WO2016050055A1 - 一种信号捕获方法、装置及计算机存储介质 - Google Patents
一种信号捕获方法、装置及计算机存储介质 Download PDFInfo
- Publication number
- WO2016050055A1 WO2016050055A1 PCT/CN2015/077008 CN2015077008W WO2016050055A1 WO 2016050055 A1 WO2016050055 A1 WO 2016050055A1 CN 2015077008 W CN2015077008 W CN 2015077008W WO 2016050055 A1 WO2016050055 A1 WO 2016050055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- time
- doppler
- signal
- spreading code
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
Definitions
- the present invention relates to satellite navigation technology, and in particular, to a signal acquisition method, apparatus, and computer storage medium.
- the A-GNSS provides the navigation receiver with the assistance information needed by means of the wireless communication network to support the navigation receiver positioning capability or to enhance the navigation receiver's ability to capture under weak signal conditions.
- the traditional navigation receiver needs to capture four or more satellite signals to achieve the positioning function, and different satellite signals have pseudo-random codes with different starting times and different Doppler shifts. Therefore, in order to search for a certain satellite signal, the navigation receiver usually needs to perform a two-dimensional search, and search for each pseudo-random code with different starting time on each possible Doppler shift, the auxiliary navigation receiver Using the auxiliary time, ephemeris/almanac, and navigation receiver position, the Doppler frequency offset caused by satellite motion can be estimated to shorten the search frequency of the capture frequency.
- the Doppler shift caused by the local clock frequency offset cannot be estimated without giving the local clock frequency offset, while the smaller local clock offset produces a Doppler shift of the kilohertz (Hz). This will increase the capture search space and affect the first positioning time.
- 3GPP TS 36.171 defines the minimum auxiliary information set of A-GNSS technology, including time auxiliary information, almanac/ephemerary auxiliary information, user location auxiliary information, etc.
- the wireless communication network can provide two different time assisted modes. : Fine time assistance (accuracy of ⁇ 10 ⁇ s) and coarse time assistance (accuracy of ⁇ 2s).
- the existing receiver can estimate the Doppler frequency offset and code phase of the satellite by time, almanac/ephemeris, and user location information obtained from the wireless communication network, thereby reducing the satellite capture frequency. And the two-dimensional search space of the code phase.
- the length of the ranging code is 1ms, and the time precision of the fine time assist is less than 1ms, so the edge of the navigation telegram can be estimated, and the captured coherent integration time is further increased.
- GPS Global Positioning System
- Beidou system the length of the ranging code is 1ms, and the time precision of the fine time assist is less than 1ms, so the edge of the navigation telegram can be estimated, and the captured coherent integration time is further increased.
- the sensitivity of the capture will be less than that of the finer.
- the sensitivity of the capture when assisted due to the weather and occlusion of the actual environment, many satellite signals are relatively weak, and often only capture one or two satellite signals that are slightly stronger, so the positioning cannot be completed.
- Embodiments of the present invention provide a signal acquisition method, apparatus, and computer storage medium, which can implement fast capture of weak signals in a coarse time assisted positioning mode.
- Embodiments of the present invention provide a signal acquisition method, including:
- the uncaptured weak signal satellite is captured.
- determining the Doppler frequency offset of the uncaught weak signal satellite according to the Doppler frequency offset of the captured strong signal satellite comprises:
- a Doppler frequency offset estimate for a currently visible satellite using satellite ephemeris information, coarse time assist time, and reference position coordinates; the currently visible satellite including the captured strong signal satellite and an uncaptured weak signal satellite ;
- the Doppler shift of the uncaptured weak signal satellite is determined based on the Doppler shift of the captured strong signal satellite and the determined Doppler shift estimate of the currently visible satellite.
- the determining a spreading code period and a spreading code phase of the uncaught weak signal satellite according to a transmission time of the captured strong signal satellite includes:
- the spreading code period and the spreading code phase of the unaware weak signal satellite are determined according to the corrected reference time, the ephemeris information of the satellite, and the reference position coordinates.
- the determining, by the satellite's ephemeris information, the coarse time assist time, and the reference position coordinates, the Doppler frequency offset estimates of the currently visible satellites includes:
- the velocity at time t k determines a Doppler shift estimate for the currently visible satellite signal.
- the number N1 of the captured strong signal satellites ranges from 1 ⁇ N1 ⁇ 3.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the signal capture method according to the embodiment of the invention.
- the embodiment of the invention further provides a signal acquisition device, comprising: a strong signal acquisition module, a Doppler correction module, a spread spectrum code estimation module and a weak signal acquisition module; wherein
- the strong signal acquisition module is configured to acquire a Doppler frequency offset and a transmission time of the captured strong signal satellite;
- the Doppler correction module is configured to determine a Doppler frequency offset of an uncaught weak signal satellite according to a Doppler frequency offset of the captured strong signal satellite;
- the spreading code estimation module is configured to determine a spreading code period and a spreading code phase of the uncaptured weak signal satellite according to the transmission time of the captured strong signal satellite;
- the weak signal acquisition module is configured to capture the uncaptured weak signal satellite by using a Doppler frequency offset, a spreading code period, and a spreading code phase of the uncaptured weak signal satellite.
- the Doppler correction module includes a Doppler estimation module and a Doppler determination module;
- the Doppler estimation module is configured to determine a Doppler frequency offset estimate of a currently visible satellite using satellite ephemeris information, coarse time assist time, and reference position coordinates; the currently visible satellite includes the captured Strong signal satellites and uncaptured weak signal satellites;
- the Doppler determination module is configured to determine Doppler of an uncaptured weak signal satellite based on a Doppler frequency offset of the captured strong signal satellite and a determined Doppler frequency offset estimate of the currently visible satellite Frequency offset.
- the spreading code estimation module is configured to correct the reference time by using the transmission time of the captured strong signal satellite to obtain the corrected reference time; according to the corrected reference time, the satellite ephemeris The information, as well as the reference position coordinates, determine the spreading code period and the spreading code phase of the uncaught weak signal satellite.
- the Doppler estimation module is configured to determine a position coordinate of a currently visible satellite according to satellite ephemeris information, a coarse time assist time, and a reference position coordinate, and further determine that the currently visible satellite is assisted in coarse time. speed corresponding to the time k at time t; and the re-determined currently visible satellite signals when the satellite is visible before determining the speed in time t k based on Doppler shift estimates.
- the number N1 of strong signal satellites captured by the strong signal acquisition module ranges from 1 ⁇ N1 ⁇ 3.
- the signal acquisition method and device and the computer storage medium provided by the embodiments of the present invention acquire the Doppler frequency offset and the transmission time of the captured strong signal satellite; determine the uncaught according to the Doppler frequency offset of the captured strong signal satellite.
- Doppler frequency offset of the weak signal satellite determining the spreading code period and spreading code phase of the uncaptured weak signal satellite according to the transmission time of the captured strong signal satellite; Doppler using the uncaptured weak signal satellite
- the un-captured weak signal satellite is captured by a frequency offset, a spreading code period, and a spreading code phase.
- the two-dimensional search space of the satellite capturing frequency and the code phase can be reduced, thereby ensuring that the receiver is Fast acquisition of weak signals is achieved in the coarse-time assisted positioning mode.
- FIG. 1 is a schematic flowchart of an implementation process of a signal capture method according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a specific implementation process of a signal capture method according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of transmission time of a captured strong signal satellite according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a signal capture apparatus according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a Doppler correction module in a signal acquisition apparatus according to an embodiment of the present invention.
- the Doppler frequency offset and the transmission time of the captured strong signal satellite are acquired; and the Doppler frequency offset of the uncaptured weak signal satellite is determined according to the Doppler frequency offset of the captured strong signal satellite. ;determination of uncaptured weak signal satellites based on the transmission time of the captured strong signal satellites The spreading code period and the spreading code phase; capturing the uncaptured weak signal satellite using the Doppler frequency offset, the spreading code period, and the spreading code phase of the uncaptured weak signal satellite.
- a signal capture method according to an embodiment of the present invention includes:
- Step S10 acquiring a Doppler frequency offset and a transmission time of the captured strong signal satellite
- the number N1 of strong signal satellites captured by the signal acquisition device in the receiver ranges from 1 ⁇ N1 ⁇ 3.
- Step S11 determining a Doppler frequency offset of the uncaptured weak signal satellite according to the Doppler frequency offset of the captured strong signal satellite;
- step S11 includes the following steps A and B;
- determining the position coordinates of the currently visible satellite according to the ephemeris information of the satellite, the coarse time assist time, and the reference position coordinate, and further determining the speed of the current visible satellite corresponding to the time t k at the coarse time auxiliary time;
- the velocity of the currently visible satellite at time t k determines the Doppler shift estimate for the currently visible satellite signal.
- Step B Determine the Doppler shift of the uncaptured weak signal satellite based on the Doppler frequency offset of the captured strong signal satellite and the determined Doppler frequency offset estimate of the currently visible satellite.
- Step S12 determining a spreading code period and a spreading code phase of the uncaught weak signal satellite according to the transmission time of the captured strong signal satellite;
- the reference time is corrected by using the transmission time of the captured strong signal satellite. Obtaining the corrected reference time; and determining the spreading code period and the spreading code phase of the uncaptured weak signal satellite according to the corrected reference time, the satellite ephemeris information, and the reference position coordinates.
- the spreading code period refers to an integer number of spreading codes in one navigation telegram bit period.
- the value of the spreading code period is less than or equal to 2 ms; for the non-geostationary orbit (NGEO) satellite, the navigation message bit period is 20ms, so the value of the spreading code period is less than or equal to 20ms.
- one spreading code of the Beidou satellite includes 2046 chips, the value of the spreading code phase is less than or equal to 2046.
- Step S13 Capturing the unapoched weak signal satellite by using Doppler frequency offset, spreading code period and spreading code phase of the uncaptured weak signal satellite.
- the Doppler frequency offset of the uncaught weak signal satellite determined by the embodiment of the present invention can reduce the Doppler search range, and at the same time, utilize the uncaught weak signal satellite spread spectrum determined by the embodiment of the present invention.
- the code period and the spreading code phase can quickly calculate the edge of the Beidou GEO satellite signal navigation message and the Neuman-Hoffman (NH) code phase of the NGEO satellite, further increasing the captured coherent integration time, thereby achieving fast acquisition of weak signals.
- a signal capture method according to an embodiment of the present invention includes:
- Step S20 Acquire a Doppler frequency offset and a transmission time of the captured strong signal satellite
- Step S21 determining a Doppler frequency offset estimation value of the currently visible satellite by using ephemeris information of the satellite, coarse time assist time, and reference position coordinates; the currently visible satellite includes the captured strong signal satellite and uncaught Weak signal satellite;
- the step S21 includes:
- Step 1 Determine the position coordinates of the currently visible satellite according to the ephemeris information of the satellite, the coarse time auxiliary time, and the reference position coordinate, and further determine the speed of the current visible satellite at the coarse time auxiliary time corresponding to the time t k
- ⁇ k is the ascension point of the epoch (the ground solid system)
- ⁇ 0 is the ascending node of the ascension point calculated according to the reference time.
- the rotation rate of the Earth in the CGCS2000 coordinate system is 7.292150*10e-5rad/s
- t k is the time difference from the observation epoch to the reference epoch
- t oe is the ephemeris reference time
- x k and y k are the satellites in the orbital plane.
- the coordinates inside, i k is the corrected orbital inclination.
- x' k and y' k are the derivatives of x k and y k for t k , respectively, and ⁇ k ' and i k ' are the derivatives of ⁇ k and i k for t k , respectively.
- ⁇ k is the ascension point of the epoch (the earth-solid system)
- ⁇ 0 is the ascending node of the ascension point calculated according to the reference time.
- the rotation rate of the Earth in the CGCS2000 coordinate system is 7.292150*10e-5rad/s
- t k is the time difference from the observation epoch to the reference epoch
- t oe is the ephemeris reference time
- x k and y k are the satellites in the orbital plane.
- the coordinates inside, i k is the corrected orbital inclination.
- Step 2 according to the speed of the currently visible satellite at time t k determined according to step 1 Determining the currently visible satellite signal Doppler frequency offset estimate f d.
- c is the speed of light
- e (s) is the unit observation vector of the currently visible satellite signal from the receiver to the currently visible satellite at time t k
- (X rec , Y rec , Z rec ) is the receiver position coordinate at time t k
- the position coordinate of the sth currently visible satellite in the CGCS2000 coordinate system at time t k is the carrier frequency of the currently visible satellite signal.
- Step S22 Determine a Doppler frequency offset of the uncaught weak signal satellite according to the Doppler frequency offset of the captured strong signal satellite and the determined Doppler frequency offset estimation value of the currently visible satellite.
- the Doppler frequency offset of the captured strong signal acquired by the receiver is
- the Doppler bias due to the clock bias of the receiver is estimated as among them
- Each component is the Doppler bias estimate caused by the clock skew of each strong signal satellite captured.
- the receiver clock skew is small, and therefore, when the number N1 of captured strong signal satellites satisfies 2 ⁇ N1 ⁇ 3, the vector is passed. All components are averaged to obtain ⁇ F d , and ⁇ F d is taken as the receiver frequency offset correction amount of the uncaptured weak signal satellite.
- ⁇ F d the receiver frequency offset correction amount
- the Doppler frequency offset estimation of the uncaptured weak signal satellite is corrected by using ⁇ F d , and the Doppler frequency offset of the uncaptured weak signal satellite is obtained as
- Step S23 correcting the reference time by using the transmission time of the captured strong signal satellite to obtain the corrected reference time
- the coordinates of the k strong satellite signals are obtained at the time of TOT k And pass the propagation time of the kth strong signal satellite Calculation formula Find the propagation time of the kth strong signal satellite.
- the reference time of the kth strong signal satellite can be obtained.
- the accuracy of the local reception time can be effectively improved by the step S23 of the embodiment of the present invention.
- Step S24 determining, according to the corrected reference time, the ephemeris information of the satellite, and the reference position coordinates, a spreading code period and a spreading code phase of the unaware weak signal satellite;
- step S24 includes:
- Step a determining the satellite coordinates of the kth uncaptured weak signal at the time of the TOR corr according to the calculation formula of the position coordinates of the satellite signal described above According to the formula Calculate the propagation time of the kth uncaptured weak signal satellite Further use Get the transmission time of the kth uncaptured weak signal satellite
- Step b according to the obtained k-th unobserved weak signal satellite transmission time Determining the spreading code period of the kth uncaptured weak signal satellite And spreading code phase
- Step S25 capturing the uncaptured weak signal satellite by using Doppler frequency offset, spreading code period and spreading code phase of the uncaptured weak signal satellite.
- the Doppler search range can be reduced, and at the same time, the uncaught weakness determined by step S24 of the embodiment of the present invention is utilized.
- the signal satellite spreading code period and the spreading code phase can quickly calculate the edge of the Beidou GEO satellite signal navigation message and the NH code phase of the NGEO satellite, further increasing the captured coherent integration time, thereby achieving fast capture of weak signals.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the signal capture method according to the embodiment of the invention.
- the signal capture apparatus of the embodiment of the present invention includes: a strong signal capture module 10, a Doppler correction module 20, a spread spectrum code estimation module 30, and a weak signal capture module 40; wherein
- the strong signal acquisition module 10 is configured to acquire a Doppler frequency offset and a transmission time of the captured strong signal satellite;
- the number N1 of strong signal satellites that can be captured by the receiver ranges from 1 ⁇ N1 ⁇ 3.
- the Doppler correction module 20 is configured to determine a Doppler frequency offset of an uncaught weak signal satellite according to a Doppler frequency offset of the captured strong signal satellite;
- the Doppler correction module 20 includes a Doppler estimation module 21 and a Doppler determination module 22;
- the Doppler estimation module 21 is configured to determine a Doppler frequency offset estimate of a currently visible satellite using ephemeris information of the satellite, coarse time assist time, and reference position coordinates; the currently visible satellite includes the captured Strong signal satellites and uncaptured weak signal satellites;
- the Doppler estimation module 21 determines the position coordinates of the currently visible satellite according to the ephemeris information of the satellite, the coarse time assist time, and the reference position coordinate, and further determines that the current visible satellite corresponds to the coarse time auxiliary time t k The speed is further determined based on the determined speed of the currently visible satellite at time t k to determine a Doppler frequency offset estimate for the currently visible satellite signal.
- the Doppler determination module 22 is configured to determine Doppler of the uncaptured weak signal satellite based on the Doppler frequency offset of the captured strong signal satellite and the determined Doppler frequency offset estimate of the currently visible satellite. Le frequency bias.
- the spreading code estimation module 30 is configured to determine a spreading code period and a spreading code phase of the uncaught weak signal satellite according to the transmission time of the captured strong signal satellite; specifically, the spreading code estimation module 30 Firstly, the reference time is corrected by using the acquired transmission time of the captured strong signal satellite to obtain the corrected reference time; and then the uncaught is determined according to the corrected reference time, the satellite ephemeris information, and the reference position coordinates. The spreading code period and the spreading code phase of the weak signal satellite.
- the weak signal acquisition module 40 is configured to utilize Doppler frequency of an uncaptured weak signal satellite
- the uncaptured weak signal satellite is captured by a partial, a spreading code period and a spreading code phase.
- the strong signal capture module 10, the Doppler correction module 20, the spread code estimation module 30, the weak signal capture module 40, the Doppler estimation module 21, and the Doppler determination module 22 may all be In the signal capture device, a central processing unit (CPU), a microprocessor (Micro Processor Unit (MPU), a digital signal processor (DSP), or a field programmable gate array (Field)
- the strong signal capture module 10, the Doppler correction module 20 and its sub-module Doppler estimation module 21 and Doppler determination module 22, and the spreading code estimation module 30 It can also be implemented by a strong signal acquisition tracker, a Doppler calibrator, and a spreading code estimator, respectively.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- the signal acquisition method acquires the Doppler frequency offset and the transmission time of the captured strong signal satellite; and determines the number of uncaptured weak signal satellites according to the Doppler frequency offset of the captured strong signal satellite. Pule frequency offset; determining the spreading code period and spreading code phase of the uncaptured weak signal satellite according to the transmission time of the captured strong signal satellite; using the Doppler frequency offset and spreading code of the uncaptured weak signal satellite The uncaught weak signal satellite is captured by the period and the spreading code phase.
- the two-dimensional search space of the satellite capturing frequency and the code phase can be reduced, thereby ensuring that the receiver is Fast acquisition of weak signals is achieved in the coarse-time assisted positioning mode.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种信号捕获方法及装置,所述方法包括:获取已捕获的强信号卫星的多普勒频偏和传输时间(S10);根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏(S11);根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位(S12);利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星(S13)。
Description
本发明涉及卫星导航技术,尤其涉及一种信号捕获方法、装置及计算机存储介质。
目前,随着人们对室内等微弱信号环境和首次定位时间的要求,辅助全球导航卫星系统(Assisted-Global Navigation Satellite System,A-GNSS)应运而生。A-GNSS借助于无线通信网络为导航接收机提供所需要的辅助信息,以支持导航接收机定位能力或者增强导航接收机在微弱信号条件下的捕获能力。
传统导航接收机实现定位功能需要捕获到4颗或者以上的卫星信号,且不同卫星信号具有不同的起始时间的伪随机码和不同的多普勒频移。因此,为了搜索到某个卫星信号,导航接收机通常需要进行二维搜索,在每个可能的多普勒频移上对每个起始时间不同的伪随机码进行搜索,辅助型导航接收机利用辅助的时间、星历/历书、导航接收机位置能估算出卫星运动引起的多普勒频偏从而缩短捕获频率搜索空间。然而,在没有给定本地时钟频偏的情况下不能估计本地时钟频偏引起的多普勒频移,而较小的本地时钟频偏会产生上千赫兹(Hz)的多普勒频移,这样会增加捕获搜索空间,影响首次定位时间。
3GPP TS 36.171定义了A-GNSS技术的最小辅助信息集,包括时间辅助信息、历书/星历辅助信息、用户位置辅助信息等,根据3GPP标准定义,无线通信网络可以提供两种不同的时间辅助方式:精时辅助(精度为±10μs)和粗时辅助(精度为±2s)。
现有的接收机在精时辅助定位方式下,通过从无线通信网络获取的时间、历书/星历、用户位置信息,可以估计出卫星的多普勒频偏和码相位,从而缩小卫星捕获频率和码相位的二维搜索空间。对于全球定位系统(Global Positioning System,GPS)和北斗系统,测距码的长度为1ms,精时辅助的时间精度要小于1ms,因此可以估计出导航电文比特的边沿,进一步增加捕获的相干积分时间,提高捕获的灵敏度,实现在微弱信号环境下高灵敏度定位。
然而,接收机在粗时辅助定位方式下,由于时间精度要大于一个测距码的长度,不能对码相位和导航电文比特边沿进行预测,因此在相同的辅助信息下,捕获的灵敏度会小于精时辅助时捕获的灵敏度。而且,由于实际环境的天气、遮挡等原因,很多卫星信号功率比较微弱,往往只能捕获到稍微较强的一颗或者两颗卫星信号,因此不能完成定位。
综上所述,接收机在粗时辅助定位方式下,如何实现微弱信号的快速捕获已成为辅助定位技术中急需解决的问题。
发明内容
本发明实施例提供一种信号捕获方法、装置及计算机存储介质,能够在粗时辅助定位方式下实现微弱信号的快速捕获。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种信号捕获方法,该方法包括:
获取已捕获的强信号卫星的多普勒频偏和传输时间;
根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;
根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;
利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,
捕获所述未捕获的弱信号卫星。
在一实施例中,所述根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏包括:
利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;
根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
在一实施例中,所述根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位包括:
利用已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;
根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
在一实施例中,所述利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值包括:
根据卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
在一实施例中,所述已捕获的强信号卫星的个数N1的取值范围为1≤N1≤3。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述信号捕获方法。
本发明实施例还提供一种信号捕获装置,该装置包括:强信号捕获模块、多普勒校正模块、扩频码估计模块和弱信号捕获模块;其中,
所述强信号捕获模块,配置为获取已捕获的强信号卫星的多普勒频偏和传输时间;
所述多普勒校正模块,配置为根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;
所述扩频码估计模块,配置为根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;
所述弱信号捕获模块,配置为利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
在一实施例中,所述多普勒校正模块包括多普勒估计模块和多普勒确定模块;其中,
所述多普勒估计模块,配置为利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;
所述多普勒确定模块,配置为根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
在一实施例中,所述扩频码估计模块,配置为利用已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
在一实施例中,所述多普勒估计模块,配置为根据卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当
前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
在一实施例中,所述强信号捕获模块已捕获的强信号卫星的个数N1的取值范围为1≤N1≤3。
本发明实施例所提供的信号捕获方法、装置及计算机存储介质,获取已捕获的强信号卫星的多普勒频偏和传输时间;根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。如此,在精确确定未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位的基础上,能够缩小卫星捕获频率和码相位的二维搜索空间,从而保证接收机在粗时辅助定位方式下实现微弱信号的快速捕获。
图1为本发明实施例信号捕获方法的实现流程示意图;
图2为本发明实施例信号捕获方法的具体实现流程示意图;
图3为本发明实施例已捕获的强信号卫星的传输时间的示意图;
图4为本发明实施例信号捕获装置的组成结构示意图;
图5为本发明实施例信号捕获装置中多普勒校正模块的组成结构示意图。
在本发明实施例中,获取已捕获的强信号卫星的多普勒频偏和传输时间;根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星
的扩频码周期和扩频码相位;利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
图1为本发明实施例信号捕获方法的实现流程示意图,如图1所示,本发明实施例信号捕获方法包括:
步骤S10:获取已捕获的强信号卫星的多普勒频偏和传输时间;
这里,由于接收机处在粗时辅助定位方式下,所以接收机中信号捕获装置已捕获到的强信号卫星的个数N1的取值范围为1≤N1≤3。
步骤S11:根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;
具体地,步骤S11包括如下步骤A和B;其中,
步骤A:利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;其中,当前可见卫星的总数N的取值范围为2≤N≤34,且满足N=N1+N2;其中,N2为未捕获的弱信号卫星的个数。
具体地,根据卫星的星历信息,粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
步骤B:根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
步骤S12:根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;
具体地,先利用已捕获的强信号卫星的传输时间对参考时间进行校正,
获得校正后的参考时间;再根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
这里,所述扩频码周期是指在一个导航电文比特周期内扩频码的整数个数。对于北斗地球静止轨道(GEO)卫星来说,由于导航电文比特周期为2ms,故扩频码周期的取值小于等于2ms;对于非地球静止轨道(NGEO)卫星来说,由于导航电文比特周期为20ms,故扩频码周期的取值小于等于20ms。另外,由于北斗卫星的一个扩频码包括2046个码片,所以扩频码相位的取值小于等于2046。
步骤S13:利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
如此,通过本发明实施例所确定的未捕获的弱信号卫星的多普勒频偏,能够减小多普勒搜索范围,同时,利用本发明实施例所确定的未捕获的弱信号卫星扩频码周期和扩频码相位,能够快速计算得到北斗GEO卫星信号导航电文的边沿和NGEO卫星的Neuman-Hoffman(NH)码相位,进一步增加捕获的相干积分时间,从而实现弱信号的快速捕获。
图2为本发明实施例信号捕获方法的具体实现流程示意图,如图2所示,本发明实施例信号捕获方法包括:
步骤S20:获取已捕获的强信号卫星的多普勒频偏和传输时间;
步骤S21:利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;
具体地,所述步骤S21包括:
具体地,由于北斗GEO卫星和NGEO卫星的位置坐标和速度计算方法不一样,因此需要分别计算,具体计算方法如下:
1)在GC2000坐标系中,对于NGEO卫星,根据卫星的星历信息,在粗时辅助时间对应的tk时刻,当前可见卫星的位置坐标(Xk,Yk,Zk)的计算公式如下:
其中,Ωk为历元升交点赤经(地固系),Ω0为按参考时间计算的升交点赤经,为升交点赤经变化率,为CGCS2000坐标系下的地球旋转速率,为7.2921150*10e-5rad/s,tk为观测历元到参考历元的时间差,toe为星历参考时间,xk、yk为卫星在轨道平面内的坐标,ik为改正后的轨道倾角。
其中,x′k、y′k分别为xk、yk对tk的导数,Ωk′、ik′分别为Ωk、ik对tk的导数。
2)在GC2000坐标系中,对于GEO卫星,根据卫星的星历信息,在粗时辅助时间对应的tk时刻,当前可见卫星的位置坐标(Xk,Yk,Zk)的计算公式如下:
其中,k1=cos(-5°),k2=sin(-5°),Ωk为历元升交点赤经(地固系),Ω0为按参考时间计算的升交点赤经,为升交点赤经变化率,为CGCS2000坐标系下的地球旋转速率,为7.2921150*10e-5rad/s,tk为观测历元到参考历元的时间差,toe为星历参考时间,xk、yk为卫星在轨道平面内的坐标,ik为改正后的轨道倾角。
具体地,所述fd的计算公式如下:
其中,当前可见卫星信号的载波频率f=1561.098MHz,为第s颗当前可见卫星与接收机连线方向上的相对速度,c为光速。e(s)为当前可见卫
星信号的在tk时刻从接收机至当前可见卫星的单位观测矢量,(Xrec,Yrec,Zrec)为tk时刻接收机位置坐标,为tk时刻第s颗当前可见卫星在CGCS2000坐标系下的位置坐标。
步骤S22:根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
具体地,通过步骤S21所估计确定的所有当前可见卫星的多普勒频偏估计值为
可以拆分为两个向量和其中, 为已捕获的强信号卫星的多普勒频偏估计值, 为未捕获到的弱信号卫星的多普勒频偏估计值,其中,1≤N1≤3,N=N1+N2。而接收机所获取的已捕获的强信号的多普勒频偏为
需要说明的是,对于一个接收机来说,可以认为接收机钟偏波动很小,因此,在捕获到的强信号卫星的个数N1满足2≤N1≤3的情况下,通过对向量的所有分量求平均得到ΔFd,并将ΔFd作为未捕获的弱信号卫星的接收机频偏校正量。当然,对于捕获到的强信号卫星的个数N1=1的情况下,很显然,只有一个分量ΔFd,故可直接将ΔFd作为未捕获的弱信号卫星的接收机频偏校正量。
步骤S23:利用已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;
具体地,图3所示的已捕获的强信号卫星的传输时间的示意图,如图3所示,第k颗强信号卫星的传输时间为TOTk=SOWk+ΔTk,其中,
代表第k颗强信号卫星在找到SOWk之后的导航比特个数,代表第k颗强信号卫星的扩频码周期数,即第k颗强信号卫星传输完最后一个导航电文比特之后的整毫秒数,代表第k颗强信号卫星的码相位。这样,第k颗强信号卫星的传输时间
如此,通过本发明实施例的步骤S23,能够有效提高本地接收时间的精度。
步骤S24:根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位;
具体地,步骤S24包括:
步骤a,根据前述的卫星信号的位置坐标的计算公式确定在TORcorr时刻第k颗未捕获到的弱信号的卫星坐标再根据公式 计算得到第k颗未捕获到的弱信号卫星的传播时间进一步利用得到第k颗未捕获到的弱信号卫星的传输时间
步骤S25:利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
如此,通过本发明实施例步骤S22所确定的未捕获的弱信号卫星的多普勒频偏,能够减小多普勒搜索范围,同时,利用本发明实施例步骤S24所确定的未捕获的弱信号卫星扩频码周期和扩频码相位,能够快速计算得到北斗GEO卫星信号导航电文的边沿和NGEO卫星的NH码相位,进一步增加捕获的相干积分时间,从而实现弱信号的快速捕获。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述信号捕获方法。
图4为本发明实施例信号捕获装置的组成结构示意图,如图4所示,本发明实施例信号捕获装置包括:强信号捕获模块10、多普勒校正模块20、扩频码估计模块30和弱信号捕获模块40;其中,
所述强信号捕获模块10,配置为获取已捕获的强信号卫星的多普勒频偏和传输时间;
这里,由于接收机处在粗时辅助定位方式下,所以接收机所能捕获到的强信号卫星的个数N1的取值范围为1≤N1≤3。
所述多普勒校正模块20,配置为根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;
在一实施例中,如图5所示,所述多普勒校正模块20包括多普勒估计模块21和多普勒确定模块22;其中,
所述多普勒估计模块21,配置为利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;
具体地,所述多普勒估计模块21根据卫星的星历信息,粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
所述多普勒确定模块22,配置为根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
所述扩频码估计模块30,配置为根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;具体地,所述扩频码估计模块30先利用所获取的已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;再根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
所述弱信号捕获模块40,配置为利用未捕获的弱信号卫星的多普勒频
偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
在实际应用中,所述强信号捕获模块10、多普勒校正模块20、扩频码估计模块30、弱信号捕获模块40、多普勒估计模块21、以及多普勒确定模块22均可由本发明实施例信号捕获装置中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现;另外,所述强信号捕获模块10、多普勒校正模块20及其子模块多普勒估计模块21和多普勒确定模块22、以及扩频码估计模块30也可分别由强信号捕获跟踪器、多普勒校正器、以及扩频码估计器实现。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
本发明实施例所提供的信号捕获方法,获取已捕获的强信号卫星的多普勒频偏和传输时间;根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。如此,在精确确定未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位的基础上,能够缩小卫星捕获频率和码相位的二维搜索空间,从而保证接收机在粗时辅助定位方式下实现微弱信号的快速捕获。
Claims (11)
- 一种信号捕获方法,所述方法包括:获取已捕获的强信号卫星的多普勒频偏和传输时间;根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
- 根据权利要求1所述的方法,其中,所述根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏包括:利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
- 根据权利要求1所述的方法,其中,所述根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位包括:利用已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
- 根据权利要求2所述的方法,其中,所述利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值包括:根据卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
- 根据权利要求1至4任一项所述的方法,其中,所述已捕获的强信号卫星的个数N1的取值范围为1≤N1≤3。
- 一种信号捕获装置,所述装置包括:强信号捕获模块、多普勒校正模块、扩频码估计模块和弱信号捕获模块;所述强信号捕获模块,配置为获取已捕获的强信号卫星的多普勒频偏和传输时间;所述多普勒校正模块,配置为根据已捕获的强信号卫星的多普勒频偏确定未捕获的弱信号卫星的多普勒频偏;所述扩频码估计模块,配置为根据已捕获的强信号卫星的传输时间确定未捕获的弱信号卫星的扩频码周期和扩频码相位;所述弱信号捕获模块,配置为利用未捕获的弱信号卫星的多普勒频偏、扩频码周期和扩频码相位,捕获所述未捕获的弱信号卫星。
- 根据权利要求6所述的装置,其中,所述多普勒校正模块包括多普勒估计模块和多普勒确定模块;所述多普勒估计模块,配置为利用卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的多普勒频偏估计值;所述当前可见卫星包括所述已捕获的强信号卫星和未捕获的弱信号卫星;所述多普勒确定模块,配置为根据已捕获的强信号卫星的多普勒频偏和所确定的当前可见卫星的多普勒频偏估计值,确定未捕获的弱信号卫星的多普勒频偏。
- 根据权利要求6所述的装置,其中,所述扩频码估计模块,配置为利用已捕获的强信号卫星的传输时间对参考时间进行校正,获得校正后的参考时间;根据校正后的参考时间、卫星的星历信息、以及参考位置坐标,确定未捕获的弱信号卫星的扩频码周期和扩频码相位。
- 根据权利要求7所述的装置,其中,所述多普勒估计模块,配置为根据卫星的星历信息、粗时辅助时间、以及参考位置坐标确定当前可见卫星的位置坐标,并进一步确定当前可见卫星在粗时辅助时间对应时刻tk的速度;再根据所确定的当前可见卫星在tk时刻的速度确定所述当前可见卫星信号的多普勒频偏估计值。
- 根据权利要求6至9任一项所述的装置,其中,所述强信号捕获模块已捕获的强信号卫星的个数N1的取值范围为1≤N1≤3。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至5任一项所述的信号捕获方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410515755.5 | 2014-09-29 | ||
CN201410515755.5A CN105527635A (zh) | 2014-09-29 | 2014-09-29 | 一种捕获微弱信号的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016050055A1 true WO2016050055A1 (zh) | 2016-04-07 |
Family
ID=55629393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077008 WO2016050055A1 (zh) | 2014-09-29 | 2015-04-20 | 一种信号捕获方法、装置及计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105527635A (zh) |
WO (1) | WO2016050055A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106788822A (zh) * | 2017-01-26 | 2017-05-31 | 清华大学 | 避免对geo系统干扰的频谱感知盲区的判断方法及装置 |
CN109655847A (zh) * | 2018-11-27 | 2019-04-19 | 上海无线电设备研究所 | 一种适于动态信号的快速捕获方法 |
CN110187368A (zh) * | 2019-06-24 | 2019-08-30 | 中国电子科技集团公司第二十九研究所 | 低轨卫星与地面终端之间的多普勒频偏处理方法 |
CN110703285A (zh) * | 2019-11-07 | 2020-01-17 | 广东星舆科技有限公司 | 卫星信号的捕获方法、装置、定位设备及可读存储介质 |
CN110907958A (zh) * | 2019-10-23 | 2020-03-24 | 深圳华大北斗科技有限公司 | 信号捕获方法、装置、计算机设备和存储介质 |
CN111308519A (zh) * | 2020-03-20 | 2020-06-19 | 湖南国科微电子股份有限公司 | 导航卫星捕获方法、装置、设备及介质 |
CN111614591A (zh) * | 2020-05-21 | 2020-09-01 | 慧众行知科技(北京)有限公司 | 一种信号快速捕获的方法及系统 |
CN112540388A (zh) * | 2020-11-24 | 2021-03-23 | 湖北三江航天险峰电子信息有限公司 | 一种卫星通信模组及其上行信号多普勒补偿方法 |
CN112987041A (zh) * | 2019-12-13 | 2021-06-18 | 深圳开阳电子股份有限公司 | 一种弱信号下的位同步方法、装置及计算机存储介质 |
CN113671547A (zh) * | 2021-08-25 | 2021-11-19 | 重庆天箭惯性科技股份有限公司 | 一种改进的高动态捕获方法、装置、设备及存储介质 |
CN114063124A (zh) * | 2021-11-08 | 2022-02-18 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | 一种北斗b1c信号快速捕获方法及存储介质 |
CN114690217A (zh) * | 2020-12-31 | 2022-07-01 | 西安开阳微电子有限公司 | 一种gps l1快速精确捕获方法、装置及计算机存储介质 |
CN118214472A (zh) * | 2024-02-01 | 2024-06-18 | 北斗应用发展研究院 | 北斗短报文出站信号的辅助捕获方法、系统及相关装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106950579B (zh) * | 2017-03-28 | 2019-05-24 | 武汉大学 | Gnss接收机的载波频率快速搜索方法及系统 |
CN109725337B (zh) * | 2019-01-28 | 2023-11-03 | 西安开阳微电子有限公司 | 一种B2a信号匹配滤波捕获方法、装置及计算机存储介质 |
CN113608242B (zh) * | 2021-06-18 | 2023-08-11 | 西安空间无线电技术研究所 | 一种基于码周期扩频码认证的导航信号安全性增强方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292094A (zh) * | 1998-02-27 | 2001-04-18 | 艾利森公司 | 独特的全球定位系统(gps)和高灵敏度方法 |
US20020003492A1 (en) * | 2000-05-30 | 2002-01-10 | Jari Syrjarinne | Method for determining the phase of information, and an electronic device |
US20020005802A1 (en) * | 2000-05-08 | 2002-01-17 | Bryant Roderick C. | Satellite-based positioning system receiver for weak signal operation |
CN1696732A (zh) * | 2004-05-14 | 2005-11-16 | 精工爱普生株式会社 | 终端装置及定位方法 |
-
2014
- 2014-09-29 CN CN201410515755.5A patent/CN105527635A/zh active Pending
-
2015
- 2015-04-20 WO PCT/CN2015/077008 patent/WO2016050055A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292094A (zh) * | 1998-02-27 | 2001-04-18 | 艾利森公司 | 独特的全球定位系统(gps)和高灵敏度方法 |
US20020005802A1 (en) * | 2000-05-08 | 2002-01-17 | Bryant Roderick C. | Satellite-based positioning system receiver for weak signal operation |
US20020003492A1 (en) * | 2000-05-30 | 2002-01-10 | Jari Syrjarinne | Method for determining the phase of information, and an electronic device |
CN1696732A (zh) * | 2004-05-14 | 2005-11-16 | 精工爱普生株式会社 | 终端装置及定位方法 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106788822B (zh) * | 2017-01-26 | 2018-06-29 | 清华大学 | 避免对geo系统干扰的频谱感知盲区的判断方法及装置 |
CN106788822A (zh) * | 2017-01-26 | 2017-05-31 | 清华大学 | 避免对geo系统干扰的频谱感知盲区的判断方法及装置 |
CN109655847A (zh) * | 2018-11-27 | 2019-04-19 | 上海无线电设备研究所 | 一种适于动态信号的快速捕获方法 |
CN110187368A (zh) * | 2019-06-24 | 2019-08-30 | 中国电子科技集团公司第二十九研究所 | 低轨卫星与地面终端之间的多普勒频偏处理方法 |
CN110907958A (zh) * | 2019-10-23 | 2020-03-24 | 深圳华大北斗科技有限公司 | 信号捕获方法、装置、计算机设备和存储介质 |
CN110907958B (zh) * | 2019-10-23 | 2022-04-01 | 深圳华大北斗科技股份有限公司 | 信号捕获方法、装置、计算机设备和存储介质 |
CN110703285A (zh) * | 2019-11-07 | 2020-01-17 | 广东星舆科技有限公司 | 卫星信号的捕获方法、装置、定位设备及可读存储介质 |
CN112987041A (zh) * | 2019-12-13 | 2021-06-18 | 深圳开阳电子股份有限公司 | 一种弱信号下的位同步方法、装置及计算机存储介质 |
CN112987041B (zh) * | 2019-12-13 | 2024-05-14 | 深圳开阳电子股份有限公司 | 一种弱信号下的位同步方法、装置及计算机存储介质 |
CN111308519B (zh) * | 2020-03-20 | 2023-10-31 | 湖南国科微电子股份有限公司 | 导航卫星捕获方法、装置、设备及介质 |
CN111308519A (zh) * | 2020-03-20 | 2020-06-19 | 湖南国科微电子股份有限公司 | 导航卫星捕获方法、装置、设备及介质 |
CN111614591B (zh) * | 2020-05-21 | 2023-03-03 | 慧众行知科技(北京)有限公司 | 一种信号快速捕获的方法及系统 |
CN111614591A (zh) * | 2020-05-21 | 2020-09-01 | 慧众行知科技(北京)有限公司 | 一种信号快速捕获的方法及系统 |
CN112540388A (zh) * | 2020-11-24 | 2021-03-23 | 湖北三江航天险峰电子信息有限公司 | 一种卫星通信模组及其上行信号多普勒补偿方法 |
CN112540388B (zh) * | 2020-11-24 | 2024-03-22 | 湖北三江航天险峰电子信息有限公司 | 一种卫星通信模组及其上行信号多普勒补偿方法 |
CN114690217A (zh) * | 2020-12-31 | 2022-07-01 | 西安开阳微电子有限公司 | 一种gps l1快速精确捕获方法、装置及计算机存储介质 |
CN113671547A (zh) * | 2021-08-25 | 2021-11-19 | 重庆天箭惯性科技股份有限公司 | 一种改进的高动态捕获方法、装置、设备及存储介质 |
CN113671547B (zh) * | 2021-08-25 | 2023-11-21 | 重庆天箭惯性科技股份有限公司 | 一种改进的高动态捕获方法、装置、设备及存储介质 |
CN114063124A (zh) * | 2021-11-08 | 2022-02-18 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | 一种北斗b1c信号快速捕获方法及存储介质 |
CN118214472A (zh) * | 2024-02-01 | 2024-06-18 | 北斗应用发展研究院 | 北斗短报文出站信号的辅助捕获方法、系统及相关装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105527635A (zh) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016050055A1 (zh) | 一种信号捕获方法、装置及计算机存储介质 | |
CN110376621B (zh) | 一种基于北斗三号B2b信号的卫星定位方法及装置 | |
US20200217971A1 (en) | Method for lock loss and recapturing, and terminal device | |
TWI390231B (zh) | Calculation of current position coordinates | |
JP5968998B2 (ja) | 測位信号検出方法、測位信号検出プログラム、測位信号受信装置、測位装置および情報機器端末 | |
CN106896386B (zh) | Glonass频间偏差精确估计方法 | |
JP2009192325A (ja) | 衛星航法/推測航法統合測位装置 | |
CN101118281A (zh) | 一种用于gps接收机对本地晶体振荡器频率进行自校正的方法 | |
JP2006349672A (ja) | Gpsr多周計測型電離層遅延補正装置、gpsr多周計測型電離層遅延補正方法及びプログラム | |
JP5923111B2 (ja) | Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末 | |
JP2009222438A (ja) | 移動体用測位装置 | |
JP2009229065A (ja) | 移動体用測位装置 | |
JP4983699B2 (ja) | Gnss測位装置及び方法 | |
US9184786B2 (en) | Systems and methods for clock calibration for satellite navigation | |
JP7065277B2 (ja) | 測位方法および測位端末 | |
JP2007278708A (ja) | 衛星航法装置 | |
JP6047944B2 (ja) | 受信装置及び相関積算処理方法 | |
US20210286088A1 (en) | Global navigation satellite system (gnss) signal tracking | |
JP2010164340A (ja) | Gnss受信装置及び測位方法 | |
JP2010164496A (ja) | Gnss受信装置及び測位方法 | |
US9547087B1 (en) | Sync feedback for time to first fix | |
JP5933559B2 (ja) | 信号捕捉装置及び方法 | |
US9612338B2 (en) | Method to improve satellite signal detection | |
US8885687B2 (en) | Decoding method and receiving device | |
CN115902967A (zh) | 基于低轨导航增强卫星信号的导航定位方法、系统及飞行平台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845751 Country of ref document: EP Kind code of ref document: A1 |