WO2016050194A1 - 并联式递速运行轨道列车及其载运方法 - Google Patents
并联式递速运行轨道列车及其载运方法 Download PDFInfo
- Publication number
- WO2016050194A1 WO2016050194A1 PCT/CN2015/091011 CN2015091011W WO2016050194A1 WO 2016050194 A1 WO2016050194 A1 WO 2016050194A1 CN 2015091011 W CN2015091011 W CN 2015091011W WO 2016050194 A1 WO2016050194 A1 WO 2016050194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- running
- train
- speed
- section
- line
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B1/00—General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
Definitions
- the invention relates to the field of urban public passenger rail transit, and particularly relates to an urban underground rail train and a transport method thereof for urban passenger transport.
- ground buses are long bypass routes, more stops, more traffic congestion and slower peak passenger traffic.
- the main problem of taxis is that they are in short supply during peak hours and the operating costs of single operators are too high.
- the station distance is too long, the trip is extremely inconvenient, and also caused some lines or sections to have a low attendance rate.
- the distance between subways and light rails at home and abroad is generally more than 1,000 meters. Even if the subway or light rail line is next to the passengers, it takes more than ten minutes or more for passengers to enter the station. The long distance between the stations increases the distance from the destination after the passenger gets off the bus. It is not feasible to shorten the distance between stations of subway or light rail. The current technology cannot solve the contradiction of increasing the speed and shortening the station distance.
- the peak period of the passenger flow is still very crowded, and the ride is extremely uncomfortable.
- the carrying capacity of the subway line is generally about 30,000 per hour, but this capacity can only be achieved by the starting station, and other intermediate stations cannot be realized at all.
- the actual situation is that after a part of the passengers are left, the car is still crowded, and more passengers can only squeeze into the aisle.
- the current technology can only rely on increasing the number of car sections to alleviate this problem, but on the one hand it is limited by the length of the platform design. On the other hand, even if the number of car festivals is doubled, it is difficult to ensure that passengers have a peak passenger flow. seat.
- the present invention aims to provide a parallel type telescopic train and its carrying method.
- the invention can change the existing large-scale subway station platform to get on and off the whole line densely divided or densely divided small stations, and the distance between the existing subway stations can be shortened by 3-10 times, so that the passengers can get on and off at the same time, and the vehicle will be excessively concentrated.
- Passengers at a certain site are dispersed to a nearby waiting area in order to solve the congestion problem with the unique technical measures of the present invention.
- the present invention can also achieve a time interval of 60-90 seconds, which shortens the passenger riding time by more than three times compared with the existing subway.
- the present invention can also make the actual carrying capacity of each section of the whole line reach 2-10 times of the existing subway carrying capacity (in combination with the above-mentioned purpose, the multi-segment carrying in the unit length distance and the multi-stage carrying in the target 2) Really realize that passengers are not crowded and have seats.
- the invention can also basically realize that long-distance passengers over 2000 meters can continue in the middle of the passenger line, and can directly reach the target passenger area in one stop, which saves 15-30% of the travel time for each long-distance passenger.
- the invention can also increase the average running speed by 10-20% on the average running speed of the subway on the relatively straight main line, which saves each passenger 5-15% of the time.
- the manual train is periodically decelerated, parked, and started to accelerate during the carrying time period, and the running train is continuously operated during the carrying time period.
- the forward and return speed segments of the present invention are a full-way road segment and a return full-path segment on a passenger line running in a parallel-type fast-speed running rail train, and the curve-turning segment refers to parallel-type fast-speed operation.
- the rail train needs to be curved at a certain radius at both ends of the passenger line.
- the circular passenger line is a special form of the curve line which is described in the present invention.
- the speeding track line of the present invention is juxtaposed at least in the forward and return speed sections respectively to the forward and return speed sections of the running track line, and the forward speed train can at least move forward and backward on the speed track line.
- the counter speed section which is connected in parallel with the running train running in the same direction on the running rail line, is connected in constant speed, and refers to the curve turning section and running of the speeding track line according to the present invention under normal conditions.
- the curved segments of the track line are also arranged side by side in parallel, and the taut train and the running train can be connected in parallel in the counter speed section and the swing section for constant speed operation.
- the speeding track line of the present invention is juxtaposed with the running track line, and is not juxtaposed with the absolute distance between the two, but allows a certain error under the premise of ensuring safe operation, reliable connection and stable turning.
- the value, especially the curved section of the train setting the curve inclination angle; the parallel arrangement according to the present invention does not specifically refer to the juxtaposition of the two track lines at the same horizontal plane, but includes the two track lines at different levels, but the two are The orthographic projections produced by parallel rays in the same horizontal plane are juxtaposed in parallel projection.
- the taut train and the running train are periodically connected in parallel at the forward and return speeds of the respective track lines, and the passengers can realize the changeover by the transfer passage, so that the long-distance passengers can be changed to the running train.
- Direct access to the target drop-off area, avoiding the need to stop at the station (equivalent to direct), and passengers arriving at the middle of the road can change to the express train, ready to get off.
- a parallel type fast-running orbit train for urban public passenger transportation is composed of electric vehicles as driving energy, and is composed of a plurality of vehicle sections running on a fixed rail through a bogie carrying passengers, and is characterized by:
- the express train D is composed of a number of express train sections
- the running train Y is composed of a number of running train sections.
- the express train D runs in the same direction as the running train Y; as shown in Fig. 1, the express train D is located.
- the running speed track line DG and the running track line YG where the running train Y is located are respectively curved at both ends of the passenger line to form an inner and outer round-trip closed track line.
- the speed track line for the curve rotation is the curve rotation section of the speed track line DG
- the running track line for the curve rotation is the curve rotation section of the running track line YG; on the two sides of the passenger line, located at two
- the speeding track line between the DG curve slewing section of the end-speed track line is the moving speed section of the trajectory orbit DG
- the running track line between the traverse sections of the running track YG curve at both ends is the running speed of the running track line YG. segment.
- the circular passenger transport line is a special form of the parallel-type express-speed running rail train whose track line is used for curve rotation, the speed train is integrated, and the train runs back and forth.
- the curve slewing segment of the trajectory track DG and the curve slewing segment of the running track line YG are normally equidistant from each other. Parallel settings, as shown in Figure 1, but in a specific case are not equidistant juxtaposition, as shown in Figure 20.
- the express train D and the running train Y are periodically operated independently; the running train D running on the speeding track line DG and the running train Y running on the running track line YG are periodically performed in the moving speed section of the respective track line.
- Parallel connection is running at constant speed, as shown in Figure 2 and Figure 3.
- the counter-speed train D is composed of a number of reciprocating node groups D2 of equal number and equal spacing of all the speeding car sections on the speed-track line DG. During operation, the error factors are eliminated, and all the re-driving vehicles are re-routed to and from the entire line. Section, fast speed node group D2 synchronization, constant speed operation;
- the running train Y is composed of a plurality of running node groups Y2 of equal number and equal spacing of all running vehicle sections on the running track line YG. During operation, the error factors are eliminated, and all running car sections and running node groups are reciprocated to and from the entire line. Y2 synchronous, constant speed operation.
- the design of the speeding car section length is equal to the running car section length.
- the length of the distance between the group of the fast-speed node group D2 and the speed of the front-and-forward step is equal to the length of the distance between the group of the running node group Y2 plus the front and rear running nodes.
- All of the speeding node groups D2 of the manual train D are vertically connected by the traction members to form a round-trip integrated train;
- All the operating node groups Y2 of the running train Y are vertically connected by the traction members to form a round-trip integrated train;
- the parallel type fast-running orbital train of the present invention further comprises: a traction member connected to each of the cadence group and the ganglion of the running train D and the running train Y without using a longitudinal force transmitting force, and the use includes a signal
- the intelligent technology of transmitting and receiving, computer measurement and control devices realizes the control of the distance control and speed control for each group of the whole line.
- All the operating node groups Y2 of the running train Y are vertically connected by the traction members to form a round-trip integrated train, and the traction member of the taut train is a reciprocating pitch chain D3 corresponding to the reciprocating rail DG, which is a reciprocating section.
- the chain D3 runs in the fast-speed cage rail beam D4 which also corresponds to the reciprocating rail DG round-trip closure, and all the fast-speed node groups D2 of the counter-speed train D are equally connected on the fast-speed pitch chain Y3; the running train Y
- the traction member is a running section chain Y3 corresponding to the running rail YG reciprocating closed operation, and the running section chain Y3 runs in the running cage rail beam Y4 which also corresponds to the running rail YG reciprocating closure, and runs all the running section Y2 of the train Y Isometrically connected to the running section chain Y3.
- Both the express train D and the running train Y are unilaterally slid by the traction members, and respectively constitute a single-side traction continuous-running train D and a single-side traction continuous-running train Y.
- connection modes are also included between the section group and the section group, for example, the traction member is connected to the horizontal position of the traditional train. The way to implement continuous hanging.
- the traction member including the taut chain link D3 is mounted on the edge of the vehicle body of the taut train D adjacent to the side running the train Y, including the running chain link Y3.
- the inner traction member is installed on the side of the vehicle body of the running train Y on the side adjacent to the taut train D; in the straight line segment of the counter speed section, the longitudinal axis line of the taut chain link D3 and the longitudinal direction of the running chain link Y3
- the axis is in the same vertical plumb, as shown in Figure 19.
- the counter train D is provided with a counter-speed pedal advancing surface D10
- the running train Y is provided with a running pedal inter-face Y10
- the express train D is provided with a reciprocating air inlet surface D11
- the running train Y is provided with a running air inlet surface Y11, as shown in Fig. 2
- the best design is a speed pedal
- the height of the inter-face D10 is lower than the running pedal advancing surface Y10, and the speed of the reciprocating air inlet surface D11 is lower than the running air inlet surface Y11, as shown in Fig.
- the speed-speed node group D2 of the express train D is provided with a constant velocity bolt 13 corresponding to the constant velocity bolt position, and a constant speed card 14 is provided on the operation node group Y2 of the running train Y, as shown in Fig. 17;
- the section D2 and the front part of the first section of the first section of the front section of the running section Y2 are respectively provided with windshield doors 15 which can be closed to each other, after the section of the car before and after the step group D2 and the running section Y2
- the corresponding positions of the portions are respectively provided with windshield doors 15 which can be closed to each other, as shown in FIG.
- the speeding chain D3 of the manual train D and the speeding cage rail beam D4 where it is located are disposed above the edge of the reversing air inlet surface D11; the operation of the running train Y Chain chain Y3 and its running cage rail
- the road beam Y4 is disposed above the edge of the running air inlet surface Y11.
- the fast-speed chain link D3 and its fast-speed cage rail beam D4 are located below the running chain link Y3 and its running cage track beam Y4, and the fast-speed cage track beam D4 is located at the running cage track beam Y4.
- the rapid velocity chain D3 and its fast-speed cage rail beam D4 are located above the running chain link Y3 and its running cage rail beam Y4, and the fast-speed cage rail beam D4 is located at the running cage rail beam Y4 Directly above, as shown in Fig. 20, this is a special case encompassed by the present invention.
- the combination of the taut speed car section and the taut speed car section in the fast speed node group D2 is connected by the coupler 12 at the edge of the reciprocating air inlet face D11, and becomes a single side traction speeding node group D2; all the speeds of the round-trip full line
- the node group D2 is connected equidistantly with the taut chain link D3 through the traction seat 7 at the edge of the reciprocating air inlet surface D11 to form a round-trip integrated single-side traction continuous train;
- the running vehicle section and operation in the operation node group Y2 The joint of the car section is connected by the coupler 12 at the edge of the running awning surface Y11, and becomes the unilateral traction running section Y2; all the running section Y2 of the round-trip full line passes through the traction seat 7 at the edge of the running hood interfacing surface Y11. It is connected to the running chain Y3 equidistantly to form a round-trip integrated unilateral traction train.
- the longitudinal axis line of the reversing knuckle joint coupler 12 and the longitudinal axis line of the running knuckle joint coupler 12, and the longitudinal axis of the taut chain link D3 are on the same longitudinal vertical plane; moreover, the curved turning sections at both ends of the running rail track line DG are arranged equidistantly with the curved turning sections at both ends of the running track line YG.
- the manual train D and the running train Y are equipped with a self-powered monorail guide bogie 16, which travels on the ground monorail.
- the steady-speed vehicle section of the counter-speed train D and the top of the running vehicle section of the running train Y are respectively provided with a stabilizing wheel, which travels on the upper top stable rail.
- the joint between the front and rear car joints shares the single track guide bogie 16; in the running node group of the running train Y, the joint between the front and rear car joints shares the single track guide wheel
- the bogie 16 is shown in Figures 2, 3, 4, and 18.
- the chain links D3 and Y3 are composed of a common section, a traction section and a slow pushing section.
- the guiding frame 31 and the drawing rod 32 constitute a common section, and the guiding frame 31, the tractor 33 and the drawing rod 32 constitute a traction section.
- the guide frame 31, the thrust relief device 34, and the drawbar 32 constitute a slow pusher.
- the section chain D3, Y3 between the node group and the node group only includes a section of the push-pull joint, as shown in FIG.
- the guiding frame 31 of the chain links D3, Y3 is composed of a frame, a wheel and an axle; the frame is a frame-shaped frame 311, and the frame 311 is also provided with two horizontally placed front and rear parallel sliding curves.
- the bar 312 has a return spring set 318 on each side of the balance bar; the wheel is 2 load-bearing wheels 317, 2 guide wheels 315, and the lower edge guide wheels 315 of the outwardly protruding rims under the two treads;
- the axle is Two guiding axles 314 and two bearing axles 313; two guiding axles 314 are respectively mounted on the upper and lower portions of the outer side of the frame 311, the axial lines of the two axles are on the same straight line, and the two guiding wheels 315 are arranged in series on the upper guiding On the axle 314, two lower edge guide wheels 315 are mounted in series on the lower guide wheel axle 314, one upper guide wheel 315 and one lower edge guide wheel 315 form the outer wheel set, and the other one
- the edge guide wheel 315 constitutes an inner wheel set, and the inner and outer wheel sets respectively travel on the left and right guide rail faces 43;
- the two load bearing wheel axles 313 are respectively mounted on the left and right sides of the outer frame 311, and the axial lines of the two axles are in the same In a straight line, and in the same axis as the guide wheel axle 314
- the horizontal bearing surfaces are perpendicular to each other, and two load-bearing wheels 317 are respectively mounted on the two load-bearing wheel axles 313, and the load-bearing rail faces 42 are driven on both sides, as shown in FIG. 11; in the frame 311, there is also a flange 35 at the front end.
- the horizontal axis of the joint shaft 319 is horizontally sleeved, and the fork joint of the front joint joint fork 320 is located at the front and rear of the horizontal joint shaft of the cross universal joint shaft 319, and there are two through-hole sliding holes 321 which are arranged on both sides and have a return spring group 318 on both sides.
- the universal joint In the middle of the radial sliding balance bar 312, as shown in Fig. 12, the universal joint can be swinged left and right within a finite distance in the frame.
- the traction seat 7 has a fixing base 72 having a rotating shaft 73 fixed perpendicularly to the fixing base 72, and a fork portion having a curved surface on the front and rear sides.
- the fork handle portion has a curved surface rotating fork 71 of the vertical vertical shaft hole 74, and passes through the rotating shaft.
- the hole 74 is sleeved on the rotating shaft 73, as shown in FIG. 15; the curved surface rotating fork 71 is sleeved on both sides of the square sleeve body in the middle of the buffering saddle 333 of the chain link tractor 33, as shown in FIGS.
- the fork between the two forks and the buffer saddle 333 square sleeve have a gap of 5-30mm on both sides, the mouth of the fork is above the buffer saddle 333, the bottom of the fork and the bottom of the buffer saddle 333 are 30-150mm distance.
- the arcuate turning fork 71 can be up-down and left-right offset with respect to the cushioning saddle 333, and rotate at a certain angle in the lateral vertical plane and the longitudinal vertical plane; the traction seat 7 transmits only the longitudinal thrust and the pulling force to the chain link, and The chain link and its tractor 33 do not form a moment.
- the attendance rate is increased. It is located along the subway. Passengers who chose other modes of travel because the subway station is too far into the station will choose to take the subway.
- a recurring period is 60-90 seconds, the actual waiting time is up to 50 seconds, and the average waiting time is only 20-40 seconds, which achieves the expected effect of the invention.
- the carrier process breaks through the traditional carrier technology, which realizes the separation of long-distance passengers and short-distance passengers and the separation of the arriving passengers and the long-distance passengers who have not arrived. It saves every long-distance passenger from stopping at the stop, saving 20-35% of the journey time. .
- the speed train D and the running train Y and the constant speed are the minimum running speed of the running train Y, which is 20-40 km/h. It has more such a speed base before acceleration than the existing subway, and its average speed ratio is now
- the average speed of the subway does not include the zero speed of the subway train stoppage is 10-40 km / h, which saves about 15% of the travel time for long-distance passengers.
- the existing general subway trains are 350-400 seats with a length of 100 meters.
- the actual empty seat rate at the station is less than 30% on average, that is, there are only about 100 empty seats.
- the trains running at a speed of 100 meters are organized by the speed of the train. There are a total of 120 seats in the group and the running seat group. According to the calculation of the empty seat rate of 40%, there are nearly 50 seats in the upper and lower passenger zones.
- the running speed of the running trains is 2-4 times higher than that of the subway. Calculating the relative number of running train seats is 3-6 times the relative number of existing subway seats.
- passengers on the express trains usually have seats and are not crowded.
- the seats of the running train are all designed to be forward single, which is more comfortable when the train is accelerating and decelerating than the existing subway. Achieve or even exceed the intended effect of the purpose of the invention.
- Parallel-type express trains provide convenient, comfortable and fast travel services, which will reduce the self-driving travel in the urban area.
- the same-line bus will be replaced, and the demand rate of taxis will be reduced accordingly, thus greatly alleviating urban traffic congestion.
- the parallel-type express train has a small turning radius, and its underground tunnel has a high coupling rate with the ground traffic line. It can also bypass more building bases and is more suitable for urban line selection.
- the total width of the parallel-speed running rail train can be the same as the width of the existing transfer train, and the existing subway tunnel can be walked.
- Figure 1a is a schematic view of a round-trip full-line view of a reciprocating train with a single-side traction and parallel-running multi-speed running rail train connected in parallel with the running train for constant speed operation;
- the curve slewing section of the moving speed line at both ends of the passenger line is juxtaposed with the curve slewing section of the running track line, and a common situation is that the running train and the running train can perform parallel connection to and from the whole line;
- the single-side traction and parallel-type parallel-speed running trains of the express trains are connected in parallel to the running trains running in the running track line on the forward and return speed sections of the manual speed line and the one-end curve turning section.
- FIG. 2 is a vehicle section in which the revolving node group and the running node group are connected in parallel with the running speed node group of the parallel type taut type running railway train, and
- the running section there is a schematic diagram of the round-trip section corresponding to the vehicle section linked to the running chain and the running section chain; the figure shows that the traveling, returning and descending passenger areas and the walking line are respectively located on the two sides of the passenger line, and belong to the traveling track line.
- the outer line and the running track line are set to the inner line;
- FIG. 3 is a schematic cross-sectional view of the parallel speed section and the running vehicle section corresponding to the parallel speed group and the running node group of the parallel type speed running railway train; the figure shows the walking line and the going and going The passenger area is horizontally centered on the passenger line, which is a round-trip internal line of the manual track line and a running track line to the outside line;
- Figure 4 is a schematic view of a parallel type telescopic running rail train equipped with a convex monorail guide bogie and a traveling convex monorail;
- Figure 5 is a side view of the trough-shaped monorail guide bogie
- Figure 6 is a plan view of the trough-shaped monorail guide bogie
- FIG. 7 is a schematic diagram of the closing of the windshield door when the telescopic speed group and the running node group are corresponding to each other in the speeding section, and the running train and the running train are connected in parallel;
- Figure 8 is a schematic view of the guiding frame running in the cage rail beam
- Figure 9 is a schematic view showing the position of the cage rail beam and its load-bearing rail surface and guide rail surface;
- Figure 10 is a schematic perspective view of a chain link
- FIG. 11 is a schematic diagram of a body of a guiding structure
- FIG. 12 is a schematic diagram of a radial sliding balance bar and a front and rear joint gimbal fork and a universal joint cross shaft to be assembled into a universal joint;
- Figure 13 is a perspective view of the traction section of the traction seat
- Figure 14 is a plan view showing the traction section of the traction seat
- Figure 15 is a perspective view of the traction seat
- Figure 16 is a longitudinal sectional view of the thrust relief device
- Figure 17 is a schematic view of the card slot of the constant velocity plug inserted into the constant velocity plug card
- Figure 18 is a schematic view showing a bogie shared by the front and rear car sections in the section below the compartment joint;
- Figure 19 is a diagram showing the positional relationship between the couplers of the front and rear joints in the fast-speed section chain, the running chain, the fast-speed section, and the couplers in the running section before and after the straight section on the straight line including the ramp.
- Figure 20 is a parallel-type multi-speed running rail train with single-side traction and its coke-speed chain and its cage rail beam are located above the running chain and its cage rail beam, and the moving speed awning inter-face is running. The situation above the wind canopy.
- the figure also shows that the reciprocating node group and the running node group correspond horizontally and simultaneously: 1.
- the retractable wind speed awning is opened, and the running hood is closed, the moving speed section and the running vehicle section are closed. Forming a closed ceiling; 2, the retractable pedals of the retractable pedals are opened and the running pedals are closed, and a transfer passage is formed between the running speed section and the running vehicle section;
- Figure 21 is a round-trip tunnel of a parallel-type running train
- Figure 22 shows that the front and rear car sections are connected by the single hook of the coupler at the joint to form the taut speed node group, and the fast speed node group is connected with the single chain of the chain link to form a single side traction continuous running train;
- Figure 23 shows that the windshield door at the front of the knuckle has evolved into a curved guide windshield that slides laterally out and retracts at the front of the car.
- Figure 24 shows that the fast-speed node group and the running node group are close to each other in the same speed range.
- the constant velocity bolt installed on the running node group protrudes from the bolt seat first. Part of it is relatively slow in front speed, and the front of the constant velocity card installed on the running node block blocks, and the constant velocity bolt continuously extends into the constant velocity card slot, and the constant velocity card is under the resistance of the damping spring group.
- the card is pushed forward by the constant velocity bolt.
- the constant speed card is pushed to the preset position, the level card at the bottom of the constant speed card is ejected, the constant speed card is locked, and the express train and the running train realize horizontal connection. Two trains run at constant speed.
- the parallel type fast-running orbital train of the present invention is composed of electric energy as driving energy, and is composed of a plurality of vehicle sections running on the fixed track through the bogie of the passenger compartment.
- the parallel-type express train is on a two-way passenger line.
- the express train D and the running train Y are combined in the same direction and side by side to form a passenger carrier assembly;
- the speed track line DG and the running track line YG where the running train Y is located are respectively curved at both ends of the passenger line to form an inner and outer round-trip closed track line, as shown in Fig. 1a);
- the running track line DG is operated
- the track line YG is divided into a speeding section and a two-end turning section.
- the forward speed and the returning direction of the passenger line can enable the counter-speed train D and the running train Y to be periodically connected in parallel, and the passengers on the two trains
- the revolving orbital line DG is arranged side by side with the running orbital line YG, but there is a certain time when designing the inclination of the train curve in the curved section error.
- the speeding train D is configured to make all the vehicle sections equal to the number of the speeding node group D2 on the speeding track line DG, and all the speeding node groups D2 are arranged at equal intervals, and all the node groups are synchronized to and from the whole line during operation. Run at constant speed.
- On the running track line YG all the car sections are equally divided into a number of running node groups Y2 on the running track line YG. All the running node groups Y2 are arranged at equal intervals, and all the nodes in the running line are synchronized and run at constant speed.
- the length of the running speed section is equal to the length of the running section.
- the distance between the D2 length of the fast-speed node group plus the two-speed group before and after the D2 group is equal to the length of the running node group Y2 plus the spacing between the two groups of the front and rear operation groups Y2.
- the length of the section group and the spacing between the section groups here refers to the length on the section chain.
- all the fast-speed node groups D2 running in the same direction and all the running node groups Y2 can be horizontally correspondingly aligned in the forward direction and the backward direction.
- the number and running of the fast-speed node group D2 of the round-trip fast-speed segment The number of section groups Y2 is equal.
- the running track line DG and the running track line YG at the two ends of the turning section are also arranged side by side, and the running speed group D2 of the running train D and the running node group Y2 of the running train Y can be in the horizontal and horizontal directions.
- the parallel connection is performed for the constant speed operation, so that the reciprocating function of the changeover and the transfer is realized in the round-trip full line.
- the total number of the reversing node group D2 of the taut train D is equal to the total number of the operation node group Y2 of the running train Y.
- the speed-track line DG can be extended separately to the large-scale enterprises, schools, towns and other tourist sources that are not far from the main city, and the passengers of the line are transported by the train D.
- the number of node groups D2 can be much larger than the number of operation node groups Y2, as shown in Figure 1b).
- the express train D is designed with a certain width between the car body of the train 8 running the train Y. Below the safety interval, it is located at the floor height of the car 8 of the fast-speed car section, and the outer wall of the car 8 of the express train D car section is provided. There is a speed pedal inter-face D10. At the floor height of the compartment 8 at the running car section, the outer wall of the carriage 8 running the train Y section is provided with a running pedal advancing surface Y10. Above the safety interval, at the ceiling height of the express car 8, the outer wall of the car 8 of the express train D car section is provided with a counter-speed air inlet surface D11.
- the outer wall of the carriage 8 running the train Y section is provided with a running hood interfacing surface Y11. Between the reciprocating air inlet surface D11 and the running air lining surface Y11, there is a certain height difference between the reciprocating pedal advancing surface D10 and the running pedal advancing surface Y10, as shown in FIG.
- Fig. 20 In the parallel type fast-running orbital train with single-side traction and continuous suspension, the manual speed chain D3 and its cage rail beam D4 are located in the running section chain Y3 and its cage rail beam. Above the Y4, the counter-speed awning inter-face D11 is located above the running awning interfacing surface Y11. The figure shows that there is also a speeding canopy D111 below the moving speed awning inter-face D11, and the reciprocating pedal inter-face D10 can be retracted.
- the retractable wind speed awning D111 is opened, and the running awning inter-face D11 is closed, and the top speed closed roof is formed between the running speed section and the running vehicle section; and the reciprocating pedal intercommunicating surface D10 can be retracted at the same time.
- the opening and running pedal advancing surface Y10 is closed, and a transfer passage is formed between the running speed section and the running vehicle section.
- the upper and lower passenger areas are located on the side of the express train D.
- the length of the upper and lower passenger areas is the same as the length of the D-speed group of the express train (in the Jiangdi tunnel or the Dashan tunnel where passengers are not allowed to enter and exit, there may be no drop-off area).
- the parallel type fast-running orbital train can be connected according to whether there is a traction member that transmits longitudinal force between the node group and the node group of the running train D, and between the node group and the node group of the running train Y, which can be divided into:
- Synchronous constant speed intelligent measurement and control type there is no traction member connected between the node group and the node group, relying on the signal transceiver device and the computer measurement and control system to control the round-trip full-speed fast-segment group synchronization and constant-speed operation, the whole line operation node group synchronization, constant speed run.
- connection position of the traction members between the front and rear sections and the inter-vehicle section, between the section group and the section group, or the ranging distance control position it can be divided into:
- the neutral type is connected or controlled according to the position of the traditional towing vehicle in the horizontal center of the car section.
- Ground monorail type such as straddle monorail train (such as Chongqing monorail train).
- the upper and lower rail type the upper is the stable rail, the lower is the load-bearing single rail.
- One-piece two-frame type that is, one bogie is installed in front of each of the traditional car sections.
- the front and rear sections are shared. In the group, except for the front part of the front car section and the rear part of the last car section, one bogie is assembled, and the rest is at the joint of the rear part of the front car section and the front part of the rear car section. Share a bogie.
- a single-side traction connection is carried out, and the upper and lower rails are traveled.
- the bogie is described in a specific embodiment of a parallel-type express-speed running rail train in which the front and rear axle sections are shared.
- the parallel type fast-running orbit train that implements unilateral traction is provided with a corresponding reciprocating monorail DG reciprocating closure at the edge of the vehicle body on the side of the running train Y adjacent to the running train Y, and runs in the fast-speed cage rail beam D4.
- the speed-up chain D3 has a corresponding running single-track YG round-trip closed at the edge of the vehicle body on the side of the running train Y adjacent to the express train D, and runs the running chain Y3 in the running cage rail beam Y4, as shown in Fig. 2 , 3.
- connection between the fast speed chain D3 and the running chain chain Y3 and the respective train node groups there are two forms of the connection between the fast speed chain D3 and the running chain chain Y3 and the respective train node groups: one is the knot of the front and rear speeding car sections in the fast speed node group D2 of the manual train D
- the joint hook 12 is connected to the edge of the counter-speed awning surface D11 below the speed-up chain D3, and becomes the traverse joint group D2 of the unilateral traction.
- All the reciprocating node groups D2 of the round-trip line are connected to the edge of the counter-speed interchangeable surface D11 by a traction seat 7 and the speed-up chain D3, forming a unilateral traction to the integrated express train D.
- the joint portion of the running section Y2 of the running train Y is connected with the coupler 12 at the edge of the running awning surface Y11 below the running section chain Y3, and becomes the running section group Y2 of the unilateral traction connection. .
- All the running node groups Y2 of the entire line are connected to the running chain Y3 at the edge of the running air lining surface Y11 through a traction seat 7 to form a unilateral traction and reciprocating running train Y.
- the front and rear running car joints of the running node group Y2 are not connected by the coupler 12, and the respective fast-moving car sections forming the tick-speed node group D2 are
- the edge of the inter-face of the wind canopy is directly connected to the speed-up chain D3 through the traction seat 7, and constitutes a single-side traction to and from the integrated express train D, and each running vehicle section constituting the operation node group Y2 is in the air inlet side.
- the edge is directly connected to the running chain Y3 through the traction seat 7, and constitutes a single-side traction to run the train Y.
- the revolving cage rail beam D4 is located directly below or directly above the running cage rail beam Y4. In this case, the preferred revolving cage rail beam D4 is located directly below the running cage rail beam Y4.
- the curve inclination angles of the counter train D and the running train Y are designed to eliminate the passengers changing the line.
- the reversing cage rail beam D4 in this case is still located directly below the running cage rail beam Y5, and the buffer saddle 333 engaged in the traction seat 7 can be along the train body with the bearing shaft 331 as the axis. The lower portion is tilted toward the outside of the curve and rotated as shown in FIG.
- the step chain D3 and the running chain chain Y3 can be radially oscillated in the curve by the elastic resistance, and the radial swing is a finite distance swing in the guiding frame 31, in order to ensure the transmission longitudinal direction.
- the ability of the chain guide frame 31 to smoothly pass on the curve is enhanced, and the forward thrust and the backward pull force of the chain link are automatically converted into two directions.
- the express train D and the running train Y are provided with a constant speed connecting device between the speeding node group D2 and the running node group Y2, which is when the speeding node group D2 corresponds to the running node group Y2 and operates at the same speed.
- the device is temporarily connected to the whole speed section, and mainly includes a constant velocity plug 13 provided on the fast speed node group D2, and a constant speed card 14 corresponding to the constant velocity bolt on the running node group Y2, as shown in FIG.
- the windshield door 15 provided at the front and the rear, respectively, of the speeding node group D2 and the running node group Y2, as shown in FIG.
- the fast-moving car section opens on the side of the pedestrian line, which is a track electric sliding door.
- Each side of the safety interval on the side of the running speed and the running car section has a door corresponding to the position and an equal number.
- the design of the door is preferably a hinge door, one on each side of the door, and the door of the speeding car section and the door running the car section can form a closed channel to avoid passengers during the speed transfer. The safety interval between the front and rear doors is retained.
- the width of the carriage of the parallel-speed running railway train section is generally only 75-120 cm, and the compartment 8 of the manual vehicle section generally has only a small number of seats that can be automatically folded on the wall of the compartment or no seats.
- the top of the speeding car section and the running car section are provided with a stabilizing wheel, a running stable rail, a lower monorail guide bogie 16, a running trough type monorail 502 or a convex monorail 501, as shown in Figures 2, 3 and 4.
- the convex monorail 501 is an open rail, and the trough is single Rail 502 is a closed rail.
- the rail surface of the convex monorail 501 is not easy to accumulate obstacles, and the trough-shaped monorail 502 is easy to set the switch, and the vehicle section can be divided or added conveniently and quickly.
- the trough-shaped monorail is selected.
- the assembly method of the express train D and the running train Y bogie is as follows: in the gang, a single rail guide bogie 16 is assembled in addition to the front part of the first car section and the rear part of the last car section, and the rest are in the front car section.
- the rear portion shares a single rail guide bogie 16 at the joint with the front portion of the rear gang, as shown in FIG.
- this design also avoids lateral relative displacement of the front and rear sections at the joint when passing through the corners.
- each tachograph group the same number of short-distance car sections for short-haul passengers can be added, and the short-distance car sections are arranged in a single forward position.
- the short-distance car section is not a fast-speed car section. It occupies the position of the chain link between the front and rear sections. Therefore, there is no speed-combination relationship between the short-range car section and the running section.
- the speeding train D is used to accelerate the deceleration synchronization with the running train Y, the deceleration of the counter-speed train D and the acceleration synchronization of the running train Y, the taut train D and the running train Y
- a synchronous complementary system for generating and utilizing braking energy is installed.
- the speed train D accelerates, it just synchronizes the corresponding running train Y deceleration, and the required acceleration energy of the counter train D can be partially or completely provided by the electric energy generated by the deceleration braking of the running train Y.
- the acceleration electric energy required to run the train Y may be partially or completely provided by the electric energy generated by the decelerating train D deceleration braking.
- the car section is composed of a car, a monorail guide bogie 16, a pedal inter-face, and a hood, as shown in Figures 2 and 3.
- the knuckle is formed by a certain number of car joints connected by the coupler 12 at the edge of the lining face of the awning, or each car section is directly connected with the chain link through the cradle 7 to form all the knuckles of the ganglion.
- the compartment space is connected, and the joint of the front and rear joints has a retractable closed structure.
- the node group of the parallel type fast-running rail train of the passenger line with smaller passenger flow can also be designed according to the single section.
- the chain link is composed of a common section, a traction section, and a slow push section.
- the main components include a guiding frame 31, a drawbar 32, a tractor 33, a thrust mitigator 34, and a flange 35, as shown in FIG. 10;
- the common section is composed of a guiding frame 31 and a drawbar 32, and the traction section is guided by the guiding frame. 31.
- the tractor 33 and the drawbar 32 are formed.
- the slow pusher is formed by the guide frame 31, the accelerator 34 and the drawbar 32.
- the section chain between the front and rear section groups and the node group has only one thrust pusher.
- the guiding frame 31 is composed of a frame 311, two guiding wheels 315, two lower edge guiding wheels 315, two bearing wheels 317, two bearing axles 313, two guiding axles 314, and two radial sliding balance bars 312. 4 radial return springs, 1 front joint with front flange joint flange 320 of flange 35, 1 rear end with flange 35 rear joint joint fork 322, 1 cross universal joint shaft
- the composition is as shown in FIGS. 11 and 12.
- the frame 311 has two horizontally disposed horizontally balanced balance rollers.
- Two bearing axles 313 are fixed on the left and right outer sides of the frame 311, and the two axes are located on the same axis.
- Two guide axles 314 are fixed on the upper and lower sides of the frame 311, and the two axes are on the same axis.
- the bearing axle 313 and the axial center of the guide axle 314 are located on the same lateral plane and perpendicular to each other.
- the two guide wheels 315 are mounted in series on the upper guide axle 314, and the two lower edge guide rollers 315 are mounted in the lower guide axle 314.
- the center of the four guide wheels is on the axis of the axle, and one of the uppermost guide wheels 315 and the lowermost one of the lower edge guide wheels 315 constitute an outer wheel set, and the other one of the guide wheels 315 and a lower edge guide
- the wheel 315 constitutes an inner wheel set, and the inner wheel set and the outer wheel set respectively travel on the left and right sets of guide rail faces 43, and the two load-bearing wheels 317 are mounted on the load-bearing wheel axles 313 at the left and right ends, and the load-bearing rail faces 42 are traveled.
- the wheel surface of the guide wheel and the load bearing wheel is made of solid rubber material.
- the front joint fork 320 and the rear joint fork 322 and the cross joint shaft 319 form a universal joint.
- the front joint fork 320 is sleeved with the horizontal shaft of the cross joint shaft 319.
- the front joint fork 320 Before and after the horizontal shaft, the front joint fork 320 has two left and right diameter sliding balance holes, which are respectively arranged in two
- a return spring group 318 is respectively sleeved, and the front joint fork 320 and the front joint are respectively arranged.
- the universal joint formed by the rear joint fork 322 and the cross gimbal shaft 319 can perform a radial slip of a limited distance on the radial balance bar 312. This kind of slip only occurs on the curve. It is actually the lateral swing of the traction chain in addition to the guide frame 31 on the curve. Its function is to link the chain. The thrust and tension are self-adjusting, and the second is to make the chain chain run smoothly in the cage rail beam on the curve.
- the drawbar 32 is a pull rod capable of withstanding a certain thrust and pulling force and having flanges at both ends.
- the tractor 33 is composed of a bearing shaft 331 having flanges 35 at both ends, a shock absorbing seat 332, a buffer spring group 334, and a cushioning saddle 333.
- the cushioning saddle 333 is an outer inner circle sandwiched by two slats in the front and the rear, and is sleeved on the bearing shaft so as to be able to slide back and forth and rotate around the shaft, as shown in Figs.
- the function of the tractor 33 is to accept longitudinal thrust and drag (pull) from the train and to cushion the instantaneously enhanced force.
- the main components of the thrust mitigator 34 are a flange 35 having a flange 35 at one end, a pull-up housing 341 having a lumen 344 at one end, and a pull-pull plug 342 having a flange 35 at one end and a spring-loaded spring compressed in the inner cavity.
- Group 343 as shown in FIG.
- the spring group 343 is further compressed, which can avoid deformation of the traction rod body and damage related components, and at the same time can make the chain link mainly bear the pulling force, and the thrust is supplemented, and the cross section of the drawbar 32 can be reduced.
- the thrust mitigator 34 cannot stretch the chain link under the tension, but it will become slightly shorter under the condition of the overrun. In this case, the front and rear drawbar 32 joints of the upper chain of the curve are on the guide frame 31. Made by radial slip.
- the cage rail beam is composed of a beam 41, a load bearing rail surface 42, and a guide rail surface 43, as shown in FIG.
- the fast-speed cage rail beam D4 corresponds to the reciprocating single rail reciprocating closure
- the running cage rail beam D5 corresponds to the running monorail YG round-trip closure.
- the traction seat 7 is a member that is connected to the knot or the knot and the chain link, and is composed of a fixed seat 72, a rotating shaft 73, and a curved turning fork 71 having a rotating shaft hole 74.
- the fixing base 72 is fixed on the side body of the air inlet surface of the hood, the lower end of the rotating shaft 73 is fixed perpendicularly to the fixing base 72, the rotating shaft hole 74 of the curved surface rotating fork 71 is sleeved on the rotating shaft 73, and the front and rear of the fork of the curved surface rotating fork 71 is an arc. Face type, as shown in Figure 15.
- the two forks of the arcuate turning fork 71 of the traction seat 7 are clamped on the left and right sides of the square sleeve of the cushioning saddle 333 of the tractor 33.
- the width of the inner mouth of the arcuate fork 71 is greater than the width of the cushion saddle 333 square sleeve.
- the bottom of the cushioning saddle 333 square sleeve body and the bottom of the inner surface of the curved surface turning fork 71, and the upper portion of the cushioning saddle 333 square sleeve body and the opening of the curved surface rotating fork 71 have a certain distance.
- the cushioning saddle relative to the tractor 33 333, the arc-shaped rotating fork 71 of the traction seat 7 can be offset by a finite distance, and can be moved up and down by a certain distance, and the rotating shaft 73 can be used for horizontal rotation, and the curved surface can be rotated slightly in the longitudinal vertical plane.
- the buffer saddle 333 can be forced to rotate around the bearing shaft 331 on the lateral vertical plane.
- the monorail guide bogie 16 mainly comprises a frame 311, a front and rear load bearing drive wheel 163, a front and rear two sets of four guide wheels 315, an air spring 162, a central traction device 165 with a central pin hole 167, and a motor 166 drive system. , as well as the brake system. It is characterized by the lack of stability of the general monorail bogie assembly, as shown in Figure 5.
- the front and rear load bearing wheels 163 and the guide wheels 315 are generally solid rubber wheels.
- the single-track guide wheel bogie 16 is divided into two types: a trough-shaped monorail guide bogie 1602 of a running trough monorail 502 and a convex monorail guide bogie 1601 of a running convex monorail 501, as shown in Figs.
- the parallel type express train is based on the express train D. It continuously transfers passengers from the upper and lower passenger areas with zero speed to the running train Y with a speed of more than 20 kilometers per hour, and the passengers who are about to reach the target area are from the speed.
- the running train Y of more than 20 kilometers is transferred to the target lower passenger zone to realize the carrying function.
- the operation of the counter-speed train D always reciprocates to experience static stop--acceleration--synchronous operation with the running train Y to achieve parallel operation--deceleration to stop four stages, which are one of the hands-on train D Speed cycle.
- the operation principle of the parallel carrying train is realized in four stages of a fast-speed cycle.
- the express train D is statically parked, and the synchronous running train Y is operated at a high speed for about 15-25 seconds.
- the express train D starts synchronously and decommissions on the round-trip full-line passenger area, and the running train Y is carrying passengers to run at the top speed.
- the speeding train D starts to accelerate, and the synchronous running train Y decelerates to run synchronously.
- the two train nodes tend to be aligned and aligned, and the two trains tend to be equal in speed, taking 15-25 seconds.
- the running speed of the express train D and the running train Y are equal.
- the D train of the express train and the Y train of the running train are correspondingly aligned, the parallel connection device is activated, and the express train D and the running train Y are connected in parallel.
- the corresponding speeding door and the running door of the two trains are opened, the windshield door is opened, the two cars are connected to each other in a horizontal direction, and the express train D runs at a constant speed together with the running train Y, and then the opened door is closed.
- the windshield door is folded and the connecting device is separated, which takes 25-35 seconds.
- the speeding train D decelerates and runs synchronously to the corresponding running train Y to accelerate the operation, which takes 10-20 seconds.
- the time taken for a recursive cycle is 60-90 seconds
- the running distance of the express train D is 200-500 meters, which is not too long. It should be limited by shortening the speed period.
- the parallel connection phase it is necessary to ensure that the passengers of the taut train D and the passengers running the train Y have a relatively stable state when changing the car through the curve. It is mainly based on the curve radius of the passenger line and the juxtaposition of the coordinating segment.
- the constant speed of the connection which sets the corresponding curve inclination of the train to meet this requirement.
- the invention designs the minimum curve radius of the parallel running speed of the parallel running train to 45 meters, and the parallel connection stage has a constant speed of at least 20 kilometers per hour.
- Parallel-type express trains are divided into two types according to the total width.
- Type A total width 3.3-3.6 meters, suitable for large-city high-density passenger flow lines
- type B total width 2.6-2.9 meters, suitable for medium-sized passenger lines and large The general passenger flow line of the city.
- Type A design parameters are as follows:
- Type B design parameters are as follows:
- the screen door of the upper and lower passenger area opens at the same time as the door of the express train, and the passengers who arrive at the target area start to get off, and the passengers board the passenger. Since there are 3-5 doors in a car section, the process of getting on and off is only a dozen seconds. Then the car door is closed and it takes about 10-20 seconds to share.
- This phase is the step-up and down-shift phase of the express train D, while the running train Y is operating at the highest speed at this stage.
- the speeding train D starts to accelerate, and the running train Y starts to decelerate to be equal to the speed of the speeding train D, and the two vehicle section groups tend to be aligned and aligned in the riding section.
- This phase is in the acceleration phase of the taut train in the repetitive cycle, which takes about 15-25 seconds.
- the parallel connector is activated, and the two trains are connected in parallel at the counter speed section for constant speed operation.
- the windshield door 15 located between the safety interval between the speeding node group and the running node group is opened, and the front part of the node group is designed to be laterally sliding out of the wind guiding door, and the corresponding doors of the two trains are adjacent to each other.
- the long-distance passengers on the express train D change to enter the running train Y
- the short-haul passengers remain on the counter-speed train D
- the passengers on the train Y that are about to reach the target area change lanes to enter the express train D, and need to continue to travel.
- the long-haul passengers remain on the running train Y.
- the door is closed, the windshield door is folded, and the connector is separated.
- This phase is the parallel constant speed phase in the fast-speed cycle, which takes about 20-25 seconds.
- the speed train begins to decelerate, and the train Y starts to accelerate.
- the speed train D decelerates to a stop, the passengers arriving at the target passenger area get off and complete the ride.
- the passengers on the train Y are repeatedly accelerating according to the recurring cycle—maximum speed-deceleration-constant speed operation.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Platform Screen Doors And Railroad Systems (AREA)
Abstract
本发明公开了一种并联式递速运行轨道列车及其载运方法。所述并联式递速运行轨道列车包括:往返闭合的递速轨道线和运行轨道线,两轨道线均具有递速段和曲线回转段;走行在递速轨道线上的递速列车和走行在运行轨道线上的运行列车;所述递速轨道线的递速段与运行轨道线的递速段等距并列设置;所述递速列车与运行列车在各自的轨道线上同向独立运行,且所述递速列车与运行列车在轨道线的递速段周期性地并列连接等速运行。本发明实现了全线密集分区(或分小站)上下车,且载运量大,趟次间隔时间短,平均旅行速度高,每位二千米以上长程乘客中途不停一站直达,为全客运线附近的所有乘客就近、随时上下车提供极大方便,集中解决了乘客乘行不方便、不舒适、耗时长问题。该客运线的运行必将成倍提高列车上座率,显著降低市区内的自驾出行,为缓解城市交通拥堵,进而为彻底解决城市交通问题打开突破口。
Description
本发明涉及城市公共客运轨道交通领域,具体涉及一种城市地下轨道列车,及其用于城市客运的载运方法。
一直以来,城市出行难是全世界所有大中城市共同面临却无法彻底解决的首要问题。目前,国内外所有用于人员载运的路面车辆和轨道列车,都是独立操控行驶的载运工具,这种载运工具,无论是地面公共汽车、出租汽车,还是正大力发展应用的地铁、轻轨等轨道列车,都存在诸多明显而又用现有技术无法解决的问题。
地面公共汽车的主要问题是绕行路线长、停靠站点多、车多拥堵导致运行慢及客流高峰拥挤等;出租汽车的主要问题则是高峰时段供不应求,且单人运行成本太高。
地铁、轻轨等轨道列车,与地面公共汽车相比,虽然速度快、运量大,但却有以下严重缺陷:
1,站距太长,乘行极不方便,还造成某些线路或路段上座率低。目前国内外地铁、轻轨的站距一般都在1000米以上,即使地铁或轻轨线路就在乘客身边,乘客进站乘车也要花十多分钟甚至更长时间。过长站距又加大了乘客下车后离目的地的距离。要缩短地铁或轻轨的站间距离是不可行的,现用技术无法解决既提高时速又缩短站距的矛盾。
2,仍然有较长时间的趟次间隔,乘客乘行常常需要等待数分钟时间。目前,国内外地铁趟次间隔时间最短2分钟,一般都在4分钟以上。如在现有技术条件下再缩短最短间隔时间,就要突破防追尾的安全底线。
3,客流高峰路段时段依然严重拥挤,乘行极不舒适。目前,地铁线路的载运量一般为每小时三万人次左右,但这一载运量只有起始站能做到,其他中间站点根本无法实现。特别是客流高峰时段,不可能使中途各站的乘客都下完,然后再上满该站的乘客。实际情况是,下了一部分乘客后,车上依然拥挤,更多再上的乘客只能向走道挤进。现用技术只能依靠增加车节数量缓解这一问题,但这一方面要受站台设计长度的限制,另一方面,即使增加一倍数量的车节,也难保证乘客在客流高峰时都有座位。
4,过多过频的站点停靠,耽误了所有未到站乘客的时间。现有技术只能使未到站的所有乘客随车一起逢站必停,以让到站乘客下车和接应要在该站上车的乘客。
5,受市区站距长度的限制,地铁时速上限较低。
6,地铁列车频繁减速停站,产生的制动电能无法得到充分合理的利用,回馈电网或电容储存要经过复杂的变电程序,电能发热散失严重;有的地铁把这些电能输送同城其它地铁,但因授受时间不同步,导致利用率很低;还有的地铁干脆将制动电能通过电阻散热释放掉,既造成浪费又弱化空调制冷效果。
发明内容
本发明旨在提供一种并联式递速运行轨道列车及其载运方法。本发明改现有大型地铁站台上下车为全线密集分区或密分小站上下车,可实现区间距离比现有地铁站间距离缩短3—10倍,方便乘客就近上下车,同时将过分集中于某一站点的乘客大量分散到附近候乘区,以便于用本发明特有的技术措施解决拥挤问题。同时,本发明还可以实现趟次间隔60-90秒,使乘客侯乘时间与现有地铁相比缩短3倍以上。同时,本发明还可以使全线各区段实际载运量达到现有地铁载运量的2—10倍(结合了上述目的中单位长度路程内多区段载运和目标2中单位时间内多趟次载运),真正实现乘客乘行不拥挤、有座位。同时,
本发明还可以基本实现2000米以上长程乘客在该客运线上中途不停,能一站直达目标下客区,此项要为每一位长程乘客节省15—30%的乘行时间。同时,本发明还可以在较平直主干线上将平均运行时速在地铁平均运行时速基础上再提高10—20%,此项为每一位乘客节省5—15%的时间。
上述技术问题是通过权利要求1所述的并联式递速运行轨道列车或在城市公共客运中利用权利要求16所述的并联式递速运行轨道列车进行载运乘客的方法来实现的。
在从属权利要求2-15对本发明做出了进一步的改进。
由此,所述递速列车在载运时间段内周期性减速,停靠,启动加速,而所述运行列车在载运时间段内不停运行。
本发明所述的往、返递速段是并联式递速运行轨道列车运行的一条客运线上往向的全程路段和返向的全程路段,所述的曲线回转段是指并联式递速运行轨道列车在该客运线两端需要以一定半径作曲线回转的路段。环形客运线是属于本发明中所述轨道线作曲线回转的一种特殊形式。
本发明所述递速轨道线至少在往、返递速段分别与运行轨道线的往、返递速段等距并列设置,以及所述递速列车至少能在递速轨道线的往、返递速段,与同向运行在运行轨道线递速段上的运行列车周期性作并列连接等速运行,是指在通常情况下,本发明所述的递速轨道线的曲线回转段与运行轨道线的曲线回转段之间也是等距并列设置,递速列车与运行列车在递速段和回转段均能实施并列连接作等速运行。但也存在一种特异情形,所述递速轨道线的曲线回转段与运行轨道线的曲线回转段不是等距并列设置,递速列车与运行列车在该路段不能实施并列连接。
本发明所述的递速轨道线与运行轨道线等距并列,并不是两者之间的距离绝对一致的并列,而是在保证运行安全、可靠连接、转弯平稳的前提下允许存在一定的误差值,尤其是列车设置弯道倾角的曲线路段;本发明所述的并列设置,并不是专指两轨道线在同一水平面的并列设置,而是包括两轨道线位于不同水平高度,但两者在同一水平面由平行光线产生的正投影为并列投影的并列设置。
由此,递速列车与运行列车在各自轨道线的往、返递速段周期性作并列连接等速运行,乘客可以通过转乘通道实现换线转乘,使长程乘客换线至运行列车并直达目标下客区,避免了逢站必停(相当于直达),而中途即将到站乘客则可换线至递速列车,准备下车。
本案所述上下客区,包括建筑规模已成倍缩小,但完全具有安检、票务功能的地铁站站台。
以下对本发明作进一步的解释和说明:
一种用于城市公共客运的并联式递速运行轨道列车,是以电能为驱动能,由载运乘客的车厢通过转向架走行在固定轨道上的若干车节组成,其特征是:在一条往返双向的客运线上,由若干递速车节组成递速列车D,由若干运行车节组成运行列车Y,递速列车D与运行列车Y同向运行;如图1所示,递速列车D所在的递速轨道线DG与运行列车Y所在的运行轨道线YG各自在该客运线的两端作曲线回转,形成内、外往返闭合轨道线。在客运线两端,作曲线回转的递速轨道线为递速轨道线DG的曲线回转段,作曲线回转的运行轨道线为运行轨道线YG的曲线回转段;在客运线往返两边,位于两端递速轨道线DG曲线回转段之间的递速轨道线为递速轨道DG的递速段,位于两端运行轨道线YG曲线回转段之间的运行轨道线为运行轨道线YG的递速段。
环形客运线是属于并联式递速运行轨道列车其轨道线作曲线回转、递速列车往返一体、运行列车往返一体的一种特殊形式。
往向运行的递速轨道线DG的递速段与运行轨道线YG的递速段之间,返向运行的递速轨道线DG的递速段与运行轨道线YG的递速段之间,为等距并列设置。
递速轨道线DG的曲线回转段与运行轨道线YG的曲线回转段之间通常情况下也是等距
并列设置,如图1所示,但在特异情况下不是等距并列,如图20所示。
递速列车D和运行列车Y周期性作独立运行;运行在递速轨道线DG上的递速列车D和运行在运行轨道线YG上的运行列车Y在各自轨道线的递速段周期性作并列连接等速运行,如图2、图3所示。
所述的递速列车D是将递速轨道线DG上所有递速车节按数量相等、间距相等编成的若干递速节组D2组成,运行时,排除误差因素,往返全线所有递速车节、递速节组D2同步、等速运行;
所述的运行列车Y是将运行轨道线YG上所有运行车节按数量相等、间距相等编成的若干运行节组Y2组成,运行时,排除误差因素,往返全线所有运行车节、运行节组Y2同步、等速运行。
优选设计递速车节长等于运行车节长。
递速节组D2长加前后递速节组间距离的长度等于运行节组Y2长加前后运行节组间距离的长度。
所述递速列车D的所有递速节组D2由牵引构件纵向连挂构成往返一体列车;
所述运行列车Y的所有运行节组Y2由牵引构件纵向连挂构成往返一体列车;
但本发明所述并联式递速运行轨道列车还包含:所述递速列车D和运行列车Y各自的节组与节组间不使用传递纵向力的牵引构件实施牵引连挂,而使用包括信号收发、计算机测控装置对各自往返全线的节组实现控距控速运行的智能技术。
所述运行列车Y的所有运行节组Y2由牵引构件纵向连挂构成往返一体列车,所述递速列车的牵引构件为一条对应递速轨DG往返闭合的递速节链D3,该递速节链D3运行在同样对应递速轨DG往返闭合的递速笼式轨道梁D4内,递速列车D的所有递速节组D2等距连挂在递速节链Y3上;所述运行列车Y的牵引构件为一条对应运行轨YG往返闭合运行的运行节链Y3,该运行节链Y3运行在同样对应运行轨YG往返闭合的运行笼式轨道梁Y4内,运行列车Y的所有运行节组Y2等距连挂在运行节链Y3上。
所述递速列车D和运行列车Y均由牵引构件实施单边牵引连挂,分别构成单边牵引连挂递速列车D和单边牵引连挂运行列车Y。
但本发明所述递速列车D和所述运行列车Y各自的车节与车节间,节组与节组间还包括其他连挂方式,如;利用牵引构件按传统列车横向中位连挂的方式实施连挂。
按本发明优选的单边牵引连挂方式,包括递速节链D3在内的牵引构件装设在与运行列车Y相邻一侧的递速列车D的车体边缘,包括运行节链Y3在内的牵引构件装设在与递速列车D相邻一侧的运行列车Y的车体边缘;在递速段的直线路段,递速节链D3的纵向轴心线与运行节链Y3的纵向轴心线处于同一纵向铅垂面,如图19所示。
递速列车D的车厢8与运行列车Y的车厢8之间设有安全间隔;在安全间隔下方,递速列车D设有递速踏板互进面D10,运行列车Y设有运行踏板互进面Y10;在安全间隔上方,递速列车D设有递速风蓬互进面D11,运行列车Y设有运行风蓬互进面Y11,如图2所示;最好的设计是,递速踏板互进面D10高度低于运行踏板互进面Y10,递速风蓬互进面D11高度低于运行风蓬互进面Y11,如图2所示;另一种设计则相反,递速踏板互进面D10高度高于运行踏板互进面Y10,递速风蓬互进面D11高度高于运行风蓬互进面Y11,如图20所示。
递速列车D的递速节组D2设有等速栓13,与等速栓位置对应,在运行列车Y的运行节组Y2上设有等速卡14,如图17所示;在递速节组D2和运行节组Y2前第一节车节的前部相对应的位置分别设有能互相闭合的风挡门15,在递速节组D2和运行节组Y2前后一节车节的后部相对应的位置分别设有能互相闭合的风挡门15,如图7所示。
通常情况下,所述的递速列车D的递速节链D3及其所在的递速笼式轨道梁D4设在递速风蓬互进面D11边缘的上方;所述的运行列车Y的运行节链Y3及其所在的运行笼式轨
道梁Y4设在运行风蓬互进面Y11边缘的上方。
在递速段,递速节链D3及其递速笼式轨道梁D4位于运行节链Y3及其运行笼式轨道梁Y4的下方时,递速笼式轨道梁D4位于运行笼式轨道梁Y4的正下方;递速节链D3及其递速笼式轨道梁D4位于运行节链Y3及其运行笼式轨道梁Y4的上方时,递速笼式轨道梁D4位于运行笼式轨道梁Y4的正上方,如图20所示,这是本发明包含的一种特殊情形。
递速节组D2中的递速车节与递速车节的结合部在递速风蓬互进面D11边缘用车钩12连挂,成为单边牵引递速节组D2;往返全线所有递速节组D2在递速风蓬互进面D11的边缘通过牵引座7与递速节链D3等距连挂,构成往返一体单边牵引连挂列车;运行节组Y2中的运行车节与运行车节的结合部在运行风蓬互进面Y11边缘用车钩12连挂,成为单边牵引运行节组Y2;往返全线所有运行节组Y2在运行风蓬互进面Y11的边缘通过牵引座7与运行节链Y3等距连挂,构成往返一体单边牵引连挂列车。
至此,并联式递速运行轨道列车按本发明优选的牵引构件,连挂方式及连挂位置导致的最终状态是:
如图19所示,在递速段的直线路段,递速车节结合部车钩12的纵向轴心线和运行车节结合部车钩12的纵向轴心线,与递速节链D3的纵向轴心线和运行节链Y3的纵向轴心线在同一个纵向垂面上;而且,在递速轨轨道线DG两端的曲线回转段分别与运行轨道线YG两端的曲线回转段采用等距并列设置时,递速笼式轨道梁D4总长等于运行笼式轨道梁Y4总长,递速节链D3总长等于运行节链Y3总长,递速列车D在节链上的总长等于运行列车Y在节链上的总长,如图1所示。
所述递速列车D和运行列车Y装配自带动力的单轨导轮转向架16,走行在地面单轨上,
所述递速列车D的递速车节和运行列车Y的运行车节顶部分别装设稳定轮,走行在上顶稳定轨。
所述递速列车D的递速节组中,前后车节间的结合部共用单轨导轮转向架16;所述运行列车Y的运行节组中,前后车节间的结合部共用单轨导轮转向架16,如图2、图3、图4、18所示。
所述的节链D3,Y3由普通节、牵引节、缓推节组成,由导控架31、牵引杆32构成普通节,由导控架31、牵引器33、牵引杆32构成牵引节,由导控架31、推力缓解器34、牵引杆32构成缓推节,在节组与节组间的一段节链D3,Y3,只包含一节缓推节,如图10所示。
所述节链D3,Y3的导控架31,其构成包括构架、轮、轮轴;所述构架为方框形构架311,构架311内还装有前后2个水平放置,互相平行的径滑平衡杠312,每一个平衡杠的两边套有一个复位弹簧组318;轮为2个承重轮317,2个导向轮315,2个踏面下有向外突出轮缘的下缘导向轮315;轮轴为2个导向轮轴314和2个承重轮轴313;2个导向轮轴314分别装在构架311外侧的上部和下部,两轮轴的轴心线在同一直线上,2个导向轮315串装在上部的导向轮轴314上,2个下缘导向轮315串装在下部的导向轮轴314上,上顶的一个导向轮315和下底的一个下缘导向轮315组成外轮组,其余一个导向轮315和一个下缘导向轮315组成内轮组,内、外两轮组分别走行在左右两边的导向轨面43上;2个承重轮轴313分别装在构架311外侧的左右两边,两轮轴的轴心线在同一条直线上,且与导向轮轴314的轴心线在同一横向垂面上并互相垂直,2个承重轮317分别装在两边承重轮轴313上,走行两边承重轨面42,图11所示;在构架311内,还有由一个前接端有法兰35的前接万向节叉320,一个后接端有法兰35的后接万向节叉322,一个十字万向节轴319构成的万向节,前接万向节叉320与十字万向节轴319的水平轴水平套接,在前接万向节叉320叉部位于十字万向节轴319水平轴前后,有2个左右贯通的径滑孔321,套在两边有复位弹簧组318的径滑平衡杠312中间,如图12所示,使万向节在构架内能作有限距离的左右摆动。
所述牵引座7有固定座72,其上有与固定座72垂直固定的转轴73,另有一叉部前后为弧面,叉柄部有上下垂直转轴孔74的弧面转叉71,通过转轴孔74套在转轴73上,如图15;弧面转叉71呈钳形套在节链牵引器33的缓冲鞍333中部的方形套体两边,如图13、14所示;弧面转叉71两支叉间的叉口与缓冲鞍333方形套体两边有5—30mm宽的间隙,叉口口部距缓冲鞍333上面,叉口底部与缓冲鞍333下面,均有30—150mm距离,弧面转叉71相对于缓冲鞍333可作相应距离的上下滑移和左右偏移,在横向垂面和纵向垂面作一定角度转动;牵引座7只向节链传递纵向推力和拉力,与节链及其牵引器33不形成力矩。
与现有技术相比,本发明的有益效果是:
一、方便
1实施密集分区上下客后,一部分乘客上车比进地铁站上车少走几百米路程;一个递速跨距为250—450米,比地铁站距短2—5倍,乘客下车后离最终目的也更近。达到发明目的的预期效果。
2实施密集分区上下车和单位时间内多趟次运载,使各上下客区聚集乘客比地铁站少10倍以上,顾客购票、验票、上车都无须排队。获得预期效果。
3上座率提高,位于地铁沿线,原来因地铁站距太长进站太远而选择其他出行方式的乘客将选乘本地铁。
二、快捷
1在给乘客带来上述进站、购票、上车方便的同时,也为乘客在上车前节省了进站、排队的时间,获得预期效果。
2一个递速周期为60—90秒,实际侯乘时间最长不过50秒,平均侯乘时间只有20—40秒,达到发明目的的预期效果。
3载运过程突破传统载运技术,实现了长程乘客与短程乘客的分离和已到站乘客与未到站长程乘客的分离,为每一位长程乘客免去中途停站,节约旅程时间20—35%。达到发明目的的预期效果。
4递速列车D与运行列车Y并连恒速是运行列车Y的最低运行时速,为20—40公里/小时,它比现有地铁多了这样一个加速前的速度基数,其平均时速比现有地铁平均时速不包括地铁列车停站时的零速要高10—40公里/小时,此项为长程乘客节省15%左右的旅行时间。达到发明目的的预期效果。
三、舒适
实施密集分区上下车和单位时间内多趟次载运,上下客区侯乘人数最多只有地铁站候乘人数的20%。现有一般地铁列车按编组长100米座位350—400个,到站实际空座率平均不足30%,即只有100个左右的空座,递速运行列车按编组长100米的递速乘坐节组和运行乘坐节组座位共120个,按空座率40%计算,到上下客区有近50个座位,加上递速运行列车单位时间内运行趟次比地铁高2—5倍,综合计算递速运行列车座位相对数是现有地铁座位相对数的3—6倍。因此递速运行列车上的乘客通常情况下都有座位,更不会拥挤。另外,递速运行列车的座位都是向前单座设计,在列车加减速时比现有地铁横向乘坐更舒适。达到甚至超越发明目的的预期效果。
四、缓解城市交通拥堵
并联式递速运行地铁列车提供方便舒适快捷出行服务,必将减少市区内的自驾出行,同线的路面公交将被取代,出租车的需求率相应降低,从而极大地缓解城市交通拥堵。
另外,并联式递速运行轨道列车转弯半径小,其地下隧道与地面交通线耦合率高,还能绕开更多建筑基座,更加适合城市线路选择。并联式递速运行轨道列车总宽度可与现有递铁列车宽度一致,可以走行现有地铁隧道。
以下结合附图和实施例对本发明作进一步阐述。
图1a)所示是一种往返一体,单边牵引连挂的并联式递速运行轨道列车的递速列车与运行列车并列连接作等速运行时的往返全线俯视示意图;该图示意的是位于客运线两端递速轨道线的曲线回转段与运行轨道线的曲线回转段等距并列设置,递速列车与运行列车能够往返全线实施并列连接的一种常有情形;b)所示是往返一体,单边牵引连挂的并联式递速运行轨道列车的递速列车在递速轨道线的往、返递速段和一端曲线回转段与并列运行在运行轨道线的运行列车并列连接,而在另一回转段单列向外延伸回转的往返全线俯视示意图;该图显示的是一种特殊情形,此情形下,一般属递速轨道线处于外线,运行轨道线处于内线设置。
图2是单边牵引连挂的并联式递速运行轨道列车的递速节组与运行节组对应并齐时,递速节组中有牵引座与递速节链连挂的车节,和运行节组中有牵引座与运行节链连挂的车节对应并齐的往返截面示意图;该图示意往、返上下客区及步行线分别位于客运线的往返两边,属递速轨道线往返外线、运行轨道线往返内线设置;
图3是并联式递速运行轨道列车的递速节组与运行节组对应并齐时,递速车节和运行车节对应并齐的往返截面示意图;该图示意步行线及往、返上下客区在客运线上横向居中,属递速轨道线往返内线、运行轨道线往返外线设置;
图4是装配凸形单轨导轮转向架,走行凸形单轨的并联式递速运行轨道列车示意图;
图5是槽形单轨导轮转向架侧面示意图;
图6是槽形单轨导轮转向架俯视图;
图7是递速节组与运行节组在递速段对应并齐,递速列车与运行列车实现并联连接时,风挡门关闭示意图;
图8是导控架走行在笼式轨道梁内的示意图;
图9是笼式轨道梁及其承重轨面、导向轨面位置示意图;
图10是节链构成立体示意图;
图11是导控架构成立体示意图;
图12是径滑平衡杠以及要组装成万向节的前、后接万向节叉、万向节十字轴示意图;
图13是套装在牵引座上的牵引节立体示意图;
图14是套装在牵引座上的牵引节平面示意图;
图15是牵引座立体示意图;
图16是推力缓解器纵向剖面图;
图17是等速栓插入等速栓卡的卡槽示意图;
图18是节组中前后车节在车厢结合部下方共用一个转向架示意图;
图19是在包含坡道的直线路段上,递速节链,运行节链,递速节组中连挂前后车节的车钩,和运行节组中连挂前后车节的车钩间的位置关系示意图;
图20是单边牵引连挂的并联式递速运行轨道列车,其递速节链及其笼式轨道梁位于运行节链及其笼式轨道梁上方,其递速风篷互进面位于运行风篷互进面上方的情形。该图还显示,递速节组与运行节组横向对应并齐时:1,可收放的递速风篷撑开,与运行风篷互进面闭合,递速车节与运行车节间形成密闭的顶棚;2,可收放的递速踏板互进面撑开与运行踏板互进面闭合,递速车节与运行车节间形成平底的转乘通道;
图21是并联式递速运行轨道列车的往返行车隧道;
图22所示是前后车节在结合部通过车钩单边牵引连挂构成递速节组,递速节组再通过牵引座与节链单边牵引连挂构成单边牵引连挂递速列车;
图23所示是节组前部的风挡门已演化为曲面导流式风挡门,该导流式风挡门可在车节前部横向滑出和缩进。
图24所示是递速节组与运行节组在递速段接近对应并齐,递速列车与运行列车速度接近相等时,安装在运行节组上的等速栓从栓座中先伸出一部分,被前方速度相对较慢,安装在运行节组上的等速卡前部阻拦,等速栓再不断向等速卡卡槽伸进,同时等速卡在减振弹簧组阻力作用下在卡座内被等速栓向前推动,当等速卡被推到预设位置时,等速卡座底部准位卡弹出,等速卡被锁定,递速列车与运行列车实现横向接驳,两列列车作等速运行。
在图中
D-递速列车;Y-运行列车;DG-递速轨;YG-运行轨;100-递速段;200-回转段;D2-递速节组;Y2-运行节组;D3-递速节链;Y3-运行节链;4-笼式轨道梁;D4-递速笼式轨道梁;Y4-运行笼式轨道梁;DG5-递速单轨;YG5-运行单轨;501-凸形单轨;502-槽形单轨;DG6-递速稳定轨;YG6-运行稳定轨;7-牵引座;8-车厢;D9-递速稳定轮;Y9-运行稳定轮;D10-递速踏板互进面;Y10-运行踏板互进面;D11-递速风蓬互进面;Y11-运行风蓬互进面;D111-递速风篷;12-车钩;13-等速栓;131-等速栓座;14-等速卡;141-卡槽;142-减振弹簧组;143准位卡;144-卡座;15-风挡门;16-单轨导轮转向架;1601-凸形单轨导轮转向架;1602-槽形单轨导轮转向架;31-导控架;311-构架;312-径滑平衡杠;313-承重轮轴;314-导向轮轴;315-导向轮;316-下缘导向轮;317-承重轮;318-复位弹簧;319-十字万向节轴;320-前接万向节叉;321-径滑平衡孔;322-后接万向节叉;32-牵引杆;33-牵引器;331-承轴;332-减震座;333-缓冲鞍;334-缓冲弹簧组;34-推力缓解器;341-壳体;342-阻拉缓推塞;343-缓推弹簧组;344-内腔;35-法兰;41-梁架;42-承重轨面;43-导向轨面;71-弧面转叉;72-固定座;73-转轴;74-转轴孔;161-构架;162-空气弹簧;163-驱动轮;164-导向轮;165-中央牵引装置;166-电机及齿轮箱;167-中心销孔。
本发明的并联式递速运行轨道列车是以电能为驱动能,由载运乘客的车厢通过转向架走行在固定轨道上的若干车节组成。与传统轨道列车不同,并联式递速运行轨道列车是在一条往返双向的客运线上,由递速列车D和运行列车Y同向、并列联合组成乘客载运组合体;递速列车D所在的递速轨道线DG与运行列车Y所在的运行轨道线YG各自在该客运线的两端作曲线回转,形成内、外往返闭合轨道线,如图1a)所示;将递速轨道线DG与运行轨道线YG分为递速段和两端回转段,递速段是在该客运线的往向和返向能使递速列车D与运行列车Y周期性进行并列连接,两列列车上的乘客能进行换线乘行,实现递速功能的路段。在划分的递速轨道线DG的递速段和运行轨道线YG的递速段,递速轨道线DG与运行轨道线YG等距并列设置,但在曲线路段设计列车弯道倾角时会有一定误差。
递速列车D是在递速轨道线DG上将所有车节按节数相等编成若干递速节组D2,所有递速节组D2按间距相等排布,运行时往返全线所有节组同步、等速运行。运行列车Y是在运行轨道线YG上将所有车节按节数相等编成若干运行节组Y2,所有运行节组Y2按间距相等排布,运行时往返全线所有节组同步、等速运行。
递速车节长度等于运行车节长度。
递速节组D2长度加前后两递速节组D2组间间距等于运行节组Y2长度加前后两运行节组Y2组间间距。此处的节组长度与节组间的间距是指在节链上的长度。
在递速段,同向运行的所有递速节组D2与所有运行节组Y2间可在往向和返向同时横向对应并齐,此时往返递速段的递速节组D2数量与运行节组Y2数量相等。
通常情况下,在两端回转段的递速轨道线DG与运行轨道线YG也是等距并列设置,递速列车D的递速节组D2与运行列车Y的运行节组Y2能够在往返全线横向对应并齐,并实
施并列连接作等速运行,使往返全线实现换线转乘的递速功能,此时,递速列车D的递速节组D2总数等于运行列车Y的运行节组Y2总数。
但另一种特殊情形是,递速轨道线DG可以单独向偏离主城区不远的大型企业、学校、集镇等客源聚集地延伸回转,以递速列车D单列接送该线路乘客,则递速节组D2数量可远远多于运行节组Y2数量,如图1b)所示。
递速列车D与运行列车Y的车厢8的厢体间设计有一定宽度的安全间隔,在安全间隔下方位于递速车节的车厢8地板高度处,递速列车D车节的车厢8外壁设有递速踏板互进面D10。在位于运行车节的车厢8地板高度处,运行列车Y车节的车厢8外壁设有运行踏板互进面Y10。在安全间隔上方位于递速车厢8顶棚高度处,递速列车D车节的车厢8外壁设有递速风蓬互进面D11。在位于运行车节的车厢8顶棚高度处,运行列车Y车节的车厢8外壁设有运行风蓬互进面Y11。递速风蓬互进面D11与运行风蓬互进面Y11之间,递速踏板互进面D10与运行踏板互进面Y10之间有一定高度的高度差,如图2。
但也有如图20所示的情形,在单边牵引连挂的并联式递速运行轨道列车中,其递速节链D3及其笼式轨道梁D4位于运行节链Y3及其笼式轨道梁Y4上方,其递速风篷互进面D11位于运行风篷互进面Y11的上方。图中显示,递速风篷互进面D11下方还设有递速风蓬D111,递速踏板互进面D10可以收放,当递速节组D2与运行节组Y2横向对应并齐时,可收放的递速风篷D111撑开,与运行风篷互进面D11闭合,递速车节与运行车节间形成平顶密闭的顶棚;同时可收放的递速踏板互进面D10撑开与运行踏板互进面Y10闭合,递速车节与运行车节间形成平底的转乘通道。
上下客区设在临近递速列车D一侧。上下客区的长度与递速列车D节组的长度一致(在不便设置乘客出入口的江底隧道或大山隧道,可能不设上下客区)。
并联式递速运行轨道列车根据递速列车D的节组与节组间、运行列车Y的节组与节组间是否有传递纵向力的牵引构件连挂,可分为:
1、往返一体型,节组与节组间通过牵引构件连挂。
2、同步等速智能测控型,节组与节组间没有牵引构件连挂,依靠信号收发装置及计算机测控系统控制往返全线递速节组同步、等速运行,全线运行节组同步、等速运行。
根据前后车节与车节间、节组与节组间牵引构件的连接位置或测距控距位置的不同可分为:
1、中位型,按传统牵引车辆在车节横向居中的位置连挂或控距。
2、单边型,在车节一侧的边缘连接或控距。
根据轨道走行形式分为:
1、地面双轨型,两侧地面轮轨一致的轨道列车。
2、地面单轨型,如跨骑式单轨列车(如重庆单轨列车)。
3、上下轨型,上为稳定轨,下为承重驱动单轨。
根据转向架装配形式分为:
1、一节两架型,即传统的每一车节的前后各装一个转向架。
2、前后节共用型,编组中除最前一车节的前部和最后一车节的后部各装配一个转向架,其余在前车节的后部与在后车节的前部在结合部共用一个转向架。
下面对本发明优选的往返一体,实施单边牵引连挂,走行上下轨,转向架在节组中采用前后车节共用配置的并联式递速运行轨道列车的具体实施方案加以说明。
实施单边牵引的并联式递速运行轨道列车,是在递速列车D临近运行列车Y一侧的车体边缘设有一条对应递速单轨DG往返闭合,运行在递速笼式轨道梁D4内的递速节链D3,在运行列车Y临近递速列车D一侧的车体边缘设有一条对应运行单轨YG往返闭合,运行在运行笼式轨道梁Y4内的运行节链Y3,如图2,3。递速节链D3和运行节链Y3与各自列车节组的连挂方式有两种形式:一种是,递速列车D的递速节组D2中前后递速车节的结
合部用车钩12在递速节链D3下方的递速风蓬互进面D11的边缘连挂,成为单边牵引连挂的递速节组D2。往返全线所有递速节组D2各自在递速风蓬互进面D11的边缘通过一个牵引座7与递速节链D3等距连挂,构成单边牵引往返一体递速列车D。其运行列车Y的运行节组Y2中前后运行车节的结合部用车钩12在运行节链Y3下方的运行风蓬互进面Y11的边缘连挂,成为单边牵引连挂的运行节组Y2。往返全线所有运行节组Y2各自在运行风蓬互进面Y11的边缘通过一个牵引座7与运行节链Y3等距连挂,构成单边牵引往返一体运行列车Y。另一种形式是,递速节组D2的前后递速车节间,运行节组Y2的前后运行车节间不用车钩12连挂,由组成递速节组D2的各递速车节在其风蓬互进面的边缘通过牵引座7直接与递速节链D3连挂,构成单边牵引往返一体递速列车D,由组成运行节组Y2的各运行车节在其风蓬互进面的边缘通过牵引座7直接与运行节链Y3连挂,构成单边牵引往返一体运行列车Y。
在递速段,递速笼式轨道梁D4位于运行笼式轨道梁Y4的正下方或正上方,本案优选递速笼式轨道梁D4位于运行笼式轨道梁Y4的正下方。
在递速段的弯道路段,根据转弯半径和递速列车D与运行列车Y并列连接时的运行速度,设计递速列车D和运行列车Y相等的弯道倾角,以消除乘客换线行走的失稳现象,此情形下的递速笼式轨道梁D4依然位于运行笼式轨道梁Y5的正下方,卡合在牵引座7内的缓冲鞍333可以以所在承轴331为轴随列车车体下部向弯道外侧倾摆而旋转,如图14所示。
受递速节链D3和运行节链Y3控制,在递速段,当运行中的递速列车D的一个递速节组D2和运行列车Y的一个运行节组Y2对应并齐时,对于运行节组和递速节组完全相等的情况,全线每一个递速节组D2都与一个运行节组Y2对应并齐,每一节递速车节也与一节运行车节横向对应并齐,如图1a)、b)所示。若此时两列列车实施并列连接,则无论通过直线路段还是弯道路段,递速车节的递速踏板互进面D10边体和对应并齐的运行车节的运行踏板互进面Y10边体间几乎不产生纵向、横向、垂向相对位移,两列列车保持并列连接的整体性,如图2所示。
设计上,递速节链D3和运行节链Y3在弯道上可以作受弹性阻力的径向摆动,这种径向摆动是在导控架31内进行的有限距离摆动,目的是在确保传递纵向力的同时,即要增强节链导控架31在弯道上顺畅通行的能力,又要使节链所受向前推力与向后拉力自动实施双向转化。
递速列车D和运行列车Y在递速节组D2与运行节组Y2间设有等速连接装置,是递速节组D2与运行节组Y2对应并齐作等速运行时两列列车在递速段临时连接为一个整体时的装置,主要包括递速节组D2上设置的等速栓13、运行节组Y2上与等速栓对应设置的等速卡14,如图17所示,以及递速节组D2和运行节组Y2分别在前部和后部设置的风挡门15,如图7所示。
另一种设计是,等速栓13及其栓座131设在运行节组D2上,等速卡14及其卡座144则设在递速节组Y2上,如图24。
递速车节临步行线一侧开门,该门为轨道电动推拉门。
递速车节与运行车节互临的安全间隔一侧各自开有位置对应、数量相等的门。该门的设计优选转轴门,每一车门口的两边各一扇,递速车节的该门与运行车节的该门打开时即可形成一个封闭通道,避免递速换乘时有乘客在前后门间的安全间隔滞留。
并联式递速运行轨道列车车节的车厢内宽一般只有75—120cm,递速车节的车厢8一般只设有少量安装在厢壁上可自动收折的座位或不设座位。
递速车节和运行车节的顶部设有稳定轮,走行稳定轨,下装单轨导轮转向架16,走行槽型单轨502或凸形单轨501,如图2、3、4所示。凸形单轨501为开放型轨,槽形单
轨502为封闭型轨。凸形单轨501的轨面不易积存障碍物,槽形单轨502易于设置道岔,可方便快捷地分流或加挂车节,在设计临时加挂节组的运行线,选择槽形单轨。
递速列车D和运行列车Y转向架的装配方式为:节组中除最前一车节的前部和最后一车节的后部各装配一个单轨导轮转向架16,其余在前车节的后部与在后车节的前部在结合部共用一个单轨导轮转向架16,如图18所示。这种设计除节约建造成本和运行成本外,还能避免通行弯道时,前后车节在结合部产生横向相对位移。
在每一递速节组的前部和后部,可加挂相同数量专供短程乘客乘坐的短程车节,短程车节设纵列向前单座。短程车节不算递速车节,它占用的是前后节组间节链的位置,因此短程车节与运行节组没有递速组合关系。
在并联式递速运行轨道列车运行原理中,利用递速列车D加速与运行列车Y的减速同步,递速列车D的减速与运行列车Y的加速同步的特性,递速列车D和运行列车Y装设制动电能生成与利用同步互补系统。递速列车D加速时,正好同步对应运行列车Y减速,递速列车D所需加速电能可部分或全部由运行列车Y减速制动产生的电能提供。而运行列车Y加速时,正好同步对应递速列车D减速,运行列车Y所需加速电能可部分或全部由递速列车D减速制动产生的电能提供。
下面对往返一体,实施单边牵引,走行上下轨的并联式递运轨道列车重要组成部分及相关部件的构成结合绘图进行说明。
所述车节由车厢、单轨导轮转向架16、踏板互进面、风蓬互进面组成,如图2、3所示。
所述节组由一定数量的车节在风蓬互进面的边缘通过车钩12连接而成,也可以是各车节都通过牵引座7直接与节链连接组成,组成节组的所有车节的车厢空间是相通的,其前后车节的结合部有可伸缩的封闭结构。个别客流量较小的客运线的并联式递速运行轨道列车的节组也可按单节车节设计。
所述节链由普通节、牵引节、缓推节组成。主要构件包括导控架31、牵引杆32、牵引器33、推力缓解器34、法兰35,如图10所示;普通节由导控架31和牵引杆32构成,牵引节由导控架31、牵引器33和牵引杆32构成,缓推节由导控架31、缓推器34和牵引杆32构成,前后节组与节组间的一段节链只有一个缓推节。
所述导控架31由构架311,2个导向轮315,2个下缘导向轮315,2个承重轮317,2个承重轮轴313,2个导向轮轴314,2个径滑平衡杠312,4个径向复位弹簧,1个前接端带法兰35的前接万向节叉320,1个后接端带法兰35的后接万向节叉322,1个十字万向节轴构成,如图11和图12所示。构架311内有前后2个水平设置,互相平衡的径滑平衡杠。2个承重轮轴313固定在构架311的左右两外侧,两轴位于同一条轴心线上。2个导向轮轴314固定在构架311的上下两外侧,两轴位于同一轴心线上。承重轮轴313与导向轮轴314的轴心线位于同一横向垂面且互相垂直,两个导向轮315串装在上部的导向轮轴314上,两个下缘导向轮315串装在下部的导向轮轴314上,4个导向轮的圆心同在该轮轴的轴心线上,位于最上端的一个导向轮315和位于最下端的一个下缘导向轮315组成外轮组,其余一个导向轮315和一个下缘导向轮315组成内轮组,内轮组和外轮组分别走行在左右两组导向轨面43上,2个承重轮317安装在左右两端的承重轮轴313上,走行承重轨面42。所述导向轮和承重轮的轮踏面最好采用实心胶材料。前接万向节叉320和后接万向节叉322与十字万向节轴319构成万向节。前接万向节叉320与十字万向节轴319的水平轴套接,在该水平轴前后,前接万向节叉320叉部有两个左右贯通的径滑平衡孔,分别套在两个径滑平衡杠312上,在前接万向节叉320叉部的两外侧与构架311间的两径滑平衡杠312上,分别套有复位弹簧组318,前接万向节叉320和后接万向节叉322与十字万向节轴319构成的万向节可在径滑平衡杠312上作有限距离的径向滑移。这种滑移只发生在弯道上,它实际上是牵引节链除导控架31外在弯道上的横向摆动,其作用,一是节链
所受推力与拉力的自行调节,二是使节链在处于弯道上的笼式轨道梁内能顺畅运行。
所述牵引杆32就是一根能承受一定推力和拉力,两端有法兰的拉杆。
所述牵引器33由两端有法兰35的承轴331,减震座332,缓冲弹簧组334,缓冲鞍333构成。缓冲鞍333是由前后两个盾片夹在中间的外方内圆,套在承轴上可前后滑移和绕轴旋转的套体,如图13、14所示。牵引器33的作用是接受来自列车的纵向推力和阻力(拉力),并对瞬间增强的力进行缓冲。
所述推力缓解器34的主要构件是一端有法兰35,一端有内腔344的缓推壳体341,和一端有法兰35的阻拉缓推塞342以及压缩在内腔的缓推弹簧组343,如图16所示。当推力超过一定值时,弹簧组343被进一步压缩,可避免牵引杆杆体变形和损伤相关构件,同时能使节链以承担拉力为主,推力为辅,可缩小牵引杆32的横截面。推力缓解器34不能在拉力作用下使节链拉伸变长,但在推力超限情况下会微度变短,这种情形是弯道上节链的前后牵引杆32结合部在导控架31上作径向滑移实现的。
所述笼式轨道梁由梁架41、承重轨面42、导向轨面43组成,如图9所示。递速笼式轨道梁D4对应递速单轨往返闭合,运行笼式轨道梁D5对应运行单轨YG往返闭合。
所述牵引座7是节组或车节与节链连挂的构件,由固定座72,转轴73,以及有转轴孔74的弧面转叉71构成。固定座72固定在风蓬互进面的边体上,转轴73下端与固定座72垂直固定,弧面转叉71的转轴孔74套在转轴73上,弧面转叉71叉部前后为弧面型,如图15所示。
所述牵引座7的弧面转叉71的两个支叉呈钳形夹套在牵引器33的缓冲鞍333方形套体的左右两边。弧面转叉71支叉间的内口宽度大于缓冲鞍333方形套体的宽度。缓冲鞍333方形套体底部与弧面转叉71内口底部,以及缓冲鞍333方形套体上部与弧面转叉71开口处均有一定距离。综上所述,当装配牵引座7的车节在弯道或坡道上与对应连挂牵引器33所在牵引节纵向不平行,或行驶中遭遇道路不平顺时,相对于牵引器33的缓冲鞍333,牵引座7的弧面转叉71可作有限距离的左右偏移,可作一定距离的上下滑移,可利用转轴73作水平旋转,可利用弧面在纵向垂面作微度转动,可迫使缓冲鞍333绕承轴331在横向垂面上旋转,这样设计,是使节链只承受牵引座7传递的纵向拉力和推力,而避免与牵引座7产生力矩,如图所示13、14所示。
所述单轨导轮转向架16主要包括构架311,前后各一个承重驱动轮163,前后两组共四个导向轮315,空气弹簧162,带中心销孔167的中央牵引装置165,电机166驱动系统,以及制动系统。其特点是没有一般单轨转向架装配的稳定论,如图5所示。前后承重驱动轮163和导向轮315一般采用实心胶轮。
所述单轨导轮转向架16分两种:走行槽形单轨502的槽形单轨导轮转向架1602和走行凸形单轨501的凸形单轨导轮转向架1601,如图2、4所示。
运行原理
并联式递速运行列车是以递速列车D为中介载体,不断将乘客从速度为零的上下客区转递到时速20公里以上的运行列车Y上,又把即将到达目标区的乘客从时速20公里以上的运行列车Y上转递到目标下客区的方式来实现载运功能的。
递速列车D的运行,总是往复经历静定停靠——加速——与运行列车Y实现并列连接等速运行——减速至停止四个阶段,这四个阶段就是递速列车D的一个递速周期。现以一个递速周期的四个阶段说明并联式递速运行列车实现载运功能的运行原理。
第一阶段,递速列车D静定停靠,同步对应运行列车Y高速运行,用时约15—25秒。
此阶段,递速列车D在往返全线上下客区同步开始并完成上下客,运行列车Y正搭载乘客以最高时速运行。
第二阶段,递速列车D启动加速,同步对应运行列车Y减速运行,两列车节组趋于对应并齐,两列车车速趋于相等,用时15—25秒。
第三阶段,递速列车D与运行列车Y运行速度已相等,递速列车D节组与运行列车Y节组已对应并齐,并列连接装置启用,递速列车D与运行列车Y实现并列连接,两列车间相临对应的递速车门与运行车门打开,风挡门撑开,两车乘坐节间实现横向连通,递速列车D与运行列车Y一起作恒速运行,之后打开的车门关闭,风挡门收折,连接装置分离,用时25—35秒。
此阶段,长程乘客从递速列车D换线至运行列车Y,即将到站的乘客从运行列车Y换线至递速列车D。
第四阶段,递速列车D减速运行,同步对应运行列车Y加速运行,用时10—20秒。
在第四阶段结束时,递速运行列车即进入下一递速周期的运行;
一个递速周期所用时间为60—90秒;
一个递速周期中递速列车D运行距离即递速跨距为200—500米,这一距离不宜过长,是要尽量通过缩短递速周期加以限制的。
长程乘客搭乘运行列车Y随递速周期往复作加减速运行,在不换乘递速列车D之前是始终不停的,设计平均时速为45—70公里。
在并列连接阶段的运行时速,必须保证递速列车D的乘客与运行列车Y的乘客经过弯道处换车时有一个相对平稳的状态,它主要根据该客运线递速段的曲线半径及并列连接的恒定速度,为列车设置相应的弯道倾角来满足这一要求。本发明将并联式递速运行列车递速段的最小弯道半径设计为45米,并列连接阶段恒速最低为每小时20公里。
并联式递速运行轨道列车按总宽度分A.B两型,A型:总宽3.3—3.6米,适合大型城市高密度客流线,B型:总宽2.6—2.9米,适合中等城市客流线及大城市一般客流线。
现按A.B两型设计两组参数:
A型设计参数如下:
B型设计参数如下:
现根据并联式递速运行轨道列车的运行原理详细说明利用本技术实现城市人员载运功能的具体实施方案。
当乘客位于某递速运行列车运行线附近需要乘坐该线列车时,可按标示就近选择该线列车上下客区位于地面的入口,进入入口后,通过安检和自助购票验票系统后进入上下客区。
当递速列车D的递速节组停靠在上下客区时,上下客区屏蔽门与递速列车车门同时打开,有到达目标区的乘客开始下车,侯乘乘客上车。由于一个车节有3—5个车门,这一上下客的过程只需十几秒钟的时间。随后车节车门关闭,共用时约10—20秒。此阶段为递速列车D停车上下客阶段,而运行列车Y在这一阶段正以最高时速运行。
递速列车D起动加速,运行列车Y开始减速至与递速列车D速度相等,且两车节组在乘行段趋于对应并齐。这一阶段处于递速周期中递速列车加速阶段,用时约15—25秒。
当递速列车D与运行列车Y的节组对应并齐并作等速运行时,并列连接器启用,两列车在递速段被并列连接为一体,作恒速运行。此时,位于递速节组与运行节组间安全间隔之间的风挡门15撑开,节组前部设计为导流式的风当门横向滑出,两列车间相临对应的车门同时打开,递速列车D上的长程乘客换线进入运行列车Y,短程乘客仍留在递速列车D上,运行列车Y上即将到达目标区的乘客换线进入递速列车D,需继续乘行的长程乘客仍留在运行列车Y上。之后,车门关闭,风挡门收折,连接器分离。这一阶段为递速周期中的并连恒速阶段,用时约20—25秒左右。
递速列车开始减速,运行列车Y则开始加速。递速列车D减速至停时,到达目标下客区的乘客下车,完成本次乘行。运行列车Y上的乘客则按递速周期不断重复加速—最高时速—减速—恒速运行。
从上一过程可以看出,短程乘客进入递速列车D后,便可在专设的短程座位上坐下,不必进入运行列车Y,经过2—5个递速周期约2—5分钟便到达自己的目标下客区。而每位长程乘客进入运行列车Y后,都可以中途不停,一直到接近自己的目标区时,由递速列车D接应下车,完成本次乘行。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
Claims (16)
- 一种并联式递速运行轨道列车,其特征在于,包括:往返闭合的递速轨道线(DG),其具有往、返递速段和曲线回转段;往返闭合的运行轨道线(YG),其具有往、返递速段和曲线回转段;若干递速车节组成并走行在递速轨道线(DG)上的递速列车(D);以及若干运行车节组成并走行在运行轨道线(YG)上的运行列车(Y);所述递速轨道线(DG)至少在往、返递速段分别与运行轨道线(YG)的往、返递速段等距并列设置;所述递速列车(D)与运行列车(Y)在各自的轨道线上同向、独立运行,且所述递速列车(D)至少在递速轨道线(DG)的往、返递速段与同向运行在运行轨道线(YG)递速段上的运行列车(Y)周期性地并列连接等速运行;所述递速列车(D)与运行列车(Y)周期性作并列连接等速运行时,两列列车对应的车节之间形成换线转乘通道。
- 根据权利要求1所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)是将递速轨道线(DG)上所有递速车节按数量相等、间距相等编成的若干递速节组(D2)组成,每个递速节组(D2)由至少一个车节组成,运行时往返全线所有递速车节、递速节组(D2)同步、等速运行;所述运行列车(Y)是将运行轨道线(YG)上所有运行车节按数量相等、间距相等编成的若干运行节组(Y2)组成,每个运行节组(Y2)由至少一个车节组成,运行时往返全线所有运行车节、运行节组(Y2)同步、等速运行。
- 根据权利要求2所述的并联式递速运行轨道列车,其特征在于,所述递速列车(D)的所有递速节组(D2)由牵引构件纵向连挂构成往返一体列车;所述运行列车(Y)的所有运行节组(Y2)由牵引构件纵向连挂构成往返一体列车。
- 根据权利要求3所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)由多个递速节组(D2)组成,每个递速节组(D2)由至少一个车节组成,所述运行列车(Y)由多个运行节组(Y2)组成,每个运行节组(Y2)至少由一个车节组成;所述递速列车(D)的牵引构件是一条对应递速轨(DG)往返闭合的递速节链(D3),该递速节链(D3)运行在同样对应递速轨(DG)往返闭合的递速笼式轨道梁(D4)内,递速列车(D)的所有递速节组(D2)等距连挂在递速节链(D3)上;所述运行列车(Y)的牵引构件是一条对应运行轨(YG)往返闭合的运行节链(Y3),该运行节链(Y3)运行在同样对应运行轨(YG)往返闭合的运行笼式轨道梁(Y4)内,运行列车(Y)的所有运行节组(Y2)等距连挂在运行节链(Y3)上。
- 根据权利要求4所述并联式递速运行轨道列车,其特征在于,所述递速节链(D3)和运行节链(Y3)结构相同,每条节链均包括多个普通节、多个牵引节和多个缓推节;在前后两递速节组(D2)之间的一段节链上设有至少一个普通节、至少一个牵引节和至少一个缓推节;在前后两运行节组(Y2)之间的一段节链上设有至少一个普通节、至少一个牵引节和至少一个缓推节;所述普通节包括导控架(31)和与之相连的牵引杆(32);所述牵引节包括导控架(31)、与牵引座(7)连挂的牵引器(33)和牵引杆(32);所述缓推节包括导控架(31)、推力缓解器(34)和牵引杆(32)。
- 根据权利要求5所述并联式递速运行轨道列车,其特征在于,所述导控架(31)包括构架(311),该构架(311)内装有两个水平放置的径滑平衡杠(312),每一个径滑平衡杠(312)的两端套装有一个复位弹簧组(318);所述构架(311)的顶部和底部分别固定有在同一轴心线上竖向布置的导向轮轴(314),两个导向轮(315)串装在构架(311)顶部的导向轮轴(314)上,两个下缘导向轮(316)串装在构架(311)底部的导向轮轴 (314)上,两个导向轮(315)和两个下缘导向轮(316)中,位于上方的导向轮和位于下方的下缘导向轮组成外轮组,位于下方的导向轮和位于上方的下缘导向轮组成内轮组;所述内轮组和外轮组分别走行在笼式轨道梁(4)内的左右两组导向轨面(43)上;所述构架(311)的左右两外侧分别固定有在同一轴心线上横向布置的承重轮轴(313),两个承重轮(317)分别装在构架(311)两侧的承重轮轴(313)上并走行在笼式轨道梁(4)内的左右两个承重轨面(42)上;所述上下两导向轮轴(314)的轴心线与左右两承重轮轴(313)的轴心线处在同一垂面上且互相垂直;所述构架(311)内还装有一个由前接万向节叉(320)、后接万向节叉(322)和十字万向节轴(319)构成的万向节;所述前接万向节叉(320)的前部、后接万向节叉(322)的后部均设有法兰(35);所述前接万向节叉(320)与十字万向节轴(319)的水平轴水平套接,在前接万向节叉(320)叉部位于十字万向节轴(319)水平轴前后,开有两个左右贯通的径滑孔(321),套在两边有复位弹簧组(318)的径滑平衡杠(312)中间,使万向节在构架内能作有限距离的左右摆动。
- 根据权利要求5所述并联式递速运行轨道列车,其特征在于,所述牵引器(33)包括承轴(331),固定在承轴(331)上的减震座(332)和套装在承轴(331)上的缓冲鞍(333),在减震座(332)和缓冲鞍(333)之间设有缓冲弹簧组(334);所述缓冲鞍(333)包括一个外方内圆的管状套体及固定在管状套体两端的带套孔的盾片;所述牵引座(7)包括固定座(72),垂直固定在固定座(72)上的转轴(73),通过转轴孔(74)装在转轴(73)上的弧面转叉(71);弧面转叉(71)上部有两个支叉,两支叉前后为弧形面;所述弧面转叉(71)的两个支叉呈钳形套在缓冲鞍(333)的管状套体的左右两边,且与管状套体的上下左右均有间隙,两个支叉的前后弧形面紧贴所述缓冲鞍(333)的两个盾片,使弧面转叉(71)相对于缓冲鞍(333)可作上下滑移和左右偏移,且在横向垂面和纵向垂面作一定角度转动,同时弧面转叉(71)相对于固定座(72)可作水平转动,牵引座(7)只向所连挂的递速节链(D3)或运行节链(Y3)传递纵向力而与递速节链(D3)或运行节链(Y3)不形成力矩。
- 根据权利要求5所述并联式递速运行轨道列车,其特征在于,所述推力缓解器(34)包括一端有内腔(344)的缓推壳体(341),一端位于所述内腔的阻拉缓推塞(342),以及位于内腔(344)内的缓推弹簧组(343);所述缓推壳体(341)的另一端和阻拉缓推塞(342)的另一端分别连接相应的法兰。
- 根据权利要求3所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)和运行列车(Y)均由牵引构件单边牵引连挂,构成单边牵引连挂轨道列车。
- 根据权利要求4~8之一所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)的车厢(8)与运行列车(Y)的车厢(8)之间设有安全间隔;在安全间隔下方,递速列车(D)设有递速踏板互进面(D10),运行列车(Y)设有运行踏板互进面(Y10),所述递速踏板互进面(D10)和运行踏板互进面(Y10)形成递速列车(D)与运行列车(Y)之间并列连接时的转乘通道;在安全间隔上方,递速列车(D)设有递速风蓬互进面(D11),运行列车(Y)设有运行风蓬互进面(Y11),递速风蓬互进面(D11)与运行风蓬互进面(Y11)有高度差。
- 根据权利要求10所述并联式递速运行轨道列车,其特征在于,所述递速节组(D2)的车节和运行节组(Y2)的车节在递速列车(D)和运行列车(Y)之间的安全间隔下方分别设有递速踏板互进面(D10)和运行踏板互进面(Y10);所述递速节组(D2)的车节和运行节组(Y2)的车节在递速列车(D)和运行列车(Y)之间的安全间隔上方分别设有递速风蓬互进面(D11)和运行风蓬互进面(Y11);所述递速风蓬互进面(D11)位于运行风蓬互进面(Y11)的上方;所述递速节组(D2)的车节在递速风蓬互进面(D11)的下方设 有可收放的递速风蓬(D111);所述递速列车(D)一方的递速踏板互进面(D10)和运行列车(Y)一方的运行踏板互进面(Y10)中,至少有一方的踏板互进面是可以收放的活动踏板。所述递速列车(D)的递速节链(D3)及其所在的递速笼式轨道梁(D4)设在递速风蓬互进面(D11)边缘的上方;所述运行列车(Y)的运行节链(Y3)及其所在的运行笼式轨道梁(Y4)设在运行风蓬互进面(Y11)边缘的上方;所述递速节组(D2)中前后两个车节结合部在递速风蓬互进面(D11)边缘用车钩(12)连挂,成为单边牵引递速节组(D2);往返全线所有递速节组(D2)在递速风蓬互进面(D11)的边缘通过牵引座(7)与递速节链(D3)等距连挂,构成往返一体单边牵引连挂列车;所述运行节组(Y2)中前后两个车节结合部在运行风蓬互进面(Y11)边缘用车钩(12)连挂,成为单边牵引运行节组(Y2);往返全线所有运行节组(Y2)在运行风蓬互进面(Y11)的边缘通过牵引座(7)与运行节链(Y3)等距连挂,构成往返一体单边牵引连挂列车;在递速段的直线路段,递速车节结合部车钩(12)的纵向轴心线和运行车节结合部车钩(12)的纵向轴心线,与递速节链(D3)的纵向轴心线和运行节链(Y3)的纵向轴心线在同一个纵向垂面上。
- 根据权利要求4~8之一所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)由多个递速节组(D2)组成,每个递速节组(D2)由至少一个车节组成,所述运行列车(Y)由多个运行节组(Y2)组成,每个运行节组(Y2)由至少一个车节组成;所述递速列车(D)和运行列车(Y)之间的安全间隔上方均设有相应的风蓬互进面;所述递速列车(D)的递速节链(D3)及其所在的递速笼式轨道梁(D4)设在递速风蓬互进面(D11)边缘的上方;所述运行列车(Y)的运行节链(Y3)及其所在的运行笼式轨道梁(Y4)设在运行风蓬互进面(Y11)边缘的上方;在递速段,所述递速笼式轨道梁(D4)位于运行笼式轨道梁(Y4)的正下方;所述递速节组(D2)中前后两个车节结合部在递速风蓬互进面(D11)边缘用车钩(12)连挂,成为单边牵引递速节组(D2);往返全线所有递速节组(D2)在递速风蓬互进面(D11)的边缘通过牵引座(7)与递速节链(D3)等距连挂,构成往返一体单边牵引连挂列车;所述运行节组(Y2)中前后两个车节结合部在运行风蓬互进面(Y11)边缘用车钩(12)连挂,成为单边牵引运行节组(Y2);往返全线所有运行节组(Y2)在运行风蓬互进面(Y11)的边缘通过牵引座(7)与运行节链(Y3)等距连挂,构成往返一体单边牵引连挂列车;在递速段的直线路段,递速车节结合部车钩(12)的纵向轴心线和运行车节结合部车钩(12)的纵向轴心线,与递速节链(D3)的纵向轴心线和运行节链(Y3)的纵向轴心线在同一个纵向垂面上。
- 根据权利要求1~9之一所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)和运行列车(Y)的车厢(8)顶部均装有稳定轮,递速列车(D)和运行列车(Y)的车厢(8)底部均装有单轨导轮转向架(16);所述递速轨道线(DG)包括用于走行单轨导轮转向架(16)的递速单轨(DG5)和走行递速稳定轮(D9)的递速稳定轨(DG6);所述运行轨道线(YG)包括用于走行单轨导轮转向架(16)的运行单轨(YG5)和走行运行稳定轮(Y9)的运行稳定轨(YG6)。
- 根据权利要求1~9之一所述的并联式递速运行轨道列车,其特征在于,所述递速列车(D)由多个递速节组(D2)组成,每个递速节组(D2)由至少一个车节组成,所述运行列车(Y)由多个运行节组(Y2)组成,每个运行节组(Y2)由至少一个车节组成;所述递速列车(D)的递速节组(D2)中,前后车节间的结合部共用一个单轨导轮转向架(16);所述运行列车(Y)的运行节组(Y2)中,前后车节间的结合部共用一个单轨导轮转向架(16)。
- 根据权利要求1~9之一所述并联式递速运行轨道列车,其特征在于,所述递速列车(D)由多个递速节组(D2)组成,每个递速节组(D2)由至少一个车节组成,所述运 行列车(Y)由多个运行节组(Y2)组成,每个运行节组(Y2)由至少一个车节组成;所述递速列车(D)的每一递速节组上设有等速栓(13);所述运行列车(Y)的每一运行节组(Y2)上设有与等速栓(13)位置对应的等速卡(14)。
- 一种在城市公共客运中利用如权利要求1-15之一所述的并联式递速运行轨道列车进行载运乘客的方法,其特征是,以递速列车(D)为中介载体,令递速列车(D)按第一阶段静定停靠、第二阶段启动加速、第三阶段与运行列车(Y)并列连接作等速运行、第四阶段减速至静定停靠四个阶段为一个递速周期作周期性运行,同时令运行列车(Y)按递速周期对应递速列车(D)作第一阶段高速运行、第二阶段减速运行、第三阶段与递速列车(D)并列连接作等速运行、第四阶段加速运行;其具体步骤是:第一步,在递速周期第一阶段,递速列车(D)各递速节组对应停靠在客运线往返递速段上下客区,临近上下客区的递速车门和上下客区屏蔽门打开,到达目标下客区的乘客下车,全客运线上所有往返待乘乘客上车;运行列车独立运行;第二步,在递速周期第二阶段,递速车门关闭,递速列车(D)启动加速运行;运行列车减速运行;第三步,在递速周期第三阶段,递速列车(D)的递速节组(D2)与运行列车(Y)的运行节组(Y2)对应并齐并保持相对静止,递速列车(D)与运行列车(Y)通过并列连接装置实现并列连接,递速列车(D)与运行列车(Y)之间互相对应的递速列车(D)的车门与运行列车(Y)的车门打开,两车对应的车节间通过踏板实现横向连通,递速列车(D)上的长程乘客进入运行列车(Y)中,短程乘客继续留在递速列车(D)上,同时,运行列车(Y)上即将到达目标下客区的乘客从运行列车(Y)中仍需继续乘行的乘客中分离出来并进入递速列车(D)中,递速列车车门、运行列车车门关闭,并列连接装置分离;第四步,在递速周期第四阶段,递速列车(D)开始减速至停,车内乘客准备下车;运行列车(Y)加速运行,车内乘客随车不停站地作周期性变速运行,一直乘行到各自的目标下客区;以第一阶段、第二阶段、第三阶段和第四阶段为一个周期进行循环,直至客运线停运。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2014105124960 | 2014-09-29 | ||
CN201410512496 | 2014-09-29 | ||
CN201410553565.2A CN104386066B (zh) | 2014-09-29 | 2014-10-17 | 并联式递速运行轨道列车及其载运方法 |
CN2014105535652 | 2014-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016050194A1 true WO2016050194A1 (zh) | 2016-04-07 |
Family
ID=52604054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/091011 WO2016050194A1 (zh) | 2014-09-29 | 2015-09-29 | 并联式递速运行轨道列车及其载运方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104386066B (zh) |
WO (1) | WO2016050194A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018050869A1 (fr) * | 2016-09-16 | 2018-03-22 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
CN111766809A (zh) * | 2020-06-30 | 2020-10-13 | 通号城市轨道交通技术有限公司 | 一种连挂列车车辆控制方法及车载控制器 |
CN111891148A (zh) * | 2020-08-10 | 2020-11-06 | 航天晨光股份有限公司 | 一种用于真空管道磁悬浮列车快速上下客系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104386066B (zh) * | 2014-09-29 | 2017-04-19 | 周新华 | 并联式递速运行轨道列车及其载运方法 |
EP3243720A1 (en) * | 2016-02-17 | 2017-11-15 | Cormac Rabbitt | A train station for a tunnel |
CN106338327B (zh) * | 2016-08-26 | 2018-10-19 | 成都长客新筑轨道交通装备有限公司 | 一种适用于多辆编组有轨电车的称重系统及方法 |
CN106976150A (zh) * | 2017-05-23 | 2017-07-25 | 广东盖特奇新材料科技有限公司 | 一种平移式组合模具 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995003968A1 (fr) * | 1993-07-27 | 1995-02-09 | Jorge Mujal Ferrer | Vehicules et installation pour le transbordement en marche de personnes ou de marchandises |
CN101628583A (zh) * | 2009-08-18 | 2010-01-20 | 王弘 | 新型高速全自动全闭合轨道列车公共交通网络化系统 |
CN102442322A (zh) * | 2011-03-05 | 2012-05-09 | 杜文娟 | 单轨短途列车和直达列车结合的快速客车结构 |
CN102774384A (zh) * | 2012-07-31 | 2012-11-14 | 黄灿军 | 一种轨道列车双线并行的运行方法 |
CN203318410U (zh) * | 2013-06-21 | 2013-12-04 | 魏宇科 | 基于站台列车与客运列车同步运行的车站系统 |
CN104386066A (zh) * | 2014-09-29 | 2015-03-04 | 周新华 | 并联式递速运行轨道列车及其载运方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3648621A (en) * | 1970-08-12 | 1972-03-14 | Kenneth C Fleming | Transportation system |
US4195576A (en) * | 1976-03-26 | 1980-04-01 | Pullman Incorporated | Monorail car stabilizing system |
CN201961312U (zh) * | 2011-01-28 | 2011-09-07 | 袁国庆 | 列车到站不停车能上下乘客的装置 |
CN103273923B (zh) * | 2013-06-21 | 2016-03-30 | 魏宇科 | 基于站台列车与客运列车同步运行的车站系统 |
CN103465910A (zh) * | 2013-09-27 | 2013-12-25 | 天津掌金互动科技有限公司 | 用以将并行两列车对齐的对位调速系统 |
-
2014
- 2014-10-17 CN CN201410553565.2A patent/CN104386066B/zh not_active Expired - Fee Related
-
2015
- 2015-09-29 WO PCT/CN2015/091011 patent/WO2016050194A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995003968A1 (fr) * | 1993-07-27 | 1995-02-09 | Jorge Mujal Ferrer | Vehicules et installation pour le transbordement en marche de personnes ou de marchandises |
CN101628583A (zh) * | 2009-08-18 | 2010-01-20 | 王弘 | 新型高速全自动全闭合轨道列车公共交通网络化系统 |
CN102442322A (zh) * | 2011-03-05 | 2012-05-09 | 杜文娟 | 单轨短途列车和直达列车结合的快速客车结构 |
CN102774384A (zh) * | 2012-07-31 | 2012-11-14 | 黄灿军 | 一种轨道列车双线并行的运行方法 |
CN203318410U (zh) * | 2013-06-21 | 2013-12-04 | 魏宇科 | 基于站台列车与客运列车同步运行的车站系统 |
CN104386066A (zh) * | 2014-09-29 | 2015-03-04 | 周新华 | 并联式递速运行轨道列车及其载运方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018050869A1 (fr) * | 2016-09-16 | 2018-03-22 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
FR3056200A1 (fr) * | 2016-09-16 | 2018-03-23 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
FR3056201A1 (fr) * | 2016-09-16 | 2018-03-23 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
FR3071488A1 (fr) * | 2016-09-16 | 2019-03-29 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
US11014580B2 (en) | 2016-09-16 | 2021-05-25 | Vinci Construction | Underground distribution system for the distribution of goods in an urban environment |
EP3858703A1 (fr) * | 2016-09-16 | 2021-08-04 | Vinci Construction | Systeme enterre de distribution de marchandises en milieu urbain |
CN111766809A (zh) * | 2020-06-30 | 2020-10-13 | 通号城市轨道交通技术有限公司 | 一种连挂列车车辆控制方法及车载控制器 |
CN111766809B (zh) * | 2020-06-30 | 2022-04-19 | 通号城市轨道交通技术有限公司 | 一种连挂列车车辆控制方法及车载控制器 |
CN111891148A (zh) * | 2020-08-10 | 2020-11-06 | 航天晨光股份有限公司 | 一种用于真空管道磁悬浮列车快速上下客系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104386066A (zh) | 2015-03-04 |
CN104386066B (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016050194A1 (zh) | 并联式递速运行轨道列车及其载运方法 | |
KR102424284B1 (ko) | 큰 운송능력을 지닌 직행 레일 시스템 | |
CN107161159B (zh) | 一种带升降梯式轿箱组合空中巴士系统 | |
US20050039629A1 (en) | System and method for boarding and letting off passengers in trains efficiently so that the train does not have to stop at the stations | |
CN201186654Y (zh) | 一种城市轨道交通系统 | |
CN103171563A (zh) | 一种轨道式快速交通运载系统及其运载方法 | |
CN108639069B (zh) | 适用于车站的轨道系统 | |
CN107600077A (zh) | 悬挂式智能立体轨道交通系统及方法 | |
CN102806917A (zh) | 架空单轨吊车公共交通系统 | |
WO2009043203A1 (fr) | Système de transport ferroviaire de passagers à arrêts multiples et passage direct | |
CN102431559A (zh) | 一种索道列车系统 | |
CN105667522A (zh) | 全自动变轨电车 | |
CN102234055B (zh) | 自动人行步道公共交通系统 | |
CN103465912A (zh) | 恒速环绕传输系统 | |
CN102574529B (zh) | 以非直线空中索道形式的城市通勤者/材料运送设备 | |
CN102649527A (zh) | 路车 | |
KR102378074B1 (ko) | 수직 이동형 소형궤도차량 및 그 전용 궤도 | |
RU2220063C2 (ru) | Автоматическое транспортное средство карфидова и путь для него (транскар) | |
CN211032545U (zh) | 高效无停歇运行公共交通系统 | |
WO2017173958A1 (zh) | 一种交通互联网络系统 | |
CN103481894A (zh) | 恒速环绕传输系统的列车 | |
CN102039899A (zh) | 连续运输式城市轨道交通系统 | |
RU141932U1 (ru) | Транспортная система (канатное метро) | |
CN103088733B (zh) | 防拥堵立体交通系统 | |
CN102114845A (zh) | 双层轨立体快速交通系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847865 Country of ref document: EP Kind code of ref document: A1 |