WO2016051755A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2016051755A1 WO2016051755A1 PCT/JP2015/004906 JP2015004906W WO2016051755A1 WO 2016051755 A1 WO2016051755 A1 WO 2016051755A1 JP 2015004906 W JP2015004906 W JP 2015004906W WO 2016051755 A1 WO2016051755 A1 WO 2016051755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- time
- predetermined
- arrival
- peak current
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2003—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2055—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2058—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0003—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
- F02M63/0007—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0014—Valves characterised by the valve actuating means
- F02M63/0015—Valves characterised by the valve actuating means electrical, e.g. using solenoid
- F02M63/0017—Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
Definitions
- the present disclosure relates to an internal combustion engine control device that controls a drive current of an electromagnetically driven fuel injection valve.
- the electromagnetically driven fuel injection valve is configured to open the valve body by electromagnetic force generated when the drive coil is energized.
- the valve opening characteristics of the fuel injection valve change depending on the drive current profile (drive current waveform) of the fuel injection valve, variations in the drive current profile, in particular, variations in the peak current value (peak value of the drive current) occur in the fuel.
- the injection amount greatly affects the opening speed of the injection valve, and the injection amount tends to vary as the injection amount of the fuel injection valve becomes smaller.
- a current detection unit that detects the drive current of the fuel injection valve is provided, and the fuel injection valve is driven based on the drive current (detection current) detected by the current detection unit. Some control is performed so that the current has a target drive current profile.
- variation in a current detection part etc. is measured and memorize
- the detection current of the current detection unit may be deviated due to changes over time, etc. If the detection current deviates, the control accuracy of the drive current of the fuel injection valve deteriorates. When this occurs, it is preferable to detect the deviation of the detected current at an early stage.
- the detection current deviation of the current detection unit cannot be determined (it cannot be determined whether or not the detection current is correct). The detection current deviation cannot be detected at an early stage.
- An object of the present invention is to provide a control device for an internal combustion engine.
- a control device for an internal combustion engine includes an electromagnetically driven fuel injection valve, a current detection unit that detects a drive current of the fuel injection valve, and a valve opening drive for the fuel injection valve.
- a current control unit that applies a predetermined voltage to the fuel injection valve until a drive current detected by the current detection unit (hereinafter referred to as “detected current”) reaches a predetermined target peak current.
- the control device for the internal combustion engine includes an arrival time calculation unit that calculates a peak current arrival time, which is a time from the predetermined timing until the detected current reaches the target peak current, and a predetermined current whose detection current is lower than the target peak current.
- a difference time calculation unit that calculates a predetermined current arrival difference time that is a time until the detected current falls below the predetermined current after exceeding the specified current, a predetermined current arrival difference time, and a peak current arrival time when the detected current is correct Corresponding to the predetermined current arrival difference time calculated by the difference time calculation unit using the storage unit that stores the relationship with the peak current arrival time in advance and the relationship between the predetermined current arrival difference time and the specified peak current arrival time A specified arrival time calculation unit for calculating the specified peak current arrival time, a peak current arrival time calculated by the arrival time calculation unit, and a specified peak calculated by the specified arrival time calculation unit. And a determination unit for determining the deviation of the detected current by comparing the leakage current arrival time.
- the peak current arrival time (time until the detection current reaches the target peak current) changes, so the peak current arrival time and the specified peak current arrival time (the detection current is correct) (Peak current arrival time in the case) can be compared to determine the deviation of the detected current.
- the specified peak current arrival time also changes. It is necessary to use the specified peak current arrival time corresponding to the current gradient.
- a predetermined current arrival difference time (a time from when the detected current exceeds the predetermined current until it falls below the predetermined current) is calculated, and the predetermined current arrival difference time stored in advance is calculated.
- the specified peak current arrival time corresponding to the current predetermined current arrival difference time is calculated. Thereby, the specified peak current arrival time corresponding to the current slope of the actual current can be calculated.
- the current peak current arrival time is compared with the specified peak current arrival time (for example, the difference or ratio between the peak current arrival time and the specified peak current arrival time is calculated). By doing so, it is possible to determine the deviation of the detection current with high accuracy, and when the deviation occurs in the detection current, the deviation of the detection current can be detected at an early stage.
- FIG. 1 is a diagram illustrating a schematic configuration of an engine control system according to an embodiment of the present disclosure.
- FIG. 2 is a block diagram showing the configuration of the ECU.
- FIG. 3 is a time chart for explaining the current control of the fuel injection valve.
- FIG. 4A is a time chart showing the behavior of each current when the detected current is deviated.
- FIG. 4B is a time chart showing the behavior of each current when the detected current is deviated.
- FIG. 5A is a time chart showing the behavior of each current when the slope of the actual current is deviated.
- FIG. 1 is a diagram illustrating a schematic configuration of an engine control system according to an embodiment of the present disclosure.
- FIG. 2 is a block diagram showing the configuration of the ECU.
- FIG. 3 is a time chart for explaining the current control of the fuel injection valve.
- FIG. 4A is a time chart showing the behavior of each current when the detected current is deviated.
- FIG. 4B is a time chart showing the
- FIG. 5B is a time chart showing the behavior of each current when the slope of the actual current is deviated.
- FIG. 6A is a time chart showing the behavior of each current when the slope of the actual current and the detected current deviate.
- FIG. 6B is a time chart showing the behavior of each current when the slope of the actual current and the detected current deviate.
- FIG. 7A is a time chart for explaining the predetermined current arrival difference time ⁇ Tth when the slope of the actual current is deviated.
- FIG. 7B is a time chart for explaining the predetermined current arrival difference time ⁇ Tth when the slope of the actual current is deviated.
- FIG. 8A is a time chart for explaining the predetermined current arrival difference time ⁇ Tth when the detected current is deviated.
- FIG. 8A is a time chart for explaining the predetermined current arrival difference time ⁇ Tth when the detected current is deviated.
- FIG. 8B is a time chart for explaining the predetermined current arrival difference time ⁇ Tth when the detected current is deviated.
- FIG. 9 is a flowchart showing the flow of processing of the detected current deviation determination routine.
- FIG. 10 is a diagram conceptually showing an example of the map of the difference time correction value ⁇ Tth.cr.
- FIG. 11 is a diagram conceptually showing an example of a map of the specified peak current arrival time Tp.
- An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the direct injection engine 11 that is an in-cylinder internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. Is provided.
- a throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.
- a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18.
- the surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and each cylinder of the engine 11 is provided with a fuel injection valve 21 that directly injects fuel into the cylinder.
- the fuel injection valve 21 is an electromagnetically driven fuel injection valve that drives a valve body (not shown) in the valve opening direction by electromagnetic force generated when a drive coil (not shown) is energized.
- An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.
- the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas.
- a catalyst 25 such as a three-way catalyst for purifying gas is provided.
- a cooling water temperature sensor 26 for detecting the cooling water temperature and a knock sensor 27 for detecting knocking are attached to the cylinder block of the engine 11.
- a crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28, and the crank angle and the engine are determined based on the output signal of the crank angle sensor 29. The rotation speed is detected.
- the outputs of these various sensors are input to an electronic control unit (ECU) 30.
- the ECU 30 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state.
- the throttle opening (intake air amount) and the like are controlled.
- the ECU 30 is provided with an engine control microcomputer 31 (a microcomputer for controlling the engine 11), an injector drive IC 32 (a drive IC for the fuel injection valve 21), and the like.
- the ECU 30 calculates the required injection amount according to the engine operating state (for example, the engine speed, engine load, etc.) by the engine control microcomputer 31, and sets the injection pulse width Ti (injection time) according to the required injection amount.
- the injector drive IC 32 calculates and opens the fuel injection valve 21 with an injection pulse width Ti corresponding to the required injection amount, and injects fuel for the required injection amount.
- the ECU 30 causes the voltage switching circuit 33 to change the drive voltage (voltage applied to the drive coil) of the fuel injection valve 21 to a low voltage supplied from the low-voltage power supply 34 and a high voltage supplied from the boost power supply 35 (opening).
- the current detection circuit 36 (current detection unit) detects the drive current of the fuel injection valve 21 (current flowing through the drive coil).
- the ECU 30 (at least one of the engine control microcomputer 31 and the injector drive IC 32) functions as a current control unit that controls the drive current of the fuel injection valve 21 when the fuel injection valve 21 is driven to open. Specifically, as shown in FIG. 3, the drive current of the fuel injection valve 21 is controlled in the order of the precharge phase, the boost drive phase, the first hold phase, and the second hold phase after the injection pulse is turned on. Transition.
- a low voltage is applied to the drive coil of the fuel injection valve 21 to gradually increase the drive current.
- a high voltage (voltage boosted for valve opening) is applied to the drive coil of the fuel injection valve 21 to quickly increase the drive current to a predetermined target peak current, thereby The valve body of the injection valve 21 is opened. Then, when the drive current detected by the current detection circuit 36 (hereinafter referred to as “detected current”) reaches the target peak current, the application of the high voltage is stopped.
- a low voltage is intermittently applied to the drive coil of the fuel injection valve 21 to maintain the drive current in the vicinity of the pickup current lower than the target peak current. Move the valve body to the open position.
- a low voltage is intermittently applied to the drive coil of the fuel injection valve 21 to maintain the drive current in the vicinity of the hold current lower than the pickup current. Hold the body in the open position.
- the detection current of the current detection circuit 36 may be deviated due to some influence (for example, a change over time). If the detection current is deviated, the control accuracy of the drive current of the fuel injection valve 21 is deteriorated.
- the actual current when the detected current is shifted to the lower side with respect to the actual current (actual drive current), the actual current is decreased until the detected current lower than the actual current reaches the target peak current. As a result, the actual peak current (the peak value of the actual current) becomes higher than the target peak current.
- the actual peak current the peak value of the actual current
- the actual current increases until the detected current higher than the actual current reaches the target peak current. The current becomes lower than the target peak current.
- the ECU 30 executes a detection current deviation determination routine shown in FIG. Judge the deviation.
- the peak current arrival time Tp ′ which is the time from the predetermined timing until the detected current reaches the target peak current Ip, is calculated, and the detected current is predetermined after the detected current exceeds a predetermined current Ith lower than the target peak current Ip.
- a predetermined current arrival difference time ⁇ Tth which is a time until the current Ith is lowered, is calculated. Further, in the ROM 37 (storage unit) of the ECU 30, the relationship between the predetermined current arrival difference time ⁇ Tth and the specified peak current arrival time Tp that is the peak current arrival time when the detected current is correct (for example, the predetermined current arrival difference time ⁇ Tth is specified as A map that defines the relationship with the peak current arrival time Tp is stored in advance.
- the specified peak current arrival time Tp corresponding to the predetermined current arrival difference time ⁇ Tth calculated this time is calculated, and the peak current arrival time calculated this time is calculated.
- the deviation of the detected current is determined by comparing Tp ′ with the specified peak current arrival time Tp calculated this time.
- the peak current arrival time Tp ′ (time until the detection current reaches the target peak current Ip) changes.
- the peak current arrival time Tp ′ becomes the specified peak current arrival time Tp (the peak current arrival time when the detection current is correct). ) (Tp ′> Tp).
- the peak current arrival time Tp ′ becomes shorter than the specified peak current arrival time Tp (Tp ′ ⁇ Tp).
- the detected current shifts Can be determined.
- the specified peak current The arrival time Tp is longer than the nominal value Tp (0) (the peak current arrival time of the nominal actual current).
- Tp (0) the peak current arrival time of the nominal actual current
- a predetermined current arrival difference time ⁇ Tth (a time from when the detected current exceeds the predetermined current Ith until it falls below the predetermined current Ith) is calculated as information on the current actual current slope.
- the predetermined current arrival difference time ⁇ Tth is the nominal value ⁇ Tth (0). It becomes longer than (the predetermined current arrival difference time of the nominal actual current).
- the predetermined current arrival difference time ⁇ Tth is the nominal value ⁇ Tth (0). Shorter than.
- the predetermined current when the detected current is shifted to a lower side or a higher side than the actual current in a state where the slope of the actual current is substantially equal to the slope of the nominal actual current, the predetermined current
- the arrival difference time ⁇ Tth hardly changes (the predetermined current arrival difference time ⁇ Tth is substantially equal to the nominal value ⁇ Tth (0)). This is because the detection current deviation occurs due to variations in the current detection circuit 36, and the detection current deviation occurs due to a gain deviation with respect to the current value, so that the predetermined current reaches the same predetermined current Ith as in this embodiment.
- the influence of the gain deviation can be reduced.
- the predetermined current arrival difference time ⁇ Tth (the time from when the detected current exceeds the predetermined current Ith1 to below the predetermined current Ith2th) is calculated using two different predetermined currents Ith1th and Ith2, the low current side and the high current The absolute value of the deviation amount of the detection current differs on the side, and the predetermined current arrival difference time ⁇ Tth changes even when the detection current deviation occurs.
- the predetermined current arrival difference time ⁇ Tth (the time from when the detected current exceeds the predetermined current Ith until it falls below the predetermined current Ith) calculated with the same predetermined current Ith accurately reflects the current inclination of the actual current. It becomes.
- a prescribed peak current arrival time Tp corresponding to the predetermined current arrival difference time ⁇ Tth is calculated.
- the specified peak current arrival time TpT corresponding to the current slope of the actual current can be calculated.
- the current peak current arrival time Tp ′ is compared with the specified peak current arrival time Tp ⁇ ⁇ ⁇ (for example, the peak current arrival time Tp ′ and the specified peak current arrival time Tp).
- the difference in detection current can be accurately determined.
- the drive voltage Vreg of the fuel injection valve 21 is detected or estimated, and the predetermined current arrival difference time ⁇ Tth is corrected according to the drive voltage Vreg (for example, the difference time correction value corresponding to the drive voltage Vreg).
- ⁇ Tth.cr is used to correct the predetermined current arrival difference time ⁇ Tth).
- the detection current deviation determination routine shown in FIG. 9 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 30.
- the detected current is the target peak current Ip from the timing when the high-voltage energization pulse is turned on (that is, the timing when the high voltage is applied to the drive coil of the fuel injection valve 21). Is calculated as the peak current arrival time Tp ′.
- This process serves as an arrival time calculation unit.
- the time from when the high-voltage energization pulse is turned on until the detected current exceeds the predetermined current Ith is calculated as the first arrival time Tth.up, and is detected from the timing when the high-voltage energization pulse is turned on.
- the time until the current falls below the predetermined current Ith is calculated as the second arrival time Tth.dn.
- the drive voltage Vreg of the fuel injection valve 21 is detected or estimated (calculated).
- step 102 determines whether or not a predetermined determination execution condition is satisfied, for example, whether the engine operation state (engine speed, engine load, cooling water temperature, etc.) is in a steady state (stable state). Judgment is based on whether or not.
- a predetermined determination execution condition for example, whether the engine operation state (engine speed, engine load, cooling water temperature, etc.) is in a steady state (stable state). Judgment is based on whether or not.
- step 102 If it is determined in step 102 that the determination execution condition is not satisfied, this routine is terminated without executing the processing in step 103 and subsequent steps.
- step 102 determines whether the determination execution condition is satisfied. If it is determined in step 102 that the determination execution condition is satisfied, the process proceeds to step 103 where the peak current arrival time Tp ′ calculated in step 101 and the first and second arrival times Tth are obtained. .up and Tth.dn are acquired, and the drive voltage Vreg detected or estimated in step 101 is acquired.
- step 104 the difference between the first arrival time Tth.up and the second arrival time Tth.dn is calculated as the predetermined current arrival difference time ⁇ Tth.
- ⁇ Tth Tth.dn -Tth.up
- the processing in step 104 serves as a difference time calculation unit.
- step 105 the difference time correction value ⁇ Tth.cr corresponding to the drive voltage Vreg is calculated with reference to the map of the difference time correction value ⁇ Tth.cr shown in FIG.
- the map of the difference time correction value ⁇ Tth.cr the higher the drive voltage Vreg, the smaller the difference time correction value ⁇ Tth.cr and the smaller the predetermined current arrival difference time ⁇ Tth (the lower the drive voltage Vreg, the difference time correction value ⁇ Tth. .cr is increased and the predetermined current arrival difference time ⁇ Tth is increased).
- the map of the difference time correction value ⁇ Tth.cr is created in advance based on test data, design data, and the like, and is stored in the ROM 37 of the ECU 30.
- step 106 the predetermined current arrival difference time ⁇ Tth is corrected by adding the difference time correction value ⁇ Tth.cr to the predetermined current arrival difference time ⁇ Tth.
- a predetermined current arrival time is referred to with reference to a map of the prescribed peak current arrival time Tp (map defining the relationship between the prescribed current arrival difference time ⁇ Tth and the prescribed peak current arrival time Tp) shown in FIG.
- a specified peak current arrival time Tp corresponding to the difference time ⁇ Tth is calculated.
- the longer the predetermined current arrival difference time ⁇ Tth the longer the specified peak current arrival time Tp (the shorter the predetermined current arrival difference time ⁇ Tth, the shorter the specified peak current arrival time Tp).
- the processing in step 107 serves as a specified arrival time calculation unit.
- step 108 the difference between the peak current arrival time Tp ′ and the specified peak current arrival time Tp is calculated as the peak current arrival difference time ⁇ Tp.
- ⁇ Tp Tp'-Tp
- the peak current arrival time Tp ′ is longer than the specified peak current arrival time Tp (Tp ′> Tp).
- the peak current arrival time Tp ′ is shorter than the specified peak current arrival time Tp (Tp ′ ⁇ Tp). Therefore, if the peak current arrival difference time ⁇ Tp (difference between the peak current arrival time Tp ′ and the specified peak current arrival time Tp) is calculated, it is possible to determine the deviation of the detected current.
- the process of step 108 serves as a determination unit.
- the peak current arrival time Tp ′ time until the detected current reaches the target peak current Ip
- the predetermined current arrival difference time ⁇ Tth the detected current exceeds the predetermined current Ith.
- the specified peak current arrival time Tp corresponding to the current predetermined current arrival difference time ⁇ Tth is calculated.
- the specified peak current arrival time TpT corresponding to the current slope of the actual current can be calculated.
- the current peak current arrival time Tp ′ and the specified peak current arrival time Tp are compared (for example, the peak current arrival time Tp ′ and the specified peak current arrival time).
- the difference ⁇ Tp from the time Tp is calculated).
- the predetermined current arrival difference time ⁇ Tth is the time from when the high-voltage energization pulse is turned on until the detected current exceeds the predetermined current Ith (first arrival time Tth.up), and the high voltage
- the difference from the time (second arrival time Tth.dn) from when the energization pulse is turned on until the detected current falls below the predetermined current Ith is calculated.
- the predetermined current arrival difference time ⁇ Tth (difference between the first arrival time Tth.up and the second arrival time Tth.dn) is accurately calculated based on the timing when the high-voltage energization pulse is turned on. Can do.
- the peak current arrival time Tp ′ the time from when the high-voltage energization pulse is turned on until the detected current reaches the target peak current Ip is calculated.
- the peak current arrival time Tp ′ can be accurately calculated with reference to the timing when the high-voltage energization pulse is turned on.
- the map of the specified peak current arrival time Tp ((the map specifying the relationship between the predetermined current arrival difference time ⁇ Tth and the specified peak current arrival time Tp) has a specified peak as the predetermined current arrival difference time ⁇ Tth increases.
- the current arrival time Tp is set longer (the specified peak current arrival time Tp becomes shorter as the predetermined current arrival difference time ⁇ Tth becomes shorter). Thereby, the relationship between the predetermined current arrival difference time ⁇ Tth and the specified peak current arrival time TpT can be set appropriately.
- the predetermined current arrival difference time ⁇ Tth is corrected according to the drive voltage Vreg of the fuel injection valve 21.
- the predetermined current arrival difference time ⁇ Tth is corrected in consideration of the influence of the drive voltage Vreg in response to the change in the actual current slope and the predetermined current arrival difference time ⁇ Tth according to the drive voltage Vreg.
- the predetermined current arrival difference time ⁇ Tth can be obtained.
- the higher the drive voltage VregT the smaller the predetermined current arrival difference time ⁇ Tth (the lower the drive voltage Vreg, the larger the predetermined current arrival difference time ⁇ Tth).
- the correction value of the predetermined current arrival difference time ⁇ Tth is set. Thereby, the difference time correction value ⁇ Tth.cr can be set to an appropriate value.
- the difference ⁇ Tp between the peak current arrival time Tp ′ and the specified peak current arrival time Tp is calculated.
- the present invention is not limited to this.
- the ratio between the peak current arrival time Tp ′ and the specified peak current arrival time Tp may be calculated.
- the difference between the first arrival time Tth.up. and the second arrival time Tth.dn is calculated as the predetermined current arrival difference time ⁇ Tth.
- the present invention is not limited to this.
- the time from when the current exceeds the predetermined current Ith until it falls below the predetermined current Ith may be directly calculated (measured).
- the correction value is added to the predetermined current arrival difference time ⁇ Tth to correct the predetermined current arrival difference time ⁇ Tth.
- the present invention is not limited to this.
- the predetermined current arrival difference time ⁇ Tth is corrected.
- the predetermined current arrival difference time ⁇ Tth may be corrected by multiplying the value (correction coefficient).
- the present disclosure is not limited to a system including a fuel injection valve for in-cylinder injection, and can be applied to a system including a fuel injection valve for intake port injection.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
ECU(30)は、ピーク電流到達時間(Tp')(検出電流が目標ピーク電流(Ip)に到達するまでの時間)を算出すると共に、所定電流到達差分時間(ΔTth)(検出電流が所定電流(Ith)を上回ってから所定電流(Ith)を下回るまでの時間)を算出する。そして、予め記憶した所定電流到達差分時間(ΔTth)と規定ピーク電流到達時間(Tp)との関係を用いて、現在の所定電流到達差分時間(ΔTth)に対応する規定ピーク電流到達時間(Tp)を算出する。この規定ピーク電流到達時間(Tp)を用いて、現在のピーク電流到達時間(Tp')と規定ピーク電流到達時間(Tp)とを比較する(例えばピーク電流到達時間(Tp')と規定ピーク電流到達時間(Tp)との差(ΔTp)を算出する)ことで電流検出回路(36)の検出電流のずれを判定する。
Description
本出願は、2014年10月3日に出願された日本特許出願番号2014-204472号に基づくもので、ここにその記載内容を援用する。
本開示は、電磁駆動式の燃料噴射弁の駆動電流を制御する内燃機関の制御装置に関する発明である。
一般に、電磁駆動式の燃料噴射弁は、駆動コイルに通電したときに生じる電磁力によって弁体を開弁駆動するようにしている。その際、燃料噴射弁の駆動電流プロファイル(駆動電流の波形)によって燃料噴射弁の開弁特性が変化するため、駆動電流プロファイルのばらつき、特にピーク電流値(駆動電流のピーク値)のばらつきが燃料噴射弁の開弁速度に大きく影響し、燃料噴射弁の噴射量が微小になるほど噴射量が変動する傾向がある。
例えば、特許文献1に記載されているように、燃料噴射弁の駆動電流を検出する電流検出部を設け、この電流検出部で検出した駆動電流(検出電流)に基づいて、燃料噴射弁の駆動電流が目標の駆動電流プロファイルになるように制御するようにしたものがある。また、この特許文献1では、予め制御装置毎に電流検出部等の機差ばらつきによる駆動電流ばらつきを測定して記憶しておき、その駆動電流ばらつき(電流差分値)に基づいて燃料噴射弁の制御目標値(駆動電流の目標値又は駆動時間の目標値)を補正するようにしている。
例えば経時変化等により電流検出部の検出電流にずれが生じることもあり、検出電流にずれが生じると、燃料噴射弁の駆動電流の制御精度が悪化するため、もし電流検出部の検出電流にずれが生じた場合には、その検出電流のずれを早期に検出することが好ましい。しかし、上記特許文献1の技術では、電流検出部の検出電流のずれを判定することができない(検出電流が正しいか否かを判定することができない)ため、検出電流にずれが生じた場合に、その検出電流のずれを早期に検出することができない。
本開示は、燃料噴射弁の駆動電流を検出する電流検出部の検出電流のずれを判定することができ、検出電流にずれが生じた場合に、その検出電流のずれを早期に検出することができる内燃機関の制御装置を提供することを目的とする。
本開示の一態様によれば、内燃機関の制御装置は、電磁駆動式の燃料噴射弁と、この燃料噴射弁の駆動電流を検出する電流検出部と、燃料噴射弁を開弁駆動する際に電流検出部で検出した駆動電流(以下「検出電流」という)が所定の目標ピーク電流に到達するまで燃料噴射弁に所定電圧を印加する電流制御部とを備える。さらに、内燃機関の制御装置は、所定タイミングから検出電流が目標ピーク電流に到達するまでの時間であるピーク電流到達時間を算出する到達時間算出部と、検出電流が目標ピーク電流よりも低い所定電流を上回ってから検出電流が所定電流を下回るまでの時間である所定電流到達差分時間を算出する差分時間算出部と、所定電流到達差分時間と、検出電流が正しい場合のピーク電流到達時間である規定ピーク電流到達時間との関係を予め記憶しておく記憶部と、所定電流到達差分時間と規定ピーク電流到達時間との関係を用いて、差分時間算出部で算出した所定電流到達差分時間に対応する規定ピーク電流到達時間を算出する規定到達時間算出部と、到達時間算出部で算出したピーク電流到達時間と規定到達時間算出部で算出した規定ピーク電流到達時間とを比較して検出電流のずれを判定する判定部とを備える。
電流検出部の検出電流にずれが生じると、ピーク電流到達時間(検出電流が目標ピーク電流に到達するまでの時間)が変化するため、ピーク電流到達時間と規定ピーク電流到達時間(検出電流が正しい場合のピーク電流到達時間)とを比較すれば、検出電流のずれを判定することができる。
しかし、温度変化による負荷抵抗のばらつき等によって実電流(実際の駆動電流)の傾きが変化すると、規定ピーク電流到達時間も変化するため、検出電流のずれを精度良く判定するには、現在の実電流の傾きに対応する規定ピーク電流到達時間を用いる必要がある。
本開示では、現在の実電流の傾きの情報として、所定電流到達差分時間(検出電流が所定電流を上回ってから所定電流を下回るまでの時間)を算出し、予め記憶した所定電流到達差分時間と規定ピーク電流到達時間との関係を用いて、現在の所定電流到達差分時間に対応する規定ピーク電流到達時間を算出する。これにより、現在の実電流の傾きに対応する規定ピーク電流到達時間を算出することができる。
このようにして算出した規定ピーク電流到達時間を用いて、現在のピーク電流到達時間と規定ピーク電流到達時間とを比較する(例えばピーク電流到達時間と規定ピーク電流到達時間との差や比を算出する)ことで、検出電流のずれを精度良く判定することができ、検出電流にずれが生じた場合に、その検出電流のずれを早期に検出することができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は本開示の一実施例におけるエンジン制御システムの概略構成を示す図である。
図2はECUの構成を示すブロック図である。
図3は燃料噴射弁の電流制御を説明するタイムチャートである。
図4Aは検出電流がずれた場合の各電流の挙動を示すタイムチャートである。
図4Bは検出電流がずれた場合の各電流の挙動を示すタイムチャートである。
図5Aは実電流の傾きがずれた場合の各電流の挙動を示すタイムチャートである。
図5Bは実電流の傾きがずれた場合の各電流の挙動を示すタイムチャートである。
図6Aは実電流の傾き及び検出電流がずれた場合の各電流の挙動を示すタイムチャートである。
図6Bは実電流の傾き及び検出電流がずれた場合の各電流の挙動を示すタイムチャートである。
図7Aは実電流の傾きがずれた場合の所定電流到達差分時間ΔTthを説明するタイムチャートである。
図7Bは実電流の傾きがずれた場合の所定電流到達差分時間ΔTthを説明するタイムチャートである。
図8Aは検出電流がずれた場合の所定電流到達差分時間ΔTthを説明するタイムチャートである。
図8Bは検出電流がずれた場合の所定電流到達差分時間ΔTthを説明するタイムチャートである。
図9は検出電流ずれ判定ルーチンの処理の流れを示すフローチャートである。
図10は差分時間補正値ΔTth.cr のマップの一例を概念的に示す図である。
図11は規定ピーク電流到達時間Tp のマップの一例を概念的に示す図である。
以下、本開示を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システムの概略構成を説明する。
筒内噴射式の内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、エンジン11の各気筒には、それぞれ筒内に燃料を直接噴射する燃料噴射弁21が取り付けられている。この燃料噴射弁21は、駆動コイル(図示せず)に通電したときに生じる電磁力によって弁体(図示せず)を開弁方向に駆動する電磁駆動式の燃料噴射弁である。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。
一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。また、クランク軸28の外周側には、クランク軸28が所定クランク角回転する毎にパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29の出力信号に基づいてクランク角やエンジン回転速度が検出される。
これら各種センサの出力は、電子制御ユニット(ECU)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。
図2に示すように、ECU30には、エンジン制御用マイコン31(エンジン11の制御用のマイクロコンピュータ)やインジェクタ駆動用IC32(燃料噴射弁21の駆動用IC)等が設けられている。ECU30は、エンジン制御用マイコン31で、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出して、この要求噴射量に応じて噴射パルス幅Ti (噴射時間)を算出し、インジェクタ駆動用IC32で、要求噴射量に応じた噴射パルス幅Ti で燃料噴射弁21を開弁駆動して要求噴射量分の燃料を噴射する。その際、ECU30は、電圧切換回路33で、燃料噴射弁21の駆動電圧(駆動コイルに印加する電圧)を、低圧電源34から供給される低電圧と昇圧電源35から供給される高電圧(開弁用に昇圧された電圧)との間で切り換え、電流検出回路36(電流検出部)で、燃料噴射弁21の駆動電流(駆動コイルに流れる電流)を検出する。
ECU30(エンジン制御用マイコン31とインジェクタ駆動用IC32のうちの少なくとも一方)は、燃料噴射弁21を開弁駆動する際に、燃料噴射弁21の駆動電流を制御する電流制御部として機能する。具体的には、図3に示すように、燃料噴射弁21の駆動電流の制御は、噴射パルスがオンされた後、プリチャージフェーズ、昇圧駆動フェーズ、第1ホールドフェーズ、第2ホールドフェーズの順に移行する。
まず、プリチャージフェーズでは、燃料噴射弁21の駆動コイルに低電圧を印加して、駆動電流を緩やかに上昇させる。
この後、昇圧駆動フェーズでは、燃料噴射弁21の駆動コイルに高電圧(開弁用に昇圧された電圧)を印加して、駆動電流を所定の目標ピーク電流まで速やかに上昇させることで、燃料噴射弁21の弁体を開弁させる。そして、電流検出回路36で検出した駆動電流(以下「検出電流」という)が目標ピーク電流に到達した時点で、高電圧の印加を停止する。
この後、第1ホールドフェーズでは、燃料噴射弁21の駆動コイルに低電圧を間欠的に印加して、駆動電流を目標ピーク電流よりも低いピックアップ電流付近に維持することで、燃料噴射弁21の弁体を開弁位置まで移動させる。
この後、第2ホールドフェーズでは、燃料噴射弁21の駆動コイルに低電圧を間欠的に印加して、駆動電流をピックアップ電流よりも低いホールド電流付近に維持することで、燃料噴射弁21の弁体を開弁位置に保持する。
この後、噴射パルスがオフされた時点で、燃料噴射弁21の駆動コイルへの通電を停止して、燃料噴射弁21の弁体を閉弁させる。
ところで、何らかの影響(例えば経時変化等)により電流検出回路36の検出電流にずれが生じることもあり、検出電流にずれが生じると、燃料噴射弁21の駆動電流の制御精度が悪化する。
例えば、図4Aに示すように、検出電流が実電流(実際の駆動電流)に対して低い側にずれた場合には、実電流よりも低い検出電流が目標ピーク電流に到達するまで実電流が上昇するため、実ピーク電流(実電流のピーク値)が目標ピーク電流よりも高くなってしまう。一方、図4Bに示すように、検出電流が実電流に対して高い側にずれた場合には、実電流よりも高い検出電流が目標ピーク電流に到達するまで実電流が上昇するため、実ピーク電流が目標ピーク電流よりも低くなってしまう。
このため、もし電流検出回路36の検出電流にずれが生じた場合には、その検出電流のずれを早期に検出することが好ましい。
そこで、本実施例では、ECU30(エンジン制御用マイコン31とインジェクタ駆動用IC32のうちの少なくとも一方)により後述する図9の検出電流ずれ判定ルーチンを実行することで、次のようにして検出電流のずれを判定する。
所定タイミングから検出電流が目標ピーク電流Ip に到達するまでの時間であるピーク電流到達時間Tp'を算出すると共に、検出電流が目標ピーク電流Ip よりも低い所定電流Ithを上回ってから検出電流が所定電流Ithを下回るまでの時間である所定電流到達差分時間ΔTthを算出する。また、ECU30のROM37(記憶部)に、所定電流到達差分時間ΔTthと、検出電流が正しい場合のピーク電流到達時間である規定ピーク電流到達時間Tp との関係(例えば所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を規定するマップ)を予め記憶しておく。この所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を用いて、今回算出した所定電流到達差分時間ΔTthに対応する規定ピーク電流到達時間Tp を算出し、今回算出したピーク電流到達時間Tp'と今回算出した規定ピーク電流到達時間Tp とを比較して検出電流のずれを判定する。
電流検出回路36の検出電流にずれが生じると、ピーク電流到達時間Tp'(検出電流が目標ピーク電流Ip に到達するまでの時間)が変化する。
例えば、図4Aに示すように、検出電流が実電流に対して低い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp (検出電流が正しい場合のピーク電流到達時間)よりも長くなる(Tp'>Tp )。一方、図4Bに示すように、検出電流が実電流に対して高い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp よりも短くなる(Tp'<Tp )。
このため、ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp とを比較すれば(例えばピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差ΔTp を算出すれば)、検出電流のずれを判定することができる。
しかし、温度変化による負荷抵抗のばらつき等によって実電流の傾きが変化すると、規定ピーク電流到達時間Tp も変化する。
例えば、図5A及び図6Aに示すように、実電流の傾きがノミナル実電流(標準状態における実電流)の傾きに対して小さい側(傾きが小さくなる)にずれた場合には、規定ピーク電流到達時間Tp がノミナル値Tp(0)(ノミナル実電流のピーク電流到達時間)よりも長くなる。一方、図5B及び図6Bに示すように、実電流の傾きがノミナル実電流の傾きに対して大きい側(傾きが大きくなる)にずれた場合には、規定ピーク電流到達時間Tp がノミナル値Tp(0)よりも短くなる。
このため、検出電流のずれを精度良く判定するには、現在の実電流の傾きに対応する規定ピーク電流到達時間Tp を用いる必要がある。
本実施例では、現在の実電流の傾きの情報として、所定電流到達差分時間ΔTth(検出電流が所定電流Ithを上回ってから所定電流Ithを下回るまでの時間)を算出する。
例えば、図7Aに示すように、実電流の傾きがノミナル実電流の傾きに対して小さい側(傾きが寝る側)にずれた場合には、所定電流到達差分時間ΔTthがノミナル値ΔTth(0) (ノミナル実電流の所定電流到達差分時間)よりも長くなる。一方、図7Bに示すように、実電流の傾きがノミナル実電流の傾きに対して大きい側(傾きが大きくなる)にずれた場合には、所定電流到達差分時間ΔTthがノミナル値ΔTth(0) よりも短くなる。
また、図8A、図8Bに示すように、実電流の傾きがノミナル実電流の傾きとほぼ等しい状態で、検出電流が実電流に対して低い側や高い側にずれた場合には、所定電流到達差分時間ΔTthがほとんど変化しない(所定電流到達差分時間ΔTthがノミナル値ΔTth(0) とほぼ等しい)。これは、検出電流のずれが電流検出回路36のばらつきによって発生し、検出電流のずれが電流値に対してゲインずれで発生するため、本実施例のように同一の所定電流Ithで所定電流到達差分時間ΔTth(検出電流が所定電流Ithを上回ってから所定電流Ithを下回るまでの時間)を算出することで、ゲインずれの影響を小さくできるからである。例えば、異なる二つの所定電流Ith1 ,Ith2 で所定電流到達差分時間ΔTth(検出電流が所定電流Ith1 を上回ってから所定電流Ith2 を下回るまでの時間)を算出する場合には、低電流側と高電流側で検出電流のずれ量の絶対値が異なり、検出電流ずれ発生時でも所定電流到達差分時間ΔTthが変化してしまう。
従って、同一の所定電流Ithで算出した所定電流到達差分時間ΔTth(検出電流が所定電流Ithを上回ってから所定電流Ithを下回るまでの時間)は、現在の実電流の傾きを精度良く反映した情報となる。
そして、予め記憶した所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係(例えば所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を規定するマップ)を用いて、現在の所定電流到達差分時間ΔTthに対応する規定ピーク電流到達時間Tp を算出する。これにより、現在の実電流の傾きに対応する規定ピーク電流到達時間Tp を算出することができる。
このようにして算出した規定ピーク電流到達時間Tp を用いて、現在のピーク電流到達時間Tp'と規定ピーク電流到達時間Tp とを比較する(例えばピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差ΔTp を算出する)ことで、検出電流のずれを精度良く判定することができる。
尚、燃料噴射弁21の駆動電圧Vreg によっても実電流の傾きが変化して所定電流到達差分時間ΔTthが変化する。そこで、本実施例では、燃料噴射弁21の駆動電圧Vreg を検出又は推定し、その駆動電圧Vreg に応じて所定電流到達差分時間ΔTthを補正する(例えば、駆動電圧Vreg に応じた差分時間補正値ΔTth.cr を用いて所定電流到達差分時間ΔTthを補正する)。
以下、本実施例でECU30(エンジン制御用マイコン31とインジェクタ駆動用IC32のうちの少なくとも一方)が実行する図9の検出電流ずれ判定ルーチンの処理内容を説明する。
図9に示す検出電流ずれ判定ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行される。
本ルーチンが起動されると、まず、ステップ101で、高電圧の通電パルスがオンになったタイミング(つまり燃料噴射弁21の駆動コイルに高電圧を印加したタイミング)から検出電流が目標ピーク電流Ip に到達するまでの時間をピーク電流到達時間Tp'として算出する。この処理が到達時間算出部としての役割を果たす。また、高電圧の通電パルスがオンになったタイミングから検出電流が所定電流Ithを上回るまでの時間を第1到達時間Tth.up として算出し、高電圧の通電パルスがオンになったタイミングから検出電流が所定電流Ithを下回るまでの時間を第2到達時間Tth.dn として算出する。更に、燃料噴射弁21の駆動電圧Vreg を検出又は推定(算出)する。
この後、ステップ102に進み、所定の判定実行条件が成立しているか否かを、例えば、エンジン運転状態(エンジン回転速度、エンジン負荷、冷却水温等)が定常状態(安定した状態)であるか否か等によって判定する。
このステップ102で、判定実行条件が不成立であると判定された場合には、ステップ103以降の処理を実行することなく、本ルーチンを終了する。
一方、上記ステップ102で、判定実行条件が成立していると判定された場合には、ステップ103に進み、上記ステップ101で算出したピーク電流到達時間Tp'と、第1及び第2到達時間Tth.up ,Tth.dn を取得すると共に、上記ステップ101で検出又は推定した駆動電圧Vreg を取得する。
この後、ステップ104に進み、第1到達時間Tth.up と第2到達時間Tth.dn との差分を所定電流到達差分時間ΔTthとして算出する。
ΔTth=Tth.dn -Tth.up
このステップ104の処理が差分時間算出部としての役割を果たす。
このステップ104の処理が差分時間算出部としての役割を果たす。
この後、ステップ105に進み、図10に示す差分時間補正値ΔTth.cr のマップを参照して、駆動電圧Vreg に応じた差分時間補正値ΔTth.cr を算出する。この差分時間補正値ΔTth.cr のマップは、駆動電圧Vreg が高いほど差分時間補正値ΔTth.cr が小さくなって所定電流到達差分時間ΔTthが小さくなる(駆動電圧Vreg が低いほど差分時間補正値ΔTth.cr が大きくなって所定電流到達差分時間ΔTthが大きくなる)ように設定されている。差分時間補正値ΔTth.cr のマップは、予め試験データや設計データ等に基づいて作成され、ECU30のROM37に記憶されている。
この後、ステップ106に進み、所定電流到達差分時間ΔTthに差分時間補正値ΔTth.cr を加算して所定電流到達差分時間ΔTthを補正する。
ΔTth=ΔTth+ΔTth.cr
これらのステップ105,106の処理が補正部としての役割を果たす。
これらのステップ105,106の処理が補正部としての役割を果たす。
この後、ステップ107に進み、図11に示す規定ピーク電流到達時間Tp のマップ(所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を規定するマップ)を参照して、所定電流到達差分時間ΔTthに応じた規定ピーク電流到達時間Tp を算出する。この規定ピーク電流到達時間Tp のマップは、所定電流到達差分時間ΔTthが長いほど規定ピーク電流到達時間Tpが長くなる(所定電流到達差分時間ΔTthが短いほど規定ピーク電流到達時間Tp が短くなる)ように設定されている。規定ピーク電流到達時間Tp のマップは、予め試験データや設計データ等に基づいて作成され、ECU30のROM37に記憶されている。このステップ107の処理が規定到達時間算出部としての役割を果たす。
この後、ステップ108に進み、ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差をピーク電流到達差分時間ΔTp として算出する。
ΔTp =Tp'-Tp
前述したように、検出電流が実電流に対して低い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp よりも長くなる(Tp'>Tp )。一方、検出電流が実電流に対して高い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp よりも短くなる(Tp'<Tp )。従って、ピーク電流到達差分時間ΔTp (ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差)を算出すれば、検出電流のずれを判定することができる。このステップ108の処理が判定部としての役割を果たす。
前述したように、検出電流が実電流に対して低い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp よりも長くなる(Tp'>Tp )。一方、検出電流が実電流に対して高い側にずれた場合には、ピーク電流到達時間Tp'が規定ピーク電流到達時間Tp よりも短くなる(Tp'<Tp )。従って、ピーク電流到達差分時間ΔTp (ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差)を算出すれば、検出電流のずれを判定することができる。このステップ108の処理が判定部としての役割を果たす。
以上説明した本実施例では、ピーク電流到達時間Tp'(検出電流が目標ピーク電流Ip に到達するまでの時間)を算出すると共に、所定電流到達差分時間ΔTth(検出電流が所定電流Ithを上回ってから所定電流Ithを下回るまでの時間)を算出する。そして、予め記憶した所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を用いて、現在の所定電流到達差分時間ΔTthに対応する規定ピーク電流到達時間Tp を算出するようにしている。これにより、現在の実電流の傾きに対応する規定ピーク電流到達時間Tp を算出することができる。更に、このようにして算出した規定ピーク電流到達時間Tp を用いて、現在のピーク電流到達時間Tp'と規定ピーク電流到達時間Tp とを比較する(例えばピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差ΔTp を算出する)ようにしている。これにより、検出電流のずれを精度良く判定することができ、検出電流にずれが生じた場合に、その検出電流のずれを早期に検出することができる。
また、本実施例では、所定電流到達差分時間ΔTthとして、高電圧の通電パルスがオンになってから検出電流が所定電流Ithを上回るまでの時間(第1到達時間Tth.up )と、高電圧の通電パルスがオンになってから検出電流が所定電流Ithを下回るまでの時間(第2到達時間Tth.dn )との差分を算出するようにしている。これにより、高電圧の通電パルスがオンになったタイミングを基準にして所定電流到達差分時間ΔTth(第1到達時間Tth.up と第2到達時間Tth.dn との差分)を精度良く算出することができる。
更に、本実施例では、ピーク電流到達時間Tp'として、高電圧の通電パルスがオンになってから検出電流が目標ピーク電流Ip に到達するまでの時間を算出するようにしている。これにより、高電圧の通電パルスがオンになったタイミングを基準にしてピーク電流到達時間Tp'を精度良く算出することができる。
また、本実施例では、規定ピーク電流到達時間Tp のマップ(所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を規定するマップ)は、所定電流到達差分時間ΔTthが長いほど規定ピーク電流到達時間Tp が長くなる(所定電流到達差分時間ΔTthが短いほど規定ピーク電流到達時間Tp が短くなる)ように設定されている。これにより、所定電流到達差分時間ΔTthと規定ピーク電流到達時間Tp との関係を適正に設定することができる。
更に、本実施例では、燃料噴射弁21の駆動電圧Vreg に応じて所定電流到達差分時間ΔTthを補正するようにしている。これより、駆動電圧Vreg に応じて実電流の傾きが変化して所定電流到達差分時間ΔTthが変化するのに対応して、所定電流到達差分時間ΔTthを補正して、駆動電圧Vreg の影響を考慮した所定電流到達差分時間ΔTthを求めることができる。
その際、本実施例では、駆動電圧Vreg が高いほど所定電流到達差分時間ΔTthが小さくなる(駆動電圧Vreg が低いほど所定電流到達差分時間ΔTthが大きくなる)ように差分時間補正値ΔTth.cr (所定電流到達差分時間ΔTthの補正値)を設定するようにしている。これにより、差分時間補正値ΔTth.cr を適正値に設定することができる。
尚、上記実施例では、ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp とを比較するために、ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との差ΔTp を算出するようにしているが、これに限定されず、例えば、ピーク電流到達時間Tp'と規定ピーク電流到達時間Tp との比を算出するようにしても良い。
また、上記実施例では、所定電流到達差分時間ΔTthとして、第1到達時間Tth.up と第2到達時間Tth.dn との差分を算出するようにしたが、これに限定されず、例えば、検出電流が所定電流Ithを上回ってから所定電流Ithを下回るまでの時間を直接算出(測定)するようにしても良い。
また、上記実施例では、所定電流到達差分時間ΔTthに補正値を加算して所定電流到達差分時間ΔTthを補正するようにしたが、これに限定されず、例えば、所定電流到達差分時間ΔTthに補正値(補正係数)を乗算して所定電流到達差分時間ΔTthを補正するようにしても良い。
本開示は、筒内噴射用の燃料噴射弁を備えたシステムに限定されず、吸気ポート噴射用の燃料噴射弁を備えたシステムにも適用して実施できる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (6)
- 電磁駆動式の燃料噴射弁(21)と、前記燃料噴射弁(21)の駆動電流を検出する電流検出部(36)と、前記燃料噴射弁(21)を開弁駆動する際に前記電流検出部(36)で検出した検出電流が所定の目標ピーク電流に到達するまで前記燃料噴射弁(21)に所定電圧を印加する電流制御部(30)とを備えた内燃機関の制御装置において、
所定タイミングから前記検出電流が前記目標ピーク電流に到達するまでの時間であるピーク電流到達時間を算出する到達時間算出部(30)と、
前記検出電流が前記目標ピーク電流よりも低い所定電流を上回ってから前記検出電流が前記所定電流を下回るまでの時間である所定電流到達差分時間を算出する差分時間算出部(30)と、
前記所定電流到達差分時間と、前記検出電流が正しい場合のピーク電流到達時間である規定ピーク電流到達時間との関係を予め記憶しておく記憶部(37)と、
前記所定電流到達差分時間と前記規定ピーク電流到達時間との関係を用いて、前記差分時間算出部(30)で算出した所定電流到達差分時間に対応する規定ピーク電流到達時間を算出する規定到達時間算出部(30)と、
前記到達時間算出部(30)で算出したピーク電流到達時間と前記規定到達時間算出部(30)で算出した規定ピーク電流到達時間とを比較して前記検出電流のずれを判定する判定部(30)と
を備えている内燃機関の制御装置。 - 前記差分時間算出部(30)は、前記所定電流到達差分時間として、前記所定電圧の通電パルスがオンになってから前記検出電流が前記所定電流を上回るまでの時間と、前記通電パルスがオンになってから前記検出電流が前記所定電流を下回るまでの時間との差分を算出する請求項1に記載の内燃機関の制御装置。
- 前記到達時間算出部(30)は、前記ピーク電流到達時間として、前記所定電圧の通電パルスがオンになってから前記検出電流が前記目標ピーク電流に到達するまでの時間を算出する請求項1又は2に記載の内燃機関の制御装置。
- 前記所定電流到達差分時間と前記規定ピーク電流到達時間との関係は、前記所定電流到達差分時間が長いほど前記規定ピーク電流到達時間が長くなるように設定されている請求項1乃至3のいずれかに記載の内燃機関の制御装置。
- 前記燃料噴射弁(21)の駆動電圧に応じて前記所定電流到達差分時間を補正する補正部(30)を備えている請求項1乃至4のいずれかに記載の内燃機関の制御装置。
- 前記補正部(30)は、前記駆動電圧が高いほど前記所定電流到達差分時間が小さくなるように前記所定電流到達差分時間の補正値を設定する請求項5に記載の内燃機関の制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/514,834 US10428755B2 (en) | 2014-10-03 | 2015-09-28 | Control device for internal combustion engine |
DE112015004509.0T DE112015004509B4 (de) | 2014-10-03 | 2015-09-28 | Steuervorrichtung für eine Verbrennungsmaschine |
CN201580053471.1A CN106795826B (zh) | 2014-10-03 | 2015-09-28 | 内燃机的控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014204472A JP6413582B2 (ja) | 2014-10-03 | 2014-10-03 | 内燃機関の制御装置 |
JP2014-204472 | 2014-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051755A1 true WO2016051755A1 (ja) | 2016-04-07 |
Family
ID=55629823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004906 WO2016051755A1 (ja) | 2014-10-03 | 2015-09-28 | 内燃機関の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10428755B2 (ja) |
JP (1) | JP6413582B2 (ja) |
CN (1) | CN106795826B (ja) |
DE (1) | DE112015004509B4 (ja) |
WO (1) | WO2016051755A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10280864B2 (en) | 2015-04-27 | 2019-05-07 | Denso Corporation | Control apparatus |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6477321B2 (ja) | 2015-07-23 | 2019-03-06 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
WO2017094430A1 (ja) * | 2015-11-30 | 2017-06-08 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP6493334B2 (ja) * | 2015-11-30 | 2019-04-03 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP6642403B2 (ja) * | 2016-12-13 | 2020-02-05 | 株式会社デンソー | 燃料噴射制御装置 |
JP7110736B2 (ja) | 2018-05-31 | 2022-08-02 | 株式会社デンソー | 燃料噴射弁の制御装置、及び燃料噴射システム |
JP7155688B2 (ja) * | 2018-07-12 | 2022-10-19 | 株式会社デンソー | 燃料噴射制御装置 |
JP7428094B2 (ja) * | 2020-07-16 | 2024-02-06 | 株式会社デンソー | 噴射制御装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221121A (ja) * | 2000-02-08 | 2001-08-17 | Hitachi Ltd | 電磁式燃料噴射装置及びこれを搭載した内燃機関 |
JP2004278411A (ja) * | 2003-03-17 | 2004-10-07 | Hitachi Ltd | 内燃機関用電磁弁の駆動装置 |
JP2013002476A (ja) * | 2011-06-13 | 2013-01-07 | Denso Corp | 電磁弁駆動装置 |
WO2013191267A1 (ja) * | 2012-06-21 | 2013-12-27 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10053146A1 (de) * | 2000-10-26 | 2002-05-08 | Mann & Hummel Filter | Ansaugsystem |
JP2002147260A (ja) * | 2000-11-14 | 2002-05-22 | Honda Motor Co Ltd | 電磁バルブ制御装置 |
JP2002206446A (ja) * | 2001-01-10 | 2002-07-26 | Hitachi Ltd | 内燃機関及び内燃機関の燃料噴射制御装置 |
JP4363280B2 (ja) * | 2004-09-08 | 2009-11-11 | 株式会社デンソー | 燃料噴射装置 |
JP2008005649A (ja) * | 2006-06-23 | 2008-01-10 | Denso Corp | ピエゾアクチュエータの駆動装置 |
DE102007023898A1 (de) * | 2007-05-23 | 2008-11-27 | Robert Bosch Gmbh | Verfahren zum Ansteuern eines Einspritzventils |
JP5492806B2 (ja) * | 2011-02-25 | 2014-05-14 | 日立オートモティブシステムズ株式会社 | 電磁式燃料噴射弁の駆動装置 |
JP5851354B2 (ja) | 2012-06-21 | 2016-02-03 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
US8976893B2 (en) * | 2012-06-25 | 2015-03-10 | Telefonaktiebolaget L M Ericsson (Publ) | Predistortion according to an artificial neural network (ANN)-based model |
JP5989588B2 (ja) | 2013-04-01 | 2016-09-07 | アスモ株式会社 | 回転電機 |
US20140318498A1 (en) | 2013-04-24 | 2014-10-30 | Ford Global Technologies, Llc | System and method for injector coking diagnostics and mitigation |
-
2014
- 2014-10-03 JP JP2014204472A patent/JP6413582B2/ja active Active
-
2015
- 2015-09-28 US US15/514,834 patent/US10428755B2/en active Active
- 2015-09-28 CN CN201580053471.1A patent/CN106795826B/zh active Active
- 2015-09-28 DE DE112015004509.0T patent/DE112015004509B4/de active Active
- 2015-09-28 WO PCT/JP2015/004906 patent/WO2016051755A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221121A (ja) * | 2000-02-08 | 2001-08-17 | Hitachi Ltd | 電磁式燃料噴射装置及びこれを搭載した内燃機関 |
JP2004278411A (ja) * | 2003-03-17 | 2004-10-07 | Hitachi Ltd | 内燃機関用電磁弁の駆動装置 |
JP2013002476A (ja) * | 2011-06-13 | 2013-01-07 | Denso Corp | 電磁弁駆動装置 |
WO2013191267A1 (ja) * | 2012-06-21 | 2013-12-27 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10280864B2 (en) | 2015-04-27 | 2019-05-07 | Denso Corporation | Control apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN106795826A (zh) | 2017-05-31 |
JP6413582B2 (ja) | 2018-10-31 |
JP2016075171A (ja) | 2016-05-12 |
CN106795826B (zh) | 2019-08-16 |
DE112015004509B4 (de) | 2022-02-10 |
US10428755B2 (en) | 2019-10-01 |
US20170226951A1 (en) | 2017-08-10 |
DE112015004509T5 (de) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6413582B2 (ja) | 内燃機関の制御装置 | |
JP5754357B2 (ja) | 内燃機関の燃料噴射制御装置 | |
US9835105B2 (en) | Fuel injection control device for internal combustion engine | |
US10352264B2 (en) | Fuel injector control device | |
JP6477321B2 (ja) | 内燃機関の燃料噴射制御装置 | |
US20160138511A1 (en) | Control device for internal combustion engine | |
US11181068B1 (en) | Injection control device | |
WO2017051707A1 (ja) | 内燃機関の燃料噴射制御装置 | |
US7606650B2 (en) | In-cylinder pressure detection device and method for internal combustion engine, and engine control unit | |
JP5084570B2 (ja) | 内燃機関の燃焼状態判定方法 | |
WO2018221527A1 (ja) | 内燃機関の燃料噴射制御装置 | |
US11060474B2 (en) | Fuel injection control device | |
JP4475207B2 (ja) | 内燃機関の制御装置 | |
JPH08312515A (ja) | メタノールエンジン用グロープラグの制御装置 | |
JP6035583B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP7040432B2 (ja) | 制御装置 | |
JP7006155B2 (ja) | 燃料噴射制御装置 | |
JP5285474B2 (ja) | 内燃機関の排気ガス再循環制御方法 | |
US11384709B2 (en) | Fuel injection control device and fuel injection control method | |
JP2017072057A (ja) | 制御装置 | |
JP3182356B2 (ja) | 内燃機関の燃焼変動検出方法 | |
KR101544795B1 (ko) | 차량 엔진의 연료 분사량 보정 방법 | |
JP2015214921A (ja) | 内燃機関のスロットル制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845582 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015004509 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845582 Country of ref document: EP Kind code of ref document: A1 |