WO2016047929A1 - Raw material charging device and charging method - Google Patents

Raw material charging device and charging method Download PDF

Info

Publication number
WO2016047929A1
WO2016047929A1 PCT/KR2015/008946 KR2015008946W WO2016047929A1 WO 2016047929 A1 WO2016047929 A1 WO 2016047929A1 KR 2015008946 W KR2015008946 W KR 2015008946W WO 2016047929 A1 WO2016047929 A1 WO 2016047929A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
charging
convex portion
charging chute
particle size
Prior art date
Application number
PCT/KR2015/008946
Other languages
French (fr)
Korean (ko)
Inventor
정해권
조병국
최만수
박종인
정은호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2017515888A priority Critical patent/JP6446541B2/en
Priority to CN201580051774.XA priority patent/CN106715728B/en
Publication of WO2016047929A1 publication Critical patent/WO2016047929A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0085Movement of the container or support of the charge in the furnace or in the charging facilities
    • F27D2003/0093Movement on a slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • F27D2003/125Charging cars, lift trolleys

Definitions

  • the present invention relates to a raw material charging device and a charging method, and more particularly, to a raw material charging device and a charging method for charging a raw material into a sintered trolley.
  • a sintered raw material is charged into a sintering cart of a sintering machine using a charging device to manufacture sintered light.
  • the sintered raw material charging device includes a sintered raw material hopper 2 in which a sintered raw material 1 containing fine powders such as fine iron ore and limestone and fine coke as fuel is stored, and the sintered raw material hopper 2 is rotated by rotating the sintered raw material.
  • a charging chute 5 which charges the raw material supply part consisting of the drum feeder 3 supplied downward through the gate 4, and the supplied sintering raw material 1 onto the floor light first laid on the sintering cart 8. Consists of.
  • the charging chute 5 is made of an inclined plate and serves to classify the sintered raw material 1 so that small particles are placed at the top of the sintered trolley 8 and large particles are charged at the bottom thereof.
  • the sintering machine When the sintered raw material 1 is charged into the sintered bogie 8, the sintering machine evenly ignites the sintering furnace 7 with the surface of the sintered raw material 1 by the surface pulp plate 6 and into a suction blower (not shown). The coke contained in the sintering raw material 1 is burned by the air drawn in the lower part by the air phase by this, and a sintering reaction is advanced and a sintered light is manufactured.
  • the present invention provides a raw material charging device and a charging method that can improve the air permeability of the raw material by sequentially stacking the raw material by particle size in order from having a large particle size to a small particle size on the sintered trolley.
  • the present invention also provides a raw material charging device and a charging method capable of improving the quality and productivity of the sintered light to be produced.
  • Raw material charging apparatus for discharging the charged raw material;
  • a reservoir spaced apart from the raw material supply unit and storing the raw material discharged from the raw material supply unit;
  • a charging chute forming a transfer path between the raw material supply part and the reservoir, and having a vibration surface formed such that the dimensionless acceleration a of the raw material moving on the transfer path has a value of 8 or more.
  • the conveying path is formed to be inclined downward from the raw material supply part to the reservoir, and the vibrating surface includes a convex part in which a height change is periodically formed along the conveying path, and the dimensionless acceleration (a) value is the highest height of the convex part.
  • H the inclination angle ( ⁇ ) of the transfer path and the wavelength of the convex portion ( ⁇ ) can be determined by controlling the size.
  • the charging chute may include an integral type or a plurality of divided inclined plates, and the convex portion may include a surface formed by a plurality of protrusions protruding along an upper surface of the inclined plate.
  • the charging chute may include a plurality of rollers, and the convex portion may include a surface in which the rollers are arranged side by side and formed along the surface of each roller.
  • the dimensionless acceleration (a) is the following equation 1, the proportional relationship between the amplitude (A) and the highest height (h) of the convex portion, the proportional relationship between the vibration frequency (f) and the inclination angle ( ⁇ ) of the conveying path and vibration It can be calculated from the inverse relationship between the frequency f and the wavelength? Of the convex portion.
  • the transfer path of the charging chute may be formed as a straight or curved trajectory.
  • the inclination angle ⁇ may decrease from the top to the bottom of the charging path of the charging chute.
  • the conveying path may have an inclination angle ⁇ of 40 ° to 50 °.
  • the roller may have a diameter D of 150 mm or less.
  • the raw material charging method the process of preparing a raw material; Supplying the raw material to a charging chute forming a transfer path of the raw material; The raw material is transferred to the feed path by controlling at least one of the highest height H of the convex portion formed on the vibration surface of the charging chute, the height of which is periodically changed, the inclination angle of the conveying path, and the wavelength? Of the convex portion. Vibrating in a phase and sequentially laminating and transferring from having a small particle size to having a large particle size; And charging the transferred raw material into a reservoir.
  • the raw material supplied to the charging chute may vibrate in a vertical direction or a direction perpendicular to the transfer path.
  • the conveying path may be formed as a straight or curved trajectory.
  • At least one of the highest height H of the convex portion, the inclination angle ⁇ , and the wavelength? Of the convex portion may be controlled such that the dimensionless acceleration a of the raw material moving on the conveying path has a value of 8 or more.
  • the raw material may be sequentially stacked and charged from having a large particle size to having a small particle size.
  • the raw material is a sintered blended raw material in which fine coke, which is a subsidiary material or fuel, is blended, and the reservoir may be a sintered truck.
  • the raw material charging device and the charging method according to an embodiment of the present invention by forming a vibrating surface in the charging chute to vibrate the raw material during transfer to sequentially stack and transfer the raw material having a small particle size from the having a small particle size on the charging chute can do.
  • bogie can be laminated
  • the vertical segregation of the raw material it is possible to suppress the calorie imbalance in the up and down direction of the sintering machine, and to lower the resistance of the air flowing into the raw material layer in the sintering machine to improve the air permeability.
  • the quality and productivity of the sintered light produced in the process can be improved.
  • FIG. 1 schematically shows a typical sintering raw material charging device.
  • FIG. 2 is a view for explaining the brazil nut effect applied to the present invention.
  • FIG. 3 is a view schematically showing a raw material charging device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a charging chute according to an embodiment of the present invention.
  • FIG. 5 is a view showing a charging chute in which a transfer path is formed as a trajectory of a curve according to an exemplary embodiment of the present invention.
  • FIG. 6 is a view schematically showing a raw material charging apparatus according to another embodiment of the present invention.
  • FIG. 7 is a view showing a charging chute according to another embodiment of the present invention.
  • FIG. 8 is a view showing a charging chute in which a transfer path is formed as a trajectory of a curve according to another embodiment of the present invention.
  • FIG. 9 is a graph showing a change in the dimensionless acceleration value with respect to the diameter of the roller included in the charging chute according to another embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a raw material charging method according to an embodiment of the present invention.
  • the raw material charging device and the charging method according to the present invention propose a technical feature that can improve the air permeability of the raw material by sequentially stacking the raw material by particle size in order from having a large particle size to having a small particle size on the sintered trolley.
  • the present invention relates to a raw material charging apparatus and a charging method for charging a raw material containing particles having various densities and sizes into a moving reservoir, and may be applied to separate and load the raw materials by the size of the particles in the reservoir. In this way, the raw material charged in the reservoir can improve the air permeability by forming a space between the raw material particles.
  • the sintering raw material charging apparatus and charging method which charge the sintering mixing raw material used to manufacture the sintered light used in a steelmaking process to the moving sintering truck are demonstrated as an example.
  • the present invention is not limited to the sintering process, and of course, the present invention can be applied to all processes requiring vertical segregation of raw materials composed of particles such as blast furnace and coke.
  • FIG. 2 is a view for explaining the brazil nut effect applied to the present invention.
  • the Brazil Nut Effect (BNE) is a name given to the fact that when you buy a peanut mix can that contains different types of peanuts and open the lid, the largest Brazilian peanut is always on top. When shaking and mixing mixed grain matter, the largest object eventually floats on the surface.
  • the Brazil nut effect (BNE) as described above is mainly used to separate particles of different sizes in the chemical field, but in the present invention, a small particle size due to vibration on a charging chute transferring raw materials using the Brazil nut effect (BNE).
  • the raw materials are sequentially laminated and transported from those having a large particle size to those having a large particle size. Details of applying the Brazil nut effect (BNE) to the raw material charging device and the charging method of the present invention will be described in detail according to each embodiment below.
  • the raw material charging device is a raw material supply for discharging the charged raw material 10; A reservoir spaced apart from the raw material supply unit and storing the raw material 10 discharged from the raw material supply unit; And a charging chute 50 having a vibrating surface which forms a transfer path between the raw material supply part and the reservoir and is formed such that the dimensionless acceleration a of the raw material 10 moving on the transfer path has a value of 8 or more. It includes;
  • the raw material supply unit may include a raw material hopper 20 and a drum feeder 30.
  • the raw material hopper 20 supplies the blending raw material 10 such as fine iron ore, secondary raw material and fine coke to the drum feeder 30 via the hopper gate 40, and the drum feeder 30 is rotated and blended therein.
  • the raw material 10 is mixed and sent out to the charging chute 50.
  • FIG. 3 the raw material supply unit including the raw material hopper 20 and the drum feeder 30 is illustrated.
  • the raw material supply unit of the present invention is not limited to the above configuration, and the raw material 10 is discharged to charge the charging chute ( Of course, it includes a raw material supply of various configurations to supply to 50).
  • the charging chute 50 forms a transfer path between the raw material supply unit and the reservoir to transfer the raw material 10 supplied from the raw material supply unit to a reservoir such as the sintered bogie 80 along the transfer path.
  • the surface of the raw material 10 is evenly squeezed by the surface pulp plate 60, and then ignited in the ignition furnace 70, from the wind to the bottom by the suction blower (not shown).
  • the sintered reaction is advanced by combustion of coke contained in the raw material 10 by the air which is drawn in, and a sintered light is manufactured.
  • the charging chute 50 has a vibrating surface for vibrating the raw material 10 moving on the transfer path to generate a brazil nut effect (BNE) and for feeding along the transfer path.
  • the transfer path may be formed to be inclined downward from the raw material supply unit to the reservoir, and the vibrating surface may include a convex portion 52 in which a height change is periodically formed along the transfer path.
  • the charging chute 50 may include an integral inclined plate or may include a plurality of divided inclined plates disposed along a conveying path, in which case the convex portion 52 is illustrated in FIGS. 3 and 4. And a surface formed by a plurality of protrusions protruding along the upper surface of the one-piece or the plurality of divided ramps.
  • the convex portion 52 forms a vibrating surface by a plurality of protrusions protruding along the upper surface of the integral or split inclined plate. Therefore, the charging chute 50 vibrates the raw material 10 in a direction perpendicular to the transfer path by a plurality of protrusions protruding along the upper surface during the transfer of the raw material 10, and by such vibration 10) are from one having a small particle size to one having a large particle size, sequentially stacked and transported on the charging chute 50.
  • Equation 1 shows a value of the dimensionless acceleration (a) of the particles for generating the Brazil nut effect (BNE).
  • the vibration frequency (f) and the amplitude (A) are determined such that the dimensionless acceleration (a) value is 8 or more, a large particle size is obtained regardless of the density or size ratio of particles having various sizes constituting the mixture.
  • the Brazil nut effect (BNE) occurs in which the particles having the particles rise in the surface layer direction and the particles having the small particle sizes fall downward.
  • the reverse Brazil Nut Effect occurs.
  • the Brazilian Nut Effect means that particles with a large particle size are arranged below, and particles with a small particle size are arranged in the surface layer.
  • the vibration frequency f and the amplitude A of the vibration surface formed on the upper surface 52 of the charging chute 50 according to the embodiment of the present invention have a dimensionless acceleration (a) value of 8 in Equation 1 above. Should be determined to be ideal.
  • the amplitude A has a relationship proportional to the maximum height H of the convex portion 52 formed on the vibration surface.
  • the vibration frequency f is proportional to the inclination angle ⁇ of the transport path, and the wavelength ⁇ of the convex portion 52.
  • the length of the charging chute 50 may be increased to increase the moving speed of the raw material 10, but this is not appropriate in terms of manufacturing and control, and economics because the size of the equipment should be excessively increased.
  • the dimensionless acceleration (a) value of the raw material moving on the conveyance path is the highest height (H) of the convex portion (52), the inclination angle ( ⁇ ) of the conveyance path and the wavelength ( ⁇ ) of the convex portion (52).
  • the dimensionless acceleration (a) is a proportional relationship between the equation (1), the amplitude (A) and the highest height (H) of the convex portion (52), the vibration frequency (f) and the inclination angle ( ⁇ ) of the feed path It can be calculated from the proportional relationship of) and the inverse relationship between the vibration frequency (f) and the wavelength ( ⁇ ) of the convex portion (52).
  • the dimensionless acceleration a has a value of 8 or more.
  • a plurality of protrusions protrude in a direction perpendicular to the transport path along the upper surface of the integrated or split inclined plate to vibrate the raw material 10.
  • the vibration direction of the raw material 10 is It is not limited to this.
  • the charging chute 50 having various shapes for generating the Brazil nut effect (BNE) may be applied by vibrating the raw material 10 so as to have the same vibration in the vertical direction as the gravity direction.
  • FIG. 5 is a diagram illustrating a charging chute in which a transfer path is formed as a trajectory of a curve according to an exemplary embodiment of the present invention.
  • the charging chute according to the embodiment of the present invention may be formed as a trajectory of a curve, and the transfer path of the charging chute may be formed such that the inclination angle ⁇ decreases from top to bottom.
  • the sintering bogie 80 in the process of charging the raw material 10 to the sintered bogie 80 when the raw material 10 is stacked on the charging chute 50 from having a small particle size to having a large particle size, the sintering bogie 80 in the process of charging the raw material 10 to the sintered bogie 80. Is moved in the direction opposite to the horizontal component in the direction in which the raw material 10 is separated. In this case, the falling distance of the raw material 10 having a large particle size increases according to the William's Trajectory Effect, so that the sintered trolley 80 accumulates from the raw material 10 having a large particle size and then moves upwards. Raw material 10 having a small particle size is accumulated. As a result, it can be seen that increasing the horizontal component in the moving direction of the raw material 10 falling apart from the lower part of the charging chute 50 is effective for segregation charging into the sintered trolley 80.
  • the inclination angle [theta] may be reduced as the transfer path of the charging chute 50 goes from the upper part to the lower part. That is, in the upper part of the charging chute 50, since the raw material 10 discharged from the raw material supply part with the vibration frequency f increases, it has a big particle size from having a small particle size on the charging chute 50 by Brazilian nut effect BNE.
  • the sintered blended raw material layer in the sintered bogie 80 in accordance with William's trajectory effect by increasing the horizontal component in the moving direction of the raw material 10 to be separated from the lower portion of the charging chute 50, and sequentially transported to Segregation can be increased.
  • the higher the segregation degree the more the space is secured between the particles, so the air permeability is improved, and thus the productivity of the sintered light can be greatly increased.
  • FIG. 6 is a view schematically showing a raw material charging device according to another embodiment of the present invention
  • Figure 7 is a view showing a charging chute according to another embodiment of the present invention.
  • the charging chute 50 of the raw material charging device according to another embodiment of the present invention includes a plurality of rollers 54, the rollers 54 are arranged side by side to each roller ( A convex portion 52 is formed along the surface of 54.
  • the charging chute 50 of the raw material charging device is a convex portion whose height is periodically changed along the transport path by the upper surface of the plurality of rollers 52 arranged side by side To form 52. That is, the conveyance path of the raw material 10 moving along the upper surfaces of the plurality of rollers 54 is accompanied by vibration by the surface bending of the rollers 54. Therefore, the charging chute 50 causes the raw material 10 to vibrate in a direction perpendicular to the transfer path by the surface bending of the plurality of rollers 54, and the raw material 10 has a small particle size due to the vibration in the vertical direction. Are stacked on the charging chute 50 and transported sequentially from the one having the large particle size.
  • the vibration frequency f of the vibrating surface so that the value of the dimensionless acceleration a expressed by the above equation 1 becomes 8 or more.
  • the amplitude (A) must be determined so that the Brazil Nut Effect (BNE) can occur regardless of the density or size ratio of the particles having various sizes constituting the mixture.
  • the amplitude A is proportional to the maximum height H of the convex portion 52 formed on the vibrating surface
  • the vibration frequency f is proportional to the inclination angle ⁇ of the conveying path
  • the wavelength ⁇ of the convex portion 52 Has the inverse relationship as described above.
  • the charging chute 50 may be formed as a trajectory of the curve, the transfer path of the charging chute 50 is inclined angle ( ⁇ from the top to the bottom) ) Can be formed to decrease.
  • the upper part of the charging chute 50 is sequentially stacked and transferred from having a small particle size to having a larger particle size on the charging chute 50 by the Brazilian nut effect (BNE), and at the lower part of the charging chute 50.
  • BNE Brazilian nut effect
  • bogie 80 can be increased as mentioned above.
  • the maximum height H and the wavelength ⁇ of the convex portion 52 are the diameter D of the roller.
  • the number is, when the charging chute 50 includes a plurality of rollers 54 arranged along the conveying path, the highest height H of the convex portion 52 is equal to the radius of the roller 54, and the convex portion 52 is provided.
  • the wavelength ⁇ of is equal to the diameter D of the roller 54.
  • Fig. 9 shows a charging path having inclination angles of 40 °, 45 ° and 50 ° under the condition that the reference gravity acceleration is 9.81 m / s and the length of the charging chute 50 having the linear path trajectory is 1.5 m in length. It is a graph which shows the change of the dimensionless acceleration a value with respect to the diameter D of the roller 54 contained in the chute 50, respectively.
  • the Brazil nut effect BNE is generated in a range in which the diameter D of the roller 54 is about 150 mm or less.
  • the value of the dimensionless acceleration a becomes 8 or more.
  • ten or more rollers 54 are arranged along the conveyance path of the raw material 10 to constitute the charging chute 50.
  • the diameter D of the roller 54 exceeds about 150 mm, the value of the dimensionless acceleration a becomes smaller than 8 so that the above-mentioned reverse segregation brazilian nut effect RBNE occurs.
  • the dimensionless dimension which is a criterion in which the Brazilian nut effect (BNE) or the reverse segregation Brazilian nut effect (RBNE) occurs on the charging chute 50. It can be seen that the diameter D of the roller 54 whose acceleration a is 8 is gradually increased from about 150 mm.
  • the roller 54 included in the charging chute 50 has a diameter D of 150 mm or less, so that the charging chute 50 is independent of the density or size ratio of particles having various sizes constituting the mixture. It is possible to sequentially stack and transport the raw materials 10 from having a small particle size to a large particle size.
  • Raw material charging method comprises the steps of preparing a raw material (10) (S100); Supplying the raw material 10 to the charging chute 50 (S200); The raw material 10 is controlled by controlling at least one of the highest height H, the inclination angle ⁇ , and the wavelength ⁇ of the convex portion 52 formed on the vibrating surface of the charging chute 50. Vibrating on the transfer path to sequentially stack and transfer a small particle size from a small particle size to have a large particle size (S300); And charging the transferred raw material 10 to a storage device.
  • the raw material 10 may be, for example, a sintered blended raw material 10 used to manufacture the sintered light used in the iron making process.
  • the present invention is not limited to the sintering process, and of course, the present invention can be applied to all processes requiring vertical segregation of the raw material 10 composed of particles such as blast furnace and coke.
  • the raw material hopper 20 passes through the hopper gate 40 through the mixed raw material 10 such as fine iron ore, secondary raw material and fine coke, and the drum feeder 30. ), The drum feeder 30 is mixed with the compounding raw material 10 supplied therein while being rotated, and fed to the charging chute 50.
  • the mixed raw material 10 such as fine iron ore, secondary raw material and fine coke
  • the process (S300) of vibrating and feeding the raw material 10 supplied to the charging chute 50 along the transfer path is performed at the highest height H and the inclination angle of the convex part 52 formed on the vibration surface of the charging chute 50.
  • ⁇ ) and at least one of the wavelength ⁇ of the convex portion 52 are controlled to vibrate the raw material 10 on the transfer path so that the raw material 10 is laminated and transferred sequentially from the smallest particle size to the larger one.
  • the dimensionless acceleration (a) of the raw material 10 moving on the conveyance path is a proportional relationship between the amplitude (A) and the maximum height (H) of the convex portion 52, the vibration frequency ( It is calculated from the proportional relationship between f) and the inclination angle? of the conveying path and the inverse relationship between the vibration frequency f and the wavelength? of the convex portion 52. Therefore, at least one of the highest height H of the convex portion 52, the inclination angle ⁇ , and the wavelength? Of the convex portion 52 formed on the vibrating surface of the charging chute 50 is a raw material moving on the transfer path.
  • the dimensionless acceleration (a) By controlling the dimensionless acceleration (a) to have a value of 8 or more, the raw material 10 can be vibrated on a transfer path to be sequentially stacked and transported from having a small particle size to having a large particle size. Same as one.
  • the charging chute 50 is controlled by controlling at least one of the highest height H, the inclination angle ⁇ , and the wavelength ⁇ of the convex portion 52 formed on the vibrating surface of the charging chute 50.
  • the transferred raw material 10 is charged to a storage device such as the sintered trolley 80 (S400).
  • the sintered trolley 80 may move in a direction opposite to the horizontal component in the direction in which the raw material 10 transferred from the charging chute 50 is discharged.
  • the sintered trolley 80 moves in a direction opposite to the discharge direction of the raw material 10 to charge the raw material 10
  • the falling distance of the raw material 10 having a large particle size increases according to the trajectory effect of William as described above.
  • the raw material 10 having a large particle size is first stacked on the sintered trolley 80, and then the raw material 10 having a small particle size is stacked thereon.
  • the falling distance of the raw material 10 having a large particle size increases according to the William's Trajectory Effect, so that the sintered trolley 80 accumulates from the raw material 10 having a large particle size and then moves upwards.
  • Raw material 10 having a small particle size is accumulated.
  • the conveyance path of the charging chute 50 may be formed as a trajectory of the curve so that the inclination angle ⁇ decreases from the top to the bottom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chutes (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

The present invention relates to a raw material charging device and a charging method and, more particularly, to a raw material charging device and a charging method, which can successively stack raw materials on a sintering truck in the descending order of particle size, thereby improving the air permeability of the raw materials. A raw material charging device according to an embodiment of the present invention comprises: a raw material supply unit for discharging charged raw materials; a storage unit spaced from the raw material supply unit and configured to store the raw materials discharged from the raw material supply unit; and a charging chute forming a transfer path between the raw material supply unit and the storage unit and having a vibration surface formed such that the dimensionless acceleration (a) of the raw materials, which move on the transfer path, have a value of 8 or larger.

Description

원료 장입 장치 및 장입 방법Raw material charging device and charging method
본 발명은 원료 장입 장치 및 장입 방법에 관한 것으로서, 보다 상세하게는 소결 대차에 원료를 장입하는 원료 장입 장치 및 장입 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material charging device and a charging method, and more particularly, to a raw material charging device and a charging method for charging a raw material into a sintered trolley.
일반적으로 소결 공정에서는 소결 원료를 장입 장치를 이용하여 소결기의 소결 대차로 장입하여 소결 광을 제조하고 있다.In general, in the sintering step, a sintered raw material is charged into a sintering cart of a sintering machine using a charging device to manufacture sintered light.
도 1에는 일반적인 소결 원료 장입 장치가 도시되어 있다. 소결 원료 장입 장치는, 미분 철광석, 석회석 등 부원료 및 연료인 미분 코크스를 배합한 소결 원료(1)가 저장된 소결 원료 호퍼(2)와 이 소결 원료를 그 회전에 의해 소결 원료 호퍼(2)의 호퍼 게이트(4)를 거쳐 하부로 공급하는 드럼 피더(3)로 구성되는 원료 공급부와, 공급되는 소결 원료(1)를 소결 대차(8)에 먼저 깔려 있는 바닥 광의 위로 장입하는 장입 슈트(5)로 구성되어 있다. 장입 슈트(5)는 경사판으로 이루어져 소결 대차(8)의 상부에는 작은 입자, 하부에는 큰 입자가 장입되도록 소결 원료(1)를 분급하는 역할을 한다.1 shows a general sintering raw material charging device. The sintered raw material charging device includes a sintered raw material hopper 2 in which a sintered raw material 1 containing fine powders such as fine iron ore and limestone and fine coke as fuel is stored, and the sintered raw material hopper 2 is rotated by rotating the sintered raw material. To a charging chute 5 which charges the raw material supply part consisting of the drum feeder 3 supplied downward through the gate 4, and the supplied sintering raw material 1 onto the floor light first laid on the sintering cart 8. Consists of. The charging chute 5 is made of an inclined plate and serves to classify the sintered raw material 1 so that small particles are placed at the top of the sintered trolley 8 and large particles are charged at the bottom thereof.
소결 대차(8)에 소결 원료(1)가 장입되면, 소결기는 소결 원료(1)의 표면을 표면 고름판(6)으로 고르게 하여 점화로(7)에서 점화하고, 흡인 블로워(미도시)에 의한 풍상에서 하부로 흡인되는 공기에 의하여 소결 원료(1) 내에 포함되어 있는 코크스를 연소시키고, 소결 반응을 진행하여 소결 광을 제조한다.When the sintered raw material 1 is charged into the sintered bogie 8, the sintering machine evenly ignites the sintering furnace 7 with the surface of the sintered raw material 1 by the surface pulp plate 6 and into a suction blower (not shown). The coke contained in the sintering raw material 1 is burned by the air drawn in the lower part by the air phase by this, and a sintering reaction is advanced and a sintered light is manufactured.
이러한 소결 공정에 있어서는, 소결 대차에서의 원료의 장입 상태를 하부에는 큰 입자, 상부에는 작은 입자가 위치하도록 수직 편석하여 연료인 코크스가 상부에 많도록 인위적으로 조장하는 것이 필요하다. 이와 같이 수직 편석이 효과적으로 조장되면, 소결기 상·하 방향의 열량 불균형 현상이 억제되는 한편, 소결기 내 원료층에 유입되는 공기의 저항(통기 저항)을 낮추어 소결 광의 생산성이 향상된다.In such a sintering step, it is necessary to vertically segregate the charged state of the raw material in the sintered trolley so that large particles are located in the lower part and small particles in the upper part, and artificially encourage the coke which is the fuel to be large in the upper part. When the vertical segregation is effectively promoted in this way, the calorie unbalance phenomenon in the up and down direction of the sintering machine is suppressed, while the resistance (air resistance) of the air flowing into the raw material layer in the sintering machine is lowered to improve the productivity of the sintered light.
그러나, 소결 대차에서의 원료의 편석도가 저하되면 소결기 내 원료층에 유입되는 공기의 저항(통기 저항)이 높아져 통기성이 불량하게 된다. 즉, 장입 과정에서 입도가 작은 소립의 소결 원료가 소결 대차의 하부에 적재되면 소립의 소결 원료 사이의 통기 공간이 적어지므로, 통기성이 취약하게 된다. 따라서, 흡인 블로워를 통한 흡기가 어려워지게 되고, 이는 차압 발생이나 소결 상태 불량 등으로 인한 미 소결 광을 다량 발생하게 한다. 이러한 문제는 소결 광의 품질 및 생산성에 중대한 영향을 미치게 된다.However, when the segregation degree of the raw material in the sintered trolley is lowered, the resistance (airflow resistance) of the air flowing into the raw material layer in the sintering machine becomes high, resulting in poor air permeability. That is, when the sintered raw material having a small particle size is loaded in the lower part of the sintered trolley during the charging process, the ventilation space between the sintered raw materials of the small grains becomes small, so that the ventilation is weak. Therefore, intake through the suction blower becomes difficult, which causes a large amount of unsintered light due to differential pressure generation or poor sintering state. This problem has a significant impact on the quality and productivity of the sintered light.
본 발명은 원료가 소결 대차 상에서 큰 입도를 갖는 것으로부터 작은 입도를 갖는 것의 순으로 입도 별로 순차 적층되도록 하여 원료의 통기성을 향상시킬 수 있는 원료 장입 장치 및 장입 방법을 제공한다.The present invention provides a raw material charging device and a charging method that can improve the air permeability of the raw material by sequentially stacking the raw material by particle size in order from having a large particle size to a small particle size on the sintered trolley.
또한, 본 발명은 제조되는 소결 광의 품질 및 생산성을 향상시킬 수 있는 원료 장입 장치 및 장입 방법을 제공한다.The present invention also provides a raw material charging device and a charging method capable of improving the quality and productivity of the sintered light to be produced.
본 발명의 실시 예에 따른 원료 장입 장치는, 장입된 원료를 배출하는 원료 공급부; 상기 원료 공급부로부터 이격되고, 상기 원료 공급부로부터 배출되는 원료를 저장하는 저장기; 및 상기 원료 공급부와 저장기 사이에서 이송 경로를 형성하고, 상기 이송 경로 상에서 이동하는 원료의 무차원 가속도(a)가 8 이상의 값을 가지도록 형성되는 진동면을 구비하는 장입 슈트;를 포함한다.Raw material charging apparatus according to an embodiment of the present invention, the raw material supply for discharging the charged raw material; A reservoir spaced apart from the raw material supply unit and storing the raw material discharged from the raw material supply unit; And a charging chute forming a transfer path between the raw material supply part and the reservoir, and having a vibration surface formed such that the dimensionless acceleration a of the raw material moving on the transfer path has a value of 8 or more.
상기 이송 경로는 상기 원료 공급부에서 상기 저장기로 하향 경사지도록 형성되며, 상기 진동면은 상기 이송 경로를 따라 높이 변화가 주기적으로 형성된 볼록부를 포함하며, 상기 무차원 가속도(a) 값은 상기 볼록부의 최고 높이(H), 상기 이송 경로의 경사각(θ) 및 상기 볼록부의 파장(λ) 중 적어도 하나의 크기를 제어하여 결정할 수 있다.The conveying path is formed to be inclined downward from the raw material supply part to the reservoir, and the vibrating surface includes a convex part in which a height change is periodically formed along the conveying path, and the dimensionless acceleration (a) value is the highest height of the convex part. (H), the inclination angle (θ) of the transfer path and the wavelength of the convex portion (λ) can be determined by controlling the size.
상기 장입 슈트는 일체형 또는 복수 개의 분할형 경사판을 포함하고, 상기 볼록부는 상기 경사판의 상부 표면을 따라 돌출 형성되는 복수의 돌기에 의해 형성되는 면을 포함할 수 있다.The charging chute may include an integral type or a plurality of divided inclined plates, and the convex portion may include a surface formed by a plurality of protrusions protruding along an upper surface of the inclined plate.
상기 장입 슈트는 복수 개의 롤러를 포함하고, 상기 볼록부는 상기 롤러들이 나란히 배치되어 각 롤러의 표면을 따라 형성되는 면을 포함할 수 있다.The charging chute may include a plurality of rollers, and the convex portion may include a surface in which the rollers are arranged side by side and formed along the surface of each roller.
상기 무차원 가속도(a)는 하기의 수학식 1, 진폭(A)과 상기 볼록부의 최고 높이(h)의 비례 관계, 진동 주파수(f)와 상기 이송 경로의 경사각(θ)의 비례 관계 및 진동 주파수(f)와 상기 볼록부의 파장(λ)의 반비례 관계로부터 계산될 수 있다.The dimensionless acceleration (a) is the following equation 1, the proportional relationship between the amplitude (A) and the highest height (h) of the convex portion, the proportional relationship between the vibration frequency (f) and the inclination angle (θ) of the conveying path and vibration It can be calculated from the inverse relationship between the frequency f and the wavelength? Of the convex portion.
[수학식 1][Equation 1]
Figure PCTKR2015008946-appb-I000001
Figure PCTKR2015008946-appb-I000001
(여기서, f는 진동 주파수, A는 진폭, g는 중력 가속도를 나타낸다.)(Where f is vibration frequency, A is amplitude, and g is gravitational acceleration.)
상기 장입 슈트의 이송 경로는 직선 또는 곡선의 궤적으로 형성될 수 있다.The transfer path of the charging chute may be formed as a straight or curved trajectory.
상기 장입 슈트의 이송 경로는 상부에서 하부로 갈수록 경사각(θ)이 감소할 수 있다.The inclination angle θ may decrease from the top to the bottom of the charging path of the charging chute.
상기 이송 경로는 40° 내지 50°의 경사각(θ)을 가질 수 있다.The conveying path may have an inclination angle θ of 40 ° to 50 °.
상기 롤러는 150㎜ 이하의 직경(D)을 가질 수 있다.The roller may have a diameter D of 150 mm or less.
또한, 본 발명의 실시 예에 따른 원료 장입 방법은, 원료를 마련하는 과정; 상기 원료를 원료의 이송 경로를 형성하는 장입 슈트에 공급하는 과정; 상기 장입 슈트의 진동면에 형성되며 주기적으로 높이가 변화하는 볼록부의 최고 높이(H), 상기 이송 경로의 경사각(θ) 및 상기 볼록부의 파장(λ) 중 적어도 하나를 제어하여, 상기 원료를 이송 경로 상에서 진동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송하는 과정; 및 상기 이송된 원료를 저장기에 장입하는 과정;을 포함한다.In addition, the raw material charging method according to an embodiment of the present invention, the process of preparing a raw material; Supplying the raw material to a charging chute forming a transfer path of the raw material; The raw material is transferred to the feed path by controlling at least one of the highest height H of the convex portion formed on the vibration surface of the charging chute, the height of which is periodically changed, the inclination angle of the conveying path, and the wavelength? Of the convex portion. Vibrating in a phase and sequentially laminating and transferring from having a small particle size to having a large particle size; And charging the transferred raw material into a reservoir.
또한, 상기 장입 슈트에 공급되는 원료는 상·하 방향 또는 상기 이송 경로에 수직한 방향으로 진동할 수 있다.In addition, the raw material supplied to the charging chute may vibrate in a vertical direction or a direction perpendicular to the transfer path.
상기 이송 경로는 직선 또는 곡선의 궤적으로 형성될 수 있다.The conveying path may be formed as a straight or curved trajectory.
상기 볼록부의 최고 높이(H), 경사각(θ) 및 볼록부의 파장(λ) 중 적어도 하나는 상기 이송 경로 상에서 이동하는 원료의 무차원 가속도(a)가 8 이상의 값을 가지도록 제어될 수 있다.At least one of the highest height H of the convex portion, the inclination angle θ, and the wavelength? Of the convex portion may be controlled such that the dimensionless acceleration a of the raw material moving on the conveying path has a value of 8 or more.
상기 저장기에 장입하는 과정에서 상기 원료는 큰 입도를 갖는 것으로부터 작은 입도를 갖는 것으로 순차적으로 적층되어 장입될 수 있다.In the process of charging in the reservoir, the raw material may be sequentially stacked and charged from having a large particle size to having a small particle size.
상기 원료는 부원료 또는 연료인 미분 코크스를 배합한 소결 배합 원료이고, 상기 저장기는 소결 대차일 수 있다.The raw material is a sintered blended raw material in which fine coke, which is a subsidiary material or fuel, is blended, and the reservoir may be a sintered truck.
본 발명의 실시 예에 따른 원료 장입 장치 및 장입 방법에 의하면, 장입 슈트에 진동면을 형성하여 이송 중에 원료를 진동시켜 장입 슈트 상에서 원료가 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하여 이송할 수 있다.According to the raw material charging device and the charging method according to an embodiment of the present invention, by forming a vibrating surface in the charging chute to vibrate the raw material during transfer to sequentially stack and transfer the raw material having a small particle size from the having a small particle size on the charging chute can do.
이에 따라, 소결 대차 내에 장입되는 원료를 큰 입도를 갖는 것으로부터 작은 입도를 갖는 것으로 순차적으로 적층할 수 있게 되어 소결 배합 원료층에서의 수직 편석도를 향상시킬 수 있다. 또한, 원료의 수직 편석도를 향상시킴으로써 소결기의 상·하 방향의 열량 불균형 현상을 억제할 수 있고, 소결기 내의 원료층에 유입되는 공기의 저항을 낮추어 통기성을 향상시킬 수 있으며, 결과적으로 소결 공정에서 제조되는 소결 광의 품질 및 생산성을 향상시킬 수 있다.Thereby, the raw material charged in a sintered trolley | bogie can be laminated | stacked sequentially from having a large particle size to having a small particle size, and the vertical segregation degree in a sintering compounding raw material layer can be improved. In addition, by improving the vertical segregation of the raw material, it is possible to suppress the calorie imbalance in the up and down direction of the sintering machine, and to lower the resistance of the air flowing into the raw material layer in the sintering machine to improve the air permeability. The quality and productivity of the sintered light produced in the process can be improved.
뿐만 아니라, 본 발명의 실시 예에 따른 원료 장입 장치 및 장입 방법에 의하면 제조 설비를 크게 변경하지 않고서도 소결 대차에 장입되는 배합 원료의 수직 방향의 편석도를 현저하게 향상시킬 수 있는 효과도 있다.In addition, according to the raw material charging device and charging method according to an embodiment of the present invention there is also an effect that can significantly improve the segregation in the vertical direction of the blended raw material charged to the sintered trolley without significantly changing the manufacturing equipment.
도 1은 일반적인 소결 원료 장입 장치를 개략적으로 도시한 도면.1 schematically shows a typical sintering raw material charging device.
도 2는 본 발명에 적용되는 브라질 넛 효과를 설명하기 위한 도면.2 is a view for explaining the brazil nut effect applied to the present invention.
도 3은 본 발명의 실시 예에 따른 원료 장입 장치를 개략적으로 도시한 도면.3 is a view schematically showing a raw material charging device according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 장입 슈트를 도시한 도면.4 is a view showing a charging chute according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 이송 경로가 곡선의 궤적으로 형성되는 장입 슈트를 도시한 도면.5 is a view showing a charging chute in which a transfer path is formed as a trajectory of a curve according to an exemplary embodiment of the present invention.
도 6은 본 발명의 다른 실시 예에 따른 원료 장입 장치를 개략적으로 도시한 도면.6 is a view schematically showing a raw material charging apparatus according to another embodiment of the present invention.
도 7은 본 발명의 다른 실시 예에 따른 장입 슈트를 도시한 도면.7 is a view showing a charging chute according to another embodiment of the present invention.
도 8는 본 발명의 다른 실시 예에 따른 이송 경로가 곡선의 궤적으로 형성되는 장입 슈트를 도시한 도면.8 is a view showing a charging chute in which a transfer path is formed as a trajectory of a curve according to another embodiment of the present invention.
도 9은 본 발명의 다른 실시 예에 따른 장입 슈트에 포함되는 롤러의 직경에 대한 무차원 가속도 값의 변화를 나타내는 그래프.9 is a graph showing a change in the dimensionless acceleration value with respect to the diameter of the roller included in the charging chute according to another embodiment of the present invention.
도 10은 본 발명의 실시 예에 따른 원료 장입 방법을 나타내는 흐름도.10 is a flowchart illustrating a raw material charging method according to an embodiment of the present invention.
본 발명에 따른 원료 장입 장치 및 장입 방법은 원료가 소결 대차 상에서 큰 입도를 갖는 것으로부터 작은 입도를 갖는 것의 순으로 입도 별로 순차 적층되도록 하여 원료의 통기성을 향상시킬 수 있는 기술적 특징을 제시한다.The raw material charging device and the charging method according to the present invention propose a technical feature that can improve the air permeability of the raw material by sequentially stacking the raw material by particle size in order from having a large particle size to having a small particle size on the sintered trolley.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 발명의 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments of the present invention make the disclosure of the present invention complete and the scope of the invention to those skilled in the art. It is provided to inform you completely. Like numbers refer to like elements in the figures.
본 발명은 다양한 밀도 및 크기를 갖는 입자를 포함하는 원료를 이동하는 저장기에 장입하는 원료 장입 장치 및 장입 방법에 관한 것으로서, 원료를 저장기 내에서 입자의 크기별로 분리하여 장입시키는데 적용될 수 있다. 이와 같이, 저장기 내에 장입된 원료는 원료 입자 간에 공간을 형성하여 통기성을 향상시킬 수 있다.The present invention relates to a raw material charging apparatus and a charging method for charging a raw material containing particles having various densities and sizes into a moving reservoir, and may be applied to separate and load the raw materials by the size of the particles in the reservoir. In this way, the raw material charged in the reservoir can improve the air permeability by forming a space between the raw material particles.
이하에서는, 제선 공정에서 사용되는 소결 광을 제조하는데 사용되는 소결 배합 원료를 이동하는 소결 대차에 장입하는 소결 원료 장입 장치 및 장입 방법을 예로 들어 설명한다. 그러나, 본 발명은 소결 공정에 국한되는 것은 아니며, 고로, 코크스 등 입자로 구성되는 원료의 수직 편석 장입이 필요한 모든 공정에 적용이 가능함은 물론이다.Hereinafter, the sintering raw material charging apparatus and charging method which charge the sintering mixing raw material used to manufacture the sintered light used in a steelmaking process to the moving sintering truck are demonstrated as an example. However, the present invention is not limited to the sintering process, and of course, the present invention can be applied to all processes requiring vertical segregation of raw materials composed of particles such as blast furnace and coke.
도 2는 본 발명에 적용되는 브라질 넛 효과를 설명하기 위한 도면이다.2 is a view for explaining the brazil nut effect applied to the present invention.
브라질 넛 효과(BNE: Brazil Nut Effect)란 여러 종류의 땅콩들을 한데 섞어놓은 땅콩 믹스 캔을 사서 뚜껑을 열어보면 크기가 가장 큰 브라질 땅콩이 항상 맨 위에 올라와 있다는 데서 붙여진 이름으로, 다양한 크기의 입자가 섞인 알갱이 물질을 흔들고 섞었을 때, 결국에는 가장 큰 물체가 표면 위로 떠오르는 현상을 말한다.The Brazil Nut Effect (BNE) is a name given to the fact that when you buy a peanut mix can that contains different types of peanuts and open the lid, the largest Brazilian peanut is always on top. When shaking and mixing mixed grain matter, the largest object eventually floats on the surface.
즉, 다양한 크기의 입자를 갖는 혼합물을 수직 방향으로 진동시키면 큰 입도를 갖는 입자들이 표층 방향으로 상승하게 되고, 큰 입도를 갖는 입자들의 상승에 의하여 발생하는 빈 공간에 작은 입도를 갖는 입자들이 충진되며 하부로 이동하여 수직 방향의 편석이 발생하게 된다.That is, when the mixture having particles of various sizes is vibrated in the vertical direction, particles having a large particle size rise in the surface layer direction, and particles having a small particle size are filled in an empty space generated by the rise of particles having a large particle size. Moving downward, segregation in the vertical direction occurs.
상기와 같은 브라질 넛 효과(BNE)는 주로 화학 분야에서 크기가 다른 입자를 서로 분리하는데 주로 사용되나, 본 발명에서는 브라질 넛 효과(BNE)를 이용하여 원료를 이송하는 장입 슈트 상에서 진동에 의하여 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 원료를 순차적으로 적층하며 이송한다. 본 발명의 원료 장입 장치 및 장입 방법에 브라질 넛 효과(BNE)를 적용하는 구체적인 내용은 이하에서 각 실시 예에 따라 상세히 설명하기로 한다.The Brazil nut effect (BNE) as described above is mainly used to separate particles of different sizes in the chemical field, but in the present invention, a small particle size due to vibration on a charging chute transferring raw materials using the Brazil nut effect (BNE). The raw materials are sequentially laminated and transported from those having a large particle size to those having a large particle size. Details of applying the Brazil nut effect (BNE) to the raw material charging device and the charging method of the present invention will be described in detail according to each embodiment below.
도 3은 본 발명의 실시 예에 따른 원료 장입 장치를 개략적으로 도시한 도면이고, 도 4는 본 발명의 실시 예에 따른 장입 슈트를 도시한 도면이다. 도 3 및 도 4를 참조하면, 본 발명의 실시 예에 따른 원료 장입 장치는 장입된 원료(10)를 배출하는 원료 공급부; 상기 원료 공급부로부터 이격되고, 상기 원료 공급부로부터 배출되는 원료(10)를 저장하는 저장기; 및 상기 원료 공급부와 저장기 사이에서 이송 경로를 형성하고, 상기 이송 경로 상에서 이동하는 원료(10)의 무차원 가속도(a)가 8 이상의 값을 가지도록 형성되는 진동면을 구비하는 장입 슈트(50);를 포함한다.3 is a view schematically showing a raw material charging device according to an embodiment of the present invention, Figure 4 is a view showing a charging chute according to an embodiment of the present invention. 3 and 4, the raw material charging device according to an embodiment of the present invention is a raw material supply for discharging the charged raw material 10; A reservoir spaced apart from the raw material supply unit and storing the raw material 10 discharged from the raw material supply unit; And a charging chute 50 having a vibrating surface which forms a transfer path between the raw material supply part and the reservoir and is formed such that the dimensionless acceleration a of the raw material 10 moving on the transfer path has a value of 8 or more. It includes;
원료 공급부는 원료 호퍼(20)와 드럼 피더(30)를 포함할 수 있다. 원료 호퍼(20)는 미분 철광석, 부원료 및 미분 코크스 등의 배합 원료(10)를 호퍼 게이트(40)를 거쳐 드럼 피더(30)로 공급하고, 드럼 피더(30)는 회전하면서 내부에 공급된 배합 원료(10)를 혼합하여 장입 슈트(50)로 불출한다. 도 3에서는 원료 호퍼(20)와 드럼 피더(30)로 구성되는 원료 공급부를 도시하고 있으나, 본 발명의 원료 공급부는 상기와 같은 구성에 한정되는 것은 아니며, 원료(10)를 불출하여 장입 슈트(50)에 공급하는 다양한 구성의 원료 공급부를 포함함은 물론이다.The raw material supply unit may include a raw material hopper 20 and a drum feeder 30. The raw material hopper 20 supplies the blending raw material 10 such as fine iron ore, secondary raw material and fine coke to the drum feeder 30 via the hopper gate 40, and the drum feeder 30 is rotated and blended therein. The raw material 10 is mixed and sent out to the charging chute 50. In FIG. 3, the raw material supply unit including the raw material hopper 20 and the drum feeder 30 is illustrated. However, the raw material supply unit of the present invention is not limited to the above configuration, and the raw material 10 is discharged to charge the charging chute ( Of course, it includes a raw material supply of various configurations to supply to 50).
장입 슈트(50)는 원료 공급부와 저장기 사이에서 이송 경로를 형성하여 상기 원료 공급부로부터 공급되는 원료(10)를 이송 경로를 따라 소결 대차(80)와 같은 저장기로 이송한다. 소결 대차(80)에 원료(10)가 장입되면 원료(10)의 표면을 표면 고름판(60)으로 고르게 하여 점화로(70)에서 점화하고, 흡인 블로워(미도시)에 의한 풍상에서 하부로 흡인되는 공기에 의하여 원료(10) 내에 포함되어 있는 코크스의 연소에 의해 소결 반응을 진행시켜 소결 광을 제조한다.The charging chute 50 forms a transfer path between the raw material supply unit and the reservoir to transfer the raw material 10 supplied from the raw material supply unit to a reservoir such as the sintered bogie 80 along the transfer path. When the raw material 10 is charged into the sintered trolley 80, the surface of the raw material 10 is evenly squeezed by the surface pulp plate 60, and then ignited in the ignition furnace 70, from the wind to the bottom by the suction blower (not shown). The sintered reaction is advanced by combustion of coke contained in the raw material 10 by the air which is drawn in, and a sintered light is manufactured.
장입 슈트(50)는 이송 경로 상에서 이동하는 원료(10)를 진동시켜 브라질 넛 효과(BNE)를 발생시키며 이송 경로를 따라 이송하는 진동면을 구비한다. 상기 이송 경로는 원료 공급부에서 저장기로 하향 경사지도록 형성될 수 있으며, 상기 진동면은 이송 경로를 따라 높이 변화가 주기적으로 형성된 볼록부(52)를 포함할 수 있다.The charging chute 50 has a vibrating surface for vibrating the raw material 10 moving on the transfer path to generate a brazil nut effect (BNE) and for feeding along the transfer path. The transfer path may be formed to be inclined downward from the raw material supply unit to the reservoir, and the vibrating surface may include a convex portion 52 in which a height change is periodically formed along the transfer path.
또한, 장입 슈트(50)는 일체형의 경사판을 포함하거나, 이송 경로를 따라 배치되는 복수 개의 분할형 경사판을 포함할 수 있으며, 이 경우 볼록부(52)는 도 3 및 도 4에 도시된 바와 같이, 일체형 또는 복수 개의 분할형 경사판의 상부 표면을 따라 돌출 형성되는 복수의 돌기에 의해 형성되는 면을 포함한다.In addition, the charging chute 50 may include an integral inclined plate or may include a plurality of divided inclined plates disposed along a conveying path, in which case the convex portion 52 is illustrated in FIGS. 3 and 4. And a surface formed by a plurality of protrusions protruding along the upper surface of the one-piece or the plurality of divided ramps.
보다 상세하게는, 볼록부(52)는 일체형 또는 분할형 경사판의 상부 표면을 따라 돌출 형성되는 복수의 돌기에 의하여 진동면을 형성한다. 따라서, 장입 슈트(50)는 원료(10)의 이송 중에 상부 표면을 따라 돌출 형성되는 복수의 돌기에 의하여 이송 경로에 수직한 방향으로 원료(10)를 진동시키게 되고, 이와 같은 진동에 의해서 원료(10)는 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 장입 슈트(50) 상에서 순차적으로 적층되며 이송된다.More specifically, the convex portion 52 forms a vibrating surface by a plurality of protrusions protruding along the upper surface of the integral or split inclined plate. Therefore, the charging chute 50 vibrates the raw material 10 in a direction perpendicular to the transfer path by a plurality of protrusions protruding along the upper surface during the transfer of the raw material 10, and by such vibration 10) are from one having a small particle size to one having a large particle size, sequentially stacked and transported on the charging chute 50.
Figure PCTKR2015008946-appb-M000001
Figure PCTKR2015008946-appb-M000001
(여기서, f는 진동 주파수, A는 진폭, g는 중력 가속도를 나타낸다.)(Where f is vibration frequency, A is amplitude, and g is gravitational acceleration.)
상기의 수학식 1은 브라질 넛 효과(BNE)를 발생시키기 위한 입자의 무차원 가속도(a) 값을 나타낸다. 수학식 1에서 무차원 가속도(a) 값이 8 이상이 되도록 진동 주파수(f) 및 진폭(A)을 결정할 경우, 혼합물을 구성하는 다양한 크기를 갖는 입자의 밀도 또는 크기 비에 관계없이 큰 입도를 갖는 입자들이 표층 방향으로 상승하고, 작은 입도를 갖는 입자들이 하부로 하강하는 브라질 넛 효과(BNE)가 발생한다.Equation 1 shows a value of the dimensionless acceleration (a) of the particles for generating the Brazil nut effect (BNE). In Equation 1, when the vibration frequency (f) and the amplitude (A) are determined such that the dimensionless acceleration (a) value is 8 or more, a large particle size is obtained regardless of the density or size ratio of particles having various sizes constituting the mixture. The Brazil nut effect (BNE) occurs in which the particles having the particles rise in the surface layer direction and the particles having the small particle sizes fall downward.
반면, 수학식 1에서 무차원 가속도(a) 값이 8보다 작은 경우 역편석의 브라질 넛 효과(RBNE: Reverse Brazil Nut Effect)가 발생한다. 역편석의 브라질 넛 효과(RBNE)는 큰 입도를 갖는 입자들이 하부에 배치되고, 표층에는 작은 입도를 갖는 입자들이 배치되는 것을 말한다. 따라서, 장입 슈트(50) 상에서 이러한 역편석의 브라질 넛 효과(RBNE)가 발생되는 경우 원료(10)가 배출되는 방향과 반대 방향으로 이동하는 소결 대차(80)에 큰 입도를 갖는 원료(10)로부터 작은 입도를 갖는 원료(10)로 적층하여 장입하기 어려워 통기성이 저하되는 문제점이 있다.On the other hand, if the value of the dimensionless acceleration (a) in Equation 1 is less than 8, the reverse Brazil Nut Effect (RBNE) occurs. Inverse segregation, the Brazilian Nut Effect (RBNE) means that particles with a large particle size are arranged below, and particles with a small particle size are arranged in the surface layer. Thus, when such reverse segregation of Brazilian nut effect (RBNE) occurs on the charging chute 50 from the raw material 10 having a large particle size in the sintered bogie 80 moving in the direction opposite to the direction in which the raw material 10 is discharged. There is a problem that it is difficult to stack and load with the raw material 10 having a small particle size and the air permeability is lowered.
따라서, 본 발명의 실시 예에 따른 장입 슈트(50)의 상부 표면(52)에 형성되는 진동면의 진동 주파수(f) 및 진폭(A)은 상기 수학식 1에서 무차원 가속도(a) 값이 8 이상이 되도록 결정되어야 한다.Therefore, the vibration frequency f and the amplitude A of the vibration surface formed on the upper surface 52 of the charging chute 50 according to the embodiment of the present invention have a dimensionless acceleration (a) value of 8 in Equation 1 above. Should be determined to be ideal.
진폭(A)은 진동면에 형성된 볼록부(52)의 최고 높이(H)에 비례하는 관계를 갖는다. 또한, 진동 주파수(f)는 이송 경로의 경사각(θ)이 커질수록 원료(10)의 이동 속도가 증가하므로 상기 이송 경로의 경사각(θ)에 비례하고, 볼록부(52)의 파장(λ)에는 반비례하는 관계를 갖는다. 여기서, 장입 슈트(50)의 길이를 증가시켜 원료(10)의 이동 속도를 증가시킬 수도 있으나, 이는 설비의 크기를 과다하게 증가시켜야 하므로 제작 및 제어, 경제성 측면에서 타당하지 않다.The amplitude A has a relationship proportional to the maximum height H of the convex portion 52 formed on the vibration surface. In addition, since the moving speed of the raw material 10 increases as the inclination angle θ of the transport path increases, the vibration frequency f is proportional to the inclination angle θ of the transport path, and the wavelength λ of the convex portion 52. Has an inverse relationship. Here, the length of the charging chute 50 may be increased to increase the moving speed of the raw material 10, but this is not appropriate in terms of manufacturing and control, and economics because the size of the equipment should be excessively increased.
따라서, 이송 경로 상에서 이동하는 원료의 무차원 가속도(a) 값은 상기한 볼록부(52)의 최고 높이(H), 상기 이송 경로의 경사각(θ) 및 상기 볼록부(52)의 파장(λ)의 크기를 제어하여 결정할 수 있다. 즉, 상기 무차원 가속도(a)는 상기의 수학식 1, 진폭(A)과 상기 볼록부(52)의 최고 높이(H)의 비례 관계, 진동 주파수(f)와 상기 이송 경로의 경사각(θ)의 비례 관계 및 진동 주파수(f)와 상기 볼록부(52)의 파장(λ)의 반비례 관계로부터 계산될 수 있다. 따라서, 무차원 가속도(a)가 8 이상의 값을 갖도록 장입 슈트(50)의 진동면에 형성되는 볼록부(52)의 최고 높이(H), 경사각(θ) 및 볼록부의 파장(λ) 중 적어도 하나를 제어하여, 상기 원료(10)를 이송 경로 상에서 진동 이동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송할 수 있게 된다.Therefore, the dimensionless acceleration (a) value of the raw material moving on the conveyance path is the highest height (H) of the convex portion (52), the inclination angle (θ) of the conveyance path and the wavelength (λ) of the convex portion (52). Can be determined by controlling the size of the That is, the dimensionless acceleration (a) is a proportional relationship between the equation (1), the amplitude (A) and the highest height (H) of the convex portion (52), the vibration frequency (f) and the inclination angle (θ) of the feed path It can be calculated from the proportional relationship of) and the inverse relationship between the vibration frequency (f) and the wavelength (λ) of the convex portion (52). Therefore, at least one of the highest height H, the inclination angle θ, and the wavelength λ of the convex portion formed on the vibrating surface of the charging chute 50 such that the dimensionless acceleration a has a value of 8 or more. By controlling the, by vibrating the raw material 10 on the transfer path it can be transported by sequentially stacking from having a small particle size to having a large particle size.
도 3 및 도 4에서는 일체형 또는 분할형 경사판의 상부 표면을 따라 이송 경로에 수직한 방향으로 복수의 돌기가 돌출 형성되어 원료(10)를 진동시키는 것으로 도시되어 있으나, 원료(10)의 진동 방향은 이에 제한되는 것은 아니다. 예를 들어 중력 방향과 동일한 상·하 방향의 진동을 갖도록 원료(10)를 진동시키는 등 브라질 넛 효과(BNE)를 발생시키기 위한 다양한 형상의 장입 슈트(50)가 적용될 수 있음은 물론이다.In FIGS. 3 and 4, a plurality of protrusions protrude in a direction perpendicular to the transport path along the upper surface of the integrated or split inclined plate to vibrate the raw material 10. However, the vibration direction of the raw material 10 is It is not limited to this. For example, it is a matter of course that the charging chute 50 having various shapes for generating the Brazil nut effect (BNE) may be applied by vibrating the raw material 10 so as to have the same vibration in the vertical direction as the gravity direction.
도 5는 본 발명의 실시 예에 따른 이송 경로가 곡선의 궤적으로 형성되는 장입 슈트를 도시한 도면이다. 도 5에 도시된 바와 같이 본 발명의 실시 예에 따른 장입 슈트는 곡선의 궤적으로 형성될 수 있으며, 상기 장입 슈트의 이송 경로는 상부에서 하부로 갈수록 경사각(θ)이 감소하도록 형성될 수 있다.5 is a diagram illustrating a charging chute in which a transfer path is formed as a trajectory of a curve according to an exemplary embodiment of the present invention. As shown in FIG. 5, the charging chute according to the embodiment of the present invention may be formed as a trajectory of a curve, and the transfer path of the charging chute may be formed such that the inclination angle θ decreases from top to bottom.
상기한 바와 같이, 장입 슈트(50) 상에서 원료(10)가 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 적층되면, 원료(10)를 소결 대차(80)에 장입하는 과정에서 소결 대차(80)는 원료(10)가 이탈하는 방향의 수평 성분과 반대 방향으로 이동하게 된다. 이 경우, 윌리엄의 궤적 효과(Williams Trajectory Effect)에 따라 큰 입도를 갖는 원료(10)의 낙하 거리가 증가하게 되어, 소결 대차(80)에는 큰 입도를 갖는 원료(10)부터 쌓인 다음 그 상부로 작은 입도를 갖는 원료(10)가 쌓이게 된다. 결국, 장입 슈트(50)의 하부에서 낙하 이탈되는 원료(10)의 이동 방향은 수평 성분을 증가시키는 것이 소결 대차(80)로의 편석 장입에 효과적임을 알 수 있다.As described above, when the raw material 10 is stacked on the charging chute 50 from having a small particle size to having a large particle size, the sintering bogie 80 in the process of charging the raw material 10 to the sintered bogie 80. Is moved in the direction opposite to the horizontal component in the direction in which the raw material 10 is separated. In this case, the falling distance of the raw material 10 having a large particle size increases according to the William's Trajectory Effect, so that the sintered trolley 80 accumulates from the raw material 10 having a large particle size and then moves upwards. Raw material 10 having a small particle size is accumulated. As a result, it can be seen that increasing the horizontal component in the moving direction of the raw material 10 falling apart from the lower part of the charging chute 50 is effective for segregation charging into the sintered trolley 80.
따라서, 장입 슈트(50)의 이송 경로를 상부에서의 하부로 갈수록 경사각(θ)이 감소하도록 형성할 수 있다. 즉, 장입 슈트(50)의 상부에서는 진동 주파수(f) 증가에 따라 원료 공급부로부터 배출되는 원료(10)가 브라질 넛 효과(BNE)에 의하여 장입 슈트(50) 상에서 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송하고, 장입 슈트(50)의 하부에서는 이탈되는 원료(10) 이동 방향의 수평 성분을 증가시켜 윌리엄의 궤적 효과에 따라 소결 대차(80) 내의 소결 배합 원료층에서의 편석도를 증가시킬 수 있다. 또한, 편석도가 높을수록 입자 간에 공간이 많이 확보되기 때문에 통기성이 향상되며, 이에 따라 소결 광의 생산성을 크게 증가시킬 수 있다.Therefore, the inclination angle [theta] may be reduced as the transfer path of the charging chute 50 goes from the upper part to the lower part. That is, in the upper part of the charging chute 50, since the raw material 10 discharged from the raw material supply part with the vibration frequency f increases, it has a big particle size from having a small particle size on the charging chute 50 by Brazilian nut effect BNE. In the sintered blended raw material layer in the sintered bogie 80 in accordance with William's trajectory effect by increasing the horizontal component in the moving direction of the raw material 10 to be separated from the lower portion of the charging chute 50, and sequentially transported to Segregation can be increased. In addition, the higher the segregation degree, the more the space is secured between the particles, so the air permeability is improved, and thus the productivity of the sintered light can be greatly increased.
도 6은 본 발명의 다른 실시 예에 따른 원료 장입 장치를 개략적으로 도시한 도면이고, 도 7은 본 발명의 다른 실시 예에 따른 장입 슈트를 도시한 도면이다. 도 6 및 도 7을 참조하면, 본 발명의 다른 실시 예에 따른 원료 장입 장치의 장입 슈트(50)는 복수 개의 롤러(54)를 포함하고, 상기 롤러(54)들은 나란하게 배치되어 각 롤러(54)의 표면을 따라 볼록부(52)를 형성한다.6 is a view schematically showing a raw material charging device according to another embodiment of the present invention, Figure 7 is a view showing a charging chute according to another embodiment of the present invention. 6 and 7, the charging chute 50 of the raw material charging device according to another embodiment of the present invention includes a plurality of rollers 54, the rollers 54 are arranged side by side to each roller ( A convex portion 52 is formed along the surface of 54.
보다 상세하게는, 본 발명의 다른 실시 예에 따른 원료 장입 장치의 장입 슈트(50)는 나란하게 배치되는 복수 개의 롤러(52)의 상부 표면에 의해 이송 경로를 따라 높이가 주기적으로 변화하는 볼록부(52)를 형성한다. 즉, 복수 개의 롤러(54)의 상부 표면을 따라 이동하는 원료(10)의 이송 경로는 롤러(54)의 표면 굴곡에 의하여 진동을 수반한다. 따라서, 장입 슈트(50)는 복수 개의 롤러(54)의 표면 굴곡에 의하여 원료(10)를 이송 경로에 수직한 방향으로 진동시키게 되고, 이와 같은 수직 방향의 진동에 의해서 원료(10)는 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 장입 슈트(50) 상에서 순차적으로 적층되며 이송된다.More specifically, the charging chute 50 of the raw material charging device according to another embodiment of the present invention is a convex portion whose height is periodically changed along the transport path by the upper surface of the plurality of rollers 52 arranged side by side To form 52. That is, the conveyance path of the raw material 10 moving along the upper surfaces of the plurality of rollers 54 is accompanied by vibration by the surface bending of the rollers 54. Therefore, the charging chute 50 causes the raw material 10 to vibrate in a direction perpendicular to the transfer path by the surface bending of the plurality of rollers 54, and the raw material 10 has a small particle size due to the vibration in the vertical direction. Are stacked on the charging chute 50 and transported sequentially from the one having the large particle size.
장입 슈트(50)가 이송 경로를 따라 배치되는 복수 개의 롤러(54)를 포함하는 경우에도 상기 수학식 1에 의하여 표현되는 무차원 가속도(a)의 값이 8 이상이 되도록 진동면의 진동 주파수(f) 및 진폭(A)을 결정하여야 혼합물을 구성하는 다양한 크기를 갖는 입자의 밀도 또는 크기 비에 관계없이 브라질 넛 효과(BNE)가 발생하게 된다. 여기서 진폭(A)은 진동면에 형성된 볼록부(52)의 최고 높이(H)에 비례하고, 진동 주파수(f)는 이송 경로의 경사각(θ)에 비례하고, 볼록부(52)의 파장(λ)에는 반비례하는 관계를 갖는 것은 전술한 바와 같다.Even when the charging chute 50 includes a plurality of rollers 54 arranged along the conveying path, the vibration frequency f of the vibrating surface so that the value of the dimensionless acceleration a expressed by the above equation 1 becomes 8 or more. ) And the amplitude (A) must be determined so that the Brazil Nut Effect (BNE) can occur regardless of the density or size ratio of the particles having various sizes constituting the mixture. Here, the amplitude A is proportional to the maximum height H of the convex portion 52 formed on the vibrating surface, the vibration frequency f is proportional to the inclination angle θ of the conveying path, and the wavelength λ of the convex portion 52. ) Has the inverse relationship as described above.
또한, 도 8에 도시된 바와 같이 본 발명의 다른 실시 예에 따른 장입 슈트(50)는 곡선의 궤적으로 형성될 수 있으며, 상기 장입 슈트(50)의 이송 경로는 상부에서 하부로 갈수록 경사각(θ)이 감소하도록 형성될 수 있다. 이 경우 장입 슈트(50)의 상부에서는 브라질 넛 효과(BNE)에 의하여 장입 슈트(50) 상에서 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송하고, 장입 슈트(50)의 하부에서는 윌리엄의 궤적 효과에 따라 소결 대차(80) 내의 소결 배합 원료층에서의 편석도를 증가시킬 수 있게 됨은 전술한 바와 같다.In addition, as shown in Figure 8, the charging chute 50 according to another embodiment of the present invention may be formed as a trajectory of the curve, the transfer path of the charging chute 50 is inclined angle (θ from the top to the bottom) ) Can be formed to decrease. In this case, the upper part of the charging chute 50 is sequentially stacked and transferred from having a small particle size to having a larger particle size on the charging chute 50 by the Brazilian nut effect (BNE), and at the lower part of the charging chute 50. According to William's trajectory effect, the segregation degree in the sintered compounding raw material layer in the sintered trolley | bogie 80 can be increased as mentioned above.
그러나, 상기와 같이 장입 슈트(50)가 이송 경로를 따라 배치되는 복수 개의 롤러(54)를 포함하는 경우, 볼록부(52)의 최고 높이(H) 및 파장(λ)는 롤러의 직경(D)과 개수에 의하여 결정된다. 즉, 장입 슈트(50)가 이송 경로를 따라 배치되는 복수 개의 롤러(54)를 포함하는 경우 볼록부(52)의 최고 높이(H)는 롤러(54)의 반경과 같고, 볼록부(52)의 파장(λ)은 롤러(54)의 직경(D)과 같게 된다.However, when the charging chute 50 includes a plurality of rollers 54 arranged along the conveying path as described above, the maximum height H and the wavelength λ of the convex portion 52 are the diameter D of the roller. ) And the number. That is, when the charging chute 50 includes a plurality of rollers 54 arranged along the conveying path, the highest height H of the convex portion 52 is equal to the radius of the roller 54, and the convex portion 52 is provided. The wavelength λ of is equal to the diameter D of the roller 54.
도 9는 기준 중력 가속도를 9.81m/s로 하고, 직선 궤적의 이송 경로를 갖는 장입 슈트(50)의 길이가 1.5m인 조건에서 이송 경로가 40°, 45° 및 50°의 경사각을 갖는 장입 슈트(50)에 각각 포함되는 롤러(54)의 직경(D)에 대한 무차원 가속도(a) 값의 변화를 나타내는 그래프이다.Fig. 9 shows a charging path having inclination angles of 40 °, 45 ° and 50 ° under the condition that the reference gravity acceleration is 9.81 m / s and the length of the charging chute 50 having the linear path trajectory is 1.5 m in length. It is a graph which shows the change of the dimensionless acceleration a value with respect to the diameter D of the roller 54 contained in the chute 50, respectively.
도 9에 나타난 바와 같이, 이송 경로가 40°의 경사각을 갖는 장입 슈트(50)의 경우 롤러(54)의 직경(D)이 약 150㎜ 이하가 되는 범위에서 브라질 넛 효과(BNE)를 발생시키는 무차원 가속도(a)의 값이 8 이상이 된다. 이때, 롤러(54)는 원료(10)의 이송 경로를 따라 10개 이상이 배치되어 장입 슈트(50)를 구성한다. 반면에, 롤러(54)의 직경(D)이 약 150㎜를 초과하는 경우 무차원 가속도(a)의 값은 8보다 작게 되어 전술한 역편석의 브라질 넛 효과(RBNE)가 발생한다.As shown in FIG. 9, in the case of the charging chute 50 having the inclination angle of 40 °, the Brazil nut effect BNE is generated in a range in which the diameter D of the roller 54 is about 150 mm or less. The value of the dimensionless acceleration a becomes 8 or more. At this time, ten or more rollers 54 are arranged along the conveyance path of the raw material 10 to constitute the charging chute 50. On the other hand, when the diameter D of the roller 54 exceeds about 150 mm, the value of the dimensionless acceleration a becomes smaller than 8 so that the above-mentioned reverse segregation brazilian nut effect RBNE occurs.
또한, 장입 슈트(50)의 경사각이 40°에서부터 45°, 50°로 점차 증가할수록 장입 슈트(50) 상에서 브라질 넛 효과(BNE) 또는 역편석의 브라질 넛 효과(RBNE)가 발생하는 기준인 무차원 가속도(a)의 값이 8이 되는 롤러(54)의 직경(D)는 약 150㎜로부터 점차 증가하는 것을 확인할 수 있다.In addition, as the inclination angle of the charging chute 50 gradually increases from 40 ° to 45 ° and 50 °, the dimensionless dimension, which is a criterion in which the Brazilian nut effect (BNE) or the reverse segregation Brazilian nut effect (RBNE) occurs on the charging chute 50, is obtained. It can be seen that the diameter D of the roller 54 whose acceleration a is 8 is gradually increased from about 150 mm.
여기서, 장입 슈트(50) 상에서 롤러(54)의 표면 굴곡에 따른 운동량 감소를 방지하고 기준 중력 가속도에 의하여 원료(10)를 원활하게 이송시킴과 동시에 장입 슈트(50)의 상부 표면을 따라 유효한 진동을 발생시키기 위하여, 상기 장입 슈트(50)의 이송 경로는 40° 내지 50°의 경사각을 가질 수 있다. 또한, 이 경우 장입 슈트(50)에 포함되는 롤러(54)는 150㎜ 이하의 직경(D)을 갖는 것으로 하여 혼합물을 구성하는 다양한 크기를 갖는 입자의 밀도 또는 크기 비에 관계없이 장입 슈트(50) 상에서 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 원료(10)를 순차적으로 적층하여 이송할 수 있게 된다.Here, it is possible to prevent the reduction of momentum due to the surface curvature of the roller 54 on the charging chute 50 and to smoothly transport the raw material 10 by the reference gravity acceleration, while at the same time effective vibration along the upper surface of the charging chute 50. In order to generate the transfer path of the charging chute 50 may have an inclination angle of 40 ° to 50 °. In this case, the roller 54 included in the charging chute 50 has a diameter D of 150 mm or less, so that the charging chute 50 is independent of the density or size ratio of particles having various sizes constituting the mixture. It is possible to sequentially stack and transport the raw materials 10 from having a small particle size to a large particle size.
이하에서, 본 발명의 실시 예에 따른 원료 장입 방법에 대하여 상세히 설명한다. 상기 원료 장입 방법과 관련하여 전술한 원료 장입 장치에서 설명한 내용과 중복되는 설명은 생략하기로 한다.Hereinafter, the raw material charging method according to an embodiment of the present invention will be described in detail. Descriptions overlapping with those described in the raw material charging device in relation to the raw material charging method will be omitted.
본 발명의 실시 예에 따른 원료 장입 방법은 원료(10)를 마련하는 과정(S100); 상기 원료(10)를 장입 슈트(50)에 공급하는 과정(S200); 상기 장입 슈트(50)의 진동면에 형성되는 볼록부(52)의 최고 높이(H), 경사각(θ) 및 볼록부(52)의 파장(λ) 중 적어도 하나를 제어하여, 상기 원료(10)를 이송 경로 상에서 진동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송하는 과정(S300); 및 상기 이송된 원료(10)를 저장기에 장입하는 과정;을 포함한다.Raw material charging method according to an embodiment of the present invention comprises the steps of preparing a raw material (10) (S100); Supplying the raw material 10 to the charging chute 50 (S200); The raw material 10 is controlled by controlling at least one of the highest height H, the inclination angle θ, and the wavelength λ of the convex portion 52 formed on the vibrating surface of the charging chute 50. Vibrating on the transfer path to sequentially stack and transfer a small particle size from a small particle size to have a large particle size (S300); And charging the transferred raw material 10 to a storage device.
원료(10)를 마련하는 과정(S100)에서 원료(10)는, 예를 들어 제선 공정에서 사용되는 소결 광을 제조하는데 사용되는 소결 배합 원료(10)일 수 있다. 그러나, 본 발명은 소결 공정에 국한되는 것은 아니며, 고로, 코크스 등 입자로 구성되는 원료(10)의 수직 편석 장입이 필요한 모든 공정에 적용이 가능함은 물론이다.In the process of preparing the raw material 10 (S100), the raw material 10 may be, for example, a sintered blended raw material 10 used to manufacture the sintered light used in the iron making process. However, the present invention is not limited to the sintering process, and of course, the present invention can be applied to all processes requiring vertical segregation of the raw material 10 composed of particles such as blast furnace and coke.
원료(10)를 장입 슈트(50)에 공급하는 과정(S200)에서 원료 호퍼(20)는 미분 철광석, 부원료 및 미분 코크스 등의 배합 원료(10)를 호퍼 게이트(40)를 거쳐 드럼 피더(30)로 공급하고, 드럼 피더(30)는 회전하면서 내부에 공급된 배합 원료(10)를 혼합하여 장입 슈트(50)로 불출한다.In the process of supplying the raw material 10 to the charging chute 50 (S200), the raw material hopper 20 passes through the hopper gate 40 through the mixed raw material 10 such as fine iron ore, secondary raw material and fine coke, and the drum feeder 30. ), The drum feeder 30 is mixed with the compounding raw material 10 supplied therein while being rotated, and fed to the charging chute 50.
장입 슈트(50)에 공급된 원료(10)를 이송 경로를 따라 진동시키며 이송하는 과정(S300)은 장입 슈트(50)의 진동면에 형성되는 볼록부(52)의 최고 높이(H), 경사각(θ) 및 볼록부(52)의 파장(λ) 중 적어도 하나를 제어하여, 원료(10)를 이송 경로 상에서 진동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송한다.The process (S300) of vibrating and feeding the raw material 10 supplied to the charging chute 50 along the transfer path is performed at the highest height H and the inclination angle of the convex part 52 formed on the vibration surface of the charging chute 50. θ) and at least one of the wavelength λ of the convex portion 52 are controlled to vibrate the raw material 10 on the transfer path so that the raw material 10 is laminated and transferred sequentially from the smallest particle size to the larger one.
이 경우, 이송 경로 상에서 이동하는 원료(10)의 무차원 가속도(a)는 상기의 수학식 1, 진폭(A)과 상기 볼록부(52)의 최고 높이(H)의 비례 관계, 진동 주파수(f)와 상기 이송 경로의 경사각(θ)의 비례 관계 및 진동 주파수(f)와 상기 볼록부(52)의 파장(λ)의 반비례 관계로부터 계산된다. 따라서, 장입 슈트(50)의 진동면에 형성되는 볼록부(52)의 최고 높이(H), 경사각(θ) 및 볼록부(52)의 파장(λ) 중 적어도 하나는 상기 이송 경로 상에서 이동하는 원료의 무차원 가속도(a)가 8 이상의 값을 가지도록 제어하여, 상기 원료(10)를 이송 경로 상에서 진동 이동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송할 수 있음은 전술한 바와 같다.In this case, the dimensionless acceleration (a) of the raw material 10 moving on the conveyance path is a proportional relationship between the amplitude (A) and the maximum height (H) of the convex portion 52, the vibration frequency ( It is calculated from the proportional relationship between f) and the inclination angle? of the conveying path and the inverse relationship between the vibration frequency f and the wavelength? of the convex portion 52. Therefore, at least one of the highest height H of the convex portion 52, the inclination angle θ, and the wavelength? Of the convex portion 52 formed on the vibrating surface of the charging chute 50 is a raw material moving on the transfer path. By controlling the dimensionless acceleration (a) to have a value of 8 or more, the raw material 10 can be vibrated on a transfer path to be sequentially stacked and transported from having a small particle size to having a large particle size. Same as one.
위와 같이, 장입 슈트(50)의 진동면에 형성되는 볼록부(52)의 최고 높이(H), 경사각(θ) 및 볼록부(52)의 파장(λ) 중 적어도 하나를 제어하여 장입 슈트(50) 상에서 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 원료(10)를 이송한 후에 이송된 원료(10)를 소결 대차(80)와 같은 저장기에 장입(S400)한다.As described above, the charging chute 50 is controlled by controlling at least one of the highest height H, the inclination angle θ, and the wavelength λ of the convex portion 52 formed on the vibrating surface of the charging chute 50. After the raw material 10 is transferred from having a small particle size to a large particle size), the transferred raw material 10 is charged to a storage device such as the sintered trolley 80 (S400).
이때, 소결 대차(80)는 상기 장입 슈트(50)로부터 이송된 원료(10)가 배출되는 방향의 수평 성분과 반대 방향으로 이동할 수 있다. 소결 대차(80)가 원료(10)의 배출 방향과 반대 방향으로 이동하여 원료(10)를 장입하게 되면 전술한 바와 같이 윌리엄의 궤적 효과에 따라 큰 입도를 갖는 원료(10)의 낙하 거리가 증가하게 되어, 소결 대차(80)에는 먼저 큰 입도를 갖는 원료(10)가 쌓인 다음 그 상부로 작은 입도를 갖는 원료(10)가 쌓이게 된다.At this time, the sintered trolley 80 may move in a direction opposite to the horizontal component in the direction in which the raw material 10 transferred from the charging chute 50 is discharged. When the sintered trolley 80 moves in a direction opposite to the discharge direction of the raw material 10 to charge the raw material 10, the falling distance of the raw material 10 having a large particle size increases according to the trajectory effect of William as described above. Thus, the raw material 10 having a large particle size is first stacked on the sintered trolley 80, and then the raw material 10 having a small particle size is stacked thereon.
이 경우, 윌리엄의 궤적 효과(Williams Trajectory Effect)에 따라 큰 입도를 갖는 원료(10)의 낙하 거리가 증가하게 되어, 소결 대차(80)에는 큰 입도를 갖는 원료(10)부터 쌓인 다음 그 상부로 작은 입도를 갖는 원료(10)가 쌓이게 된다. 결국, 장입 슈트(50)의 하부에서 낙하 이탈되는 원료(10)의 이동 방향은 수평 성분을 증가시키는 것이 소결 대차(80)로의 편석 장입에 효과적임을 알 수 있다. 따라서, 장입 슈트(50)의 이송 경로는 상부에서 하부로 갈수록 경사각(θ)이 감소하도록 곡선의 궤적으로 형성할 수 있다.In this case, the falling distance of the raw material 10 having a large particle size increases according to the William's Trajectory Effect, so that the sintered trolley 80 accumulates from the raw material 10 having a large particle size and then moves upwards. Raw material 10 having a small particle size is accumulated. As a result, it can be seen that increasing the horizontal component in the moving direction of the raw material 10 falling apart from the lower part of the charging chute 50 is effective for segregation charging into the sintered trolley 80. Therefore, the conveyance path of the charging chute 50 may be formed as a trajectory of the curve so that the inclination angle θ decreases from the top to the bottom.
상기와 같은 과정에 의하여, 소결 대차(80) 내의 소결 배합 원료층에서의 편석도를 증가시킬 수 있게 되고, 편석도가 높을수록 입자 간에 공간이 많이 확보되기 때문에 통기성을 향상시킬 수 있으며, 이에 따라 소결 광의 생산성을 크게 증가시킬 수 있게 된다.By the above process, it is possible to increase the segregation degree in the sintered compounding material layer in the sintered trolley 80, and the higher the segregation degree, the more space is secured between the particles, thereby improving the air permeability. The productivity of the sintered light can be greatly increased.
상기에서, 본 발명의 바람직한 실시 예가 특정 용어들을 사용하여 설명 및 도시되었지만 그러한 용어는 오로지 본 발명을 명확하게 설명하기 위한 것일 뿐이며, 본 발명의 실시 예 및 기술된 용어는 다음의 청구범위의 기술적 사상 및 범위로부터 이탈되지 않고서 여러가지 변경 및 변화가 가해질 수 있는 것은 자명한 일이다. 이와 같이 변형된 실시 예들은 본 발명의 사상 및 범위로부터 개별적으로 이해되어져서는 안되며, 본 발명의 청구범위 안에 속한다고 해야 할 것이다.In the above, while the preferred embodiment of the present invention has been described and illustrated using specific terms, such terms are only for clearly describing the present invention, and the embodiments of the present invention and the described terms are used in the technical spirit of the following claims. It is obvious that various changes and modifications can be made without departing from the scope of the present invention. Such modified embodiments should not be understood individually from the spirit and scope of the present invention, but should fall within the claims of the present invention.

Claims (15)

  1. 장입된 원료를 배출하는 원료 공급부;A raw material supply unit for discharging the charged raw materials;
    상기 원료 공급부로부터 이격되고, 상기 원료 공급부로부터 배출되는 원료를 저장하는 저장기; 및A reservoir spaced apart from the raw material supply unit and storing the raw material discharged from the raw material supply unit; And
    상기 원료 공급부와 저장기 사이에서 이송 경로를 형성하고, 상기 이송 경로 상에서 이동하는 원료의 무차원 가속도(a)가 8 이상의 값을 가지도록 형성되는 진동면을 구비하는 장입 슈트;를 포함하는 원료 장입 장치.A charging chute having a vibrating surface formed to form a transfer path between the raw material supply part and the reservoir, and wherein the dimensionless acceleration (a) of the raw material moving on the transfer path has a value of 8 or more; .
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 이송 경로는 상기 원료 공급부에서 상기 저장기로 하향 경사지도록 형성되며,The transfer path is formed to be inclined downward from the raw material supply unit to the reservoir,
    상기 진동면은 상기 이송 경로를 따라 높이 변화가 주기적으로 형성된 볼록부를 포함하며,The vibrating surface includes a convex portion in which a height change is periodically formed along the conveying path,
    상기 무차원 가속도(a) 값은 상기 볼록부의 최고 높이(H), 상기 이송 경로의 경사각(θ) 및 상기 볼록부의 파장(λ) 중 적어도 하나의 크기를 제어하여 결정하는 원료 장입 장치.The dimensionless acceleration (a) value is determined by controlling the size of at least one of the highest height (H) of the convex portion, the inclination angle (θ) of the transport path and the wavelength (λ) of the convex portion.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 장입 슈트는 일체형 또는 복수 개의 분할형 경사판을 포함하고,The charging chute comprises an integral or a plurality of divided ramps,
    상기 볼록부는 상기 경사판의 상부 표면을 따라 돌출 형성되는 복수의 돌기에 의해 형성되는 면을 포함하는 원료 장입 장치.And the convex portion comprises a surface formed by a plurality of protrusions protruding along the upper surface of the inclined plate.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 장입 슈트는 복수 개의 롤러를 포함하고,The charging chute includes a plurality of rollers,
    상기 볼록부는 상기 롤러들이 나란히 배치되어 각 롤러의 표면을 따라 형성되는 면을 포함하는 원료 장입 장치.And the convex portion includes a surface where the rollers are arranged side by side and formed along the surface of each roller.
  5. 청구항 2에서 있어서, The method according to claim 2,
    상기 무차원 가속도(a)는 하기의 수학식 1, 진폭(A)과 상기 볼록부의 최고 높이(H)의 비례 관계, 진동 주파수(f)와 상기 이송 경로의 경사각(θ)의 비례 관계 및 진동 주파수(f)와 상기 볼록부의 파장(λ)의 반비례 관계로부터 계산되는 원료 장입 장치. The dimensionless acceleration (a) is the following equation 1, the proportional relationship between the amplitude (A) and the highest height (H) of the convex portion, the proportional relationship between the vibration frequency (f) and the inclination angle (θ) of the conveying path and vibration The raw material charging device computed from the inverse relationship of the frequency (f) and the wavelength ((lambda)) of the said convex part.
    [수학식 1][Equation 1]
    Figure PCTKR2015008946-appb-I000002
    Figure PCTKR2015008946-appb-I000002
    (여기서, f는 진동 주파수, A는 진폭, g는 중력 가속도를 나타낸다.)(Where f is vibration frequency, A is amplitude, and g is gravitational acceleration.)
  6. 청구항 1 내지 청구항 5 중 어느 한 항에서 있어서, The method according to any one of claims 1 to 5,
    상기 장입 슈트의 이송 경로는 직선 또는 곡선의 궤적으로 형성되는 원료 장입 장치.The feed path of the charging chute is a raw material charging device is formed in a straight or curved trajectory.
  7. 청구항 2 내지 청구항 5 중 어느 한 항에서 있어서, The method according to any one of claims 2 to 5,
    상기 장입 슈트의 이송 경로는 상부에서 하부로 갈수록 경사각(θ)이 감소하는 원료 장입 장치.The feed path of the charging chute is inclined angle (θ) decreases from top to bottom.
  8. 청구항 2 내지 청구항 5 중 어느 한 항에서 있어서, The method according to any one of claims 2 to 5,
    상기 이송 경로는 40° 내지 50°의 경사각(θ)을 가지는 원료 장입 장치.The feed path is a raw material charging device having an inclination angle (θ) of 40 ° to 50 °.
  9. 청구항 4에 있어서,The method according to claim 4,
    상기 롤러는 150㎜ 이하의 직경(D)을 가지는 원료 장입 장치.The roller is a raw material charging device having a diameter (D) of 150mm or less.
  10. 원료를 마련하는 과정;Preparing raw materials;
    상기 원료를 원료의 이송 경로를 형성하는 장입 슈트에 공급하는 과정;Supplying the raw material to a charging chute forming a transfer path of the raw material;
    상기 장입 슈트의 진동면에 형성되며 주기적으로 높이가 변화하는 볼록부의 최고 높이(H), 상기 이송 경로의 경사각(θ) 및 상기 볼록부의 파장(λ) 중 적어도 하나를 제어하여, 상기 원료를 이송 경로 상에서 진동시켜 작은 입도를 갖는 것으로부터 큰 입도를 갖는 것으로 순차적으로 적층하며 이송하는 과정; 및The raw material is transferred to the feed path by controlling at least one of the highest height H of the convex portion formed on the vibration surface of the charging chute, the height of which is periodically changed, the inclination angle of the conveying path, and the wavelength? Of the convex portion. Vibrating in a phase and sequentially laminating and transferring from having a small particle size to having a large particle size; And
    상기 이송된 원료를 저장기에 장입하는 과정;을 포함하는 원료 장입 방법.Charging the raw material into a reservoir;
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 장입 슈트에 공급되는 원료는 상·하 방향 또는 상기 이송 경로에 수직한 방향으로 진동하는 원료 장입 방법.The raw material charging method in which the raw material supplied to the said charging chute vibrates in the up-down direction or the direction perpendicular | vertical to the said conveyance path | route.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 이송 경로는 직선 또는 곡선의 궤적으로 형성되는 원료 장입 방법.The feed path is a raw material charging method is formed in a straight or curved trajectory.
  13. 청구항 10에 있어서,The method according to claim 10,
    상기 볼록부의 최고 높이(H), 경사각(θ) 및 볼록부의 파장(λ) 중 적어도 하나는 상기 이송 경로 상에서 이동하는 원료의 무차원 가속도(a)가 8 이상의 값을 가지도록 제어되는 원료 장입 방법.At least one of the highest height (H) of the convex portion, the inclination angle (θ) and the wavelength (λ) of the convex portion is controlled so that the dimensionless acceleration (a) of the raw material moving on the transfer path has a value of 8 or more. .
  14. 청구항 10에 있어서,The method according to claim 10,
    상기 저장기에 장입하는 과정에서 상기 원료는 큰 입도를 갖는 것으로부터 작은 입도를 갖는 것으로 순차적으로 적층되어 장입되는 원료 장입 방법.Raw material charging method in which the raw material in the process of charging in the reservoir is laminated and charged sequentially from having a large particle size to having a small particle size.
  15. 청구항 10 내지 청구항 14 중 어느 한 항에 있어서,The method according to any one of claims 10 to 14,
    상기 원료는 부원료 또는 연료인 미분 코크스를 배합한 소결 배합 원료이고,The said raw material is a sintering compounding material which mix | blended the fine coke which is a subsidiary material or a fuel,
    상기 저장기는 소결 대차인 원료 장입 방법.And the reservoir is a sintered trolley.
PCT/KR2015/008946 2014-09-25 2015-08-26 Raw material charging device and charging method WO2016047929A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515888A JP6446541B2 (en) 2014-09-25 2015-08-26 Raw material charging apparatus and charging method
CN201580051774.XA CN106715728B (en) 2014-09-25 2015-08-26 Raw material loading equipment and loading method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0128447 2014-09-25
KR1020140128447A KR101622294B1 (en) 2014-09-25 2014-09-25 Charging apparatus and method for raw material

Publications (1)

Publication Number Publication Date
WO2016047929A1 true WO2016047929A1 (en) 2016-03-31

Family

ID=55581406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008946 WO2016047929A1 (en) 2014-09-25 2015-08-26 Raw material charging device and charging method

Country Status (4)

Country Link
JP (1) JP6446541B2 (en)
KR (1) KR101622294B1 (en)
CN (1) CN106715728B (en)
WO (1) WO2016047929A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110629018B (en) * 2019-09-30 2021-05-28 鞍钢股份有限公司 Production method for improving sintering permeability of thick material layer
CN112797795B (en) * 2019-11-13 2023-04-11 株式会社Posco Charging device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110194A (en) * 1993-10-15 1995-04-25 Nkk Corp Charging unit for sintering raw material
JP2940002B2 (en) * 1989-06-07 1999-08-25 日本鋼管株式会社 Raw material charging device for sintering machine
JP2000063961A (en) * 1998-06-08 2000-02-29 Kobe Steel Ltd Method and device for charging raw material into sintering machine
KR20130072679A (en) * 2011-12-22 2013-07-02 주식회사 포스코 System for providing sinter mix for sintered ore
KR101326052B1 (en) * 2012-06-05 2013-11-07 주식회사 포스코 Charging apparatus for raw material and the method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183914A1 (en) * 2012-06-05 2013-12-12 주식회사 포스코 Apparatus for charging and method for charging raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940002B2 (en) * 1989-06-07 1999-08-25 日本鋼管株式会社 Raw material charging device for sintering machine
JPH07110194A (en) * 1993-10-15 1995-04-25 Nkk Corp Charging unit for sintering raw material
JP2000063961A (en) * 1998-06-08 2000-02-29 Kobe Steel Ltd Method and device for charging raw material into sintering machine
KR20130072679A (en) * 2011-12-22 2013-07-02 주식회사 포스코 System for providing sinter mix for sintered ore
KR101326052B1 (en) * 2012-06-05 2013-11-07 주식회사 포스코 Charging apparatus for raw material and the method thereof

Also Published As

Publication number Publication date
CN106715728A (en) 2017-05-24
JP2017535739A (en) 2017-11-30
KR20160036734A (en) 2016-04-05
CN106715728B (en) 2019-12-20
JP6446541B2 (en) 2018-12-26
KR101622294B1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
WO2013183914A1 (en) Apparatus for charging and method for charging raw material
KR20130136868A (en) Charging apparatus for raw material and the method thereof
WO2014171612A1 (en) Raw material sorting apparatus and method therefor
CN206050194U (en) Intestinal machine is put by robot
WO2016047929A1 (en) Raw material charging device and charging method
TW201211265A (en) Feeding system for reduced iron material
KR101326052B1 (en) Charging apparatus for raw material and the method thereof
WO2017078429A1 (en) Apparatus and method for charging raw material
KR20160035150A (en) Charging apparatus for raw material
KR101642908B1 (en) Charging apparatus for raw material and charging method thereof
KR101373111B1 (en) Charging apparatus for raw material
KR20170011807A (en) Apparatus for Charging Material
KR101373112B1 (en) Charging apparatus for raw material
KR101667290B1 (en) Charging apparatus for raw material
KR101735002B1 (en) Apparatus for charging material
KR101622287B1 (en) Charging apparatus for raw material
KR101665067B1 (en) Charging apparatus for raw material
KR920006706Y1 (en) Apparatus for charging the materials for sintering
KR101622292B1 (en) Charging apparatus for raw material
KR101712389B1 (en) Charging apparatus for raw material
WO2023080374A1 (en) Classification system using fluidized bed
KR101368435B1 (en) Charging apparatus for raw material and the method thereof
JPS63317606A (en) Method for charging raw material in blast furnace
KR101666057B1 (en) Charging apparatus for raw material
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845390

Country of ref document: EP

Kind code of ref document: A1