WO2016051607A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016051607A1
WO2016051607A1 PCT/JP2014/076629 JP2014076629W WO2016051607A1 WO 2016051607 A1 WO2016051607 A1 WO 2016051607A1 JP 2014076629 W JP2014076629 W JP 2014076629W WO 2016051607 A1 WO2016051607 A1 WO 2016051607A1
Authority
WO
WIPO (PCT)
Prior art keywords
air heat
length
heat exchanger
pressure loss
space
Prior art date
Application number
PCT/JP2014/076629
Other languages
English (en)
French (fr)
Inventor
正紘 伊藤
加藤 央平
拓哉 伊藤
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/076629 priority Critical patent/WO2016051607A1/ja
Priority to JP2016551464A priority patent/JP6381657B2/ja
Publication of WO2016051607A1 publication Critical patent/WO2016051607A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • the chilling unit includes a plurality of heat exchange modules, and cold water is created by exchanging heat between air and water using the heat exchange modules.
  • both ends of two air heat exchangers are bent and arranged opposite to each other to constitute a heat exchange module, and a plurality of the heat exchange modules are arranged in a straight line. It has a structure (see, for example, Patent Document 1).
  • multiple chilling units with a single-row structure may be centrally installed.
  • the chilling unit On the roof where the chilling unit is arranged, other water supply / drainage facilities and the like are also installed. Therefore, it is necessary to install a plurality of chilling units within a limited installation area.
  • the chilling units When the chilling units are centrally installed in such a limited installation area, the chilling units must be installed close to each other. In this case, there is a problem that a sufficient space for sucking in air to be passed through the air heat exchanger cannot be obtained, the air volume is reduced, and the cooling capacity is reduced as compared with the case where the unit is installed.
  • JP 2013-160445 A pages 6 to 8, FIG. 2, FIG. 5, FIG. 6)
  • the outer dimensions of the chilling unit are limited by the installation area of the installation destination and the transportation means, it is required to secure the air volume while designing the heat exchange module within the limited outer dimensions. Further, in recent chilling units, mainstream ones are generally determined to have a predetermined size. In manufacturing a heat exchange module that fits within the size, the end length, which is the length from each bending position to the end of the air heat exchanger, has a minimum length (200 mm) that can be bent, It is required to design the air heat exchanger in consideration of this minimum length.
  • Patent Document 1 two air heat exchangers are inclined in the height direction and arranged in a substantially V shape in front view. With this structure, even if multiple chilling units are installed in a concentrated manner, it is possible to secure a suction space between the air heat exchangers between adjacent chilling units, which is considered effective in suppressing performance degradation. It is done.
  • Patent Document 1 does not mention air volume evaluation when chilling units are centrally installed. Therefore, in the heat exchange module designed without performing the air volume evaluation in this way, even if the two air heat exchangers are arranged in a substantially V shape in front view, the performance deterioration cannot be sufficiently suppressed. Is the current situation.
  • This invention is made in view of such a problem, and it aims at providing the refrigerating-cycle apparatus which can ensure the air volume in the case of installing a refrigerating-cycle apparatus centrally.
  • a machine room in which equipment constituting the refrigerant circuit is housed is formed, and a housing extending in the first direction and a plurality of housings in the first direction at the top of the housing,
  • Two refrigeration cycle apparatuses having a heat exchange module arranged and a fan arranged on top of the heat exchange module, the heat exchange modules being arranged to face each other in a second direction orthogonal to the first direction
  • Each of the two air heat exchangers is bent at two locations and is configured in a U shape in plan view, or bent at one location and L-shaped in plan view So as to be inclined with respect to each other so as to be V-shaped when viewed from the first direction, and the arrangement position in the second direction of the upper end portion of the V-shape follows a predetermined external dimension.
  • each of the two air heat exchangers is When the refrigeration cycle apparatuses are juxtaposed in the second direction, the pressure loss of the gap space between the air heat exchangers of the adjacent refrigeration cycle apparatuses can be reduced from two bent positions or one end of the air heat exchanger to the end. It has an end portion length, a bending angle at the bending position, and an inclination angle of the air heat exchanger, which are equal to or less than the pressure loss of the gap space when the end portion length is 200 mm.
  • FIG. 1 is an external view in which chilling units 1 according to Embodiment 1 of the present invention are centrally installed. It is a figure which shows the refrigerant circuit of the chilling unit 1 which concerns on Embodiment 1 of this invention. It is a top view of the heat exchange module 10 of the chilling unit 1 according to Embodiment 1 of the present invention. It is a front view of the heat exchange module 10 of the chilling unit 1 which concerns on Embodiment 1 of this invention. It is a geometric structure top view of air heat exchanger 11 of chilling unit 1 concerning Embodiment 1 of the present invention. It is a geometric structure front view of the air heat exchanger 11 of the chilling unit 1 which concerns on Embodiment 1 of this invention.
  • FIG. 1 is an external view in which chilling units 1 according to Embodiment 1 of the present invention are centrally installed.
  • the arrows indicate the flow of air.
  • the front side in FIG. 1 is defined as the front, and the top, bottom, left, right, front, back, near, and back are defined based on this front.
  • FIG. 2 is a diagram illustrating a refrigerant circuit of the chilling unit 1 according to Embodiment 1 of the present invention.
  • FIG. 1 shows an example in which a plurality (two in this case) of chilling units 1 (1a, 1b) are installed in parallel.
  • the chilling unit 1a and the chilling unit 1b have the same configuration, and are installed on a rectangular installation surface that is long in the first direction.
  • the chilling unit 1 includes a housing 2 having a machine room 2a formed therein and extending in the first direction, and a plurality of heat exchange modules 10 arranged in the first direction at the top of the housing 2;
  • Each of the heat exchange modules 10 includes a plurality of fans 20 for blowing air.
  • a configuration is shown in which two chilling units 1 having a configuration in which a plurality of heat exchange modules 10 are arranged in the first direction are arranged in parallel in a second direction orthogonal to the first direction.
  • the number of heat exchange modules 10 in one chilling unit and the number of chilling units 1 arranged in parallel are arbitrary.
  • a compressor 3, a four-way valve 4, a water heat exchanger 5 and an expansion valve 6 are arranged inside the machine room 2a. And the compressor 3, the four-way valve 4, the water heat exchanger 5, the expansion valve 6, and the air heat exchanger 11 are connected in series by refrigerant
  • the water heat exchangers 5 of the chilling unit 1a and the chilling unit 1b are connected in parallel by water pipes, and water in the water pipe passes through the water heat exchanger 5 by a water pump unit (not shown). And is configured to circulate to a load side unit (not shown).
  • the chilling unit 1 has a cooling operation in which the air heat exchanger 11 functions as a condenser and the water heat exchanger 5 functions as an evaporator, and the air heat exchanger 11 functions as an evaporator and a water heat exchanger 5 by switching the four-way valve 4. It is possible to switch to heating operation that functions as a condenser.
  • cold water is generated by the water heat exchanger 5, for example, this cold water is supplied to a load side unit (not shown) to cool the load side (indoor side) air, thereby cooling the room.
  • hot water is generated by the water heat exchanger 5, for example, this hot water is supplied to a load side unit (not shown) to heat the load side (indoor side) air, thereby heating the room.
  • the fan 20 is disposed above the heat exchange module 10. By letting external air pass through the heat exchange module 10 by the fan 20, the air and the refrigerant in the heat exchange module 10 are subjected to heat exchange, and the air after heat exchange is discharged from above.
  • the chilling unit 1 is assumed to have a “top flow configuration” in which the blowout side of the fan 20 faces upward.
  • FIG. 3 is a top view of the heat exchange module 10 of the chilling unit 1 according to Embodiment 1 of the present invention.
  • FIG. 4 is a front view of the heat exchange module 10 of the chilling unit 1 according to Embodiment 1 of the present invention. 3 and 4, the alternate long and two short dashes line indicates a rectangle having a preset external dimension for one heat exchange module. This rectangle is a rectangle that is long in the first direction.
  • the heat exchange module 10 has a configuration in which two air heat exchangers 11 (11a, 11b) are arranged to face each other in the second direction.
  • the air heat exchangers 11a and 11b have the same structure.
  • the two air heat exchangers 11a and 11b are in a direction in which the air heat exchanger 11 stands on the basis of the installation surface 30a (see FIG. 1) so as to be substantially V-shaped when viewed from the front side (first direction side).
  • the air heat exchanger 11 has a configuration in which a heat transfer tube is penetrated by a plurality of fins arranged in parallel in the first direction at intervals.
  • the air heat exchanger 11 is formed such that both ends in the first direction are bent from the both ends at the positions of the end length g and the end length h, and the ends 12a and 12b. And is formed in a substantially U shape in plan view.
  • the two air heat exchangers 11 are arranged so as to be substantially V-shaped when viewed from the front side, and the opening width of the V-shape is full of the limit of the external dimensions shown by the two-dot chain line. It is comprised so that it may become.
  • the arrangement position of the V-shaped upper end portion in the second direction is along the outer dimension, and when viewed in plan, the connecting portion 12 c has the outer dimension (rectangular). It arrange
  • the bending angle at the position of the end length g from one end (one end on the front side) of the air heat exchanger 11 is the bending angle b, and at the position of the end length h from the other end of the air heat exchanger 11. Is called a bending angle c.
  • the bending angle b and the bending angle c are 90 ° or more and less than 180 °.
  • the number of bending portions is two, but the number of bending portions may be two or less and may be one. Even when the number of the bent portions is one, the two air heat exchangers 11 are configured so that the V-shaped opening width reaches the limit of the outer dimension indicated by the two-dot chain line.
  • the front surface area k of the heat exchange module 10 for obtaining the necessary refrigeration capacity as a whole is determined.
  • the front surface area k corresponds to the area of the air heat exchanger 11 when the state before the air heat exchanger 11 is bent is viewed from the second direction side.
  • the overall dimensions of the chilling unit 1 are determined in advance, and the external dimensions (lateral dimension d, depth dimension e, height dimension f) (see FIG. 1 and FIG. 5 described later) of the heat exchange module 10 are also determined in advance. It has been decided.
  • the installation dimension is a mainstream having a lateral dimension d of 1080 mm and a back dimension e0 (see FIG. 1) of 3400 mm.
  • the dimensions are designed on the assumption that the end length g is 200 mm or more.
  • the air heat exchanger 11 has an optimum configuration (end length g, end length) that can obtain the maximum air flow when the chilling unit 1 is centrally installed in such a dimensional restriction. It is to obtain a height h, a bending angle b, a bending angle c, and a tilt angle q).
  • the form of the air heat exchanger 11 that can reduce the pressure loss (ventilation resistance) of the air passing through the gap space S formed between the heat exchange modules 10 adjacent to each other in the second direction is determined as the optimum form. . If the pressure loss is minimized, even if the rotational speed of the fan 20 is the same, the amount of air obtained is increased, and the performance of the chilling unit 1 can be improved.
  • the total pressure loss index aj in the gap space S can be derived as an equation using the end length g, the bending angle b, and the tilt angle q as variables using the respective constraint conditions.
  • FIG. 5 is a top view of the geometric structure of the air heat exchanger 11 of the chilling unit 1 according to Embodiment 1 of the present invention.
  • FIG. 5 is a plan view of the state in which it is assumed that the air heat exchanger 11 is not inclined at the angle q and is erected vertically as indicated by a dotted line in FIG.
  • FIG. 6 is a front view of the geometric structure of the air heat exchanger 11 of the chilling unit 1 according to Embodiment 1 of the present invention.
  • Table 1 is a table in which names (items) of variables (parameters) used in deriving a formula of the total pressure loss index aj, a relational formula (formula) of the item, and a unit. Refer to Table 1 as appropriate for the mathematical formulas of the parameters that appear in the following description.
  • the horizontal dimension d, depth dimension e, and height dimension f are defined by restrictions on the installation area. Further, as described above, the front surface area k is defined by the design matters necessary for the refrigeration cycle apparatus to output the necessary refrigeration capacity.
  • the bending angle b and the bending angle c are the same value, and the end length g and the end length h are also the same value.
  • FIG. 7 is a plan view of the gap space S in the chilling unit 1 according to Embodiment 1 of the present invention.
  • the gap space S is formed by the first space S1, the second space S2, and the third space S3.
  • the first space S ⁇ b> 1 is a space formed between the end portions 12 a in the adjacent chilling units 1.
  • the second space S2 is a space formed between the connecting portions 12c of the adjacent heat exchange modules 10.
  • the third space S3 is a space formed between the end portions 12b of the adjacent heat exchange modules 10.
  • the total pressure loss index aj is the pressure loss index of the air flow (first direction air flow) in the first space S1, the pressure loss index of the air flow (first direction air flow) in the second space S2, and the third space S3. And a pressure loss index of the air flow (air flow in the first direction) at. Since the pressure loss index in the first space S1 and the pressure loss index in the third space S3 are the same, the pressure loss index (end portion flow direction pressure loss index) ai in the first space S1 and the pressure loss index in the second space S2 will be described below. The calculation with (connecting portion flow direction pressure loss index) ad will be described sequentially.
  • the pressure loss of the air passing through the flow path can be expressed by the formula (1) using the square of the flow path diameter, the flow path length, and the flow velocity from the Darcy-Weissbach formula.
  • the end portion flow direction length ag corresponding to the flow path length of the first space S1 is a right triangle having an end portion length g as a hypotenuse and an angle obtained by subtracting the bending angle b from 180 ° as one angle. It can be calculated as the length in the first direction. Further, the connecting portion length i corresponding to the flow path length of the second space S2 can be calculated by subtracting twice the end portion flow direction length ag from the back dimension e which is a constraint value.
  • the flow path diameter of the first space S1 is calculated by first calculating the volume u of the first space S1 by a method to be described later, and dividing the first space volume u by the end flow direction length ag to obtain the ends 12a and 12b.
  • the average unit area (edge average flow area) ae in the air flow direction is calculated.
  • the end average flow area ae is regarded as a circle, and an equation is established that the end average flow area ae is equal to the area obtained from the end equivalent diameter af and the circle area formula. af is calculated. This end equivalent diameter af becomes the flow path diameter of the first space S1.
  • the flow path diameter of the second space S2 is calculated by the method described later, the volume v of the second space S2 is divided by the connecting portion length i, and the air flow in the connecting portion 12c.
  • the average unit area (the average flow area of the connecting portion) z in the direction is calculated.
  • the connecting portion average flow area z is regarded as a circle, and an equation is established that the connecting portion average flow area z is equal to the area obtained from the connecting portion equivalent diameter aa and the circle area formula. aa is calculated.
  • This connecting portion equivalent diameter aa is the flow path diameter of the second space S2.
  • the first space volume u is calculated assuming that the bottom surface is a trapezoid and the top surface is a triangular frustum.
  • the area of the triangular portion indicated by hatching inclined downward to the right corresponds to the upper surface area s of the first space S1.
  • the area of the trapezoidal portion shown by the triangular portion shown by hatching inclined in the lower right direction and the portion shown by the vertical hatching in the first space S1 of FIG. 7 is the bottom surface area t of the first space S1. Equivalent to.
  • each parameter is determined using the fact that the front surface area k and the outer dimensions (lateral dimension d, depth dimension e, height dimension f) are defined. Equations for the actual lateral dimension r and the actual height p are calculated using g, h, bending angles b, c, and tilt angle q) as variables. This will be described sequentially. In the following, please refer to FIGS. 5 and 6 and Table 1 as appropriate.
  • the actual lateral dimension r is obtained by adding the lateral dimension r1 of the air heat exchanger 11a and the lateral dimension r1 of the air heat exchanger 11b.
  • the lateral dimension r1 is the lateral dimension r1a calculated using the air heat exchanger height l and the tilt angle q, and the apparent length of the end 12a when the air heat exchanger 11a is viewed from the front. It is obtained by adding the horizontal dimension r1b calculated using d1 and the tilt angle q.
  • the air heat exchanger height l is the height of the air heat exchanger 11 itself which does not change even if the air heat exchanger 11 is tilted in the height direction, unlike the actual height p described later.
  • the air heat exchanger height l can be calculated by dividing the front surface area k by the total length of the air heat exchanger 11 in the first direction (hereinafter, fin stacking length j).
  • the apparent length d1 when the end portion 12a is viewed from the front direction is such that the end length g is shortened when the bending angle b exceeds 90 °. That is, when the bending angle b is 90 °, the apparent length d1 when the end portion 12a is viewed from the front direction coincides with the end length g of the end portion 12a, but the bending angle b exceeds 90 °.
  • the length d1 is shorter than the end length g by the bending height dimension o.
  • the bending height dimension o can be calculated using the bending height angle m and the base length n of the isosceles triangle.
  • the bending height angle m and the base length n can be calculated using the fact that the triangle formed by the vertex ABC is an isosceles triangle, and as a result, the length d1 can be calculated.
  • the air heat exchanger height l and length d1 can be calculated as described above, the lateral dimension r1a and the lateral dimension r1b can be calculated, and the lateral dimension r1 can be calculated. Then, twice the lateral dimension r1 is the actual lateral dimension r, and the actual lateral dimension r can be expressed by an equation using each parameter (end length g, bending angle b, tilt angle q). Then, by substituting the lateral dimension d of the outer dimension, which is a prescribed value, into the actual lateral dimension r of this mathematical formula, a mathematical formula with three parameters of end length g, bending angle b, and tilt angle q as variables is obtained. .
  • this mathematical expression can be modified to express the tilt angle q by a mathematical expression with the end length g and the bending angle b as variables.
  • the actual height p can be obtained by adding the height p1 and the height p2.
  • the tilt angle q and the actual height p obtained here are used when calculating the first space volume u and the second space volume v.
  • the first space volume u can be calculated from a formula for calculating the volume of the frustum using the top surface area s, the bottom surface area t, and the height p2 of the first space S1.
  • the first space volume u calculated in this way is used for the calculation of the channel diameter described above.
  • the second spatial volume v is a frustum whose bottom surface is a rectangle ss (short side length is twice the horizontal dimension r1a and long side length is the connecting portion length i) indicated by hatching in the upper right direction in FIG.
  • the volume can be calculated as
  • the flow velocity (end portion flow direction wind speed ah) of the first space S1 can be calculated using the end portion average flow area ae. Further, the flow velocity (connecting portion flow direction wind speed ac) of the second space S2 can be calculated using the connecting portion average flow area z.
  • Total pressure loss index aj As described above, the flow path length, the flow path diameter, and the flow velocity of each of the first space S1 and the second space S2 are mathematical expressions using the parameters of the bending angle b, the end length g, and the tilt angle q. Can express. Therefore, the total pressure loss index aj, which is the sum of the pressure loss indexes of the first space S1, the second space S2, and the third space S3, is expressed by a mathematical formula using parameters of the bending angle b, the end length g, and the tilt angle q. it can.
  • the dimension of the necessary portion was calculated in the midway calculation, but the total pressure loss index aj is finally based on the constraint conditions of the lateral dimension d, the back dimension e, the height dimension f, and the front surface area k, and the bending angle b, end length It can be expressed by mathematical expressions using the parameters of the angle g and the inclination angle q.
  • the air heat exchange mode that minimizes the total pressure loss index aj is the optimum mode of the air heat exchanger 11.
  • FIG. 11 is a diagram showing the relationship between the bending angle b and the total pressure loss index aj with respect to the end length g in the chilling unit 1 according to the first embodiment of the present invention.
  • 8 to 11 are related to each other and are assumed to be established at the same time.
  • 8 to 11 show the above relationship when the end length g is 100 mm, 200 mm, 300 mm, 400 mm, 500 mm, and 600 mm, respectively.
  • the lateral dimension d / 2 of the outer dimensions of the air heat exchanger 11 is 540 mm
  • the depth dimension e is 850 mm
  • the height dimension f 1600 mm
  • the front area k is 1.6 m 2 .
  • the calculation results are shown by way of example.
  • FIGS. 8 to 11 will be described sequentially.
  • the actual lateral dimension r can be expressed by a mathematical formula using parameters of the bending angle b, the end length g, and the tilt angle q, and the tilt angle q can be obtained by substituting a specified value for the actual lateral dimension r.
  • the tilt angle q is 90 ° or more.
  • the front surface area k increases.
  • the tilt angle q increases (approaches the vertical shape).
  • FIG. 9 As shown in FIG. 9, when the bending angle b is increased, the connecting portion length i is shortened due to the restriction of the lateral dimension d.
  • a line having an end length g of 600 mm has a connection portion length i of about 0 mm at a bending angle of about 135 °.
  • the air heat exchanger 11 is meant.
  • FIG. 10 As shown in FIG. 10, when the bending angle b is increased, the actual height p increases due to the restriction of the front surface area k. Further, the longer the end length g, the lower the actual height p due to the restriction of the front surface area k. The actual height p is less than 1200 mm due to the restriction of the height dimension f. The reason why the graphs are unnaturally cut with respect to the increase in the bending angle b in FIGS. 8 to 10 is due to the height restriction due to the actual height p.
  • FIG. As described above, the total pressure loss index aj is derived as an equation using the end length g, the bending angle b, and the tilt angle q as variables. Based on the formula of the total pressure loss index aj and the formula of the tilt angle q, the total pressure loss index aj is expressed by a formula using the end length g and the bending angle b as variables. And the graph which changed the bending angle b for every edge part length g and calculated
  • the optimum specification is determined by obtaining a combination of parameters (end length g, bending angle b, tilt angle q) that cause the total pressure loss index aj to be a predetermined value or less.
  • the first embodiment is based on the premise that the end length g is 200 mm or more as described above. Therefore, the predetermined value of the total pressure loss index aj in determining the optimum specification is a value that takes into account the pressure loss of the gap space S when the end length g is 200 mm. This will be specifically described below.
  • the total pressure loss index aj increases as the end length g is increased. However, if the bending angle b is increased even if the end length g is increased, the total pressure loss index aj is increased. Can be reduced. Therefore, the relationship between the end length g and the bending angle b when the end length g is 200 mm or more so that the total pressure loss index aj or less and greater than 0 when the end length g is the minimum 200 mm can be satisfied. Ask for. Since the total pressure loss index aj when the end length g is the minimum 200 mm has a range, the predetermined value may be any value within the range. In the example of FIG.
  • FIG. 12 is a diagram in which the intersections of the end length g and the bending angle b are plotted when the end length g is 200 mm or more when the total pressure loss index is 12 (m / s) 2 in FIG. .
  • the curve in FIG. 12 is an approximate line passing through each plot point.
  • the end length g and the bending angle b which are located in the region above the approximate line, If there is a relationship, the total pressure loss index can be 12 (m / s) 2 or less. This relationship is the same even if the front surface area k changes.
  • the design satisfies the relationship between the end length g and the bending angle b, which is equal to or less than the pressure loss when the end length g is 200 mm, the total pressure loss index aj can be reduced in recent years.
  • a chilling unit 1 can be realized. If the end length g and the bending angle b are determined, the tilt angle q is also determined based on FIG.
  • the chilling unit 1 when the chilling unit 1 is centrally installed, it is possible to minimize the pressure loss of the air passing between the adjacent chilling units 1 in terms of geometrical air heat.
  • the bending angle b, end length g, and tilt angle q of the exchanger 11 are determined.
  • the chilling unit 1 having the heat exchange module 10 designed by this design method can secure the air volume in the gap space S even when a plurality of chilling units 1 are installed in a concentrated manner, and the performance is deteriorated as compared with the case of single installation. Can be suppressed.
  • the air heat exchanger 11 by designing the air heat exchanger 11 to have the end length g, the bending angle b, and the tilt angle q, which are obtained on condition that the end length g is equal to or less than the pressure loss when the end length g is 200 mm, In recent years, a chilling unit 1 having a mainstream size capable of reducing the total pressure loss index aj can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 熱交換モジュール10は第1方向と直交する第2方向に互いに対向配置された2枚の空気熱交換器11を有し、2枚の空気熱交換器11のそれぞれは、2箇所で曲げられて平面視でU字状に構成されるか、又は1箇所で曲げられて平面視でL字状に構成されると共に、互いに傾斜して第1方向から見てV字状であり、且つ、そのV字の上端部分の第2方向の配置位置が、予め決定された外形寸法に沿うように配置され、また、2枚の空気熱交換器11のそれぞれは、冷凍サイクル装置1を第2方向に並設した場合に隣合う冷凍サイクル装置1同士の空気熱交換器11間の隙間空間の圧損を、空気熱交換器11の2箇所又は1箇所の各曲げ位置から端までの長さである端部長さが200mmの場合の隙間空間の圧損以下とする、端部長さgと、曲げ位置での曲げ角度bと、空気熱交換器11の傾け角度qとを有する。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関するものである。
 従来より、冷凍サイクル装置として、冷水を作成するチリングユニットがある。チリングユニットは複数の熱交換モジュールを備えており、熱交換モジュールで空気と水とを熱交換することで冷水を作成している。この種のチリングユニットは、2枚の空気熱交換器のそれぞれの両端部を折り曲げ、互いに対向配置して熱交換モジュールを構成しており、その熱交換モジュールを複数、直線的に配置して一列構造を成している(例えば、特許文献1参照)。
 大型施設においては、一列構造のチリングユニットを複数台、集中設置することがある。チリングユニットが配置される例えば屋上などには、他の給排水設備等も設置されることから、限られた設置面積内に複数台のチリングユニットを設置する必要がある。このように限られた設置面積内にチリングユニットを集中設置する場合、チリングユニット同士を近接して設置せざるを得ない。この場合、空気熱交換器に通過させる空気の吸い込みスペースが十分に取れず、風量が低下して単体設置時に比べて冷却能力が低下するなどの問題が生じる。
特開2013-160445号公報(第6頁-第8頁、図2、図5、図6)
 ところで、チリングユニットは、設置先の設置面積及び輸送手段によって外形寸法が制限されることから、その制限された外形寸法内に熱交換モジュールが収まる設計としつつ、風量を確保することが求められる。また、近年のチリングユニットにおいて、主流のものは外形寸法が所定のサイズに概ね決まっている。そのサイズ内に収まる熱交換モジュールを製造するにあたり、空気熱交換器の各曲げ位置から端までの長さである端部長さは、曲げ加工可能な最低長さ(200mm)を有しており、この最低長さを考慮して空気熱交換器を設計することが求められる。
 また、チリングユニットにおける空気熱交換器の選定においては、まず必要冷凍能力を得るための空気熱交換器の管外伝熱面積と前面面積(空気の吸込み面の面積)とを決めるのが一般的である。よって、チリングユニットを構成するにあたっては、外形寸法及び空気熱交換器の前面面積の両方の制約を考慮した設計が行われる。
 特許文献1では、2枚の空気熱交換器を高さ方向に傾けて正面視で略V字状に配置している。この構造とすれば、複数台のチリングユニットを集中設置しても、隣合うチリングユニット同士の空気熱交換器間の吸い込みスペースを確保することができ、性能低下の抑制に効果的であると考えられる。しかし、特許文献1では、チリングユニットを集中設置した場合の風量評価について言及されていない。よって、このように風量評価がなされないまま設計された熱交換モジュールでは、2枚の空気熱交換器を正面視で略V字状に配置しても、性能低下を十分に抑制できていないのが現状である。
 本発明は、このような問題点に鑑みてなされたものであり、冷凍サイクル装置を集中設置する場合の風量を確保することが可能な冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、冷媒回路を構成する機器が収納される機械室が内部に形成され、第1方向に延びた形状の筐体と、筐体の上部において第1方向に複数、配置された熱交換モジュールと、熱交換モジュールの上部に配置されたファンとを有する冷凍サイクル装置であって、熱交換モジュールは、第1方向と直交する第2方向に互いに対向配置された2枚の空気熱交換器を有し、2枚の空気熱交換器のそれぞれは、2箇所で曲げられて平面視でU字状に構成されるか、又は1箇所で曲げられて平面視でL字状に構成されると共に、互いに傾斜して第1方向から見てV字状であり、且つ、そのV字の上端部分の第2方向の配置位置が、予め決定された外形寸法に沿うように配置され、また、2枚の空気熱交換器のそれぞれは、冷凍サイクル装置を第2方向に並設した場合に隣合う冷凍サイクル装置同士の空気熱交換器間の隙間空間の圧損を、空気熱交換器の2箇所又は1箇所の各曲げ位置から端までの長さである端部長さが200mmの場合の隙間空間の圧損以下とする、端部長さと、曲げ位置での曲げ角度と、空気熱交換器の傾け角度とを有するものである。
 本発明によれば、冷凍サイクル装置を集中設置する場合の風量を確保することが可能な冷凍サイクル装置を得ることができる。
本発明の実施の形態1に係るチリングユニット1が集中設置された外観図である。 本発明の実施の形態1に係るチリングユニット1の冷媒回路を示す図である。 本発明の実施の形態1に係るチリングユニット1の熱交換モジュール10の上面図である。 本発明の実施の形態1に係るチリングユニット1の熱交換モジュール10の正面図である。 本発明の実施の形態1に係るチリングユニット1の空気熱交換器11の幾何学構造上面図である。 本発明の実施の形態1に係るチリングユニット1の空気熱交換器11の幾何学構造正面図である。 本発明の実施の形態1に係るチリングユニット1における隙間空間Sを平面的に見た図である。 本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する傾け角度qとの関係を示した図である。 本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する連結部長さiとの関係を示した図である。 本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する実高さpとの関係を示した図である。 本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する全圧損指標ajとの関係を示した図である。 図11において、全圧損指標が12(m/s)となるときの、端部長さgが200mm以上での、端部長さgと曲げ角度との交点をプロットした図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 以下、冷凍サイクル装置の一例であるチリングユニットの構成を説明する。
実施の形態1.
(構成)
○外観
 図1は、本発明の実施の形態1に係るチリングユニット1が集中設置された外観図である。図1において矢印は空気の流れを示している。なお、以下では、図1の手前側を正面とし、この正面を基準として上下、左右、前後、手前、奥、を規定するものとする。図2は、本発明の実施の形態1に係るチリングユニット1の冷媒回路を示す図である。
 図1には、チリングユニット1(1a、1b)が並列に複数台(ここでは2台)設置された例を示している。チリングユニット1aとチリングユニット1bとは同じ構成であり、第1方向に長い長方形形状の設置面にそれぞれ設置される。チリングユニット1は、機械室2aが内部に形成され、第1方向に延びた形状の筐体2と、筐体2の上部において第1方向に複数、配置された複数の熱交換モジュール10と、各熱交換モジュール10のそれぞれに空気を送風する複数のファン20と、を備えている。
 ここでは、複数の熱交換モジュール10が第1方向に4つ配置された構成のチリングユニット1を第1方向に直交する第2方向に2つ並設した構成を示している。しかし、チリングユニット1台における熱交換モジュール10の個数、及びチリングユニット1の並設数は任意である。
 機械室2aの内部には圧縮機3、四方弁4、水熱交換器5及び膨張弁6が配置されている。そして、圧縮機3、四方弁4、水熱交換器5、膨張弁6及び空気熱交換器11が冷媒配管にて直列に接続されて冷媒回路が構成されている。また、チリングユニット1aとチリングユニット1bのそれぞれの水熱交換器5は水配管にて並列に接続され、水配管内の水が水ポンプユニット(図示せず)により水熱交換器5を通過して負荷側ユニット(図示せず)に循環するように構成される。
 チリングユニット1は、四方弁4の切り換えにより、空気熱交換器11が凝縮器、水熱交換器5が蒸発器として機能する冷房運転と、空気熱交換器11が蒸発器、水熱交換器5が凝縮器として機能する暖房運転との切り換えが可能である。冷房運転では、水熱交換器5で冷水を生成し、例えばこの冷水を負荷側ユニット(図示せず)に供給して負荷側(室内側)の空気を冷却し、室内の冷房を行う。また、暖房運転では、水熱交換器5で温水を生成し、例えばこの温水を負荷側ユニット(図示せず)に供給して負荷側(室内側)空気を加熱し、室内の暖房を行う。
 ファン20は熱交換モジュール10の上方に配置されている。このファン20により外部の空気を熱交換モジュール10に通過させることで、空気と熱交換モジュール10内の冷媒とを熱交換させ、熱交換後の空気を上方から排出する。このチリングユニット1はファン20の吹き出し側が上方を向いている「トップフロー形態」であるものとする。
○空気熱交換器
 図3は、本発明の実施の形態1に係るチリングユニット1の熱交換モジュール10の上面図である。図4は、本発明の実施の形態1に係るチリングユニット1の熱交換モジュール10の正面図である。図3及び図4において二点鎖線は熱交換モジュール1台分の予め設定された外形寸法の長方形を示している。この長方形は第1方向に長い長方形となっている。
 熱交換モジュール10は、2枚の空気熱交換器11(11a、11b)が第2方向に互いに対向して配置された構成を有している。空気熱交換器11a、11bは同じ構造である。2枚の空気熱交換器11a、11bは、正面側(第1方向側)から見て略V字状になるように設置面30a(図1参照)を基準に空気熱交換器11が立つ方向に角度q(以下、傾け角度qという)で互いに傾斜している。
 空気熱交換器11は、第1方向に間隔を空けて並設された複数のフィンに伝熱管が貫通された構成を有している。そして、空気熱交換器11は、第1方向の両端が、その両端から端部長さg、端部長さhの位置で曲げられて形成された端部12a、12bと、端部12a、12b間を連結する連結部12cとを有し、平面視で略U字状に形成されている。2枚の空気熱交換器11は上述したように正面側からみて略V字状になるように配置されており、そのV字の開き幅は、二点鎖線で示した外形寸法の限度いっぱいとなるように構成されている。すなわち、2枚の空気熱交換器11は、V字の上端部分の第2方向の配置位置が外形寸法に沿っており、平面的に見たときに、連結部12cが外形寸法(長方形)の長辺に接触するように配置されている。
 なお、以下では、空気熱交換器11の一端(正面側の一端)から端部長さgの位置での曲げ角度を曲げ角度b、空気熱交換器11の他端から端部長さhの位置での曲げ角度を曲げ角度cという。曲げ角度b、曲げ角度cは90°以上、180°未満とされる。ここでは、曲げ箇所が2箇所としているが、曲げ箇所は2箇所以下であればよく、1箇所でもよい。なお、曲げ箇所が1箇所の場合も、2枚の空気熱交換器11は、V字の開き幅が二点鎖線で示した外形寸法の限度いっぱいとなるように構成される。
 空気熱交換器11の寸法設計においては、上述したように、まず、熱交換モジュール10全体として必要冷凍能力を得るための熱交換モジュール10の前面面積kが決められる。この前面面積kは、空気熱交換器11を曲げる前の状態を第2方向側から見た場合の空気熱交換器11の面積に相当する。また、チリングユニット1全体の外形寸法は予め決められており、熱交換モジュール10部分の外形寸法(横寸法d、奥寸法e、高さ寸法f)(図1及び後述の図5参照)も予め決められている。
 また、チリングユニット1では設置寸法で横寸法dが1080mm、奥寸法e0(図1参照)が3400mmの大きさのものが主流になってきている。なお、1チリングユニットにおいて空気熱交換器11の枚数は8枚が一般的であり、空気熱交換器11の1枚辺りの横寸法d/2は1080/2=540mm、奥寸法eは3400/4=850mmとなる。この設置寸法内に収まる熱交換モジュール10を製造するにあたり、端部長さgを200mm未満とすることは曲げ加工上、困難である。よって、端部長さgを200mm以上とすることを前提として、寸法設計する。
 本発明の特徴は、このような寸法制約があるなか、チリングユニット1を集中設置した場合に風量を最大限、得ることが可能な空気熱交換器11の最適形態(端部長さg、端部長さh、曲げ角度b、曲げ角度c、傾け角度q)を得ることにある。具体的には、第2方向に互いに隣合う熱交換モジュール10間に形成される隙間空間Sを通過する空気の圧損(通風抵抗)を低減できる空気熱交換器11の形態を最適形態として決定する。圧損が最小となれば、ファン20の回転数が同じでも、得られる風量が増加し、チリングユニット1の性能を向上することができる。
 以下、空気熱交換器11の幾何学構造を規定する複数のパラメータについてまず説明する。そして次に、曲げ角度b、曲げ角度c、端部長さg、端部長さh、傾け角度qの入力パラメータと、外形寸法(横寸法d、奥寸法e、高さ寸法f)及び前面面積kのそれぞれの制約条件とを用いて、隙間空間Sにおける全圧損指標ajが、端部長さg、曲げ角度b及び傾け角度qを変数とした数式として導き出せることを説明する。
○空気熱交換器の幾何学構造
 図5は、本発明の実施の形態1に係るチリングユニット1の空気熱交換器11の幾何学構造上面図である。なお、図5は、空気熱交換器11が角度qで傾いておらず、図6の点線のように垂直に立設していると仮定した状態の平面図である。図6は、本発明の実施の形態1に係るチリングユニット1の空気熱交換器11の幾何学構造正面図である。表1は、全圧損指標ajの数式を導き出すにあたって用いられる各変数(パラメータ)の名称(項目)と、その項目の関係式(数式)と、単位とをまとめた表である。以下の説明において登場する各パラメータの数式については適宜表1を参照されたい。
Figure JPOXMLDOC01-appb-T000001
 横寸法d、奥寸法e、高さ寸法fは設置面積の制約により規定される。また前面面積kは上述したように冷凍サイクル装置が必要冷凍能力を出力するために必要な設計事項により規定される。以下では、空気熱交換器11の加工容易性の観点から、曲げ角度bと曲げ角度cとは同値であり、また、端部長さgと端部長さhとも同値であるものとする。
 図7は、本発明の実施の形態1に係るチリングユニット1における隙間空間Sを平面的に見た図である。
 隙間空間Sは、第1空間S1と、第2空間S2と、第3空間S3とから形成される。第1空間S1は、隣合うチリングユニット1における端部12a同士の間に形成される空間である。第2空間S2は、隣合う熱交換モジュール10の連結部12c同士の間に形成される空間である。第3空間S3は、隣合う熱交換モジュール10の端部12b同士の間に形成される空間である。
 全圧損指標ajは、第1空間S1における空気流(第1方向の空気流)の圧損指標と、第2空間S2における空気流(第1方向の空気流)の圧損指標と、第3空間S3における空気流(第1方向の空気流)の圧損指標とを加算した値となる。第1空間S1における圧損指標と第3空間S3における圧損指標とは同じであるため、以下では、第1空間S1における圧損指標(端部流れ方向圧損指標)aiと、第2空間S2における圧損指標(連結部流れ方向圧損指標)adとの算出について順次説明する。
 一般的に流路を通過する空気の圧損は、ダルシー・ワイズバッハの式より、流路直径と流路長さと流速の二乗を用いて(1)式のように表現できる。
Figure JPOXMLDOC01-appb-M000002
 よって、全圧損指標ajを各パラメータ(端部長さg、曲げ角度b、傾け角度q)を用いて表現するにあたり、第1空間S1及び第2空間S2のそれぞれの流路長さ、流路直径及び流速を、各パラメータ(端部長さg、曲げ角度b、傾け角度q)を用いて以下のように表現する。
[流路長さ]
 まず、第1空間S1の流路長さに相当する端部流れ方向長さagは、端部長さgを斜辺とし、180°から曲げ角度bを減算した角度を一つの角度とした直角三角形の第1方向の長さとして算出できる。また、第2空間S2の流路長さに相当する連結部長さiは、制約値である奥寸法eから端部流れ方向長さagの2倍を差し引くことで算出できる。
[流路直径]
 次に、第1空間S1の流路直径の算出について説明する。第1空間S1の流路直径は、まず、第1空間S1の容積uを後述の方法で算出し、この第1空間容積uを端部流れ方向長さagで割って、端部12a、12bの空気流れ方向の平均単位面積(端部平均流れ面積)aeを算出する。そして、端部平均流れ面積aeを円形と見なし、この端部平均流れ面積aeが、端部等価直径afと円の面積の公式とから求めた面積と等しいとする方程式を立て、端部等価直径afを算出する。この端部等価直径afが第1空間S1の流路直径となる。
 また、第2空間S2の流路直径も同様に、第2空間S2の容積vを後述の方法で算出し、この第2空間容積vを連結部長さiで割って、連結部12cの空気流れ方向の平均単位面積(連結部平均流れ面積)zを算出する。そして、連結部平均流れ面積zを円形と見なし、この連結部平均流れ面積zが、連結部等価直径aaと円の面積の公式とから求めた面積と等しいとする方程式を立て、連結部等価直径aaを算出する。この連結部等価直径aaが第2空間S2の流路直径となる。
 次に、第1空間容積u及び第2空間容積vの算出方法について説明する。
<第1空間容積u>
 第1空間容積uは、底面が台形、上面が三角形の錐台と見なして算出する。図7の第1空間S1において右下向きに傾斜するハッチングで示した三角形部分の面積は、第1空間S1の上面面積sに相当する。また、図7の第1空間S1において右下向きに傾斜するハッチングで示した三角形部分と、縦線のハッチングで示した部分とで示した台形部分の面積は、第1空間S1の底面面積tに相当する。
 第1空間容積uを算出するにあたっては、まず、前面面積kと外形寸法(横寸法d、奥寸法e、高さ寸法f)とが規定されていることを用いて、各パラメータ(端部長さg、h、曲げ角度b、c、傾け角度q)を変数とした、実横寸法r及び実高さpのそれぞれの数式を算出する。これについて順次説明する。なお、以下では図5、図6及び表1を適宜参照されたい。
 まず、実横寸法rの数式の算出について説明する。実横寸法rは、空気熱交換器11aの横寸法r1と、空気熱交換器11bの横寸法r1との加算で求められる。横寸法r1は、空気熱交換器高さlと傾け角度qとを用いて算出される横寸法r1aと、空気熱交換器11aを正面方向から見たときの端部12aの見かけ上の長さd1と傾け角度qとを用いて算出される横寸法r1bとの加算で求められる。
 空気熱交換器高さlは、後述する実高さpとは異なり、空気熱交換器11を高さ方向に傾けても変化しない、空気熱交換器11そのものの高さである。空気熱交換器高さlは、前面面積kを空気熱交換器11の第1方向の全長(以下、フィン積み長さj)で割ることで算出できる。フィン積み長さjは、端部長さgと連結部長さiと端部長さh(=g)とを加算することで算出できる。
 また、端部12aを正面方向から見たときの見かけ上の長さd1は、曲げ角度bを90°超とすると、端部長さgも短くなる。つまり、曲げ角度bが90°の場合は、端部12aを正面方向から見たときの見かけ上の長さd1は端部12aの端部長さgに一致するが、曲げ角度bが90°超であると、長さd1は、端部長さgよりも曲げ高さ寸法o分、短くなる。この曲げ高さ寸法oは、曲げ高さ角度mと二等辺三角形の底辺の長さnとを用いて算出できる。曲げ高さ角度m及び底辺の長さnは、頂点ABCにより形成される三角形が二等辺三角形であることを用いて算出でき、その結果、長さd1が算出できる。
 以上のようにして空気熱交換器高さlと長さd1とが算出できるため、横寸法r1aと横寸法r1bとが算出でき、横寸法r1が算出できる。そして、この横寸法r1の2倍が実横寸法rであり、実横寸法rを、各パラメータ(端部長さg、曲げ角度b、傾け角度q)を用いた数式で表現できる。そして、この数式の実横寸法rに規定値である外形寸法の横寸法dを代入することで、端部長さg、曲げ角度b、傾け角度qの3つのパラメータを変数とした数式が求められる。よって、この数式を変形して、傾け角度qを、端部長さg及び曲げ角度bを変数とした数式で表すことができる。また、実高さpも同様にして、高さp1と高さp2との加算で求めることができる。ここで求められた傾け角度q及び実高さpは、第1空間容積u、第2空間容積vを算出する際に用いられる。
 そして、第1空間S1の上面面積sと、底面面積tと、高さp2とを用いた錐台の容積の算出式から、第1空間容積uが算出できる。このようにして算出された第1空間容積uが上述の流路直径の算出に用いられる。
<第2空間容積v>
 第2空間容積vは、図7の右上向きのハッチングで示した長方形ss(短辺の長さが横寸法r1aの2倍、長辺の長さが連結部長さi)を底面とした錐台の容積として算出できる。
[流速]
 第1空間S1の流速(端部流れ方向風速ah)は端部平均流れ面積aeを用いて算出できる。また、第2空間S2の流速(連結部流れ方向風速ac)は連結部平均流れ面積zを用いて算出できる。
[全圧損指標aj]
 以上のようにして、第1空間S1と第2空間S2とのそれぞれの流路長さ、流路直径及び流速が、曲げ角度b、端部長さg、傾け角度qのパラメータを用いた数式で表現できる。よって、第1空間S1、第2空間S2及び第3空間S3のそれぞれの圧損指標を合計した全圧損指標ajを、曲げ角度b、端部長さg、傾け角度qのパラメータを用いた数式で表現できる。すなわち途中計算において必要部分の寸法を算出したが、全圧損指標ajは、横寸法d、奥寸法e、高さ寸法f、前面面積kの制約条件に基づき、最終的に曲げ角度b、端部長さg、傾け角度qの各パラメータを用いた数式で表現できることとなる。そして、全圧損指標ajが最小となる空気熱交形態こそ空気熱交換器11の最適形態となる。
(傾向)
○空気熱交換器の最適形態
 図8は、本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する傾け角度qとの関係を示した図である。図9は、本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する連結部長さiとの関係を示した図である。図10は、本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する実高さpとの関係を示した図である。図11は、本発明の実施の形態1のチリングユニット1における曲げ角度bと端部長さgに対する全圧損指標ajとの関係を示した図である。図8~図11は相互に関係しており、同時に成立するものとする。また、図8~図11は、端部長さgが100mm、200mm、300mm、400mm、500mm、600mmのそれぞれにおける、上記関係を示している。ここでは、空気熱交換器11の1枚あたりの外形寸法における横寸法d/2が540mm、奥寸法eが850mm、高さ寸法fが1600mm、前面面積kが1.6mに規定されている場合を例とした計算結果を示している。
 以下、図8~図11のそれぞれについて順次説明する。
(a)図8
 上述したように、実横寸法rは、曲げ角度b、端部長さg、傾け角度qの各パラメータを用いた数式で表現でき、実横寸法rに規定値を代入することで、傾け角度qを、端部長さg及び曲げ角度bを変数とした数式で表すことができる。この数式を用いて、端部長さg毎に、曲げ角度bを変えて傾け角度qを求めたグラフが図8の各グラフに相当する。
 図8において端部長さgが600mmで曲げ角度bが115°以下において、傾け角度qが90°以上となっているが、幾何学的に成立しないため範囲外とする。一般的に端部長さg及び傾け角度qが同じ位置のままで曲げ角度bのみを90°を超える角度から90°に近づく方向に小さくした場合、前面面積kが増加する関係がある。そして、図8に示されているように、端部長さgが長くなると、前面面積kが規定されているため、傾け角度qは大きくなる(垂直形状に近づく)。
(b)図9
 図9に示すように曲げ角度bを増加させると、横寸法dの制約から連結部長さiが短くなる。図9において、端部長さgが600mmの線は、曲げ角度135°付近で連結部長さiが0mm程度となっているが、これは曲げ回数aが1回で平面視で略L字状の空気熱交換器11であることを意味する。
(c)図10
 図10に示すように曲げ角度bを増加させると、前面面積kの制約から実高さpが増加する。また、端部長さgが長い程、前面面積kの制約から実高さpは低くなる。なお、実高さpは、高さ寸法fの制約により1200mm未満となる。図8~図10で曲げ角度bの増加に対して不自然にグラフが切れているのは、この実高さpによる高さ制約のためである。
(d)図11
 上述したように、全圧損指標ajは、端部長さg、曲げ角度b及び傾け角度qを変数とした数式として導き出される。この全圧損指標ajの数式と、傾け角度qの数式とに基づいて、全圧損指標ajを、端部長さg及び曲げ角度bを変数とした数式で表現する。そして、この数式を用いて、端部長さg毎に、曲げ角度bを変えて全圧損指標ajを求めたグラフが図11の各グラフに相当する。
 図11に示すように曲げ角度bを増加させると、全圧損指標ajは減少する。上述したように、曲げ角度bを増加させると、前面面積kの制約により傾け角度qが小さくなると共に連結部長さiが短くなるため、連結部平均流れ面積zが大きくなり連結部流れ方向圧損指標adが小さくなる。また、図8に示したように端部長さgを長くすると、前面面積kの制約により傾け角度qが大きくなるため、連結部平均流れ面積zが小さくなり連結部流れ方向圧損指標adが大きくなる。一方で、曲げ角度bを増加させると、端部平均流れ面積aeは大きくなり、端部流れ方向圧損指標aiは小さくなる。
 そして、全圧損指標ajが所定値以下となる各パラメータ(端部長さg、曲げ角度b、傾け角度q)の組み合わせを求めることで、最適仕様が決定される。
 本実施の形態1は、上述したように、端部長さgを200mm以上とすることを前提としている。よって、最適仕様を決定するにあたっての全圧損指標ajの所定値は、端部長さgを200mmとした場合の隙間空間Sの圧損を考慮した値とする。以下、具体的に説明する。
 図11より明らかなように、端部長さgを長くするにつれ、全圧損指標ajは増加するが、端部長さgを長くしても、曲げ角度bを増加させれば、全圧損指標ajを低減できる。よって、端部長さgが最低の200mmのときの全圧損指標aj以下、0より大きい、を満足できるように、端部長さgが200mm以上での、端部長さgと曲げ角度bとの関係を求める。なお、端部長さgが最低の200mmのときの全圧損指標ajには範囲があるため、所定値は、その範囲内の任意の値を採用すればよい。図11の例では、全圧損指標ajの範囲内の値として、直線Lで示した最大値12(m/s)を用いるとすると、全圧損指標ajが12(m/s)となるときの端部長さgと曲げ角度bとの関係を求めればよい。
 図12は、図11において全圧損指標が12(m/s)となるときの、端部長さgが200mm以上での、端部長さgと曲げ角度bとの交点をプロットした図である。図12の曲線は、各プロット点を通過する近似線である。
 上述したように、曲げ角度bを増加させると、全圧損指標ajが減少する関係を有することから、図12において、近似線より上側の領域に位置する、端部長さgと曲げ角度bとの関係を有していれば、全圧損指標を12(m/s)以下にできることになる。この関係性は前面面積kが変わっても同じである。
 よって、端部長さgが200mmの場合の圧損以下となる、端部長さgと曲げ角度bとの関係を満足する設計とすると、全圧損指標ajの低減が可能な、近年主流の大きさのチリングユニット1を実現できる。なお、端部長さgと曲げ角度bとが決まれば、実横寸法rの制約から図8に基づき傾け角度qも決まることになる。
 以上説明したように本実施の形態1では、チリングユニット1を集中設置した場合において、隣合うチリングユニット1間を通過する空気の圧損を最小限にできることを考慮して、幾何学的に空気熱交換器11の曲げ角度bと端部長さgと傾け角度qとを決定するようにした。言い換えれば、チリングユニット1を集中設置した場合における、隣合うチリングユニット1間を通過する空気の風量を確保することが可能な最適な空気熱交換器形態の設計が可能となる。よって、この設計方法によって設計された熱交換モジュール10を有するチリングユニット1は、複数台、集中設置された場合にも、隙間空間Sにおける風量を確保でき、単体設置時に比べて性能が低下することを抑制できる。
 また、端部長さgが200mmのときの圧損以下となることを条件として求めた、端部長さgと曲げ角度bと傾け角度qとを有するように空気熱交換器11を設計することで、全圧損指標ajの低減が可能な、近年主流の大きさのチリングユニット1を実現できる。
 1(1a、1b) チリングユニット、2 筐体、2a 機械室、3 圧縮機、4 四方弁、5 水熱交換器、6 膨張弁、10 熱交換モジュール、11(11a、11b) 空気熱交換器、12a 端部、12b 端部、12c 連結部、20 ファン、30a 設置面、S 隙間空間、S1 第1空間、S2 第2空間、S3 第3空間。

Claims (2)

  1.  冷媒回路を構成する機器が収納される機械室が内部に形成され、第1方向に延びた形状の筐体と、前記筐体の上部において前記第1方向に複数、配置された熱交換モジュールと、前記熱交換モジュールの上部に配置されたファンとを有する冷凍サイクル装置であって、
     前記熱交換モジュールは、前記第1方向と直交する第2方向に互いに対向配置された2枚の空気熱交換器を有し、
     前記2枚の空気熱交換器のそれぞれは、2箇所で曲げられて平面視でU字状に構成されるか、又は1箇所で曲げられて平面視でL字状に構成されると共に、互いに傾斜して前記第1方向から見てV字状であり、且つ、そのV字の上端部分の前記第2方向の配置位置が、予め決定された外形寸法に沿うように配置され、
     また、前記2枚の空気熱交換器のそれぞれは、前記冷凍サイクル装置を前記第2方向に並設した場合に隣合う前記冷凍サイクル装置同士の前記空気熱交換器間の隙間空間の圧損を、前記空気熱交換器の前記2箇所又は前記1箇所の各曲げ位置から端までの長さである端部長さが200mmの場合の前記隙間空間の圧損以下とする、前記端部長さと、前記曲げ位置での曲げ角度と、前記空気熱交換器の傾け角度とを有する
     冷凍サイクル装置。
  2.  前記曲げ角度は90°以上、180°未満である請求項1記載の冷凍サイクル装置。
PCT/JP2014/076629 2014-10-03 2014-10-03 冷凍サイクル装置 WO2016051607A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/076629 WO2016051607A1 (ja) 2014-10-03 2014-10-03 冷凍サイクル装置
JP2016551464A JP6381657B2 (ja) 2014-10-03 2014-10-03 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076629 WO2016051607A1 (ja) 2014-10-03 2014-10-03 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016051607A1 true WO2016051607A1 (ja) 2016-04-07

Family

ID=55629690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076629 WO2016051607A1 (ja) 2014-10-03 2014-10-03 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6381657B2 (ja)
WO (1) WO2016051607A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156872A (ja) * 2002-11-08 2004-06-03 Daikin Ind Ltd 空気調和機の室外機ユニット
JP2009236370A (ja) * 2008-03-26 2009-10-15 Tokyo Electric Power Co Inc:The 空冷式凝縮器用吸込空気冷却装置
JP2010196945A (ja) * 2009-02-24 2010-09-09 Sanyo Electric Co Ltd 室外ユニット
WO2011099629A1 (ja) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 チリングユニット
JP2011163670A (ja) * 2010-02-10 2011-08-25 Hitachi Appliances Inc 熱源機
WO2014047861A1 (en) * 2012-09-28 2014-04-03 Trane International Inc. Air conditioning outdoor unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160445A (ja) * 2012-02-06 2013-08-19 Hitachi Appliances Inc 熱交換ユニット及び熱交換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156872A (ja) * 2002-11-08 2004-06-03 Daikin Ind Ltd 空気調和機の室外機ユニット
JP2009236370A (ja) * 2008-03-26 2009-10-15 Tokyo Electric Power Co Inc:The 空冷式凝縮器用吸込空気冷却装置
JP2010196945A (ja) * 2009-02-24 2010-09-09 Sanyo Electric Co Ltd 室外ユニット
JP2011163670A (ja) * 2010-02-10 2011-08-25 Hitachi Appliances Inc 熱源機
WO2011099629A1 (ja) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 チリングユニット
WO2014047861A1 (en) * 2012-09-28 2014-04-03 Trane International Inc. Air conditioning outdoor unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kurei Heat Pump Netsugenki Universal Smart X", February 2013 (2013-02-01), pages 63 , 73 - 74, Retrieved from the Internet <URL:http://www.toshiba-carrier.co.jp/support/catalog/book/bm_usx/index.html> *

Also Published As

Publication number Publication date
JPWO2016051607A1 (ja) 2017-04-27
JP6381657B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6223596B2 (ja) 空気調和装置の室内機
JP5551481B2 (ja) 電算機室専用空調室内機
US20160138839A1 (en) Indoor unit for air conditioning device
JP2011112303A (ja) 空調室外機
JP2008138951A (ja) 空気調和機の室外機
JPWO2013084397A1 (ja) 空気調和機
JP2012002503A (ja) 空気調和機
US11022327B2 (en) Outdoor unit of air-conditioning apparatus
US20150316277A1 (en) Outdoor unit for air-conditioning apparatus
JP2012026615A (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
JP2014228223A (ja) 空気調和機
JP6381657B2 (ja) 冷凍サイクル装置
JPWO2016071945A1 (ja) 空気調和装置の室内機
JP2014081150A (ja) 空気調和機
JP2011163670A (ja) 熱源機
JP6614876B2 (ja) 空気調和機の室内機
JP2008267637A (ja) 冷凍空調装置
JP6379352B2 (ja) フィンチューブ熱交換器
WO2021161439A1 (ja) 空気調和装置
JP6202895B2 (ja) 空気調和装置
WO2021079422A1 (ja) 熱交換器及び冷凍サイクル装置
WO2016151655A1 (ja) 空気調和装置及びその性能判定方法
JP2010196945A (ja) 室外ユニット
JP4947077B2 (ja) 熱交換器ならびにこれを備えた空気調和装置の室内機
US20140284031A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903288

Country of ref document: EP

Kind code of ref document: A1