WO2016050184A1 - 一种引入三角引导柱的宽频带三端口光环行器 - Google Patents

一种引入三角引导柱的宽频带三端口光环行器 Download PDF

Info

Publication number
WO2016050184A1
WO2016050184A1 PCT/CN2015/090885 CN2015090885W WO2016050184A1 WO 2016050184 A1 WO2016050184 A1 WO 2016050184A1 CN 2015090885 W CN2015090885 W CN 2015090885W WO 2016050184 A1 WO2016050184 A1 WO 2016050184A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
port
column
dielectric material
magneto
Prior art date
Application number
PCT/CN2015/090885
Other languages
English (en)
French (fr)
Inventor
欧阳征标
王琼
Original Assignee
深圳大学
欧阳征标
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 欧阳征标 filed Critical 深圳大学
Publication of WO2016050184A1 publication Critical patent/WO2016050184A1/zh
Priority to US15/446,066 priority Critical patent/US20170176782A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the invention belongs to the technical field of micro circulators, and in particular relates to a three-port photonic crystal magneto-optical circulator which introduces a triangular column to guide a plurality of coupled magneto-optical material columns.
  • optical path With the development of science and technology and economic technology, large-scale integrated optical path systems have received extensive attention and research.
  • the increase in integration will result in a significant increase in signal interference between components.
  • the optical path may not even complete the normal logic function.
  • Photonic crystals have obvious advantages in miniaturization and integration of optical devices.
  • a photonic crystal is a micro-material in which the dielectric constant or magnetic permeability is arranged in a periodic or quasi-periodic manner in space, which can make electromagnetic waves in a certain frequency band not propagate therein, thereby forming a photonic band gap.
  • the introduction of defects in the photonic crystal enables the manipulation of photons, just as in the manipulation of electrons in semiconductor materials.
  • Photonic crystal devices have many features unmatched by traditional optics, such as flexible design, small size, superior performance, and ease of integration.
  • the introduction of magneto-optical materials in photonic crystal structures to realize various types of micro-magneto-optical circulators has important application value for the functions of circulators, such as rich functions, performance optimization, and structural expansion.
  • three-port photonic crystal magneto-optical circulators whether based on an air substrate-dielectric column type or a dielectric substrate-air column type structure, generally use only a single magneto-optical cavity or a single magneto-optical material column. To achieve non-reciprocal deflection of the direction of electromagnetic wave propagation, they have certain limitations in terms of performance. Therefore, three-port circulator research needs Further improvement and expansion in structural types, functional applications, etc., especially the development of high-isolation photonic crystal magneto-optical circulators with high isolation and low insertion loss.
  • the object of the present invention is to overcome the deficiencies in the prior art, and provide a compact, easy-to-integral, high-isolation, single-directional optical ring transmission of signals between three ports in a device, and obtaining a wide-band three-port with excellent performance.
  • Optical circulator is to overcome the deficiencies in the prior art, and provide a compact, easy-to-integral, high-isolation, single-directional optical ring transmission of signals between three ports in a device, and obtaining a wide-band three-port with excellent performance.
  • the broadband three-port optical circulator incorporating the triangular guide pillar of the present invention comprises a photonic crystal composed of an array of first dielectric material pillars in a low refractive index background medium, the photonic crystal being a two-dimensional triangular lattice photonic crystal, each of which The first dielectric material column occupies one lattice of the triangular lattice; the three-port optical circulator further includes three photonic crystal branch waveguides and three ports, and the three photonic crystal branch waveguides respectively correspond to three ports, the three The ports are respectively disposed at the peripheral end faces of the photonic crystals; a second dielectric material column is disposed at the intersection of the three photonic crystal branch waveguide centers; and three identical magneto-optical material columns are respectively disposed around the second dielectric material column.
  • the three magneto-optical material columns are rotationally symmetrically distributed around the intersection center of the three branch waveguides at an angle of 120°, and each magneto-optical material column is located on the central axis of the branch waveguide where the electromagnetic wave material is input from any one port. , the output will be output from the adjacent next port, and the other port is in an isolated state for single-directional optical ring transmission; the circulator body is low refractive A two-dimensional background medium in the "Y" shaped wave photonic crystal, the "Y" -shaped photonic crystal waveguide of a two-dimensional triangular lattice arrangement of a first dielectric material constituting the column.
  • the low refractive index background medium is air, vacuum, silica, magnesium fluoride, or a dielectric material having a refractive index of less than 1.5.
  • the first dielectric material column has a circular, equilateral triangle or regular polygon; the first dielectric material column is made of silicon, gallium arsenide, titanium dioxide, gallium nitride, or a medium having a refractive index greater than 2. material.
  • the three photonic crystal branch waveguides are "Y" shaped photonic crystal waveguides.
  • the three photonic crystal branch waveguides are removed from the photonic crystal by a horizontal negative direction, an angle of -60° with the horizontal, and an angle of 60° with the horizontal, and will be located at 60°.
  • the photonic crystal on the outer side between 180° and 180° is shifted outward by 120° in the axial direction, and the photonic crystal located outside between 180° and 300° is shifted outward by 240° along the axial direction, and will be located at -60° and
  • the photonic crystal on the outer side between 60° is shifted to the right by a distance b along the 0° axis to form three photonic crystal branch waveguides which are circularly symmetrically distributed at an angle of 120°.
  • the three photonic crystal branch waveguides have a length na and a width
  • the a is a lattice constant of the photonic crystal, and n is an integer of 4 or more.
  • the second dielectric material column is a photonic crystal guiding column, and the line connecting the center and the three vertices is respectively in a horizontal negative direction, an angle of -60° with respect to the horizontal direction, and an angular direction of 60° with the horizontal.
  • the second dielectric material column has an equilateral triangle in cross section; the second dielectric material column is made of silicon, gallium arsenide, titanium dioxide, gallium nitride, or a dielectric material having a refractive index greater than 2.
  • the three magneto-optical material columns are ferrite materials having a circular cross section.
  • the photonic crystal circulator of the invention is widely applicable to any electromagnetic wave band, such as a microwave band, a millimeter wave band, a terahertz band, an infrared band or a visible light band. Compared with the prior art, it has the following positive effects.
  • the triangular guiding column is introduced to effectively couple multiple magneto-optical material columns, and a wide-band three-port photonic crystal magneto-optical circulator with excellent performance is designed to realize the single-directional optical ring transmission function between the three ports of the device.
  • FIG. 1 is a schematic structural view of a broadband three-port optical circulator incorporating a triangular guide post according to the present invention.
  • FIG. 2 is a diagram showing an example of a calculation curve of a wide-band three-port optical circulator incorporating a triangular guide post according to the present invention.
  • FIG. 3 is a schematic diagram of the first type of optical transmission of a broadband three-port optical circulator incorporating a triangular guide post according to the present invention.
  • FIG. 4 is a schematic diagram of a second optical transmission of a broadband three-port photonic crystal circulator incorporating a triangular guide post according to the present invention.
  • FIG. 5 is a schematic diagram of a third optical transmission of a broadband three-port optical circulator incorporating a triangular guide post according to the present invention.
  • a broadband three-port optical circulator incorporating a triangular guide pillar includes a low refractive index background medium, the low refractive index background medium is an air background 01, and the first dielectric material in the air background 01
  • the photonic crystals of the column array are two-dimensional triangular lattice photonic crystals, and each of the first dielectric material columns 02 occupies one lattice of the triangular lattice, and the lattice constant a of the photonic crystal is selected to be 10.0 mm.
  • the circulator body is a two-dimensional "Y"-shaped photonic crystal wave in a low refractive index background medium
  • the "Y" shaped photonic crystal waveguide is composed of a two-dimensional first dielectric material column 02 arranged in a triangular lattice.
  • a plurality of first dielectric material columns 02 are removed in a horizontal negative direction, an angle of -60° with respect to the horizontal, and an angle of 60° with the horizontal, respectively, and will be between 60° and 180°.
  • the outer photonic crystal is totally shifted outward by a distance b along the 120° axis, and the photonic crystal located outside between 180° and 300° is shifted outward by a distance b along the 240° axis, and will be located between -60° and 60°.
  • the photonic crystal is shifted to the right along the 0° axis by a distance b (where a is the lattice constant of the photonic crystal), which constitutes three intersections and is rotationally symmetrically distributed at an angle of 120° and the width w is Photonic crystal branch waveguide.
  • the length of the three photonic crystal branch waveguides is na, and n is an integer of 4 or more.
  • the above three photonic crystal branch waveguides are arranged in a "Y" shape to form a "Y" shaped photonic crystal waveguide.
  • a guiding second dielectric material column 03 that is, a photonic crystal guiding column, at a center position of the photonic crystal, that is, a cross-connection point of the three photonic crystal branching waveguides, the center of which is connected to the three vertices
  • the horizontal dielectric material has an angular direction of -60° with respect to the horizontal and an angular orientation of 60° with the horizontal;
  • the cross-sectional shape of the second dielectric material column 03 adopts an equilateral triangle, which is made of a silicon material and has a refractive index of 3.4.
  • the material columns A, B and C are rotationally symmetrically distributed around the intersection of the three branch waveguides at an angle of 120°, and each magneto-optical material column is located on the central axis of the branch waveguide on which it is located.
  • the cross-sectional shapes of the magneto-optical material columns A, B, and C are respectively circular, and the center distance of each of the circular and second dielectric material columns 03 is 0.65 a, that is, 6.5 mm.
  • the materials of magneto-optical materials columns A, B and C are respectively ferrite materials, the dielectric constant is 12.9, and the magnetic permeability tensor is:
  • the "Y"-shaped photonic crystal circulator includes three ports, which are a first port 11, a second port 12, and a third port 13, respectively, and the three ports respectively correspond to three photonic crystal branch waveguides, and the three ports They are distributed on the peripheral end faces of the photonic crystals.
  • the electromagnetic wave signal is incident from the first port 11, and the detection lines are respectively set at the second port 12 and the third port 13 to obtain the electromagnetic wave signal power of the corresponding port.
  • the insertion loss of the second port 12 is 10 log (P input / P output ), and the isolation of the third port 13 is 10 log (P input / P isolation ), wherein the P input , the P output, and the P isolation are respectively input ports, that is,
  • the signal power and output port detected by the first port 11 are the signal power detected by the second port 12 and the isolated port, that is, the signal power detected by the third port 13.
  • the insertion loss and isolation calculation curves of the three-port optical circulator are obtained by optimizing the equilateral triangle length of the second dielectric material column 03 and the cylindrical radius of the magneto-optical material columns A, B and C.
  • the broken line and the solid line respectively represent the insertion loss of the second port 12 calculated at different frequencies and the isolation of the third port 13, that is, the dotted line corresponds to the insertion loss of the circulator, and the solid line corresponds to the isolation of the circulator.
  • Figure 2 shows that the optical circulator has a wide operating frequency of 9.8 GHz to 10.0 GHz, the insertion loss of the second port 12 in this band is as low as 0.0354 dB, and the isolation of the third port 13 is as high as 23.1 dB.
  • the regular triangular side length of the second dielectric material column 03 is optimized to be 2.7 mm, and the cylindrical radius of the magneto-optical material columns A, B and C is optimized to be 2.7 mm.
  • the above structural parameter optimization is also applicable to the case where the electromagnetic wave signal is incident from the second port 12 or is incident from the third port 13, and the insertion loss and isolation calculation curve of the circulator is obtained as the result of FIG.
  • an electromagnetic wave of any frequency in the frequency band of 9.8 GHz to 10.0 GHz is selected.
  • an electromagnetic wave having a frequency of 9.95 GHz is incident from the first port 11, and the magneto-optical material columns A and B respectively rotate the electromagnetic wave at an angle of 60°.
  • the electromagnetic wave is output from the second port 12, and the insertion loss of the second port 12 is 0.0354 dB.
  • the second dielectric material column 03 in the photonic crystal directs the magneto-optical material columns A and B to be effectively coupled.
  • an electromagnetic wave having a frequency of 9.95 GHz is selected to enter from the second port 12, and the magneto-optical material columns B and C respectively rotate the electromagnetic wave at an angle of 60°, and finally the electromagnetic wave is output from the third port 13, and the third port 13 is inserted.
  • the loss is 0.0354dB.
  • the second dielectric material column 03 in the photonic crystal directs the magneto-optical material columns B and C to be effectively coupled.
  • the first port 11 is in an optically isolated state, wherein the magneto-optical material column A has a signal isolation effect on the first port 11, and the isolation of the first port 11 is 23.1 dB.
  • an electromagnetic wave having a frequency of 9.95 GHz is selected to enter from the third port 13, and the magneto-optical material columns C and A respectively rotate the electromagnetic wave at an angle of 60°, and finally the electromagnetic wave is output from the first port 11, and the first port 11 is inserted.
  • the loss is 0.0354dB.
  • the second dielectric material column 03 in the photonic crystal directs the magneto-optical material columns C and A to be effectively coupled.
  • the second port 12 is in an optically isolated state, wherein the magneto-optical material column B has a signal isolation effect on the second port 12, and the second port 12 has an isolation of 23.1 dB.
  • the optical circulator can realize single-directional optical ring transmission between three ports, that is, electromagnetic waves input from any one of the three ports will be output from the adjacent next port in the same rotation direction, and the other port is an isolated electromagnetic wave signal. port.
  • the three-port optical circulator of the present invention is not limited to the above-described embodiments, as the technical solutions disclosed by those skilled in the art according to the present invention, and according to the principle of proportional scaling of photonic crystals, that is, the operating wavelength of the circulator and the photonic crystal.
  • the relationship between the lattice constant, the size of the first dielectric material column and the second dielectric material column in the photonic crystal, and the size of the magneto-optical material column satisfies a proportional relationship to select the corresponding material.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种引入三角引导柱的宽频带三端口光环行器,包括低折射率背景介质(01)中由第一介质材料柱(02)的阵列构成的二维三角晶格光子晶体,具有三个光子晶体分支波导和分布在光子晶体外围的三个对应的端口(11,12,13)。三个光子晶体分支波导中心交汇处设置一个第二介质材料柱(03),其周围分别设置三个相同的磁光材料柱(A,B,C),三个磁光材料柱(A,B,C)以120°角旋转对称分布于三个分支波导交叉中心的周围,每个磁光材料柱(A,B,C)位于其所在的分支波导的中轴线上。电磁波信号从任一端口输入,将从相邻的下一端口输出,另一端口为隔离状态,以进行单方向光环行传输。该光环行器结构紧凑,易于集成。

Description

一种引入三角引导柱的宽频带三端口光环行器 技术领域
本发明属于微型环行器技术领域,具体涉及一种引入三角柱引导多个耦合的磁光材料柱的三端口光子晶体磁光环行器。
背景技术
随着科技与经济技术发展要求,大规模集成光路系统受到人们广泛关注和研究。在光路中,集成度的增加将导致元件之间信号的干扰显著增强,干扰严重情况下,光路甚至无法完成正常的逻辑功能。
对于光器件微型化、集成化方面,光子晶体具有明显优势。光子晶体是一种介电常数或磁导率在空间呈周期或准周期排列的微型材料,它可使得一定频段的电磁波不能在其中传播,从而形成光子带隙。利用这种带隙效应,在光子晶体中引入缺陷就能实现对光子的操控,就如在半导体材料中对电子的操控一样。光子晶体器件具有许多传统光学器件无法比拟的特性,如设计灵活、尺寸小、性能优越、易于集成等。近些年,在光子晶体结构中引入磁光材料来实现各类微型磁光环行器,对于环行器的功能丰富、性能优化、结构扩展等方面具有重要应用价值。
现有的几类三端口光子晶体磁光环行器,无论是基于空气衬底-介质柱型还是基于介质衬底-空气柱型结构,人们一般仅利用单个磁光腔或者是单个磁光材料柱来实现电磁波传播方向的非互易性偏转,它们在工作性能方面存在一定局限性。因此,三端口环行器研究需要 在结构类型、功能应用等方面做进一步改进与拓展,特别是研发高隔离度、低插入损耗的宽频带光子晶体磁光环行器。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构紧凑、易于集成、具有高隔离度,实现信号在器件中三端口间的单方向光环行传输,获得性能优良的宽频带三端口光环行器。
本发明的目的通过下述技术方案予以实现。
本发明的引入三角引导柱的宽频带三端口光环行器包括低折射率背景介质中的第一介质材料柱阵列所构成的光子晶体,所述光子晶体为二维三角晶格光子晶体,每一个第一介质材料柱占据三角晶格的一个晶格;所述三端口光环行器还包括三个光子晶体分支波导和三个端口,所述三个光子晶体分支波导分别对应三个端口,该三个端口分别分布于光子晶体外围端面;所述三个光子晶体分支波导中心交汇处设置一个第二介质材料柱;在所述第二介质材料柱的周围分别设置三个相同的磁光材料柱,所述三个磁光材料柱以120°角旋转对称分布于三个分支波导的交叉中心的周围,且每个磁光材料柱位于其所在分支波导的中轴线上,电磁波信号从任意一端口输入,将从相邻的下一端口输出,另一端口为隔离状态以进行单方向光环行传输;所述环行器主体为低折射率背景介质中的一个二维“Y”形光子晶体波,所述“Y”形光子晶体波导由三角晶格排布的二维第一介质材料柱构成。
所述低折射率背景介质为空气、真空、二氧化硅、氟化镁,或者折射率小于1.5的介质材料。
所述第一介质材料柱的横截面为圆形、正三角形,或者正多边形;所述第一介质材料柱的材料为硅、砷化镓、二氧化钛、氮化镓,或者折射率大于2的介质材料。
所述三个光子晶体分支波导为“Y”形光子晶体波导。
所述三个光子晶体分支波导由光子晶体中分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向移去若干个第一介质材料柱,并将位于60°与和180°之间外侧的光子晶体整体沿120°轴向外平移距离b,将位于180°和300°之间外侧的光子晶体整体沿240°轴向外平移距离b,将位于-60°和60°之间外侧的光子晶体整体沿0°轴向右平移距离b,构成三个交叉呈120°角旋转对称分布的光子晶体分支波导,所述
Figure PCTCN2015090885-appb-000001
所述三个光子晶体分支波导的长度为na,宽度为
Figure PCTCN2015090885-appb-000002
所述a为光子晶体的晶格常数,n为大于等于4的整数。
所述第二介质材料柱为光子晶体引导柱,其中心与三个顶点的连线分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向。
所述第二介质材料柱的横截面为正三角形;所述第二介质材料柱的材料为硅、砷化镓、二氧化钛、氮化镓,或者折射率大于2的介质材料。
所述三个磁光材料柱为铁氧体材料,其横截面为圆形。
本发明的光子晶体环行器广泛适用于任意电磁波波段,如微波波段、毫米波波段、太赫兹波段、红外波段或者可见光波段等。它与现有技术相比,具有如下积极效果。
1.利用磁光材料的非互易特性,实现光器件中传输端口间的信号单方向环行功能,它能够有效防止信号回流、消除信号相互串扰、确保光路系统正常运作,是集成光路中不可缺少的功能优化器件。
2.引入三角引导柱有效地耦合多个磁光材料柱,设计出性能优良的宽频带三端口光子晶体磁光环行器,实现信号在器件中三端口间的单方向光环行传输功能。
3.具有高隔离度、低插入损耗、工作频带宽的特点,为光子晶体逻辑集成光路优化充分提供优良功能的环行器需求。
4.设计空气衬底-介质柱结构的光子晶体磁光环行器,具有形态简明、结构紧凑、制备方便,能够与目前广泛应用的光子晶体器件实现有效匹配与集成。
附图说明
下面结合附图和具体实施例对本发明作进一步的阐述。
图1为本发明引入三角引导柱的宽频带三端口光环行器的结构示意图。
图中:空气背景01第一介质材料柱02第二介质材料柱03磁光材料柱A磁光材料柱B磁光材料柱C第一端口11第二端口12第三端口13分支波导宽度w
图2为本发明引入三角引导柱的宽频带三端口光环行器的计算曲线例图。
图3为本发明引入三角引导柱的宽频带三端口光环行器第一种的光传输示意图。
图4为本发明引入三角引导柱的宽频带三端口光子晶体环行器的第二种光传输示意图。
图5为本发明引入三角引导柱的宽频带三端口光环行器的第三种光传输示意图。
具体实施方式
如图1所示,为本发明引入三角引导柱的宽频带三端口光环行器,包括低折射率背景介质,所述低折射率背景介质为空气背景01,空气背景01中的第一介质材料柱阵列的光子晶体为二维三角晶格光子晶体,每一个第一介质材料柱02占据三角晶格的一个晶格,所述光子晶体的晶格常数a选取为10.0mm。所述环行器主体为低折射率背景介质中的一个二维“Y”形光子晶体波,所述“Y”形光子晶体波导由三角晶格排布的二维第一介质材料柱02构成。所述第一介质材料柱02的横截面形状采用圆形,圆形的半径为r1=2.0mm,其采用硅材料,折射率为3.4。在所述光子晶体中,分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向移去若干个第一介质材料柱02,并将位于60°与180°之间外侧的光子晶体整体沿120°轴向外平移距离b,将位于180°与300°之间外侧的光子晶体整体沿240°轴向外平移距离b,将位于-60°与60°之间外侧的光子晶体整体沿0°轴向右平移距离b(其中
Figure PCTCN2015090885-appb-000003
a为光子晶体的晶格常数),构成三个交叉且呈120°角旋转对称分布且宽度w为
Figure PCTCN2015090885-appb-000004
的光子晶体分支波导。所述三个光子晶体分支波导的长度为na,n为大于等于4的整数。上述三个光子晶体分支波导呈“Y”形排布构成一个“Y”形光子晶体波导。
在所述光子晶体的中心位置,即三个光子晶体分支波导的交叉连接点处引入一个起引导作用的第二介质材料柱03,即光子晶体引导柱,其中心与三个顶点的连线分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向;所述第二介质材料柱03的横截面形状采用正三角形,其采用硅材料,折射率为3.4。在所述第二介质材料柱03分别沿水平负方向、与水平成-60角方向、与水平成60°角方向上引入一个相同磁光材料柱A、B和C,所述三个磁光材料柱A、B和C以120°角旋转对称分布于三个分支波导的交叉中心的周围,且每个磁光材料柱位于其所在分支波导的中轴线上。所述磁光材料柱A、B和C的横截面形状分别采用圆形,且每个圆形与第二介质材料柱03的中心距离都为0.65a,即6.5mm。磁光材料柱A、B和C的材料分别采用铁氧体材料,介电常数为12.9,磁导率张量为:
Figure PCTCN2015090885-appb-000005
其中κ=ωmω/(ω0 22),μr=1+κω0/ω,ω0=μ0γH0m=μ0γMs,γ=1.759×1011C/kg,Ms=2.39×105A/m。对磁光材料柱A、B和C施加的磁场为H0=3.45×105A/m。
所述“Y”形光子晶体环行器包括三个端口,分别为第一端口11、第二端口12和第三端口13,所述三个端口分别对应三个光子晶体分支波导,该三个端口分别分布于光子晶体外围端面。
进一步地,对所述“Y”形光环行器的结构参数进行优化:设置电磁波信号从第一端口11入射,分别在第二端口12和第三端口13设 置探测线得到相应端口的电磁波信号功率,第二端口12的插入损耗为10log(P输入/P输出),第三端口13的隔离度为10log(P输入/P隔离),其中P输入、P输出和P隔离分别为输入端口,即第一端口11探测的信号功率、输出端口,即第二端口12探测的信号功率和隔离端口,即第三端口13探测的信号功率。通过优化所述第二介质材料柱03的正三角形边长、磁光材料柱A、B和C的圆柱半径,获得三端口光环行器的插入损耗和隔离度计算曲线如图2所示。在图2中,虚线和实线分别代表不同频率下计算的第二端口12的插入损耗和第三端口13的隔离度,即虚线对应环行器的插入损耗,实线对应环行器的隔离度。
图2表明,该光环行器具有较宽工作频率,为9.8GHz至10.0GHz,该频段内的第二端口12的插入损耗低至0.0354dB,第三端口13的隔离度高达23.1dB。所述第二介质材料柱03的正三角形边长优化为2.7mm,所述磁光材料柱A、B和C的圆柱半径优化为2.7mm。
由于结构旋转对称性,上述结构参数优化同样适用于电磁波信号从第二端口12入射,或者从第三端口13入射的情况下,获得环行器的插入损耗和隔离度计算曲线与图2结果相同。
根据上述优化结果检验三端口光环行器的工作性能:
参照图3,选择9.8GHz至10.0GHz频段内任意某一频率的电磁波,如频率为9.95GHz的电磁波从第一端口11入射,磁光材料柱A和B分别先后对电磁波实施60°角旋转,最后电磁波从第二端口12输出,第二端口12的插入损耗为0.0354dB。其中光子晶体中的第二介质材料柱03引导磁光材料柱A和B有效进行耦合。第三端口13 处于光隔离状态,其中磁光材料柱C对第三端口13具有信号隔离的作用,第三端口13的隔离度为23.1dB。
参照图4,选择频率为9.95GHz的电磁波从第二端口12入射,磁光材料柱B和C分别先后对电磁波实施60°角旋转,最后电磁波从第三端口13输出,第三端口13的插入损耗为0.0354dB。其中光子晶体中的第二介质材料柱03引导磁光材料柱B和C有效进行耦合。第一端口11处于光隔离状态,其中磁光材料柱A对第一端口11具有信号隔离的作用,第一端口11的隔离度为23.1dB。
参照图5,选择频率为9.95GHz的电磁波从第三端口13入射,磁光材料柱C和A分别先后对电磁波实施60°角旋转,最后电磁波从第一端口11输出,第一端口11的插入损耗为0.0354dB。其中光子晶体中的第二介质材料柱03引导磁光材料柱C和A有效进行耦合。第二端口12处于光隔离状态,其中磁光材料柱B对第二端口12具有信号隔离的作用,第二端口12的隔离度为23.1dB。
该光环行器可以实现三端口间的单方向光环行传输,即三端口中从任意一端口输入的电磁波信号将按照同一旋转方向从相邻的下一端口输出,的另一端口为隔离电磁波信号端口。
本发明的三端口光环行器并不局限于以上所述实施方式,如本领域技术人员根据本发明所揭示的技术方案,并根据光子晶体等比例缩放原理,即环行器的工作波长与光子晶体晶格常数、光子晶体中的第一介质材料柱和第二介质材料柱的尺寸、以及磁光材料柱的尺寸等参数的关系满足正比关系以选择相应材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种引入三角引导柱的宽频带三端口光环行器,其包括低折射率背景介质中的第一介质材料柱阵列的光子晶体,所述光子晶体为二维三角晶格光子晶体,每一个第一介质材料柱占据三角晶格的一个晶格,其特征在于,还包括三个光子晶体分支波导和三个端口,所述三个光子晶体分支波导分别对应三个端口,该三个端口分别分布于光子晶体外围端面;所述三个光子晶体分支波导中心交汇处设置一个第二介质材料柱;在所述第二介质材料柱的周围分别设置三个相同的磁光材料柱,所述三个磁光材料柱以120°角旋转对称分布于三个分支波导的交叉中心的周围,且每个磁光材料柱位于其所在分支波导的中轴线上,电磁波信号从任意一端口输入,将从相邻的下一端口输出,另一端口为隔离状态以进行单方向光环行传输;所述环行器主体为低折射率背景介质中的一个二维“Y”形光子晶体波,所述“Y”形光子晶体波导由三角晶格排布的二维第一介质材料柱构成。
  2. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述低折射率背景介质为空气、真空、二氧化硅、氟化镁,或者折射率小于1.5的介质材料。
  3. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述第一介质材料柱的横截面为圆形、正三角形,或者正多边形;所述第一介质材料柱的材料为硅、砷化镓、二氧化钛、氮化镓,或者折射率大于2的介质材料。
  4. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述三个光子晶体分支波导为“Y”形光子晶体波导。
  5. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述三个光子晶体分支波导由光子晶体中分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向移去若干个第一介质材料柱,并将位于60°与和180°之间外侧的光子晶体整体沿120°轴向外平移距离b,将位于180°和300°之间外侧的光子晶体整体沿240°轴向外平移距离b,将位于-60°和60°之间外侧的光子晶体整体沿0°轴向右平移距离b,构成三个交叉呈120°角旋转对称分布的光子晶体分支波导,所述
    Figure PCTCN2015090885-appb-100001
  6. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述三个光子晶体分支波导的长度为na,宽度为
    Figure PCTCN2015090885-appb-100002
    所述a为光子晶体的晶格常数,n为不小于4的整数。
  7. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述第二介质材料柱为光子晶体引导柱,其中部与三个顶部的连线分别沿水平负方向、与水平成-60°角方向和与水平成60°角方向。
  8. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述第二介质材料柱横截面为正三角形;所述第二介质材料柱为硅材料、砷化镓、二氧化钛、氮化镓或折射率大于2的介质材料。
  9. 按照权利要求1所述的引入三角引导柱的宽频带三端口光环行器,其特征在于,所述三个磁光材料柱为铁氧体材料,其横截面为圆形。
PCT/CN2015/090885 2014-09-29 2015-09-28 一种引入三角引导柱的宽频带三端口光环行器 WO2016050184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/446,066 US20170176782A1 (en) 2014-09-29 2017-03-01 Broadband three-port optical circulator with introduced triangular-guide column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410515363.9A CN104597631B (zh) 2014-09-29 2014-09-29 一种引入三角引导柱的宽频带三端口光环行器
CN201410515363.9 2014-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/446,066 Continuation US20170176782A1 (en) 2014-09-29 2017-03-01 Broadband three-port optical circulator with introduced triangular-guide column

Publications (1)

Publication Number Publication Date
WO2016050184A1 true WO2016050184A1 (zh) 2016-04-07

Family

ID=53123524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090885 WO2016050184A1 (zh) 2014-09-29 2015-09-28 一种引入三角引导柱的宽频带三端口光环行器

Country Status (3)

Country Link
US (1) US20170176782A1 (zh)
CN (1) CN104597631B (zh)
WO (1) WO2016050184A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597631B (zh) * 2014-09-29 2018-09-18 欧阳征标 一种引入三角引导柱的宽频带三端口光环行器
CN105572919B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体十字波导的磁光调制器
CN105572920B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体十字波导的双路反相光学时钟信号发生器
CN105572921B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的磁控二选一直角输出光路开关
CN105572917B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体波导双路反相光学时钟信号发生器
CN105572918B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体十字波导的磁控二选一光路开关
CN108646443A (zh) * 2018-06-15 2018-10-12 南京邮电大学 三端口光子晶体环行器
CN111965736B (zh) * 2020-08-12 2021-12-24 太原理工大学 基于能带反转实现光波单向传输的拓扑光子晶体复合结构
CN115267973B (zh) * 2022-07-28 2024-02-27 中国地质大学(武汉) 一种光环行器及其制备方法
CN116068696B (zh) * 2023-03-03 2023-06-23 深圳麦赫科技有限公司 一种平板光子晶体环行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN101726873A (zh) * 2009-12-14 2010-06-09 深圳大学 光子晶体三端口环行器
CN101788727A (zh) * 2009-12-14 2010-07-28 深圳大学 基于磁光腔耦合的光子晶体四端口环行器
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN104597631A (zh) * 2014-09-29 2015-05-06 欧阳征标 一种引入三角引导柱的宽频带三端口光环行器

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890624B1 (en) * 2000-04-25 2005-05-10 Nanogram Corporation Self-assembled structures
US6608716B1 (en) * 1999-05-17 2003-08-19 New Mexico State University Technology Transfer Corporation Optical enhancement with nanoparticles and microcavities
US6538794B1 (en) * 1999-09-30 2003-03-25 D'aguanno Giuseppe Efficient non-linear phase shifting using a photonic band gap structure
US6835394B1 (en) * 1999-12-14 2004-12-28 The Trustees Of The University Of Pennsylvania Polymersomes and related encapsulating membranes
JP3925769B2 (ja) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
GB0008546D0 (en) * 2000-04-06 2000-05-24 Btg Int Ltd Optoelectronic devices
JP2004511828A (ja) * 2000-10-16 2004-04-15 オジン,ジョフリー,アラン 基板上の結晶コロイドパターンの自己集合方法および光学的用途
CA2363277A1 (en) * 2000-11-17 2002-05-17 Ovidiu Toader Photonic band gap materials based on spiral posts in a lattice
DE60137447D1 (de) * 2000-11-28 2009-03-05 Rosemount Inc Einrichtung zur messung physikalischer grössen mit einem optischen sensor
US20030123827A1 (en) * 2001-12-28 2003-07-03 Xtalight, Inc. Systems and methods of manufacturing integrated photonic circuit devices
JP2003215367A (ja) * 2002-01-25 2003-07-30 Mitsubishi Electric Corp 光デバイス
US6991847B2 (en) * 2002-02-07 2006-01-31 Honeywell International Inc. Light emitting photonic crystals
US6728457B2 (en) * 2002-07-10 2004-04-27 Agilent Technologies, Inc. Waveguides in two dimensional slab photonic crystals with noncircular holes
US6859304B2 (en) * 2002-08-09 2005-02-22 Energy Conversion Devices, Inc. Photonic crystals and devices having tunability and switchability
US7155087B2 (en) * 2002-10-11 2006-12-26 The Board Of Trustees Of The Leland Stanford Junior University Photonic crystal reflectors/filters and displacement sensing applications
US7031585B2 (en) * 2002-12-04 2006-04-18 Massachusetts Institute Of Technology Using electro-magnetically induced transparency in photonic crystal cavities to obtain large non-linear effects
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
US7054513B2 (en) * 2003-06-09 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber with quantum dots
JP4538718B2 (ja) * 2003-08-28 2010-09-08 アルプス電気株式会社 2次元フォトニック結晶スラブ及び2次元フォトニック結晶導波路
US6804446B1 (en) * 2003-11-18 2004-10-12 University Of Alabama In Huntsville Waveguide including at least one photonic crystal region for directing signals propagating therethrough
JP4025738B2 (ja) * 2004-03-05 2007-12-26 国立大学法人京都大学 2次元フォトニック結晶
JP3881666B2 (ja) * 2004-03-25 2007-02-14 国立大学法人京都大学 ヘテロ構造を有するフォトニック結晶及びそれを用いた光デバイス
US20050270633A1 (en) * 2004-05-14 2005-12-08 Peter Herman Photonic crystal mirrors for high-resolving power fabry perots
US7843026B2 (en) * 2005-11-30 2010-11-30 Hewlett-Packard Development Company, L.P. Composite material with conductive structures of random size, shape, orientation, or location
US7881565B2 (en) * 2006-05-04 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Device and method using asymmetric optical resonances
US7957617B2 (en) * 2006-05-11 2011-06-07 President And Fellows Of Harvard College Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with High-Q or slow light
US8400639B2 (en) * 2006-09-15 2013-03-19 President And Fellows Of Harvard College Methods and devices for measurements using pump-probe spectroscopy in high-Q microcavities
US8701998B2 (en) * 2007-06-04 2014-04-22 President And Fellows Of Harvard College System and method for strong photon localization by disordered photonic crystal structures
WO2009084721A1 (en) * 2007-12-31 2009-07-09 Fujirebio Inc. Clusters of microresonators for cavity mode optical sensing
US8102597B1 (en) * 2008-05-15 2012-01-24 Oewaves, Inc. Structures and fabrication of whispering-gallery-mode resonators
JP5100840B2 (ja) * 2008-09-01 2012-12-19 独立行政法人科学技術振興機構 プラズマエッチング方法、プラズマエッチング装置及びフォトニック結晶製造方法
US8928883B1 (en) * 2009-07-07 2015-01-06 Raytheon Company Optical device for detection of an agent
GB0911792D0 (en) * 2009-07-07 2009-08-19 Rue De Int Ltd Photonic crystal material
US8704155B2 (en) * 2009-12-11 2014-04-22 Washington University Nanoscale object detection using a whispering gallery mode resonator
US9012830B2 (en) * 2009-12-11 2015-04-21 Washington University Systems and methods for particle detection
CN101788728A (zh) * 2009-12-14 2010-07-28 深圳大学 光子晶体多端口环行器
US8582104B2 (en) * 2011-06-30 2013-11-12 Raytheon Company Optical device for detection of an agent
US9065241B2 (en) * 2012-05-11 2015-06-23 Massachusetts Institute Of Technology Methods, systems, and apparatus for high energy optical-pulse amplification at high average power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN101726873A (zh) * 2009-12-14 2010-06-09 深圳大学 光子晶体三端口环行器
CN101788727A (zh) * 2009-12-14 2010-07-28 深圳大学 基于磁光腔耦合的光子晶体四端口环行器
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN104597631A (zh) * 2014-09-29 2015-05-06 欧阳征标 一种引入三角引导柱的宽频带三端口光环行器

Also Published As

Publication number Publication date
US20170176782A1 (en) 2017-06-22
CN104597631A (zh) 2015-05-06
CN104597631B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2016050184A1 (zh) 一种引入三角引导柱的宽频带三端口光环行器
WO2016050178A1 (zh) 一种紧凑型六端口光子晶体环行器
WO2016050183A1 (zh) 一种引入补偿柱的高传输率和高隔离度的三端口光环行器
WO2016015628A1 (zh) 基于光子晶体波导的超高效紧凑t字型环行器
US20130223805A1 (en) Photonic Crystal Magneto-Optical Circulator and Manufacturing Method Thereof
US8693823B2 (en) Photonic crystal three-port circulator with multiple second air columns
WO2016015629A1 (zh) 基于光子晶体波导的超高效紧凑十字型环行器
US8699835B2 (en) Photonic crystal four-port based on coupling of magneto-optical cavities
CN1952708A (zh) 波导型光分支元件
CN104991305A (zh) 椭圆形高双折射软玻璃光子晶体光纤
WO2013104307A1 (zh) 光子晶体波导te-偏振分离器
WO2018135429A1 (ja) 交差光導波路構造及び光導波路素子
CN101923187B (zh) 一种单偏振光子晶体光纤
CN106680933B (zh) 一种横向非对称的无反射周期波导微腔带通滤波器
US20170351157A1 (en) High-contrast photonic crystal "or," "not" and "xor" logic gate
CN104820264A (zh) 旋转空心正方柱与旋转三角柱二维正方晶格光子晶体
CN102645708B (zh) 基于倾斜波导光栅结构的高偏振消光比的光波导谐振腔
CN104932055A (zh) 一种高传输率高回波损耗高隔离度光子晶体光桥
US20230124226A1 (en) Terahertz polarization beam splitter based on two-core negative curvature optical fiber
Lin et al. Design and optimization of all-optical AND and NOR logic gates in a two-dimensional photonic crystal for binary-phase-shift-keyed signals
WO2019095415A1 (zh) 一种紧凑的光波导交叉耦合器
US11137545B1 (en) Terahertz waveguide
Xu et al. Magnetic photonic crystal circulator based on gradient changing width waveguide
WO2018041186A1 (zh) 低损型磁光空隙磁表面快模任意角单向拐弯波导
CN113281844A (zh) 基于近零折射率阵列谐振的多模干涉耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846263

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15846263

Country of ref document: EP

Kind code of ref document: A1