals in the circumferential direction.
  • the annular stator blade groups 10 are alternately arranged with the plurality of annular rotor blade groups 8 in the direction of the axis O.
  • the combustor 3 includes an inner cylinder 13 accommodated in the casing 9 and an outer cylinder 14 that covers the outer peripheral side of the inner cylinder 13.
  • the inner cylinder 13 is a hollow tubular member.
  • a tail cylinder (not shown) is connected to the downstream side of the inner cylinder 13.
  • the tail tube is a member formed in a hollow tube like the inner tube 13 and the outer tube 14.
  • the flame formed by the combustor 3 is held inside the tail tube.
  • the outer cylinder 14 has a tubular outer cylinder main body 14A and a flange-shaped outer cylinder base 14B that supports one end of the outer cylinder main body 14A.
  • the inner cylinder 13 is fixed to the outer cylinder base 14 ⁇ / b> B by a plurality of fixing members 12.
  • An air flow path 15 through which the compressed air A flows is formed between the inner peripheral surface of the outer cylinder 14 and the outer peripheral surface of the inner cylinder 13.
  • the compressed air A that has flowed into the air flow path 15 is supplied to the inside of the inner cylinder 13 by turning around at the reversing portion 16 at the bottom portion of the outer cylinder 14.
  • the above-described fixing members 12 are arranged at intervals along the circumferential direction of the combustor 3. Accordingly, a gap is formed between the adjacent fixing members 12 and 12. Thereby, the compressed air A is taken into the inner cylinder 13 through this gap.
  • the combustor 3 includes a second burner 20 and a first burner 21 in the inner cylinder 13.
  • the second burner 20 is provided along the axis P of the inner cylinder 13. Furthermore, the 2nd burner 20 is enclosed from the radial direction outer side of the axis line P by the some 1st burner mentioned later.
  • the second burner 20 injects fuel supplied from the outside from the pilot nozzle 22. A flame is formed by igniting the fuel injected from the pilot nozzle 22.
  • a pilot cone 23 is provided on the second burner 20.
  • the pilot cone 23 is a cylindrical member that surrounds the outer peripheral side of the pilot nozzle 22.
  • the pilot cone 23 has a tapered cone portion 24 formed so that its inner diameter gradually increases from the vicinity of the pilot nozzle 22 to the downstream side.
  • the taper cone portion 24 is intended to enhance flame holding properties by regulating the flame diffusion range and direction.
  • the second burner 20 is provided with a pilot swirler 30 on the upstream side thereof.
  • the pilot swirler 30 is a device formed by arranging a plurality of swirl vanes at equal intervals along the circumferential direction of the axis P inside the second burner 20. Each swirl vane is arranged so as to form an angle with respect to the axis line P from the upstream side toward the downstream side. Therefore, the compressed air A that has passed through the pilot swirler 30 is added with a swirl component due to swirl vanes, and turns into a swirl flow.
  • first burners 21 are provided inside the inner cylinder 13.
  • four first burners 21, 21, 21, 21 are provided along the circumferential direction of the second burner 20. More specifically, the first burners 21 are arranged at equal intervals in the circumferential direction on the outer peripheral side of the second burner 20.
  • Each first burner 21 extends along the axis P of the inner cylinder 13 and is parallel to the second burner 20 described above.
  • a main nozzle 25 is provided at the tip of the first burner 21.
  • the main nozzle 25 is formed in a conical shape so that its outer shape gradually decreases from the downstream side toward the upstream side, that is, toward the distal end side.
  • an extension pipe 26 is provided on the outer peripheral side of each first burner 21.
  • the extension pipe 26 is a member formed in a substantially cylindrical shape so as to surround the first burner 21 from the outer peripheral side.
  • the end of the extension pipe 26 on the side connected to the first burner 21 is circular so as to correspond to the cross-sectional shape of the first burner 21.
  • the wall surface of the extension pipe 26 on the side close to the pilot cone 23 is gradually inclined away from the axis P as it goes from the upstream side to the downstream side. Is formed.
  • each extension pipe 26 has a substantially oval cross-sectional shape extending along the circumferential direction when viewed from the axis P direction.
  • the portion of the ellipse having the cross section that is close to the tapered cone portion 24 of the pilot cone 23 is recessed so as to follow an arc that forms the outer edge of the tapered cone portion 24.
  • the portion on the side close to the inner cylinder 13 protrudes while gently curving along the inner edge of the inner cylinder 13. That is, the cross-sectional shape of the extension pipe 26 is formed so as to gradually change from a circular shape toward the downstream side from the upstream side to form an oval shape curved in one direction.
  • a region inside the extension pipe 26 formed as described above is a main flow path 28 through which the compressed air A flows.
  • the first burner 21 includes a main swirler 29 provided inside the extension pipe 26, similarly to the second burner 20.
  • the compressed air A that has passed through the main swirler 29 is added with a swirling component due to swirl vanes and turns into a swirling flow.
  • Fuel is injected from a fuel injection hole (not shown) to the first burner 21 configured as described above.
  • the fuel injection hole is provided in the main swirler 29, for example.
  • the injected fuel is mixed with the compressed air A in the inner cylinder 13 to generate a premixed gas F.
  • the swirl flow generated by the main swirler 29 causes the premixed gas F to flow downstream in the main channel 28 while swirling around the first burner 21.
  • the second burner 20 and the first burner 21 configured as described above are respectively supported by the substrate 31 and fixed inside the inner cylinder 13.
  • the substrate 31 is a substantially circular plate-like member formed corresponding to the cross-sectional shape of the inner cylinder 13.
  • a second burner support opening 32 that supports the second burner 20 so as to surround the outer periphery in the circumferential direction is formed.
  • the second burner support opening 32 has an opening diameter corresponding to the outer diameter of the second burner 20.
  • first burner support openings 33, 33, 33, 33 for supporting a plurality (four) of first burners 21, 21, 21, 21. However, a plurality (four) are formed at equal intervals in the circumferential direction. Similar to the second burner support opening 32, the first burner support opening 33 supports the first burner 21 so as to surround the outer periphery in the circumferential direction.
  • the substrate 31 is provided with a plurality of through holes 34 for circulating the compressed air A (substrate air A) flowing through the main flow path 28. More specifically, the plurality of through holes 34 are provided in a region between the first burner support openings 33 adjacent to each other. Each through hole 34 has an opening diameter smaller than that of the first burner support opening 33 or the second burner support opening 32.
  • the exact position and number of the through holes 34 provided on the substrate 31 are appropriately determined according to the design.
  • the through holes 34 according to the present embodiment are provided such that the number thereof gradually increases as the distance from the center (axis P) of the substrate 31 to the outer side in the radial direction is increased.
  • one through hole 34 is provided at a position closest to the center.
  • the number increases one by one as it goes radially outward. That is, two through holes 34 are provided at positions in the second row as counted from the center in the radial direction.
  • Three (n) through-holes 34 are provided at the position of the third row (n-th row).
  • the plurality of through holes 34 formed as described above are provided with substrate air extension portions 35 (substrate air guide portions) so as to correspond to at least some of the plurality of through holes 34 (FIG. 10).
  • the substrate air extension 35 guides and ejects compressed air A (substrate air A) ejected from the upstream side to the downstream side of the substrate 31 through the through-hole 34 further downstream than the substrate 31. It is provided for.
  • the substrate air extension 35 in the present embodiment is formed by a plurality of tubular bodies 36 extending from the downstream surface of the substrate 31 along the axis P toward the downstream side.
  • the inner diameter of each tubular body 36 is set to be substantially the same as the opening diameter of the through hole 34.
  • the inside of the pipe body 36 is set to have a constant opening diameter from the upstream side to the downstream side.
  • the plurality of tube bodies 36 extend from the substrate 31 toward the downstream side to the vicinity of the opening 27 of the extension tube 26. More specifically, the downstream end of the tube body 36 is located upstream of the opening 27 of the extension tube 26.
  • the tubular body 36 provided on the side close to the axial line P is set to have a smaller dimension in the axial line P direction than the other tubular bodies 36. Thereby, interference with the tapered cone portion 24 of the pilot cone 23 is avoided.
  • the substrate air extension 35 is provided so that the substrate air A ejected from the through hole 34 can be guided further downstream than the substrate 31. it can. Thereby, the possibility of the backfire which arises when the flame formed by the premixed gas F ejected from the extension pipe 26 flows back toward the upstream substrate 31 can be reduced.
  • the substrate air is only circulated toward the downstream side, and is separated from the axis P of the combustor 3.
  • the possibility that the premixed gas F is wound from the inside to the outside of the extension pipe 26 and flows backward toward the substrate 31 increases. That is, there is a high possibility that backfire occurs in a low speed region formed between the extension pipes 26.
  • the substrate air extension 35 tube body 36
  • high-speed substrate air is supplied to such a low-speed region. The Thereby, it is possible to reduce the possibility that the flame flows backward by increasing the flow velocity in the low speed region. That is, the possibility of backfire occurring in the combustor 3 can be reduced.
  • the tube body 36 provided so as to correspond to the through hole 34 is used as the substrate air extension 35. Further, the tube 36 extends from the substrate 31 toward the downstream side. Thereby, the substrate air A ejected from the through hole 34 can be more reliably guided and ejected toward the downstream side of the substrate 31.
  • the substrate air extension 35 in the first embodiment of the present invention is set such that the inner diameter of the tube body 36 located at a position away from the axis P is smaller.
  • the dimension of the tubular body 36 in the direction of the axis P is set to be larger as the tubular body 36 is located farther from the axis P.
  • the flow velocity of the compressed air A (substrate air A) is significantly reduced near the inner cylinder 13. Therefore, the possibility of backfire increases as the position near the inner cylinder 13, that is, the position away from the axis P increases.
  • the inner diameter is set smaller and the dimension in the axis P direction is set larger as the tubular body located at a position farther from the axis P as described above. Therefore, the flow rate of the substrate air can be further increased.
  • the position where the substrate air is ejected from the substrate air extension 35 can be further downstream. Thereby, the possibility of backfire can be further reduced.
  • the combustor 3 according to the second embodiment differs from the above-described first embodiment in that the substrate air extension 35 is configured as follows. That is, the board
  • the substrate air extension 35 is configured as follows. That is, the board
  • the thick portion 37 is a member that is integrally formed so as to extend from the downstream surface of the substrate 31 to substantially the same dimension as the downstream end of the tubular body 36.
  • substrate air extension part 35 which concerns on this embodiment has comprised the thick plate shape in which many holes penetrated toward the other surface from one surface. In forming such a substrate air extension 35, it is desirable to provide a large number of holes in an integrally formed block-shaped metal material or the like.
  • the gap formed between the plurality of tube bodies 36 is filled with the thick-walled portion 37 formed solid. Therefore, the premixed gas F does not flow backward toward the gap between the tubes 36. Thereby, the possibility of backfire can be further reduced.
  • the opening shape of these members is not limited to a circle, and can be appropriately changed according to the design, such as a polygon or an ellipse.
  • the inside of the pipe body 36 has been described as having a constant opening diameter from the upstream side to the downstream side.
  • the opening diameter of the tube body 36 is not limited to this, and may be formed such that the opening diameter gradually increases or decreases from the upstream side toward the downstream side, for example.
  • the substrate 131 in the present embodiment is provided with a plurality of through holes 134 for circulating the compressed air A (substrate air A) flowing through the main flow path 128. More specifically, the plurality of through holes 134 are provided in a region S between the first burner support openings 133 adjacent to each other.
  • the region S is a substantially triangular region surrounded by the arc of the second burner support opening 132, the arc of the adjacent first burner support openings 133 and 133, and the arc forming the outline of the substrate 131. is there.
  • Each through-hole 134 has an opening diameter smaller than that of the first burner support opening 133 or the second burner support opening 132.
  • the exact position and number of the through holes 134 provided in the region S on the substrate 131 are appropriately determined according to the design.
  • the number of through holes 134 according to the present embodiment is provided such that the number thereof gradually increases as the distance from the center (axis P) of the substrate 131 to the outer side in the radial direction is increased.
  • one through hole 134 is provided at a position closest to the center in each region S.
  • the number increases one by one as it goes radially outward. That is, two through holes 134 are provided at positions in the second row as counted from the center in the radial direction.
  • Three (n) through-holes 134 are provided at the position of the third row (n-th row).
  • a plurality of partition plates 136 are provided as the substrate air turning portion 135 (substrate air guide portion) (see FIG. 10). These partition plates 136 divide the region S on the substrate 131 into a plurality of partitions S1, S2, S3, S4 arranged in the radial direction. In each of these sections S1 to S4, 1 to 4 through-holes 134 are arranged. That is, one through hole 134 is provided in the section S1, and two through holes 134 and 134 are provided in the section S2. Similarly, three through holes 134 are provided in the section S3, and four through holes 134 are provided in the section S4. In other words, since four rows of through holes are provided, three partition plates 136, 136, and 136 are provided in the region between the rows formed by these through holes 134.
  • the plurality of (three) partition plates 136, 136, and 136 each have a circular arc shape that is curved outward in the radial direction when viewed from the axis P direction, and are all concentric circles centered on the axis P. It has an arc. Furthermore, as shown in FIG. 11, when viewed from a direction orthogonal to the axis P, the partition plate 136 gradually curves away from the axis P, that is, radially outward as it goes from the upstream side to the downstream side. It is formed as follows. In other words, the partition plate 136 is formed so as to curve toward the axis P in the middle of its extension. In addition, among these partition plates 136, the partition plates 136 located on the radially inner side are formed such that the degree of curvature toward the radially outer side becomes stronger.
  • the plurality of partition plates 136 extend from the substrate 131 to the vicinity of the opening 127 of the extension pipe 126 toward the downstream side. More specifically, the downstream end of the partition plate 136 is located slightly upstream of the opening 127 of the extension pipe 126.
  • the partition plate 136 as the substrate air turning portion 135 on the downstream side of the substrate 131, among the substrate air A ejected from the through hole 134, At least a part of the components can be changed to flow toward a desired region (for example, a low-speed region) on the downstream side of the substrate 131.
  • a desired region for example, a low-speed region
  • the flow distribution of the substrate air A can be optimized. Therefore, it is possible to reduce the possibility of backfire caused by the backflow of the flame formed by the premixed gas F ejected from the extension pipe 126 toward the upstream substrate 131.
  • the substrate air A only flows toward the downstream side, and from the axis P of the combustor 13.
  • the loss of the flow velocity of the substrate air A increases as it moves away.
  • the possibility that the premixed gas F is wound from the inside to the outside of the extension pipe 126 and flows backward toward the substrate 131 is increased. That is, there is a high possibility that backfire occurs in a low speed region formed between the extension pipes 126.
  • the possibility of backfire can be reduced because the substrate air turning portion 135 (partition plate 136) is provided as described above.
  • the partition plate 136 provided so as to correspond to the through hole 134 is used as the substrate air turning portion 135. Furthermore, the partition plate 136 extends from the substrate 131 toward the downstream side. Thereby, the substrate air A ejected from the through hole 134 can be guided and ejected more reliably toward the downstream side of the substrate 131.
  • the flow velocity of the compressed air A (substrate air A) is significantly reduced near the inner cylinder 113. Therefore, the possibility of backfire increases in the vicinity of the inner cylinder 113, that is, the position away from the axis P.
  • the inner diameter of the through hole 134 that is located away from the axis P as described above is set smaller. As a result, the substrate air A can be ejected at a higher speed in the through hole 134 that is located away from the axis P. Thereby, the possibility of backfire caused by the backflow of the premixed gas F can be further reduced.
  • the dimensions of the partition plate 136 in the axis P direction are substantially the same.
  • the dimension of the partition plate 136 in the direction of the axis P may be set to be larger as the partition plate 136 located away from the axis P. According to such a configuration, the partition air 136 that is separated from the axis P can guide the substrate air A further downstream. Thereby, the possibility of backfire can be further reduced.
  • the opening shape of these members is not limited to a circle, and can be appropriately changed according to the design, such as a polygon or an ellipse.
  • the thickness of the partition plate 136 (the dimension in the radial direction of the combustor 13) has been described as being constant from the upstream side to the downstream side.
  • the thickness of the partition plate 136 is not limited to this.
  • the partition plate 136 may be formed so that the thickness gradually increases or decreases from the upstream side toward the downstream side.
  • an example in which, among the three partition plates 136, the partition plate 136 positioned on the radially outer side is greatly curved toward the radially outer side has been described.
  • an example is shown in which any of the partition plates 136 is curved outward in the radial direction.
  • the aspect of the partition plate 136 is not limited to this.
  • one partition plate 136 may not be curved and may be formed to extend linearly along the axis P.
  • four first burners 121 are provided along the circumferential direction of the second burner 120.
  • the quantity of the first burner 121 is not limited to this, and may be another quantity as long as it is plural, for example, eight.
  • Substrate air extension 36 ... Tube 37 ... Thick part 135 .
  • Substrate air turning Part 136 ... Partition plate S ... Area S1-S4 ... Section A ... Compressed air (substrate air) F ... Premixing gas G ... combustion gas O ... axis P ... axis

Abstract

燃焼器(3)は、軸線(P)に沿って延び、周方向に間隔をあけて複数が配列される第1のバーナと、複数の第1のバーナを支持する支持開口が形成されるとともに、下流側に向かって基板空気を流通させる複数の貫通孔(34)が形成された基板(31)と、第1のバーナに対応するように複数が基板(31)に支持されて、第1のバーナから噴出される予混合ガスを下流側に向かって案内する延長管と、貫通孔(34)から噴出される少なくとも一部の基板空気の方向を、基板(31)の下流側で変向する基板空気案内部(35)と、を備える。

Description

燃焼器、ガスタービン
 本発明は、燃焼器、及びこれを備えるガスタービンに関する。
 本願は、2014年10月6日に出願された特願2014-205824、及び特願2014-205825に基づいて優先権を主張し、その記載を援用する。
 ガスタービン等に用いられる燃焼器では、圧縮機から送られた圧縮空気(燃焼用空気)に予め燃料を混合して混合気を生成して、この混合気を燃焼させる予混合燃焼方式が広く用いられている。
 この種の燃焼器としては、燃焼器の軸線上に設けられた第2のバーナと、この第2のバーナに平行に配置された複数の第1のバーナとを有するものが知られている。そして、第2のバーナと第1のバーナとは、これらの径に対応する支持開口が形成された基板に支持されることで、燃焼器の本体に対して固定されている。さらに、この基板には、メインノズルを径方向外側から覆うようにして配置された楕円筒状の延長管が設けられている。すなわち、延長管によって基板表面は複数の区画に分割されている。
 このような構造の第1のバーナは、その内部で燃料と空気とを混合して予混合ガスを生成し、この予混合ガスを燃焼することで延長管の先端から下流側に延びる火炎を形成する。
 ここで、予混合燃焼方式を採用したガスタービン燃焼器では、混合気の流速が低い領域(低速領域)において、火炎が混合気の流れ方向に逆流することで生じる、逆火と呼ばれる現象が知られている。
 特に、基板上で隣り合う複数の延長管同士の間に形成される領域では、基板空気が下流側に向かって流通するのみであることに加えて、燃焼器の軸線から離間する位置に向かうほど、例えば燃焼器内筒等との摩擦抵抗が生じることから、基板空気流速の損失が大きくなる。これにより、予混合ガスが延長管の内側から外側に向かって巻き込まれて基板の方向へ逆流する可能性が高くなる。すなわち、延長管同士の間に形成される低速領域で逆火が生じる可能性が高くなる。
 このように、延長管の近傍で生じる逆火の可能性を低減するための技術として、例えば特許文献1に記載されたものが知られている。特許文献1に記載されたガスタービン燃焼器では、延長管の出口における断面形状を、楕円から矩形状に近づけることで、隣り合う延長管同士の間に形成される領域の面積を減少させている。すなわち、該領域で形成される低速領域を小さくすることで、逆火の可能性が低減するとされている。
特許第4070758号公報
 しかしながら、特許文献1に記載された技術では、低速領域の大きさを減少させることのみに留まるため、依然として低速領域自体は存在する。したがって、延長管同士の間に形成される領域に向かって逆流する予混合ガスの流れ成分は依然としてある程度存在することとなる。
 すなわち、燃焼器で生じる逆火の可能性低減を図る上で、上記特許文献1に記載された技術にはさらなる改善の余地がある。
 上記課題を解決するため、本発明の燃焼器、及びガスタービンは、以下の手段を提案している。
 本発明の第一態様によれば、燃焼器は、軸線に沿って延び、周方向に間隔をあけて複数が配列される第1のバーナと、前記複数の第1のバーナを支持する支持開口が形成されるとともに、下流側に向かって基板空気を流通させる複数の貫通孔が形成された基板と、前記第1のバーナに対応するように複数が前記基板に支持されて、前記第1のバーナから噴出される予混合ガスを下流側に向かって案内する延長管と、前記貫通孔から噴出される少なくとも一部の基板空気の方向を、前記基板の下流側で変向する基板空気案内部と、を備える。
 上述のような構成によれば、基板の下流側に基板空気案内部が設けられていることによって、貫通孔から噴出された基板空気を、基板の下流側における所望の領域に向かって流れるように案内することができる。これにより、基板空気の流量配分を適正化することができる。
 さらに、本発明の第二の態様によれば、上記第一の態様に係る燃焼器では、前記基板空気案内部は、前記貫通孔から噴出される基板空気を前記基板よりもさらに下流側に向かって案内して噴出する基板空気延長部によって形成されていてもよい。
 上述のような構成によれば、基板空気延長部が設けられていることによって、貫通孔から噴出された基板空気を基板よりもさらに下流側に向かって案内することができる。これにより、延長管から噴出される予混合ガスによって形成される火炎が上流側の基板に向かって逆流する可能性を低減することができる。
 さらに、本発明の第三の態様によれば、上記第二の態様に係る燃焼器では、前記基板空気延長部は、前記基板に形成された前記複数の貫通孔の少なくとも一部に対応するように設けられて、下流側に向かって延びる管体によって形成されていてもよい。
 上述の構成によれば、基板空気延長部として貫通孔に対応するように設けられた管体が用いられる。さらに、管体は基板から下流側に向かって延びている。これにより、貫通孔から噴出される基板空気を、基板の下流側に向かって、より確実に案内して噴出することができる。
 さらに、本発明の第四の態様によれば、上記第三の態様に係る燃焼器では、前記管体が複数設けられるとともに、前記複数の管体の内径は、前記軸線から離間する位置にある前記管体ほど小さく設定されていてもよい。
 一般的に、基板上で軸線から離間する位置であるほど予混合ガスの速度損失が大きいため、逆火の可能性も高いことが知られている。上述のような構成によれば、軸線から離間する位置にある管体ほど内径が小さく形成されている。したがって、軸線から離間するほど、管体を流通する基板空気の流速を大きくすることができる。
 さらに、本発明の第五の態様によれば、上記第三又は第四のいずれか一態様に係る燃焼器では、前記複数の管体の前記軸線方向における寸法は、前記軸線から離間する位置にある前記管体になるに従って大きく設定されていてもよい。
 上述のような構成によれば、軸線から離間する位置にある管体ほど、軸線方向における寸法が大きく設定されている。したがって、基板上で軸線から離間する位置にある管体ほど、基板空気をより下流側に向かって案内することができる。これにより、逆火の可能性をさらに低減することができる。
 さらに、本発明の第六の態様によれば、燃焼器は、前記複数の管体同士の間の間隙を埋める肉厚部をさらに備えてもよい。
 上述のような構成によれば、複数の管体同士の間に形成される間隙が、肉厚部によって埋められている。したがって、これら管体同士の間の間隙に向かって予混合ガスが逆流することがない。これにより、逆火の可能性をさらに低減することができる。
 さらに、本発明の第七の態様によれば、上記第一の態様に係る燃焼器では、前記基板空気案内部は、前記貫通孔から噴出される少なくとも一部の基板空気の方向を、前記基板の下流側で変向する基板空気変向部によって形成されていてもよい。
 上述のような構成によれば、基板の下流側に基板空気変向部が設けられていることによって、貫通孔から噴出された基板空気を、基板の下流側における所望の領域に向かって流れるように変向することができる。これにより、基板空気の流量配分を適正化することができる。
 さらに、本発明の第八の態様によれば、上記第七の態様に係る燃焼器では、前記基板空気変向部は、前記基板から下流側に向かって延びる仕切板によって形成されていてもよい。
 上述の構成によれば、基板空気変向部として、基板から下流側に向かって延びる仕切板が設けられる。さらに、この仕切板は、基板の下流側の面を複数の区画に分けるように形成される。これにより、貫通孔から噴出される基板空気を、仕切板によって複数の流れに分けるとともに、所望の方向に変向することが可能となる。
 さらに、本発明の第九の態様によれば、上記第八の態様に係る燃焼器では、前記複数の仕切板は、基板から下流側に向かうにしたがって、前記軸線から離間する方向に向かって次第に湾曲するように形成されていてもよい。
 一般的に、基板上で軸線から離間する位置であるほど予混合ガスの速度損失が大きいため、逆火の可能性も高いことが知られている。上述のような構成によれば、仕切板によって、基板空気の流れる方向を、軸線から離間する方向に変向することで、予混合ガスの速度損失を補うことができる。
 さらに、本発明の第十の態様によれば、上記第八又は第九のいずれか一態様に係る燃焼器では、前記仕切板は、前記基板を径方向に沿って分けることで前記複数の区画を形成するとともに、前記軸線から離間する位置にある前記区画ほど、前記貫通孔の設けられる数が多くてもよい。
 上述のような構成によれば、軸線から離間する位置にある区画ほど、多くの貫通孔が形成されている。したがって、基板上で軸線から離間する位置にある区画ほど、多くの基板空気を下流側に向かって噴出させて逆火の可能性を低減することができる。
 さらに、本発明の第十一の態様によれば、上記第八から第十のいずれか一態様に係る燃焼器では、前記仕切板は、前記基板を径方向に沿って分けることで前記複数の区画を形成するとともに、前記軸線から離間する位置にある前記区画ほど、前記貫通孔の開口径が小さくてもよい。
 上述のような構成によれば、軸線から離間する位置にある貫通孔ほど、その開口径が小さくなるように形成されている。これにより、軸線から離間する位置にある貫通孔から噴出される基板空気の流速を上げて逆火の可能性を低減することができる。
 さらに、本発明の第十二の態様によれば、上記第一から第十一のいずれか一態様に係る燃焼器において、前記複数の第1のバーナによって前記軸線の径方向外側から囲まれるように前記軸線に沿って配置された第2のバーナをさらに備えてもよい。
 上述のような構成によれば、第2のバーナを備えることで、第1のバーナに対する着火をより容易に行うことができる。
 さらに、本発明の第十三の態様に係るガスタービンは、上記第一から第十二のいずれか一態様に係る燃焼器と、該燃焼器に圧縮空気を供給する圧縮機と、前記燃焼器で前記予混合ガスが燃焼することで生成される燃焼ガスが供給されるタービンと、を備える。
 上述のような構成によれば、逆火の可能性が低減された燃焼器を備えていることから、より安定的な運転が可能なガスタービンを提供することができる。
 本発明の燃焼器、及びガスタービンによれば、逆火の可能性をさらに低減することができる。
本発明の第一実施形態に係るガスタービンの概略図である。 本発明の第一実施形態に係る燃焼器の軸線に直交する方向から見た断面概略図である。 図2のIII-III線における断面図である。 図2のIV-IV線における断面図である。 本発明の第一実施形態に係る燃焼器の要部拡大図である。 本発明の第一実施形態に係る燃焼器の変形例を示す要部拡大図である。 本発明の第二実施形態に係る燃焼器の要部拡大図である。 本発明の第三実施形態に係る燃焼器の軸線に直交する方向から見た断面概略図である。 図8のIX-IX線における断面図である。 図8のX-X線における断面図である。 本発明の第三実施形態に係る燃焼器の要部拡大図である。 本発明の第三実施形態に係る燃焼器の変形例を示す要部拡大図である。
[第一実施形態]
 以下、本発明の第一実施形態について図面を参照して説明する。
 図1に示すように、本実施形態に係るガスタービン1は、多量の空気を内部に取り入れて圧縮する圧縮機2と、この圧縮機2にて圧縮された圧縮空気Aに燃料を混合して燃焼させる燃焼器3と、燃焼器3から導入された燃焼ガスGの熱エネルギーを回転エネルギーに変換するタービン4とを備えている。
 圧縮機2及びタービン4は、互いに一体で回転するように連結されたロータ5と、ロータ5の外周側を囲うステータ6とを備えている。ロータ5は、回転軸7と、軸線O方向に間隔を空けて固定されている複数の環状動翼群8と、を有している。各々の環状動翼群8は、回転軸7の外周に、周方向に互いの間隔を空けて固定されている複数の動翼を有して構成されている。
 ステータ6は、それぞれケーシング9と、ケーシング9内において軸線O方向に間隔をあけて固定された複数の環状静翼群10とを備えている。環状静翼群10は、各々のケーシング9内面に、周方向に互いの間隔をあけて固定されている複数の静翼を有している。
 環状静翼群10は、それぞれ、複数の環状動翼群8と、軸線O方向に交互に配置されている。
 図2に示すように、本実施形態に係る燃焼器3は、ケーシング9の内部に収容された内筒13と、内筒13の外周側を覆う外筒14とを備えている。
 内筒13は、中空の管状部材である。内筒13の下流側には不図示の尾筒が接続されている。尾筒は、内筒13、及び外筒14と同様に、中空管状に形成された部材である。尾筒の内部では、燃焼器3によって形成される火炎が保炎される。
 さらに、外筒14は、管状をなす外筒本体14Aと、この外筒本体14Aの一方側の端部を支持するフランジ状の外筒基部14Bと、を有している。内筒13は、複数の固定部材12によって外筒基部14Bに対して固定されている。
 外筒14の内周面と内筒13の外周面との間には、圧縮空気Aが流通する空気流路15が形成されている。この空気流路15に流入した圧縮空気Aは、外筒14の底部分の反転部16で転回することで、内筒13の内部に供給される。なお、上述の固定部材12は、燃焼器3の周方向に沿って間隔を開けて配列されている。したがって、隣り合う固定部材12,12同士の間には間隙が形成されている。これにより、圧縮空気Aは、この間隙を通じて内筒13の内部に取り込まれるようになっている。
 さらに、燃焼器3は、内筒13内に第2のバーナ20と、第1のバーナ21と、を備えている。第2のバーナ20は、内筒13の軸線Pに沿って設けられている。さらに、第2のバーナ20は、後述する複数の第1のバーナによって軸線Pの径方向外側から囲まれている。第2のバーナ20は、外部から供給される燃料をパイロットノズル22から噴射する。パイロットノズル22から噴射された燃料に着火することで火炎が形成される。
 さらに、第2のバーナ20にはパイロットコーン23が設けられている。パイロットコーン23は、パイロットノズル22の外周側を囲む筒状の部材である。加えて、パイロットコーン23は、パイロットノズル22の近傍から下流側にかけて、その内径寸法が漸次拡大するように形成されたテーパコーン部24を有している。テーパコーン部24は、火炎の拡散範囲、方向を規制することで保炎性を高めることを目的としている。
 さらに、第2のバーナ20は、その上流側にパイロットスワラ30を備えている。詳細には図示しないが、パイロットスワラ30は第2のバーナ20の内部で軸線Pの周方向に沿って、複数のスワールベーンを等間隔で配列することで形成された装置である。各々のスワールベーンは、上流側から下流側に向かうに従って軸線Pに対して角度を成すようにして配置されている。したがって、パイロットスワラ30を通過した圧縮空気Aは、スワールベーンによる旋回成分が付加されて、旋回流となる。
 さらに、内筒13の内側には複数の第1のバーナ21が設けられている。本実施形態では、第2のバーナ20の周方向に沿って4つの第1のバーナ21,21,21,21が設けられている。より詳細には、第1のバーナ21は、第2のバーナ20の外周側に周方向に等間隔で配置されている。それぞれの第1のバーナ21は内筒13の軸線Pに沿って延びることで、上述の第2のバーナ20と平行をなしている。
 第1のバーナ21の先端部には、メインノズル25が設けられている。メインノズル25は、下流側から上流側に向かうに従って、すなわち先端側に向かうに従って、その外形が漸次縮小するように円錐状に形成されている。
 さらに、それぞれの第1のバーナ21の外周側には延長管26が設けられている。延長管26は、第1のバーナ21を外周側から囲むようにして、概ね円筒状に形成された部材である。延長管26における、第1のバーナ21と接続される側の端部は、第1のバーナ21の断面形状に対応するようにして、円形とされている。
 一方で、軸線Pに交差する方向から見て、延長管26の壁面のうち、パイロットコーン23に近接する側の壁面は、上流側から下流側に向かうに従って、次第に軸線Pから離間するように傾斜して形成されている。
 さらに、図3に示すように、それぞれの延長管26の下流側における開口部27は、軸線P方向から見て周方向に沿って延びる略長円状の断面形状を有している。さらに、この断面を成す長円における、パイロットコーン23のテーパコーン部24に近接する側の部分は、テーパコーン部24の外縁をなす円弧に沿うように凹没している。一方で、内筒13に近接する側の部分は、内筒13の内縁に沿うようにして緩やかに湾曲しながら突出している。すなわち、延長管26の断面形状は、上流側から下流側に向かうに従って、円形から次第に変形して、一方向に湾曲した長円状を成すように形成されている。
 以上のように形成された延長管26の内側の領域は、圧縮空気Aが流れるための主流路28とされている。
 図2に戻って、第1のバーナ21は、第2のバーナ20と同様に、延長管26の内側に設けられたメインスワラ29を備えている。メインスワラ29を通過した圧縮空気Aは、スワールベーンによる旋回成分が付加されて旋回流となる。
 このように構成された第1のバーナ21に対して、不図示の燃料噴射孔から燃料を噴射する。燃料噴射孔は例えばメインスワラ29に設けられている。
 噴射された燃料は、内筒13内の圧縮空気Aと混合し、予混合ガスFを生成する。メインスワラ29によって生成された旋回流によって、予混合ガスFは第1のバーナ21を中心として旋回しながら主流路28中を下流側に向かって流れる。
 さらに、上述のように構成された第2のバーナ20と第1のバーナ21とは、それぞれ基板31によって支持されて、内筒13の内部に固定されている。図4に示すように、基板31は内筒13の断面形状に対応して形成された、概ね円形の板状部材である。基板31の中心点を含む領域には、第2のバーナ20をその周方向外側から囲むようにして支持する第2のバーナ支持開口32が形成されている。第2のバーナ支持開口32は、第2のバーナ20の外径寸法に対応する開口径を有している。
 この第2のバーナ支持開口32の周方向外側には、複数(4つ)の第1のバーナ21,21,21,21を支持するための第1のバーナ支持開口33,33,33,33が、周方向に等間隔を開けて複数(4つ)形成されている。第1のバーナ支持開口33は、第2のバーナ支持開口32と同様に、第1のバーナ21をその周方向外側から囲むようにして支持する。
 さらに、基板31には、主流路28中を流通する圧縮空気A(基板空気A)を流通させるための複数の貫通孔34が設けられている。より詳細には、これら複数の貫通孔34は、互いに隣り合う第1のバーナ支持開口33同士の間の領域に設けられている。それぞれの貫通孔34は、第1のバーナ支持開口33、又は第2のバーナ支持開口32よりも小さな開口径を有している。
 基板31上で貫通孔34が設けられる正確な位置や個数は、設計に応じて適宜決定される。本実施形態に係る貫通孔34は、一例として基板31の中心(軸線P)から径方向外側に離間するに従って、次第にその数が増加するように設けられている。具体的には、中心に最も近接する位置には、1個の貫通孔34が設けられている。さらに、径方向外側に向かうに従って、1個ずつ個数が増加する。すなわち、中心から径方向に向かって数えて2列目の位置では、2個の貫通孔34が設けられている。3列目(n列目)の位置には、3つ(n個)の貫通孔34が設けられている。
 上述のように形成された複数の貫通孔34には、これら複数の貫通孔34の少なくとも一部に対応するようにして、基板空気延長部35(基板空気案内部)が設けられている(図10参照)。基板空気延長部35は、貫通孔34を通じて基板31の上流側から下流側に向かって噴出される圧縮空気A(基板空気A)を、基板31よりもさらに下流側に向かって案内して噴出するために設けられている。
 本実施形態における基板空気延長部35は、基板31の下流側の面から軸線Pに沿って下流側に向かって延びる複数の管体36によって形成されている。それぞれの管体36の内径寸法は、貫通孔34の開口径と略同一に設定されている。さらに、管体36の内部は上流側から下流側にかけて、開口径が一定に設定されている。
 加えて、これら複数の管体36は、基板31から下流側に向かって、延長管26の開口部27近傍まで延びている。より詳細には、管体36の下流側の端部は延長管26の開口部27よりも上流側に位置している。
 一方で、複数の管体のうち、軸線Pに近接する側に設けられた管体36は、他の管体36に比較してその軸線P方向における寸法が小さく設定されている。これにより、パイロットコーン23のテーパコーン部24と干渉することを回避している。
 以上のように構成された燃焼器3では、基板空気延長部35が設けられていることによって、貫通孔34から噴出された基板空気Aを基板31よりもさらに下流側に向かって案内することができる。これにより、延長管26から噴出される予混合ガスFによって形成される火炎が上流側の基板31に向かって逆流することで生じる逆火の可能性を低減することができる。
 ここで、基板空気延長部35が設けられていない燃焼器3の内部では、予混合ガスFの流速が低い領域(低速領域)が生じることが知られている。このような低速領域では、火炎が上流側に逆流することで、逆火(フラッシュバック)と呼ばれる現象が発生しやすい。
 特に、基板31上で隣り合う複数の延長管26同士の間に形成される領域では、基板空気が下流側に向かって流通するのみであることに加えて、燃焼器3の軸線Pから離間する位置に向かうほど、基板空気の流速の損失が大きくなる。これにより、予混合ガスFが延長管26の内側から外側に向かって巻き込まれて基板31の方向へ逆流する可能性が高くなる。すなわち、延長管26同士の間に形成される低速領域で逆火が生じる可能性が高くなる。
 しかしながら、本実施形態に係る燃焼器3では、上述のように基板空気延長部35(管体36)が設けられていることより、このような低速領域に対して、高速の基板空気が供給される。これにより、低速領域における流速を高めることで火炎が逆流する可能性を低減することができる。すなわち、燃焼器3で生じる逆火の可能性を低減することができる。
 さらに、上述の構成によれば、基板空気延長部35として貫通孔34に対応するように設けられた管体36が用いられる。さらに、管体36は基板31から下流側に向かって延びている。これにより、貫通孔34から噴出される基板空気Aを基板31の下流側に向かってより確実に案内して噴出することができる。
[第一実施形態の変形例]
 続いて、本発明の第一実施形態における基板空気延長部35の変形例について図6を参照して説明する。図6に示すように、本変形例に係る基板空気延長部35は、軸線Pから離間する位置にある管体36ほど、その内径が小さく設定されている。加えて、管体36の軸線P方向における寸法は、軸線Pから離間する位置にある管体36ほど大きく設定されている。
 上述のように、内筒13の近傍では圧縮空気A(基板空気A)の流速低下が顕著に見られる。したがって、このような内筒13の近傍、すなわち軸線Pから離間した位置ほど逆火の可能性が高まる。しかしながら、本変形例に係る基板空気延長部35では、上述のように軸線Pから離間する位置にある管体ほど、その内径が小さく設定されているとともに、軸線P方向における寸法が大きく設定されているため、基板空気の流速をさらに高めることができる。加えて、基板空気延長部35から基板空気が噴出される位置をさらに下流側にすることができる。これにより、逆火の可能性をさらに低減することができる。
[第二実施形態]
 続いて、本発明の第二実施形態について、図7を参照して説明する。第二実施形態に係る燃焼器3では、基板空気延長部35が以下のように構成される点で上述の第一実施形態とは異なる。
 すなわち、本実施形態に係る基板空気延長部35は、基板31から下流側に向かって設けられた複数の管体36同士の間に形成された隙間を埋める肉厚部37を備えている。
 より詳細には、肉厚部37は、基板31の下流側の面から、管体36の下流側端部に至るまでの寸法と略同一の分だけ延びるように一体に形成された部材である。これにより、本実施形態に係る基板空気延長部35の外形は、一方の面から他方の面に向かって貫通する多数の孔が形成された厚肉板状をなしている。このような基板空気延長部35を形成するに当たっては、一体に形成されたブロック状の金属材料等に、多数の孔を設けることが望ましい。
 このような構成によれば、複数の管体36同士の間に形成される間隙が、中実に形成された肉厚部37によって埋められている。したがって、これら管体36同士の間の間隙に向かって予混合ガスFが逆流することがない。これにより、逆火の可能性をさらに低減することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、本実施形態では、基板31に形成される貫通孔34、及びこれに対応する管体36の開口形状は円形であるものとして説明をした。しかしながら、これら部材の開口形状は円形に限定されず、例えば多角形や楕円形等、設計に応じて適宜変更することが可能である。
 さらに、上述の実施形態では、管体36の内部は上流側から下流側にかけて、開口径が一定であるものとして説明をした。しかしながら、管体36の開口径はこれに限定されず、例えば上流側から下流側に向かうに従って次第に開口径が増大、又は減少するように形成されていてもよい。
[第三実施形態]
 次に、本発明の第三実施形態に係る燃焼器13について、図8から図12を参照して説明する。
 図10に示すように、本実施形態における基板131には、主流路128中を流通する圧縮空気A(基板空気A)を流通させるための複数の貫通孔134が設けられている。より詳細には、これら複数の貫通孔134は、互いに隣り合う第1のバーナ支持開口133同士の間の領域Sに設けられている。領域Sは、第2のバーナ支持開口132の円弧、隣接する第1のバーナ支持開口133,133同士の円弧、及び基板131の輪郭線をなす円弧のそれぞれによって囲まれた略三角形状の領域である。それぞれの貫通孔134は、第1のバーナ支持開口133、又は第2のバーナ支持開口132よりも小さな開口径を有している。
 基板131上の領域S内で貫通孔134が設けられる正確な位置や個数は、設計に応じて適宜決定される。本実施形態に係る貫通孔134は、一例として基板131の中心(軸線P)から径方向外側に離間するに従って、次第にその数が増加するように設けられている。具体的には、各領域Sにおいて中心に最も近接する位置には、1個の貫通孔134が設けられている。さらに、径方向外側に向かうに従って、1個ずつ個数が増加する。すなわち、中心から径方向に向かって数えて2列目の位置では、2個の貫通孔134が設けられている。3列目(n列目)の位置には、3つ(n個)の貫通孔134が設けられている。
 上述のように構成された基板131上の領域Sには、基板空気変向部135(基板空気案内部)として複数の仕切板136が設けられている(図10参照)。これら仕切板136は、基板131上の領域Sを径方向に沿って並ぶ複数の区画S1,S2,S3,S4に分けている。
 これらの区画S1~S4には、それぞれ1~4個ずつの貫通孔134が配置されている。すなわち、区画S1には1つの貫通孔134が設けられ、区画S2には2つの貫通孔134,134が設けられている。同様にして、区画S3には3つの貫通孔134が設けられ、区画S4には4つの貫通孔134が設けられている。言い換えると、4列の貫通孔が設けられていることから、これら貫通孔134のなす列の間の領域には、3つの仕切板136,136,136が設けられている。
 加えて、これら複数(3つ)の仕切板136,136,136は、それぞれ軸線P方向から見て径方向外側に向かって湾曲した円弧状をなすとともに、いずれも軸線Pを中心とする同心円の円弧をなしている。さらに、図11に示すように、軸線Pと直交する方向から見た場合、上流側から下流側に向かうに従って、仕切板136は軸線Pから離間する方向、すなわち径方向外側に向かって次第に湾曲するように形成されている。言い換えると、仕切板136は、その延在中途で、軸線Pに向かって湾曲するようにして形成されている。加えて、これら仕切板136のうち、径方向内側に位置する仕切板136ほど、径方向外側に向かって湾曲する度合いが強くなるように形成されている。
 これら複数の仕切板136は、基板131から下流側に向かって、延長管126の開口部127近傍まで延びている。より詳細には、仕切板136の下流側の端部は延長管126の開口部127よりもわずかに上流側に位置している。
 以上のように構成された燃焼器13では、基板131の下流側に基板空気変向部135としての仕切板136が設けられていることによって、貫通孔134から噴出された基板空気Aのうち、少なくとも一部の成分を、基板131の下流側における所望の領域(例えば低速領域)に向かって流れるように変向することができる。これにより、基板空気Aの流量配分を適正化することができる。よって、延長管126から噴出される予混合ガスFによって形成される火炎が上流側の基板131に向かって逆流することで生じる逆火の可能性を低減することができる。
 ここで、基板空気変向部135が設けられていない燃焼器13の内部では、予混合ガスFの流速が低い領域(低速領域)が生じることが知られている。このような低速領域では、火炎が上流側に逆流することで、逆火(フラッシュバック)と呼ばれる現象が発生しやすい。
 特に、基板131上で隣り合う複数の延長管126同士の間に形成される領域Sでは、基板空気Aが下流側に向かって流通するのみであることに加えて、燃焼器13の軸線Pから離間する位置に向かうほど、基板空気Aの流速の損失が大きくなる。これにより、予混合ガスFが延長管126の内側から外側に向かって巻き込まれて基板131の方向へ逆流する可能性が高くなる。すなわち、延長管126同士の間に形成される低速領域で逆火が生じる可能性が高くなる。
 しかしながら、本実施形態に係る燃焼器13では、上述のように基板空気変向部135(仕切板136)が設けられていることより、逆火の可能性を低減することができる。
 さらに、上述の構成によれば、基板空気変向部135として貫通孔134に対応するように設けられた仕切板136が用いられる。さらに、仕切板136は基板131から下流側に向かって延びている。これにより、貫通孔134から噴出される基板空気Aを基板131の下流側に向かってより確実に案内して噴出することができる。
[第三実施形態の変形例]
 続いて、上述の実施形態の変形例について図12を参照して説明する。図12に示すように、本変形例に係る燃焼器13では、軸線Pから離間する位置にある貫通孔134ほど、その内径が小さく設定されている。
 上述のように、内筒113の近傍では圧縮空気A(基板空気A)の流速低下が顕著に見られる。したがって、このような内筒113の近傍、すなわち軸線Pから離間した位置ほど逆火の可能性が高まる。しかしながら、本変形例に係る燃焼器13では、上述のように軸線Pから離間する位置にある貫通孔134ほど、その内径が小さく設定されている。これにより、軸線Pから離間する位置にある貫通孔134ほど、基板空気Aをより高速で噴出させることができる。これにより、予混合ガスFが逆流することで生じる逆火の可能性をさらに低減することができる。
 なお、上述の実施形態、及び変形例では仕切板136の軸線P方向における寸法は略同一であるものとした。しかしながら、仕切板136の軸線P方向における寸法は、軸線Pから離間する位置にある仕切板136ほど大きく設定されていてもよい。このような構成によれば、軸線Pから離間する仕切板136ほど、基板空気Aをさらに下流側に向かって案内することができる。これにより、逆火の可能性をさらに低減することができる。
 以上、本発明の第三実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上記第三実施形態では、基板131に形成される貫通孔134の開口形状は円形であるものとして説明をした。しかしながら、これら部材の開口形状は円形に限定されず、例えば多角形や楕円形等、設計に応じて適宜変更することが可能である。
 さらに、上記第三実施形態では、仕切板136の厚さ(燃焼器13の径方向における寸法)は上流側から下流側にかけて一定であるものとして説明をした。しかしながら、仕切板136の厚さはこれに限定されず、例えば上流側から下流側に向かうに従って次第に厚さが増大、又は減少するように形成されていてもよい。
 加えて、上記第三実施形態では、3つの仕切板136のうち、径方向外側に位置する仕切板136ほど、径方向外側に向かって大きく湾曲している例について説明した。特に、いずれの仕切板136も径方向外側に向かって湾曲している例を示した。しかしながら、仕切板136の態様はこれに限定されず、例えば1つの仕切板136は湾曲せず、軸線Pに沿って直線状に延びるように形成されていてもよい。
 さらに、上記第三実施形態では、第2のバーナ120の周方向に沿って4つの第1のバーナ121が設けられているものとして説明した。しかしながら、第1のバーナ121の数量はこれに限定されず、例えば、8つなど複数であれば他の数量でもよい。
 上述の構成によれば、燃焼器における逆火の可能性をさらに低減することができる。
1…ガスタービン 2…圧縮機 3…燃焼器 4…タービン 5…ロータ 6…ステータ 7…回転軸 8…環状動翼群 9…ケーシング 10…環状静翼群 12…固定部材 13…内筒 14…外筒 15…空気流路 16…反転部 20…第2のバーナ 21…メインノズル 22…パイロットノズル 23…パイロットコーン 24…テーパコーン部 25…メインノズル 26…延長管 27…開口部 28…主流路 29…メインスワラ 30…パイロットスワラ 31…基板 32…第2のバーナ支持開口 33…第1のバーナ支持開口 34…貫通孔 35…基板空気延長部 36…管体 37…肉厚部 135…基板空気変向部 136…仕切板 S…領域 S1~S4…区画 A…圧縮空気(基板空気) F…予混合ガス G…燃焼ガス O…軸線 P…軸線

Claims (13)

  1.  軸線に沿って延び、周方向に間隔をあけて複数が配列される第1のバーナと、
     前記複数の第1のバーナを支持する支持開口が形成されるとともに、下流側に向かって基板空気を流通させる複数の貫通孔が形成された基板と、
     前記第1のバーナに対応するように複数が前記基板に支持されて、前記第1のバーナから噴出される予混合ガスを下流側に向かって案内する延長管と、
     前記貫通孔から噴出される少なくとも一部の基板空気の方向を、前記基板の下流側で変向する基板空気案内部と、
    を備える燃焼器。
  2.  前記基板空気案内部は、前記貫通孔から噴出される基板空気を前記基板よりもさらに下流側に向かって案内して噴出する基板空気延長部によって形成されている請求項1に記載の燃焼器。
  3.  前記基板空気延長部は、前記基板に形成された前記複数の貫通孔の少なくとも一部に対応するように設けられて、下流側に向かって延びる管体によって形成されている請求項2に記載の燃焼器。
  4.  前記管体が複数設けられるとともに、前記複数の管体の内径は、前記軸線から離間する位置にある前記管体ほど大きく設定されている請求項3に記載の燃焼器。
  5.  前記複数の管体の前記軸線方向における寸法は、前記軸線から離間する位置にある前記管体になるに従って大きく設定されている請求項3又は4に記載の燃焼器。
  6.  前記複数の管体同士の間の間隙を埋める肉厚部をさらに備える請求項3から5のいずれか一項に記載の燃焼器。
  7.  前記基板空気案内部は、前記貫通孔から噴出される少なくとも一部の基板空気の方向を、前記基板の下流側で変向する基板空気変向部によって形成されている請求項1に記載の燃焼器。
  8.  前記基板空気変向部は、前記基板から下流側に向かって延びる仕切板によって形成されている請求項7に記載の燃焼器。
  9.  前記複数の仕切板は、基板から下流側に向かうにしたがって、前記軸線から離間する方向に向かって次第に湾曲するように形成されている請求項8に記載の燃焼器。
  10.  前記仕切板は、前記基板を径方向に沿って分けることで前記複数の区画を形成するとともに、前記軸線から離間する位置にある前記区画ほど、前記貫通孔の設けられる数が多い請求項8又は9に記載の燃焼器。
  11.  前記仕切板は、前記基板を径方向に沿って分けることで前記複数の区画を形成するとともに、前記軸線から離間する位置にある前記区画ほど、前記貫通孔の開口径が小さい請求項8から10のいずれか一項に記載の燃焼器。
  12.  前記複数の第1のバーナによって前記軸線の径方向外側から囲まれるように前記軸線に沿って配置された第2のバーナをさらに備える請求項1から11のいずれか一項に記載の燃焼器。
  13.  請求項1から12のいずれか一項に記載の燃焼器と、
     該燃焼器に圧縮空気を供給する圧縮機と、
     前記燃焼器で前記予混合ガスが燃焼することで生成される燃焼ガスが供給されるタービンと、を備えるガスタービン。
     
PCT/JP2015/078253 2014-10-06 2015-10-05 燃焼器、ガスタービン WO2016056521A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177008068A KR101906080B1 (ko) 2014-10-06 2015-10-05 연소기 및 가스 터빈
JP2016553100A JP6271029B2 (ja) 2014-10-06 2015-10-05 燃焼器、ガスタービン
CN201580049730.3A CN106687747B (zh) 2014-10-06 2015-10-05 燃烧器、燃气轮机
US15/511,814 US10920986B2 (en) 2014-10-06 2015-10-05 Gas turbine combustor base plate configuration
DE112015004573.2T DE112015004573B4 (de) 2014-10-06 2015-10-05 Brennkammer und gasturbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014205824 2014-10-06
JP2014205825 2014-10-06
JP2014-205825 2014-10-06
JP2014-205824 2014-10-06

Publications (1)

Publication Number Publication Date
WO2016056521A1 true WO2016056521A1 (ja) 2016-04-14

Family

ID=55653132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078253 WO2016056521A1 (ja) 2014-10-06 2015-10-05 燃焼器、ガスタービン

Country Status (6)

Country Link
US (1) US10920986B2 (ja)
JP (1) JP6271029B2 (ja)
KR (1) KR101906080B1 (ja)
CN (1) CN106687747B (ja)
DE (1) DE112015004573B4 (ja)
WO (1) WO2016056521A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039161A1 (ja) * 2017-08-21 2019-02-28 三菱日立パワーシステムズ株式会社 燃焼器及びその燃焼器を備えるガスタービン
WO2022075299A1 (ja) * 2020-10-07 2022-04-14 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080437B1 (fr) * 2018-04-24 2020-04-17 Safran Aircraft Engines Systeme d'injection pour une chambre annulaire de combustion de turbomachine
KR102142140B1 (ko) * 2018-09-17 2020-08-06 두산중공업 주식회사 연료 노즐, 이를 포함하는 연소기 및 가스 터빈
EP3637000A1 (en) * 2018-10-11 2020-04-15 Siemens Aktiengesellschaft Gas turbine burner for reactive fuels
JP7245150B2 (ja) * 2019-12-16 2023-03-23 三菱重工業株式会社 ガスタービン燃焼器
CN114517920B (zh) * 2020-11-19 2023-08-08 中国航发商用航空发动机有限责任公司 喷射装置、燃烧室头部、燃烧室和航空发动机
CN113864823B (zh) * 2021-11-09 2022-08-26 滨州学院 涡轮发动机循环加热多级燃烧系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070028620A1 (en) * 2005-07-25 2007-02-08 General Electric Company Free floating mixer assembly for combustor of a gas turbine engine
JP4070758B2 (ja) * 2004-09-10 2008-04-02 三菱重工業株式会社 ガスタービン燃焼器
US20100269509A1 (en) * 2007-01-23 2010-10-28 Siemens Power Generation, Inc. Anti-flashback features in gas turbine engine combustors
JP2013190196A (ja) * 2012-02-14 2013-09-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289441A (ja) * 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
DE10051221A1 (de) * 2000-10-16 2002-07-11 Alstom Switzerland Ltd Brenner mit gestufter Brennstoff-Eindüsung
JP4610800B2 (ja) * 2001-06-29 2011-01-12 三菱重工業株式会社 ガスタービン燃焼器
JP2005114193A (ja) * 2003-10-03 2005-04-28 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2005114318A (ja) 2003-10-10 2005-04-28 Petroleum Energy Center バーナ
US7316117B2 (en) * 2005-02-04 2008-01-08 Siemens Power Generation, Inc. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
US8387394B2 (en) 2007-07-09 2013-03-05 Siemens Aktiengesellschaft Gas-turbine burner
US8113000B2 (en) * 2008-09-15 2012-02-14 Siemens Energy, Inc. Flashback resistant pre-mixer assembly
US8424311B2 (en) * 2009-02-27 2013-04-23 General Electric Company Premixed direct injection disk
US8387393B2 (en) * 2009-06-23 2013-03-05 Siemens Energy, Inc. Flashback resistant fuel injection system
JP5653774B2 (ja) 2011-01-27 2015-01-14 三菱重工業株式会社 ガスタービン燃焼器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070758B2 (ja) * 2004-09-10 2008-04-02 三菱重工業株式会社 ガスタービン燃焼器
US20070028620A1 (en) * 2005-07-25 2007-02-08 General Electric Company Free floating mixer assembly for combustor of a gas turbine engine
US20100269509A1 (en) * 2007-01-23 2010-10-28 Siemens Power Generation, Inc. Anti-flashback features in gas turbine engine combustors
JP2013190196A (ja) * 2012-02-14 2013-09-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039161A1 (ja) * 2017-08-21 2019-02-28 三菱日立パワーシステムズ株式会社 燃焼器及びその燃焼器を備えるガスタービン
US11747017B2 (en) 2017-08-21 2023-09-05 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine including the combustor
WO2022075299A1 (ja) * 2020-10-07 2022-04-14 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン

Also Published As

Publication number Publication date
JP6271029B2 (ja) 2018-01-31
DE112015004573B4 (de) 2022-10-13
CN106687747B (zh) 2019-08-02
KR101906080B1 (ko) 2018-10-08
DE112015004573T5 (de) 2017-06-14
JPWO2016056521A1 (ja) 2017-09-14
KR20170092525A (ko) 2017-08-11
CN106687747A (zh) 2017-05-17
US20170307219A1 (en) 2017-10-26
US10920986B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP6271029B2 (ja) 燃焼器、ガスタービン
CA2820071C (en) Axial swirler for a gas turbine burner
US8033821B2 (en) Premix burner for a gas turbine
EP2436979A1 (en) Burner for a gas turbine
JP2010223577A (ja) スワーラ、少なくとも1つのスワーラを備えたバーナにおける逆火の防止方法およびバーナ
JP2010223577A6 (ja) スワーラ、少なくとも1つのスワーラを備えたバーナにおける逆火の防止方法およびバーナ
JP2012112642A (ja) 燃焼器予混合器
KR101752114B1 (ko) 노즐, 연소기, 및 가스 터빈
JP6723768B2 (ja) バーナアセンブリ、燃焼器、及びガスタービン
US8950187B2 (en) Premix burner of the multi-cone type for a gas turbine
EP2685163A1 (en) Premix burner of the multi-cone type for a gas turbine
JP6318443B2 (ja) 燃焼器、及び回転機械
EP3465009B1 (en) Fuel nozzle for a gas turbine with radial swirler and axial swirler and gas turbine
JP6417620B2 (ja) 燃焼器、ガスタービン
JP2019035563A (ja) 燃焼器及びその燃焼器を備えるガスタービン
RU2018142182A (ru) Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина
EP3617599A1 (en) Burner with improved air-fuel mixing
US20110136067A1 (en) Fuel Insert
JP2010281516A (ja) ガスタービン燃焼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511814

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177008068

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016553100

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004573

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848245

Country of ref document: EP

Kind code of ref document: A1