WO2016054865A1 - 硫基正极材料的制备方法 - Google Patents

硫基正极材料的制备方法 Download PDF

Info

Publication number
WO2016054865A1
WO2016054865A1 PCT/CN2014/095590 CN2014095590W WO2016054865A1 WO 2016054865 A1 WO2016054865 A1 WO 2016054865A1 CN 2014095590 W CN2014095590 W CN 2014095590W WO 2016054865 A1 WO2016054865 A1 WO 2016054865A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacrylonitrile
sulfur
temperature
solvent
positive electrode
Prior art date
Application number
PCT/CN2014/095590
Other languages
English (en)
French (fr)
Inventor
王莉
吴方旭
何向明
任玉梅
尚玉明
李建军
高剑
王要武
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016054865A1 publication Critical patent/WO2016054865A1/zh
Priority to US15/482,024 priority Critical patent/US20170214040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/42Nitriles
    • C08F120/44Acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a method for preparing a sulfur-based positive electrode material comprising: dissolving polyacrylonitrile and elemental sulfur in a first solvent to form a first solution at a first temperature; and transferring the first solution to a second temperature at a second temperature
  • the polyacrylonitrile and the elemental sulfur are rapidly precipitated to form a precipitate in the second solvent, wherein the polyacrylonitrile and the elemental sulfur are insoluble in the second solvent, and the second temperature is lower than the first a temperature, a temperature difference between the first temperature and the second temperature is greater than or equal to 50 ° C; and, the precipitate is filtered and heat-treated to chemically react the polyacrylonitrile with elemental sulfur to form a sulfurized polyacrylonitrile.
  • the preparation method of the sulfur-based positive electrode material provided by the embodiment of the present invention rapidly precipitates the polyacrylonitrile and the elemental sulfur by a rapid precipitation method, and further heat-treating, so that the polyacrylonitrile is evenly packaged. It forms a uniform mixture on the surface of elemental sulfur, which is beneficial to the reaction of polyacrylonitrile and elemental sulfur in the subsequent heat treatment, and is beneficial to inhibit the loss of elemental sulfur in the subsequent heat treatment process, and can reduce the elemental sulfur caused to the equipment. corrosion.
  • Example 2 is a scanning electron micrograph of a precipitate obtained in a method for preparing a sulfur-based positive electrode material provided in Example 1 of the present invention.
  • Example 4 is a second charge and discharge graph of a lithium ion battery prepared from the sulfur-based positive electrode material obtained in Example 1 of the present invention.
  • Fig. 5 is a graph showing changes in specific capacity of a lithium ion battery prepared by the sulfur-based positive electrode material obtained in Example 1 of the present invention as a function of circulation.
  • an embodiment of the present invention provides a method for preparing a sulfur-based cathode material, including:
  • the second temperature is preferably 50 ° C or less.
  • the volume ratio of the first solvent to the second solvent is preferably from 1:1 to 1:5.
  • the type of the second solvent is not limited as long as it is incapable of dissolving the polyacrylonitrile and elemental sulfur.
  • the second solvent may be water, ethanol, methanol, acetone, n-hexane, cyclohexane, diethyl ether or Its mixture.
  • the time for transferring the first solution to the second solvent should be controlled to be completed within 10 seconds.
  • the temperature of the heat treatment is 100 ° C or more, and the heat treatment time is 1 hour to 10 hours.
  • the elemental sulfur first acts as a catalyst to dehydrogenate the polyacrylonitrile to form a main chain similar to a polyacetylene structure, and the side chain cyano group is cyclized to form a cyclized polyacrylonitrile; further, The cyclized polyacrylonitrile is simultaneously reacted with the elemental sulfur in a molten state, and the elemental sulfur is embedded in the cyclized polyacrylonitrile to obtain a sulfidized polyacrylonitrile.
  • the structural unit may be the main structural unit of the fluorinated polyacrylonitrile, and other cyclized forms of structural units may be present in the molecular formula of the fluorinated polyacrylonitrile.
  • FIG. 2 is a scanning electron micrograph of the precipitate obtained in the first embodiment. It can be seen from FIG. 2 that the polyacrylonitrile is uniformly coated on the surface of elemental sulfur.
  • FIG. 3 is a scanning electron micrograph of the precipitate obtained in the second embodiment. It can be seen from FIG. 3 that the polyacrylonitrile is uniformly coated on the surface of elemental sulfur.
  • the vulcanized polyacrylonitrile in Example 1 was used as a positive electrode active material to prepare a lithium ion battery and the electrochemical performance of the lithium ion battery was tested.
  • the above-mentioned vulcanized polyacrylonitrile, 1% to 10% of a conductive agent, and 1% to 5% of a binder having a mass percentage of 85% to 98% are mixed and coated on the surface of the aluminum foil as a positive electrode, and the metal Lithium is a negative electrode, and the electrolytic solution is obtained by dissolving 1 mol/L of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (EMC) in a volume ratio of 1:1.
  • LiPF 6 lithium hexafluorophosphate
  • EMC methyl ethyl carbonate
  • FIG. 4 is a second charging and discharging graph of the lithium ion battery. As can be seen from the figure, the second discharge specific capacity of the lithium ion battery can reach 588.6 mAh/g. Please refer to FIG. 5.
  • FIG. 5 is a graph showing the change of the specific capacity of the lithium ion battery with the number of times of charging. It can be seen from the figure that the specific capacity of the lithium ion battery remains at about 588.3 mAh/g after 18 cycles. The capacity is almost no attenuation and the cycle stability is very good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种硫基正极材料的制备方法,包括:在第一温度下,将聚丙烯腈和单质硫溶解于第一溶剂形成第一溶液;在第二温度下,将所述第一溶液转移到第二溶剂中使所述聚丙烯腈和单质硫快速沉淀析出形成沉淀物,其中,所述聚丙烯腈和单质硫不溶于所述第二溶剂,且所述第二温度低于所述第一温度,所述第一温度和第二温度温度差大于等于50℃;以及,将所述沉淀物过滤并进行热处理,使所述聚丙烯腈和单质硫发生化学反应生成硫化聚丙烯腈。

Description

硫基正极材料的制备方法 技术领域
本发明涉及一种锂离子正极材料的制备方法,特别涉及一种硫基锂离子正极材料的制备方法。
背景技术
聚丙烯腈(PAN)是由交替碳原子上带有氰基的饱和碳骨架构成的高聚物,其自身并无导电性,但研究发现若将聚丙烯腈与硫混合并加热可使聚丙烯腈发生硫化,并制备出具有化学活性的可导电硫化聚丙烯腈,请参阅“硫化聚丙烯腈锂离子电池的制备”,任建国等,BATTERY BIMONTHLY,Vol.38,No.2,P73~74 (2008)。该文献揭示:以聚丙烯腈为前驱体,跟单质硫在300℃下进行彻底反应,便可获得一种硫化聚丙烯腈,该硫化聚丙烯腈可作为锂离子电池的正极材料。在上述聚丙烯腈与硫反应过程中,聚丙烯腈发生了硫化、环化等反应,从而使形成的硫化聚丙烯腈为一种具有长程π键共轭体系共轭聚合物,该共轭聚合物作为锂离子电池正极材料具有较高的比容量。
然而,由于上述制备硫化聚丙烯腈的方法是通过直接将聚丙烯腈与硫混合经过加热形成的,难以实现聚丙烯腈与硫的均匀混合,从而使硫化聚丙烯腈的可逆储锂容量较低。
发明内容
有鉴于此,的确有必要提供一种硫基正极材料的制备方法,该方法可以实现聚丙烯腈与硫的均匀混合。
一种硫基正极材料的制备方法,包括:在第一温度下,将聚丙烯腈和单质硫溶解于第一溶剂形成一第一溶液;在第二温度下,将所述第一溶液转移到第二溶剂中使所述聚丙烯腈和单质硫快速沉淀析出形成沉淀物,其中,所述聚丙烯腈和单质硫不溶于所述第二溶剂,且所述第二温度低于所述第一温度,所述第一温度和第二温度的温度差大于等于50℃;以及,将所述沉淀物过滤并进行热处理,使所述聚丙烯腈和单质硫发生化学反应生成硫化聚丙烯腈。
与现有技术相比较,本发明实施例提供的硫基正极材料的制备方法,通过快速沉淀法将所述聚丙烯腈和单质硫快速沉淀,再进一步热处理,从而使所述聚丙烯腈均匀包覆在单质硫的表面上形成均匀混合,进而有利于后续热处理过程中聚丙烯腈与单质硫的反应,同时有利于抑制单质硫在后续热处理过程中的损失,并可以降低单质硫对设备造成的腐蚀。
附图说明
图1为本发明实施例提供的硫基正极材料的制备方法的流程图。
图2为本发明实施例1提供的硫基正极材料制备方法中获得的沉淀物的扫描电镜照片。
图3为本发明实施例2提供的硫基正极材料制备方法中获得的沉淀物的扫描电镜照片。
图4为由本发明实施例1获得的硫基正极材料制备而成的锂离子电池的第二次充放电曲线图。
图5为由本发明实施例1获得的硫基正极材料制备而成的锂离子电池的比容量随循环进行的变化图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参照图1,本发明实施例提供一种硫基正极材料的制备方法,包括:
S10,在第一温度下,将聚丙烯腈和单质硫按比例溶解于第一溶剂形成第一溶液;
S11,在第二温度下,将所述第一溶液转移到第二溶剂中使所述聚丙烯腈和单质硫快速沉淀形成沉淀物,其中,所述聚丙烯腈和单质硫不溶于所述第二溶剂,且所述第二温度低于所述第一温度,所述第一温度和第二温度的温度差大于等于50℃;以及
S12,将所述沉淀物过滤,并进行热处理使所述聚丙烯腈和单质硫发生化学反应生成硫化聚丙烯腈。
在步骤S10中,所述第一温度优选的为大于100℃且小于等于200℃。所述单质硫和聚丙烯腈可以按照质量比1:1~10:1溶解于所述第一溶剂,并控制所述第一溶液中聚丙烯腈和单质硫的总浓度为10g/L~100g/L。优选的,所述单质硫和聚丙烯腈可以按照质量比2:1~4:1溶解于所述第一溶剂。可以理解,适当控制第一溶液的总浓度即有利于沉淀物的产生,又有利于实现聚丙烯腈和单质硫的的均匀混合。所述聚丙烯腈可以是聚丙烯腈的均聚物或共聚物:其分子量不限,优选为30000~150000。所述第一溶剂的种类不限只要能溶解所述聚丙烯腈和单质硫即可,优选的所述第一溶剂可以为N-甲基吡咯烷酮、二甲基甲酰胺、二甲基亚砜、二甲基乙酰胺或其混合物。
在步骤S11中,所述第二温度优选小于等于50℃。为了使所述聚丙烯腈和单质硫可以从所述第一溶剂中沉淀出来,所述第一溶剂与所述第二溶剂的体积比优选为1:1至1:5。所述第二溶剂的种类不限只要是不能溶解所述聚丙烯腈和单质硫即可,优选的所述第二溶剂可以为水、乙醇、甲醇、丙酮、正己烷、环己烷、乙醚或其混合物。所述将第一溶液转移到第二溶剂的时间应控制在10秒内完成。通过将聚丙烯腈和单质硫快速沉淀,可使所述聚丙烯腈均匀包覆在单质硫表面上形成核-壳结构,所述核-壳结构有利于后续热处理过程中聚丙烯腈与单质硫的反应,同时有利于抑制单质硫在后续的热处理过程中损失,并可以降低单质硫对设备造成的腐蚀。
在步骤S12中,所述热处理的温度为100℃以上,所述热处理时间为1小时到10小时。可以理解,在上述热处理过程中,所述单质硫先作为催化剂催化聚丙烯腈脱氢形成类似聚乙炔结构的主链,并且侧链氰基发生环化从而形成环化聚丙烯腈;进一步,所述环化聚丙烯腈同时与熔融态单质硫发生反应,使单质硫嵌入环化聚丙烯腈中获得硫化聚丙烯腈。该硫化聚丙烯腈包括一结构单元,该结构单元的分子通式为[C3HNS]n(n=1,2,3…),该结构单元的结构通式为
Figure WO094-appb-I000001
(n=1,2,3…)。另外,该结构单元可以是该硫化聚丙烯腈的主要结构单元,该硫化聚丙烯腈的分子式中还可以存在其他环化形式的结构单元。
实施例一
分别称取8g升华硫和4g聚丙烯腈加入200ml的二甲基甲酰胺中,在120℃的恒温油浴至原料完全溶解形成第一溶液,将所述第一溶液迅速转移到一常温下的400ml去离子水中快速沉淀10秒内完成,过滤沉淀物并干燥,干燥后沉淀物加热至400℃,恒温反应6h,即可获得最终产物。
实施例二
分别称取8g升华硫和2g聚丙烯腈加入200ml的二甲基甲酰胺中,在120℃的恒温油浴至原料完全溶解形成第一溶液,将所述第一溶液迅速转移到一常温下的400ml乙醇中快速沉淀10秒内完成,过滤沉淀物并干燥,干燥后沉淀物加热至400℃,恒温反应6h,即可获得最终产物。
请参照图2,图2为实施例一中获得的沉淀物的扫描电镜照片,从图2中可以看出所述聚丙烯腈均匀的包覆在单质硫的表面。请参照图3,图3为实施例二中获得的沉淀物的扫描电镜照片,从图3中可以看出所述聚丙烯腈均匀的包覆在单质硫的表面。
将实施例一中的所述硫化聚丙烯腈作为正极活性材料,制备锂离子电池并对该锂离子电池的电化学性能进行了测试。具体地,将质量百分含量为85%~98%的上述硫化聚丙烯腈、1%~10%的导电剂及1%~5%的粘结剂混合并涂覆于铝箔表面作为正极,金属锂为负极,电解液由1mol/L的六氟磷酸锂(LiPF6)溶于体积比为1:1的碳酸乙烯酯(EC)及碳酸甲基乙基酯(EMC)混合溶剂得到。
请参阅图4,图4为所述锂离子电池的第二次充放电曲线图。从图中可以看出,该锂离子电池的第二次放电比容量可以达到588.6mAh/g。请参见图5,图5为所述锂离子电池的比容量随充电次数的变化图,从图中可以看出,经过18次循环后该锂离子电池的比容量还保持在588.3 mAh/g左右,容量几乎无衰减,循环稳定性很好。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种硫基正极材料的制备方法,包括:
    S10,在第一温度下,将聚丙烯腈和单质硫溶解于第一溶剂形成—第一溶液;
    S11,在第二温度下,将所述第一溶液转移到第二溶剂中使所述聚丙烯腈和单质硫快速沉淀析出形成沉淀物,其中,所述聚丙烯腈和单质硫不溶于所述第二溶剂,且所述第二温度低于所述第一温度,所述第一温度和第二温度的温度差大于等于50℃;以及
    S12,将所述沉淀物过滤,并进行热处理使所述聚丙烯腈和单质硫发生化学反应生成硫化聚丙烯腈。
  2. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述第一温度大于等于100℃且小于等于200℃,且所述第二温度小于等于50℃。
  3. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述单质硫和聚丙烯腈按照质量比1:1~10:1溶于所述第一溶剂。
  4. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述单质硫和聚丙烯腈按照质量比2:1~4:1溶于所述第一溶剂。
  5. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述第一溶液中聚丙烯腈和单质硫的总浓度为10g/L~100g/L。
  6. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述第一溶剂为N-甲基吡咯烷酮、二甲基甲酰胺、二甲基亚砜、二甲基乙酰胺或其混合物。
  7. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述第二溶剂为水、乙醇、甲醇、丙酮、正己烷、环己烷、乙醚或其混合物。
  8. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述将第一溶液转移到第二溶剂的时间控制在10秒内完成。
  9. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述第一溶剂与所述第二溶剂的体积比为1:1至1:5。
  10. 如权利要求1所述的硫基正极材料的制备方法,其特征在于,所述热处理的温度为100℃以上,所述热处理时间为1小时到10小时。
PCT/CN2014/095590 2014-10-09 2014-12-30 硫基正极材料的制备方法 WO2016054865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/482,024 US20170214040A1 (en) 2014-10-09 2017-04-07 Method for preparing sulfur-based cathode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410527011.5 2014-10-09
CN201410527011.5A CN104282892B (zh) 2014-10-09 2014-10-09 硫基正极材料的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/482,024 Continuation US20170214040A1 (en) 2014-10-09 2017-04-07 Method for preparing sulfur-based cathode material

Publications (1)

Publication Number Publication Date
WO2016054865A1 true WO2016054865A1 (zh) 2016-04-14

Family

ID=52257563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095590 WO2016054865A1 (zh) 2014-10-09 2014-12-30 硫基正极材料的制备方法

Country Status (3)

Country Link
US (1) US20170214040A1 (zh)
CN (1) CN104282892B (zh)
WO (1) WO2016054865A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
CN101764258A (zh) * 2009-11-20 2010-06-30 无锡欧力达新能源电力科技有限公司 一种二次铝电池及其制备方法
CN102399338A (zh) * 2010-09-08 2012-04-04 清华大学 硫化聚丙烯腈及应用其的锂离子电池正极材料
CN102820454A (zh) * 2011-06-11 2012-12-12 苏州宝时得电动工具有限公司 电极复合材料及其制备方法、正极、具有该正极的电池
CN103531748A (zh) * 2012-07-06 2014-01-22 清华大学 锂离子电池电极活性物质的制备方法
CN103794764A (zh) * 2012-10-26 2014-05-14 苏州宝时得电动工具有限公司 电极复合材料的制备方法、正极、具有该正极的电池
CN103972510A (zh) * 2014-05-09 2014-08-06 四川大学 一种锂二次电池用硫化聚丙烯腈正极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737679B2 (ja) * 2011-04-27 2015-06-17 株式会社豊田自動織機 ナトリウム二次電池
CN103497345A (zh) * 2013-08-14 2014-01-08 东华大学 一种超高分子量聚丙烯腈的快速溶解方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
CN101764258A (zh) * 2009-11-20 2010-06-30 无锡欧力达新能源电力科技有限公司 一种二次铝电池及其制备方法
CN102399338A (zh) * 2010-09-08 2012-04-04 清华大学 硫化聚丙烯腈及应用其的锂离子电池正极材料
CN102820454A (zh) * 2011-06-11 2012-12-12 苏州宝时得电动工具有限公司 电极复合材料及其制备方法、正极、具有该正极的电池
CN103531748A (zh) * 2012-07-06 2014-01-22 清华大学 锂离子电池电极活性物质的制备方法
CN103794764A (zh) * 2012-10-26 2014-05-14 苏州宝时得电动工具有限公司 电极复合材料的制备方法、正极、具有该正极的电池
CN103972510A (zh) * 2014-05-09 2014-08-06 四川大学 一种锂二次电池用硫化聚丙烯腈正极材料的制备方法

Also Published As

Publication number Publication date
CN104282892B (zh) 2016-09-28
US20170214040A1 (en) 2017-07-27
CN104282892A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
KR102369488B1 (ko) 이차 전지용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 부극, 및 이차 전지
JP5761197B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
WO2016095743A1 (zh) 硫基复合正极材料及其制备方法
KR102551091B1 (ko) 비수계 2차 전지 접착층용 조성물, 비수계 2차 전지용 접착층 및 비수계 2차 전지
WO2015098507A1 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池
KR102292440B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JPWO2014188734A1 (ja) 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
WO2016095707A1 (zh) 硫基复合正极材料的制备方法
TWI511359B (zh) 鋰離子電池電極活性物質及其製備方法
WO2015058637A1 (zh) 锂离子电池正极活性材料及其制备方法
WO2020196115A1 (ja) リチウムイオン二次電池電極用導電材ペースト、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US9083047B2 (en) Binder composition for rechargeable battery, rechargeable battery employing the same and method of producing electrode for rechargeable battery
WO2016127501A1 (zh) 硫酸钡复合隔膜及其制备方法,以及锂离子电池
WO2019167730A1 (ja) リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極
US20230327183A1 (en) Method of producing binder composition for all-solid-state secondary battery, method of producing slurry composition for all-solid-state secondary battery, method of producing solid electrolyte-containing layer, and method of producing all-solid-state secondary battery
JP6719755B2 (ja) 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
TW202200641A (zh) 用於二次電池的黏結劑組合物
CN110380051B (zh) 一种锂离子电池正极浆料及制备方法和锂离子电池正极片
WO2016054865A1 (zh) 硫基正极材料的制备方法
JP6721928B2 (ja) 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
CN109721713A (zh) 一种电导率高的锂离子电池正极浆料及制备方法
WO2019098546A2 (ko) 도전성 고분자가 코팅된 금속 산화물, 이를 포함하는 전기 화학 소자용 전극, 및 도전성 고분자가 코팅된 금속 산화물의 제조방법
JP7192774B2 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2023145612A1 (ja) カーボンナノチューブ分散液、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池
US20240063395A1 (en) Conductive material paste for electrochemical device electrode, slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing conductive material paste for electrochemical device electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903759

Country of ref document: EP

Kind code of ref document: A1