WO2016047233A1 - 光カプラ及びその光カプラを利用した光の分岐方法 - Google Patents

光カプラ及びその光カプラを利用した光の分岐方法 Download PDF

Info

Publication number
WO2016047233A1
WO2016047233A1 PCT/JP2015/069408 JP2015069408W WO2016047233A1 WO 2016047233 A1 WO2016047233 A1 WO 2016047233A1 JP 2015069408 W JP2015069408 W JP 2015069408W WO 2016047233 A1 WO2016047233 A1 WO 2016047233A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
input optical
output
diameter portion
input
Prior art date
Application number
PCT/JP2015/069408
Other languages
English (en)
French (fr)
Inventor
秀徳 飯田
秀昭 白鳥
Original Assignee
株式会社石原産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石原産業 filed Critical 株式会社石原産業
Priority to US14/898,601 priority Critical patent/US20160299293A1/en
Priority to EP15804665.6A priority patent/EP3199994A4/en
Priority to CN201580001002.5A priority patent/CN105723262B/zh
Publication of WO2016047233A1 publication Critical patent/WO2016047233A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • G02B6/283Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing couplers being tunable or adjustable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/4289Optical modules with tapping or launching means through the surface of the waveguide by inducing bending, microbending or macrobending, to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/4291Optical modules with tapping or launching means through the surface of the waveguide by accessing the evanescent field of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency

Definitions

  • the present invention relates to an optical coupler and a light branching method using the optical coupler, and more particularly to an optical coupler composed of an optical fiber having a small diameter portion and a light branching method using the optical coupler.
  • an optical coupler In optical communication using an optical fiber, an optical coupler is known as a means for dividing light into a plurality of paths.
  • the optical coupler is composed of, for example, two optical fibers.
  • Each of the two optical fibers has a small-diameter portion whose outer diameter is narrowed by extending a part of the longitudinal direction of each optical fiber in the longitudinal direction.
  • the two optical fibers have their small diameter portions fused to each other.
  • the portion where the two optical fibers are fused is optically coupled to each other, and is generally referred to as a coupling portion.
  • the coupling ratio of the optical coupler having the above configuration is determined by the coupling length which is the length of the coupling portion. This coupling ratio defines a branching ratio that branches at the optical coupler.
  • the optical coupler proposed in Patent Document 1 is a fusion-type optical coupler configured by fusing and stretching two optical fibers.
  • This optical coupler has a housing for accommodating two optical fibers that are fused and stretched.
  • the branching ratio is measured before the two optical fibers fused and stretched are accommodated in the housing.
  • a predetermined substance is filled around the stretched and stretched portion.
  • the optical coupler proposed in Patent Document 2 includes a coupler main body and a support.
  • the coupler main body is formed by fusing and extending two single mode optical fibers.
  • the support is for mounting and supporting the coupler main body.
  • the optical coupler includes a covering.
  • the covering is fixed so as to cover the coupler main body, and is made of a material having a thermal expansion coefficient different from that of the support.
  • the optical coupler has a heating / cooling means.
  • the heating / cooling means heats or cools an integrated body composed of the coupler main body, the support body, and the covering body. In this optical coupler, the coupling ratio is changed by heating or cooling the coupler body.
  • the coupling length of the two optical fibers is constant. Therefore, the light transmitted by one optical fiber is always branched by the optical coupler to the other optical fiber.
  • the coupling length of this optical coupler is constant, the branching ratio at which the light traveling through one optical fiber is branched into the other optical fiber is constant. This coupler cannot be used with the branching ratio changed.
  • the optical coupler proposed in Patent Document 2 can change the coupling ratio by heating or cooling the coupler body. However, since this optical coupler needs to be provided with heating and cooling means, the optical coupler becomes large and the structure becomes complicated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical coupler having a small and simple structure capable of branching light at a necessary branching ratio when necessary, and the light.
  • An object of the present invention is to provide a light branching method using a coupler.
  • An optical coupler for solving the above-mentioned problems has a small-diameter portion formed with a relatively small outer diameter in a part of the longitudinal direction, and transmits the transmitted light to the small-diameter portion. And an input optical fiber that branches off from the input optical fiber, and a light receiving portion that receives the light branched from the input optical fiber, wherein the narrow diameter portion of the input optical fiber is in contact with the light receiving portion, and the input light
  • the coupling length which is the length of contact between the small diameter portion of the fiber and the light receiving portion, or the propagation constant of the optical fiber changes, thereby changing the branching ratio of the light branched from the input optical fiber to the light receiving portion. It is characterized by doing.
  • the optical coupler since the optical coupler is configured as described above, it is possible to freely change the coupling length, which is the length of contact between the input optical fiber and the light receiving unit, or the propagation constant of the optical fiber. . Therefore, by making the coupling length between the input optical fiber and the light receiving section shorter or longer than the predetermined length, the light sent by the input optical fiber may or may not be branched to the light receiving section. Can do. Further, the light transmitted by the input optical fiber can be branched at a branching ratio corresponding to the coupling length or a branching ratio corresponding to the difference in propagation constant.
  • optical coupler according to the present invention can be roughly divided into the following four.
  • the light receiving section is an output optical fiber that outputs received light
  • the output optical fiber has a relatively thin outer diameter in a part of the longitudinal direction.
  • a narrow-diameter portion formed, and one of the input optical fiber and the output optical fiber, or both the input optical fiber and the output optical fiber are bent at the small-diameter portion.
  • the curved portion of one of the input optical fiber or the output fiber is in contact with the other narrow diameter portion, or both of the input optical fiber and the output fiber.
  • the branching ratio can be freely changed by adjusting the force with which the input optical fiber and the output optical fiber are pressed against each other to change the coupling length. Further, since the elastic force of the curved portion can be used when the input optical fiber and the output optical fiber are brought close to or away from each other, the structure of the optical coupler can be simplified.
  • the light receiving section is an output optical fiber that outputs received light
  • the output optical fiber has a relatively thin outer diameter in a part of the longitudinal direction.
  • a narrow-diameter portion formed, and one of the input optical fiber and the output optical fiber, or both the input optical fiber and the output optical fiber are bent at the small-diameter portion.
  • the curved portion of one of the input optical fiber or the output fiber is in contact with the other narrow diameter portion, or both of the input optical fiber and the output fiber.
  • the curved portions are in contact with each other, and one of the input optical fiber and the output optical fiber is twisted with respect to the other, centering on a portion where the input optical fiber and the output optical fiber are in contact with each other. Rotating in the direction
  • a virtual plane where the virtual plane and the output optical fiber for the input optical fiber formed forms varies in a range of a predetermined angle is varied the coupling length.
  • the branching ratio can be freely changed by adjusting the angle formed by the input optical fiber and the output optical fiber to change the coupling length.
  • the light receiving section is an output optical fiber that outputs received light
  • the output optical fiber has a relatively thin outer diameter in a part of the longitudinal direction.
  • One of the input optical fiber and the output fiber has a curved portion whose bent small diameter portion is bent, and the input optical fiber is formed of the output optical fiber. Sliding on the narrow diameter portion of the output optical fiber in the direction in which the narrow diameter portion extends, or the narrow diameter portion of the input optical fiber in the direction in which the narrow diameter portion of the input optical fiber extends in the output optical fiber By sliding on the part, the propagation constant of the optical fiber changes.
  • the branching ratio can be freely changed by adjusting the relative position of the input optical fiber with respect to the output optical fiber to change the propagation constant.
  • the light receiving portion is a photodiode
  • the input optical fiber has a curved portion with a small-diameter portion bent, and the curve of the input optical fiber.
  • the branching ratio can be freely changed by adjusting the force with which the input optical fiber and the photodiode are pressed against each other to change the coupling length. Further, since the elastic force of the curved portion can be used when the input optical fiber and the photodiode are brought close to or away from each other, the structure of the optical coupler can be simplified.
  • the light branching method using the optical coupler according to the present invention for solving the above-mentioned problems has a narrow-diameter portion whose outer diameter is formed relatively thin in a part of the longitudinal direction, and is sent.
  • the input optical fiber includes: an input optical fiber that branches the light at the small diameter portion; and a light receiving portion that receives the light branched from the input optical fiber. From the input optical fiber by changing the coupling length or the optical fiber propagation constant, which is the length of contact between the small diameter portion of the input optical fiber and the light receiving portion. It is characterized in that the branching ratio of light branched to the light receiving unit is changed.
  • the coupling length which is the length of contact between the input optical fiber and the light receiving unit, can be freely changed. Therefore, by making the coupling length between the input optical fiber and the light receiving section shorter or longer than the predetermined length, the light sent by the input optical fiber may or may not be branched to the light receiving section. Can do. Further, the light transmitted by the input optical fiber can be branched at a branching ratio corresponding to the coupling length or a branching ratio corresponding to the difference in propagation constant.
  • the light branching method that uses the optical coupler according to the present invention can be roughly divided into the following four methods.
  • the light receiving unit is an output optical fiber that outputs received light
  • the output optical fiber is a part of the longitudinal direction.
  • the outer diameter has a small diameter portion formed relatively thin, one of the input optical fiber and the output optical fiber, or both the input optical fiber and the output optical fiber,
  • the narrow-diameter portion has a curved portion bent, and the one of the input optical fiber or the output fiber is brought into contact with the other thin-diameter portion, or the input optical fiber and
  • the branching ratio can be freely changed. Further, since the elastic force of the curved portion can be used when the input optical fiber and the output optical fiber are brought close to or away from each other, the structure of the optical coupler can be simplified.
  • the light receiving unit is an output optical fiber that outputs received light
  • the output optical fiber is a part of the longitudinal direction.
  • the outer diameter has a small diameter portion formed relatively thin, one of the input optical fiber and the output optical fiber, or both the input optical fiber and the output optical fiber,
  • the narrow-diameter portion has a curved portion bent, and the one of the input optical fiber or the output fiber is brought into contact with the other thin-diameter portion, or the input optical fiber and One of the input optical fiber and the output optical fiber, with the curved portions of both of the output fibers in contact with each other, with the input optical fiber and the output optical fiber in contact with each other.
  • To twist one against the other By rotating, by changing the virtual plane formed by the virtual plane the output optical fiber, wherein the input optical fiber formed in a range of a predetermined angle is varied the combined length.
  • the branching ratio can be freely changed.
  • the light receiving unit is an output optical fiber that outputs received light, and the output optical fiber is a part of the longitudinal direction.
  • An outer diameter of the input optical fiber or one of the output fibers has a curved portion whose bent diameter portion is bent, and the input optical fiber Slides on the small diameter portion of the output optical fiber in the direction in which the small diameter portion of the output optical fiber extends, or the output optical fiber extends in the direction in which the small diameter portion of the input optical fiber extends.
  • the propagation constant of the optical fiber is changed by sliding on the small diameter portion of the input optical fiber.
  • the branching ratio can be freely changed.
  • the light receiving portion is a photodiode
  • the input optical fiber has a curved portion whose bent portion is bent
  • the branching ratio can be freely changed. Further, since the elastic force of the curved portion can be used when the input optical fiber and the photodiode are brought close to or away from each other, the structure of the optical coupler can be simplified.
  • optical coupler and the optical branching method using the optical coupler according to the present invention a small and simple optical coupler capable of branching light at a necessary branching ratio when necessary, and the optical coupler therefor It is possible to provide a method of splitting light using
  • the basic configuration of the optical couplers 1, 1A, 1B, 2, 2A, 3, and 4 according to the present invention is formed with a relatively small outer diameter in a part of the longitudinal direction.
  • An input optical fiber 10 that has a small diameter portion 12 and branches the transmitted light at the small diameter portion 12; and light receiving portions 20, 40, and 50 that receive light branched from the input optical fiber 10.
  • the narrow diameter portion 12 of the input optical fiber 10 is in contact with the light receiving portions 20, 40, 50, and the thin diameter portion 12 of the input optical fiber 10 and the light receiving portions 20, 40, 50 are in contact with each other.
  • An optical coupler in which the branching ratio S of the light branched from the input optical fiber to the light receiving unit is changed by changing the coupling length or the propagation constant of the optical fiber, and any of the following (1) to (4)
  • This is an optical coupler of the form described in one.
  • the light receiving portions 20, 40, and 50 have a narrow-diameter portion 22 formed with a relatively thin outer diameter in a part of the longitudinal direction, and an input optical fiber 10 is an output optical fiber 20 that receives light branched from 10, and one of the input optical fiber 10 and the output optical fiber 20, or both the input optical fiber 10 and the output optical fiber 20,
  • the narrow diameter portions 12 and 22 have curved curved portions 14 and 24, and the curved portions 14 and 24 in one of the narrow diameter portions 12 and 22 of the input optical fiber 10 or the output optical fiber and the other linear shape.
  • the narrow diameter portions 12 and 22 are brought into contact with each other, or the curved portions 14 and 24 in the narrow diameter portions 12 and 22 in both the input optical fiber 10 and the output optical fiber 20 are brought into contact with each other, and the input optical fiber 10 and output optical fiber 20 Using the elastic force in at least one of the curved portions 14 and 24, the input optical fiber 10 and the output optical fiber 20 are brought close to each other, and the pressing force of the both is changed, so that the small diameter portion of the input optical fiber 10 is changed. While the coupling length, which is the length at which 22 and the small-diameter portion 22 of the output optical fiber 20 are in contact with each other, is lengthened, the input optical fiber 10 and the output optical fiber 20 are moved away from each other, and the pressing force between them is increased.
  • the optical couplers 1, 1A, and 1B change the branching ratio S of the light branched from the input optical fiber 10 to the output optical fiber 20 by being changed and the coupling length is shortened.
  • the light receiving parts 20, 40, 50 have a narrow diameter part 22 formed with a relatively small outer diameter in a part of the longitudinal direction, and an input optical fiber.
  • 10 is an output optical fiber 20 that receives light branched from 10, and one of the input optical fiber 10 and the output optical fiber 20, or both the input optical fiber 10 and the output optical fiber 20,
  • the narrow diameter portions 12 and 22 have curved curved portions 14 and 24, and the curved portions 14 and 24 in one narrow diameter portions 12 and 22 of the input optical fiber 10 or the output optical fiber 20 and the other linear shape.
  • the curved portions 14 and 24 of the narrow diameter portions 12 and 22 of both the input optical fiber 10 and the output optical fiber 20 are in contact with each other, and the input light Fiber 10 and output optical fiber 20
  • the outer diameters of the narrow diameter portions 12 and 22 are formed to be 5 ⁇ m or more and 10 ⁇ m or less, and the input optical fiber 10 and the output optical fiber 20 are centered on a portion where the input optical fiber 10 and the output optical fiber 20 are in contact with each other. Is rotated in a direction twisted with respect to the other, the virtual planes P1 and P11 formed by the input optical fiber 10 and the virtual planes P2 and P22 formed by the output optical fiber 20 are 0 degrees or more and 5 degrees or less.
  • the coupling length is changed to change the branching ratio S of the light branched from the input optical fiber 10 to the output optical fiber 20, thereby changing the optical couplers 2 and 2A.
  • the light receiving portions 20, 40, and 50 have a narrow-diameter portion 42 formed with a relatively thin outer diameter in a part of the longitudinal direction, and an input optical fiber 10 is an output optical fiber 40 that receives light branched from 10, and one of the input optical fiber 10 or the output optical fiber 40 has a curved portion 14 in which the narrow diameter portions 12 and 42 are bent,
  • the input optical fiber 10 slides between the connecting portions 43 connecting the main body portion 41 and the small diameter portion 42 of the output optical fiber 40, or the output optical fiber 40 is the main body portion 11 of the input optical fiber 10.
  • the relative position between the input optical fiber 10 and the output optical fiber 40 is adjusted by sliding between the connecting portions 13 that connect the diameter portion 12, and the input optical fiber 10 and the output optical fiber 40
  • the difference in the propagation constant ⁇ of Te, branching ratio S of the light branched from the input optical fiber 10 to the output optical fiber 40 is an optical coupler 3 varies.
  • the optical coupler of the fourth embodiment is a photodiode 50 in which the light receiving units 20, 40, 50 receive light branched from the input optical fiber 10, and the input optical fiber 10 has a small diameter.
  • the curved portion 14 is bent, and the curved portion 14 of the input optical fiber 10 and the tip surface of the photodiode 50 are brought into contact with each other, and the elastic force in the curved portion 14 of the input optical fiber 10 is utilized.
  • the force with which the input optical fiber 10 is pressed against the photodiode 50 is changed, and the coupling length is increased, while the input optical fiber 10 and the photodiode 50 are increased.
  • the distance at which the input optical fiber 10 is pressed against the photodiode 50 is changed, and the coupling length is shortened.
  • Splitting ratio S of the light branched from the input optical fiber 10 to the photodiode 50 is optical coupler 4 to change.
  • the branching ratio S of the light branched from the input optical fiber 10 to the light receiving units 20 and 50 changes.
  • the branching ratio S of the light branched from the input optical fiber 10 to the light receiving unit 40 changes as the propagation constant of the optical fiber changes.
  • the clad refractive index is generally smaller than the core refractive index. Therefore, when the input optical fiber 10 extends linearly, the light traveling through the core of the input optical fiber 10 is totally reflected inside the core and does not leak into the cladding. However, when the input optical fiber 10 has a curved portion, particularly when the curvature radius of the curved portion is small, the light traveling through the core is incident on the boundary surface between the core and the cladding at an incident angle smaller than the critical angle. Incident. Therefore, in the curved portion, the light traveling through the core is not totally reflected inside the core, and a part leaks into the cladding.
  • the optical couplers 1, 1A, 1B, 2, 2A, 3, and 4 branch the light transmitted by the input optical fiber to the light receiving units 20, 40, and 50 at the position of the curved portion 14. ing.
  • a general fiber fusion type optical coupler is configured by extending and fusing an input optical fiber and an output optical fiber. A portion where the input optical fiber and the output optical fiber are extended and fused is referred to as a “fused / stretched portion”.
  • this fiber fusion type optical coupler light transmitted by an input optical fiber is branched to an output optical fiber by a fusion / extension unit.
  • the branch ratio S of this fiber fusion type optical coupler the length of the fusion / extension part in the optical fiber is the cross-sectional shape of the optical fiber in the fusion / extension part, and the clad part in the fusion / extension part and its surroundings. And the refractive index and the wavelength of light incident on the optical fiber.
  • This branching ratio S can be expressed by (Formula 1). As shown in (Formula 1), the branching ratio S can be expressed as a trigonometric function of the length L of the fused / stretched portion. Therefore, in the optical couplers 1, 1A, 1B, 2, 2A, 4, the branching ratio S changes as the coupling length changes.
  • Equation 1 L is the length of the fusion / extension part. Further, C in (Expression 1) is a value represented by (Expression 2).
  • Equation (2) ⁇ is the wavelength of the signal light, n 2 is the refractive index of the clad of the optical fiber, and a is the minor axis in the cross section of the fusion / extension part.
  • V in (Expression 2) is a value represented by (Expression 3).
  • n 3 is the refractive index of the surrounding medium.
  • K is a wave number in a vacuum expressed by (Expression 4).
  • the graph shown in FIG. 8 shows an example of the relationship between the branching ratio S and the length of the fusion / extension part in which the optical fiber is stretched and the outer circumferences are fused.
  • the horizontal axis of the graph shown in FIG. 8 is the length L of the fusion / extension part where the optical fiber is stretched and the outer circumferences are fused, and the vertical axis is the branching ratio S.
  • the branching ratio S can be expressed as a trigonometric function of the length L of the fusion / extension part, the branching ratio S is accompanied by a change in the length L of the fusion / extension part. , Change periodically.
  • optical couplers 1, 1A, 1B, 2, 2A, 3 and 4 it is possible to branch light at a necessary branching ratio S when necessary, and an optical coupler having a small and simple structure and the optical coupler thereof. There is a specific effect that a method of splitting light using can be provided.
  • optical coupler according to the present invention and a light branching method using the optical coupler will be described for each embodiment.
  • the optical couplers 1, 1 ⁇ / b> A, 1 ⁇ / b> B of the first embodiment have a small diameter portion 12 that is formed with a relatively small outer diameter in a part of the longitudinal direction, and the transmitted light is branched at the small diameter portion 12.
  • one of the input optical fiber 10 and the output optical fiber 20 or both the input optical fiber 10 and the output optical fiber 20 has a curved portion 14 in which the narrow-diameter portions 12 and 22 are bent.
  • the curved portions 14 and 24 in one of the thin diameter portions 12 and 22 of the input optical fiber 10 or the output optical fiber 20 are in contact with the other linear thin diameter portions 12 and 22 Or both of the input optical fiber 10 and the output optical fiber 20
  • the curved portions 14 and 24 in the diameter portions 12 and 22 are brought into contact with each other, and the input optical fiber 10 is utilized by utilizing the elastic force in at least one of the curved portions 14 and 24 of the input optical fiber 10 and the output optical fiber 20.
  • the output optical fiber 20 are brought close to each other, and the pressing force of the two is changed, and the coupling length is a length in which the narrow diameter portion 12 of the input optical fiber 10 and the narrow diameter portion 22 of the output optical fiber 20 are in contact with each other.
  • the input optical fiber 10 and the output optical fiber 20 are moved away from each other, the pressing force of both is changed, and the coupling length is shortened, so that the input optical fiber 10 and the output optical fiber 20 are reduced.
  • the branching ratio S of the light branched into is changed.
  • the optical branching method performed by the optical couplers 1, 1 ⁇ / b> A, and 1 ⁇ / b> B has a small-diameter portion 12 having a relatively small outer diameter in a part of the longitudinal direction, and the transmitted light is transmitted by the small-diameter portion 12.
  • the curved portions 14 and 24 are bent, and the curved portions 14 and 24 in one narrow-diameter portion 12 and 22 of the input optical fiber 10 or the output optical fiber 20 and the other linear shape are provided.
  • the small diameter portions 12 and 22 are brought into contact with each other, or the input optical fibers are
  • the curved portions 14 and 24 of the narrow diameter portions 12 and 22 of both the bar 10 and the output optical fiber 20 are brought into contact with each other, and at least one of the curved portions 14 and 24 of the input optical fiber 10 and the output optical fiber 20 Using the elastic force, the input optical fiber 10 and the output optical fiber 20 are brought close to each other to change the pressing force between them, and the narrow diameter portion 12 of the input optical fiber 10 and the small diameter of the output optical fiber 20 are changed.
  • the optical coupler 1 includes an input optical fiber 10 and an output optical fiber 20 as shown in FIG.
  • the input optical fiber 10 is an optical fiber through which branched light is sent, and includes a main body portion 11, a small diameter portion 12, and a connection portion 13.
  • the main body 11 is the input optical fiber 10 itself, and the outer diameter thereof is the same as the outer diameter of the input optical fiber 10 itself.
  • the small diameter portion 12 is a portion where the outer diameter of the input optical fiber 10 is formed relatively thin in a part of the input optical fiber 10 in the longitudinal direction.
  • the main body part 11 and the small diameter part 12 are connected by a connection part 13.
  • connection part 13 is a part where the outer diameter gradually decreases from the main body part 11 toward the small diameter part 12 on both sides in the longitudinal direction of the small diameter part 12.
  • the input optical fiber 10 has a curved portion 14 in which the small diameter portion 12 is bent. In the input optical fiber 10, the extending direction of the input optical fiber is inverted by the curved portion 14.
  • the input optical fiber 10 has an outer diameter of 125 ⁇ m or less, and a core diameter of 10 ⁇ m or less.
  • the outer diameter of the small diameter portion 12 is 1 ⁇ m or more and 20 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 13 is 0.05% or more and 2.5% or less.
  • the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the ratio of the amount of change with respect to the latest outer diameter is 10% or more and 20% or less.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the output optical fiber 20 is an optical fiber into which branched light is sent. Similar to the input optical fiber 10, the output optical fiber 20 includes a main body portion 21, a small diameter portion 22, and a connection portion 23. The configurations of the main body 21, the small diameter portion 22, and the connection portion 23 of the output optical fiber 20 are the same as the configurations of the main body portion 11, the small diameter portion 12, and the connection portion 13 of the input optical fiber 10. Further, the output optical fiber 20 has a curved portion 24 in which the small diameter portion 22 is bent. In the output optical fiber 20, the extending direction of the output optical fiber is inverted by the curved portion 24.
  • the output optical fiber 20 has an outer diameter of 125 ⁇ m or less, and a core diameter of 10 ⁇ m or less.
  • the outer diameter of the small diameter portion 22 is 1 ⁇ m or more and 20 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 23 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the input optical fiber 10 and the output optical fiber 20 are arranged in the same plane or at a position close to the same plane, and the curved portions 14 and 24 thereof are in contact with each other.
  • a portion where the curved portions 14 and 24 are in contact with each other is a coupling portion where a part of the light traveling through the input optical fiber 10 is branched to the output optical fiber 20.
  • the coupling portion has a certain length. In the present specification, the length of the coupling portion is referred to as “coupling length”.
  • the coupling length is shortened by moving the input optical fiber 10 and the output optical fiber 20 away from each other.
  • the coupling length becomes longer as the input optical fiber 10 and the output optical fiber 20 approach each other.
  • the optical coupler 1 changes the coupling length by moving the input optical fiber 10 and the output optical fiber 20 close to each other or away from each other. By changing the coupling length, the optical coupler 1 branches the light traveling through the input optical fiber 10 to the output optical fiber 20 as much as necessary when necessary.
  • the optical coupler 1 can change the coupling length by adjusting the force with which the input optical fiber 10 and the output optical fiber 20 are pressed against each other. As a result, the optical coupler 1 can freely change the branching ratio S. In addition, the optical coupler 1 can use the elastic force of the curved portions 14 and 24 when the input optical fiber 10 and the output optical fiber 20 are moved closer to or away from each other, so that the structure is simplified. be able to.
  • the coupling length of the optical coupler 1 varies in the range of 0 mm to 12 mm.
  • the branching ratio S at that time varies in the range of 0% or more and 100% or less. For example, in FIG. 1, when the coupling length is 2 mm, 80% of the light transmitted from the main body portion 11a of the input optical fiber 10 proceeds to the main body portion 11b of the input optical fiber 10, and the main body of the output optical fiber 20 It does not branch to the part 21a. Further, 20% of the light branches to the main body portion 21 b of the output optical fiber 20.
  • the light transmitted from the main body portion 11a of the input optical fiber 10 branches 100% to the main body portion 21b of the output fiber 20, and when the coupling length is about 12 mm, the input optical fiber.
  • the light transmitted from the ten main body portions 11 a does not branch to the output optical fiber 20, but all proceeds to the main body portion 11 b of the input optical fiber 10.
  • one of the input optical fiber 10 and the output optical fiber 20 uses an optical fiber provided with a curved portion, and the other uses an optical fiber extending linearly. It can also be configured.
  • FIG. 2 shows an example.
  • the input optical fiber 10 of the optical coupler 1 ⁇ / b> A shown in FIG. 2 includes a main body portion 11, a small diameter portion 12, and a connection portion 13. Further, the input optical fiber 10 has a curved portion 14 in which the small diameter portion 12 is bent. The curved portion 14 reverses the extending direction of the input optical fiber.
  • the output optical fiber 20 also includes a main body portion 21, a small diameter portion 22, and a connection portion 23. However, the narrow diameter portion 22 extends linearly.
  • the input optical fiber 10 and the output optical fiber 20 are disposed in the same plane or at a position close to the same plane, and the curved portion 14 of the input optical fiber 10 is It is configured by contacting the small diameter portion 22.
  • the coupling length is shortened by moving the input optical fiber 10 away from the output optical fiber 20.
  • the coupling length becomes longer.
  • the coupling length is changed by moving the input optical fiber 10 closer to or away from the output optical fiber 20.
  • the optical coupler 1A branches the light traveling through the input optical fiber 10 to the output optical fiber 20 as much as necessary when necessary.
  • the optical coupler 1A shown in FIG. 2 is configured by providing the curved portion 14 in the narrow diameter portion 11 of the input optical fiber 10 and extending the narrow diameter portion 21 of the output optical fiber 20 linearly.
  • the optical coupler 1A may be configured by providing the curved portion 24 in the narrow diameter portion 21 of the output optical fiber 20 while extending the narrow diameter portion 11 of the input optical fiber 100 linearly. In this case, the optical coupler 1A changes the coupling length by moving the output optical fiber 20 closer to or away from the input optical fiber 10.
  • FIG. 3 shows an optical coupler 1B in which an input optical fiber 10 and an output optical fiber 20 are accommodated in a case 30.
  • the case 30 includes an upper surface member 31 and a lower surface member 32.
  • the upper surface member 31 and the lower surface member 32 are opposed to each other with a certain interval.
  • a fixing member such as a screw maintains a form in which a certain interval is provided between the upper surface member 31 and the lower surface.
  • the input optical fiber 10 and the output optical fiber 20 are accommodated in a space formed between the upper surface member 31 and the lower surface member 32.
  • the curved portion 14 of the input optical fiber 10 and the curved portion 24 of the output optical fiber 20 are in contact with each other inside the case 30.
  • the optical coupler 1B is configured so that the output optical fiber 20 can be moved closer to or away from the input optical fiber 10 inside the case 30.
  • the optical coupler 1 ⁇ / b> B can also be configured so that the input optical fiber 10 can be moved closer to or away from the output optical fiber 20 inside the case 30.
  • the optical coupler 1B can also be configured to move both the input optical fiber 10 and the output optical fiber 20 within the case 30 so that they can be moved closer or farther away.
  • the optical couplers 1, 1 ⁇ / b> A, 1 ⁇ / b> B of the first embodiment are configured by applying a resin for adjusting the refractive index of light to the portion where the input optical fiber 10 and the output optical fiber 20 are in contact with each other.
  • a resin for adjusting the refractive index include an acrylic resin or an epoxy resin whose refractive index is close to that of glass.
  • one of the input optical fiber 10 and the output optical fiber 20, or both the input optical fiber 10 and the output optical fiber 20, 22 has curved portions 14 and 24 which are bent.
  • the optical coupler 2 is configured such that one of the curved portions 14 and 24 of the input optical fiber 10 or the output fiber 20 is in contact with the other narrow-diameter portions 12 and 22, or the input optical fiber 10 and the output optical fiber 10. Both curved portions 14, 24 of the fiber 20 are in contact with each other.
  • the input optical fiber 10 and the output optical fiber 20 are rotated in a direction in which one of the input optical fiber 10 and the output optical fiber 20 is twisted with respect to the other, with the input optical fiber 10 and the output optical fiber 20 in contact with each other.
  • the coupling plane is changed by changing the virtual planes P1 and P11 formed by the optical fiber 10 for use and the virtual planes P2 and 22 formed by the output optical fiber 20 within a predetermined angle range.
  • the optical couplers 2, 2 ⁇ / b> A of the second embodiment have a small diameter portion 12 that is formed with a relatively small outer diameter in a part of the longitudinal direction, and the transmitted light is transmitted by the small diameter portion 12.
  • the curved portions 14 and 24 in one narrow diameter portion 12 and 22 of the input optical fiber 10 or the output optical fiber 20 and the other linear thin diameter portions 12 and 22 are brought into contact with each other.
  • the input optical fiber 10 and the output optical fiber 20 The curved portions 14 and 24 of the narrower diameter portions 12 and 22 are in contact with each other, and the outer diameters of the narrow diameter portions 12 and 22 of the input optical fiber 10 and the output optical fiber 20 are formed to be 5 ⁇ m or more and 10 ⁇ m or less.
  • the input optical fiber 10 and the output optical fiber 20 are rotated in a direction in which one of the input optical fiber 10 and the output optical fiber 20 is twisted with respect to the other around the portion where the optical fiber 10 for output and the output optical fiber 20 are in contact with each other.
  • the coupling length is changed, so that the input optical fiber is changed.
  • the branching ratio S of the light branched from 10 to the output optical fiber 20 is changed.
  • the optical branching method performed by the optical couplers 2 and 2A has a small-diameter portion 12 formed with a relatively small outer diameter in a part in the longitudinal direction, and the transmitted light is branched by the small-diameter portion 12.
  • An input optical fiber 10, and an output optical fiber 20 that has a small-diameter portion 22 having a relatively thin outer diameter in a part of the longitudinal direction, and receives light branched from the input optical fiber 10;
  • And one of the input optical fiber 10 and the output optical fiber 20, or both the input optical fiber 10 and the output optical fiber 20, 22 has curved portions 14 and 24, and the curved portions 14 and 24 in one of the thin diameter portions 12 and 22 of the input optical fiber 10 or the output optical fiber 20 and the other linear thin diameter portion 12.
  • the optical coupler 2 according to the second embodiment includes an input optical fiber 10 and an output optical fiber 20 as shown in FIG.
  • the configuration of the input optical fiber 10 itself that constitutes the optical coupler 2 of the second embodiment and the configuration of the output optical fiber 20 itself are the same as those of the input optical fiber 10 itself that constitutes the optical coupler 1 of the first embodiment.
  • the configuration and the configuration of the output optical fiber 20 itself are the same. Therefore, the configurations of the input optical fiber 10 and the output optical fiber 20 of the optical coupler 2 of the second embodiment are the same as those of the input optical fiber 10 and the output optical fiber 20 of the optical coupler 1 of the first embodiment.
  • the same reference numerals as those in the configuration are attached to the drawings, and detailed description thereof is omitted.
  • the input optical fiber 10 of the optical coupler 2 has a main body part 11, a small diameter part 12 and a connection part 13. Further, the small diameter portion 12 has a curved portion 14 in which the extending direction of the input optical fiber 10 is reversed.
  • the output optical fiber 20 includes a main body portion 21, a small diameter portion 22, and a connection portion 23. Further, the narrow diameter portion 22 has a curved portion 24 where the extending direction of the output optical fiber 20 is reversed.
  • the curved portion 14 of the input optical fiber 10 and the curved portion 24 of the output optical fiber 20 are in contact with each other.
  • the input optical fiber 10 has an outer diameter of 125 ⁇ m or less, and a core diameter of 10 ⁇ m or less.
  • the outer diameter of the small diameter part 12 is 5 ⁇ m or more and 10 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 13 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the output optical fiber 20 also has an outer diameter of 125 ⁇ m or less and a core diameter of 10 ⁇ m or less, like the input optical fiber 10.
  • the outer diameter of the small diameter portion 22 is 5 ⁇ m or more and 10 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 23 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the coupling length is changed by rotating the output optical fiber 20 with respect to the input optical fiber 10.
  • the input optical fiber 10 and the output optical fiber 20 rotate between the form shown in FIG. 4A and the form shown in FIG.
  • the form shown in FIG. 4A is a form in which the virtual plane P1 formed by the input optical fiber 10 and the virtual plane P2 formed by the output optical fiber 20 form the same plane.
  • 4B is a form in which a virtual plane P1 formed by the input optical fiber 10 and a virtual plane P2 formed by the output optical fiber 20 are orthogonal to each other.
  • the length of the contact portion between the input optical fiber 10 and the output optical fiber 20 is such that the virtual plane P1 formed by the input optical fiber 10 and the virtual plane P2 formed by the output optical fiber 20 are on the same plane. In form, it is relatively long. That is, in this form, the bond length is long. On the other hand, the length of the contact portion between the input optical fiber 10 and the output optical fiber 20 is such that the virtual plane P1 formed by the input optical fiber 10 and the virtual plane P2 formed by the output optical fiber 20 are mutually different. In the orthogonal form, it is relatively short. That is, in this form, the bond length is short.
  • the coupling lengths are the input optical fiber 10 (virtual plane P ⁇ b> 1 formed by the input optical fiber 10) and the output optical fiber 20 (virtual plane P ⁇ b> 2 formed by the output optical fiber 20). Varies depending on the angle formed by. Therefore, the branching ratio S can be freely changed by adjusting the angle formed by the input optical fiber 10 and the output optical fiber 20.
  • the optical coupler 2 of the second embodiment includes a configuration in which the input optical fiber 10 is rotated with respect to the output optical fiber 20, a configuration in which the output optical fiber 20 is rotated with respect to the input optical fiber 10, and an input optical fiber. 10 and any form of the form which rotates both the optical fibers 20 for output may be sufficient.
  • the angle formed by the input optical fiber 10 and the output optical fiber 20 varies in the range of 0 ° to 5 °.
  • the branching ratio S at that time varies in the range of 0% or more and 100% or less.
  • the angle between the input optical fiber 10 and the output optical fiber 20 is 1 degree. 50% goes to the main body 11b of the input optical fiber 10, and 50% of the light branches to the main body 21b of the output optical fiber 20. The light does not branch into the main body 21 a of the output optical fiber 20.
  • the angle formed between the input optical fiber 10 and the output optical fiber 20 is about 5 degrees
  • the light transmitted from the main body 11a of the input optical fiber 10 is All proceed to the main body 11b of the input optical fiber 10.
  • the light transmitted from the main body 11 a of the input optical fiber 10 does not branch to the output optical fiber 20.
  • the optical coupler 2 changes the coupling length by rotating one of the input optical fiber 10 and the output optical fiber 20 with respect to the other.
  • the optical coupler 2 branches the light that has traveled through the input optical fiber 10 to the output optical fiber 20 as much as necessary when the coupling length is changed.
  • the above-described resin is applied to the portion where the input optical fiber 10 and the output optical fiber 20 are in contact with each other in order to adjust the refractive index of light.
  • the optical coupler 2 can be configured.
  • the optical coupler of the second embodiment can also be configured by providing a curved portion with a small-diameter portion bent on one of the input optical fiber 10 and the output optical fiber 20.
  • FIG. 5 shows an example.
  • the input optical fiber 10 of the optical coupler 2 ⁇ / b> A shown in FIG. 5 includes a main body portion 11, a small diameter portion 12, and a connection portion 13.
  • the narrow diameter portion 12 of the input optical fiber 10 has a curved portion 14 that is bent, and the extending direction of the input optical fiber is reversed by the curved portion 14.
  • the output optical fiber also includes a main body portion 21, a small diameter portion 22, and a connection portion 23. However, the narrow diameter portion 22 extends linearly.
  • the optical coupler 1 ⁇ / b> A is configured by the curved portion 14 of the input optical fiber 10 coming into contact with the narrow diameter portion 22 of the output optical fiber 20.
  • the optical coupler 1A has an input optical fiber 10 and an output optical fiber 20 as opposed to the other, with the input optical fiber 10 and the output optical fiber 20 in the center.
  • the coupling length is changed by changing the virtual plane P11 formed by the input optical fiber 10 and the virtual plane P22 formed by the output optical fiber 20 within a predetermined angle range.
  • the optical coupler 2A shown in FIG. 5 is configured by providing the curved portion 14 in the narrow diameter portion 11 of the input optical fiber 10 and extending the narrow diameter portion 21 of the output optical fiber 20 linearly. Yes. However, the optical coupler 2A may be configured by providing the curved portion 24 in the narrow diameter portion 21 of the output optical fiber 20 while extending the narrow diameter portion 11 of the input optical fiber 10 linearly.
  • one of the input optical fiber 10 and the output fiber 40 has a curved portion 14 in which the narrow diameter portions 12 and 42 are bent, and the input optical fiber 10 is used for output.
  • the optical fiber 40 slides on the thin diameter portion 42 of the output optical fiber 40 in the extending direction, or the output optical fiber 40 is input in the direction in which the thin diameter portion 12 of the input optical fiber 10 extends. By sliding on the small-diameter portion 12 of the optical fiber 10 for use, the propagation constant of the optical fiber changes.
  • the optical coupler 3 has a small-diameter portion 12 formed with a relatively small outer diameter in a part in the longitudinal direction, and the transmitted light is branched by the small-diameter portion 12.
  • An input optical fiber 10, and an output optical fiber 40 that has a small-diameter portion 42 that is formed with a relatively small outer diameter in a part of the longitudinal direction, and that receives light branched from the input optical fiber 10;
  • one of the input optical fiber 10 and the output optical fiber 40 has a curved portion in which the narrow diameter portions 12 and 42 are bent, and the input optical fiber 10 is a main body portion of the output optical fiber 40.
  • the light branching method performed by the optical coupler 3 includes a narrow-diameter portion 12 having a relatively small outer diameter in a part of the longitudinal direction, and for input to branch the transmitted light at the thin-diameter portion 12.
  • An optical fiber 10 and an output optical fiber 40 having a small diameter portion 42 formed with a relatively small outer diameter in a part of the longitudinal direction and receiving light branched from the input optical fiber 10;
  • One of the input optical fiber 10 and the output optical fiber 40 has a curved portion in which the narrow diameter portions 12 and 42 are bent, and the input optical fiber 10 is the output optical fiber.
  • the connecting portion 43 connecting the main body portion 41 and the small diameter portion 42 of the 40 slides between the connecting portions 43 or connecting the main body portion 11 of the input optical fiber 10 and the small diameter portion 12 to each other.
  • the input optical fiber 1 By adjusting the relative position between the input optical fiber 10 and the output optical fiber 40 to change the propagation constant difference between the input optical fiber 10 and the output optical fiber 40. This is a method of changing the branching ratio S of the branched light.
  • the optical coupler 3 will be described in detail with reference to the drawings.
  • the optical coupler 3 of the third embodiment includes an input optical fiber 10 and an output optical fiber 40 as shown in FIG.
  • the configuration of the input optical fiber 10 of the optical coupler 3 is the same as the configuration of the input optical fiber 10 of the optical coupler 1 of the first embodiment. Therefore, the configuration of the input optical fiber 10 of the optical coupler 3 is given the same reference numeral as the configuration of the input optical fiber 10 of the optical coupler 1 of the first embodiment, and detailed description thereof is omitted.
  • the input optical fiber 10 includes a main body part 11, a small diameter part 12, and a connection part 13. Further, the narrow diameter portion 13 of the input optical fiber 10 has a curved portion 14 in which the extending direction of the input optical fiber 10 is reversed.
  • the input optical fiber 10 has an outer diameter of 125 ⁇ m or less, and a core diameter of 10 ⁇ m or less.
  • the outer diameter of the small diameter part 12 is 5 ⁇ m or more and 20 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 13 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the output optical fiber 40 extends linearly.
  • the output optical fiber 40 includes a main body portion 41, a small diameter portion 42, and a pair of connection portions 43.
  • the main body 41 is a portion having the outer diameter of the optical fiber itself.
  • the small-diameter portion 42 is a portion in which a part of the outer diameter in the longitudinal direction is formed relatively thin.
  • the connecting portion 43 is a portion where the outer diameter gradually decreases from the main body portion 41 toward the small diameter portion 42 on both sides in the longitudinal direction of the small diameter portion 42, and connects the main body portion 41 and the small diameter portion 42. is there.
  • the outer diameters of the main body portion 41, the small diameter portion 42, and the connection portion 43 of the output optical fiber 40 are formed to be the same as the outer diameters of the main body portion 11, the thin diameter portion 12, and the connection portion 13 of the input optical fiber 10. It can also be formed large.
  • the outer diameter of the output optical fiber 40 is 125 ⁇ m or less, and the core diameter is 10 ⁇ m or less.
  • the outer diameter of the small diameter portion 42 is 1 ⁇ m or more and 20 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 43 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the curved portion 14 of the input optical fiber 10 is in contact with the outer peripheral surface of the output optical fiber 40. Then, when the input optical fiber 10 slides between the connection portions 43 of the output optical fiber 40, the propagation constant of the optical fiber changes. That is, in this optical coupler 3, the branching ratio S can be freely changed by adjusting the relative position of the input optical fiber 10 with respect to the output optical fiber 40.
  • the optical coupler 3 of this embodiment changes the branching ratio S using the difference ⁇ between the propagation constant ⁇ of the input optical fiber 10 and the propagation constant ⁇ of the output optical fiber 40.
  • the difference ⁇ of the propagation constant ⁇ can be obtained by (Equation 6).
  • the propagation constant ⁇ can be expressed by (Expression 7). However, the value obtained by (Expression 7) is a propagation constant in the longitudinal direction of the optical fiber.
  • ⁇ 1 is a propagation constant of the input optical fiber 10
  • ⁇ 2 is a propagation constant of the output optical fiber 40.
  • n 1 is the refractive index of the core
  • k is a value determined by (Expression 4).
  • the propagation constant ⁇ varies depending on the core diameter and the core refractive index, as shown in (Expression 7).
  • F represented by (Expression 8) changes, and the output P of the combined light expressed by (Expression 9) changes. For this reason, the branching ratio S of the optical coupler 3 changes.
  • the coupling fiber is moved by 2 mm. In this case, the coupling rate is 20%.
  • the mechanism by which the propagation constant ⁇ changes will be described.
  • the input optical fiber 10 slides between the connection portions 22 connecting the main body portion 21 and the small diameter portion 22 of the output optical fiber 20.
  • the input optical fiber 10 does not slide only the narrow diameter portion 22 of the output optical fiber 20 but slides including the connection portion 23 in which the outer diameter of the output optical fiber 20 changes.
  • the outer diameters of the input optical fiber 10 and the output optical fiber 20 constituting the optical coupler 3 change at the connection portions 13 and 23, respectively.
  • the inner core diameter changes as the outer diameter is changed. That is, the diameters of the cores of the input optical fiber 10 and the output optical fiber 20 are smaller in the small diameter portions 12 and 22 than in the main body portions 11 and 21.
  • the width of the waveguide (core diameter) is sufficiently wide, light is guided only through the core.
  • the diameter of the waveguide width (core diameter) is small, the light also has energy distribution in the cladding existing outside the core. This phenomenon occurs when the refractive index of the core changes when the core diameter changes.
  • the propagation constant ⁇ changes as the refractive index n 1 of the core changes.
  • the refractive index n 1 of the core changes as the core diameter changes as described above. Accordingly, the refractive index n 1 of the core is changed along with the diameter of the core is changed, as a result, the propagation constant ⁇ is varied.
  • the input optical fiber 10 does not slide only on the narrow diameter portion of the output optical fiber 20, but includes the connection portion 23 in which the outer diameter of the optical fiber changes.
  • the connecting portion 23 not only the outer diameter of the output optical fiber 20 but also the diameter of the core changes. Therefore, when the connecting portion 23 is slid, the refractive index n 1 changes as the core diameter changes, and as a result, the propagation constant ⁇ changes.
  • the resin described above is applied to the portion where the input optical fiber 10 and the output optical fiber 40 are in contact with each other in order to adjust the refractive index of light.
  • the optical coupler 3 can also be configured.
  • the optical coupler 3 is configured with the input optical fiber 10 having the curved portion 14 and the output optical fiber 40 extending linearly has been described above as an example.
  • the optical coupler of the third embodiment can also be configured by an input optical fiber extending linearly and an output optical fiber having a curved portion. In this case, the propagation constant is changed by moving the output optical fiber along the narrow diameter portion of the input optical fiber.
  • the optical coupler 4 includes an input optical fiber that has a small-diameter portion 12 that is formed with a relatively small outer diameter at a part in the longitudinal direction, and branches the transmitted light at the small-diameter portion 12. 10 and a photodiode 50 that receives the light branched from the input optical fiber 10, and the input optical fiber 10 has a curved portion 14 in which the narrow diameter portion 12 is bent, and the input light
  • the curved portion 14 of the fiber 10 and the tip surface of the photodiode 50 are brought into contact with each other, and the elastic force in the curved portion 14 of the input optical fiber 10 is used to bring the input optical fiber 10 and the photodiode 50 closer to each other.
  • the force with which the input optical fiber 10 is pressed against the photodiode 50 is changed to increase the coupling length, while the input optical fiber 10 and the photodiode 50 are moved away from each other.
  • the force with which the fiber 10 is pressed against the photodiode 50 is changed, and the coupling length is shortened, whereby the branching ratio S of the light branched from the input optical fiber 10 to the photodiode 50 is changed. .
  • the light branching method performed by the optical coupler 4 has a narrow portion 12 having a relatively thin outer diameter in a part of the longitudinal direction, and for input to branch the transmitted light at the narrow portion 12.
  • An optical coupler 4 including an optical fiber 10 and a photodiode 50 that receives light branched from the input optical fiber 10 is used, and the input optical fiber 10 has a curved portion in which a small diameter portion 12 is bent.
  • the curved portion 14 of the input optical fiber 10 and the tip surface of the photodiode 50 are brought into contact with each other, and the elastic force in the curved portion 14 of the input optical fiber 10 is utilized to By approaching the diode 50, the force for pressing the input optical fiber 10 against the photodiode 50 is changed to increase the coupling length, while the input optical fiber 10 is kept away from the photodiode 50. In this manner, the force for pressing the input optical fiber 10 against the photodiode 50 is changed to shorten the coupling length, and the branching ratio S of the light branched from the input optical fiber 10 to the photodiode 50 is changed. is there.
  • the configuration of the input optical fiber 10 of the optical coupler 4 is the same as the configuration of the input optical fiber 10 of the optical coupler 1 of the first embodiment. Therefore, the configuration of the input optical fiber 10 of the optical coupler 4 is given the same reference numeral as the configuration of the input optical fiber 10 of the optical coupler 1 of the first embodiment, and detailed description thereof is omitted.
  • the input optical fiber 10 includes a main body part 11, a small diameter part 12, and a connection part 13.
  • the narrow diameter portion 12 of the input optical fiber 10 has a curved portion 14 in which the extending direction of the input optical fiber 10 is reversed.
  • the input optical fiber 10 has an outer diameter of 125 ⁇ m or less, and a core diameter of 10 ⁇ m or less.
  • the outer diameter of the small diameter portion 12 is 1 ⁇ m or more and 20 ⁇ m or less.
  • the change rate of the outer diameter in the connection part 13 is 0.05% or more and 2.5% or less. Note that the rate of change of the outer diameter here is the rate at which the outer diameter changes when the input optical fiber 10 moves 1 mm in the longitudinal direction.
  • the difference between the refractive index (n 1 ) of the core and the refractive index (n 2 ) of the clad represented by (Equation 5) is about 0.3%.
  • the photodiode 50 is a semiconductor diode that functions as a photodetector.
  • the photodiode 50 can be of various structures such as a PN type, PIN type, Schottky type, and avalanche (APD) type.
  • the optical coupler 4 is configured such that the curved portion 14 of the input optical fiber 10 is in contact with the front end surface 51 of the photodiode 50.
  • the coupling length is shortened by moving the input optical fiber 10 and the photodiode 50 away from each other.
  • the coupling length increases as the input optical fiber 10 and the photodiode 50 approach each other.
  • the optical coupler 4 changes the coupling length by moving the input optical fiber 10 and the photodiode 50 closer to each other or away from each other. By changing the coupling length, the optical coupler 4 branches the light traveling through the input optical fiber 10 to the photodiode 50 as much as necessary when necessary.
  • the coupling length is changed by adjusting the force with which the input optical fiber 10 and the photodiode 50 are pressed against each other. Therefore, the branching ratio S can be freely changed by adjusting the pressing force. Further, since the elastic force of the curved portion 14 can be used when the input optical fiber 10 and the photodiode 50 are moved closer to or away from each other, the structure of the optical coupler 4 can be simplified.
  • the coupling length of the optical coupler 4 varies in the range of 1 mm or more and 5 mm or less.
  • the branching ratio S at that time changes within a range of 5% or less. For example, when the coupling length is 3 mm, 85% of the light transmitted from the main body portion 11 a of the input optical fiber 10 proceeds to the main body portion 11 b of the input optical fiber 10, and 5% of the light passes to the photodiode 50. Branch.
  • the above-described resin is applied to the portion where the input optical fiber 10 and the photodiode 50 are in contact with each other to form an optical coupler. 4 can also be configured.
  • optical couplers 1, 1A, 1B, 2, 2A, 3, and 4 according to the first to fourth embodiments have been described above.
  • the optical couplers 1, 1 ⁇ / b> A, 1 ⁇ / b> B, 2, 2 ⁇ / b> A, 3, 4 can also utilize the property that the branching ratio S depends on the wavelength of light.
  • the branching ratio S depends on the wavelength of the incident light, as shown in (Expression 1) and (Expression 2) described above. This property is applied to the optical couplers 1, 1A, 1B, 2, 2A, 3, and 4. For example, light having a wavelength of ⁇ 1 and light having a wavelength of ⁇ 2 are made incident on the input optical fiber 10 of the optical coupler 1 of the first embodiment to change the coupling length.
  • the branching ratio S depends on the wavelength of light
  • a difference can be provided in the branching ratio S of light of each wavelength by changing the coupling length.
  • the branching ratio of light having a wavelength of ⁇ 1 is S ⁇ 1
  • the branching ratio of light having a wavelength of ⁇ 2 is S ⁇ 2.
  • (S ⁇ 1, S ⁇ 2) represents the value of the branching ratio of each wavelength when light having a wavelength of ⁇ 1 and light having a wavelength of ⁇ 2 are incident on the optical coupler 1.
  • (S ⁇ 1, S ⁇ 2) is, for example, (0%, 0%), (100%, 100%), (50%, 100%), ( A difference can be provided in the branching ratio S of light of each wavelength, such as (0%, 50%), (50%, 0%), and (100%, 0%).
  • the branching ratio of the light of each wavelength shown here shows an example, and the branching ratio of the light of each wavelength can be branched by providing a difference other than this numerical value.
  • the wavelength of the incident light is not limited to two types, and light of three or more types of wavelengths can be incident.
  • the optical couplers 1, 1 ⁇ / b> A, 1 ⁇ / b> B, 2 ⁇ / b> A, 3, 4 of the first embodiment to the fourth embodiment when utilizing the property that the branching ratio S depends on the wavelength of light, for example, the optical couplers 1, 1 ⁇ / b> A are used.
  • 1B, 2, 2A, 3 and 4 are provided with a selection switch for selecting a wavelength to be incident.
  • the optical couplers 1, 1 ⁇ / b> A, 1 ⁇ / b> B, 2, 2 ⁇ / b> A, 3, 4 of the first to fourth embodiments when using the property that the branching ratio S depends on the wavelength of light, for example, the optical coupler 1 , 1A, 1B, 2, 2A, 3 and 4 give the change of the wavelength of the light source as the light power (unit: watt (W)) or change the coupling length so that the light power becomes constant. Thus, length information (movement amount) can be given. That is, when the property that the branching ratio S depends on the wavelength of light is used, the optical couplers 1, 1A, 1B, 2, 2A, 3, and 4 function as wavelength monitors.
  • the optical coupler 1 is configured by bringing the narrow diameter portion 12 of the input optical fiber 10 and the narrow diameter portion 14 of the output optical fiber 20 into contact with each other. This was carried out by obtaining the bonding rate S of
  • the optical coupler 1 shown in FIG. 9 has a configuration in which curved portions 14 and 24 are provided in both the narrow diameter portion 12 of the input optical fiber 10 and the narrow diameter portion 22 of the output optical fiber 20.
  • An optical coupler 1 ⁇ / b> C shown in FIG. 10 has a configuration in which the narrow diameter portion 12 of the input optical fiber 10 is linearly extended and the curved portion 24 is provided only in the narrow diameter portion 22 of the output optical fiber 20.
  • optical couplers 1 shown in FIG. 9 Two types were prepared.
  • One optical coupler is an optical coupler 1 in which a resin is applied to a portion where the small diameter portion 12 of the input optical fiber 10 and the small diameter portion 14 of the output optical fiber 20 are in contact with each other.
  • Another optical coupler is an optical coupler 1 to which no resin is applied.
  • the experiment was performed by changing the coupling length X of each optical coupler 1 and determining how the coupling rate S changes. At that time, light having a wavelength of 1550 nm was input from the first port P1 of the optical coupler 1, and the outputs of the second port P2 and the fourth port P4 were measured.
  • the coupling rate S here means the ratio of the output from the fourth port P4 to the input of the first port P1.
  • the applied resin is an epoxy resin having a refractive index close to that of glass.
  • the resin is not applied to the portion where the small diameter portion 12 of the input optical fiber 10 and the small diameter portion 14 of the output optical fiber 20 are in contact with each other.
  • the bond length X was changed to determine how the bond rate S changed.
  • light having a wavelength of 1550 nm was input from the first port P1 of the optical coupler 1, and the outputs of the second port P2 and the fourth port P4 were measured.
  • the coupler 1C illustrated in FIG. 10 will be described as a third sample.
  • the outer diameter D1 of the input optical fiber 10 and the outer diameter D2 of the output optical fiber 20 of the first sample, the second sample, and the third sample used in the experiment are 125 ⁇ m.
  • the lengths L1 and L2 of the small diameter portion of the first sample are both 6.0 mm for the input optical fiber 10 and the output optical fiber 20.
  • the distance H1 between the main body 11a and the main body 11b of the input optical fiber 10 and the distance H2 between the main body 21a and the main body 21b of the output optical fiber 20 are both 9.0 mm.
  • the lengths L1 and L2 of the small diameter portion of the second sample are both 6.0 mm for the input optical fiber 10 and the output optical fiber 20.
  • the distance H1 between the main body 11a and the main body 11b of the input optical fiber 10 and the distance H2 between the main body 21a and the main body 21b of the output optical fiber 20 are both 9.0 mm.
  • the lengths L1 and L2 of the small diameter portion of the third sample are 4.0 mm.
  • the coupling length S was determined by changing the coupling length X from about 1 mm to about 5 mm.
  • the coupling length S was determined by changing the coupling length X from about 0.5 mm to about 1.5 mm.
  • FIG. 11 shows the measurement results.
  • the horizontal axis of the graph shown in FIG. 11 represents the coupling length X, and the vertical axis represents the coupling rate S.
  • the solid line indicates the measurement result of the first sample
  • the broken line indicates the measurement result of the second sample
  • the dotted line indicates the measurement result of the third sample.
  • the coupling rate S increases in the range until the coupling length X reaches a certain length as the coupling length X increases as in the first sample.
  • the coupling rate S peaked when the coupling length X was slightly shorter than 3 mm.
  • the peak value of the binding rate S of the second sample is 100%. That is, the light input from the first port P1 was not branched to the second port and the third port, but was all output to the fourth port P4. In the range where the bond length X exceeds 3 mm, the bond rate S decreased as the bond length X increased.
  • the coupling rate S is the coupling length X. It increases until a certain length is reached, and decreases when the bond length X exceeds a certain length. Further, when the optical coupler 1 is formed using the input optical fiber 10 and the output optical fiber 20 having the same form and the conditions are met, the optical coupler coated with resin rather than the optical coupler 1 not coated with resin. A higher coupling rate S can be obtained with 1.
  • the coupling rate S is determined by the coupling length X being It increases as it gets longer and does not decrease.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】必要なときに必要な分岐比で光を分岐させることができる光カプラ及びその光カプラを用いた光の分岐方法を提供する。 【解決手段】光カプラ1は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、入力用光ファイバ10から分岐された光を受光する出力用ファイバ20と、を備え、入力用光ファイバ10の細径部12が出力用ファイバ20の細径部22に接触し、入力用光ファイバ10の細径部12と出力用ファイバ20の細径部22との接触する長さである結合長又は光ファイバの伝搬定数が変化することによって、入力用光ファイバ10から出力用ファイバ20に分岐される光の分岐比Sが変化する。

Description

光カプラ及びその光カプラを利用した光の分岐方法
 本発明は、光カプラ及びその光カプラを利用した光の分岐方法に関し、さらに詳しくは、細径部を有する光ファイバで構成された光カプラ及びその光カプラを利用した光の分岐方法に関する。
 光ファイバを利用した光通信において、光カプラは、光を複数の経路に分けるための手段として知られている。光カプラは、例えば、2本の光ファイバによって構成されている。その2本の光ファイバは、各々の光ファイバにおける長手方向の一部がその長手方向に伸ばされることによって、外径が細く形成された細径部をそれぞれ有している。また、2本の光ファイバは、各々の細径部同士が融着されている。2本の光ファイバが融着された部分は、光ファイバ同士が互いに光学的に結合されており、一般に、結合部といわれている。
 上記の構成を有する光カプラは、結合部の長さである結合長によって、結合比が定められている。そして、この結合比は、光カプラで分岐する分岐比を定めている。
 特許文献1で提案されている光カプラは、2本の光ファイバを融着すると共に伸ばすことによって構成された融着型光カプラである。この光カプラは、融着すると共に伸ばされた2本の光ファイバを収容するための筐体を有している。この光カプラでは、融着すると共に伸ばされた2本の光ファイバを筐体の内部に収容する前に、分岐比が測定される。そして、所定の物質が、融着すると共に伸ばされた部分の周囲に充填されている。
 特許文献2で提案されている光カプラは、カプラ本体と支持体とを備えている。カプラ本体は、2本のシングルモード型光ファイバを融着すると共に伸ばすことによって形成されている。支持体は、このカプラ本体を載せて支持するためのものである。また、この光カプラは、被覆体を備えている。被覆体は、カプラ本体を覆うようにして固着され、支持体の熱膨張率とは異なる熱膨張率の材料で構成されている。さらに、光カプラは、加熱冷却手段を有している。この加熱冷却手段は、カプラ本体、支持体及び被覆体からなる一体物を加熱したり冷却したりしている。この光カプラは、カプラ本体を加熱したり冷却したりすることによって、結合比を変化させている。
特開昭63-316008号公報 特開昭61-145509号公報
 しかしながら、特許文献1で提案されている光カプラでは、2本の光ファイバの結合長は一定である。そのため、一方の光ファイバにより送られた光は、光カプラで必ず他方の光ファイバに分岐される。ところが、一方の光ファイバを進行した光を必要なときにだけ光カプラで他方の光ファイバに分岐岐させたい場合がある。この光カプラは、こうした要求に対応していない。また、この光カプラは、結合長が一定であるため、一方の光ファイバを進行した光が他方の光ファイバに分岐される分岐比は一定である。このカプラは、分岐比を変化させて用いることができない。
 特許文献2で提案されている光カプラは、カプラ本体を加熱したり冷却したりすることによって、結合比を変化させることができる。ところが、この光カプラは、加熱冷却手段を設けることが必要なので、光カプラが大型になると共に、構造が複雑になる。
 本発明は、上記課題を解決するためになされたものであって、その目的は、必要なときに必要な分岐比で光を分岐させることができる、小型且つ簡素な構造の光カプラ及びその光カプラを用いた光の分岐方法を提供することにある。
 (1)上記課題を解決するための本発明に係る光カプラは、長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、前記入力用光ファイバから分岐された光を受光する受光部と、を備え、前記入力用光ファイバの細径部が前記受光部に接触し、前記入力用光ファイバの細径部と前記受光部とが接触する長さである結合長又は光ファイバの伝搬定数が変化することによって、前記入力用光ファイバから前記受光部に分岐される光の分岐比が変化することを特徴とする。
 この発明によれば、光カプラが上記のように構成されているので、入力用光ファイバと受光部とが接触する長さである結合長又は光ファイバの伝搬定数を自在に変化させることができる。そのため、入力用光ファイバと受光部との結合長を所定の長さよりも短くしたり長くしたりすることによって入力用光ファイバによって送られた光を受光部に分岐させたり、させなかったりすることができる。また、入力用光ファイバによって送られた光を、結合長に応じた分岐比又は伝搬定数の差に応じた分岐比で分岐させることができる。
 本発明に係る光カプラの形態としては、以下の4つに大別することができる。
 本発明に係る第1の光カプラとしては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記曲線部と他方の前記細径部とが接触され、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記曲線部同士が接触され、前記入力用光ファイバと前記出力用光ファイバとが近づけられることによって、前記結合長が長くなり、前記入力用光ファイバと前記出力用光ファイバとが遠ざけられることによって、前記結合長が短くなる。
 この発明によれば、入力用光ファイバと出力用光ファイバとを互いに押し付け合う力を調整して結合長を変化させることによって、分岐比を自由に変化させることができる。また、入力用光ファイバと出力用光ファイバとを近づけたり遠ざけたりするときに、曲線部の弾性力を利用することができるので、光カプラの構造を簡潔にすることができる。
 本発明に係る第2の光カプラとしては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記曲線部と他方の前記細径部とが接触され、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記曲線部同士が接触され、前記入力用光ファイバと前記出力用光ファイバとが接触する部分を中心にして、前記入力用光ファイバと前記出力用光ファイバとの一方が他方に対して捩られる方向に回転することによって、前記入力用光ファイバがなす仮想平面と前記出力用光ファイバがなす仮想平面とが所定の角度の範囲で変化することによって、前記結合長を変化させている。
 この発明によれば、入力用光ファイバと出力用光ファイバとがなす角度を調整して結合長を変化させることによって、分岐比を自由に変化させることができる。
 本発明に係る第3の光カプラとしては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバ又は前記出力用ファイバの一方は、その細径部が曲げられた曲線部を有し、前記入力用光ファイバが前記出力用光ファイバの細径部が延びる方向に前記出力用光ファイバの細径部上をスライドするか、又は前記出力用光ファイバが前記入力用光ファイバの細径部が延びる方向に前記入力用光ファイバの細径部上をスライドすることによって、前記光ファイバの伝搬定数が変化する。
 この発明によれば、出力用光ファイバに対する入力用光ファイバの相対的な位置を調整して伝搬定数を変化させることによって、分岐比を自由に変化させることができる。
 本発明に係る第4の光カプラとしては、前記受光部は、フォトダイオードであり、前記入力用光ファイバは、その細径部が曲げられた曲線部を有し、前記入力用光ファイバの曲線部と前記フォトダイオードの先端面とが接触され、前記入力用光ファイバと前記フォトダイオードとが接近することによって、前記結合長が長くなり、前記入力用光ファイバと前記フォトダイオードが引き離されることによって、前記結合長が短くなる。
 この発明によれば、入力用光ファイバとフォトダイオードとを互いに押し付け合う力を調整して結合長を変化させることによって、分岐比を自由に変化させることができる。また、入力用光ファイバとフォトダイオードとを近づけたり遠ざけたりするときに、曲線部の弾性力を利用することができるので、光カプラの構造を簡潔にすることができる。
 (2)上記課題を解決するための本発明に係る光カプラを用いた光の分岐方法は、長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、前記入力用光ファイバから分岐された光を受光する受光部と、を備えた光カプラを用い、前記入力用光ファイバの細径部を前記受光部に接触させ、前記入力用光ファイバの細径部と前記受光部とが接触する長さである結合長又は光ファイバの伝搬定数を変化せることによって、前記入力用光ファイバから前記受光部に分岐される光の分岐比を変化させることを特徴とする。
 この発明によれば、上記の光カプラを用いて光を分岐させるので、入力用光ファイバと受光部とが接触する長さである結合長を自在に変化させることができる。そのため、入力用光ファイバと受光部との結合長を所定の長さよりも短くしたり長くしたりすることによって入力用光ファイバによって送られた光を受光部に分岐させたり、させなかったりすることができる。また、入力用光ファイバによって送られた光を、結合長に応じた分岐比又は伝搬定数の差に応じた分岐比で分岐させることができる。
 本発明に係る光カプラを用いたい光の分岐方法としては、以下の4つに大別することができる。
 本発明に係る第1の光カプラを用いた光の分岐方法としては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記曲線部と他方の前記細径部とを接触させ、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記曲線部同士を接触させ、前記入力用光ファイバと前記出力用光ファイバとを近づけることによって、前記結合長を長くし、前記入力用光ファイバと前記出力用光ファイバとを遠ざけることによって、前記結合長を短くする。
 この発明によれば、入力用光ファイバと出力用光ファイバとを互いに押し付け合う力を調整して結合長を変化させるので、分岐比を自由に変化させることができる。また、入力用光ファイバと出力用光ファイバとを近づけたり遠ざけたりするときに、曲線部の弾性力を利用することができるので、光カプラの構造を簡潔にすることができる。
 本発明に係る第2の光カプラを用いた光の分岐方法としては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記曲線部と他方の前記細径部とを接触させ、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記曲線部同士を接触させ、前記入力用光ファイバと前記出力用光ファイバとが接触する部分を中心にして、前記入力用光ファイバと前記出力用光ファイバとの一方を他方に対して捩る方向に回転させることによって、前記入力用光ファイバがなす仮想平面と前記出力用光ファイバがなす仮想平面とを所定の角度の範囲で変化させることによって、前記結合長を変化させている。
 この発明によれば、入力用光ファイバと出力用光ファイバとがなす角度を調整して結合長を変化させるので、分岐比を自由に変化させることができる。
 本発明に係る第3の光カプラを用いた光の分岐方法としては、前記受光部は、受光した光を出力する出力用光ファイバであり、前記出力用光ファイバは、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバ又は前記出力用ファイバの一方は、その細径部が曲げられた曲線部を有し、前記入力用光ファイバが前記出力用光ファイバの細径部が延びる方向に前記出力用光ファイバの細径部上をスライドするか、又は前記出力用光ファイバが前記入力用光ファイバの細径部が延びる方向に前記入力用光ファイバの細径部上をスライドすることによって、前記光ファイバの伝搬定数を変化させる。
 この発明によれば、出力用光ファイバに対する入力用光ファイバの相対的な位置を調整して伝搬定数を変化させるので、分岐比を自由に変化させることができる。
 本発明に係る第4の光カプラを用いた光の分岐方法としては、前記受光部は、フォトダイオードであり、前記入力用光ファイバは、その細径部が曲げられた曲線部を有し、前記入力用光ファイバの曲線部と前記フォトダイオードの先端面とを接触させ、前記入力用光ファイバと前記フォトダイオードとを接近させることによって、前記結合長を長くし、前記入力用光ファイバと前記フォトダイオードとを引き離すことによって、前記結合長を短くする。
 この発明によれば、入力用光ファイバとフォトダイオードとを互いに押し付け合う力を調整して結合長を変化させるので、分岐比を自由に変化させることができる。また、入力用光ファイバとフォトダイオードとを近づけたり遠ざけたりするときに、曲線部の弾性力を利用することができるので、光カプラの構造を簡潔にすることができる。
 本発明に係る光カプラ及びその光カプラを用いた光の分岐方法によれば、必要なときに必要な分岐比で光を分岐させることができる、小型且つ簡素な構造の光カプラ及びその光カプラを用いた光の分岐方法を提供することができる。
本発明に係る第1実施形態の光カプラの原理の説明図である。 図1の光カプラとは別タイプの第1実施形態の光カプラの原理の説明図である。 光ファイバを内部に収容するケースを備えた光カプラの1例を示す斜視図である。 本発明に係る第2実施形態の光カプラの原理の説明図である。 図4の光カプラとは別タイプの第2実施形態の光カプラの原理の説明図である。 本発明に係る第3実施形態の光カプラの原理の説明図である。 本発明に係る第4実施形態の光カプラの原理の説明図である。 融着・延伸部の長さと分岐比との関係の一例を示すグラフである。 実験に用いた光カプラを模式的に示した説明図である。 図9に示す光カプラとは別タイプの、実験に用いた光カプラを模式的に示した説明図である。 結合長と結合率との関係の実験結果を表すグラフである。
 以下、本発明の実施形態について図面を参照して詳しく説明する。ただし、本発明の技術的範囲は以下の実施の形態に限定されるものではなく、本発明は、その要旨の範囲内で種々変形して実施することができる。
 [基本構成]
 本発明に係る光カプラ1,1A,1B,2,2A,3,4の基本構成は、図1から図7に示すように、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、入力用光ファイバ10から分岐された光を受光する受光部20,40,50と、を備え、入力用光ファイバ10の細径部12が受光部20,40,50に接触し、入力用光ファイバ10の細径部12と受光部20,40,50とが接触する長さである結合長又は光ファイバの伝搬定数が変化することによって、入力用光ファイバから受光部に分岐される光の分岐比Sが変化する光カプラであって、次の(1)から(4)のいずれか1つに記載した形態の光カプラである。
 (1)第1形態の光カプラは、上記の受光部20,40,50が、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20であり、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバの一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とが接触されるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士が接触され、入力用光ファイバ10と出力用光ファイバ20との少なくとも一方の曲線部14,24における弾性力を利用して、入力用光ファイバ10と出力用光ファイバ20とが近づけられて両者の押し付ける力が変化され、入力用光ファイバ10の細径部22と出力用光ファイバ20の細径部22とが接触する長さである結合長が長くされる一方で、入力用光ファイバ10と出力用光ファイバ20とが遠ざけられて両者の押し付ける力が変化され、結合長が短くされることによって、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sが変化する光カプラ1,1A,1Bである。
 (2)第2形態の光カプラは、上記の受光部20,40,50が、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20であり、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバ20の一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とが接触されるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士が接触され、入力用光ファイバ10及び出力用光ファイバ20の細径部12,22の外径は5μm以上10μm以下に形成され、入力用光ファイバ10と出力用光ファイバ20とが接触する部分を中心にして、入力用光ファイバ10と出力用光ファイバ20との一方が他方に対して捩られる方向に回転することによって、入力用光ファイバ10がなす仮想平面P1,P11と出力用光ファイバ20がなす仮想平面P2,P22とが0度以上5度以下の範囲で変化することによって、結合長が変化されて、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sが変化する光カプラ2,2Aである。
 (3)第3形態の光カプラは、上記の受光部20,40,50が、長手方向の一部で外径が相対的に細く形成された細径部42を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ40であり、入力用光ファイバ10又は出力用光ファイバ40の一方は、その細径部12,42が曲げられた曲線部14を有し、入力用光ファイバ10が出力用光ファイバ40の本体部41と細径部42とを結ぶ接続部43同士の間をスライドするか、又は出力用光ファイバ40が入力用光ファイバ10の本体部11径部12とを結ぶ接続部13の間をスライドすることによって、入力用光ファイバ10と出力用光ファイバ40との相対的な位置が調整されて入力用光ファイバ10と出力用光ファイバ40との伝搬定数βの差が変化されて、入力用光ファイバ10から出力用光ファイバ40に分岐される光の分岐比Sが変化する光カプラ3である。
 (4)第4形態の光カプラは、上記の受光部20,40,50が入力用光ファイバ10から分岐された光を受光するフォトダイオード50であり、入力用光ファイバ10は、その細径部12が曲げられた曲線部14を有し、入力用光ファイバ10の曲線部14とフォトダイオード50の先端面とが接触され、入力用光ファイバ10の曲線部14における弾性力を利用して、入力用光ファイバ10とフォトダイオード50とが接近することによって、入力用光ファイバ10がフォトダイオード50に押し付けられる力が変化され、結合長が長くなる一方、入力用光ファイバ10とフォトダイオード50が遠ざけられることによって、入力用光ファイバ10がフォトダイオード50に押し付けられる力が変化され、結合長が短くなることによって、入力用光ファイバ10からフォトダイオード50に分岐される光の分岐比Sが変化する光カプラ4である。
 図1から図3に示す第1実施形態、図4及び図5に示す第2実施形態及び図7に示す第4実施形態の各光カプラ1,1A,1B,2,2A,4は、結合長が変化することによって、入力用光ファイバ10から受光部20,50に分岐する光の分岐比Sが変化する。一方、図6に示す第3実施形態の光カプラ3は、光ファイバの伝搬定数が変化することによって、入力用光ファイバ10から受光部40に分岐される光の分岐比Sが変化する。
 光ファイバでは、一般に、クラッドの屈折率がコアの屈折率よりも小さい。そのため、入力用光ファイバ10が直線状に延びている場合、入力用光ファイバ10のコアを進行する光は、コアの内部で全反射し、クラッドに漏れ出すことはない。ところが、入力用光ファイバ10が湾曲する部分を有する場合、特に、湾曲する部分の曲率半径が小さい場合、コアを進行する光は、臨界角よりも小さな入射角でコアとクラッドとの境界面に入射する。そのため、湾曲する部分では、コアを進行する光はコアの内部で全反射せず、一部がクラッドに漏れ出す。
 光カプラ1,1A,1B,2,2A,3,4は、この原理を利用して、入力用光ファイバによって送られた光を曲線部14の位置で受光部20,40,50に分岐している。
 一般的なファイバ融着型光カプラは、入力用の光ファイバと出力用の光ファイバとが延ばされると共に融着されることにより構成されている。なお、入力用の光ファイバと出力用の光ファイバとが延ばされると共に融着される部分を「融着・延伸部」という。このファイバ融着型光カプラは、入力用の光ファイバによって送られてきた光を、融着・延伸部で出力用の光ファイバに分岐させている。このファイバ融着型光カプラの分岐比Sでは、光ファイバにおける融着・延伸部の長さが、融着・延伸部における光ファイバの断面形状、及び融着・延伸部におけるクラッド部とその周囲との屈折率、並びに光ファイバに入射された光の波長によって変化する。この分岐比Sは、(式1)で表すことができる。(式1)に示すように、分岐比Sは、融着・延伸部の長さLの三角関数として表すことができる。そのため、光カプラ1,1A,1B,2,2A,4は、結合長が変化することによって、分岐比Sが変化する。
Figure JPOXMLDOC01-appb-M000001
 なお、(式1)において、Lは融着・延伸部の長さである。また、(式1)のCは、(式2)により表される値である。(式2)のλは信号光の波長、nは光ファイバのクラッドの屈折率、aは融着・延伸部の断面における短径である。
Figure JPOXMLDOC01-appb-M000002
 (式2)のVは、(式3)により表される値である。なお、(式3)において、nは周囲の媒体の屈折率である。また、kは、(式4)により表される真空中の波数である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図8に示すグラフは、光ファイバが伸ばされて、外周同士が融着された融着・延伸部の長さと分岐比Sとの関係の一例を示している。図8に示したグラフ横軸は、光ファイバが伸ばされて、外周同士が融着された融着・延伸部の長さLであり、縦軸は、分岐比Sである。上記のように、分岐比Sは、融着・延伸部の長さLの三角関数として表すことができるので、分岐比Sは、融着・延伸部の長さLが変化することに伴って、周期的に変化する。
 この光カプラ1,1A,1B,2,2A,3,4によれば、必要なときに必要な分岐比Sで光を分岐させることができ、小型且つ簡素な構造の光カプラ及びその光カプラを用いた光の分岐方法を提供することができるという特有の効果を奏する。
 以下、本発明に係る光カプラ及びその光カプラを用いた光の分岐方法について実施形態ごとに説明する。
 [第1実施形態]
 第1実施形態の光カプラ1,1A,1Bは、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20と、を備え、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバ20の一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とが接触されるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士が接触され、入力用光ファイバ10と出力用光ファイバ20との少なくとも一方の曲線部14,24における弾性力を利用して、入力用光ファイバ10と出力用光ファイバ20とが近づけられて両者の押し付ける力が変化され、入力用光ファイバ10の細径部12と出力用光ファイバ20の細径部22とが接触する長さである結合長が長くされる一方で、入力用光ファイバ10と出力用光ファイバ20とが遠ざけられて両者の押し付ける力が変化され、結合長が短くされることによって、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sが変化するように構成されている。
 この光カプラ1,1A,1Bが行う光の分岐方法は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20と、を備えた光カプラ1,1A,1Bを用い、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバ20の一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とを接触させるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士を接触させ、入力用光ファイバ10と出力用光ファイバ20との少なくとも一方の曲線部14,24における弾性力を利用して、入力用光ファイバ10と出力用光ファイバ20とを近づけて、両者の押し付ける力を変化させ、入力用光ファイバ10の細径部12と出力用光ファイバ20の細径部22とが接触する長さである結合長を長くする一方で、入力用光ファイバ10と出力用光ファイバ20とを遠ざけられて両者の押し付ける力を変化させ、結合長を短くすることによって、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sを変化させる方法である。
 第1実施形態の光カプラ1は、図1に示すように、入力用光ファイバ10と出力用光ファイバ20とを有している。入力用光ファイバ10は、分岐される光が送られる光ファイバであり、本体部11、細径部12及び接続部13を備えている。本体部11は入力用光ファイバ10自体であり、その外径は入力用光ファイバ10自体の外径と同じである。細径部12は、入力用光ファイバ10の外径が、入力用光ファイバ10の長手方向の一部において相対的に細く形成された部位である。本体部11と細径部12とは、接続部13によって接続されている。接続部13は、細径部12の長手方向の両側で、本体部11から細径部12に向かって外径が徐々に細くなる部位である。そして、入力用光ファイバ10は、細径部12が曲げられた曲線部14を有している。この入力用光ファイバ10は、曲線部14によって入力用光ファイバの延びる向きが反転さている。
 入力用光ファイバ10の外径は、125μm以下であり、コアの直径は10μm以下である。細径部12の外径は、1μm以上、20μm以下である。また、接続部13での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。ただし、直近の外径に対する変化量の割合は10%以上、20%以下である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
Figure JPOXMLDOC01-appb-M000005
 出力用光ファイバ20は、分岐された光が送り込まれる光ファイバである。この出力用光ファイバ20は、入力用光ファイバ10と同様に、本体部21、細径部22及び接続部23とを有している。なお、出力用光ファイバ20の本体部21、細径部22及び接続部23の構成は、入力用光ファイバ10の本体部11、細径部12及び接続部13の構成と同様である。また、出力用光ファイバ20は、細径部22が曲げられた曲線部24を有している。この出力用光ファイバ20は、曲線部24によって出力用光ファイバの延びる向きが反転さている。
 出力用光ファイバ20の外径は、125μm以下であり、コアの直径は10μm以下である。細径部22の外径は、1μm以上、20μm以下である。また、接続部23での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 上記の入力用光ファイバ10と出力用光ファイバ20とは、同一平面内、又は同一平面に近い位置に配置され、両者の曲線部14,24同士が接触している。曲線部14,24同士が接触している部分は、入力用光ファイバ10を進行した光の一部が出力用光ファイバ20に分岐される結合部である。この結合部は、一定の長さを有している。本明細書では、この結合部の長さを「結合長」という。
 この光カプラ1では、図1(A)に示すように、入力用光ファイバ10と出力用光ファイバ20とが遠ざかることによって、結合長が短くなる。一方、図1(B)に示すように、入力用光ファイバ10と出力用光ファイバ20とが近づくことによって、結合長が長くなる。光カプラ1は、入力用光ファイバ10と出力用光ファイバ20とを近づけたり、遠ざけたりすることによって、結合長を変化させている。この結合長を変化させることによって、光カプラ1は、入力用光ファイバ10を進行した光を、必要なときに必要な分だけ出力用光ファイバ20に分岐させている。
 この光カプラ1は、入力用光ファイバ10と出力用光ファイバ20とを互いに押し付け合う力を調整することによって、結合長を変化させることができる。その結果、この光カプラ1は、分岐比Sを自由に変化させることができる。また、この光カプラ1は、入力用光ファイバ10と出力用光ファイバ20とを近づけたり遠ざけたりするときに、曲線部14,24の弾性力を利用することができるので、構造を簡潔にすることができる。
 この光カプラ1の結合長は、0mm以上、12mm以下の範囲で変化する。そのときの分岐比Sは、0%以上、100%以下の範囲で変化する。例えば、図1において、結合長が2mmのときに、入力用光ファイバ10の本体部11aから送られる光の80%が入力用光ファイバ10の本体部11bに進み、出力用光ファイバ20の本体部21aには分岐しない。また、光の20%は、出力用光ファイバ20の本体部21bに分岐する。
 そして、結合長が6mmのとき、入力用光ファイバ10の本体部11aから送られる光は、出力用ファイバ20の本体部21bに100%分岐し、結合長が約12mmのときに入力用光ファイバ10の本体部11aから送られた光は、出力用光ファイバ20には分岐せず、すべて入力用光ファイバ10の本体部11bに進む。
 第1実施形態の光カプラは、入力用光ファイバ10と出力用光ファイバ20とのうち、一方は曲線部を設けた光ファイバを使用し、他方は直線状に延びた光ファイバを使用して構成することもできる。図2は、その一例を示している。
 図2に示す光カプラ1Aの入力用光ファイバ10は、本体部11、細径部12及び接続部13を備えている。また、入力用光ファイバ10は、細径部12が曲げられた曲線部14を有している。この曲線部14は、入力用光ファイバの延びる向きを反転させている。出力用光ファイバ20も、本体部21、細径部22及び接続部23を備えている。ただし、細径部22は直線状に延びている。そして、光カプラ1Aは、入力用光ファイバ10と出力用光ファイバ20とが同一平面内、又は同一平面に近い位置に配置され、入力用光ファイバ10の曲線部14が出力用光ファイバ20の細径部22に接触することによって構成されている。
 この光カプラ1Aでは、図2に示すように、入力用光ファイバ10が出力用光ファイバ20から遠ざかることによって、結合長が短くなる。一方、入力用光ファイバ10が出力用光ファイバ20に近づくことによって、結合長が長くなる。この光カプラ1Aは、入力用光ファイバ10を出力用光ファイバ20に近づけたり、遠ざけたりすることによって、結合長を変化させている。この結合長を変化させることによって、光カプラ1Aは、入力用光ファイバ10を進行した光を、必要なときに必要な分だけ出力用光ファイバ20に分岐させている。
 図2に示す光カプラ1Aは、入力用光ファイバ10の細径部11に曲線部14を設ける一方で、出力用光ファイバ20の細径部21を直線状に延ばすことによって構成されている。ただし、光カプラ1Aは、入力用光ファイバ100の細径部11を直線状に延ばす一方で、出力用光ファイバ20の細径部21に曲線部24を設けることによって構成してもよい。その場合、この光カプラ1Aは、出力用光ファイバ20を入力用光ファイバ10に近づけたり、遠ざけたりすることによって、結合長を変化させる。
 図3は、入力用光ファイバ10と出力用光ファイバ20とがケース30の内部に収容された光カプラ1Bを示している。ケース30は、上面部材31と下面部材32とにより構成されている。上面部材31と下面部材32とは一定の間隔を空けて対向している。なお、特に図3には示していないが、ねじ等の固定用の部材が、上面部材31と下面との間に一定の間隔を空けた形態を維持している。入力用光ファイバ10と出力用光ファイバ20とは、上面部材31と下面部材32との間に形成された空間に収容されている。入力用光ファイバ10の曲線部14と出力用光ファイバ20曲線部24とは、ケース30の内部で接触されている。
 この光カプラ1Bは、ケース30内部で出力用光ファイバ20を入力用光ファイバ10に対して近づけたり、遠ざけたりすることができるように構成されている。ただし、光カプラ1Bは、ケース30内部で入力用光ファイバ10を出力用光ファイバ20に対して近づけたり、遠ざけたりすることができるように構成することもできる。また、光カプラ1Bは、ケース30内部で入力用光ファイバ10及び出力用光ファイバ20の両方を移動させることによって、両者を近づけたり、遠ざけたりすることができるように構成することもできる。
 第1実施形態の光カプラ1,1A,1Bは、入力用光ファイバ10と出力用光ファイバ20とが接触している分部に、光の屈折率を調整するための樹脂を塗布して構成することもできる。屈折率を調整するための樹脂としては、例えば、屈折率がガラスの屈折率に近いアクリル系樹脂又はエポキシ系樹脂を挙げることができる。
 [第2実施形態]
 第2実施形態の光カプラ2,2Aは、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有している。この光カプラ2は、入力用光ファイバ10若しくは出力用ファイバ20の一方の曲線部14,24と他方の細径部12,22とが接触されるか、又は、入力用光ファイバ10及び出力用ファイバ20の両方の曲線部14,24同士が接触される。
 入力用光ファイバ10と出力用光ファイバ20とが接触する部分を中心にして、入力用光ファイバ10と出力用光ファイバ20との一方が他方に対して捩られる方向に回転することによって、入力用光ファイバ10がなす仮想平面P1,P11と出力用光ファイバ20がなす仮想平面P2,22とが所定の角度の範囲で変化することによって、結合長を変化させている。
 具体的に、第2実施形態の光カプラ2,2Aは、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20と、を備え、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバ20の一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とが接触されるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士が接触され、入力用光ファイバ10及び出力用光ファイバ20の細径部12,22の外径は5μm以上10μm以下に形成され、入力用光ファイバ10と出力用光ファイバ20とが接触する部分を中心にして、入力用光ファイバ10と出力用光ファイバ20との一方が他方に対して捩られる方向に回転することによって、入力用光ファイバ10がなす仮想平面P1,P11と出力用光ファイバ20がなす仮想平面P2,P22とが0度以上5度以下の範囲で変化することによって、結合長が変化されて、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sが変化するように構成されている。
 この光カプラ2,2Aが行う光の分岐方法は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部22を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ20と、を備えた光カプラ2,2Aを用い、入力用光ファイバ10と出力用光ファイバ20との一方、又は、入力用光ファイバ10と出力用光ファイバ20との両方は、細径部12,22が曲げられた曲線部14,24を有し、入力用光ファイバ10若しくは出力用光ファイバ20の一方の細径部12,22における曲線部14,24と他方の直線状の細径部12,22とを接触させるか、又は、入力用光ファイバ10及び出力用光ファイバ20の両方の細径部12,22における曲線部14,24同士を接触させ、入力用光ファイバ10及び出力用光ファイバ20の細径部12,22の外径を5μm以上10μm以下に形成し、入力用光ファイバ10と出力用光ファイバ20とが接触する部分を中心にして、入力用光ファイバ10と出力用光ファイバ20との一方が他方に対して捩られる方向に回転することによって、入力用光ファイバ10がなす仮想平面P1,P11と出力用光ファイバ20がなす仮想平面P2,P22とが0度以上5度以下の範囲で変化することによって結合長を変化させ、入力用光ファイバ10から出力用光ファイバ20に分岐される光の分岐比Sを変化させる方法である。以下、図面を参照して光カプラ2,2Aを具体的に説明する。
 第2実施形態の光カプラ2は、図4に示すように、入力用光ファイバ10と出力用光ファイバ20とを有している。なお、第2実施形態の光カプラ2を構成する入力用光ファイバ10自体の構成及び出力用光ファイバ20自体の構成は、第1実施形態の光カプラ1を構成する入力用光ファイバ10自体の構成及び出力用光ファイバ20自体の構成と同じである。そのため、第2実施形態の光カプラ2の入力用光ファイバ10及び出力用光ファイバ20の各構成については、第1実施形態の光カプラ1の入力用光ファイバ10及び出力用光ファイバ20の各構成と同一の符号を図面に付して、詳細な説明は省略する。
 この光カプラ2の入力用光ファイバ10は、本体部11、細径部12及び接続部13を有している。また、細径部12は、入力用光ファイバ10の延びる向きが反転される曲線部14を有している。同様に、出力用光ファイバ20は、本体部21、細径部22及び接続部23を有している。また、細径部22は、出力用光ファイバ20の延びる向きが反転される曲線部24を有している。そして、入力用光ファイバ10の曲線部14と出力用光ファイバ20の曲線部24とが接触されている。
 入力用光ファイバ10の外径は、125μm以下であり、コアの直径は10μm以下である。細径部12の外径は、5μm以上、10μm以下である。また、接続部13での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 また、出力用光ファイバ20についても、入力用光ファイバ10と同様に、外径が125μm以下であり、コアの直径が10μm以下である。細径部22の外径は、5μm以上、10μm以下である。また、接続部23での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 この光カプラ2は、例えば、図4に示すように、出力用光ファイバ20が入力用光ファイバ10に対し回転されることによって結合長を変化させている。具体的に、入力用光ファイバ10と出力用光ファイバ20とは、図4(A)に示す形態と図4(B)に示す形態との間で回転する。図4(A)に示す形態は、入力用光ファイバ10が形成する仮想平面P1と出力用光ファイバ20が形成する仮想平面P2とが同一面をなす形態である。図4(B)に示す形態は、入力用光ファイバ10が形成する仮想平面P1と出力用光ファイバ20が形成する仮想平面P2とが相互に直交する形態である。
 入力用光ファイバ10と出力用光ファイバ20とが接触する部分の長さは、入力用光ファイバ10が形成する仮想平面P1と出力用光ファイバ20が形成する仮想平面P2とが同一面をなす形態では、相対的に長い。すなわち、この形態では、結合長が長い。一方、入力用光ファイバ10と出力用光ファイバ20とが接触する部分の長さは、入力用光ファイバ10が形成する仮想平面P1と出力用光ファイバ20が形成する仮想平面P2とが相互に直交する形態では、相対的に短くなる。すなわち、この形態では、結合長が短い。
 この光カプラ2では、結合長は、入力用光ファイバ10(入力用光ファイバ10により形成された仮想平面P1)と出力用光ファイバ20(出力用光ファイバ20により形成された仮想平面P2)とがなす角度に応じて変化する。そのため、入力用光ファイバ10と出力用光ファイバ20とがなす角度を調整することによって、分岐比Sを自由に変化させることができる。
 なお、第2実施形態の光カプラ2は、入力用光ファイバ10を出力用光ファイバ20に対し回転させる形態、出力用光ファイバ20を入力用光ファイバ10に対し回転させる形態及び入力用光ファイバ10と出力用光ファイバ20との両方を回転させる形態のどの形態であってもよい。
 この光カプラ2では、入力用光ファイバ10と出力用光ファイバ20とのなす角度が0度以上、5度以下の範囲で変化する。そのときの分岐比Sは、0%以上、100%以下の範囲で変化する。例えば、図4(A)において、入力用光ファイバ10の本体部11aから光が送られた場合、入力用光ファイバ10と出力用光ファイバ20とのなす角度が1度のときに、光の50%は、入力用光ファイバ10の本体部11bに進み、光の50%は、出力用光ファイバ20の本体部21bに分岐する。光は、出力用光ファイバ20の本体部21aには分岐しない。
 そして、図4(B)に示す形態において、入力用光ファイバ10と出力用光ファイバ20とのなす角度が約5度のとき、入力用光ファイバ10の本体部11aから送られた光は、すべて入力用光ファイバ10の本体部11bに進む。入力用光ファイバ10の本体部11aから送られた光は、出力用光ファイバ20には分岐しない。
 このように、光カプラ2は、入力用光ファイバ10と出力用光ファイバ20との一方を他方に対して回転させることによって、結合長を変化させている。そして、光カプラ2は、結合長が変化されることによって、入力用光ファイバ10を進行した光を、必要なときに必要な分だけ出力用光ファイバ20に分岐させている。
 なお、第2実施形態の光カプラ2についても、光の屈折率を調整するために、上述した樹脂を、入力用光ファイバ10と出力用光ファイバ20とが接触している分部に塗布して光カプラ2を構成することもできる。
 以上、入力用光ファイバ10及び出力用光ファイバ20の両方が湾曲部14,24を有する場合について説明した。しかしながら、第2実施形態の光カプラは、入力用光ファイバ10と出力用光ファイバ20との一方に、細径部が曲げられた曲線部を設けて構成することもできる。図5は、その一例を示している。
 図5に示す光カプラ2Aの入力用光ファイバ10は、本体部11、細径部12及び接続部13を備えている。また、入力用光ファイバ10の細径部12は、曲げられた曲線部14を有し、曲線部14によって入力用光ファイバの延びる向きを反転さている。出力用光ファイバも、本体部21、細径部22及び接続部23を備えている。ただし、細径部22は直線状に延びている。そして、光カプラ1Aは、入力用光ファイバ10の曲線部14が出力用光ファイバ20の細径部22に接触することによって構成されている。
 この光カプラ1Aは、図5に示すように、入力用光ファイバ10と出力用光ファイバ20とが接触する部分を中心にして、入力用光ファイバ10と出力用光ファイバ20一方が他方に対して捩られる方向に回転し、入力用光ファイバ10がなす仮想平面P11と出力用光ファイバ20がなす仮想平面P22とが所定の角度の範囲で変化することによって、結合長を変化させている。
 なお、図5に示す光カプラ2Aは、入力用光ファイバ10の細径部11に曲線部14を設ける一方で、出力用光ファイバ20の細径部21を直線状に延ばすことによって構成されている。ただし、光カプラ2Aは、入力用光ファイバ10の細径部11を直線状に延ばす一方で、出力用光ファイバ20の細径部21に曲線部24を設けることによって構成してもよい。
 [第3実施形態]
 第3実施形態の光カプラ3は、入力用光ファイバ10又は出力用ファイバ40の一方は、その細径部12,42が曲げられた曲線部14を有し、入力用光ファイバ10が出力用光ファイバ40の細径部42が延びる方向に出力用光ファイバ40の細径部42上をスライドするか、又は出力用光ファイバ40が入力用光ファイバ10の細径部12が延びる方向に入力用光ファイバ10の細径部12上をスライドすることによって、光ファイバの伝搬定数が変化する。
 具体的に、第3実施形態の光カプラ3は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部42を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ40と、を備え、入力用光ファイバ10又は出力用光ファイバ40の一方は、その細径部12,42が曲げられた曲線部を有し、入力用光ファイバ10が出力用光ファイバ40の本体部41と細径部42とを結ぶ接続部43同士の間をスライドするか、又は出力用光ファイバ40が入力用光ファイバ10の本体部11と細径部12とを結ぶ接続部13同士の間をスライドすることによって、入力用光ファイバ10と出力用光ファイバ40との相対的な位置が調整されて入力用光ファイバ10と出力用光ファイバ40との伝搬定数の差が変化されて、入力用光ファイバ10から出力用光ファイバ40に分岐される光の分岐比Sが変化する用に構成されている。
 この光カプラ3が行う光の分岐方法は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、長手方向の一部で外径が相対的に細く形成された細径部42を有し、入力用光ファイバ10から分岐された光を受光する出力用光ファイバ40と、を備えた光カプラ3を用い、入力用光ファイバ10又は出力用光ファイバ40の一方は、その細径部12,42が曲げられた曲線部を有し、入力用光ファイバ10が出力用光ファイバ40の本体部41と細径部42とを結ぶ接続部43同士の間をスライドするか、又は出力用光ファイバ40が入力用光ファイバ10の本体部11と細径部12とを結ぶ接続部13同士の間をスライドすることによって、入力用光ファイバ10と出力用光ファイバ40との相対的な位置を調整して入力用光ファイバ10と出力用光ファイバ40との伝搬定数の差を変化させて、入力用光ファイバ10から出力用光ファイバ40に分岐される光の分岐比Sを変化させる方法である。以下、図面を参照して、光カプラ3を具体的に説明する。
 第3実施形態の光カプラ3は、図6に示すように、入力用光ファイバ10と出力用光ファイバ40とを有している。なお、この光カプラ3の入力用光ファイバ10の構成は、第1実施形態の光カプラ1の入力用光ファイバ10の構成と同様である。そのため、この光カプラ3の入力用光ファイバ10の構成については、第1実施形態の光カプラ1の入力用光ファイバ10の構成と同じ符号を図面に付し、詳細な説明は省略する。
 入力用光ファイバ10は、本体部11、細径部12及び接続部13を有している。また、入力用光ファイバ10の細径部13は、入力用光ファイバ10の延びる向きが反転される曲線部14を有している。入力用光ファイバ10の外径は、125μm以下であり、コアの直径は、10μm以下である。細径部12の外径は、5μm以上、20μm以下である。また、接続部13での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 出力用光ファイバ40は、直線状に延びている。この出力用光ファイバ40は、本体部41と、細径部42と、一対の接続部43とを有している。本体部41は、光ファイバ自体の外径を有する部分である。細径部42は、長手方向の一部の外径が相対的に細く形成された部分である。接続部43は、細径部42の長手方向の両側で本体部41から細径部42に向かって外径が徐々に細くなり、本体部41と細径部42とを接続している部分である。この出力用光ファイバ40の本体部41、細径部42及び接続部43の外径は、入力用光ファイバ10の本体部11、細径部12及び接続部13の外径と同じに形成することもできるし、大きく形成することもできる。
 出力用光ファイバ40の外径は、125μm以下であり、コアの直径は、10μm以下である。細径部42の外径は、1μm以上、20μm以下である。また、接続部43での外径の変化率が0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 この光カプラ3は、入力用光ファイバ10の曲線部14が出力用光ファイバ40の外周面に接触している。そして、入力用光ファイバ10が出力用光ファイバ40の接続部43同士の間でスライドすることによって、光ファイバの伝搬定数が変化する。すなわち、この光カプラ3では、出力用光ファイバ40に対する入力用光ファイバ10の相対的な位置を調整することによって、分岐比Sを自由に変化させることができる。
 この実施形態の光カプラ3は、入力用光ファイバ10の伝搬定数βと出力用光ファイバ40の伝搬定数βの差δを利用し分岐比Sを変化させている。伝搬定数βの差δは、(式6)によって求めることができる。なお、伝搬定数βは、(式7)によって表すことができる。ただし、(式7)によって求まる値は、光ファイバの長手方向の伝搬定数である。
Figure JPOXMLDOC01-appb-M000006
 なお、βは入力用光ファイバ10の伝搬定数であり、βは出力用光ファイバ40の伝搬定数である。
Figure JPOXMLDOC01-appb-M000007
 なお、(式7)において、nはコアの屈折率であり、kは(式4)により定まる値である。伝搬定数βは、(式7)に示すように、コア径及びコア屈折率により変化する。この伝搬定数に差が生じた場合、(式8)により表されるFが変化し、(式9)により表される結合光の出力Pが変化する。そのため、光カプラ3は、分岐比Sが変化する。
Figure JPOXMLDOC01-appb-M000008
 なお、(式8)において、χはモード結合定数である。
Figure JPOXMLDOC01-appb-M000009
 なお、(式9)において、qzは規格化距離である。
 例えば、入力用光ファイバの細径部外径が2μmであり、出力用光ファイバの外径が2μmであり、結合長が4mmであり、結合率が80%の場合において、結合ファイバを2mm動かした場合の結合率は20%になる。
 ここで、伝搬定数βが変化するメカニズムを説明する。光カプラ3において、例えば、入力用光ファイバ10が出力用光ファイバ20の本体部21と細径部22とを結ぶ接続部22同士の間をスライドする。その場合、入力用光ファイバ10は、出力用光ファイバ20の細径部22だけをスライドするのではなく、出力用光ファイバ20の外径が変化する接続部23を含めてスライドする。
 光カプラ3を構成する入力用光ファイバ10及び出力用光ファイバ20は、各々の接続部13,23で外径が変化する。内部のコアの直径は、外径を変化させることに伴って変化する。すなわち、入力用光ファイバ10や出力用光ファイバ20のコアの直径は、本体部11,21よりも細径部12,22の方が小さくなる。
 なお、光ファイバは、導波路の幅(コアの直径)を十分に広くした場合、光はコアのみを導波する。一方、導波路の幅(コアの直径)の径が小さい場合、光はコアの外側に存在するクラッドにもエネルギーの分布を有するようになる。この現象は、コア直径が変化した場合、コアの屈折率が変化することにより起きる。
 伝搬定数βは、(式7)から明らかなように、コアの屈折率nの変化に伴って変化する。また、コアの屈折率nは、上記のように、コアの直径の変化に伴って変化する。したがって、コアの直径が変化することに伴ってコアの屈折率nが変化し、結果として、伝搬定数βが変化する。
 この実施形態の光カプラ3では、例えば、入力用光ファイバ10が、出力用光ファイバ20の細径部だけをスライドするのではなく、光ファイバの外径が変化する接続部23を含めてスライドする。接続部23では、出力用光ファイバ20の外径だけでなく、コアの直径も変化する。そのため、接続部23をスライドするときに、コアの直径が変化することに伴って屈折率nが変化し、その結果、伝搬定数βが変化する。
 なお、第3実施形態の光カプラ3についても、光の屈折率を調整するために、上述した樹脂を、入力用光ファイバ10と出力用光ファイバ40とが接触している分部に塗布して光カプラ3を構成することもできる。
 以上、曲線部14を有する入力用光ファイバ10と、直線状に延びる出力用光ファイバ40とで光カプラ3を構成した場合を例に説明した。ただし、第3実施形態の光カプラは、特に図面に示していないが、直線状に延びる入力用光ファイバと曲線部を有する出力用光ファイバとで構成することもできる。その場合、出力用光ファイバを入力用光ファイバの細径部に沿わせて移動させることによって、伝搬定数を変化させる。
 [第4実施形態]
 第4実施形態の光カプラ4は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、入力用光ファイバ10から分岐された光を受光するフォトダイオード50と、を備え、入力用光ファイバ10は、その細径部12が曲げられた曲線部14を有し、入力用光ファイバ10の曲線部14とフォトダイオード50の先端面とが接触され、入力用光ファイバ10の曲線部14における弾性力を利用して、入力用光ファイバ10とフォトダイオード50とが接近することによって、入力用光ファイバ10がフォトダイオード50に押し付けられる力が変化され、結合長が長くなる一方、入力用光ファイバ10とフォトダイオード50が遠ざけられることによって、入力用光ファイバ10が前記フォトダイオード50に押し付けられる力が変化され、結合長が短くなることによって、入力用光ファイバ10からフォトダイオード50に分岐される光の分岐比Sが変化するように構成されている。
 この光カプラ4が行う光の分岐方法は、長手方向の一部で外径が相対的に細く形成された細径部12を有し、送られた光を細径部12で分岐する入力用光ファイバ10と、入力用光ファイバ10から分岐された光を受光するフォトダイオード50と、を備えた光カプラ4を用い、入力用光ファイバ10は、その細径部12が曲げられた曲線部14を有し、入力用光ファイバ10の曲線部14とフォトダイオード50の先端面とを接触させ、入力用光ファイバ10の曲線部14における弾性力を利用して、入力用光ファイバ10とフォトダイオード50とを接近させることによって、入力用光ファイバ10をフォトダイオード50に押し付ける力を変化させて結合長を長くする一方、入力用光ファイバ10をフォトダイオード50から遠ざけられることによって、入力用光ファイバ10をフォトダイオード50に押し付け力を変化させて結合長を短くして、入力用光ファイバ10からフォトダイオード50に分岐される光の分岐比Sを変化させる方法である。
 なお、この光カプラ4の入力用光ファイバ10の構成は、第1実施形態の光カプラ1の入力用光ファイバ10の構成と同様である。そのため、この光カプラ4の入力用光ファイバ10の構成については、第1実施形態の光カプラ1の入力用光ファイバ10の構成と同じ符号を図面に付し、詳細な説明は省略する。
 入力用光ファイバ10は、本体部11、細径部12及び接続部13を有している。また、入力用光ファイバ10の細径部12は、入力用光ファイバ10の延びる向きが反転される曲線部14を有している。入力用光ファイバ10の外径は、125μm以下であり、コアの直径は、10μm以下である。細径部12の外径は、1μm以上、20μm以下である。また、接続部13での外径の変化率は、0.05%以上、2.5%以下である。なお、ここでいう外径の変化率とは、入力用光ファイバ10の長手方向に1mm移動したときに外径が変化した割合である。また、(式5)によって表される、コアの屈折率(n)とクラッドの屈折率(n)との差は、約0.3%である。
 フォトダイオード50は、光検出器として機能する半導体のダイオードである。フォトダイオード50は、PN型、PIN型、ショットキー型、アバランシェ(APD)型等の種々の構造のものを用いることができる。
 この光カプラ4は、入力用光ファイバ10の曲線部14がフォトダイオード50の先端面51に接触して構成されている。そして、図7(A)に示すように、入力用光ファイバ10とフォトダイオード50とが遠ざかることによって、結合長が短くなる。一方、図7(B)に示すように、入力用光ファイバ10とフォトダイオード50とが近づくことによって、結合長が長くなる。このように、光カプラ4は、入力用光ファイバ10とフォトダイオード50とを近づけたり、遠ざけたりすることによって、結合長を変化させている。この結合長を変化させることによって、光カプラ4は、入力用光ファイバ10を進行した光を、必要なときに必要な分だけフォトダイオード50に分岐させている。
 この光カプラ4では、入力用光ファイバ10とフォトダイオード50とを互いに押し付け合う力を調整することによって、結合長を変化させている。そのため、押し付けあう力を調整することによって、分岐比Sを自由に変化させることができる。また、入力用光ファイバ10とフォトダイオード50とを近づけたり遠ざけたりするときに、曲線部14の弾性力を利用することができるので、光カプラ4の構造を簡潔にすることができる。
 この光カプラ4の結合長は、1mm以上、5mm以下の範囲で変化する。そのときの分岐比Sは5%以下の範囲で変化する。例えば、結合長が3mmのとき、入力用光ファイバ10の本体部11aから送られた光の85%は、入力用光ファイバ10の本体部11bに進み、光の5%は、フォトダイオード50に分岐する。
 なお、第4実施形態の光カプラ4についても、光の屈折率を調整するために、上述した樹脂を、入力用光ファイバ10とフォトダイオード50が接触している分部に塗布して光カプラ4を構成することもできる。
 以上、第1実施形態から第4実施形態の光カプラ1,1A,1B,2,2A,3,4について説明した。光カプラ1,1A,1B,2,2A,3,4は、分岐比Sが光の波長に依存する性質を利用することもできる。
 分岐比Sは、上述した(式1)及び(式2)に示すように、入射される光の波長に依存する。この性質を光カプラ1,1A,1B,2,2A,3,4に適用するのである。例えば、第1実施形態の光カプラ1の入力用光ファイバ10に、波長がλ1の光と波長がλ2の光とを入射させ、結合長を変化させる。分岐比Sが光の波長に依存する性質を利用した場合、結合長を変化させることにより、各波長の光の分岐比Sに差を設けることができる。なお、ここでは、波長がλ1の光の分岐比をSλ1とし、波長がλ2の光の分岐比をSλ2とする。また、(Sλ1、Sλ2)は、光カプラ1に波長がλ1の光と波長がλ2の光とを入射したときの各波長の分岐比の値を表すものとする。
 分岐比Sが光の波長に依存する性質を利用した場合、(Sλ1、Sλ2)を、例えば、(0%、0%)、(100%、100%)、(50%、100%)、(0%、50%)、(50%、0%)、(100%、0%)のように、各波長の光の分岐比Sに差を設けることができる。なお、ここに示した各波長の光の分岐比は、一例を示すものであり、各波長の光の分岐比は、この数値以外にも差を設けて分岐させることができる。また、入射させる光の波長は2種類に限定されず、3種類以上の波長の光を入射させることもできる。
 第1実施形態から第4実施形態の光カプラ1,1A,1B,2,2A,3,4において、分岐比Sが光の波長に依存する性質を利用する場合、例えば、光カプラ1,1A,1B,2,2A,3,4には、入射させる波長を選択するための選択スイッチが設けられる。
 また、第1実施形態から第4実施形態の光カプラ1,1A,1B,2,2A,3,4において、分岐比Sが光の波長に依存する性質を利用する場合、例えば、光カプラ1,1A,1B,2,2A,3,4は、光源の波長の変化を光のパワー(単位はワット(W))として与えることや、光のパワーが一定になるように結合長を変化させることによって長さの情報(移動量)を与えることができる。すなわち、分岐比Sが光の波長に依存する性質を利用した場合、光カプラ1,1A,1B,2,2A,3,4は波長モニタとして機能する。
 [実験例]
 実験は、図9及び図10に示すように、入力用光ファイバ10の細径部12と出力用光ファイバ20の細径部14とを接触させて光カプラ1を構成し、この光カプラ1の結合率Sを求めることによって行った。図9に示す光カプラ1は、入力用光ファイバ10の細径部12及び出力用光ファイバ20の細径部22の両方に曲線部14,24を設けた形態である。図10に示す光カプラ1Cは、入力用光ファイバ10の細径部12を直線状に延ばし、出力用光ファイバ20の細径部22にのみ曲線部24を設けた形態である。
 実験を行うにあたって、図9に示す光カプラ1については、2種類用意した。1つの光カップラは、入力用光ファイバ10の細径部12と出力用光ファイバ20の細径部14とが接触する部分に樹脂を塗布した光カプラ1である。もう1つの光カップラは、樹脂を塗布していない光カプラ1である。実験は、各光カプラ1の結合長Xを変化させ、結合率Sがどのように変化するかを求めることにより行った。その際、光カプラ1の第1ポートP1から、波長が1550nmの光を入力し、第2ポートP2、及び第4ポートP4の出力を測定した。なお、ここでいう結合率Sは、第1ポートP1の入力に対し第4ポートP4から出力された割合を意味する。また、塗布した樹脂は、屈折率がガラスの屈折率に近いエポキシ系樹脂である。なお、以下では、図9に示す光カプラ1について、樹脂を塗布していない光カプラ1を第1サンプル、樹脂を塗布した光カプラ1を第2サンプルとして説明する。
 一方、図10に示すカプラ1Cについて行った実験は、入力用光ファイバ10の細径部12と出力用光ファイバ20の細径部14とが接触する部分に樹脂を塗布せず、光カプラ1Cの結合長Xを変化させ、結合率Sがどのように変化するかを求めた。その際、光カプラ1の第1ポートP1から、波長が1550nmの光を入力し、第2ポートP2、及び第4ポートP4の出力を測定した。なお、以下では、図10に示すカプラ1Cについては、第3サンプルとして説明する。
 実験に用いた第1サンプル、第2サンプル及び第3サンプルの入力用光ファイバ10の外径D1及び出力用光ファイバ20の外径D2は、125μmである。第1サンプルの細径部の長さL1,L2は、入力用光ファイバ10及び出力用光ファイバ20共に、6.0mmである。また、入力用光ファイバ10の本体部11aと本体部11bとの間隔H1、及び出力用光ファイバ20の本体部21aと本体部21bとの間隔H2は、ともに9.0mmである。
 第2サンプルの細径部の長さL1,L2は、入力用光ファイバ10及び出力用光ファイバ20共に、6.0mmである。また、入力用光ファイバ10の本体部11aと本体部11bとの間隔H1、及び出力用光ファイバ20の本体部21aと本体部21bとの間隔H2は、ともに9.0mmである。
 第3サンプルの細径部の長さL1,L2は、4.0mmである。
 第1サンプル及び第2サンプルについては、結合長Xを約1mmから約5mmまで変化させて、結合率Sを求めた。第3サンプルについては、結合長Xを約0.5mmから約1.5mmまで変化させて、結合率Sを求めた。
 図11は、測定結果を示している。この図11に示すグラフの横軸は結合長Xを表し、縦軸は結合率Sを表している。また、図11において、実線は、第1サンプルの測定結果、破線は、第2サンプルの測定結果、点線は、第3サンプルの測定結果を示している。
 (第1サンプルの測定結果)
 第1サンプルでは、結合長Xが長くなるにしたがって、結合長Xがある長さになるまでの範囲では、結合率Sが増加した。そして、結合長Xが約4mmで結合率Sはピークになった。第1サンプルの結合率Sのピークの値は、約96%である。結合長Xが4mmを超える範囲では、結合長Xが長くなるにしたがって、結合率Sが減少した。
 (第2サンプルの測定結果)
 第2サンプルについても、第1サンプルと同様に結合長Xが長くなるにしたがって、結合長Xがある長さになるまでの範囲では、結合率Sが増加する。そして、結合長Xが3mmよりも若干短いところで結合率Sはピークになった。第2サンプルの結合率Sのピークの値は、100%である。すなわち、第1ポートP1から、入力された光は、第2ポート及び第3ポートには分岐されず、すべて第4ポートP4に出力された。結合長Xが3mmを超える範囲では、結合長Xが長くなるにしたがって、結合率Sが減少した。
 第1サンプルの測定結果及び第2サンプルの測定結果から分かるように、入力用光ファイバ10及び出力用光ファイバ20の両方に曲線部14,24を設けた場合、結合率Sは、結合長Xがある長さになるまでは増加し、結合長Xがある長さを超えると減少する。また、同じ形態の入力用光ファイバ10と出力用光ファイバ20とを用いて光カプラ1を作成し、条件をそろえた場合、樹脂を塗布していない光カプラ1よりも樹脂を塗布した光カプラ1の方が、高い結合率Sを得ることができる。
 (第3サンプルの測定結果)
 第3サンプルでは、結合長Xを上記の範囲で変化させた場合、結合長Xが長くなるにしたがって、結合率Sが増加し続け、結合率Sが減少することはなかった。
 第3サンプルの測定結果から分かるように、直線状の入力用光ファイバ10と、曲線部24を有する出力用光ファイバ20とで光カプラ1Aを構成した場合、結合率Sは、結合長Xが長くなるにしたがって増加し、減少することがない。
 1 光カプラ
 1A 光カプラ
 1B 光カプラ
 2 光カプラ
 2A 光カプラ
 3 光カプラ
 4 光カプラ
 10 入力用光ファイバ
 11 本体部
 12 細径部
 13 接続部
 14 曲線部
 20 出力用光ファイバ
 21 本体部
 22 細径部
 23 接続部
 24 曲線部
 30 ケース
 40 出力用光ファイバ
 41 本体部
 42 細径部
 43 接続部
 50 フォトダイオード
 51 先端面

Claims (8)

  1.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、
     長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備え、
     前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、
     前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記細径部における前記曲線部と他方の直線状の前記細径部とが接触され、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記細径部における前記曲線部同士が接触され、
     前記入力用光ファイバと前記出力用光ファイバとの少なくとも一方の前記曲線部における弾性力を利用して、
     前記入力用光ファイバと前記出力用光ファイバとが近づけられて両者の押し付ける力が変化され、前記入力用光ファイバの細径部と前記出力用光ファイバの細径部とが接触する長さである結合長が長くされる一方で、前記入力用光ファイバと前記出力用光ファイバとが遠ざけられて両者の押し付ける力が変化され、前記結合長が短くされることによって、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比が変化することを特徴とする光カプラ。
  2.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、
     長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備え、
     前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、
     前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記細径部における前記曲線部と他方の直線状の前記細径部とが接触され、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記細径部における前記曲線部同士が接触され、
     前記入力用光ファイバ及び前記出力用光ファイバの前記細径部の外径は5μm以上10μm以下に形成され、
     前記入力用光ファイバと前記出力用光ファイバとが接触する部分を中心にして、前記入力用光ファイバと前記出力用光ファイバとの一方が他方に対して捩られる方向に回転することによって、前記入力用光ファイバがなす仮想平面と前記出力用光ファイバがなす仮想平面とが0度以上5度以下の範囲で変化することによって、前記結合長が変化されて、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比が変化することを特徴とする光カプラ。
  3.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、
     長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備え、
     前記入力用光ファイバ又は前記出力用ファイバの一方は、その細径部が曲げられた曲線部を有し、
     前記入力用光ファイバが前記出力用光ファイバの本体部と前記細径部とを結ぶ接続部同士の間をスライドするか、又は前記出力用光ファイバが前記入力用光ファイバの本体部と前記細径部とを結ぶ接続部同士の間をスライドすることによって、前記入力用光ファイバと前記出力用光ファイバとの相対的な位置が調整されて前記入力用光ファイバと前記出力用光ファイバとの伝搬定数の差が変化されて、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比が変化することを特徴とする光カプラ。
  4.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、
     前記入力用光ファイバから分岐された光を受光するフォトダイオードと、を備え
     前記入力用光ファイバは、その細径部が曲げられた曲線部を有し、
     前記入力用光ファイバの曲線部と前記フォトダイオードの先端面とが接触され、
     前記入力用光ファイバの前記曲線部における弾性力を利用して、
     前記入力用光ファイバと前記フォトダイオードとが接近することによって、前記入力用光ファイバが前記フォトダイオードに押し付けられる力が変化され、前記結合長が長くなる一方、前記入力用光ファイバと前記フォトダイオードが遠ざけられることによって、前記入力用光ファイバが前記フォトダイオードに押し付けられる力が変化され、前記結合長が短くなることによって、
     前記入力用光ファイバから前記フォトダイオードに分岐される光の分岐比が変化することを特徴とする光カプラ。
  5.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備えた光カプラを用い、
     前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、
     前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記細径部における前記曲線部と他方の直線状の前記細径部とを接触させ、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記細径部における前記曲線部同士を接触させ、
     前記入力用光ファイバと前記出力用光ファイバとの少なくとも一方の前記曲線部における弾性力を利用して、
     前記入力用光ファイバと前記出力用光ファイバとを近づけて、両者の押し付ける力を変化させ、前記入力用光ファイバの細径部と前記出力用光ファイバの細径部とが接触する長さである結合長を長くする一方で、前記入力用光ファイバと前記出力用光ファイバとを遠ざけられて両者の押し付ける力を変化させ、前記結合長を短くすることによって、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比を変化させることを特徴とする光カプラを用いた光の分岐方法。
  6.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備えた光カプラを用い、
     前記入力用光ファイバと前記出力用光ファイバとの一方、又は、前記入力用光ファイバと前記出力用光ファイバとの両方は、前記細径部が曲げられた曲線部を有し、
     前記入力用光ファイバ若しくは前記出力用ファイバの一方の前記細径部における前記曲線部と他方の直線状の前記細径部とを接触させ、又は、前記入力用光ファイバ及び前記出力用ファイバの両方の前記細径部における前記曲線部同士を接触させ、
     前記入力用光ファイバ及び前記出力用光ファイバの前記細径部の外径を5μm以上10μm以下に形成し、
     前記入力用光ファイバと前記出力用光ファイバとが接触する部分を中心にして、前記入力用光ファイバと前記出力用光ファイバとの一方が他方に対して捩られる方向に回転することによって、前記入力用光ファイバがなす仮想平面と前記出力用光ファイバがなす仮想平面とが0度以上5度以下の範囲で変化することによって、前記結合長を変化させることによって、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比を変化させることを特徴とする光カプラを用いた光の分岐方法。
  7.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、長手方向の一部で外径が相対的に細く形成された細径部を有し、前記入力用光ファイバから分岐された光を受光する出力用光ファイバと、を備えた光カプラを用い、
     前記入力用光ファイバ又は前記出力用ファイバの一方は、その細径部が曲げられた曲線部を有し、
     前記入力用光ファイバが前記出力用光ファイバの本体部と前記細径部とを結ぶ接続部同士の間をスライドするか、又は前記出力用光ファイバが前記入力用光ファイバの本体部と前記細径部とを結ぶ接続部同士の間をスライドすることによって、前記入力用光ファイバと前記出力用光ファイバとの相対的な位置を調整して前記入力用光ファイバと前記出力用光ファイバとの伝搬定数の差を変化させて、
     前記入力用光ファイバから前記出力用光ファイバに分岐される光の分岐比を変化させることを特徴とする光カプラを用いた光の分岐方法。
  8.  長手方向の一部で外径が相対的に細く形成された細径部を有し、送られた光を前記細径部で分岐する入力用光ファイバと、前記入力用光ファイバから分岐された光を受光するフォトダイオードと、を備えた光カプラを用い、
     前記入力用光ファイバは、その細径部が曲げられた曲線部を有し、
     前記入力用光ファイバの曲線部と前記フォトダイオードの先端面とを接触させ、
     前記入力用光ファイバの前記曲線部における弾性力を利用して、
     前記入力用光ファイバと前記フォトダイオードとを接近させることによって、前記入力用光ファイバを前記フォトダイオードに押し付ける力を変化させて前記結合長を長くする一方、前記入力用光ファイバを前記フォトダイオードから遠ざけられることによって、前記入力用光ファイバを前記フォトダイオードに押し付け力を変化させて前記結合長を短くして、
     前記入力用光ファイバから前記フォトダイオードに分岐される光の分岐比を変化することを特徴とする光カプラを用いた光の分岐方法。
PCT/JP2015/069408 2014-09-24 2015-07-06 光カプラ及びその光カプラを利用した光の分岐方法 WO2016047233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/898,601 US20160299293A1 (en) 2014-09-24 2015-07-06 Optical coupler and method of branching light using the optical coupler
EP15804665.6A EP3199994A4 (en) 2014-09-24 2015-07-06 Optical coupler and method for branching light using optical coupler
CN201580001002.5A CN105723262B (zh) 2014-09-24 2015-07-06 光耦合器及利用该光耦合器的光的分支方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014193637A JP5728614B1 (ja) 2014-09-24 2014-09-24 光カプラ及びその光カプラを利用した光の分岐方法
JP2014-193637 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047233A1 true WO2016047233A1 (ja) 2016-03-31

Family

ID=53437921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069408 WO2016047233A1 (ja) 2014-09-24 2015-07-06 光カプラ及びその光カプラを利用した光の分岐方法

Country Status (5)

Country Link
US (1) US20160299293A1 (ja)
EP (1) EP3199994A4 (ja)
JP (1) JP5728614B1 (ja)
CN (1) CN105723262B (ja)
WO (1) WO2016047233A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807420A (zh) * 2016-09-09 2018-03-16 深圳朗光科技有限公司 功率耦合器及光纤激光器
WO2018193587A1 (en) * 2017-04-20 2018-10-25 Nec Corporation Optical amplifying apparatus and method of amplifying optical signal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017104628B4 (de) * 2017-03-06 2023-06-22 J-Fiber Gmbh Lichtleiter und Verfahren zum Erkennen eines zu stark gekrümmten Lichtleiters
US20230100044A1 (en) * 2020-02-21 2023-03-30 Nippon Telegraph And Telephone Corporation Optical multiplexing/demultiplexing method, optical multiplexing/demultiplexing circuit, and manufacturing method thereof
WO2021166263A1 (ja) * 2020-02-21 2021-08-26 日本電信電話株式会社 光合分波方法、光合分波回路及び光合分波回路製造方法
JPWO2023105550A1 (ja) * 2021-12-06 2023-06-15
WO2023105549A1 (ja) * 2021-12-06 2023-06-15 日本電信電話株式会社 光合分波回路及び分岐比調整方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145509A (ja) 1984-12-19 1986-07-03 Fujikura Ltd 光カプラ−
JPS63316008A (ja) 1987-06-18 1988-12-23 Fujitsu Ltd 光カプラの製造方法
JPH0262502U (ja) * 1988-10-31 1990-05-10
JPH08234045A (ja) * 1994-12-27 1996-09-13 Furukawa Electric Co Ltd:The 光ファイバカプラとその使用方法
JP2004519016A (ja) * 2001-02-21 2004-06-24 ドイッチェ テレコム アーゲー 光ファイバの長手方向の面で光信号を検出するためのシステムおよび方法
JP2005148180A (ja) * 2003-11-12 2005-06-09 Sun Tec Kk 光パワーモニタ、その製造方法および分析装置
JP2005250221A (ja) * 2004-03-05 2005-09-15 Anritsu Corp 光結合器
US20050207713A1 (en) * 2003-12-16 2005-09-22 Eric Mazur Subwavelength-diameter silica wires for low-loss optical waveguiding
US6968103B1 (en) * 2002-10-10 2005-11-22 General Dynamics Advanced Information Systems, Inc. Optical fiber coupler and method for making same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936631A (en) * 1974-11-11 1976-02-03 Bell Telephone Laboratories, Incorporated Optical fiber power tap
US4493528A (en) * 1980-04-11 1985-01-15 Board Of Trustees Of The Leland Stanford Junior University Fiber optic directional coupler
DE3036618A1 (de) * 1980-09-29 1982-05-19 Siemens AG, 1000 Berlin und 8000 München Steuerelement zum steuern einer lichtuebertragung zwischen lichtwellenleitern
US4482203A (en) * 1981-03-19 1984-11-13 Gould Inc. Adjustable coupling device for a fiber-optic power divider
US5138676A (en) * 1990-06-15 1992-08-11 Aster Corporation Miniature fiberoptic bend device and method
US5546484A (en) * 1994-10-14 1996-08-13 Kaptron, Inc. Fiber optic switch using polished-type directional coupler
US5854864A (en) * 1996-07-16 1998-12-29 The Regents Of The University Of California In-line polymeric construct for modulators, filters, switches and other electro-optic devices
GB9820467D0 (en) * 1998-09-18 1998-11-11 Europ Economic Community Sensing apparatus and a measurment method
JP3829665B2 (ja) * 2000-09-29 2006-10-04 住友電気工業株式会社 光ファイバカプラ及び光ファイバカプラ用の光ファイバ
CN101364660A (zh) * 2008-09-10 2009-02-11 中国科学技术大学 一种π型介质波导宽带定向耦合器
CN102520485A (zh) * 2011-12-30 2012-06-27 上海康阔光通信技术有限公司 一种光纤耦合器的制作工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145509A (ja) 1984-12-19 1986-07-03 Fujikura Ltd 光カプラ−
JPS63316008A (ja) 1987-06-18 1988-12-23 Fujitsu Ltd 光カプラの製造方法
JPH0262502U (ja) * 1988-10-31 1990-05-10
JPH08234045A (ja) * 1994-12-27 1996-09-13 Furukawa Electric Co Ltd:The 光ファイバカプラとその使用方法
JP2004519016A (ja) * 2001-02-21 2004-06-24 ドイッチェ テレコム アーゲー 光ファイバの長手方向の面で光信号を検出するためのシステムおよび方法
US6968103B1 (en) * 2002-10-10 2005-11-22 General Dynamics Advanced Information Systems, Inc. Optical fiber coupler and method for making same
JP2005148180A (ja) * 2003-11-12 2005-06-09 Sun Tec Kk 光パワーモニタ、その製造方法および分析装置
US20050207713A1 (en) * 2003-12-16 2005-09-22 Eric Mazur Subwavelength-diameter silica wires for low-loss optical waveguiding
JP2005250221A (ja) * 2004-03-05 2005-09-15 Anritsu Corp 光結合器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199994A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807420A (zh) * 2016-09-09 2018-03-16 深圳朗光科技有限公司 功率耦合器及光纤激光器
CN107807420B (zh) * 2016-09-09 2019-11-01 深圳朗光科技有限公司 功率耦合器及光纤激光器
WO2018193587A1 (en) * 2017-04-20 2018-10-25 Nec Corporation Optical amplifying apparatus and method of amplifying optical signal
JP2020513162A (ja) * 2017-04-20 2020-04-30 日本電気株式会社 光増幅装置および光信号増幅方法
US11374377B2 (en) 2017-04-20 2022-06-28 Nec Corporation Optical amplifying apparatus and method of amplifying optical signal

Also Published As

Publication number Publication date
EP3199994A1 (en) 2017-08-02
CN105723262A (zh) 2016-06-29
US20160299293A1 (en) 2016-10-13
EP3199994A4 (en) 2018-07-04
JP2016065931A (ja) 2016-04-28
CN105723262B (zh) 2018-09-11
JP5728614B1 (ja) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016047233A1 (ja) 光カプラ及びその光カプラを利用した光の分岐方法
US9435959B2 (en) Coupling of fiber optics to planar grating couplers
US8509577B2 (en) Fiberoptic device with long focal length gradient-index or grin fiber lens
JP6366602B2 (ja) カップリングレンズを備えたマルチチャネル光コネクタ
WO2017072993A1 (ja) 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル
CN107111085B (zh) 绝热光学耦合系统
US10725244B2 (en) Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
CN111239911B (zh) 使用晶体管外形技术的光模式转换和一种球透镜
US8559774B2 (en) Optical device having an elastomeric waveguide switch body and related methods
US9348092B1 (en) Mode size converters for reducing a modal profile of incoming light
CN107850727A (zh) 光连接部件
WO2017195814A1 (ja) 光導波路素子
US20120063720A1 (en) Optical fiber assembly and methods of making the same
CN103115570B (zh) 基于望远镜式熔锥结构的马赫曾德干涉高灵敏微位移传感器
JP6542653B2 (ja) プローブファイバ及び光ファイバ側方入出力装置
Ji et al. Design and implementation of a plastic fiber optical rotary joint using upside down taper lens
JP7107194B2 (ja) 光接続構造
US20180306973A1 (en) Housing for Packaging Optical Transmitter Module and Optical Transmitter Module
CA3023878C (en) Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
US20230049757A1 (en) Multimode Coupling for Fiber Waveguide
JP2018189691A (ja) 光装置、通信システム及び合波/分波方法
Supian et al. Polymer Optical Fiber Splitter Using Tapered Techniques for Green Technology
JP6438373B2 (ja) 光ファイバ側方入出力装置及び光ファイバ側方入出力方法
Shiraishi et al. High focusing power lensed fibers employing graded-index fiber with eigen-beam diameter
She et al. Polarization insensitive and low-loss coupling mode-size converter from super luminescent diode to silica-based planar lightwave circuit

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015804665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14898601

Country of ref document: US

Ref document number: 2015804665

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE