WO2016015628A1 - 基于光子晶体波导的超高效紧凑t字型环行器 - Google Patents

基于光子晶体波导的超高效紧凑t字型环行器 Download PDF

Info

Publication number
WO2016015628A1
WO2016015628A1 PCT/CN2015/085344 CN2015085344W WO2016015628A1 WO 2016015628 A1 WO2016015628 A1 WO 2016015628A1 CN 2015085344 W CN2015085344 W CN 2015085344W WO 2016015628 A1 WO2016015628 A1 WO 2016015628A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
dielectric
refractive index
silicon
column
Prior art date
Application number
PCT/CN2015/085344
Other languages
English (en)
French (fr)
Inventor
欧阳征标
金鑫
林密
王琼
文国华
王晶晶
Original Assignee
深圳大学
欧阳征标
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 欧阳征标 filed Critical 深圳大学
Publication of WO2016015628A1 publication Critical patent/WO2016015628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Definitions

  • the invention relates to the field of three-port T-shaped circulators, in particular to a T-shaped circulator based on photonic crystal technology.
  • photonic crystal waveguides are considered to be a medium that can efficiently transmit electromagnetic waves. Therefore, photonic crystal waveguide theory has opened up new fields for exploring high-efficiency microwave integrated circuits and integrated optical paths. In the microwave integrated circuit and the integrated optical path, various echo interferences are inevitably generated between the components to affect the functions of the entire system. Therefore, minimizing these disturbances will be a top priority for optimizing the entire system.
  • circulators Since the birth of electromagnetism, circulators have been widely used for their unique functions. When used as an isolator, the signal can be transmitted in only one direction by shielding the signal from the output; in radar technology, the circulator can loop the signal from the transmitter to the antenna, and then from the antenna to the receiver. The function of the duplexer is implemented; in the reflection amplifier, the circulator acts as a non-reciprocal device to separate the amplified output signal from the input.
  • a photonic crystal waveguide circulator based on ferrite or other magneto-optical medium is a non-reciprocal device that allows a wave to propagate in a single direction and a back-propagated wave to be introduced into another waveguide.
  • photonic crystal waveguide-based circulators have been designed to be much smaller and have better performance than conventional magneto-optical circulators, most designs use multiple magneto-optical dielectric columns or couplings. The dielectric column is thus relatively complex and has a relatively narrow bandwidth.
  • An ultra-efficient compact T-shaped circulator based on a photonic crystal waveguide of the present invention comprising a T-shaped photonic crystal waveguide having three ports, wherein the T-shaped waveguide center is placed with a square magneto-optical dielectric rod, Located at the four corners of the center of the cross-waveguide, The four square dielectric rods are not cut into the same angled isosceles triangles with the same sides as the background square media rods to form a corner dielectric rod; the corner dielectric rods coincide or do not coincide with the left side of the corresponding grid position; The circulator has an insertion loss of 0.02 dB to 1 dB and a two-port isolation of greater than 14 dB.
  • the photonic crystal is formed by periodically arranging the high refractive index dielectric rods in the background of the low refractive index medium, or by arranging the low refractive index dielectric rods in the background of the high refractive index medium.
  • the high refractive index dielectric material is a medium having a refractive index greater than 2 such as silicon, gallium arsenide, titanium dioxide or silicon nitride, and the low refractive index dielectric material is air, vacuum, silicon dioxide, cryolite, olive oil or refractive index less than 1.6 media.
  • Waves input at any input of the photonic crystal waveguide are looped clockwise or counterclockwise to adjacent output waveguide ports.
  • the magneto-optical medium rod is a ferrite or magneto-optical medium material.
  • the cross section of the magneto-optical dielectric rod is square, rectangular, circular, elliptical, circular, pentagonal, hexagonal, arbitrary polygonal, and any closed curved shape.
  • the four corner dielectric rods have a triangular, semi-circular, semi-elliptical, semi-polygonal, or closed pattern formed by straight edges and curves.
  • the cross-section of the background dielectric column of the cross-waveguide is triangular, circular, semi-circular, elliptical, semi-elliptical, polygonal, or closed curve shape.
  • the high refractive index dielectric material is silicon
  • the low refractive index dielectric material is air
  • the photonic crystal is periodically arranged by silicon in an air background, and the radius of the silicon dielectric column in the photonic crystal is 0.3a, normalized
  • the frequency is 0.4121
  • the separation factor is 0.7792
  • the length of the magneto-optical medium column is 0.2817a
  • the center distance of the corner dielectric column is 1.2997a
  • the insertion loss of the circulator is 0.02dB, where a is the lattice constant of the photonic crystal.
  • the separation factor is the ratio of the absolute value of the second row of the relative permeability tensor of the magneto-optical medium to the value of the first element of the first row, the normalized frequency is ⁇ a/2 ⁇ c, and ⁇ is the circular frequency.
  • c is the speed of light in the vacuum;
  • the high refractive index dielectric material is silicon
  • the low refractive index dielectric material is air
  • the photonic crystal is periodically arranged by silicon in the air background, and the silicon dielectric column in the photonic crystal
  • the radius is 0.3006a ⁇ 0.3045a
  • the normalized frequency is (0.4103 ⁇ 0.4138)
  • the separation factor is (0.7712 ⁇ 0.7906)
  • the length of the magneto-optical medium column is (0.2801a ⁇ 0.2815a)
  • the center distance of the corner dielectric column is ( 1.3224a to 1.3365a) or (1.2807a to 1.3122a)
  • the circulator Insertion loss is less than 0.05dB
  • the high refractive index dielectric material of the circulator is silicon
  • the low refractive index dielectric material is air
  • the photonic crystal is periodically arranged by silicon in an air background.
  • the radius of the silicon dielectric column in the photonic crystal is 0.28a to 0.3344a, and the normalized frequency is (0.4073 to 0.4160).
  • the separation factor is (0.7634 ⁇ 0.8056), the length of the magneto-optical medium column is (0.2745a ⁇ 0.2863a), the center distance of the corner dielectric column is (1.2488a ⁇ 1.3852a), and the insertion loss of the circulator is less than 0.2dB;
  • the high refractive index dielectric material of the circulator is silicon, and the low refractive index dielectric material is air.
  • the photonic crystal is periodically arranged by silicon in an air background, and the radius of the silicon dielectric column in the photonic crystal is 0.2693a.
  • the normalized frequency is (0.4043 ⁇ 0.4192)
  • the separation factor is (0.7558 ⁇ 0.8208)
  • the length of the magneto-optical medium column is (0.2686a ⁇ 0.2885a)
  • the center distance of the corner dielectric column is (1.2304a ⁇ 1.4764).
  • the insertion loss of the circulator is less than 0.5 dB;
  • the high refractive index dielectric material is silicon
  • the low refractive index dielectric material is air
  • the photonic crystal is periodically arranged by silicon in an air background period,
  • the radius of the silicon dielectric column in the photonic crystal is 0.2642a ⁇ 0.3818a, normalized frequency is (0.4016 ⁇ 0.4235), separation factor is (0.7473 ⁇ 0.8316), magneto-optical medium column length is (0.2639a ⁇ 0.2922a), corner media column center distance is (1.2162a ⁇ 1.6971a)
  • the insertion loss of the circulator is less than 1 dB.
  • the ultra-efficient compact T-shaped circulator based on the photonic crystal waveguide of the present invention can be widely applied to microwave, terahertz and optical communication bands. Compared with the prior art, it has the following positive effects.
  • the present invention can realize signal looping in a short path by providing a ferrite rod or other magneto-optical rod in the photonic crystal waveguide, which is convenient and efficient;
  • the direction of the applied magnetic field controls the direction of the loop, and by changing the direction of the applied magnetic field, the direction of the electromagnetic wave is switched between clockwise and counterclockwise;
  • the present invention has an extremely low insertion loss at the output port and a very high isolation at the isolated port;
  • the present invention can be used to realize electromagnetic wave circulators of different wavelength bands by changing the structural size, refractive index, and the like of a lattice constant.
  • FIG. 1 is a junction of an ultra-efficient compact T-shaped circulator based on a photonic crystal waveguide of the present invention Schematic diagram and coordinate system.
  • FIG. 2 is a structural diagram of a TE band corresponding to an optimized maximum photonic band gap of a square dielectric column photonic crystal of the present invention.
  • Fig. 3 is a structural diagram of the strip defect photonic crystal (i.e., photonic crystal waveguide) of the present invention, in which a conduction mode exists in the middle of the forbidden band.
  • the linear dispersion interval marked in Fig. 3 is selected by the condition d ⁇ /dk ⁇ (20% of the peak of d ⁇ /dk).
  • Figure 4 (a) is a two-dimensional diagram of the intensity of the odd-mode resonant mode field distribution of the ferrite rod of the present invention in the absence of a bias magnetic field, i.e., the ferrite rod is not magnetized, wherein the points are The color represents the electric field strength at each point.
  • Fig. 4(b) is a two-dimensional diagram of the intensity and other chromaticity of the even mode resonant mode field distribution in the case where the ferrite rod is not magnetized in the present invention, wherein the color of each point represents the electric field intensity at each point.
  • Figure 5 (a) is a two-dimensional diagram of the intensity and other chromaticity of the ferrite rod of the present invention in the presence of a bias magnetic field, i.e., the ferrite rod is magnetized, wherein the color of each point represents The electric field strength at each point.
  • Fig. 5(b) is an enlarged view of the central area of Fig. 5(a).
  • Fig. 5(c) is a three-dimensional chromaticity diagram of the intensity equal height corresponding to Fig. 5(a), in which the color of each point represents the electric field intensity of each point, and the height of each point shows the electric field intensity of each point.
  • Fig. 6 is a diagram showing the distribution of the resonant mode field energy flow in the case where the ferrite rod of the present invention is magnetized.
  • Fig. 6(a) is a two-dimensional chromaticity diagram showing the intensity of the energy flow distribution, wherein the color of each point represents the energy flow intensity value of each point.
  • Fig. 6(b) is a three-dimensional chromaticity diagram of the intensity contour of the energy flow field distribution, wherein the color of each point represents the energy flow intensity value of each point, and the height of each point represents the energy flow intensity of each point.
  • Figure 7 is a schematic view showing the structure of a central portion of a T-shaped circulator according to the present invention.
  • 8(a), 8(b), and 8(c) are transmission coefficients and isolation values of the other two ports when the waves are input from the three ports of the T-shaped circulator of the present invention, respectively. Characteristics, only the characteristics of the insertion loss in the frequency range below 0.2 dB are shown.
  • 9(a), 9(c), and 9(e) are chromaticity two-dimensional views of the intensity of the electric field distribution when the waves are input from the three ports of the T-shaped circulator of the present invention, respectively.
  • the color of the dots represents the electric field strength at each point.
  • Fig. 10(a) shows an embodiment example in which four triangular prisms are applied to the corners of the cylindrical background dielectric column.
  • Fig. 10 (b) is an embodiment configuration in which four semi-circular columns are applied to the corners of the cylindrical background medium column.
  • Fig. 10(c) shows an embodiment example in which four hexagonal columns are applied to the corners of the hexagonal background dielectric column.
  • Fig. 10(d) shows an embodiment example in which four hexagonal columns are applied to the corners of the hexagonal background medium column.
  • Fig. 10(e) shows an embodiment example in which four semi-circular columns are applied to the corners of the hexagonal background medium column.
  • the ultra-efficient compact T-shaped circulator based on photonic crystal waveguide of the present invention comprises a T-shaped photonic crystal waveguide having three ports, and a square is placed at the center of a T-shaped crossed photonic crystal waveguide.
  • the magneto-optical dielectric rod is called a waveguide defect.
  • the magneto-optical medium rod is made of ferrite or magneto-optical medium.
  • the cross section of the magneto-optical rod is square, rectangular, circular, elliptical, circular, pentagonal, and six.
  • Edge shape arbitrary polygon, arbitrary closed curve shape; at the same time, four corner rods are respectively arranged at four corners of the center of the T-shaped cross-waveguide, and the four square dielectric rods are cut into the same angle as the other square rods.
  • the cross section of the four corner dielectric rods being triangular, semi-circular, semi-elliptical, semi-polygonal, or a closed pattern formed by straight edges and curves, the position of the corner dielectric rod and its corresponding grid point The left side is coincident or non-coincident; the cross-section of the background dielectric column of the cross-waveguide is triangular, circular, semi-circular, elliptical, semi-elliptical, polygonal, or closed.
  • the photonic crystal is alternately arranged by a high refractive index medium and a low refractive index medium, the structure in which the photonic crystal is arranged by the high refractive index dielectric rod in the background of the low refractive index medium and the high refractive index by the low refractive index dielectric rod
  • a is a lattice constant
  • the material of the high refractive index dielectric rod is made of silicon, which has a refractive index of 3.4 in the microwave band and air as the low refractive index medium.
  • FEM Finite Element Method
  • a photonic crystal waveguide is obtained by removing a row of dielectric rods in a photonic crystal.
  • the projected band structure diagram of the line defect photonic crystal ie, photonic crystal waveguide
  • there is a conduction mode in the middle of the forbidden band as shown in FIG.
  • the frequency interval corresponding to the linear dispersion region marked in FIG. 3 is selected as the operating frequency range. This linear interval is determined by taking 20% of the peak value of d ⁇ /dk.
  • the normalized frequency range corresponding to this linear interval is:
  • the operating frequency is mostly within this frequency range.
  • the ferrite or other magneto-optical medium of the present invention is biased in the z-axis direction, i.e., the direction of the applied magnetic field is parallel to the z-axis.
  • the relative permeability can be written in tensor form:
  • Maxwell's equations can be expressed as:
  • ⁇ e ⁇ (1-p 2 ) is the effective relative permeability
  • ⁇ 0 and ⁇ 0 are respectively in the vacuum. Electrical constant and magnetic permeability.
  • the resonant mode diagram of the waveguide defect rod ferrite rod and its vicinity, as shown in Fig. 4, the waveguide defect ferrite rod and its vicinity resonance mode diagram, that is, the two resonances of the ferrite in the non-magnetized state mode. 4(a) and 4(b) are odd and even modes, respectively.
  • the magnetic permeability becomes the tensor form described in the formula (2), the ferrite is in the magnetized state, and a significant gyromagnetic effect can be observed, and the original resonance at the waveguide defect rod
  • the odd mode and the resonant even mode become vortex resonant modes.
  • a resonant mode diagram of the waveguide-defective ferrite rod with an applied magnetic field and its vicinity as shown in Fig. 5(a), that is, a vortex resonance mode is obtained.
  • Fig. 5(b) is an enlarged view of the central portion of Fig. 5(a), which shows a fine structure diagram of the vortex mode.
  • Fig. 5(b) is an enlarged view of the central portion of Fig. 5(a), which shows a fine structure diagram of the vortex mode.
  • 5(c) is a three-dimensional isometric chromaticity corresponding to Fig. 5(a), and it can be seen that there is one positive peak and one negative peak near each side of the center point. At the center point, the field has a value of zero.
  • the Poynting vector or energy flow distribution can be calculated:
  • Equation 9 E z is ⁇ and It is the amplitude and phase, and the * is a complex conjugate symbol.
  • Equation 9 The energy flow distribution map can be calculated by Equation 9, as shown in FIG. Since the electric field at the center point of the vortex field is zero, its energy flow density is also zero.
  • the structure distribution of the present invention in the central region is as shown in FIG. 7.
  • the square dielectric column also referred to as a dielectric rod
  • the width of the waveguide is: (2a-s b ).
  • the square rods located at the four corners of the intersection center are chamfered to become an isosceles right triangle having a right angle side and still s b as shown in FIG.
  • the distance between the four triangles relative to the center point of the crossed waveguide is d c , and the transmission effect of the light at the bend can be optimized by adjusting the distance.
  • the side length of a square ferrite or other magneto-optical medium at the center of the waveguide is denoted by s m .
  • Insertion loss and isolation are important indicators for examining the performance of a circulator, which are defined as follows:
  • P in , P out and P iso are the mean power flows at the input port, the output port and the isolated port, respectively.
  • the setting range is the frequency f of the equation (1) as an independent variable to examine the above insertion loss and isolation.
  • the frequency interval with an insertion loss of 0.2 dB is generally a working interval
  • FIG. 8 is a waveform obtained by optimization calculation from the T-shaped ring of the present invention, respectively.
  • the transmission coefficient and isolation of the other two ports when the three ports of the device are input vary with frequency in the frequency interval. As shown in Figure 8, we can see that all isolation is greater than 14dB.
  • the output electromagnetic waves of the P2, P3, and P1 output ports can obtain an output electromagnetic wave with an insertion loss of 0.02 dB.
  • the isolation maximum values of the corresponding isolated ports P3, P1, and P2 are 48 dB, 46 dB, and 46 dB, respectively.
  • FIG. 9 is a diagram showing the electric field distribution of the ultra-efficient compact T-shaped circulator based on the photonic crystal waveguide of the present invention when the operating frequency is 0.4121.
  • the present invention is an ultra-efficient compact T-shaped circulator based on a photonic crystal waveguide.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the photonic crystal dielectric column radius is 0.3a
  • the normalized frequency is 0.4121
  • the separation factor is 0.7792
  • the magneto-optical medium column length is 0.2817a
  • the corner dielectric column center distance is 1.2997a
  • the circulator insertion loss is 0.02. dB.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the photonic crystal dielectric column radius is 0.3a
  • the separation factor is 0.7792
  • the magneto-optical medium column length is 0.2817a
  • the corner dielectric column center distance is 1.2997a
  • the normalized frequency is 0.4103, 0.4073, 0.4043, and 0.4016, respectively.
  • the insertion loss of the circulator is 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB, respectively.
  • the normalized frequency is 0.4121
  • the radius of the photonic crystal dielectric column is 0.3a
  • the length of the magneto-optical medium column is 0.2817a
  • the center distance of the corner dielectric column is 1.2997a
  • the separation factors are 0.7712, 0.76340.7558 and 0.7473, respectively.
  • the insertion loss of the circulator is 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB, respectively.
  • the normalized frequency is 0.4121
  • the photonic crystal dielectric column radius is 0.3a
  • the separation factor is 0.7792
  • the corner dielectric column center distance is 1.2997a
  • the magneto-optical dielectric column side lengths are 0.2801a, 0.2745a, 0.2686a and 0.2639, respectively.
  • the insertion loss of the circulator is 0.05dB, 0.2dB, 0.5dB and 1dB respectively.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the normalized frequency is 0.4121
  • the photonic crystal dielectric column radius is 0.3a
  • the separation factor is 0.7792
  • the magneto-optical medium column side length is 0.2817a
  • the corner dielectric column center distance d c is taken as 1.3224a, 1.2488a, 1.2304a, respectively.
  • the insertion loss of the circulator is 0.05dB, 0.2dB, 0.5dB and 1dB respectively.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • FIG. 10 is a structural example of five embodiments of an ultra-efficient compact T-shaped circulator based on a photonic crystal waveguide according to the present invention; as shown in FIG. 10(a), a T-shaped waveguide is formed in a photonic crystal composed of a cylindrical dielectric column.
  • a square magneto-optical dielectric column is disposed at the center of the waveguide, and the dielectric rods at the four corners of the waveguide center are isosceles right-angled triangular rods; by controlling the operating frequency f as described in the above example, the separation factor p, ferrite or other magneto-optical light is separated.
  • the side length s m of the medium and the center distance d c of the four corner triangle columns achieve the function of high performance loop. According to the insertion loss curve associated with the above parameters, different working intervals such as 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB are set.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a T-shaped waveguide is formed in a photonic crystal composed of a cylindrical dielectric column, and a square magneto-optical dielectric column is disposed at the center of the waveguide, and the dielectric rods at the four corners of the waveguide are semi-circular rods.
  • the performance of the high performance loop is achieved by controlling the operating frequency f as described in the above example, separating the factor p, the ferrite or other magneto-optical medium side length s m , and the four corner semi-cylindrical center distance d c . According to the insertion loss curve associated with the above parameters, different working intervals such as 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB are set.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a T-shaped waveguide is formed in a photonic crystal composed of a regular hexagonal dielectric column, and a square magneto-optical dielectric column is disposed at a center of the waveguide, and a dielectric rod at four corners of the waveguide center is a trapezoidal rod;
  • the performance of the high performance loop is achieved by controlling the operating frequency f as described in the above example, separating the factor p, the ferrite or other magneto-optical medium side length s m , and the four corner and half hexagonal column center distances d c .
  • different working intervals such as 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB are set.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • a T-shaped waveguide is formed in a photonic crystal composed of a regular hexagonal dielectric column, and a square magneto-optical dielectric column is disposed at the center of the waveguide, and the dielectric rods at the four corners of the waveguide are isosceles right angles.
  • a triangular rod by controlling the operating frequency f as described in the above example, the separation factor p, the ferrite or other magneto-optical medium side length s m , and the four corner triangle column center distances d c to achieve a high performance circular function.
  • different working intervals such as 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB are set.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • a T-shaped waveguide is formed in a photonic crystal composed of a regular hexagonal dielectric column, and a square magneto-optical dielectric column is disposed at the center of the waveguide, and the dielectric rods at the four corners of the waveguide are semicircular. Rod; by controlling the operating frequency f as described in the above example, separating factor p, ferrite or other magneto-optical medium side length s m , four corner semi-circular column center distance d c to achieve high performance circular function.
  • different working intervals such as 0.05 dB, 0.2 dB, 0.5 dB, and 1 dB are set.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于光子晶体波导的超高效紧凑T字型环行器,它包括一个具有三个端口的T字型光子晶体波导,所述T字型波导中心放置一个方形磁光介质杆,在交叉波导中心的四个拐角处,分别设置四个方形介质杆切角成为直角边与背景方形介质杆边长相同的等腰直角三角形以形成拐角介质杆;所述拐角介质杆与其对应格点位置的左边重合或不重合;所述环行器的插入损耗为0.02dB~ldB,其两端口隔离度大于14dB。该环行器结构体积小,集成度高,电磁波传输效率高,便于集成而且高效环行,可广泛应用于微波、太赫兹和光通信波段。

Description

基于光子晶体波导的超高效紧凑T字型环行器 技术领域
本发明涉及三端口T字型环行器领域,尤其涉及一种基于光子晶体技术的T字型环行器。
背景技术
近年来,随着光子晶体理论的提出,光子晶体波导被认为是可以高效传输电磁波的一种媒质。因此,光子晶体波导理论为探索高效率的微波集成电路和集成光路开拓了新的领域。在微波集成电路和集成光路中,各个组件之间不可避免地会产生各种回波干扰而影响整个系统的功能。因此,将这些干扰最小化将是优化整个系统的首要任务。
自从电磁学诞生以来,环行器以它独特的功能被广泛使用。如当做隔离器使用时,可以通过屏蔽来自输出端的信号而使信号只能在一个方向上传播;而在雷达技术中,环行器可以将信号从发射器环行到天线、再从天线环行到接收器,而实现双工器的功能;在反射放大器中,环行器作为非互易器件可以将放大的输出信号与输入端分离。
基于铁氧体或其它磁光介质的光子晶体波导环行器是一种非互易器件,它可以使波沿单一方向环行传播,而反向传播的波将被导入到另一波导。尽管目前已经设计出来的基于光子晶体波导的环行器相对于传统的磁光环形器来说,体积小了许多而且具有更好的性能,然而大部分设计都使用了多根磁光介质柱或耦合介质柱,因而结构还是相对复杂并且带宽相对较窄。
发明内容
本发明的目的是克服现有技术中的不足,提供一种便于集成的光子晶体波导的超高效超紧凑T字型环形行器。
本发明的目的通过下述技术方案予以实现。
本发明的一种基于光子晶体波导的超高效紧凑T字型环行器,包括一个具有三个端口的T字型光子晶体波导,所述T字型波导中心放置一个方形磁光介质杆,所述位于交叉波导中心的四个拐角处,分 别设置四个方形介质杆切角成为直角边与背景方形介质杆边长相同的等腰直角三角形以形成拐角介质杆;所述拐角介质杆与其对应格点位置的左边重合或不重合;所述环行器的插入损耗为0.02dB~1dB,其两端口隔离度大于14dB。
所述光子晶体由高折射率介质杆在低折射率介质背景中周期排列而成,或由低折射率介质杆在高折射率介质背景中排列而成。
所述高折射率介质材料为硅、砷化镓、二氧化钛、氮化硅等折射率大于2的介质,低折射率介质材料为空气、真空、二氧化硅、冰晶石、橄榄油或折射率小于1.6的介质。
所述光子晶体波导的任意输入端输入的波沿顺时针或逆时针环行到相邻的输出波导端口。
所述磁光介质杆为铁氧体或磁光介质材料。
所述磁光介质杆的横截面为方形、矩形、圆形、椭圆形、环行、五边形、六边形、任意多边形、任意闭合曲线形状。
所述四个拐角介质杆的横截面为三角形、半圆形、半椭圆形、半多边形、或由一直边和曲线形成的闭合图形。
所述交叉波导的背景介质柱的横截面为三角形、圆形、半圆形、椭圆型、半椭圆形、多边形、或闭合曲线形状。
所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.3a,归一化频率为0.4121、分离因子为0.7792、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,所述环行器的插入损耗为0.02dB,其中a为光子晶体的晶格常数,分离因子为磁光介质的相对磁导率张量的第1行第2个量的绝对值与第1行第1个元素的值的比值,归一化频率为ωa/2πc,ω为圆频率,c为真空中光速;所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.3006a~0.3045a,归一化频率为(0.4103~0.4138)、分离因子为(0.7712~0.7906)、磁光介质柱边长为(0.2801a~0.2815a)、拐角介质柱中心距为(1.3224a~1.3365a)或(1.2807a~1.3122a),所述环行器的插入损耗小于0.05dB;所述环行器的高折射率介质材料为硅,所 述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.28a~0.3344a,归一化频率为(0.4073~0.4160)、分离因子为(0.7634~0.8056)、磁光介质柱边长为(0.2745a~0.2863a)、拐角介质柱中心距为(1.2488a~1.3852a),所述环行器的插入损耗小于0.2dB;所述环行器的高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.2693a~0.3671a,归一化频率为(0.4043~0.4192)、分离因子为(0.7558~0.8208)、磁光介质柱边长为(0.2686a~0.2885a)、拐角介质柱中心距为(1.2304a~1.4764a),所述环行器的插入损耗小于0.5dB;所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.2642a~0.3818a,归一化频率为(0.4016~0.4235)、分离因子为(0.7473~0.8316)、磁光介质柱边长为(0.2639a~0.2922a)、拐角介质柱中心距为(1.2162a~1.6971a),所述环行器的插入损耗小于1dB。
本发明的基于光子晶体波导的超高效紧凑T字型环行器可广泛应用于微波、太赫兹和光通信波段。它与现有技术相比,具有如下积极效果。
(1)结构体积小,集成度高,电磁波传输效率高,适合大规模集成;
(2)本发明通过在光子晶体波导内设置一个铁氧体杆或其它磁光介质杆可以在短程实现信号的环行,便于集成而且高效;
(3)本发明中外加磁场的方向控制波的环行方向,通过改变外加磁场的方向,电磁波环行方向在沿顺时针和逆时针方向之间切换;
(4)本发明在输出端口具有极低的插入损耗,而在隔离端口具有非常高的隔离度;
(5)本发明方案通过改变晶格常数等结构尺寸和折射率等,就能用于实现不同波段的电磁波环行器。
附图说明
图1为本发明基于光子晶体波导的超高效紧凑T字型环行器的结 构示意图及坐标系。
图2为本发明的方形介质柱光子晶体的优化最大光子带隙对应的TE带结构图。
图3为本发明中的线缺陷光子晶体(即光子晶体波导)的带结构图,在禁带中间存在一个传导模。而图3中所标的线性色散区间,是通过条件dω/dk<(dω/dk的峰值的20%)来选取的。
图4(a)为本发明的铁氧体杆在无偏置磁场情况下,即铁氧体杆未磁化情况下的奇模谐振模场分布的强度等色度二维图,其中各点的颜色代表各点的电场强度。
图4(b)为本发明的铁氧体杆未磁化情况下的偶模谐振模场分布的强度等色度二维图,其中各点的颜色代表各点的电场强度。
图5(a)为本发明的铁氧体杆在有偏置磁场情况下,即铁氧体杆被磁化情况下的谐振模场分布的强度等色度二维图,其中各点的颜色代表各点的电场强度。
图5(b)为图5(a)中心区域的放大图。
图5(c)为图5(a)对应的强度等高等色度三维图,其中各点的颜色代表各点的电场强度,各点的高度显示各点的电场强度。
图6为本发明的铁氧体杆被磁化情况下的谐振模场能流分布图。
图6(a)为能流分布的强度等色度二维图,其中各点的颜色代表各点的能流强度值。
图6(b)为能流场分布的强度等高等色度三维图,其中各点的颜色代表各点的能流强度值,各点的高度表示各点的能流强度。
图7为本发明的T字型环形器中心区域的结构示意图。
图8(a)、图8(b)、图8(c)为波分别从本发明的T字型环行器的三个端口输入时的其它两个端口的传输系数和隔离度随频率变化的特性,图中只给出了插入损耗为在0.2dB以下的频率区间内的特性。
图9(a)、图9(c)、图9(e)为波分别从本发明的T字型环行器的三个端口输入时的的电场分布的强度等色度二维图,其中各点的颜色代表各点的电场强度。
图9(b)、图(d)、图(f)为波分别从本发明的T字型环行器 的三个端口输入时的的电场分布的强度等高等色度三维图,其中各点的颜色对应各点的电场强度,各点的高度表示各点的电场强度。
图10(a)为一个实施结构例,其中圆柱形背景介质柱拐角施加有四个三角柱。
图10(b)为一个实施结构例,其中圆柱形背景介质柱拐角施加有四个半圆形柱。
图10(c)为一个实施结构例,其中六角形形背景介质柱拐角施加有四个半六角形柱。
图10(d)为一个实施结构例,其中六角形形背景介质柱拐角施加有四个三角形柱。
图10(e)为一个实施结构例,其中六角形形背景介质柱拐角施加有四个半圆形柱。
具体实施方式
如图1所示,本发明的基于光子晶体波导的超高效紧凑T字型环行器包括一个具有三个端口的T字型光子晶体波导,在一个T字交叉的光子晶体波导中心位置放置一个方形磁光介质杆或称之为波导缺陷,磁光介质杆采用铁氧体或磁光介质材料,磁光介质杆的横截面采用方形、矩形、圆形、椭圆形、环行、五边形、六边形、任意多边形、任意闭合曲线形状;同时在T字交叉波导中心的四个角落分别设置四个拐角杆,将四个方形介质杆切角成为直角边与其他方形杆边长相同的等腰直角三角形以形成拐角介质杆,四个拐角介质杆的横截面为三角形、半圆形、半椭圆形、半多边形、或由一直边和曲线形成的闭合图形,拐角介质杆与其对应格点位置的左边重合或不重合;交叉波导的背景介质柱的横截面为三角形、圆形、半圆形、椭圆型、半椭圆形、多边形、或闭合曲线形状;光子晶体由高折射率介质和低折射率介质交替排列布置而成,光子晶体由高折射率介质杆在低折射率介质背景中排列形成的结构和由低折射率介质杆在高折射率介质背景中排列形成的结构;所述光子晶体波导的任意输入端输入的波沿顺时针或逆时针环行到相邻的输出波导端口。
如图1中所示,从端口1(P1)端口入射的电磁波信号将被高效低耗地环行到端口2(P2)端口中去;同样,P2至端口3(P3)、P3至端口P1都可以实现同样的环行效果。本说明中的坐标系如图1中所示。
首先,我们选择以正方晶格分布的方形介质杆阵列作为背景光子晶体。其中a为晶格常数,高折射率介质杆的材质采用硅(Silicon),其在微波波段的折射率采用3.4,低折射率介质材料为空气。通过有限元方法(Finite Element Method,缩写为FEM)方法并计算光子晶体的光子带结构图。以介质杆边长为自变量,对光子带结构图所扫描计算,得到在背景介质柱边长为sb=0.3a的情况下,具有相对禁带比为36%,对应的光子带结构图如图2所示。
在光子晶体中去掉一行介质杆即得到光子晶体波导。通过FEM计算波导的特征函数,可以得到线缺陷光子晶体(即光子晶体波导)的投射带结构图,在禁带中间存在一个传导模,如图3所示。
为了最小化群速色散对传输信号的失真的影响,同时为了使波导中的群速度足够大,再考虑到要尽可能提高光子晶体对波导模的限制作用,波导模位于光子禁带区内,选取图3中所标的线性色散区对应的频率区间为工作频率范围。该线性区间是通过取dω/dk的峰值的20%)来确定的。该此线性区间对应的归一化频率范围为:
f=(2πc)-1ωa=a/λ=0.3759~0.4518
(1)
在本说明书以下阐述的实施过程中,工作频率多在此频率范围内。
如图1中所示,本发明中的铁氧体或其它磁光介质按z轴方向偏置,即外加磁场的方向平行于z轴。在此情况下,相对磁导率可以写成张量形式:
Figure PCTCN2015085344-appb-000001
其中p为归一化磁化率或分离因子:
Figure PCTCN2015085344-appb-000002
伴随κ/μ的增加,根据偏置磁场方向的不同,会产生两个不同的谐振频率ωn +和ωn -,其中一个是沿顺时针方向ejnφ传播,一个是按逆时针方向e-jnφ传播,这也是p被称作分离因子的原因。
对于具有磁光介质的空间,麦克斯韦方程组可以表示为:
Figure PCTCN2015085344-appb-000003
Figure PCTCN2015085344-appb-000004
Figure PCTCN2015085344-appb-000005
Figure PCTCN2015085344-appb-000006
由式(4)-(7)可以得到如下方程:
Figure PCTCN2015085344-appb-000007
其中k2=ω2ε0μ0ε(μ22)/μ=ω2ε0μ0εμe为有效波数的平方。对于铁氧体磁光介质,ε=12.9是铁氧体材料的相对介电常数,μe=μ(1-p2)是有效相对磁导率,ε0和μ0分别为真空中的介电常数和磁导率。
对于外加磁场为0的情况,铁氧体没有被磁化,即外加磁场为0,此时κ=0,μe=μ,通过使用FEM法计算式(8)中的场,得到本发明中的波导缺陷杆铁氧体杆及其附近的谐振模式图,如图4中所示的波导缺陷杆铁氧体杆及其附近的谐振模式图,即铁氧体处于非磁化状态下的两个谐振模式。其中图4(a)和图4(b)分别是奇模和偶模。
对应系统中引入外加偏置磁场的情况,磁导率变为公式(2)所述的张量形式,铁氧体处于磁化状态,可以观察到明显的旋磁效应,波导缺陷杆处原来的谐振奇模和谐振偶模变为涡旋谐振模。取分裂系数p为0.77,得到图5(a)所示有外加磁场的波导缺陷杆铁氧体杆及其附近的谐振模式图,即涡旋谐振模式。图5(b)是图5(a)的中心区的放大图,它给出了涡旋模式的精细结构图。图5(c)为图5(a)对应的等高等色度三维图,可以看到中心点两侧附近各存在一个正峰点和一个负峰点。而在中心点处,场的值为0。
根据电场可以计算出坡印廷矢量或能流分布:
Figure PCTCN2015085344-appb-000008
其中Ez
Figure PCTCN2015085344-appb-000009
ρ和
Figure PCTCN2015085344-appb-000010
是幅值与相位,*号为复数共轭符号。由式9可以计算出能流分布图,如图6所示。由于涡旋场中心点的电场为0,其能流密度也为0。
本发明在中心区域的结构分布如图7所示,边长为sb方形介质柱(亦称之为介质杆)以晶格常数a为周期均匀分布于整个器件的背景中,并通过删除一行和一列介质柱而形成互相垂直的T字型波导,波导的宽度为:(2a-sb)。同时,对位于交叉中心四个角落处的方形杆进行切角操作,使其成为如图7中所示的直角边长仍为sb的等腰直角三角形。这四个三角形相对于交叉波导中心点的距离为dc,通过调节该距离能优化光在拐弯处的传输效果。
位于波导中心处的方形铁氧体或其它磁光介质的边长用sm表示。
插入损耗和隔离度是考察一个环行器性能的重要指标,其定义如下:
Figure PCTCN2015085344-appb-000011
Figure PCTCN2015085344-appb-000012
Figure PCTCN2015085344-appb-000013
其中Pin,Pout和Piso分别是输入端口、输出端口和隔离端口处的均时功率流。设定范围为方程(1)的频率f为自变量,来考察上述插入损耗与隔离度。
由于在中心区域的电磁波耦合效应是非常复杂的,因此我们引入Nelder-Mead优化方法来实现优化设计。在优化计算中,设置优化目标函数为G=Piso/Pout.该函数与归一化频率f、分离因子为p、磁光介质柱边长为sm、拐角介质柱中心距为dc有关。
由于本发明的目的是获得一个高性能的三端口环行器,因此一般将插入损耗为0.2dB的频率区间为工作区间,图8为通过优化计算得出的波分别从本发明的T字型环行器的三个端口输入时的其它两个端口的传输系数和隔离度在该频率区间内随频率变化的特性。如图8中所示,我们可以看到所有的隔离度都大于14dB。另外,当工作频率为0.4121,在P1、P2、P3端口分别输入电磁波信号的三种情况下,P2、P3、P1输出端口均可以获得一个插入损耗为0.02dB的输出电磁波,而该三种情况下对应的隔离端口P3、P1、P2的隔离度最大值分别为48dB、46dB、46dB。
采用光子晶体介质柱半径为0.3a、归一化频率为0.4121、分离因子为0.7792、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,可得到如图9中所描述的结果。图9是本发明基于光子晶体波导的超高效紧凑T字型环行器,当工作频率为0.4121时的电场分布图。从强度等色度二维图9(a)、(c)、(e)中可以观察到,从P1、P2、P3入射的电磁波电场几乎无损耗地环行到P2、P3、P1端口;图9(b)、(d)、(f)分别是(a)、(c)、(e)对应的的的强度等高等色度三维显示图,其中各点的高对应各点的电场强度值,各点的颜色代表各点的电场强度值。
从图9(a)中可以观察到,从P1入射的电磁波电场几乎没有任何损耗地环行到P2端口;从图9(b)中可以观察到,由于电磁波被 高效地环行,能流自然而然非常好地被环行到P2端口。因此,整个器件可以实现如图10所示的效果。即本发明是一种基于光子晶体波导的超高效紧凑T字型环行器。
实施方案1:
采用光子晶体介质柱半径为0.3a、归一化频率为0.4121、分离因子为0.7792、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,所述环行器的插入损耗为0.02dB。
实施方案2:
采用光子晶体介质柱半径为0.3a、分离因子为0.7792、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,归一化频率分别取为0.4103、0.4073、0.4043和0.4016,则环行器的插损分别为0.05dB、0.2dB、0.5dB和1dB。
实施方案3:
采用归一化频率为0.4121、光子晶体介质柱半径为0.3a、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,分离因子分别取为0.7712、0.76340.7558和0.7473,则环行器的插损分别为0.05dB、0.2dB、0.5dB和1dB。
实施方案4:
采用归一化频率为0.4121、光子晶体介质柱半径为0.3a、分离因子为0.7792、拐角介质柱中心距为1.2997a,磁光介质柱边长分别取为0.2801a、0.2745a、0.2686a和0.2639a,则环行器的插损分别为0.05dB、0.2dB、0.5dB和1dB。
实施方案5:
采用归一化频率为0.4121、光子晶体介质柱半径为0.3a、分离因子为0.7792、磁光介质柱边长为0.2817a,拐角介质柱中心距dc分别取为1.3224a、1.2488a、1.2304a和1.2162a,则环行器的插损 分别为0.05dB、0.2dB、0.5dB和1dB。
实施方案6:
通过在不同形状介质柱构成的光子晶体波导的四个角落处施加形状不同、目的相同的介质柱,都能实现与之前实例相同的环行功能。图10为本发明基于光子晶体波导的超高效紧凑T字型环行器的5个结构实施例;如图10(a)所示,在圆柱形介质柱构成的光子晶体中形成T字型波导,在该波导中心设置方形磁光介质柱,在波导中心四个角的介质杆为等腰直角三角形杆;通过控制如上述实例所述的工作频率f,分离因子p,铁氧体或其它磁光介质边长sm,四个拐角三角柱中心距离dc来实现高性能环行的功能。根据考察与上述参数相关的插入损耗曲线,来设定如0.05dB、0.2dB、0.5dB、1dB等不同的工作区间。
实施方案7:
如图10(b)所示,在圆柱形介质柱构成的光子晶体中形成T字型波导,在该波导中心设置方形磁光介质柱,在波导中心四个角的介质杆为半圆形杆;通过控制如上述实例所述的工作频率f,分离因子p,铁氧体或其它磁光介质边长sm,四个拐角半圆柱中心距离dc来实现高性能环行的功能。根据考察与上述参数相关的插入损耗曲线,来设定如0.05dB、0.2dB、0.5dB、1dB等不同的工作区间。
实施方案8:
如图10(c)所示,在正六边形介质柱构成的光子晶体中形成T字型波导,在该波导中心设置方形磁光介质柱,在波导中心四个角的介质杆为梯形杆;,通过控制如上述实例所述的工作频率f,分离因子p,铁氧体或其它磁光介质边长sm,四个拐角半六角形柱中心距离dc来实现高性能环行的功能。根据考察与上述参数相关的插入损耗曲线,来设定如0.05dB、0.2dB、0.5dB、1dB等不同的工作区间。
实施方案9:
如图10(d)所示,在正六边形介质柱构成的光子晶体中形成T字型波导,在该波导中心设置方形磁光介质柱,在波导中心四个角的介质杆为等腰直角三角形杆;通过控制如上述实例所述的工作频率f,分离因子p,铁氧体或其它磁光介质边长sm,四个拐角三角形柱中心距离dc来实现高性能环行的功能。根据考察与上述参数相关的插入损耗曲线,来设定如0.05dB、0.2dB、0.5dB、1dB等不同的工作区间。
实施方案10:
如图10(e)所示,在正六边形介质柱构成的光子晶体中形成T字型波导,在该波导中心设置方形磁光介质柱,在波导中心四个角的介质杆为半圆形杆;通过控制如上述实例所述的工作频率f,分离因子p,铁氧体或其它磁光介质边长sm,四个拐角半圆形柱中心距离dc来实现高性能环行的功能。根据考察与上述参数相关的插入损耗曲线,来设定如0.05dB、0.2dB、0.5dB、1dB等不同的工作区间。
由于本发明所提供的配置方法是基于归一化频率的,因此对于不同的波段,可以通过公式
Figure PCTCN2015085344-appb-000014
来设计在相应的频率下符合要求的光子晶体波导的超高效超紧凑T字型环形器。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (9)

  1. 一种基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:其包括一个具有三个端口的T字型光子晶体波导,所述T字型波导中心放置一个方形磁光介质杆,所述位于交叉波导中心的四个拐角处,分别设置四个方形介质杆切角成为直角边与背景方形介质杆边长相同的等腰直角三角形以形成拐角介质杆;所述拐角介质杆与其对应格点位置的左边重合或不重合;所述环行器的插入损耗为0.02dB~1dB,其两端口隔离度大于14dB。
  2. 按照权利要求1所述基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述光子晶体由高折射率介质杆在低折射率介质背景中周期排列而成,或由低折射率介质杆在高折射率介质背景中周期排列而成。
  3. 按照权利要求2所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述高折射率介质材料为硅、砷化镓、二氧化钛、氮化硅等折射率大于2的介质,低折射率介质材料为空气、真空、二氧化硅、冰晶石、橄榄油或折射率小于1.6的介质。
  4. 按照权利要求1所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述光子晶体波导的任意输入端输入的波沿顺时针或逆时针环行到相邻的输出波导端口。
  5. 按照权利要求1所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述磁光介质杆为铁氧体或磁光介质材料。
  6. 按照权利要求1或6所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述磁光介质杆的横截面为方形、矩形、圆形、椭圆形、环行、五边形、六边形、任意多边形、任意闭合曲线形状。
  7. 按照权利要求1所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述四个拐角介质杆的横截面为三角形、半圆形、半椭圆形、半多边形、或由一直边和曲线形成的闭合图形。
  8. 按照权利要求1所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:所述交叉波导的背景介质柱的横截面为三角形、圆形、半圆形、椭圆型、半椭圆形、多边形、或闭合曲线形状。
  9. 按照权利要求3所述的基于光子晶体波导的超高效紧凑T字型环行器,其特征在于:
    所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.3a,归一化频率为0.4121、分离因子为0.7792、磁光介质柱边长为0.2817a、拐角介质柱中心距为1.2997a,所述环行器的插入损耗为0.02dB,其中a为光子晶体的晶格常数,分离因子为磁光介质的磁导率张量的第1行第2个量的绝对值与第1行第1个元素的值比值,归一化频率为ωa/2πc,ω为圆频率,c为真空中光速;
    所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.3006a~0.3045a,归一化频率为(0.4103~0.4138)、分离因子为(0.7712~0.7906)、磁光介质柱边长为(0.2801a~0.2815a)、拐角介质柱中心距为(1.3224a~1.3365a)或(1.2807a~1.3122a),所述环行器的插入损耗小于0.05dB;
    所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.28a~0.3344a,归一化频率为(0.4073~0.4160)、分离因子为(0.7634~0.8056)、磁光介质柱边长为(0.2745a~0.2863a)、拐角介质柱中心距为(1.2488a~1.3852a),所述环行器的插入损耗小于0.2dB;
    所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.2693a~0.3671a,归一化频率为(0.4043~0.4192)、分离因子为(0.7558~0.8208)、磁光介质柱边长为(0.2686a~0.2885a)、拐角介质柱中心距为(1.2304a~1.4764a),所述环行器的插入损耗小于0.5dB;
    所述高折射率介质材料为硅,所述低折射率介质材料为空气,所述光子晶体由硅在空气背景周期排列而成,所述光子晶体中的硅介质柱半径为0.2642a~0.3818a,归一化频率为(0.4016~0.4235)、分离因子为(0.7473~0.8316)、磁光介质柱边长为(0.2639a~0.2922a)、拐角介质柱中心距为(1.2162a~1.6971a),所述环行器的插入损耗小于1dB。
PCT/CN2015/085344 2014-07-28 2015-07-28 基于光子晶体波导的超高效紧凑t字型环行器 WO2016015628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410363257.3 2014-07-28
CN201410363257.3A CN104101947B (zh) 2014-07-28 2014-07-28 基于光子晶体波导的超高效紧凑t字型环行器

Publications (1)

Publication Number Publication Date
WO2016015628A1 true WO2016015628A1 (zh) 2016-02-04

Family

ID=51670231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085344 WO2016015628A1 (zh) 2014-07-28 2015-07-28 基于光子晶体波导的超高效紧凑t字型环行器

Country Status (2)

Country Link
CN (1) CN104101947B (zh)
WO (1) WO2016015628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296155A (zh) * 2021-12-02 2022-04-08 华中科技大学 一种基于双层介质超表面的宽谱光学变焦系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101947B (zh) * 2014-07-28 2017-07-04 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN104360439B (zh) * 2014-11-28 2019-01-01 南京信息工程大学 一种基于变换介质的光子晶体弯折波导结构
BR102015010961A2 (pt) 2015-04-29 2016-11-01 Univ Fed Do Pará circulador óptco de três portas em formato de garfo baseado em um cristal fotônico bidimensional com rede trangular.
BR102015010964A2 (pt) 2015-04-29 2016-11-01 Univ Fed Do Pará circulador t baseado em um cristal fotônico bidimensional com rede quadrada
CN105572922B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN105572918B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体十字波导的磁控二选一光路开关
CN105572921B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的磁控二选一直角输出光路开关
CN105607305B (zh) * 2016-02-15 2021-03-02 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器
CN105572919B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体十字波导的磁光调制器
CN105572917B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体波导双路反相光学时钟信号发生器
CN105607304B (zh) * 2016-02-15 2021-02-19 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
CN105607303B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的直角输出磁光调制器
CN106226924A (zh) * 2016-08-31 2016-12-14 欧阳征标 磁光材料空隙波导磁表面快波光二极管
CN107908021A (zh) * 2017-11-27 2018-04-13 深圳大学 基于光子晶体波导的t字型光子晶体环行器
CN112113691B (zh) * 2019-06-21 2022-01-25 南京邮电大学 考虑温度影响的砷化镓光子晶体压力传感器
CN110441859B (zh) * 2019-07-18 2020-06-26 太原理工大学 一种光波单向传输的二维六方氮化硼光子晶体异质结构
CN114815274B (zh) * 2022-04-28 2023-02-14 厦门大学 一种局部可控近场的光学旋涡生成系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN103472532A (zh) * 2013-09-13 2013-12-25 深圳大学 光子晶体全光学可调谐滤波器
CN104101948A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑十字型环行器
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726873B (zh) * 2009-12-14 2012-08-08 深圳大学 光子晶体三端口环行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN103472532A (zh) * 2013-09-13 2013-12-25 深圳大学 光子晶体全光学可调谐滤波器
CN104101948A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑十字型环行器
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YONG ET AL.: "Three-port Y-Junction Optical Circulator Using a Ferrite Cylinder in Two-dimensional Magneto-photonic Crystals", ACTA PHOTONICA SINICA, vol. 43, no. 6, 30 June 2014 (2014-06-30), pages 2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296155A (zh) * 2021-12-02 2022-04-08 华中科技大学 一种基于双层介质超表面的宽谱光学变焦系统

Also Published As

Publication number Publication date
CN104101947B (zh) 2017-07-04
CN104101947A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2016015628A1 (zh) 基于光子晶体波导的超高效紧凑t字型环行器
WO2016015629A1 (zh) 基于光子晶体波导的超高效紧凑十字型环行器
US10036905B2 (en) Compact six-port photonic crystal circulator
US20170176782A1 (en) Broadband three-port optical circulator with introduced triangular-guide column
CN104597630B (zh) 一种引入补偿柱的高传输率和高隔离度的三端口光环行器
WO2011072572A1 (zh) 基于磁光腔耦合的光子晶体四端口环行器
CN107908021A (zh) 基于光子晶体波导的t字型光子晶体环行器
Danaie et al. Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations
US10976564B2 (en) Isolator, light source device, optical transmitter, and optical amplifier
CN109471275A (zh) 一种三端口光子晶体环行器
CN104767020A (zh) 一种自旋波定向传输波导结构
CN102184826B (zh) 一种基于半导体填充金属波导结构的慢波结构
CN115566384A (zh) 一种基于拓扑手性边界态的高效电磁波导
CN106025462A (zh) 基于人工表面等离激元和互补开口谐振环的带阻滤波器
Xu et al. Characterization of millimeter wave photonic crystal circulator with a ferrite sphere
Zhang et al. One-way rotating photonic crystal ring resonator with high quality factor
Wang et al. T-typed photonic crystal circulator with square lattice Al2O3 rods array and NiZn-ferrite posts
CN103645541B (zh) 一种太赫兹偏振分束器
CN109491013A (zh) 一种模斑转换器结构及参数优化方法
Wang et al. Ultra-wideband terahertz circulator with a ferrite-sphere filled triangle photonic crystal
Wang et al. Microwave-frequency experiment validation of a novel magneto-photonic crystals circulator
CN113851809B (zh) 一种基于人工表面等离激元的非互易耦合器
Lou et al. Realization of unidirectional transmission under accidental degenerated Dirac point
CN102544660A (zh) 基于各向异性磁回旋媒质的可调控单向波导控制方法
Xu et al. Magnetic photonic crystal circulator based on gradient changing width waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827833

Country of ref document: EP

Kind code of ref document: A1